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Abstract 24 

This paper separately evaluates two methods from Bayesian Statistics to estimate parameter and 25 

model uncertainty in simulations from a 1D sediment transport model.  The first method, Multi-26 

Variate Shuffled Complex Evolution Metropolis – Uncertainty Analysis (MSU), is an algorithm 27 

that identifies the most likely parameter values and estimates parameter uncertainty for models 28 

with multiple outputs.  The second method, Bayesian Model Averaging (BMA), determines a 29 

combined prediction based on three sediment transport equations that are calibrated with MSU 30 

and evaluates the uncertainty associated with the selection of the transport equation.  These tools 31 

are applied to simulations of three flume experiments.  For these cases, MSU does not converge 32 

substantially faster than a previously used and simpler parameter uncertainty method, but its 33 

ability to consider correlation between parameters improves its estimate of the uncertainty.  Also, 34 

the BMA results suggest that a combination of transport equations usually provides a better 35 

forecast than using an individual equation, and the selection of a single transport equation 36 

substantially increases the overall uncertainty in the model forecasts. 37 

 38 

Author Keywords: Bayesian model averaging, parameter optimization, parameter uncertainty, 39 

model uncertainty, sediment transport uncertainty40 
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Introduction 41 

Sediment transport models are used widely by government agencies, engineering firms, 42 

and researchers for sediment routing and sediment capacity forecasts in channels.  Uncertainty in 43 

forecasts from these models can be very large.  In fact, it is typical for estimates of bed load to 44 

involve 50 – 100% uncertainty (MacDonald et al. 1991).  Uncertainty in sediment transport 45 

models can arise from several sources.  Such models usually offer multiple equations to estimate 46 

transport capacity, and no single formula is superior for all conditions (Huang and Greimann 47 

2010).  The selection of a single equation introduces some uncertainty as to whether the correct 48 

mathematical description is being used to represent the physical system (model uncertainty).  In 49 

addition, each equation contains multiple parameters that cannot be measured in the field and 50 

thus must be calibrated, usually by adjusting their values until the model reproduces some 51 

available observations during a calibration period.  Thus, there is some uncertainty about 52 

whether the true values of the parameters have been identified (parameter uncertainty).  Other 53 

sources of uncertainty include the representation of the flow hydraulics, channel geometry, and 54 

the model forcing data. 55 

Analyses of uncertainty in the field of river erosion and sedimentation have focused 56 

mainly on parameter uncertainty (Chang et al. 1993; Yeh et al. 2004; Wu and Chen 2009; Ruark 57 

et al. 2011; Shen et al. 2012), while less attention has been paid to model uncertainty.  Ruark et 58 

al. (2011) developed a methodology to assess parameter uncertainty in sediment modeling.  59 

Their methodology uses a multi-objective version of generalized likelihood uncertainty 60 

estimation (GLUE) (Beven and Binley 1992; Mo and Beven 2004; Werner et al. 2005; 61 
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Pappenberger et al., 2006) to estimate this uncertainty.  In the Ruark et al. (2011) method, the 62 

parameters are initially assumed to conform to uniform distributions within specified ranges.  63 

Parameter sets are then generated based on these so-called prior distributions and used in the 64 

model to simulate the calibration period.  The similarity between the observed and simulated 65 

behavior is used to judge the likelihood that each generated parameter set is correct without any 66 

imposed distinction between behavioral and non-behavioral parameter sets.  The calculated 67 

likelihoods are used to determine the individual posterior distributions for the parameters (i.e. the 68 

parameter distributions given the available observations).  Parameter sets generated from these 69 

posterior distributions are then used to simulate the forecast period and the associated 70 

distributions of the model outputs are determined to characterize the forecast uncertainty.   71 

The Ruark et al. (2011) method is relatively simple to implement, but it has some 72 

limitations.  First, it uses a potentially inefficient sampling method when developing the 73 

posterior parameter distributions.  In particular, the method runs the model with a large number 74 

of parameter sets before considering the information gained from any of the simulations.  As a 75 

result, many simulations are typically performed using parameter sets that have low likelihoods 76 

of being correct (van Griensven and Meixner 2007; Blasone et al. 2008).  Such inefficiency is a 77 

serious consideration for sediment transport models because each simulation can be time 78 

consuming.  Second, the method develops the individual posterior parameter distributions rather 79 

than the joint posterior parameter distribution.  Thus, any correlation between the parameters is 80 

neglected.  In other applications, uncertainty estimates have been shown to be substantially 81 

different when correlations are considered (Vrugt et al. 2003b).  Finally, the method does not 82 
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consider model uncertainty, which might lead to underestimations of the overall uncertainty in 83 

the model predictions.  In other applications, model uncertainty has been shown to produce more 84 

uncertainty in predictions than parameter uncertainty (Carrera and Neuman 1986; Abramowitz et 85 

al. 2006). 86 

More sophisticated algorithms have been proposed in other fields to overcome these 87 

limitations.  Markov Chain Monte Carlo (MCMC) algorithms develop a sample of parameter sets 88 

from a sought posterior distribution in a way that makes use of information from each simulation 89 

as it is performed (Vrugt et al. 2003b).  Thus, they are potentially more efficient.  In addition, 90 

MCMC methods include correlation between parameters (Vrugt et al. 2003b).  Vrugt et al. 91 

(2003b) developed a MCMC algorithm called Shuffled Complex Evolution Metropolis – 92 

Uncertainty Analysis (SCEM-UA) that evolves a sample of parameter sets from an assumed 93 

prior distribution toward the joint posterior distribution.  However, the calculation of likelihood 94 

in this algorithm limits its application to cases where a single output variable is used to judge 95 

parameter likelihood.  In sediment transport modeling applications, more than one model output 96 

is typically of interest (e.g., bed elevations and grain size distributions).  Vrugt et al. (2003a) 97 

proposed Multiobjective Shuffled Complex Evolution Metropolis (MOSCEM), which 98 

generalizes SCEM-UA to evolve the parameter set towards the Pareto curve that reflects the 99 

trade-offs between competing objectives (and builds on previous work by Yapo et al. 1998).  100 

More recently, van Griensven and Meixner (2007) proposed a multi-objective likelihood 101 

calculation for cases with more than one output variable.  The improvement in efficiency that can 102 
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be achieved by applying SCEM-UA and the importance of including parameter correlation in 103 

assessing uncertainty from sediment transport models with multiple outputs remains unknown. 104 

