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Executive Summary 
The advent of personal computers in the mid-1980s gave rise to an era of 
unparalleled advances in heuristic optimization research.  These new optimization 
algorithms are not based on traditional calculus-based approaches, but instead 
have their origins in physical and biological processes.  Three promising 
evolutionary algorithms (EAs) were identified from the emerging literature; the 
real coded genetic algorithm (RCGA), differential evolution (DE) and particle 
swarm optimization (PSO).  These EAs were then applied to an important 
hydropower problem—the constrained dynamic economic dispatch problem.  A 
suite of replicated experiments were conducted to assess their performance 
characteristics.  These experiments were used to compare the performance of 
these EA’s with a traditional solution approach, and to explore the influence of 
initialization approaches, convergence criteria, the dimensions of the problem, the 
role of problem inputs and the effects of binding constraints.  Relative to 
traditional calculus based approaches, these three evolutionary algorithms exhibit 
longer solution times—characterized by rapid identification of the region 
containing the optimum, followed by a slow convergence on the optimum.  For 
this problem, the choice of initialization approach appears to have no appreciable 
effect on solution times.  Convergence times become longer as the problem size 
increases and, for some of the algorithms, when constraints are binding.  The 
reliability of the EA’s proved to be excellent and their convergence speeds are 
acceptable for use in operational decision-making.  As a practical matter, the 
majority of applied hydropower optimization problems are non-convex and 
discontinuous.  These conditions preclude the use of traditional calculus based 
algorithms.  In contrast, evolutionary algorithms are robust under these 
conditions.  Continuing development and testing of these algorithms, leading 
towards operational deployment, is now ongoing. 

Introduction 
Within the last 30 years, a variety of new optimization heuristics have been 
described in the power engineering literature.  These heuristic approaches rely on 
innovative search techniques, drawn from biological and physical processes.  
Although computationally intensive, these methods can solve difficult constrained 
optimization problems, like the dynamic economic dispatch problem, quickly and 
reliably. 
 
This research describes several of the most promising of these new optimization 
approaches, applies them to example economic dispatch problems and 
systematically assesses their performance.  The goal of this effort is to identify 
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algorithms which can help guide the hydropower economic dispatch decisions and 
improve efficiency, generating more electric power with less water. 
 
Reclamation plays a highly visible leadership role in the electric power industry.  
The Bureau is the second largest producer of hydroelectric power in the United 
States and, if it were a utility, would rank as the ninth largest electric utility on the 
basis of production capacity.  We operate 58 power plants with an installed 
capacity of 14,809 MW and produce approximately 40 billion kWh of energy 
annually.  As a registered generation and transmission owner-operator, 
Reclamation plays a key role in regional reserve sharing agreements and is a 
member of the Western Electricity Coordinating Council (WECC). 
 
By statute, Reclamation's electric power must be marketed at the lowest possible 
rates consistent with sound business practice.  The goal of this research project is 
to identify and apply advanced approaches allowing the operation of Reclamation 
hydropower plants in a more efficient manner generating more electricity per 
acre-foot of water released.  This research is fully consistent with Reclamation's 
mandate and reflects our stewardship responsibilities as a water and power 
provider.  Improved efficiency will result in the generation of more electric power 
using less water benefitting water and power users, as well as the American 
taxpayer. 

Hydropower Problems 
The focus of this research effort is on the dynamic economic dispatch problem 
which is of particular importance to Reclamation and other hydropower 
owner/operators.  There are several mathematically related hydropower problems 
which can sometimes prove confusing.  To ensure a common basis for 
understanding, three of these problems are summarized in this section.  These are 
the (static) economic dispatch problem, the dynamic economic dispatch problem 
and the unit commitment problem. 

Economic Dispatch 

The static economic dispatch problem is a mathematical optimization problem 
which identifies how to optimally manage one or more operating hydropower 
units together in a single time-step, typically a one hour period.  This problem 
assumes the hydropower units have been previously committed or operating.  
Static economic dispatch problems typically consider the minimum and maximum 
output constraints of each available unit as well as their engineering 
characteristics, such as head, release and efficiency characteristics. 
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Dynamic Economic Dispatch 

The dynamic economic dispatch problem, which is the focus of this research, is 
an extension of the static dispatch problem.  It is a mathematical optimization 
problem which can identify how to optimally manage one or more hydropower 
units over a specified time horizon.  The time horizon considered might consist of 
a day (24-hours), a week (168-hours) or some other period.  Like the static 
problem, the dynamic economic dispatch problem also assumes the hydropower 
units are currently committed or operating.  Typically such problems consider the 
minimum and maximum output constraints of each available unit, and their 
engineering characteristics.  A unique feature of dynamic economic dispatch 
problem is their consideration of a multiple time-step planning horizon and their 
ability to include time-step to time-step ramp rate constraints on each unit, or 
combination of units. 
 
The dynamic economic dispatch problem underlies many high visibility 
hydropower planning analyses.  Its efficient and accurate solution is of paramount 
importance in such studies.  Prominent Reclamation examples include studies of 
the economic impacts of changing operations at the Aspinall Unit (Veselka et al 
2003) and Glen Canyon Dam (Harpman 1999). 

Unit Dispatch 

The unit commitment or unit dispatch problem is a complex 2-step mathematical 
optimization problem.  Solution of this problem requires (a) identification of the 
combination of available hydropower units to operate (or shut down) in a single 
time-step, such as a 1–hour period, and, (b) how to managed the committed 
hydropower units in an optimal manner.  The decision to operate or shut down a 
unit is a binary (0/1) decision, typically with some associated cost and often with 
some minimum time constraint imposed between startup and shutdown decisions.  
Assuming there are n available hydropower units, the unit dispatch problem is of 
size 2n.  This aspect of the problem poses a potentially large and difficult-to-solve 
integer programming effort.  Once the optimal units have been committed, the 
economic dispatch problem, described previously, is solved for those units. 

The Dynamic Economic Dispatch 
Problem 
The hydropower plant operator is faced with a challenging dynamic optimization 
problem.  Given the amount of water available for release and the anticipated 
price of electricity over a particular time horizon (T), the plant operator must 
decide how much water to release for generation in each period (t) in order to 
maximize the economic value of the electricity produced.  Typically, the total 
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amount of water available for release (Q) over the planning horizon is fixed and 
known.  The vector of prices (R) over the planning horizon (T) is assumed or 
anticipated, based on prior experience and knowledge. 
 
In general, the optimal dynamic dispatch problem can be written in mathematical 
notation as shown in equations (1) through (6). 

[Editor’s note:  Equations throughout this report are too complex to be made accessible for vision-impaired 
readers.  Contact David Harpman at 303-445-2733 or DHarpman@usbr.gov for help with specific equations. 

(1)  ∑
T

ttt qpRMaximize
1

)(  

  subject to: 
 

(2)   ∑ ≤
T

t Qq
1

 

 
(3)   0≥tp  
 
(4)   maxmin qqq t ≤≤  
 
(5)   maxmin ppp t ≤≤  
 
(6)   rrateqabs ≤∆ )(  
 
Where:  Rt = price ($/MWh) at time (t) 
  pt  = generation (MW) at time (t) 
  qt = release (cfs or af) at time (t) 
  Q = total release (af). 
  qmin = minimum release. 
  qmax = maximum release 
  pmin = minimum generation level. 
  pmax = maximum generation level 
  ∆q = change in q from t to t+1. 
  rrate = maximum ramp rate. 
 
In practice, the operator attempts to maximize economic value over the time 
horizon by producing electricity when it is most valuable.  While doing so, s/he 
cannot exceed the amount of water available for release over the time horizon 
(equation 2), must respect the minimum and maximum release levels (equation 4), 
must respect the minimum and maximum generation levels (equation 5) and must 
necessarily accommodate the ramp rate limitations of the plant in moving from 
one release level to the next, if any (equation 6). 
 
This problem falls into the class of mathematical problems known as constrained 
optimization problems.  Depending on the nature of the generation and head 
relationships, the problem may be highly nonlinear. 

mailto:DHarpman@usbr.gov�


Optimization Review 

5 

Solution of the optimal dynamic dispatch problem represents a daunting 
mathematical undertaking.  In general, it is not possible to solve this type of 
problem analytically and highly specialized computer software must be employed 
to obtain a numerical solution to the problem.  The efficient and rapid solution of 
this class of problem is the focus of this research effort. 
 
The dynamic economic dispatch problem, as it has been described here, reflects a 
purely economic objective.  This approach is employed in the vast majority of 
economic, engineering and research applications.  In some settings, the operator’s 
motivations are more complex and their objectives may vary from this purely 
economic approach.  Appendix 1 describes several different but plausible 
objective functions.  Use of any of these alternative objective functions, will lead 
to optimal solutions which may differ in character from those obtained in this 
study. 
 
The dynamic economic dispatch objective used in this study is a simplified 
version of reality since it does not allow for the possible provision of ancillary 
services by the hydropower plant.  Ancillary services are electrical products, other 
than energy generation, which help maintain reliable system operations in 
accordance with good utility practice.  Two ancillary services in particular, 
spinning reserves and regulation, can affect the optimal economic dispatch 
decision.  Appendix 2 further discusses ancillary services and describes how their 
provision might be expected to affect economic dispatch. 
 
Appendix 5 sketches out the analytic solution of the dynamic economic dispatch 
problem using calculus.  This appendix is particularly useful because it contains a 
specific example which draws upon the details of the problem explored 
throughout the remainder of this document. 

Optimization Review 

Purpose 

The focus of this report is on the optimization of functions which are commonly 
encountered in hydropower operations.  This section serves as a review of this 
relatively specialized topic.  It provides some relevant background including a 
common understanding of the mathematical terms used throughout the remainder 
of this document, as well as some high-level insights into the mathematics of 
optimization. 
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Stationary Points 

A stationary point is a point for which the first derivative of the function is zero.  
A stationary point can be a point of inflection, a saddle point or an extrema.  A 
point of inflection is a point where the derivative changes sign from positive to 
negative.  A saddle point is a point in n-dimensions for which the first derivatives 
are zero, but which is not an optima.  Such points are caused by the coincidence 
of say, a maximum point in one or more dimensions and a minimum point in one 
or more different dimensions.  An extremal point is a “true” optima, which can be 
either a minimum or maximum point. 

