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1 Introduction 
A groundwater model is a simplified representation of a complex natural system.  
While recognizing that not everything can be known about a natural system, the 
goal, when developing a model, is to minimize the unknowns and to represent the 
real system as closely as possible. However, in all cases, a certain amount of 
uncertainty is inherent in the modeling process. 
 
An acknowledgement of uncertainty in a model is sometimes interpreted by 
nontechnical clients as admission that a model is not adequate to address the 
problems it was created to solve.  Uncertainty should not be thought of as a 
limitation of the model.  Rather, it should be thought of as a tool to describe what 
is not known about a system, so that appropriate decisions are made with the 
model results.  In addition, an investigation of model uncertainly often improves 
the knowledge of the overall system and can guide where additional information 
should be collected. 

1.1 Groundwater model uncertainty – What is it? 

Uncertainty in a model can be defined as the difference between the model and 
the complex physical system and processes that the model represents.  It can be 
determined in terms of the parameters used to describe the system or the accuracy 
in its predictions.  Since a mathematical model is a simplification of the complex 
system and processes, there will always be some difference between the model 
and reality.  By quantifying and recognizing that difference, the usefulness of the 
model can be determined. 
 
There are four main areas in which uncertainty can arise and be evaluated in a 
groundwater model.  These areas are: 
 
Conceptual Framework Uncertainty:  The conceptual framework describes the 
current understanding of the physical properties of the site that is being analyzed.  
This includes, but is not limited to, the stratigraphy and geologic structure of the 
hydrogeologic units, the location of any surface water features (streams, lakes, 
drains), and the location of wells.  More importantly, the conceptual model 
describes how all of the features are related and how they interact.  Since it is not 
possible to completely know the physical attributes of the site, uncertainty can 
arise (Brendecke, 2009). 
 
Model Parameter Uncertainty:  Model parameter uncertainty relates to how the 
conceptual model can be represented within the constructs of the mathematical 
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model.  It also relates to uncertainty in the input parameters and the observations 
used in the model. 
 
Calibration Uncertainty:  Calibration uncertainty relates to how well the model 
solution matches observed values. 
 
Predictive Uncertainty:  Predictive uncertainty refers to how well the model can 
evaluate the question at hand and can be impacted by the uniqueness of the 
calibrated model. 
 

1.2 Groundwater model uncertainty – Why is it 
important? 

Groundwater models are used to make decisions, to analyze risk, and to manage 
water systems.  While no model can be 100 percent correct, when properly 
constructed and evaluated, a model can be a useful and informative tool.  
Evaluating the uncertainty that exists within a model reinforces the output from 
the model and makes it more useable to the end user.   
 
There have been many articles written about the use of groundwater models in 
litigation and as decision making tools (Randazzo, 2005; Cosgrove et al., 2008; 
Hall et al., 2005; Tandon and Kilburg, 2005).  Many of the authors agree that 
groundwater models, as imperfect representations of complex natural systems, 
can be discredited if the modeler does not acknowledge the uncertainty in a 
model.  As stated by one author: “Adversarial proceedings are a lousy place to 
verify models, but a modeler will minimize the effect of the opposition’s claims 
of uncertainty by actually quantifying the uncertainty” (Myers, 2007).   
 
Decisions being made about a natural system require an understanding of that 
system.  A manager or client may ask for a single number as an output from a 
model.  However, that number is more powerful if the manager understands how 
the output was determined and the effect of model uncertainty.   

1.3 Groundwater model uncertainty: how should we 
talk about it? 

Uncertainty, as a word, tends to have a negative connotation when it comes to 
decision making.  Modelers commonly use the word uncertainty to describe what 
is not known about a model, and to the modeler, this is not negative at all.  Rather, 
the modeler believes that understanding the unknowns in a model gives them a 
better understanding of the system.  It is the responsibility of the modeler to 
inform the decision maker of the usefulness of model uncertainty and how it 
ultimately will lead to better decisions being made with the model output. 
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1.4 Purpose of this document 

This document is designed to illustrate ways that uncertainty can be recognized 
and quantified in groundwater modeling applications.  It is not all inclusive since 
there are numerous modeling methods and aspects of uncertainty.  Rather, it 
describes the major types of uncertainty, some methods for handling uncertainty, 
and ways to communicate what is found in the final model report (as reports are 
the most common way that modeling results are documented and shared with 
decision makers).  At the very minimum, the purpose of this document is to 
illustrate how understanding model uncertainty can be used as a tool to better 
understand the system that is being modeled and to ensure that decision makers 
have all of the information to help them make a more informed decision. 
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2 Conceptual Framework Uncertainty 
“Conceptual modeling starts the moment a hydrologist visits a site, and evolves to 
form the basis of analytical and numerical models” (Poeter, 2006).  The first step 
in developing any model is to develop the conceptual framework, an analyzed 
compilation of all available data and knowledge about the modeled area.  It is 
used to determine how a system is modeled, what type of model is used, and what 
additional data is collected to understand the system.  This uncertainty can be 
evaluated at all stages of the pre-modeling, modeling, and post-modeling process 
and should be included in all parts of the model report.  

2.1 Conceptual framework 

Developing the conceptual framework involves piecing together all of the 
available data for the area of interest and looking critically at how the system 
behaves.  Developing a strong conceptual framework is an important aspect of 
reducing uncertainty in a groundwater model.  By developing a good 
understanding of system behaviors before applying a mathematical model to the 
system, the modeler avoids accepting model output that is not representative of 
the real system.   
 
Limitations in the data collection phase can lead to uncertainty in the conceptual 
framework.  Since groundwater systems are continuous and underground, it can 
be difficult to define all of the features.  Some data that may not be well defined 
include the configuration of stratigraphic units, the extent of individual 
stratigraphic layers, or the location and behavior of structural features such as 
faults.  In addition, some features may be known at individual points (from 
drillers well logs), but may not be known between those points.   
 
