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Project Objective 

Project Objective 
The U.S. Bureau of Reclamation (USBR) uses many kinds of 

computational hydrologic, hydraulic, and sediment-transport models in order to 
protect and manage water resources.  Unfortunately, predictions from such 
models always possess uncertainty.  The uncertainty in model predictions can 
result from simplifications in the model’s representations of the physical systems 
(model structure uncertainty), errors in the values assigned to model parameters 
(parameter uncertainty), and errors in the model inputs (forcing or input 
uncertainty).  It is important to understand the nature of those uncertainties in 
order to guide data collection and model calibration strategies.  The long-term 
objective of this research is to develop a formal and efficient framework to 
evaluate uncertainty in predictions from hydrologic, hydraulic, and sediment-
transport models.  In particular, this project aims to assess the uncertainty 
associated with parameter, forcing, and model structure using Bayesian 
uncertainty methods, and reduce the computational cost of the Bayesian method 
substantially while still providing reliable uncertainty estimates.  The new 
approach for uncertainty will require few enough simulations to be applied to 
complex model applications, and retain enough formality to reliably evaluate data 
collection and model calibration strategies. To constrain the scope, this research 
focuses on applying the framework to a sediment transport model called 
Sedimentation and River Hydraulics – One Dimension (SRH-1D) (Huang and 
Greimann, 2013), but the methods are transferrable to other types of models.  Five 
major tasks must be completed to achieve the project objective:  (1) analyze the 
application of a previously developed methodologies termed Multi-objective 
Shuffled Complex Evolution Metropolis algorithms and Bayesian Model 
Averaging (MSU/BMA) to SRH-1D simulations of flume experiments to assess 
model weaknesses and data collection strategies; (2) apply MSU/BMA to an 
SRH-1D model of a real river system and evaluate the method’s performance; (3) 
develop and evaluate a simplified methodology that requires fewer simulations to 
evaluate uncertainty; (4) implement the method in streamlined software and train 
USBR staff in its use; and (5) publish project results in refereed journals. 

The previous results of the research are documented in Sabatine et al 
(2015). This report summarizes the more recent results from the research. Final 
results are expected to be complete at the end of 2016. 

The recent results can be categorized into three items: 

1.	 Analysis of the uncertainty in forcing variables, integrate the input error 
model into MSU algorithm, and test the method.  

2.	 Parallelization of the update process of MSU based on the number of 
complexes in order to reduce the operating time.  

1 
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3. Development of a framework for assessing overall uncertainty in SRH-1D 
by integrating several Bayesian uncertainty methods 

2 



     

 
 

 
 

  
 

 
 

    
   

 
   

    
   

   
  

 
   

    
 

  
 

     
   

 
 

   
 

  
  

   
 

   

      
  

   
  

 
 

   
  

  
 

     

Input Uncertainty Estimation 

Input Uncertainty Estimation 
Methodology 

There have been a few studies that explicitly account for uncertainty of 
forcing data within the hydrologic modeling.  The studies only deal with input 
errors related to observed rainfall data.  Kavetski et al. (2003) developed an input 
error model that introduces rainfall depth multipliers as latent variables of the 
system, allowing the patterns of rainfall as well as the event magnitude to change. 
However, this approach requires identifying the true rainfall to calculate the 
likelihood, which is impossible in a real world problem.  In addition, the number 
of latent variables can increase considerably in complex modeling cases, and it 
will cause dimensionality issues.  To avoid these problems, Ajami et al. (2007) 
proposed the simplified input error model. It describes the uncertainty in rainfall 
data using random multipliers that corrupt the true rainfall depth at all times from 
identical normal distributions.  They applied a Bayesian method to analyze the 
input error model and demonstrated that uncertainty in the forcing produces more 
uncertainty in predictions than parameter uncertainty.  Unfortunately, input error 
models have not been applied in a Bayesian framework in the field of hydraulic 
and sediment transport modeling.  It should be considered because the ignorance 
of input uncertainty might provide underestimations of overall uncertainty in 
model predictions. 

Bayesian uncertainty analysis has, to a certain extent, been used to assess 
the parameter uncertainty in hydraulic and sediment transport models.  Bayesian 
methods treat the parameters   after calibration as random variables having a joint 
probability density function (pdf).  That pdf combines the prior parameter 
information provided by the modeler and the likelihood information from the 
calibration data.  This paradigm can be written as: 

p (θ y ∝ L y θ θ) p ( ) (1) ) ( 
where p (θ y is the posterior parameter pdf, L y θ ) is the likelihood function, ) (
which presents the model’s ability to reproduce the observations when θ is used, 
and ( ) is the prior parameter pdf, which summarizes the information about θp θ 

before considering any observations.  In this paradigm, the posterior distribution 
of parameter   represents the uncertainty in parameter value given the calibration 
data.  