Another method called Bayesian Model Averaging (BMA) has been proposed to account 105 

for model uncertainty (Hoeting et al. 1999; Raftery et al. 2005; Wöhling and Vrugt. 2008).  In 106 

BMA, competing models are used to simulate the calibration period.  The uncertainty associated 107 

with each model (under the assumption that it is the correct model) is modeled by a normal 108 

distribution that is centered on the model’s prediction.  BMA then finds the most likely variance 109 

of each normal distribution and the most likely probability that each model is correct given the 110 

available observations (Vrugt et al. 2008).  The combined distribution that is produced by BMA 111 

provides an estimate of the overall uncertainty including the model uncertainty.  The importance 112 

of including model uncertainty in assessing the overall uncertainty in sediment transport models 113 

also remains unknown. 114 

The goal of this paper is to evaluate proposed uncertainty methodologies that address the 115 

main limitations of the Ruark et al. (2011) method.  To calibrate parameters and examine 116 

parameter uncertainty, we implement a multi-objective adaptation of SCEM-UA, which we call 117 

Multi-Variate Shuffled Complex Evolution Metropolis – Uncertainty Analysis (MSU).  Unlike 118 

MOSCEM, it combines together all objectives into a single likelihood function, which is similar 119 

to van Griensven and Meixner (2007).  We aim to determine whether MSU requires substantially 120 

fewer simulations to implement than the GLUE method in Ruark et al. (2011) and whether the 121 

inclusion of correlations between parameters in MSU produces important differences in the 122 
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estimates of the uncertainty.  To examine model uncertainty, we separately apply BMA and 123 

evaluate whether the uncertainty in the transport equation contributes substantially to the overall 124 

uncertainty in the model predictions.  The only connection between MSU and BMA is that the 125 

model outputs from the calibrated parameter values from MSU are used in BMA.  These 126 

methods are coupled with the Sedimentation and River Hydraulics – One Dimension (SRH-1D) 127 

model (Huang and Greimann 2010).  Within this model, three equations are used to simulate bed 128 

load:  the Parker (1990) equation, the Wilcock and Crowe (2003) equation, and the modified 129 

Meyer-Peter and Müller equation (Wong and Parker 2006).  The model is used to simulate three 130 

bed-load driven flume experiments.  The experiments include a depositional case, a data-poor 131 

erosional case, and a data-rich erosional case.  In all three cases, observations are available for 132 

bed profile elevations and sediment sizes.  Two of these cases are identical to those presented in 133 

Ruark et al. (2011), which allows us to compare the results from MSU to GLUE. 134 

Methodology 135 

MSU 136 

MSU aims to produce a sample of parameter sets from an initially unknown joint 137 

posterior parameter distribution.  While iterating towards this sample, the method simultaneously 138 

finds the parameter set that is most likely to be the correct one, which is equivalent to calibrating 139 

the model.  Aside from its use of a multi-objective likelihood function, MSU is the same as 140 

SCEM-UA, which is described and tested in detail by Vrugt et al. (2003b).  Although SCEM-UA 141 

lacks detailed balance and thus may not identify the exact posterior distribution, it has been 142 
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shown to work well in practice (Laloy and Vrugt 2012).  This section provides an overview of 143 

the method, but readers are referred to Vrugt et al. (2003b) for mathematical details. 144 

MSU begins by generating a relatively small sample of parameter sets from the specified 145 

joint prior distribution.  The sample size s is selected by the user, and the prior distribution is a 146 

joint uniform distribution with bounds that are specified by the user.  The bounds represent the 147 

plausible range for each parameter before the calibration data are considered.  A uniform 148 

distribution is used because initially no set of parameter values within the range is considered 149 

more likely than any other. 150 

After the initial parameter sets have been generated, they are sorted from most likely to 151 

least likely.  The likelihood of a given parameter set is judged by the model’s ability to reproduce 152 

the observed values of the model outputs during the calibration period when the parameter set is 153 

used.  Because sediment transport models have more than one output variable of interest, the 154 

Global Optimization Criterion (GOC) proposed by van Griensven and Meixner (2007) is used to 155 

calculate likelihood.  The likelihood of parameter set   being correct given the observations 156 

obsY  is  obsYp |  and is related to the GOC as: 157 

 )exp()|( GOCYp obs   (1) 158 

where: 159 

 



A

a a

aa

SSE

NSSE
GOC

1 min,

 (2) 160 

In this equation, a is an index of model output variables, A  is the total number of output 161 



 

9 

 

 

 

variables, aN  is the number of observations available for variable a , aSSE  is the sum of 162 

squared errors for the model predictions of variable a , and min,aSSE is the minimum sum of 163 

squared errors of variable a  among all of the currently available parameter sets.  Similar to the 164 

likelihood function for SCEM-UA, Eq. (1) assumes that the residuals for each variable are 165 

independent, normally distributed, and have constant variance.  However, the expression allows 166 

the residuals of different output variables to have different variances.   167 

After calculation of the likelihoods, the parameter sets are grouped into q complexes, 168 

where q is selected by the user.  If two complexes are used, for example, complex one would get 169 

the 1st, 3rd, 5th, etc. most likely parameter sets, and complex two would get the 2nd, 4th, 6th, etc. 170 

most likely parameter sets.  The first (and most likely) parameter set in each complex is used as 171 

the starting point for an associated Markov Chain.  The complexes are used to determine how to 172 

evolve the parameter sets, while the Markov Chains track this evolution. 173 

Trial parameter sets are then generated for each complex and considered as replacements 174 

of existing parameter sets.  To generate trial parameter sets, MSU calculates the ratio of the 175 

average likelihood of the points in the selected complex and the average likelihood of the last 176 

qsm /  parameter sets in the corresponding Markov Chain and compares this ratio to a 177 

specified threshold.  If this ratio is less than the threshold, then a candidate parameter set is 178 

drawn from a normal distribution centered on the most recent parameter set in the Markov Chain.  179 

If this ratio is greater than the threshold, a candidate parameter set is drawn from a normal 180 

distribution centered on the mean of the currently selected complex.  In MSU, as in SCEM-UA 181 
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(Vrugt et al. 2003b), the threshold is large (106), so new parameter sets are usually generated 182 

from normal distributions centered on the current parameter set of the Markov Chain.   183 

The candidate parameter set is accepted if the ratio of the likelihood of this parameter set 184 

to the likelihood of the current parameter set is greater than a random number generated from a 185 

uniform distribution between 0 and 1.   This criterion implies that the generated parameter set is 186 

always accepted if its likelihood is larger than the current parameter set, and it is still accepted on 187 

random occasions if its likelihood is smaller.  If the new parameter set is accepted, it becomes 188 

the current position of the Markov Chain and replaces the best complex member.  Otherwise, the 189 