Extremal Points 

Over the domain of permissible real number values, a function may have a variety 
of so called, “extremal points.”  In the realm of mathematical optimization, these 
are known as extremum, extrema, minima, maxima, minimum points or 
maximum points, depending on the author and the context.  Alternatively, these 
same points may be called, “optima” or optimal points.  Again, the choice of 
terminology varies with the author’s style and discipline. 

Global and Local Extremal Points 

A generic nonlinear function is plotted in two dimensions (2D) over the real 
number domain [-∞, +∞] in Figure 1.  This generic nonlinear function is 
multimodal.  In other words, it has multiple extremal points, a characteristic 
which is not uncommon in applied work.  Multiple local extrema are known by 
various terms including multiple local optima, multiple optima and/or multiple 
local optimal points.  Some authors refer to such functions as ill-behaved or 
complex. 
 

 
Figure 1.  Nonlinear function with multiple local extrema. 
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The generic nonlinear function shown in Figure 1 has a single global extrema or 
optima, in this case a maximum, at point B.  The function also has two local 
optima, one at point A and the other at point C. 
 
Identification of the global optima (point B) for a nonlinear function such as this 
one can be extremely difficult for traditional calculus based optimization 
algorithms.  Typically, these algorithms will identify the extremal point which is 
closest to their given starting position.  For example, if the optimizer is started at a 
point to the right of point C, it will generally converge on point C.  Point C is the 
local, rather than the global optima. 

Convex and Concave Functions 

In general, it is not possible to prove mathematically that a given local extrema is 
the global extrema, except in the case of mathematical functions with certain 
specific characteristics known as convex or concave functions.  These terms have 
very specific mathematical definitions (see Boyd and Vandenberghe (2006) for 
the many details).  The general concepts are readily illustrated in two dimensions 
(2D), avoiding a lengthy theoretical discussion.  A function which is (strictly) 
convex (from above) is shown in Figure 2 panel A.  As shown in this figure, a line 
drawn between any two points on a convex function will not intersect the function 
at any other point.  A function which is (strictly) concave (from above) is shown 
in Figure 2 panel B.  As shown in this figure, a line drawn between any two points 
on a concave function will not intersect the function at any other point. 
 
 

 
Figure 2.  Convex (panel A) and concave (panel B) functions. 

 
Convex and concave functions have appealing properties which facilitate 
mathematical optimization.  Strictly convex functions, such as the example shown 
in Figure 2 panel A, have a single (unique) maxima, and that single extrema is the 
global maximum.  Strictly concave functions, such as the example shown in 
Figure 2 panel B, have a single (unique) minima, and that extrema is the global 
minimum point. 
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Calculus of Unconstrained Optimization 

Since the time of Sir Isaac Newton (circa 1400), mathematicians, economists and 
engineers have collectively devoted vast amounts of effort to the study of 
optimization, with a particular focus on convex optimization problems with linear 
constraints.  Not surprisingly, calculus based optimization approaches are 
routinely taught to all engineers and economists.  Most students of these 
disciplines have wonderful memories of their many calculus courses. 
 
Although exposure to these topics is rather wide-spread, a cursory review of 
calculus based optimization is a useful digression.  All students of calculus will 
recall the first order necessary conditions (FOC’s) for the existence of an optima 
are that the first derivatives are equal to zero.  This is illustrated mathematically in 
equation (7). 
 

(7)   0
)(
=

∂
∂

i

i

x
xf

 

 
An alternative but equivalent restatement of this condition is that the gradient, or 
vector of first partial derivatives, is equal to zero (equation 8). 
 
(8)   0)( =∇ xf  
 
Points where this occurs are points where a line tangent to the function is 
horizontal, or flat.  This occurs at all stationary points which may be a point of 
inflection, a saddle point or an optimal point.  While all optima are flat spots, not 
all flat spots are optima.  At a saddle point, for example, the vector of first 
derivative is zero, but it is not an extrema.  Consequently, the first order 
conditions are said to be a necessary, but not sufficient condition for identifying 
an optimum point.  
 
The sufficient or second order sufficient condition (SOC) for indentifying an 
optima is that the Hessian matrix, or matrix of second partial derivatives, must be 
negative definite (for a maxima) or positive definite (for a minima).  A matrix is 
said to be positive definite if zTMz > 0 for all non-zero vectors z with real entries.  
A matrix is said to be negative definite if zTMz < 0 for all non-zero vectors z with 
real entries.  The determinate of a real symmetric positive definite matrix is 
strictly positive (all eigenvalues are positive).  The determinate of a real 
symmetric negative definite matrix is strictly negative (all eigenvalues are 
negative). 
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The second order conditions are used as a test to ensure the vector of derivatives 
is not only zero everywhere, but is diminishing in all dimensions (for a maximum) 
or increasing in all directions (for a minimum).  If the first order necessary 
conditions and the second order conditions hold at a particular point, we can be 
sure the identified point is at least a local optimal point. 

Limits of Calculus Based Optimization 

Calculus based optimization is elegant and efficient but has some practical 
limitations.  Application of calculus based optimization techniques is limited to 
functions which are smooth, continuous and twice-differentiable.  Calculus based 
optimization technologies cannot (readily) be applied to cases where derivatives 
either do not exist or cannot be calculated.  Objective functions which are 
discontinuous or are undefined arise relatively frequently in hydropower 
optimization problems. 

Selected Terms 
Like any branch of science, there are some terms used to describe mathematical 
optimization approaches which are not commonly encountered in other fields.  As 
an aid to understanding the narrative which follows, it will be useful to define 
some of these terms.  

Algorithm 

“A detailed sequence of actions to perform to accomplish some task.  Named after 
an Iranian mathematician, Al-Khawarizmi.  Technically, an algorithm must reach 
a result after a finite number of steps, thus ruling out brute force search methods 
for certain problems, though some might claim that brute force search was also a 
valid (generic) algorithm.  The term is also used loosely for any sequence of 
actions (which may or may not terminate)” (Computer Dictionary Online 2010).  

Heuristic 

“A rule of thumb, simplification, or educated guess that reduces or limits the 
search for solutions in domains that are difficult and poorly understood.  Unlike 
(true) algorithms, heuristics do not guarantee optimal, or even feasible, solutions 
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and are often used with no theoretical guarantee” (Computer Dictionary Online 
2010). 
 
In practice, the term algorithm is often used interchangeably with the term 
heuristic.  However, mathematicians typically reserve their use of the word 
algorithm to describing optimization approaches for which there is a theoretical 
mathematical basis for expecting a favorable result.  Typically, mathematicians 
employ the term heuristic to describe any of the non-traditional optimization 
approaches not supported by mathematical theory. 

Objective Function 

The object of mathematical optimization is to minimize or maximize a specified 
mathematical expression.  This expression is known as an objective function. 

Penalty 

Many applied mathematical optimization problems have natural or logical 
constraints on the values which can be considered in the solution.  For example, 
physical (quantity) measurements are typically non-negative. 
 
One approach to characterizing constraints in a constrained mathematical 
optimization problem is to arithmetically disadvantage, or penalize, solution 
results which violate a constraint.  This topic is discussed in much greater detail in 
subsequent sections of this document.  A penalty function is used to compute the 
numerical magnitude of the disadvantage caused by one or more constraint 
violations.  A penalty is the value returned by a penalty function. 

Fitness 

In cases where penalty functions are used to characterize constraint violations, a 
fitness function is maximized or minimized instead of an objective function.  A 
fitness function returns the numerical value of the fitness—defined as the 
objective function value plus the value of the penalties for constraint violations, if 
any. 
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Optimization Approaches 

Taxonomy of Optimization Approaches 

For purposes of this document and the discussion which follows, it will prove 
useful to provide some type of taxonomy or classification scheme to illustrate the 
relationships between these two optimization approaches.  Figure 3 provides some 
structure for this discussion. 
 
As shown in Figure 3, optimization approaches can be divided into traditional 
(calculus based) optimization algorithms and heuristic algorithms.  The latter 
class of optimization methods may also be described as metaheuristics or heuristic 
optimizers, depending on the author and the source. 
 
The focus of this research is on a sub-set of optimization methods which are 
classified as heuristic algorithms.  Even so, comparison and understanding of 
these methods is facilitated by some familiarity with traditional methods and 
approaches. 
 

 
Figure 3.  Taxonomy of optimization approaches. 
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Traditional Solution Algorithms 

Optimization problems have traditionally been addressed with a variety of 
traditional calculus based methods and throughout the remainder of this 
document, these approaches will be referred to as “traditional” or calculus based 
approaches.  Calculus based optimization approaches are routinely taught to all 
engineers and economists.  Most students of these disciplines will surely have 
fond memories of the many hours they devoted to mastery of this topic! 
 
Since the time of Sir Isaac Newton (circa 1400), mathematicians, economists and 
engineers have collectively devoted vast amounts of effort to the study of 
optimization, with a particular focus on convex optimization problems with 
constraints.  There are many books devoted to this subject, one of the many 
modern examples being the tome by Boyd and Vandenberghe (2006). 
 
Numerical solution of convex optimization problems is typified by the Newton-
Raphson approach and its many variants.  This approach has been taught to 
engineers and economists since the early 1950’s (for example, see Wood and 
Wollenberg (1996) or Rau (2003)) and is the subject of Appendix 6 in this 
document. 
 
As described in Press et al (1989) and Judd (1999), the Newton-Raphson 
approach has been largely supplanted by some of its recent and more advanced 
variants.  At the present time, two approaches are in the forefront of current 
calculus based optimization technology.  These are the sequential quadratic 
programming (SQQ) method, and, the generalized reduced gradient (GRG) 
method.  Both of these methods are aptly described in Rau (2003).  The SQQ 
method is often used in high-end commercially available optimization platforms, 
such as LINGO (www.lindo.com).  The GRG method has found its niche as the 
optimization solver incorporated in all currently shipping versions of Microsoft 
Excel (Fylstra et al 1998).  As such, it may well be the world’s most frequently 
used optimization algorithm.  In any case, it is almost certainly the most widely 
installed optimization package!  As bundled with the ubiquitously available Excel 
program, the solver is broadly employed in graduate and undergraduate teaching 
(for example, see Weber 2007). 