Understanding the limitations of the conceptual framework can indicate where the 
modeler should use the mathematical model to quantify uncertainty.   
 

2.2 Methods for evaluating conceptual framework 
uncertainty 

Determining where uncertainty exists in the conceptual framework is largely a 
qualitative analysis.  All of the available data and system knowledge is compiled 
to determine if there is enough information to make an informed decision.  In the 
unlikely case that there is enough information, (which is almost never the case 
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due to system complexity, lack of time, lack of funds, etc.) the modeler will apply 
a mathematical algorithm and generate a solution to the question at hand.   
 
In the more likely scenario that there exist unknowns in the conceptual 
framework, the modeler will apply a mathematical algorithm, evaluate the 
unknowns and determine if a range of suitable solutions can be produced 
(discussed more in the calibration and prediction sections) and if more 
information should be collected.  Since it is common that the conceptual model 
will change as the numerical model is applied and as the modeler becomes more 
familiar with the system, the conceptual framework should be reevaluated as more 
is learned about the system.  
 
In some cases, more than one conceptual model may be appropriate to explain 
unknowns in the system.  Model averaging tools like MMA (Poeter and Hill, 
2007) can help to evaluate predictions using multiple conceptual models.  
Developing more than one conceptual model can be costly as it typically requires 
duplicating the modeling process for each conceptual model, but it has been 
argued that multiple conceptual models can give the most accurate modeling 
results (Poeter, 2007).  

2.3 Communicating conceptual model uncertainty 

The modeling report typically consists of, at the very minimum, a statement of the 
problem, a description of the hydrogeology, a description of how the model is 
developed, and the conclusions derived from the model.  The conceptual model 
can be discussed in each of these sections, but is most commonly described in the 
hydrogeology section.  It is also beneficial to describe the relationship of the 
conceptual framework to the representation in the numerical model as there are 
typically differences between the conceptual framework and the numerical model 
representation.  Some differences that may be included in the discussion are the 
model representation of layering versus the complex layering system that likely 
exists in reality or location of specific features versus their placement in the 
model. 
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3 Model Parameter Uncertainty 
Model parameter uncertainty describes uncertainty in both the quality of the data 
being used in the model and impacts from applying that data to a mathematical 
model. 

3.1 Parameter Uncertainty 

The quality of data that goes into a model is directly proportional to the quality of 
the prediction that can be made with the model (affectionately known as “garbage 
in, garbage out”)1.  When collecting data, whether by hand or with an automated 
instrument, there can be a degree of error.  A person collecting data by hand with 
a measurement device or improper use of measurement devices can cause error in 
the readings.  Most measurement devices report the tolerances of their readings in 
the user’s manual.  If the model intends to calculate results that are within the 
tolerance of an instrument’s reading, the tolerances should be included in the 
uncertainty evaluation. 
 
Recharge is an example of a common parameter used in groundwater modeling 
that can have a varying degree of uncertainty.  By definition, recharge is the 
amount of water that infiltrates the surface, moves past the root zone and reaches 
the aquifer.  This water can be from many sources including precipitation, on-
farm irrigation, leakage from septic systems, and leakage from canals.  Many 
factors impact recharge including soil types that affect the seepage rate, 
vegetation types that consumptively use the water, or the slope of the land surface 
that affects the surface runoff rate.  In addition, precipitation is typically measured 
at a single point location and must be extrapolated to cover the entire model area.  
The variability in each of these aspects of recharge may increase or decrease the 
total amount of recharge water and the uncertainties in each aspect can increase or 
decrease the total uncertainty in the recharge value itself. 
 
No matter what mathematical model is used, the data being applied will need to 
be altered in some way to fit the model.  Grid based models only calculate a 
solution for the center of a grid cell.  Since most data is not available at the exact 
resolution of the defined grid, it will need to be modified to fit the grid.  Non-grid 
based models typically require modification to the data to fit the processes that are 
calculated.   
 
Groundwater models are typically calibrated to measured values of aquifer water 
levels or discharges to streams.  These observed values are typically measured at 
an exact location.  However, the model solves for water levels and flows at the 
                                                 
1 Appendix A includes a list of model input data and where such data can be obtained. 
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center of each grid cell, which is rarely at the measured location.  In addition, 
observed data is collected at a specific time which generally does not coincide 
with the model time steps.  These location and time discrepancies can combine to 
create uncertainty in the model results.  The effects of location and time “error” 
can be minimized using interpolation, bilinear interpolation within the grid and 
linear interpolation for time.  To further assist in calibration, weights can be 
assigned that indicate the level of confidence in each observation.  A higher 
weight would indicate more confidence in the accuracy of the representation of an 
observation. 

3.2 Methods for evaluating uncertainty in parameters 

The most useful method for evaluating uncertainty in input parameters and 
observations is to determine the relative sensitivity of the parameters.  If a set of 
parameters is considered sensitive, it will impact the calibration and therefore 
errors in that data should be minimized.   
 
Sensitivity describes how the model (specifically a model observation) reacts to 
changes in a given parameter.  A parameter is considered sensitive if a small 
change in the parameter value causes a large change in the model results at 
observed water level and stream flow locations (or other observation type).  If a 
parameter is sensitive, it is more likely to be approximated correctly during the 
calibration process than a parameter that is insensitive.  Since the sensitive 
parameter will have a large degree of influence on the calibration, errors in the 
parameter should be well known to ensure a correct calibration.  Insensitive 
parameters, by definition, will not impact the calibration. However, changes in 
insensitive parameters may impact predictions made with the model and should 
be explored (ways to explore impact and uncertainty in insensitive parameters is 
described in section 5.2).   
 