Markov Chain does not advance, but the ratio of the likelihoods of the best and worst members 190 

in the active complex is calculated.  If this ratio is greater than the threshold, the covariance of 191 

the active complex might be too large (Vrugt et al. 2003b).  If the likelihood of candidate 192 

parameter set is greater than that of the worst point in the complex, the worst complex member is 193 

replaced with the candidate parameter set. 194 

This updating procedure is repeated 5/m  times for each complex.  The complexes are 195 

then shuffled to share information between them.  To shuffle, the parameters sets from all 196 

complexes are re-combined into a single list and sorted from most likely to least likely as 197 

described earlier.  Then, they are re-organized into complexes as previously described and the 198 

updating procedure is repeated. 199 

The MSU algorithm has converged to the posterior distribution when it is sampling from 200 

a stable distribution.  Because more than one Markov Chain is used in the method, convergence 201 
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can be measured by the ratio of the variance of the average parameter value from each chain and 202 

the average of the variances of parameter values within each chain.  This ratio is the basis of 203 

Gelman and Rubin’s (1992) Scale Reduction Score (SRS).  Although the SRS is widely used, it 204 

is based on normality assumptions.  In fact, it is difficult to know with certainty that convergence 205 

is reached in MCMC methods (Cowles and Carlin, 1996).  The SRS indicates exact convergence 206 

for each parameter when it is equal to 1, but SRS values below 1.2 are used to indicate adequate 207 

convergence (Vrugt et al. 2003b; Gelman and Rubin 1992).  Due to the difficulty in judging 208 

convergence, trace plots of the sequentially-generated parameter values are also inspected to 209 

confirm stability in the distributions. 210 

The parameter sets that are generated after convergence are consistent with the posterior 211 

distribution.  Each parameter’s marginal posterior distribution can be inferred by creating 212 

histograms of the parameter values after convergence, and the correlation between the values of 213 

different parameters can be readily calculated from the generated parameter sets.  Furthermore, 214 

the parameter sets can be used as the basis of model simulations for the forecast period.  The 215 

histograms of the forecasted model outputs can then be used to judge the uncertainty in the 216 

model predictions that arises from the remaining parameter uncertainty.  Finally, the most likely 217 

parameter set that is generated from a large sample from the posterior parameter distribution is 218 

considered to be the calibrated parameter set.  Model results from this parameter set are then 219 

used in the BMA algorithm. 220 
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BMA 221 

This section provides an overview of BMA; mathematical details and evaluations of the 222 

method are provided elsewhere (Raftery et al. 2005; Vrugt et al. 2008).  BMA develops a 223 

prediction for an output variable and associated uncertainty bounds using a weighted average of 224 

the forecasts from a collection of models.  In the present application, the models are different 225 

sediment transport equations within the SRH-1D program.  The central variable in BMA is the 226 

probability that the observed value of the output variable   occurs given the individual model 227 

estimates Ii ff ,...,  where i is an index of the available models and I  is the total number of 228 

available models.  This probability is denoted ),...,|( Ii ffp   and is calculated as: 229 

 



I

i
iiiIi fgwffp

1

)|(),...,|(  (3) 230 

 where Ii ww ,...,  are the probabilities that each model is the correct one given the calibration 231 

data.  These probabilities are nonnegative and add up to one, so they can be viewed as weights.  232 

The expression )|( ii fg   is the probability of observing   given model forecast fi.  It represents 233 

the uncertainty associated with model i and is assumed to be a normal distribution centered on 234 

the model’s forecast with variance i
2.  The weight and variance associated with each model are 235 

estimated as the most likely values given the available observations.  They are found by 236 

maximizing the likelihood l : 237 
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   




 


stN

ts

I

i
iststiiIiIiI fgwffwwl

, 1

22
1 )|(log),,...,|,...,,,...,(   (4) 238 

where stN  is the total number of observations over all s  locations and t  times in the calibration 239 

dataset and  iststi fg |  is model s' i  conditional probability for the observation given that 240 

model’s forecast at location s  and time t .  An iterative procedure called the Expectation-241 

Maximization (EM) algorithm is used to solve for the unknown weights and variances.  This 242 

method is widely used for obtaining maximum likelihood estimates and is described in detail 243 

elsewhere (Dempster et al. 1977; Givens and Hoeting 2005).   244 

The weights and variances obtained from the calibration period are assumed to apply to 245 

the forecast period as well (Raftery et al. 2005).  Thus, the weights obtained from BMA can be 246 

applied directly to model outputs for the forecast period to obtain the BMA prediction (note that 247 

weights from one model application are not expected to apply to other applications of the 248 

model).  Confidence (or credible) intervals of the BMA prediction give insight into overall 249 

uncertainty present in the model predictions.  This uncertainty includes uncertainty due to the 250 

model selection (represented by the weights) as well as uncertainty associated with each model 251 

under the assumption that it is the appropriate model (represented by the normal distributions).  252 

The latter uncertainty estimate includes the uncertainty due to parameter values, which is 253 

separately determined by the MSU algorithm.  When applying BMA, the only information that is 254 

used from MSU is the most likely parameter set associated with each transport equation. 255 
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Application 256 

Sediment Transport Model 257 

SRH-1D is a one dimensional hydraulic and sediment transport model that was developed 258 

and is widely used by the U.S. Bureau of Reclamation.  The model is able to simulate channels 259 

with a variety of characteristics including fixed-width boundaries, steady flow, and non-cohesive 260 

sediment transport, which are considered in this paper.  The model is described in detail in 261 

Huang and Greimann (2010).  Here, we only highlight the parameters that are considered 262 

uncertain, which are parameters that a user typically must specify and therefore calibrate.  263 

To compute flow hydraulics, SRH-1D solves the energy equation for steady, gradually 264 

varied flow using the standard step method.  This approach uses Manning’s equation and thus 265 

requires specification of Manning’s roughness coefficient n , which is treated as an uncertain 266 

parameter. 267 

Sediment transport computations in SRH-1D for the cases considered here consist of two 268 

major components:  sediment routing and bed material mixing.  Because all of the cases 269 

considered here are bed-load driven, the Exner equation is used to calculate changes in the 270 

volume of sediment on the bed.  Bed load transport capacity is calculated using one of the 271 

following:  the Parker (1990) equation, the Wilcock and Crowe (2003) (W&C) equation as 272 

modified by Gaeuman et al. (2009), or the modified Meyer-Peter and Müller (MPM) equation 273 