Heuristic Optimization Methods 

The focus of this research is on the application of a subset of the heuristic 
optimization methods shown in Figure 3.  Heuristic optimization approaches are 
based on the application of rules and logic which reduce the search space and 
allow for solution of difficult optimization problems.  Generalizing rather broadly, 
we can classify these methods into the three categories shown; evolutionary 
algorithms, other nature based algorithms and logical algorithms. 
 

http://www.lindo.com/�
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Evolutionary algorithms explicitly characterize crossover, mutation and selection 
operators (Engelbrecht 2005).  As might be expected by their name, evolutionary 
algorithms are based on the concept of biological evolution.  These approaches 
are based on the improvement of an artificial population of individuals over a 
series of generations or iterations.  Each individual carries a solution to the 
optimization problem.  At each generation, the most fit individuals in the 
population reproduce and their offspring survive into the next generation, the less 
fit individuals die and their inferior genes are lost.  The fitness of the population 
and the quality of the solutions found, improve over time.  Genetic algorithms, 
differential evolution and particle swarm optimization fall into this category of 
algorithms. 
 
There are an amazing variety of optimization heuristics related to living 
organisms, their behavior or some other natural physical phenomenon.  Among 
these are ant colony optimization, bee optimization, firefly optimization and a 
host of others.  As might be surmised, some of these algorithms are predicated on 
the collective food location strategies typified by the species.  
  
For purposes of this document, we will classify these remaining approaches as 
logical heuristic search algorithms.  While these may be very different from one 
another in search strategy, they are based on logical insights, experience and in-
depth knowledge of one or more types of optimization problems.  As shown in 
Figure 3, this category includes such well-known heuristics as Tabu search and 
Extremal optimization.  It also includes some less well known but quite effective 
algorithms such as the Substitution-based Non-linear Approximation Procedure 
(SNAP) algorithm developed by Veselka, Schoepfle and Mahalik (2003)  

Comparison of Approaches 

Much of the research effort described in this report is focused on the application 
of evolutionary algorithms to a common hydropower optimization problem.  A 
comparison of these two classes of algorithms and their respective suitability to 
this problem will provide both some background and rationale.  Table 1 compares 
a number of pertinent characteristics of these two types of approaches. 
 
The hydropower problems examined here are inherently nonlinear with both 
nonlinear and linear constraints.  Both traditional and evolutionary algorithms can 
be applied to these types of problems.  Very fast and incredibly reliable traditional 
algorithms are available for solving problems with linear objective functions and 
constraints.  However, traditional algorithms are typically less efficient when 
applied to nonlinear objectives and nonlinear constraints.  They typically require 
longer solution times and can fail to identify a solution more frequently in this 
setting. 
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Table 1.  Traditional and Evolutionary Algorithms 

Characteristic Traditional Algorithms Evolutionary Algorithms 
Problem formulation Linear or nonlinear Linear or nonlinear 
Mathematical 
requirements 

Smooth, continuous and 
twice differentiable 

Can be piecewise, 
discontinuous and non-
differentiable 

Allowable constraints  Equality, inequality, linear or 
non-linear. 

Equality, inequality, linear or 
nonlinear. 

Mathematical 
requirements 

Calculus, linear and matrix 
algebra operations 

Primitive mathematical 
operators only (add, subtract, 
multiply, divide) 

Function return Single solution Multiple solutions 
Nature of outcome Deterministic Stochastic 
Optimal point Extremal point closest to 

starting position usually 
identified.  This may or may 
not be the global optima. 

Extremal point within search 
range usually identified.  This 
is more likely to be the global 
optima. 

Memory requirements Extensive Modest 
Convergence 
characteristics 

Slow large-scale search 
Fast local convergence 

Fast large-scale search 
Slow local convergence 

Solution time Short Often lengthy 
Code implementation Complex (very) Unsophisticated 
 
 
Many commonly encountered hydropower problems are nonlinear, nonconvex, 
and have discontinuities.  This includes the dynamic economic dispatch problem 
and the unit dispatch problem examined here.  Perhaps the chief strength of 
evolutionary programs is their applicability to these types of real-world 
hydropower problems, a factor which largely motivated this research effort.  The 
mathematical requirements for applying traditional optimization algorithms are 
rather restrictive.  Typically, traditional algorithms can only be employed when 
the objective function and the constraints are smooth, continuous and twice 
differentiable.  In contrast, evolutionary algorithms can solve a much wider range 
of problems including those which are discontinuous, piecewise, are not convex 
and which cannot be differentiated. 
 
Both traditional and evolutionary algorithms can solve constrained optimization 
problems with various types of constraints including equality, inequality, linear 
and nonlinear constraints.  Traditional algorithms are less well suited to solving 
optimization problems with nonlinear constraints.  The solution of problems with 
one or more equality constraints can be problematic for evolutionary algorithms. 
 
The mathematical requirements for implementing evolutionary algorithms are far 
less onerous than they are for traditional (calculus based) algorithms.  In both 
philosophy and practice evolutionary algorithms are not based on calculus and do 



Optimization Approaches 

15 

not use calculus constructions for obtaining a solution.  In fact, some authors 
consider this to be their greatest strength! Evolutionary algorithms use only 
primitive mathematical operators such as addition, subtraction, multiplication and 
division.  Traditional algorithms are, of course, founded in calculus concepts.  As 
a result, they use not only gradient vectors (vectors of first partial derivatives) and 
hessian matrices (matrices of second partial derivatives), but also have advanced 
linear algebra requirements.  These advanced mathematical constructs are error 
prone to derive and code, difficult to implement numerically and require an 
extremely high degree of knowledge and skill on the part of the 
researcher/programmer.  Judd, a master of understatement, writes “Many readers 
could write acceptable unconstrained optimization code, but it is much more 
difficult to write good, stable, reliable code for constrained optimization (Judd 
1999, page 142) 
 
Traditional (calculus based) optimization algorithms return one single solution.  It 
is the solution to the problem, as every economics and engineering student is 
acutely aware.  A fundamental difference between traditional and evolutionary 
algorithms is that evolutionary algorithms return a population of solutions.  This 
difference in solution paradigm is both unfamiliar and potentially confusing.  
  
To expand upon this concept, we must recall that evolutionary algorithms 
characterize a population of individuals.  This population is of say size, np, which 
could consist of from 5 to 100 individuals or more.  Fundamentally, each of these 
np individuals stores a solution (in some cases, more than one).  The stored 
solution consists of not only the optimal function value, but the vector of values 
which produces it.  As the evolutionary process proceeds, each of these np 
solutions evolves and becomes better, or more “fit.”  When the evolutionary 
process terminates, the result is np, not necessarily unique, individual solutions-- 
not one single solution.  As a practical matter, the analyst will often choose to 
report the best of these np individual solutions as the solution.  Since evolutionary 
algorithms are probabilistic in nature, each new run will produce slightly different 
results (in contrast with a traditional algorithm which produces identically the 
same result for a given starting condition).  In the case of evolutionary algorithms, 
it is customary to undertake multiple runs and report the mean and other 
descriptive statistics for the outcomes. 
 
Many real-world optimization problems have more than one optimal or extremal 
point.  At an extremum, the first order necessary conditions (FOCs) for a 
minimum or maximum are satisfied.  In the case of a traditional calculus based 
algorithm, the specific extrema identified by the algorithm depends primarily on 
the starting conditions specified by the analyst.  These types of functions are the 
bane of researchers everywhere!  In the absence of detailed knowledge about the 
optimal surface, the usual procedure is to restart the traditional algorithm at many 
different points in the solution space and search for the global optimum point.  
Problems which exhibit multiple local optima can often be solved by these 
calculus based methods.  However, there is no theoretical or practical way to 
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guarantee the solution identified by the researcher is the global solution to the 
problem.  
 
Evolutionary algorithms are sometimes described as global optimizers owing to 
their well-documented ability to identify the global optima within the given 
search space.  Notwithstanding the published glowing reports, an equal body of 
published evidence suggests this behavior is not universally observed.  
Furthermore, it cannot be proved theoretically that they can be relied upon to 
identify the global best solution.  It is most certainly true that relative to 
traditional algorithms, evolutionary programs carry more solutions through the 
iteration process and have much greater exploratory ability.  These two 
characteristics enable evolutionary algorithms to more exhaustively traverse the 
solution space.  Consequently, they are much more likely than traditional 
algorithms to identify the global optima. 
 
Traditional optimization algorithms make heavy use of vectors, matrices and 
linear algebra operations, which themselves exact a huge computer memory 
overhead.  Consequently, traditional optimization algorithms require extensive 
amounts of computer memory, especially for the solution of sizable problems.  As 
little as ten years ago the practical usage of traditional optimization algorithms 
was restricted by the amount of physical and virtual memory addressable by 
existing microcomputers.  In contrast, evolutionary algorithms do not make use of 
vectors, matrices or other advanced mathematical structures or operators.  Their 
memory requirements are quite modest for similar size problems. 
 
In cases where they can be applied, traditional calculus based optimization 
algorithms are known for their rapid converge properties.  This is especially true 
in the case of convex functions with linear constraints.  Experiments show that for 
traditional optimization algorithms, the initial phases of search are quite slow.  
Once they have identified the region where the optima resides, local convergence 
to the final solution is often very fast.  Evolutionary algorithms on the other hand, 
exhibit behavior which is very much the opposite.  Experiments on evolutionary 
algorithms demonstrate the initial search phase is very fast—the algorithms 
quickly and efficiently locate the region of the optima.  However, the local 
convergence of these algorithms is slow, in some cases, painfully so.  Typically, 
large amounts of time are required for the population to converge on an optimal 
point, after the region where it is located has been isolated. 
 