To assess uncertainty in forcing of the sediment transport model SRH-1D, 
we integrate the input error model into MSU, which is developed for parameter 
uncertainty estimation. Ajami et al. (2007) presented an input error model as 
follows, 

r =φt tr ; φ ~ N m, 2t ( σm ) (2) 

3 
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where rt is true rainfall depth, rt is observed rainfall depth, and φt is a random 
multiplier at time step t with mean m and variance σ m 

2 .  It is assumed that true 
rainfall depth is corrupted at all times by random multipliers from the identical 
distribution with unknown mean and variance.  The multiplier φt helps to 
maintain the non-homogeneous characteristics of the error in nature which is like 
higher deviation in higher rainfall depth (Sorooshian and Dracup, 1980).  For 
successful implementation of the input error model, the mean and variance for 
multiplier distribution need to be calibrated. Including input error parameters, the 
Bayesian approach of Equation (1) can be modified as, 

2 2 2p (θ ,m,σm y) ∝ L y  ( θ ,m,σm ) p (θ ,m,σm ) (3) 

We can apply the input error model to express uncertainty in forcing of 
SRH-1D such as flowrate and sediment discharge at upstream boundary, water 
surface elevation at downstream boundary, and internal bed level controls.  At the 
same time, this assumes that each type of input data has a different set of input 
error parameters (mean and variance).  Then, MSU can be used to evaluate the 
uncertainty of input error parameters and model parameters of SRH-1D 
simultaneously.  Later the uncertainty associated with those inputs will be 
propagated to uncertainty in model predictions for future scenarios. 

Results 
To test this method, we applied Ajami et al.’s input error model (2007) to 

the two forcing inputs of the Ashida and Michue (1971) case: a clear-water 
discharge at the upstream boundary and the water surface level at its downstream 
boundary.  Four input error parameters will be added to account for the 
uncertainties in those two forcing inputs, and Table 1 shows the feasible ranges of 
these parameters. The ranges are kept as small as possible for computational 
purposes, but we can widen them if the initial ranges do not capture the full 
posterior distributions.  Then, we apply the MSU to estimate the four input error 
parameters and the eight model parameters of SRH-1D simultaneously. The eight 
model parameters of SRH-1D include: Manning’s Roughness (n), critical shear 
stress (θc), hiding/exposure coefficient (λ), active layer thickness (nalt), sediment 
deposition and erosion parameters (ζd, ζe), bed load adaptation length (bl), and 
bed mixing coefficient (ξ). 

Figure 1 presents the marginal posterior distributions of the parameters 
obtained from MSU in cases where only eight model parameters are considered in 
MSU. The posterior distributions of the parameters of the probability distributions 
of the values of these parameters after the MSU simulation has been performed. 
Figure 2 presents the case where the eight model parameters and four input error 
parameters are considered in MSU at the same time. Comparing the posterior 
distributions from both cases, we can see two results.  One is that considering 
input error parameters, the estimated posterior distributions for the model 
parameters moved and assigned the mode of the probability distribution to 
different parameter values, for critical shear stress, hiding factor, and active layer 
thickness multiplier.  The other is that the mean of each input error model has a 

4 



     

 

 
 

    

    
   

      

   
   

      

  
   

 

 
   

 

  

 

  

  

      

Input Uncertainty Estimation 

mode different than one, for both the input discharge and the downstream water 
surface elevation.  If the forcing input was correct, the mean of the input error 
would concentrate around one, and the distribution of the model parameters 
would be the same as if we did not account for input uncertainty.      
Table 1 Initial bounds for input error parameters 
Parameters Minimum Maximum 

m1 Mean of input error model for flowrate 0.8 1.2 
2 Variance of input error model for 1×10-5 1×10-3 σ1 flowrate 

m2 Mean of input error model for water level 0.8 1.2 
2 Variance of input error model for water 1×10-5 1×10-3 σ 2 level 
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Figure 1 Marginal posterior distributions from MSU not including input 
model error. 
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(b) MSU with input error model 
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Figure 2 Marginal posterior distributions from MSU including model error 