(Wong and Parker 2006).  All these bed load equations can be written in the form: 274 
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  
   j

gj

ssj F
p

gq








5.1

1/
 (5) 275 

where qBsjB is volumetric sediment transport rate per unit width for grain size class j, g is 276 

gravitational acceleration, s the density of the sediment, ρ is the density of water, pj is the bed 277 

material fraction by mass within the given size class j, and BgB is grain shear stress. The function 278 

F(j) is an empirical function fitted to field and/or laboratory data and differs between Parker, 279 

W&C, and MPM.  The parameter j is a measure of the shear stress relative to the reference 280 

shear stress:  281 

  j j j r     (6)  282 

where Br B is the reference Shield’s number and Bj is the Shield’s parameter of the sediment size 283 

class j computed as: 284 

    jsgj d1/      (7) 285 

 Bj B is the exposure/hiding factor, which accounts for the reduction in the critical shear stress for 286 

particles that are large relative to surrounding sediment particles and the increase in the critical 287 

shear stress for relatively small particles.  It can be written: 288 

 
    mjj dd /     (8) 289 

where  is a constant in the Parker (1990) equation, a function of the relative particle size in the 290 

W&C equation, and zero in the MPM equation. The representative diameter dm is the median 291 

diameter in the Parker equation, the geometric mean diameter in the W&C equation, and not 292 
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required in the MPM equation because . The parameters Br and  are constants in Parker but 293 

functions of the particle distribution in W&C.  The following functions are used in SRH-1D for 294 

the W&C equation: 295 

    1
0 14.141.10exp1015.0  sgrr   (9) 296 

      1
0 /5.1exp111  mi dd  (10) 297 

where sg is the geometric standard deviation of the particle size distribution. The parameters Br 298 

and  are treated as uncertain in the Parker equation, whereas the parametersBr0 and 0 are 299 

treated as uncertain in the W&C equation. In the MPM equation, the reference shear stress is 300 

assumed to be fixed at 0.0495 and  = 0 as specified in Wong and Parker (2006). 301 

SRH-1D uses a total adaptation length totL  to calculate the length over which transport 302 

capacity is reached:  303 

   
f

sbstot Ww

Q
fLfL


 1  (11) 304 

where fs is the fraction of suspended load as computed in Greimann et al. (2008), Q is the flow 305 

rate, W is the channel width, wf is the sediment fall velocity, and hbL Lb   is the bed load 306 

adaptation length, where h is the hydraulic depth. Lb  is a parameter to compute the bed load 307 

adaptation length, and   is the suspended sediment recovery factor.  Different values are used 308 

for  for deposition ( d ) and scour ( s ).  The bed load adaptation length parameter Lb  and the 309 

suspended sediment recovery factors d  and s  are considered uncertain parameters. 310 
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Bed material mixing is modeled by dividing the bed into one active layer above several 311 

inactive layers.  During deposition, the active layer shifts up and deposited material becomes part 312 

of the active layer while older material becomes part of the top inactive layer.  During erosion, 313 

the active layer shifts down and material from the underlying inactive layers becomes part of the 314 

active layer.  The thickness of the active layer is calculated by multiplying the geometric mean of 315 

the largest sediment size class by the active layer thickness multiplier altn .  The user must also 316 

specify the weight of bed load fractions  , which is the contribution of the bed load grain size 317 

distribution to the overall grain size distribution of the sediment that is transferred between the 318 

active layer and the topmost inactive layer.  Both altn  and   are considered uncertain 319 

parameters. 320 

Flume Experiments 321 

Three flume experiments are considered as case studies.  Following Ruark et al. (2011), a 322 

depositional experiment described by Seal et al. (1997) and an erosional experiment described by 323 

Ashida and Michiue (1971) are used.  In both cases, we use the same observational data as Ruark 324 

et al. (2011) to allow direct comparisons to their results.  Because observational data are very 325 

limited in the Ashida and Michiue (1971) experiment, another erosional case by Pender et al. 326 

(2001) is examined, which was not considered by Ruark et al. (2011).  Table 1 provides a 327 

summary of the dimensions, initial conditions, experimental inputs, and observations available 328 

for the three experiments.     329 
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The Seal et al. (1997) experiment was designed to study sediment sorting during 330 

aggradation in three runs (named Runs 1-3).  Downstream fining and armoring processes were 331 

observed in this experiment (Seal et al. 1997).  An abundance of observations from the 332 

experiment are available including bed elevations taken typically at 18 locations every half hour, 333 

hour, and two hours for Runs 1, 2, and 3, respectively.  Grain sizes (D16, D50, and D84) were also 334 

determined at a variable number of locations along the flume profile during 4 or 5 time intervals 335 

during the experiments.  These measurements were assumed to apply to the middle of the time 336 

intervals for the modeling exercises.  Because the only difference between runs is the sediment 337 

feed rate, model parameters should remain the same between the runs.  Thus, we used Run 2 338 

(duration of 32.4 hours) as the calibration period and Run 3 (duration of 64 hours) as the forecast 339 

period. 340 

The Ashida and Michiue (1971) experiment was designed to simulate bed degradation 341 

downstream of a dam.  Bed elevation measurements are available at only three locations and six 342 

times within the 10 hour experiment.  The bed material distribution is reported as fractions 343 

within specified size intervals and is available only at the beginning and end of the experiment.  344 

Because sediment size measurements were not collected an intermediate time, we cannot 345 

separate the case study into calibration and forecast periods that both contain observations.  346 

Thus, hours 10 through 20 were simulated as though the experiment continued and used as a 347 

forecast period. 348 
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The Pender et al. (2001) experiment was designed to study changes in bed structure and 349 

elevation during degradation in three runs (named Experiments 1-3).  Experiment 1 was selected 350 

for use.   This experiment has bed elevation measurements available every 2 to 3 hours at 351 

hundreds of locations for most times up to 84.6 hours.  For computational purposes, we reduced 352 

the number of observed locations to between 21 and 42 points at each time, depending on the 353 

availability of observations at a given time.  The bed material distribution is characterized by the 354 

fractions of sediment within specified size intervals.  Hours 0 to 34.1 are used as the calibration 355 

period, and hours 34.1 to 84.6 are used as the forecast period. 356 

Method Coupling 357 

Table 2 shows the minimum and maximum allowed values for the eight uncertain 358 

parameters described in the previous section.  These values were selected to provide broad 359 

plausible ranges for the prior joint uniform distribution provided to MSU.  The range for the 360 

active layer thickness multiplier altn  varies between the experiments, and in the Seal et al. (1997) 361 

experiment, the value of altn  varies between sediment transport equations.  The ranges for this 362 

parameter were kept as small as possible for computational purposes, but they were widened in 363 

cases where the full posterior distribution was not captured by the initial range.   364 