It is helpful to perform a sensitivity analysis both before and after the model is 
considered calibrated.  If using an automated calibration tool, parameters that are 
considered insensitive before calibration should be fixed during the calibration 
process (to a reasonable value).  Changing insensitive parameters during 
calibration will not contribute to the final calibrated product and may prevent the 
parameter estimation process from finding a solution.  In some cases, changing 
some parameters will change the sensitivity of others, so performing a sensitivity 
analysis after calibration will verify that those parameters that were considered 
insensitive before calibration stayed insensitive. 
 
There are a couple of methods that are used to determine parameter sensitivity.  
The first is the manual method in which each parameter in the model is changed 
separately by increasing and decreasing the parameter value by a fixed amount or 
percentage (bracketed) and the change in the observation is recorded.  For 
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example, the hydraulic conductivity of a particular layer or zone may be increased 
by 10% and decreased by 10%.  The changes in the observations are recorded.2   
 
Another effective method for calculating sensitivities is to utilize an automated 
method, such as the OPR method that accompanies MODFLOW2000 (Harbaugh, 
et al, 2000) or the calculated sensitivities in PEST (Doherty, 2004).3  The 
automated methods produce comparable output statistics such as dimensionless 
scaled sensitivities (DSS), composite scaled sensitivities (CSS), and parameter 
correlation coefficients (PCC).  These parameters not only let the modeler 
determine how sensitive a parameter is with respect to another parameter, but also 
how sensitive a parameter is with respect to an observation.  DSS indicate the 
amount of change in one observation given a one percent change in a parameter 
value.  CSS indicate the amount of change in all of the observations given a one 
percent change in a parameter value.  PCC indicate the level of correlation for all 
possible pairs of model parameters.  Parameters with large DSS and CSS values 
are considered sensitive with respect to the observations and are therefore 
considered important to the model calculation.  PCC values that are near -1.00 
and 1.00 indicate that the parameters cannot be estimated uniquely (Hill and 
Tiedeman, 2007). 
 
Sensitivity should be evaluated for all parameters represented in the model, 
including those parameters that will be represented with measured data.  If a 
parameter will be represented with measured data and is determined to be 
sensitive, any suspected errors in that data should be closely investigated and 
resolved, if possible.  If the results of the sensitivity analysis show that a 
parameter is sensitive with respect to the observed values and the parameter is not 
correlated to another parameter, an automated calibration process should estimate 
the parameter correctly and uniquely.  If the parameter is determined to be 
insensitive and will be represented with measured data, the errors in the data are 
not as important to the calibration.  However, a quick test should be run after the 
model is calibrated to determine if changing those parameters impacts the 
prediction being made with the model.  Parameters estimated by the calibration 
process that are determined to be insensitive should also be explored to determine 
if changes in the parameter impacts the prediction being made with the model (a 
process to evaluate these parameters is described in section 5.2).  Parameters that 
are correlated should also be explored since they will not be able to be estimated 
uniquely. 

                                                 
2 The book “Effective Groundwater Model Calibration: With analysis of Data, Sensitivities, 
Predictions, and Uncertainty” includes a good description of how sensitivities are calculated in 
MODFLOW2000 and PEST. 
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3.3 Communicating uncertainty related to parameters 

Model reports typically include a section that describes the data that will be used 
in the model.  This section should describe the methods that were used to collect 
or develop the data (or the source of the data if it was acquired or developed by 
another entity) including all uncertainties that are associated with the collection or 
development.  This includes tools, equations, and assumptions that went into 
generating the data. 
 
The sensitivity analysis should be discussed in a separate section.  Most readers 
have a general understanding of sensitivity, but it is still a good idea to describe 
what goes into a sensitivity analysis and the significance it has to the reader.  
Also, the specific technique used to conduct the sensitivity analysis for the 
specific project should be included.  In the sensitivity section, the plots showing 
the DSS and CSS should be presented along with a detailed description of their 
significance.  Lists of the sensitive and insensitive parameters are useful to help 
the reader further understand the results of the sensitivity analysis.  It is also 
helpful to discuss the confidence in the data relative to the sensitive parameters 
since the sensitive parameters will impact the results. 
 
The sensitivity analysis is an important tool when describing the uncertainty of 
the model to decision makers, which is why it is so important that a sensitivity 
analysis be conducted and properly described in the model report.  When decision 
makers understand the parameters that are vital to developing the most reliable 
model result, they can better understand why and where new data could be 
collected to make a better decision.  Also, it helps them to understand why 
inaccurate or unreliable data may be contributing to lower confidence in model 
predictions.   
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4 Model Calibration Uncertainty 
Calibration uncertainty is the most explored area of groundwater model 
uncertainty.  Calibration uncertainty refers to how well the model calculations 
match observations (most often water level and stream flow observations) and 
many tools are available to explore and quantify the uncertainty in this portion of 
the modeling process.   

4.1 Calibration Uncertainty 

Calibration is the process by which unknown model parameters are adjusted to 
match observed water levels and stream flows (or other observed values).  This 
can be done manually or using automated processes such as UCODE (Poeter and 
Hill, 1998) or PEST (Doherty, 2004).  Calibration, whether by manual or 
automated methods, has the goal of minimizing the difference between model 
calculated values and observed values.  Determining calibration uncertainty can 
be as simple as determining the goodness of fit (how well the model solution fits 
the observed water levels and stream flows).   

4.2 Methods for evaluating calibration uncertainty 

Quantifying calibration uncertainty incorporates uncertainty from the conceptual 
model and uncertainty from the input parameters.  A way to address uncertainty in 
the model calibration is to assess the goodness of fit of the model calculation to 
the observations.  Since the difference between the observation and what the 
model calculates at that point is easily obtainable from the model, many statistics 
and presentations can be used to illustrate how well calibrated the model is.  
While there are many other statistics available, it is generally accepted that the 
following should be in the calibration section of every groundwater modeling 
report: 
 

Root- mean squared error- The root mean squared error (RMSE) should be 
calculated for each type of observation used in the model (water level 
elevation, flow, etc.).  If the error is defined as the difference between an 
observation and the calculated value at that location, the RMSE quantifies the 
absolute mean of all of the error values in the model. The RMSE uses the 
same units of the observation (for example, length units for water level 
elevation). 
 