In addition, we produced the predictive distributions of model outputs to 
present the uncertainty in model predictions resulting from both input and 
parameter uncertainties. To evaluate the input uncertainty impacts, we compared 
the 95% credible intervals (CI) of estimated uncertainty in model predictions.  
Figure 3 shows that the 95% CI are wider with input uncertainty considering 
compared with the original case (only considering uncertainty in model 
parameters). This result reveals that the estimated uncertainty bounds are 
substantially affected by input uncertainty. In addition, it can be inferred that the 
input error model is compensating for the existing model structural deficiencies. 
Only the bed profile and D16 are shown, but other representative diameters were 
also compared against measured results and the same generally conclusions are 
valid. 
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Parallelize Update Process 
We parallelized the MSU algorithms to reduce the computational cost. 

One of the easiest ways to reduce operating time of massive computations is to 
parallelize the computing process.  Unfortunately, one cannot easily parallelize 
the MCMC sampling process because the Bayesian implementation with MCMC 
is sequential computing such that a realized posterior distribution becomes a prior 
for next step (Foglia et al., 2009). To overcome this limitation, we parallelize the 
MCMC sampling process based on the number of updating sequences.  For 
example, MSU computes likelihoods of initial parameter sets and partitions them 
into a pre-defined number of complexes.  The parameter sets are then updated 
sequential within each complex.  After a few iterations of updating, MSU 
combines the parameter sets into a single list, which is shuffled and re-divided 
into complexes.  The updating sequences of multiple complexes can thus proceed 
in parallel.  We modified the source code of MSU to perform parallel computing 
for the updating sequences using the number of computing cores same as the 
number of complexes q . By parallelizing the MSU updating process, we 
reduced the operating time of MSU implementation by a factor of 1 /  q of the 
original without any change in results of uncertainty estimates. 

8 



     

 
 

  
 

     
    

   
    

 
   

 
 

 
  

 
 

 
 

   
 

   
 

  
  

   
    

    
  

        
 

   
 

  

  
  

 
 

 
  

 
 

   
 

  
 

 

Overall Uncertainty Framework 

Overall Uncertainty Framework 
In this period, we also developed an outline of the Bayesian framework for 

estimating the overall uncertainty in SRH-1D modeling.  The framework includes 
the several methods, which have been developed through this project, and it will 
be in streamlined software as a final product of this project.  The uncertainty 
assessment procedure of the developing Bayesian framework is as below: 

1.	 Define application case. Identify the system configuration (e.g., 
geomorphic characteristics, sediment size range, flow conditions, 
sediment load type), the quantity of interest to forecast, available 
observations, and forecast time period. 

2.	 Determine sediment transport models to consider.  Decide among the 
available sediment transport models for a given case based on the system 
configuration.    

3. Select a sediment transport equation (others will be considered later).	  To 
perform uncertainty methods, select a single sediment transport model 
from a class of the available models. 

4. Determine model parameters to consider.	  Identify the parameters contained 
in the sediment transport model, and decide which parameters will be 
analyzed.   

5. Define	 input error models.  Determine forcing inputs to consider as 
uncertain.  Develop the input error models, and define the input error 
parameters for each forcing input.      

6. Perform a parameter screening.	  Conduct the Latin Hypercube - One at a 
Time sampling (LH-OAT) method to quantify the importance of model 
parameters and input error parameters on the model simulations, and 
determine which parameters can be neglected in uncertainty analysis. 

7.	 Organize variables for MSU.  Based on the physical characteristics, 
organize the calibration data into multiple variables for MSU 
implementation.  

8. Implement MSU.  	Perform the uncertainty method MSU to estimate the 
model parameters and input error parameters, which are treated as 
important from the screening result. 

9. Repeat Steps 3 to 7 for all sediment transport models. 
10. Simulate the calibration period.  	Obtain the model outputs from the all 

considered models using optimized parameter sets for the calibration 
period. 

11. Organize	 variables for BMA.  Based on the physical characteristics, 
organize the calibration data into multiple variables for BMA 
implementation. 

12. Run BMA.  	Estimate the model weights and standard deviations with their 
underlying probability distributions. 

13. Simulate the forecast period. 	 Obtain the model outputs from the all 
considered models using optimized parameter sets for the forecast 
period. 

9 
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14. Generate BMA predictions.  	Applying the weights and standard deviations 
to the forecast model outputs, produce the deterministic and probabilistic 
BMA predictions. 

This approach will be implemented and evaluated in the final deliverable. 
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