Several method parameters also need to be defined to apply MSU.  In all cases, an initial 365 

population size of 500s  parameter sets is organized into 2q  complexes.  These values 366 

imply that each complex contains 250 parameter sets and each complex is updated 50 times 367 

before shuffling.  The values were selected because they favor quick convergence.  MSU was 368 
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run for a total of 20,000 iterations to be certain that all parameters converged and large samples 369 

from the posterior parameter distributions were attained.   370 

MSU also requires organization of the observations from the calibration periods into 371 

different variables which are allowed to have different variances for their residuals.  It is 372 

assumed that bed elevations at all locations in a given flume at a given time have the same 373 

variance of their residuals and can therefore be treated as a single output variable.  Aggregating 374 

observations from several locations together in this way allows for more reliable estimates of the 375 

variances of the residuals in the method.  The general shape of the bed profile stays the same 376 

throughout each experiment, and the scale of the measurements at all locations at a given time 377 

does not vary greatly, so this assumption is expected to be reasonable.  Bed elevations at 378 

different times are treated as different variables.  If the bed aggrades or degrades substantially 379 

during the experiment, the scale of these measurements can change with time, which would 380 

likely imply a change in the variance of the residuals as well.  Similar to the bed profile 381 

elevations, sediment size data from all locations are assumed to have the same variances for their 382 

residuals, while different times are treated as different variables.  When D16, D50, and D84 383 

observations are available (the Seal et al. (1997) experiment), they are treated as three separate 384 

variables.  When the fraction of sediment in different size intervals is available, each size class is 385 

treated as a separate variable.  Recall that the likelihood function used in MSU (Eq. (2)) assumes 386 

that the residuals for each variable are normally distributed and independent.  Preliminary 387 

investigations suggested that the assumption of normality does not hold for all variables in these 388 

experiments.  Transformations were used to produce normally distributed variables, but the use 389 
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of the transformed variables did not substantially alter the results of MSU or BMA.  Thus, the 390 

untransformed variables are used for simplicity.  The assumption of independence was not 391 

evaluated in detail and remains an important assumption of this analysis. 392 

Some differences are required in the application of MSU and BMA because BMA is not 393 

easily generalized to account for multiple variables at the same time.  Thus, BMA is run twice 394 

for each case study examined: once for all bed profile elevation output and once for all sediment 395 

size output resulting in two sets of model weights for each experiment.  This procedure 396 

essentially treats every bed profile elevation point as an observation from the same variable.  397 

Likewise, it treats every sediment size point as an observation from the same variable.  BMA has 398 

been conducted in this manner with meteorological and hydrologic data in previous papers 399 

(Raftery et al. 2005, Vrugt et al. 2008). 400 

Results 401 

MSU Results 402 

Among the key outputs of MSU are the most likely values for the uncertain parameters 403 

and associated results for the calibration period.  Figs. 1 and 2 show the bed profiles and 404 

sediment size distributions that are simulated by the most likely parameter sets, respectively, 405 

along with the available observations for the calibration period.  For the Seal et al. (1997) case, 406 

Parker and W&C simulate both the bed profile and the sediment sizes relatively well, while 407 

MPM is less successful.  The Seal et al. (1997) case has grain sizes ranging between 0.2 mm and 408 
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65 mm.  MPM is likely less successful in this case because this equation was developed 409 

assuming a single grain size class and does not represent interactions between grain size classes.  410 

The other equations were developed by considering interactions between various sediment size 411 

classes and specifically include hiding and exposure effects.  For the Ashida and Michiue (1971) 412 

case, Parker and MPM reproduce the observations well, while W&C is the least successful 413 

equation for both the bed profile and sediment size distribution.  W&C can simulate the bed 414 

profile well or the grain size distribution well, but no single parameter set can reproduce both 415 

types of observations simultaneously.  For the Pender et al. (2001) case, the MPM equation 416 

matches the bed profile best.  The median grain size and smaller sizes are predicted relatively 417 

well by the Parker equation, but all the equations fail to capture the sizes of sediment larger than 418 

the D50.  This disagreement might be due to the highly structured, well-sorted, and graded beds 419 

in the Pender et al. (2001) experiments.  Models like SRH-1D that use an active layer to simulate 420 

sediment flows are not expected to be as accurate at estimating sediment movement in channels 421 

with such complicated bed structures. 422 

The other key result from MSU is the parameter uncertainty that remains after 423 

calibration.  Table 3 shows the percentage reduction in the Interquartile Ranges (IQRs) of the 424 

parameters generated from the prior and posterior distributions.  The IQR is defined as the 425 

difference between the 75% and 25% quantiles.  These percentages describe the decrease in 426 

parameter uncertainty due to calibration, so a value of 100% indicates that the algorithm 427 

converges to a single value of the parameter.  As expected, the parameters are less well 428 

constrained for the data-poor Ashida and Michiue (1971) case.  In fact, only the parameters with 429 
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the strongest impact on the model results (n, r, , and nalt) are reasonably constrained by the 430 

available observations.   In all cases, n, r, and  are among the most constrained parameters. For 431 

the Seal et al. (1997) case, the parameters are best constrained for the MPM model.  As shown 432 

earlier, this model is not able to reproduce the observations well for this case, so very few 433 

combinations of parameter values are able to approach the observed system behavior.  For the 434 

Ashida and Michiue (1971) case, the W&C model was shown to perform poorly, but its 435 

parameters are not well constrained because certain parameter sets are able to reproduce the bed 436 

profile or sediment sizes, but not both. 437 

  The first objective of this paper is to determine whether MSU provides a large reduction 438 

in the required number of simulations compared to the GLUE method used by Ruark et al. 439 

(2011).  Fig. 3 plots the SRS for the uncertain parameters in the nine MSU runs (three flume 440 

experiments each simulated with three different transport equations).  The horizontal lines show 441 

SRS = 1.2, and the arrows indicate the approximate iteration where convergence is achieved 442 