The equation for RMSE is  
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where ∑ , n = number of observations, and Xi = the ith 

observation. 
 
 
Percent error- The percent error is the RMSE of the model divided by the 
total change in the observation type being calculated with the RMSE; for 
example, the RMSE of water levels divided by the total change in observed 
water levels.  For a well calibrated model, this value should be less than 10 
percent. 
 
The equation for percent error is:  

%
∆

 

 
Plot of observed versus calculated – A plot of the observed versus calculated 
values can quickly illustrate how well the model matches the observations.  If 
the modeled values perfectly match the observations, the scatter plot will line 
up along a 1:1 straight line.  Since no model will match the observations 
perfectly (due to variation that exists in natural systems), there will be some 
deviation from the straight line.  This deviation can be quantified with a linear 
regression (R2) calculation.  The closer the R2 is to 1, the better calibrated the 
model is. 
 
An example plot of observed versus calculated values is shown in Figure 4-1.  
Note that most of the values line up along the 1:1 straight line.  There are two 
separate groups of numbers along the line as a result of plotting the results 
from two different model layers.   
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Figure 4-1:  Example plot of observed versus simulated water levels. 

 
There are many other statistics and measures of goodness of fit that can be 
calculated and for a more complete list the reader is referred to Hill and Tiedeman 
(2007). 
 
If there is a difference in the confidence level of the observations that are being 
used, weights can be assigned to the observations that indicate the level of 
confidence.  Weights allow the modeler to place more importance on observations 
that have a high degree of confidence and are calculated using the tolerance in the 
observation relative to its location in the groundwater model.  The level of 
confidence in the observations may be an indication of confidence in the 
measurement itself or how the measurement is represented in the model.  The 
automated process (PEST, UCODE or MODFLOW 2000) will adjust parameters 
to meet the observations, and will place more importance on those observations 
with higher weights. 

4.3 Communicating calibration uncertainty 

Communicating calibration uncertainty requires a technical discussion of how 
well the model matches observed flow and water level values.  As described in 
section 4.2, there are minimum requirements when it comes to reporting how well 
the model is calibrated.  Statistics and graphs help to illustrate the level of 
calibrations, but each should be well explained and should include a description 
of what constitutes a well calibrated model and how the current model compares.   
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5 Model Predictive Uncertainty 
Predictive uncertainty is considered by some to be the most important type of 
uncertainty that should be evaluated; however, it cannot be the only uncertainty 
that is evaluated.  Determining predictive uncertainty requires information from 
the other uncertainty evaluations to make a proper determination of the 
uncertainty in the prediction.  Predictive uncertainty ultimately determines how 
well the model will be able to evaluate the effect of changes in the system.   

5.1 Predictive Uncertainty  

Models are typically designed for two purposes, explaining how a complex 
system behaves or predicting how a complex system might react to change.  
Predictive uncertainty refers to the uncertainty that arises when the model is used 
to predict how the modeled complex system might react to change.  If the 
conceptual model is accurately defined, the data is well understood and the model 
is well calibrated, predictive uncertainty has the potential to be minimal.   

5.2 Methods for evaluating predictive uncertainty 

Once the model is calibrated and a sensitivity analysis has been conducted, it is 
typically used to evaluate scenarios (changed conditions) and make predictions.   
 
The results of the sensitivity analysis can be used to evaluate predictive 
uncertainty.  Parameters that were considered not sensitive during the calibration 
process may become sensitive when running the predictive analysis.  Since the 
parameters were not sensitive to calibration, estimating the most accurate 
parameter value is not possible.  When running a predictive scenario, the model 
should be tested to determine if the results of the prediction are sensitive to the 
changes in the previously determined insensitive input parameters.  This can be 
done by simply changing the value of the insensitive parameter and looking at the 
relative change in the model results at the prediction location.  If the prediction 
changes, confidence intervals should be developed to describe the range of 
possible solutions to the predictive scenario.   
 
Monte Carlo analysis can be used to generate confidence intervals for estimated 
parameters or for model predictions.  Monte Carlo analysis involves running the 
model with a range of values for a given estimated parameter to determine the 
values that will satisfy the observations.  It can also be used to run a range of 
values for a parameter to develop confidence intervals that represent the changes 
in the observations or predictions.  Detailed information about the Monte Carlo 
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method can be found in Skinner (1999), Vose (2000), Bedford and Cook (2001), 
and Hill and Tiedeman (2007).  
 
Non-unique solutions occur when there is more than one option for an unknown 
parameter that is being solved during the calibration process.  To determine if a 
solution is unique, Hill and Tiedeman (2007) pose two questions: “(1) given the 
constructed model, are the observations and prior information sufficient to have 
estimated the one and only set of parameter values that provide the best fit? and 
(2) does a set of parameter values exist that produces a better fit than that 
achieved?” If the solution is non-unique, the possibility exists that a better 
prediction can be made with one version of the model versus another. 
 
Solution uniqueness can be addressed by evaluating the parameter correlation 
coefficients and by repeating the calibration process with different starting values.  
If parameters are highly correlated (a PCC above 0.95), there exists the possibility 
that the calibrated solution is non-unique.  If repeating the calibration process 
with different starting values results in significantly different parameter estimates, 
then the calibrated solution is likely non-unique.   
 