The computational resources required by traditional calculus based algorithms 
and evolutionary algorithms differ profoundly.  Not surprisingly, the time 
required to achieve convergence is vastly different.  Traditional algorithms 
require large amounts of memory but typically require less than 100 major 
iterations to converge to a solution.  Evolutionary algorithms often require 
thousands or tens of thousands of iterations to converge to a solution.  While it is 
true that evolutionary algorithms utilize only primitive mathematical operations—
it is no understatement to say they do so intensively!  Prior to the advent of 



Heuristics and Microcomputers 

17 

microcomputers, the lack of sufficient computing power and sheer cost of 
computer resources precluded the use of evolutionary algorithms for civilian 
purposes. 
 
One of the advantages of evolutionary algorithms is their ease of implementation.  
Unlike traditional algorithms, effective cutting-edge evolutionary algorithms are 
routinely developed by researchers and hobbyists.  As of December 2010, there a 
number of toolboxes and working computer codes are available.  Even so, many 
researchers with limited resources, develop research grade evolutionary 
algorithms using high level computer languages such as C++, C, Fortran, Java, 
Visual Basic and Delphi.  This is rarely the case for traditional calculus based 
algorithms. 

Heuristics and Microcomputers 
Heuristic algorithms are computationally intensive and scientific advances in 
heuristics are necessarily related to the nearly unimaginable innovations in 
computer technology made within the last thirty years.  Arguably, there are two 
fundamental aspects of this evolution—vast improvements in computational 
speed, and, the widespread availability of microcomputers. 

The computational resources required by traditional calculus based algorithms of 
yesteryear and modern evolutionary algorithms differ profoundly.  Traditional 
algorithms require relatively large amounts of available memory but typically 
require less than 100 major iterations to converge to a solution.  In contrast, 
evolutionary algorithms often require thousands, tens of thousands or even 
millions of iterations to converge on a solution.  While evolutionary algorithms 
utilize only primitive mathematical operations—they do so intensively! 

Although  this fact is often overlooked by the young, computers are a relatively 
recent invention.  Depending on the source, the first fully programmable 
computer was debuted in the 1940s.  These early computers were large 
centralized hardware installations which we now describe as, “mainframe” 
computer architectures.  Relative to the current norms, they were incredibly 
expensive, slow and ponderous.  Access to the then existing computational 
resources was rationed and limited to a few elite civilian researchers, and 
members of the defense establishment.  Experiments using unproven technologies 
or computationally intensive processes were exceedingly rare. 

The advent of microcomputers changed this paradigm.  The Apple II personal 
computer was introduced in 1977 and the International Business Machines (IBM) 
Company marketed their first computer in 1981.  Microcomputers were designed 
to be used independently of institutional controls and shared usage constraints.  
They could be purchased relatively cheaply by individual researchers, and 
perhaps most importantly-- were consistently and conveniently available for use.  
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Even the early microcomputers were technically and numerically capable tools.  
As further technological innovations were made, hardware costs (memory and 
storage) fell dramatically and computational speeds increased.  These 
characteristics made it possible for established mainstream researchers, as well as 
hobbyists and researchers working at the fringes of established theory and 
practice, to purchase microcomputers and to experiment with their ideas freely 
and at little cost. 

Modern researchers often take for granted the massive computational power at 
their disposal.  Since this is particularly true in the case of younger researchers, a 
brief divergence will provide a useful point of reference.  The pace of hardware 
and speed improvements since the appearance of personal computers has been 
dizzying.  For example, the Apollo 11 mission in 1969, which successfully landed 
men on the moon, used an onboard computer which had eight times less memory 
and ran at a much lower speed than the IBM XT personal computer released in 
1981 (Robertson 2009).  The basic configuration of a 1981 IBM XT computer had 
16 kilobytes (0.000016 gigabytes) of random access memory (RAM), 10 
megabytes (0.010 gigabytes) of hard drive storage and ran at a central processor 
unit (CPU) clock speed of 4.077 megahertz (0.004077 gigahertz).  By way of a 
modern comparison, the laptop used for writing this document operates at a CPU 
speed of 2.66 gigahertz, a 652.4 fold clock speed increase relative to the IBM XT.  
This medium-price range laptop also has an addressable memory space of 4 
gigabytes, over 250,000 times larger than the 1981 IBM XT, and hard disk 
storage of 150 gigabytes, which is 15,000 times more disk storage space. 

Not surprisingly-- the birth of heuristic optimization algorithms is inextricably 
tied to the rise of the microcomputer.  Most certainly, the spread of 
microcomputers and their computational capability provided the essential tools 
for heuristic algorithm development.  Conceptual approaches which had here-to-
for been theoretical constructions, could be coded and tested.  And they were.  
Not surprisingly, the description of many heuristic optimization algorithms dates 
back to this time.  Examples include the development of genetic algorithms 
(1977), the description of particle swarm optimization (1995), simulated 
annealing (1983) and differential evolution (1995). 

The cost of computer hardware, computer software and computer time no longer 
place an upper limit on the scale or scope of research agendas.  The relaxing of 
these constraints has unleashed many different threads of research on heuristic 
optimization algorithms.  Attitudes about computer resources used in research 
have also changed.  Computational cost is now primarily a question of researcher 
patience.  It is of little consequence to many researchers if their personal computer 
runs ten seconds, ten minutes or ten hours to achieve a solution.  Improvements in 
the available computational tools, their low cost and near-universal availability 
have given rise to golden age of heuristic optimization research! 
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EAs in the Wild 
Evolutionary algorithms (EAs) belong to a larger class of algorithms best 
described as being inspired by natural phenomenon, particularly the behavior of 
different organisms.  These are often called nature based, nature inspired, or in 
some cases, biological algorithms.  The universe of nature inspired algorithms is 
large and creative.  Nature inspired algorithms span the realm from bacteria (Kim, 
Abraham and Cho 2007), to fireflies (Yang 2009), raindrops (Shah-Hosseini 
2009), ants (Dorigo and Stutzle 2004) and beyond.  Newly described algorithms 
appear in the literature on a regular basis.  A selection of the more common and 
better documented nature inspired algorithms is shown in Table 2.  
 
 

Table 2.  Selected Nature-Inspired Optimization Algorithms 

Algorithm References 
Ant colony optimization (ACO) Dorigo and Stutzle (2004) 
Artificial immune system optimization Cutello and Nicosia (2002) 
Bacterial foraging optimization Kim, Abraham and Cho (2007) 
Bee optimization Karaboga and Bosturk (2007); 

Pham et al (2006) 
Cuckoo algorithm Yang and Deb (2009, 2010) 
Differential evolution (DE) Storn and Price (1995, 1997) 
Firefly optimization Yang (2010) 
Fish optimization Huang and Zhou (2008) 
Genetic algorithms (GA) Haupt and Haupt (2004) 
Particle swarm optimization (PSO) Eberhart and Kennedy (1995); 

Kennedy and Eberhart (2001) 
Raindrop optimization Shah-Hosseini (2009) 
Simulated annealing Kirkpatrick, Gelatt, and Vecchi (1983) 

 
 
The evolutionary algorithms, including genetic algorithms, particle swarm 
optimization, and differential evolution are a sub-category of the nature inspired 
optimization algorithms.  Evolutionary algorithms and their characteristics are the 
focus of this research and are discussed in greater detail in subsequent sections of 
this document. 
 
Research on nature inspired algorithms is ongoing and active.  There have been 
several evaluations and performance comparisons of nature inspired algorithms.  
These have typically focused on the less-esoteric members of this algorithm class.  
The most expansive of these evaluations is found in the book by Wahde (2008).  
Readily obtainable studies by Potter et al (2009) and Mezura-Montes and Lopez-
Ramirez (2007) are also very useful contributions to this line of research. 
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Related Algorithms 

Hybrid Algorithms 

Hybrid evolutionary algorithms are frequently and routinely encountered in the 
applied literature.  As distinct from memetic algorithms, which combine 
evolutionary algorithms and traditional (calculus based) algorithms, hybrid 
algorithms are constructed from two or more evolutionary algorithms.  The 
resultant hybrid algorithm is often described as being (potentially) superior to 
either parent, especially in certain specific problem domains. 

Hybrid combinations of nearly every evolutionary algorithm have been described.  
There are a plethora of hybrid combinations for PSO, DE, ACO and GA’s and 
there are also hybrid combinations of other less well-known algorithms such as 
bee algorithms.  Engelbrecht (2005) reviews several hybrid PSO algorithms 
including GA based PSO, DE based PSO (also see Liu, Cai and Wang (2008) and 
ACO based PSO.  Banks, Vincent and Anyakoha (2008) review about 25 different 
hybrids and Neri and Tirronen (2010) cite about 30 more.  A quick electronic 
perusal of the recent literature reveals a remarkable number of hybrid 
combinations and variants thereof. 

At least some part of this activity may be driven by the need for researchers to 
differentiate their publication products.  Even so, based on the existing number of 
different hybrids, this appears to be an incredibly fertile topical area for future 
research.  

Memetic Algorithms 

Memetic algorithms harness the global search characteristics of evolutionary 
algorithms with the fast local search properties of traditional (calculus based) 
optimization methods.  Evolutionary algorithms such as PSO, DE and RCGA are 
able to rapidly and efficiently locate the neighborhood of the global optima, or a 
set of candidate optima.  Typically however, their local convergence properties 
are rather slow.  Evolutionary algorithms spend a disproportionate amount of time 
achieving convergence, after the neighborhood of the optima has been identified.  
Memetic algorithms utilize evolutionary algorithms to identify the neighborhood 
of an optimal point and then pass control of the optimization process to a 
traditional algorithm.  

Engelbrecht (2005) reviews several PSO based memetic algorithms including hill-
climbing PSO, stochastic local search PSO and gradient based  PSO approaches.  
Additionally, there are a number of relatively comprehensive studies of memetic 
approaches.  Particularly revealing are studies of GA based memetic algorithms 
(Li, Ong, Le and Gob 2008), DE based memetic algorithms (Neri and Tirronen 
2010) and a comparison of different evolutionary based approaches (Nguyen, Ong 
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and Krasnogor 2007).  Based on the available evidence, this two-step approach is 
quite efficient for continuous, differentiable functions and has the potential to 
stimulate many related threads of research. 