(where the SRS remains below 1.2 and trace plots indicate generation of parameter values from 443 

stable distributions).  MSU converges the fastest with the MPM equation because it has two 444 

fewer parameters than the other cases.  The W&C equation converges the slowest, likely because 445 

it often has more difficulty simulating the observed data.  Ruark et al. (2011) found that 446 

simulation of 5000 parameter sets produces posterior parameter distributions that have consistent 447 

quantitative results between consecutive GLUE analyses.  Thus, 5000 parameter sets were 448 

sufficient to produce consistent results, but additional sampling was needed to verify that such 449 

consistency was achieved.  On average, MSU requires about the same number of simulations 450 
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with the Parker equation (5000), more simulations with W&C (12,000), and fewer with MPM 451 

(3000) before it has converged (and the posterior distribution has been obtained).  Additional 452 

simulations would be needed to actually sample from the posterior distribution.  Given the 453 

differences in the structures of the two methods, a precise comparison of their efficiencies is not 454 

possible.  However, the comparison does indicate that the MSU methodology does not provide a 455 

large reduction in the required number of simulations (e.g., an order of magnitude) for these 456 

experiments.  When considering hydrologic models, Blasone et al. (2008) found that the 457 

computational advantage of SCEM-UA over GLUE increases when the posterior parameter 458 

distributions are narrower.  For these experiments, many SRH-1D parameters remain poorly 459 

constrained after calibration (Table 3), so these results are generally consistent with Blasone et 460 

al. (2008).  461 

The second objective of this paper is to evaluate the importance of accounting for 462 

correlation when assessing the impacts of parameter uncertainty.  To assess the strength of 463 

correlation between the values of different parameters in the estimated posterior distribution, the 464 

probability that the correlation observed between a pair of parameters has occurred by chance 465 

when the true correlation is zero was calculated using the t test at a confidence level of 95%, 466 

which also assumes normality of the distributions.  This analysis was done for all pairs of 467 

parameters using up to 5000 parameter sets (where available) after convergence for all nine MSU 468 

runs.  87% of the parameter pairs have a significant correlation.  Of the 87%, 73% of parameter 469 

pairs have a correlation coefficient stronger than ±0.1, and 19% of parameter pairs have a 470 

correlation coefficient stronger than ±0.4.  The parameter pairs that are correlated and the value 471 
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of this correlation both vary between cases and equations.  However, more parameter pairs have 472 

stronger correlations in the more complex equations (Parker and W&C).  This result is expected 473 

because the additional parameters ( r  and  ) both refine the description of the transport process 474 

rather than describing an additional process.  The appropriate value for one parameter in the 475 

transport equation is expected to depend on the value that is used for the other parameters in that 476 

equation.   477 

The implications of ignoring these correlations when assessing the uncertainty of model 478 

forecasts was explored by running two types of simulations with the parameter sets from the 479 

estimated posterior distributions.  First, the parameter sets obtained after convergence of MSU 480 

were used to simulate the forecast periods for each of the nine cases.  Second, the values for each 481 

parameter after convergence of MSU were randomly reordered to remove any correlation 482 

between different parameters while maintaining the marginal distributions estimated by MSU.  483 

The reordered parameters were also used to simulate the forecast periods.  In both cases, the 484 

forecasts were characterized by defining two variables.  The first variable is the average bed 485 

elevation at three selected locations (near the upstream end, midpoint, and downstream end of 486 

the flumes) and at three selected times (near the beginning, middle, and end of the forecast 487 

periods).  The second variable considers the sediment sizes.  For sediment size profiles, the data 488 

were averaged in the same manner as the bed elevations.  For sediment size fractions, three class 489 

sizes (small, medium, and large) at three times (near the beginning, middle, and end of the 490 

forecast periods) were obtained and averaged.  Then, the average IQRs for these two variables 491 

were calculated from the correlated and uncorrelated parameter sets in each case.    These IQRs 492 
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are one measure of uncertainty in the forecasts.  Fig. 4 shows the average IQRs for bed profile 493 

and sediment grain size for all three experiments when the parameter correlations are included 494 

and neglected.  In general, removing parameter correlations has little effect on IQRs generated 495 

from the MPM equation for all three cases.  This result likely occurs because the correlations in 496 

the parameters are generally smaller for MPM than the other equations as described earlier.  For 497 

the Parker and W&C equations, inclusion of parameter correlation is more important when 498 

estimating the uncertainty of the bed profile elevation than sediment grain sizes for the 499 

depositional case (i.e. Seal et al. (1997)).  The insensitivity of the grain sizes to the parameter 500 

correlation probably occurs because the characteristics of the deposited sediment mostly depend 501 

on the sediment that is fed to the system.  This result reverses for the erosional case.  In 502 

particular, parameter correlation is more important when estimating the uncertainty of the 503 

sediment grain sizes than bed profile elevations.  In this case, the composition of the bed depends 504 

more directly on the erosion model, so the correlations between the parameters in this model are 505 

expected to play a larger role.  Overall, these results suggest that parameter correlations should 506 

be included when assessing uncertainty in sediment transport model forecasts. 507 

BMA Results 508 

BMA was used to determine weights for the three transport equations based on their 509 

ability to reproduce the observations for the calibration period, and these weights are reported in 510 

Table 4.  A separate set of model parameters was calibrated for each of the transport equations. 511 

For any selected experiment, BMA suggests a different set of equations for predicting bed profile 512 
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elevation than it suggests for predicting sediment grain sizes.  When bed profile elevation 513 

observations are used, the Parker equation dominates in the depositional (i.e. Seal et al. (1997)) 514 

case with a weight of 0.84.  The probability is high that the Parker equation is the correct model 515 

because it fits the observations so well (see results in Fig. 1, for example).  The W&C equation 516 

also matches the observations relatively well and has a weight of 0.16.  The MPM equation 517 

dominates the bed profile elevation in both erosional cases (Ashida and Michiue (1971) and 518 

Pender et al. (2001)) with weights of 1.00 and 0.98, respectively.    It is most successful in 519 

simulating the bed profile during the entire calibration period for both erosional cases (even 520 

though the Parker equation performs better for the particular time step shown in Fig. 1 for 521 

Ashida and Michiue (1971)). Fig. 5 examines whether the weightings identified in the calibration 522 

periods also apply to the forecast periods.  In particular, it shows the individual model forests and 523 

the BMA forecasts for the Seal et al. (1997) and Pender et al. (2001) cases.  The Ashida and 524 

Michiue (1971) case is not shown because observations are not available for the forecast period.  525 