One method for increasing solution uniqueness that has recently become popular 
is to use PEST calibration with pilot points and Tikhonov regularization.  Pilot 
points are a way to characterize the spatial distribution of parameters (such as 
hydraulic conductivity) within the grid, eliminating the need for lumping the 
parameter into piecewise homogeneous zones.  Parameters are estimated at the 
pilot points and then interpolated to the remaining cells (in this case, the pilot 
points are interpolated using kriging).  Since the pilot points are at discreet 
locations, PEST has the ability to make large changes at each point to best match 
an observation, which can lead to large variations in a parameter over short 
distances.  Tikhonov regularization constrains the PEST calibration process so 
that PEST does not calculate unrealistic parameters simply to meet the 
observations.  It has been argued that using pilot points with Tikhonov 
regularization calculates the most unique parameter distribution possible and 
reduces uncertainty in the model results (Fienen and others, 2009). 
 
It has been argued that finding a unique model solution can give the wrong 
impression that there is more known about a system than really is and that 
developing confidence intervals on the prediction acknowledges the unknowns in 
the system.  By either using confidence intervals on the predictive solution or by 
trying to find a unique model to make the prediction, the modeler is exploring the 
parameter space to find the best possible solution to the predictive question.  Both 
options are valid and documented, and the validity of either approach can be 
discredited if the modeler does not correctly document the uncertainty in their 
model. 
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5.3 Communicating predictive uncertainty 

Since predictive uncertainty is the most important uncertainty to decision makers, 
it should be presented and communicated in a clear concise way.  Predictive 
uncertainty should be considered low only if, in addition to a unique solution and 
well calibrated model, parameter error is considered low and the conceptual 
model is well defined.  Any document should include the reason for determining 
that predictive uncertainty is low, since this will mean that any assessments made 
with that particular model will be correct and accurate. 
 
If the model does not have a unique solution, there are a couple of options for 
communicating the bounds of the solution.  Depending on the question being 
asked, the solution can be presented using graphics or maps.  For example, if the 
question involves explaining when water will reach a certain elevation at different 
locations, the result may be presented as a number with plus or minus confidence 
intervals or with the use of a chart that visually represents the number with 
confidence intervals.  Some questions are better answered using a map.  If the 
question is where will the water surface be at a particular elevation and a 
particular point in time, a colored map can illustrate the location of the water 
surface at difference points in time.  Due to the simple visual nature of maps and 
graphs, they can often communicate information to decision makers more quickly 
than can numbers or text.   
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6 Conclusion 
Groundwater model uncertainty is a large topic that has been investigated and will 
continue to be investigated by many.  There are four main topics in groundwater 
model uncertainty that should be addressed in all groundwater reports: conceptual 
model uncertainty, parameter uncertainty, calibration uncertainty, and predictive 
uncertainty.   
 
It is the responsibility of the groundwater modeler to understand and evaluate 
groundwater model uncertainty.  It is also the responsibility of the modeler to 
inform the decision maker of the uncertainty associated with the model and its 
output.  The concept of uncertainty in a groundwater model should not be 
considered negative, since when properly analyzed, it can be used to inform better 
decisions.   
 
Groundwater model uncertainty can be used as a tool to inform the modeler and 
the decision maker about the system.  It can be used to determine where new data 
should be collected, which can ultimately save money.  It can also be used to 
place confidence intervals on model output so that appropriate decisions are made 
with the model. 
 
 
The consequences of not evaluating and understanding uncertainty far outweigh 
the difficulty that may be associated with determining and explaining uncertainty.  
As more modelers bring the topic to management, it will become better 
understood and easier to explain. 
 
It is important to note that a well calibrated model and a unique solution do not 
necessarily mean that uncertainty in a groundwater model has been eliminated 
completely.  If the conceptual model is poorly defined without investigation of 
unknowns through a rigorous method, such as Monte Carlo analysis, there will be 
inherent uncertainty within a model that will not be accounted for.  If the data was 
poorly collected and the errors in the data are not properly explored, uncertainty 
will not be accounted for.  The groundwater world is a complex place and there 
are many opportunities to not account for uncertainty. However, if the modeler is 
diligent and accounts for the four types of uncertainty and uses the tools to 
evaluate the unknowns, uncertainty can be reduced to an acceptable level and, 
ultimately, the model will be a better decision making tool.  
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Step 1: Step 1 has two parts, collect all available data and develop conceptual 
framework.  These two parts of step 1 should be performed iteratively since one 
informs the other.  For example, while collecting new data you may redefine a 
portion of the conceptual model, or while defining a part of a conceptual model 
you may find a data gap.  Note that not all data gaps can be filled by existing data, 
but may be estimated during the calibration process.  This process helps 
contribute to the knowledge of the system and to find out what is not known about 
the system (uncertainty). 
 
Step 1a: Collect all available data.  Begin your groundwater modeling study by 
collecting all of the available data about the site you are attempting to analyze.  If 
possible, try to obtain most of the data in GIS format or convert the data to GIS 
format; this will allow for more efficient model development.  The table below 
describes the type of data to look for and places to find it. 
 
Data type  Description  Examples of where to find 

data 

Well logs  A well log can provide 
information about the geologic 
stratigraphy (layering) as well as 
depth to water. 

Well logs are generally site 
specific data and may be 
obtained from 
knowledgeable staff 
(Reclamation geology staff 
usually has knowledge of 
well log locations).  State 
water management agencies 
sometimes have online 
databases of well logs. 

Well locations and 
measurements 

Well locations should be in some 
coordinate format if possible 
(sometimes it is only possible to 
know the township, range and 
section where a well is located).  
Depth to water and screened 
elevations of water are also 
useful information.   

Well locations and 
measurements can 
sometimes be obtained from 
the same location as well 
logs.  Some well locations 
and measurements are 
project specific, so study 
personnel may have the best 
information. 

Geologic Map  Geologic maps can provide 
information that will inform the 
conceptual model design as well 
as the calibration process.  For 
example, the map may show 
geologic faults, which can be a 
location of high or low 
permeability. 