EA Selection Process 

Algorithm Selection 

The selection of specific algorithms for this research was informed by the existing 
professional published and grey literature, applications to similar problems, 
performance reports and several practical considerations.  As described in Table 
2, the universe of evolutionary algorithms described in the literature is diverse and 
growing at a very rapid pace.  Potentially, a number of different evolutionary 
algorithms could be applied to hydropower dynamic economic dispatch and unit 
dispatch problems.  As with any research effort, this one was constrained by the 
resources available; primarily funding and researcher time.  These and other 
practical constraints dictated, to some extent, the range and number of algorithms 
which could be explored. 

Candidate Selection 

An initial preliminary literature review was undertaken to identify candidate 
evolutionary algorithms for use in this research.  The initial literature exploration 
was followed by a relatively extensive review of the power engineering literature 
with a focus on identifying intersections between the candidate algorithms and 
previous applications to electric power system problems.  Subsequently, a more 
intensive review of the recent literature pertinent to specific candidate algorithms 
was conducted. 

The literature review process resulted in identification of five candidate 
algorithms.  These algorithms were; particle swarm optimization (PSO), genetic 
algorithms (GA), differential evolution (DE), ant colony optimization (ACO) and 
the Bees algorithm (BA). 

Selection Criteria 

Selection of evolutionary algorithms for this research project required some 
artistry and judgment.  One factor which weighed heavily in the selection process 
was the depth and breadth of previous applications.  The widespread use of a 
particular algorithm and the number of examples where it has been applied to a 
particular class of optimization problem provides some evidence of the 
algorithm’s efficacy and potential for application in other arenas.  For example, 
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both GA and PSO have been very extensively applied to an amazing variety of 
problem types.  In contrast, the literature on the dragon-fly algorithm consists of a 
small handful of specific applications, the bulk of which are by the same author.  
With limited investigational resources to devote, the decision to eliminate the 
latter from consideration was rather straightforward 

The hydropower dynamic economic dispatch problem and the unit dispatch 
problem are both examples of constrained optimization problems.  For this 
reason, a substantial part of the decision process was focused on evolutionary 
algorithms which had been applied to the general class of constrained 
optimization problems.  Although many of the evolutionary algorithms listed in 
Table 2 could potentially be modified, in some way, to accommodate constraints, 
it seemed prudent to limit the search to algorithms for which published examples 
existed.  This eliminated some relatively promising algorithms from the subset of 
algorithms retained for further investigation.  The Bees algorithm, for example, is 
a new and seemingly quite efficient evolutionary algorithm.  Although they may 
exist, or be in process, no previous applications of BA to constrained optimization 
problems were uncovered during the literature search.  As a result, this algorithm 
was not considered for further investigation. 

Finally, the choice of evolutionary algorithms was further limited to those 
algorithms designed for the continuous real number domain.  Although many 
applied problems can be specified in discrete forms (in fact, all continuous 
problems can be re-specified as discrete approximations), the most natural and 
appealing choice for solving a continuous real-valued problem is to use an 
algorithm which operates in the continuous real-valued domain.  Ant colony 
optimization (ACO) is certainly a promising candidate algorithm, but is primarily 
useful in the discrete domain.  For this reason, ACO was eliminated from further 
consideration. 

Algorithms Selected 

Based on the multiphase literature review, previous application to constrained 
optimization problems and limiting the choices to continuous real-valued 
algorithms resulted in a relatively small subset of evolutionary algorithms which 
were retained for detailed investigation.  This subset includes; RCGA, DE and 
PSO.  The lambda search (LS) algorithm, a traditional calculus based approach, 
was also chosen for use as a point of comparison.  A short description of each of 
these algorithms follows while the details of these four algorithms are described 
more fully in Appendices 7, 8, 9 and 10. 

Real Coded Genetic Algorithm (RCGA) 
Genetic algorithms were the first of the evolutionary algorithms to be described in 
the literature.  They use techniques inspired by evolutionary biology including 
inheritance, mutation, selection, and crossover.  This research focuses on the less-



EA Selection Process 

23 

studied real coded genetic algorithm which is faster and more naturally applied to 
the dynamic economic dispatch problem, than the binary variant. 
 
Genetic algorithms are based on virtual populations which are termed individuals 
(or phenotypes).  For each generation or iteration, the fitness of every individual 
in the population is evaluated and the most fit individuals are selected and 
modified (recombined and possibly randomly mutated) to form a new population.  
The new population survives into the next generation or iteration of the algorithm.  
The algorithm terminates when a satisfactory fitness level has been achieved or 
the maximum number of iterations has occurred.  Appendix 8 contains a complete 
description of RCGA. 

Differential Evolution (DE) 
Differential evolution (DE) was jointly developed by Storn and Price (1995, 
1997) and is one of the more recently described global heuristic optimization 
methods.  In many respects, it resembles a simplified form of genetic algorithm, 
albeit with several distinct and highly desirable performance characteristics. 
 
The DE approach is based on a virtual population of np-independent individuals.  
During each generation, these individuals reproduce and undergo selection. Only 
the fittest individuals in the population survive to reproduce in the next 
generation.  Over successive generations, the population becomes increasingly fit 
—thereby identifying the optimum (minimum or maximum) of a function.  DE is 
described in considerably more detail in Appendix 9.  

Particle Swarm Optimization (PSO) 
PSO is a global heuristic optimization method.  It was invented by Kennedy and 
Eberhart (1995) who developed the concept by observing the behavior of flocking 
birds.  PSO is classified as a stochastic, population-based evolutionary computer 
algorithm for problem solving. 
 
PSO utilizes np-independent virtual particles, which "fly" through the search 
domain, have a memory and are able to communicate with other members of their 
"swarm." Each particle has only one purpose—to identify the optimum (minimum 
or maximum) of a function within the feasible search space.  PSO is described in 
more detail in Appendix 10. 

Lambda Search (LS) 
The lambda search (LS) algorithm is a traditional, calculus based approach, and 
its application to dispatch problems is rather well established and is described in 
Wood and Wollenberg (1996).  The LS algorithm is arguably the fastest of the 
traditional calculus based methodologies which can be applied to this particular 
problem.  It cleverly exploits the structure of this class of constrained 
optimization problem to reduce the number of decision variables to one (1).  The 
LS algorithm is thus a univariate optimization approach and, as such, needs to 
identify the value of only a single unknown variable, rather than d-unknown 
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variables.  Consequently, when it can be applied, it is very efficient.  The LS 
algorithm was employed in this research effort primarily as a basis for comparing 
the selected EA algorithms.  The LS algorithm and its application to the dynamic 
economic dispatch problem are described in Appendix 7. 

Initialization 
The first step in all of the heuristic optimization algorithms is to identify the 
starting positions of a specified number (np) of particles or individuals in the d-
dimensional search space.  This process is termed, “initialization.”  

Purpose and Implications 

The choice of initialization strategy and its properties can profoundly influence 
the outcome of a heuristic optimizer.  The successful identification of the global 
optima is dependent on the proximity of the initial points.  To the extent an 
initialization approach does not adequately cover a particular region in the search 
space, and this region contains the global optima, the algorithm may fail to 
identify the global optima.  Or, if the chosen initialization method places a 
number of particles in the region of the search space hosting a local optima, the 
algorithm may become trapped and converge on the local, rather than the global 
optima.  Second, the number of iterations, the computational effort required and 
the convergence time required are related to the proximity of the initialized points 
to the optima.  Finally, to the extent the initialization process is stochastic, the 
point of algorithm convergence, local versus global extrema and the precision of 
convergence will also vary. 
 
In cases where the location of the solution is a priori unknown (which 
encompasses the majority of applied cases), it is desirable to distribute the np 
particles “equally” and “uniformly” within the search space.  When the points are 
strategically distributed in this fashion, the probability that at least one point is 
close to the global maxima or minima is increased.  On that concept, most 
researchers would agree.  However, the mechanics of positioning a finite number 
of points in d-dimensional space such that they are approximately equally 
distributed is a nontrivial problem. 
 
A 2-dimensional illustration conveys a considerable amount of information about 
this problem.  Figure 4 illustrates the equal and uniform distribution of 49 points 
in 2-dimensional space.  Some of the points are blue colored and some are open 
points colored yellow.  In this figure, all of the points are positioned at each 
vertex of a lattice overlaid on the contour plot of a function whose maxima is 
identified with a green star.  Most observers would agree these 49 points are 
equally and uniformly distributed in the bounded space and indeed, this can be 
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proven mathematically for this contrived case.  The nature of the initialization 
problem becomes more evident if, for example, we limit the number of points to 
only the open yellow colored points, np=12.  Devising a mechanism for allocating 
the 12 yellow colored points equally and uniformly in the search space is much 
more problematic.  The complexity of this task grows immensely as the number 
of dimensions increases beyond the 2-dimensional example shown here. 
 

 
 
 
 
 
 
 
 
Figure 4.  Lattice points in a 
search space (np=49). 

 
 
 
 
 

Random 

The vast majority of applied work employs the uniform random distribution to 
initially locate points in the search space.  Figure 5 illustrates a random 
initialization of np=50 points in 2-dimensional bounded [1, 1] space.  
 
 
 
 
 
 
 
 

Figure 5.  Uniform random 
initialization (np=50). 

 
 
 
 
 
Visual comparison of Figure 4 (lattice points) with Figure 5 (random 
initialization) reveals some stark differences.  In the random initialization 
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example (Figure 5), the points are considerably more numerous in some regions 
of the search area than in other regions.  This is typical of random initialization 
methods, which often result in a non-systematic location of the initialized points 
within the bounded area.  Clerc (2008) concisely describes this phenomenon in 
the first section title of a widely cited paper as, “Uniform Random Distributions: 
Easy but Bad.” 
 
One frequent contributor to poor random initialization performance is failure to 
employ a high quality random number generator (RNG).  Random sequences 
produced by an RNG are an important component of this research.  As described 
in Appendix 12, considerable effort was devoted to identifying and implementing 
an appropriate RNG for use in this research project.  Interested readers are 
referred to Appendix 12 for additional technical information on this important 
topic.  