The forecasts produced by the BMA weightings of the transport equations match the 526 

observations better than the individual models do, which suggests that the weights still have 527 

value for the forecast period. 528 

When sediment grain size outputs are analyzed with BMA, the BMA results are rather 529 

different.  As Table 4 shows, BMA suggests a different combination of equations for each flume 530 

experiment.  For the Seal et al. (1997) depositional case, a combination of all three equations is 531 

suggested by BMA.  For the Ashida and Michiue (1971) erosional case, BMA suggests a 532 

combination of the Parker and MPM equations, while for the Pender et al. (2001) erosional case, 533 
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BMA suggests a combination of the Parker and W&C equations.  Overall, more balanced 534 

weightings are observed for the sediment grain sizes than for the bed profile.  Such balance 535 

suggests that the different transport equations have distinctive individual abilities in reproducing 536 

the observed grain sizes.  Fig. 6 compares the individual model and BMA predictions to the 537 

observations for the forecast period for the sediment grain size outputs.  For the Seal et al. (1997) 538 

case, BMA provides a prediction that is a compromise of the three models’ performances in 539 

simulating the D16, D50, and D84 profiles.  For the Pender et al. (2001) case, however, the W&C 540 

equation actually outperforms BMA for the time-step shown (although none of the equations 541 

performs particularly well and the uncertainty bounds are quite large).  This behavior likely 542 

occurs because the SRH-1D model is not able to accurately predict the entire sediment size 543 

distribution during the calibration period, so weighting determined from these forecasts is 544 

unreliable as well. There may be multiple reasons why there is disagreement between the 545 

simulated and measured results such as the bed mixing algorithms, the unsteady nature of bed 546 

load motion, and deficiencies in the transport equations. 547 

Another key objective of this paper is to determine how important the uncertainty in the 548 

form of the transport equation is relative to the parameter uncertainty.  The uncertainty bounds 549 

produced by BMA include both parameter and model uncertainty.  To estimate the amount of 550 

uncertainty attributable to the selection of a sediment transport equation, the average IQRs of the 551 

output histograms generated from MSU (shown in Fig. 4), which consider only parameter 552 

uncertainty, are compared to the average IQRs of the respective BMA distributions.  To calculate 553 

the IQRs for BMA, the same times, locations, and variables were used as in Fig. 4.  It should be 554 
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noted that MSU and BMA are based on different statistical models for uncertainty as explained 555 

earlier, so this comparison is inexact.  Fig. 7 compares the IQRs for the bed profile elevation and 556 

the sediment size outputs for the three flume experiments.  In all cases, the IQR values from the 557 

BMA predictions are greater than the IQR values of the equations that are used in the BMA 558 

prediction.  Examining the bed profile elevation data for the Ashida and Michiue (1971) case 559 

(Fig. 7(c)), the IQR for the Parker equation is larger than the BMA IQR, but the Parker equation 560 

is not used in the BMA estimate.  Examining the sediment grain size data for the Pender et al. 561 

(2001) case (Fig. 7(f)), the IQR for BMA is much larger than the IQR for any individual model.  562 

The individual models have low uncertainty because the values of their parameters are 563 

constrained relatively well (Table 3).  However, even the most likely parameter values for each 564 

equation do not produce good performance (Fig. 2(e)), which ultimately produces a large IQR 565 

for BMA.  Overall, the results from Fig. 7 suggest that model uncertainty, including the selection 566 

of the transport equation, may contribute significantly to the overall uncertainty in the model 567 

forecasts. 568 

Conclusions 569 

(1) Even though MSU uses a more sophisticated approach to develop parameter posterior 570 

probability distributions, it does not provide a large improvement in the required number of 571 

simulations compared to the GLUE method used in Ruark et al. (2011) for the cases studied 572 

here.  The GLUE method generates a large sample (5000 parameter sets) from a joint 573 

uniform distribution and generates the marginal posterior distributions based on likelihood 574 
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values calculated from model simulations.  MSU begins with a smaller sample (500 575 

parameter sets) generated from a joint uniform distribution and evolves the joint posterior 576 

parameter distribution based on frequent calculation of likelihoods and sharing of 577 

information between simulations.  MSU converges more slowly when the number of 578 

uncertain parameters is greater and the ability of the model to reproduce the observations is 579 

weaker.  As a result, MSU is not expected to have large computational advantages for actual 580 

river systems if they are more difficult to model than these flume experiments.  Both MSU 581 

and GLUE are expected to be difficult to apply to complex sediment transport model 582 

applications unless high performance computing resources are available. 583 

(2) Inclusion of parameter correlations substantially alters MSU’s estimation of uncertainty in 584 

the SRH-1D forecasts for some cases.  The importance differs between the depositional and 585 

erosional cases used and matters more when using transport equations with more parameters 586 

(Parker and W&C).  For the depositional experiment by Seal et al. (1997), it was found that 587 

parameter correlations are more important for bed profile elevations than for sediment grain 588 

sizes.  This result is reversed for the two erosional experiments (Ashida and Michiue (1971) 589 

and Pender et al. (2001)).  MSU accounts for parameter correlations whereas the GLUE 590 

method used by Ruark et al. (2011) does not.  Based on these results, correlations should not 591 

be overlooked in uncertainty assessments of natural river systems without careful evaluation 592 

of their roles in the specific circumstances that are being modeled. 593 
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(3) Results of BMA indicate that the equation(s) best suited for predicting one type of output 594 

(i.e. bed profile elevation) are not necessarily best suited for predicting a different type of 595 

output (i.e. sediment grain sizes).  In most cases, using a weighted combination of equations 596 

from BMA produces a better forecast than using a single transport equation.  Unlike MSU, 597 

BMA can be easily applied for a model of a natural river system because it requires little 598 

computation time.  The appropriate weights can be determined from the calibration data and 599 

then used to produce a forecast.  Additional testing is needed for natural river systems, but 600 

these results suggests that BMA may be a practical way of incorporating multiple transport 601 

equations and that this approach might lead to more reliable forecasts from sediment 602 

transport models.  BMA also has limitations.  Due to its statistical construction, it does not 603 

provide clear indications about the origins of the errors in the transport equations or a clear 604 

path for developing a more physically-based sediment transport theory. 605 

(4) For all forecast periods, including model uncertainty along with parameter uncertainty 606 

substantially widens the bounds of uncertainty on the forecasts.  This result suggests that the 607 

uncertainty associated with the selection of the transport equation should be considered when 608 

assessing overall uncertainty in sediment transport modeling applications.  It should be noted 609 

that these are not the only sources of uncertainty that should be considered in sediment 610 

transport modeling.  Uncertainties in the structure of the model used to simulate flow 611 

hydraulics (e.g., Apel et al. 2009), the channel geometry (Wong et al., 2014), bed mixing 612 

algorithms, and the model forcing variables can also contribute to the overall uncertainty.  In 613 
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addition, the roles of these factors are expected to depend on the spatial and temporal scales 614 

over which the forecasts are generated (Wong et al., 2014). 615 
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Table 1. Summary of the initial conditions, experimental inputs, and observations for the three 725 

experiments 726 

Experiment Seal et al. (1997) Ashida and Michiue (1971) Pender et al. (2001) 