General geologic maps can 
be obtained from the USGS 
or state geologic agencies.  
Reclamation geology staff 
sometimes has geologic 
maps for specific locations 
which tend to be more 
detailed than USGS or state 
maps. 
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Surface elevation 
data 

DEMs, LiDAR, and topographic 
maps can provide information 
about the ground surface. 

Surface elevation data can 
usually be obtained from 
online resources or from 
Reclamation GIS staff. 

Hydrography  Hydrography provides the 
geographic location and 
elevation of streams. 

Hydrography can be 
obtained from the USGS 
website. 

Recharge 
information 

Recharge information should 
describe the net areal recharge 
to the aquifer (this should not 
include recharge from streams or 
lakes unless they are not 
otherwise defined in the model).  
This may include recharge from 
precipitation, on‐farm 
infiltration, or septic systems. 

Recharge information can be 
collected from many sources 
since recharge is such a 
diverse dataset.  The goal 
when defining an aerial 
recharge dataset is to 
account for only the water 
that actually recharges the 
aquifer; water that is used 
during the ET process or is 
surface runoff should not be 
counted as recharge.  
Precipitation information can 
be obtained from Hydromet 
or PRISM and should be 
corrected for the amount 
that actually infiltrates to the 
aquifer.  On‐farm infiltration 
should be calculated based 
on amount of water applied 
to the land minus crop 
requirement (this can be a 
very complex calculation and 
may be estimated if data is 
not available).  Recharge due 
to septic system infiltration 
can be estimated from M&I 
water records. 

 
 
Step 1b: Begin defining conceptual framework.  The conceptual framework 
describes the current understanding of the physical properties of the site you are 
attempting to analyze.  This includes, but is not limited to, the geographic 
structure of the aquifer(s), the location of any surface water features (streams, 
lakes, drains), and the location of wells.  When defining the geographic structure, 
it is helpful to build a visual conceptual model of the geologic features in a 
software package such as GMS or Rockworks.  Such software packages allow 
you to include stratigraphic information that can be derived from boreholes, 
develop cross-sections, and interpolate stratigraphic layering based on known 
information.  While developing this conceptual model, you may find that you do 
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not have all of the data necessary, requiring an assessment of the feasibility of 
collecting more data.  Not being able to collect more data gives a location for you 
to begin defining uncertainty in your model.   
 
Step 2:  Develop conceptual framework in context of chosen mathematical 
model.  Whether using an analytic or numeric model, the conceptual framework 
will need to be adjusted to fit into the context of the mathematical model.  The 
adjustments may include changing data resolution, converting the data to 
consistent units, or making assumptions for unknown data. 
 
Step 3: Calculate initial parameter sensitivities.  Calculation of parameter 
sensitivity is one of the most important aspects of evaluating the level of 
uncertainty in a groundwater model.  A parameter is considered sensitive if a 
small change in the parameter value causes a large change in the model solution 
with respect to the observations.  Conversely, an insensitive parameter is one that 
causes a small or no change in the model solution with a large change in the 
parameter value.  If a parameter is sensitive to changes, it is likely that the 
calibration process will estimate the parameter with a good degree of certainty.  
However, insensitive parameters may be estimated anywhere in a range, since the 
changes made to the parameter do not show up in the calibrated solution.  If the 
prediction being made by the model is impacted by the insensitive parameter, a 
poor estimation of the insensitive parameter during the calibration process will 
affect the results, even though the model calibration matches observed water 
levels and stream flows.  Sensitivity analysis can be conducted manually or by 
using an automated parameter estimation tool.  It is recommended that the 
modeler use an automated procedure since many automated parameter estimation 
tools include a sensitivity analysis procedure and output the relevant statistics.  
Since automated calibration procedures may not converge if insensitive 
parameters are left to adjust, it is common to fix the parameters (this is the reason 
for checking sensitivity before calibration).  Calculating uncertainty with respect 
to insensitive parameters will be addressed in step 7. 
 
Step 4: Parameter estimation (calibration).  Calibration can be done using by 
manual “trial and error” method or by using automated parameter estimation 
software, such as PEST, UCODE, or MODFLOW2000.  Although the manual 
method can allow the modeler to get a feel for how changes to parameters impact 
the calibration, it is generally recommended that modelers use automated 
procedures.  Automated procedures, although computationally expensive, 
inherently provide information that allows the modeler to evaluate uncertainty. 
 
Step 5: Calculate goodness of fit and uniqueness statistics.  There are many 
types of statistics that will quantify goodness of fit and uniqueness.  At the 
minimum, root mean squared error of water levels or flow, percent error over the 
total change in water level or flow, and a linear regression plot of the observed 
versus calculated values should be evaluated and presented.  Additional statistics 
are well explained in Effective Groundwater model Calibration by Hill and 
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Tiedeman (2007).  For a well calibrated model, it is generally accepted that 
percent error should be less than 10 percent and the linear regression (R squared 
value) should be greater than 0.9. 
 
Step 6: Calculate final parameter sensitivities.  This step is required since 
sensitivities may change as parameters are adjusted during the calibration process.  
If parameters that were insensitive before the calibration become sensitive after 
calibration, the calibration procedure should be rerun without the parameters 
fixed. 
 
Step 7: Evaluate model uncertainty using stochastic/Monte Carlo methods.  
By the time the modeler gets to this step, he/she should have evaluated 
uncertainty in the conceptual model and input data.  The sensitivity analysis 
should have indicated which parameters could be successfully estimated and 
which may not be.  The stochastic/Monte Carlo analysis should be used to 
evaluate correlated and insensitive parameters with respect to the prediction being 
made by the model (this is explained more in the main document). 
 