Use of Sequences 

In the last few years, some researchers have proposed the use of low discrepancy 
sequences for initialization purposes.  Low discrepancy sequences are also called 
quasi-random or sub-random sequences.  The points in these sequences are said to 
be more systematically located in the search space, with fewer gaps and more 
equal spacing between points.  Low discrepancy sequences in the EA literature 
include the Sobol (Pant, Thangaraj, Singh and Abraham 2008), Van der Corput 
(Pant, Thangaraj and Abraham 2009) and Halton (Uy, Hoai, McKay and Tuan 
2007) sequences, to name but a few. 
 
Figure 6 displays a Weyl low discrepancy sequence initialization in the [1,1] 
space.  It graphically illustrates the potential advantages of employing low 
discrepancy methods for initialization.  Relative to the random initiation 
approach, low discrepancy sequence initialization can produce more uniform and 
systematic locations of points in the search space, with fewer gaps and more equal 
spacing between points.  Low discrepancy sequences figured rather prominently 
in this research effort and are 
described more fully in Appendix 
13.  Appendix 13 also contains a 
useful comparison of random 
initialization with several low 
discrepancy sequences. 
 
 
 
 
 

Figure 6.  Weyl initialization 
(np=50). 
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Other 

Several recent efforts have utilized other logical and mathematical approaches for 
initialization.  A selection of these approaches include the simplex method 
(Parsopoulos and Vrahatis 2002), quadratic interpolation (Pant, Singh and 
Abraham 2009), tessellations (Richards and Ventura  2004) and  the opposition 
method (Rahnamayan, Tizhoosh and Salama 2008, Omran 2009). 
 
The simplex method is a rudimentary optimization technique developed by Nelder 
and Mead (1965).  As described in Press et al (1989), it is slow, relatively robust 
and readily coded.  As applied in this context, np particles are first randomly 
initialized in the search space.  Each of these individuals is then used as a starting 
point for a user specified number of simplex iterations.  The simplex algorithm 
moves the point towards a local or global extrema.  As might be anticipated, this 
procedure improves the fitness of each particle vis a vis their randomly initialized 
positions.  Collectively, the fitness of the initial points is improved.  These 
improved starting positions improve the performance of the heuristic optimizer 
and accelerate its convergence.  Like all of the approaches described here, the 
simplex method entails some additional implementation complexity and imposes 
some computational overhead. 
 
The opposition method was originally described by Rahnamayan, Tizhoosh and 
Salama (2008) and is employed for initialization purposes by Omran (2009), who 
uses the term opposition based learning (OBL).  The OBL procedure improves the 
starting fitness of the initialized points using an ingenious approach.  
Implementation of this approach is conceptually straightforward.  First, np 
individuals are randomly initialized in the search space bounded by [a, b].  An 
additional np “opposite” points are calculated using the opposition equation 
shown in equation 11. 
 
(11)   io pbap −+=  
 
This procedure results in a total population of 2*np individuals, or particles.  The 
fitness of these 2*np particles are assessed and the particles are sorted by their 
fitness.  The np most fit particles are retained and their positions are used to 
initialize or start the heuristic optimizer.  Like the other approaches described 
here, the OBL method entails some additional implementation complexity and 
computational burden. 
 
Previous research has focused on the application of different initialization 
methods to a suite of test problems.  Their potential efficacy when applied to the 
solution of the hydropower problems examined here is unknown.  Subsequent 
sections of this document will report the results of experiments which explore the 
use of several of these initialization techniques.  
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Constraints and Constraint Handling 

Types of Constraints 

Constraints separate the solution space into feasible and infeasible spaces.  The 
resulting feasible solution space is generally limited and can be discontinuous, 
even when the optimization problem is not.  Constraint equations can be linear or 
nonlinear in nature.  In general, there are three classes of constraint equations.  
These broad classes are; boundary constraints, equality constraints and inequality 
constraints. 

Boundary constraints serve to define the borders of the solution space.  Boundary 
constraints commonly take the form of simple upper or lower bounds on the 
independent variables.  These are called “box” constraints.  However, simple 
bounds are not the only types of boundary constraints.  For example, the 
circumference of a hypersphere (a sphere in multi-dimensional space) is also a 
boundary constraint.  An example of a simple lower bound constraint is shown in 
equation (12). 

(12)   cxi >  

Equality constraints specify that a function of the independent variables is equal 
to a scalar constant.  For example the amount of electricity generated (supplied) at 
a given instant must be equal to the amount of electricity demanded at that time.  
An example of an equality constraint is shown in equation (13). 

(13)   kxxx =++ 321  

Inequality constraints specify that a function of the independent variables must be 
greater than or equal to, or less than or equal to, a given scalar constant.  For 
example, the contents of a reservoir must be less than or equal to the storage 
capacity of the reservoir.  A simple example of an inequality constraint is shown 
in equation (14). 

 (14)   )(xfvt ≤  

Constraint Handling Methods 

Research on the incorporation of constraints in evolutionary programming 
methods and the solution of constrained optimization problems with evolutionary 
methods is rather voluminous.  Carlos Coello Coello published a widely cited 
synopsis of this work (Coello Coello 2002) and maintains an online annotated 
bibliography summarizing this ever-expanding body of research 
(http://www.cs.cinvestav.mx/~constraint/index.html ).  In September 2010, this 
bibliography exceeded 89 pages in length. 

http://www.cs.cinvestav.mx/~constraint/index.html�
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Generalizing rather broadly from the literature, constraint handling techniques can 
be classified into six categories. 

Problem Reformulation 
An approach borrowed from traditional calculus based optimization methods is to 
reformulate or convert a constrained optimization problem into an unconstrained 
problem.  For example, many constrained optimization problems encountered by 
engineers and economists can be solved by employing the method of Lagrange 
(see Appendix 5 for an example of this approach).  The method of Lagrange is 
based on cleverly introduced artificial variables (such as λ) and slack variables.  
Using this approach some constrained optimization problems can be converted to 
unconstrained problems and readily solved.  Other and more complex 
mathematical reformulation approaches can also be employed.  For instance, 
Monson and Seppi (2005) describe a mathematical approach for projecting 
equality constraints onto a reduced (homomorphous) solution space.  The 
reformulated unconstrained problem is solved and the values of the variables in 
the original problem can then be calculated. 

Rejection of Infeasible Solutions 
Unlike traditional calculus based optimization approaches, evolutionary 
algorithms carry multiple solutions through each generation and iteration.  
Perhaps the most direct method of ensuring that infeasible solutions are not used 
in the formulation of the solution in the next generation is to preclude them.  
Using this approach, potential solutions are first tested for feasibility.  If a 
candidate solution is feasible, it can be stored as a solution and used as a basis to 
search for solutions in the next generation.  However, if a potential solution is 
tested and found to be infeasible, it is not admitted as a solution and not used as a 
search basis in future iterations. 

Penalty Approaches 
A commonly employed constraint handling method is to mathematically 
disadvantage or penalize solutions which are infeasible.  This approach is widely 
used both in traditional calculus based applications as well as in the application of 
evolutionary algorithms.  In the evolutionary algorithm case, applied to a 
maximization problem, fitness (F) is often defined as the sum of the objective 
function value (f(x) minus the infeasibility penalties (P), if any as shown in (15). 

(15)  F=f(x) - P. 

If we assume that a variable, say (x), is subject to a simple upper bound 
constraint, a penalty function may be defined as shown in equation (16). 
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In this case, if x>=k, then the penalty is calculated as some constant (c) plus a 
scalar (u) times the square of the amount that x exceeds the upper bound (k).  This 
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construction ensures that, (a) there is a penalty if x exactly equals the bound, k, 
and, (b) the magnitude of penalty increases rapidly as x exceeds the upper bound. 

The penalty function approach is quite effective in evolutionary algorithm setting 
since it serves to disadvantage the set of solutions which are infeasible, relative to 
those which are feasible.  In this context, the individuals with the greatest fitness 
form the basis for potential solutions in succeeding generations.  As a result, the 
population will select for or move towards the feasible solution space with each 
new iteration. 

The weakness of the penalty function approach is that specification of the penalty 
function (in the example above, the penalty function is specified as quadratic) and 
the magnitudes of the penalty function parameters (c and u in the example above) 
must be determined using judgment and experimentation.  In cases where there 
are a large number of constraints, this can be rather problematic.  Farmani and 
Wright (2003) describe a self-adaptive formulation which can overcome this 
problem, albeit at the cost of some additional complexity. 

Feasibility Preserving Methods 
An alternative approach is to identify a set of feasible starting solutions and then 
ensure that each candidate solution is itself feasible.  Examples of this approach 
are described in Engelbrecht (2005) and Paquet and Engelbrecht (2003, 2007).  In 
these sources, the authors introduce the Converging Linear Particle Swarm 
Optimization (CLPSO) algorithm.  This algorithm solves an optimization problem 
with an arbitrary number of linear constraints. 

Repair Methods 
In this constraint handling approach, an operator or rule is used to construct a 
feasible solution from a solution which is infeasible.  Consider, for example, an 
inequality constraint on the variable (x) which restricts x to be less than or equal 
to a scalar constant (k).  An operator which corrects for (or repairs) an infeasible 
value of this variable might be constructed as shown in equation (17). 
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Repair methods are widely used in evolutionary algorithms since they are both 
readily implemented and effective. 

Mixed Approaches 
In practice, most applications of evolutionary algorithms use a combination of all 
of the constraint handling methods described thus far.  It is not uncommon for a 
particular application to reformulate some part of the problem to an unconstrained 
representation and to also employ penalty functions, repair methods and reject 
infeasible solutions.  As shown in the literature, the artistry is in the identification 
of the most effective approach or combination of approaches for the efficient 
solution of a particular class of problems.  As might be anticipated, the 
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recommended approach varies with the type of evolutionary algorithm employed 
and is almost certainly problem specific. 

Fitness Comparisons with Constraints 

Pair wise comparison of two solutions to identify which is the most fit is 
relatively straightforward for unconstrained optimization problems.  In the case of 
constrained optimization problems, such comparisons are made considerably 
more complex because of the potentially confounding influence of the penalty 
function.  To illustrate this problem more fully, first recall that when applied to a 
maximization problem, fitness (F) is often defined as the sum of the objective 
function value (f(x) minus the infeasibility penalty (P), if any. 