Period Calibration Forecast Calibration Forecast Calibration Forecast 

 
 

Channel geometry 
 
 

Shape: rectangular 
Length: 45 m 
Width: 0.3 m 
Slope: 0.2% 

Shape: rectangular 
Length: 20 m 
Width: 0.8 m 
Slope: 1.0% 

Shape: trapezoidal with 45° side slopes 
Length: 20 m 
Width 2.46 m 
Slope: 0.26% 

Volumetric flow rate (m3/s) 0.049 0.314 0.117 

Time period of experiment (hr) 0 – 32.4 0 – 64 0 – 10 10 – 20 0 – 32.1 32.1 – 84.6 

Sediment feed rate (kg/s) 0.09 0.05 0 0 
Bed material diameter range 

(mm) 
0.125 – 65 0.2 – 10 0.25 – 22.63 

Number of observed size 
fraction intervals 

9 12 13 

Median diameter (D50) (mm) 5 1.5 4 

Number of bed profile elevation 
observations for calibration 

518 - 18 - 597 - 

Type of sediment size data 
Sediment grain size (D16, D50, 

and D84) profiles 
Fractions of sediment in size 

intervals 
Fractions of sediment in size intervals 

Number of sediment size 
observations for calibration 

165 - 12 - 104 - 

 727 

728 
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Table 2. Uniform distribution bounds for uncertain parameters 729 

Parameter Minimum Maximum 
Manning’s roughness coefficient ( n ) 0.015 0.065 

Critical shear stress ( r ) 0.01 0.06 

Hiding factor ( ) 0 1 

Active layer thickness multiplier ( altn ) 0.1 4a, 6b, 10c, 15d 

Deposition recovery factor ( d ) 0.05 1 

Scour recovery factor ( s ) 0.05 1 

Bed load adaptation length ( Lb ) 0 10 

Weight of bed load fractions (  ) 0 1 
aPender et al. (2001) case 730 
bAshida and Michiue (1971) case 731 
cSeal et al. (1997) case with the Parker and W&C equations 732 
dSeal et al. (1997) case with the MPM equation 733 

 734 

735 
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Table 3. The percent decrease in the Interquartile Range (IQR) of parameters generated from 736 

their prior uniform distributions and the IQR of parameters generated from MSU after 737 

convergence. 738 

 739 

740 
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Table 4. BMA weights for the three equations and two model outputs for calibration periods of 741 

the three experiments 742 

Experiment 
Parker W&C MPM 

Bed Profile Elevation BMA Weights 
Seal et al. (1997) 0.84 0.16 0.00 

Ashida and Michiue (1971) 0.00 0.00 1.00 

Pender et al. (2001) 0.02 0.00 0.98 
 Sediment Grain Size BMA Weights 

Seal et al. (1997) 0.27 0.54 0.19 

Ashida and Michiue (1971) 0.42 0.00 0.58 

Pender et al. (2001) 0.45 0.55 0.00 
 743 

 744 

745 



 

42 

 

 

 

 746 

Fig. 1.  Model results and corresponding observations of bed profile elevation for the calibration 747 

period of (a) the Seal et al. (1997) case at 32.4 hours, (b) the Ashida and Michiue (1971) case at 748 

10 hours, and (c) the Pender et al. (2001) case at 32.1 hours 749 

750 
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 751 

 752 

Fig. 2.  Model results and corresponding observations of sediment sizes for the calibration period 753 

of (a-c) the Seal et al. (1997) case at 27 hours, (d) the Ashida and Michiue (1971) case at 10 754 

hours, and (e) the Pender et al. (2001) case at 32.1 hours.  For the seal case, profiles of D16, D50, 755 

and D84 are shown.  For the other cases, the cumulative distributions at the observation locations 756 

are shown. 757 
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 759 

 760 

Fig. 3.  Gelman and Rubin’s convergence diagnostic: the Scale Reduction Score (SRS) for the 761 

20,000 iterations of MSU.  The SRS is shown for all uncertain parameters, experiments, and 762 

equations.  Arrows indicate the point of convergence in each plot. 763 

 764 
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 766 

Fig. 4. The average over time and space of the Interquartile Range (IQR) for the bed profile 767 

elevation or sediment size outputs (as labeled) from the forecast periods of the three experiments 768 

when simulated with the three transport equations.  The black bars describe model outputs using 769 

parameter sets generated from MSU after convergence and the white bars correspond to model 770 

outputs generated using these same parameters sets after they have been shuffled to remove 771 

correlation.  The percentages indicate the change in the IQR in each case when correlation is 772 

removed. 773 
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 775 

 776 

Fig. 5.  BMA predictions, individual model responses, corresponding observations, and the 90% 777 

Confidence or Credible Interval (CI) on the BMA prediction of bed profile elevation for the 778 

forecast period of (a) the Seal et al. (1997) case showing bed profile elevation at 32 hours, and 779 

(b) the Pender et al. (2001) case showing bed profile elevation at 62.4 hours. 780 

781 
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  782 

 783 

Fig. 6.  BMA predictions, individual model responses, corresponding observations, and the 90% 784 

Confidence or Credible Interval (CI) on the BMA prediction of sediment size data for the 785 

forecast period of (a) the Seal et al. (1997) case showing the D16 profile at 34 hours, (b) the Seal 786 

et al. (1997) case showing the D50 profile at 34 hours, (c) the Seal et al. (1997) case showing the 787 

D84 profile at 34 hours, and (d) the Pender et al. (2001) case showing cumulative sediment size 788 

fractions at 62.3 hours 789 
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 791 

Fig. 7. The average over time and space of the Interquartile Range (IQR) for the bed profile 792 

elevation or sediment size outputs (as labeled) from the forecast periods of the three experiments 793 

when simulated with the three transport equations.  The black bars are associated with individual 794 

models and represent approximate parameter uncertainty.  The white bars are associated with the 795 

BMA prediction and represent both parameter and model uncertainty.  For reference, the weights 796 

applied to each equation to create the BMA forecast are reported above each black bar.  Note that 797 

the size of the white bar is given in (f) because it is much larger than the other bars shown. 798 