Step 8: Use model to evaluate scenarios.  After the model has been calibrated 
and analyzed for uncertainty, it can be used to make predictions.  If it has been 
determined that uncertainty is small (and this has been documented in the model 
report), the model output can be used as is.  If uncertainty is a concern, the 
stochastic/Monte Carlo analysis should be used to develop error bands for the 
predictions. 
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Appendix B: Memo Minidoka Test 
Case 

Before a case was tested for uncertainty, the authors of the report “Framework to 
effectively quantify and communicate groundwater model uncertainty to 
management and clients” attempted to survey Reclamation groundwater modelers 
about their use of uncertainty in their models.  A meeting was held at the 2009 
Reclamation Construction and Geology conference to introduce the topic and a 
new SharePoint site was developed that would facilitate the survey.  Only one 
response to the survey was received.  The comments from the one survey were 
incorporated into the model document and test case. 
 
The test case model was a modified version of the Eastern Snake Plain 
MODFLOW model.  The modified model was to be used to evaluate the impacts 
of raising Lake Walcott 5 feet on the regional aquifer and nearby streams.  In 
addition, the model was used to evaluate the impacts due to modified operations 
after replacing the spillway at the dam (without raising the lake elevation).  Since 
only a portion of the model was modified for the study, uncertainty was only 
evaluated with respect to the changes that were made to the model.  Those 
changes include refining the model grid to smaller cells near Minidoka dam, 
adding a model layer to represent a conductive sandy layer on the north side of 
the reservoir, and modifying the location of the river features to match the new 
grid.  The model was recalibrated to determine hydraulic conductivity values for 
the new model layer and to refine the conductances of the river features. 
 
Since the new portion of the model was well defined geologically and 
hydrogeologically, uncertainty in the conceptual model was considered small.  In 
addition, any new data that was used in the model was considered to be within 
bounds that would not impact the output of the model.  A sensitivity analysis was 
conducted on the parameters that were used in the calibration process.  Insensitive 
parameters were identified and tested to determine if changes in their values 
impacted the prediction.  Since they did not, uncertainty in the model was 
considered small, and the model solution was presented without error bands.  This 
was discussed in a section of the model report called Model Uncertainty.  
  
After the client and reviewers read the report, they were sent a survey to evaluate 
the effectiveness of uncertainty communication within the document.  One 
reviewer, a modeler, asked for additional statistics to prove the uncertainty was 
low.  Another reviewer, a manager, thought the description of uncertainty was 
clear and acceptable. 
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Test Case using Flow Chart 

This section describes the development of the Minidoka model in the context of 
the steps listed in appendix A.  A complete description of model development can 
be found in the report called “Groundwater Modeling Analysis of Potential 
Minidoka Pool Raise” (USBR, 2009). 
 
Problem: Evaluate the impacts on the Eastern Snake Plain Aquifer from 
replacing Minidoka spillway and from keeping Lake Walcott at a higher elevation 
for a longer period each year. (Figure B-1 shows the extent of the regional aquifer 
and the location of Minidoka Dam and Lake Walcott.) 
 

 
Figure B-1: Eastern Snake Plain Aquifer and Minidoka Dam (orange triangle). 
 
Step 1: Collect all available data and develop conceptual model.  This step 
began by evaluating models and data that existed for the Eastern Snake Plain 
Aquifer (ESPA) and the region surrounding Lake Walcott.  Since the groundwater 
evaluation was only a small part of a larger investigation, a large amount of data 
had already been collected and compiled.  In addition, a model of the ESPA 
already existed, so it could be used, with some small improvements, to answer the 
study questions. 
 
The conceptual understanding of the aquifer near Lake Walcott used in the ESPA 
model development is that the Snake River flows into Lake Walcott, which may 
or may not be in contact with the regional aquifer.  The river downstream of 
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Minidoka dam is considered perched, not in contact with the regional aquifer, so 
it is not included in the model.  Although it was conceptually understood that a 
perched aquifer layer on the north side of the reservoir allowed seepage from the 
reservoir, this was not included in the regional model. 
 
For the Minidoka study, the conceptual model was updated to include the perched 
layer on the north side of the river.  The conceptual understanding is that water 
flows through this perched layer, under the North Side canal to seepage channels 
that are measured along the Snake River.  Another addition to the conceptual 
model was the North Side canal, since seepage measured in the seepage channels 
would be a combination of seepage from both Lake Walcott and the North Side 
canal.  The last addition to the conceptual model was that a small section of the 
Snake River downstream of Minidoka dam was in contact with the regional 
aquifer and therefore was included in the model. 
 
Step 2:  Develop conceptual framework in context of chosen mathematical 
model.  Since the mathematical model was previously developed, many of the 
decisions that would normally be made during this step were already made.  Some 
of the representations were updated to accommodate the new understanding of the 
conceptual model.   
 
The existing ESPA model simulates the aquifer as a single, confined layer with 
cells that were one mile square.  A single recharge parameter represents both 
recharge from all sources and discharge from pumping wells.  Since the model 
was a regional model and only represented a single aquifer layer, refinement was 
necessary near the area of interest to better address the study questions.   
 
The model was updated to have smaller cell sizes near Lake Walcott and an 
additional model layer that represented the sandy layer on the north side of the 
Lake.  MODFLOW river cells were added to represent the North Side canal in the 
new model layer.   
 
Step 3: Calculate initial parameter sensitivities.  Parameter sensitivities were 
calculated to determine which parameters should be estimated during the 
calibration process.  Only the final sensitivities were reported for this model. 
 