(18)  F=f(x) - P. 

It may also be useful for the discussion which follows to recall that for 
constrained maximization problems, an infeasible solution is typically one in 
which one or more variables exceed their upper bound restrictions.  By definition, 
the objective function value in these cases is higher than it would be if the 
solution were feasible. 

Typically, the analyst may spend considerable time understanding the nuances of 
their particular optimization problem and judiciously selecting the values of the 
penalty function parameters.  This systematic approach will help the analyst to 
properly scale the penalty function value in relation to the objective function 
values.  Even so, identification of the “most fit” solution in a pair wise 
comparison remains problematic.  The operative question in such cases being--
does the (negative) value of the penalty function outweigh the objective function 
value? What if the penalty is rather small compared to the value of the objective 
function?  In recognition of this logical and mathematical dilemma, most 
applications of evolutionary algorithms utilize an oft-cited work on this subject by 
Deb (2000). 

Following Deb (2000), for any pair wise comparison of solutions, there are three 
possible cases.  These are; (1) both solutions are feasible (the penalty is zero), (2) 
one solution is feasible (the penalty is zero) and the other solution is not feasible 
(the penalty is nonzero), and, (3) both solutions are not feasible (the penalties are 
both nonzero).  Deb (2000) devised a comparison scheme for selecting the most-
fit solution under each of these cases.  This scheme is described in the bullet list 
which follows. 

• If both solutions are feasible, select the solution with the greatest fitness.  
Owing to the fact the penalty is zero for both solutions; this is equivalent 
to selecting the solution with the highest value of the objective function. 

• If one solution is feasible and the other solution is not feasible, then select 
the feasible solution without regard to its fitness value.  It is useful to note 
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that under this criteria, the value of the objective function is not a factor in 
the decision process. 

• If both solutions are infeasible, select the solution which has the lowest 
value of the penalty function (the most feasible solution).  Once again, the 
value of the objective function does not play a role in this decision. 

The selection scheme devised by Deb is straightforward and readily implemented 
in code.  It has found wide-spread application and acceptance in evolutionary 
algorithms.  Although it is not entirely foolproof, it is often used and (very) often 
cited. 

Performance Measures 

Algorithm Performance Metrics 

Ascertaining the success of an evolutionary algorithm in identifying the solution 
to an optimization problem can be a rather subjective undertaking.  Furthermore, 
discerning real, rather than apparent, differences between two evolutionary 
algorithms can be especially problematic.  These difficulties arise for two 
disparate reasons: (1) the characteristics of real-life engineering problems, and, 
(2) the nature of evolutionary algorithms.  Some further explanation will help to 
put both of these subjects in perspective.  

Real-life Engineering Problems 

Many, if not all, readers of this document are familiar with solving textbook 
example optimization problems.  The majority of these problems are convex, and 
each has a single known optimal solution.  Generally, the objective is to solve 
these find the optima of such problems, typically with a traditional, calculus based 
approach.  Identifying the minimum or maximum point is often undertaken 
analytically, for relatively simple textbook problems.  More complex problems 
are attacked with a variety of numeric methods, such as the Newton Raphson 
method referred to previously and described in Appendix 6.  When the latter 
approach is utilized, the focus is to efficiently and reliably identify the optimal 
point to within some acceptable level of numeric precision. 

In contrast to textbook optimization problems, many real-life engineering 
optimization problems have unknown optimal points.  [If their solutions were 
known, there would be no need for algorithms to solve them].  To state the 
obvious point, there is no way to know when the optima has been found.  
Complex, ill-behaved problems with multiple local optima are relatively common 
in applied efforts.  Algorithms may converge on a particular local optima, or may 
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converge on a different local optima when started from varying initial positions.  
This gives rise to a further complexity—identifying which, if any, of the 
identified local optima is the maxima or minima of the function.  

Nature of Evolutionary Algorithms 

The inherent nature of evolutionary algorithms can obscure the attainment of the 
optima and certainly makes it much more difficult to discern between two 
competing candidate algorithms.  First, unlike calculus based solution approaches, 
evolutionary algorithms carry multiple solutions throughout the iteration process.  
For example, EA’s carry one solution with each member of the population.  In the 
population, some of these solutions are inferior solutions and one of them is the 
“best” solution.  Furthermore, these solutions vary with each application of the 
algorithm.  For any given algorithm trial, the np solutions are randomly initialized 
(the most common approach, see Appendix 12) within the search space.  By 
random chance, some of the initialized solutions may land in the feasible solution 
region, or perhaps not.  The specific initialization process and the initialization 
itself give rise to varying degrees of progress towards a solution.  Likewise the 
stochastic nature of the solution algorithm, as manifested at each generation or 
iteration, has an influence on the algorithms rate of progress towards 
identification of the optima.  For one trial, a series of fortuitously generated 
random values may result in a rapid convergence on the optima.  For a different 
trial, a series of unfortunately generated random values may result in a failure to 
converge, a premature convergence, spurious convergence or a lengthy 
convergence to the optima.  Consequently, evolutionary algorithms may return 
different solutions for multiple independent trials, even when applied to the same 
problem.  Clearly, the convergence behavior of an evolutionary algorithm will 
vary with each trial or experiment. 

Multiple Trial Approach 

Owing to the complexities of real-life engineering problems and the inherent 
characteristics of evolutionary algorithms, a multiple or replicated trial approach 
is typically employed to gauge their success and compare efficacy between two 
candidate algorithms.  A trial is one independent application of the algorithm to a 
specific problem.  Typically a pre-set number of trials, for example 50 
replications, are carried out on the same problem and selected measures of 
success are extracted for each of the trials.  At each trial, a new initialization of 
the population occurs and a new random sequence is generated.  In aggregate, the 
resultant measures of success then serve as a more appropriate and informative 
gauge of algorithm success.  Formal statistical analysis of replicated success 
measures, compared across candidate algorithms, allows for reasoned selection of 
more effective algorithms.  
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Common Measures of Performance 

Although there are many possible performance metrics, four measures are most 
commonly encountered in the literature.  These are accuracy, reliability, 
robustness and efficiency.  Other metrics including diversity and coherence are 
discussed in texts but seldom encountered in the professional literature. 

Accuracy 
As might be expected, solution accuracy is of paramount importance in assessing 
algorithm performance.  In the case of functions with a known global best 
solution, accuracy is assessed as the difference between the best solution achieved 
by the algorithm and the known global best solution, at a particular number of 
iterations.  For functions with unknown global optima, accuracy is the fitness of 
the global best solution attained by the algorithm over a given number of 
iterations. 

If the accuracy of two different evolutionary algorithms is being compared, the 
usual practice is to compare this metric for the same number of function 
evaluations (FE’s) rather than iterations.  This is said to provide a better basis for 
comparison since some algorithms may require more per-iteration function 
evaluations than others, thus being more computationally intensive and, in the 
process, obtaining more information about the search space. 

When the derivative of the function can be computed, derivative information can 
be used to assess the quality of the solution achieved.  If the derivative can be 
computed, it ought to be zero, or very near to zero, at the optimal point identified 
by the algorithm.  Of course, the derivative will be zero at any stationary point, 
including both global and local optima.  For this reason derivative information is 
not entirely informative. 

Reliability 
Algorithm reliability is of great importance both to researchers and practitioners.  
The greater the certainty that an algorithm will (a) converge, and, (b) converge on 
the global optima—the more the more useful the algorithm is.  For evolutionary 
algorithms, reliability may be assessed by measuring the percent of solutions 
which fall within an acceptable tolerance of the known global optima, for a given 
number of iterations.  Or, when prior knowledge of the function is unavailable, as 
the percent of solutions which converge to a specified tolerance for some 
specified number of iterations.  This metric is especially applicable to highly 
complex functions for which convergence is less common and somewhat less 
informative for better behaved functions for which convergence is routine. 

Robustness 
Robustness is a term used to describe the variance around a particular 
performance criteria.  The variance around a success metric is a measure of 
dispersion.  The smaller the variance over some given number of iterations, the 
more robust or stable the algorithm is judged to be.  
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Efficiency 
Efficiency is a measure of the resource cost or effort incurred to achieve a 
solution with a desired level of accuracy.  Efficiency is typically measured in 
terms of the number of iterations (or generations) required by the algorithm, the 
central processor time (CPU) time required, or the number of function evaluations 
(FE’s) required to achieve a solution. 

In the context of evolutionary algorithms, efficiency is a particularly relevant 
performance metric and is especially telling relative to traditional optimization 
approaches.  Evolutionary algorithms are known for being computationally 
intensive and requiring relatively long computational efforts to achieve solutions.  
For functions which can be solved with traditional calculus based approaches, 
efficiency comparisons between traditional solution approaches and evolutionary 
algorithms are often rather revealing. 

Algorithm Stopping Criteria 

Introduction 

The preponderance of numerical optimization algorithms are based on some sort 
of iterative or repetitive procedure.  An important aspect of these algorithms is the 
design of intelligent convergence or stopping rules.  These rules detect when the 
routines have converged on a solution, and then halt the iterative process. 

The Trade-Off 

The design of stopping rules necessarily requires an explicit trade-off between 
computational cost (a function of the number of iterations and hence, time) and 
solution accuracy.  At best, numerical optimization algorithms can provide an 
approximation of the true solution vector, not the exact solution.  In general, the 
numerical accuracy of the solution vector is improved with each succeeding 
iteration.  Theoretically, a numerical algorithm can identify the exact solution in 
an infinite number of iterations.  In more technical terms, these algorithms can be 
shown to achieve the true solution only asymptotically.  Luckily, most research 
requirements can be satisfied by an answer that is “close enough” to the true 
solution and is available in a finite timeframe.  Two interlinked questions emerge. 
How close is “close enough,” and, what is an acceptable computational cost? 