Step 4: Parameter estimation (calibration).  The Minidoka model was an 
improvement of an existing model that had previously been calibrated.  So, only 
new features added to the model were included in the recalibration process, as it 
was assumed that the original ESPA calibration was sufficient to answer the study 
questions.  The parameters that were adjusted during the calibration process 
include: the conductance of Lake Walcott, the conductance of the Snake River 
below Minidoka dam, the conductance of North Side canal, hydraulic 
conductivity of the new model layer, the storativity of the new model layer, and 
the general head boundary along Lake Walcott in the new model layer.  Some of 
the calibrated parameters were divided into zones. 
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The parameters were estimated using the zones and the parameter estimation 
software PEST.  Pilot points were not used to estimate hydraulic conductivity and 
storativity in this model since the area being estimated was small (however, it is 
recommended in most cases that pilot points and regularization be used because 
the combination produces the most unique solution). 
 
Step 5: Calculate goodness of fit and uniqueness statistics.  The quality of the 
calibration was determined by examining the RMSE and percent change of both 
the water level elevation measurements and the seepage measurements.  Also, a 
regression for both data sets was presented.  The RMSE for water level elevation 
was 2.8 feet which was 4.5 percent of the total change in head over the modeled 
time period.  The RMSE for seepage was 4,148.51 ft/day, which is 5.4 percent of 
the total change in seepage.  The R-squared value for the water level regression 
and seepage was 0.97 and 0.93, respectively.  Since the percent change of both 
data sets was less than ten percent and the R-squared values were greater than 
0.90, the model was considered well calibrated. 
 
Some of the parameters that were estimated were correlated with a correlation 
factor of greater than 0.95, which can indicate non-uniqueness in the solution.  
These parameters were evaluated by starting the calibration process with different 
starting values, which produced similar results, indicating that the solution was 
unique.  
 
Step 6: Calculate final parameter sensitivities.  This section is taken directly 
from the model report and describes the final sensitivities in this model. 
 

Determining the sensitivity of model parameters using Fit-Independent 
Statistics can help quantify model uncertainty (Hill and Tiedeman, 2007).  
Sensitive parameters are those that cause a large change in the model solution 
when their values are varied; while insensitive parameters can be varied by 
large amounts and not affect the solution.  The sensitivities are presented in 
two ways, composite scaled sensitivities (CSS) and dimensionless scaled 
sensitivities (DSS).  DSS values indicate the importance of an observation 
with respect to a parameter and are scaled to a dimensionless value so that it 
can be compared with other parameters that may have a different dimension.  
CSS values are DSS values that are combined with respect to each parameter 
to give an indication of the overall importance of that parameter.  CSS values 
were plotted in a bar chart to show the relative sensitivity of each parameter 
(Figure B-2). 
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Figure B-2:  Plot of CSS values for Minidoka groundwater model. 
 
Parameters that are less than 1 percent of the largest CSS value are considered 
not sensitive.  Since the maximum CSS for this model is about 10,400 for 
parameter horizontal hydraulic conductivity in zone 16 (kx16), the sensitive 
parameters are those with CSS greater than 104.  The sensitive parameters in 
this model are: 

 vertical hydraulic conductivity zone 1 (kz1), 
 river conductance zone 3 (riv3), 
 General Head Boundary Zone 1 (ghb1), 
 horizontal hydraulic conductivity zone 1 (kx1), 
 river conductance zone 6 (riv6), 
 river conductance zone 8 (riv8), 
 river conductance zone 4 (riv4), 
 storativity zone 1 (sy1), 
 river conductance zone 7 (riv7), 
 drain conductance zone 4 (drn4), 
 drain conductance zone 5 (drn5), and  
 horizontal hydraulic conductivity zone 16 (kx16). 

 
DSS values were plotted in a line graph to show the relative importance of 
each parameter to an observation based on its sensitivity (Figure B-3).  
Observations with DSS values that are large with respect to the other 
observations are considered sensitive with respect to the corresponding 
parameter.  For example, the parameter River Zone 2 is important to the 
estimation of the piezometers in layer 2 but not the piezometers in layer 1 nor 
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the seepage estimates because the relative DSS values are large for the 
piezometers in layer 2 and small for the piezometers in layer 1 and the 
seepage estimates. 
 

 
Figure B-3: Plot of dimensionless scaled sensitivities for each estimated parameter in the 
model.  The left y-axis represents the DSS for observations SM2, SM4, and SM5.  The 
remaining observations are reflected on the right y-axis. 
 
The CSS and DSS values can help to determine which parameters are 
important to developing a well calibrated model.  Estimates of parameters 
with low DSS and CSS values are can be discounted for a well calibrated 
model because a low DSS means that none of the observations depend on the 
parameter and a low CSS means that the model is not sensitive to changes in 
the parameter.  The parameters in this model that do not have a high DSS (or 
high importance) are the vertical hydraulic conductivity for zone 16, river 
conductance for zones 1 and 3, drain conductance for zone 2 and GHB 
conductance for zone 1.  Of these parameters, GHB for zone 1 and river 
conductance for zone 3 are considered slightly sensitive, so changes may 
result in a different solution, but not at the observation points.  It is often 
recommended that such parameters be set with a fixed value during the 
calibration process since changes will have little effect on the solution (Hill 
and Tiedeman, 2007). 
 
Parameters that have low CSS values and high DSS values can contribute to 
the uncertainty of a model.  In the Minidoka model, this condition is true for 
river conductance for zones 2, 5, and 10 and specific yield for zone 1.  To 
account for those parameters that contribute to the uncertainty of the model, it 
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is common to use a range of values for each parameter during the prediction 
phase to give a range of possible solutions to the problem.  Since in this model 
the parameters with large DSS values are all on the low end of the CSS chart, 
changes to the parameters did not affect the solution to any large degree, 
therefore, it was not necessary to use a range of values.  Therefore uncertainty 
within the modified portion of the model is considered small.   

 
Step 7: Evaluate model uncertainty using stochastic/Monte Carlo methods.  
Since uncertainty in this model was considered small, this step was not necessary. 
 
Step 8: Use model to evaluate scenarios.  The model was used to evaluate the 
study questions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