In many optimization applications, the scale and nature of the problem will 
suggest an appropriate level of accuracy.  In many financial applications, for 
example, an absolute accuracy of $1.00 (the nearest dollar) or $0.01 (the nearest 
cent) is more than sufficient.  In other cases, accuracy requirements are less clear 
cut.  Almost all numerical methods texts include a discussion of this subject.  
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Interestingly enough, the specifics of computer hardware and software design 
limit the number of significant digits of accuracy which can be achieved.  This 
places an upper bound on the how close is “close enough” question.  Press, et al 
(1999), Judge (1998), among other, have useful discussions of these limitations on 
numeric accuracy.  Press, et al (1999) has an especially useful discussion of this 
topic and the roles that data type, word length, register size play.  As a rule of 
thumb, both Press, et al (1999) and Judge (1998) admonish the researcher not to 
specify an accuracy level greater than the square root of the machine accuracy.  
For most computers with a 32-bit word length, machine accuracy is around 3×10-

8.  This suggests that a tolerance level (δ, ε) of around 1.7320×10-4 is about the 
best that can reasonably be expected. 

In the early days of computer assisted research, computational cost was a much 
more important consideration than it is today.  At the dawn of the computer age, 
research teams were quite literally charged for each millisecond of computer time 
they used.  Because computer hardware was both expensive and rare, researchers 
paid for, or were allocated, a computer budget.  Other researchers depended on 
the same hardware and research researchers dared not exceed their computer 
budgets, or severe sanctions were levied. 

In modern times, the widespread availability of microcomputers, their speed and 
their relatively low cost, combine to make computational cost a less-important 
consideration.  Computational cost is now primarily a question of researcher 
patience, rather than a funding issue.  To most researchers, it is unimportant if the 
computer runs ten seconds, ten minutes or ten hours to reach a solution (as long as 
it does so).  If long run-times are anticipated, it may prove convenient to schedule 
an overnight computer run.  Some routine mathematical simulations are expected 
to take several hours, to a day or more to complete.  A decade ago, computational 
costs of this magnitude were an unimaginable research luxury! 

Calculus Based Criteria 

Typically, convergence criteria for calculus based optimization algorithms are 
based on the first order conditions for an extrema—which require the first 
derivative to be equal to zero.  In the multivariate optimization context, the first 
order conditions require the gradient vector to equal zero.  As a practical matter, 
the norm of the gradient vector is evaluated to detect when this has occurred. 

Judd (1999, p. 104) provides a concise and straightforward explanation of a two-
fold stopping criteria or rule.  First, a test is applied to identify whether or not the 
solution vector is changing significantly between iterations.  Second, a test is 
applied to identify whether or not the first order conditions are met.  This 
combined approach is shown in equations (19) and (20). 

 

(19)  )1(1 nnn xxx +<−+ ε  
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Where: n = iteration number 
 x = solution vector 
 ε = convergence criteria 
 ║m║ = norm of the vector m. 
 

Equation (19) compares the norm of the difference between solution vectors at 
two different iterations with epsilon (ε) times one plus the norm of the solution 
vector from the last iteration.  This part of the stopping rule identifies whether or 
not the solution vectors achieved at two different iterations are the same, or 
approximately so.  The formulation guards against division by zero and allows for 
the researcher to set some desired level of ε for detecting when this has occurred. 

If the first part of the convergence test is satisfied, the next step is to see if the 
solution vector at iteration (n) satisfies the first order conditions for an optimum.  
As might be expected, this test focuses on whether the gradient vector is zero, or 
approximately so.  This part of the stopping rule is described by equation (20). 

 

(20)  ))(1()( nn xfxf +≤∇ δ  

 

Where: n = iteration number 
 x = solution vector 
 ∆f(x) = gradient of the function. 
 δ = convergence criteria. 
 ║m║ = norm of the vector m. 
 |f(x)| = absolute value of the solution. 

 
Again, this well-devised formulation guards against the possibility f(x)≈0 and a 
possible division by zero. 

If both parts of the converge test (equations 19 and 20) are satisfied, the solution 
vector has converged to an approximate optimal point.  If the solution vector 
(equation 19) has converged, but the first order conditions are not met (equation 
20), the solution has converged, but not near an optima. 

Convergence tolerances, epsilon (ε) and gamma (δ) are used to test when this rule 
is satisfied.  These tolerances are set by the analyst.  Both of these control 
parameters are commonly encountered in optimization routines and, as discussed 
in Judd (1999), Press et al (1998) and elsewhere, are limited by the ability of the 
computer platform to characterize real numbers. 
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Criteria for Evolutionary Algorithms 

The stopping criteria employed for traditional calculus based optimization 
procedures are not applicable to evolutionary algorithms.  There are two reasons 
for this.  First, evolutionary algorithms are multiple solution methods; they carry a 
number of solutions throughout the iterative computation process.  In the case of 
particle swarm optimization (PSO), for example, each member of the swarm 
stores its (own) personal best solution.  If the swarm size is n=40, forty solutions 
are maintained and iteratively improved during the lifespan of the swarm.  In 
contrast, calculus based optimization algorithms carry only a single solution 
throughout the computation process. 

Secondly, the stopping or convergence criteria for traditional calculus based 
optimization approaches, not surprisingly, rely on calculus concepts (e.g. 
derivatives, gradients, hessians, etc).  Evolutionary algorithms require only 
primitive mathematical structures, do not need and generally eschew advanced 
mathematical constructs, such as derivatives.  In fact, their derivative-free nature 
is often touted as one of the advantages of these algorithms.  Furthermore, 
evolutionary algorithms are often applied in situations where the underlying 
functions are discontinuous and ill-behaved.  In these cases derivatives for the 
underlying functions either cannot be analytically derived, or simply don’t exist.  
This makes it impossible to apply the stopping rules used in traditional calculus 
based optimization approaches. 

An ideal stopping rule for evolutionary algorithms represents an acceptable trade-
off between computational efficiency and the probability of detecting 
convergence on the true optima.  At the same time, such a rule should minimize 
the likelihood of prematurely halting the iterations before the true optimal point is 
identified. 

The preponderance of published articles found in the evolutionary algorithm 
literature employ the maximum number of iterations as a stopping rule.  Using 
this approach, the algorithm proceeds until a pre-set maximum number of 
iterations have been completed-- then it halts.  The “best” solution from the 
population of solutions is identified and then reported.  The primary advantage of 
this approach is it is simple to implement.  This stopping rule is frequently used to 
compare the behavior of alternative parameter settings and algorithm variants.  
The disadvantage is profound—the preset maximum number of iterations may or 
may not correspond to the number of iterations required for algorithm 
convergence.  For example, if the maximum number of iterations is set at 1000 
and convergence is achieved at 10 iterations, there are 990 unnecessary iterations.  
Conversely, if convergence does not occur until 5,500 iterations, the results 
returned for 1000 iterations will not reflect the optimal solution to the problem.  
Since evolutionary algorithms are stochastic, their rates of convergence vary in a 
probabilistic manner.  As applied to a given problem, one trial may converge in 
50 iterations and another trial in 120 iterations.  Without prior knowledge of the 
problem’s convergence behavior, there is no known technique for effectively 
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setting the maximum number of iterations.  All of these factors argue against the 
application of this stopping rule—except for comparative purposes. 

Figure 7 illustrates the convergence behavior for the 24-hour dynamic economic 
dispatch problem solved using differential evolution (DE).  This plot shows the 
mean fitness by iteration for 50 trials.  This is a maximization problem and the 
fitness improves as the number of iterations increases.  As shown, large 
improvements in fitness are made initially with the majority of the improvements 
occurring in the first 1,000 iterations.  Fitness improvements thereafter are made 
only slowly and at extensive computational cost, relative to the accuracy obtained.  

 

 

Figure 7.  Convergence behavior with differential evolution. 

 
As the number of iterations increases, the estimated solution asymptotically 
approaches the true solution.  For this particular 50 trial experiment, the mean 
solution at 1,000 iterations is $127,079.25 and at 5,000 iterations, it is 
$127,097.14.  This represents an improvement of about $17.89 (0.14%) at a cost 
of 4,000 additional iterations, which represents a 400% increase in computational 
cost. 

The subject of stopping rules is not well addressed by the available texts such as 
Engelbrecht (2005), Kennedy and Eberhart (2001) on evolutionary programming.  
However some of the more recent research efforts have focused on this topic, for 
example Zielinski et al (2006), Zielinski and Laur (2007) and Zielinski and Laur 
(2008).  The potential efficacy of the suggested approaches when applied to the 
solution of the hydropower problems examined here is unknown.  Consequently, 
a non-trivial amount of effort was devoted to this subject as part of this research 
effort.  Subsequent sections of this document will report the results of 
experiments which explore the use of several different stopping or convergence 
approaches.  



Advanced Algorithms for Hydropower Optimization 

40 

Parameters, Tuning, and Variants 
This section of the document describes the choice of parameter values and 
selection of the subset of algorithm variants examined in this research effort.  The 
simple descriptor, “variants” is used to denote these algorithm variants throughout 
the remainder of this discussion.  Considered in aggregate, these two subjects 
constitute a substantial portion of the literature devoted to evolutionary 
algorithms.  As this is primarily an applied research effort, a less extensive and 
less systematic approach was employed. 

Evolutionary algorithms have a relatively large number of parameters and 
approach variants.  For example, the size of the population (np) is a user 
controllable parameter in all of the approaches examined here but each of these 
algorithms has additional parameters, some of which may interact with each 
other.  Similarly, each of the evolutionary algorithms examined here includes user 
selectable algorithm variations, such as the neighborhood or global optimization 
strategies in PSO and the wide range of mutation strategies in DE.  Selection of 
the appropriate value for these parameters and as well as choosing the particular 
logic, strategy and operational variants are specific to the logic of each 
evolutionary algorithm.  Conclusions about the effects of parameter setting are 
mixed.  Some researchers report effective applications of these algorithms are 
quite sensitive to parameter choice while others have suggested their efficacy is 
largely insensitive to the specific combination of parameter values chosen.  Other 
researchers have reported that parameter choice is problem specific.  On the topic 
of algorithm variants, the available evidence is also less than clear.  The literature 
abounds with newly described variations for each of these evolutionary 
algorithms.  Seemingly without exception, each of these variants is stated to 
dominate the other variants described in the previous literature.  

Population Size 

All evolutionary algorithms are multiple solution processes.  The number of 
solutions, or population size, influences the performance of these algorithms and 
their successful application.  There is an explicit tradeoff between the size of the 
population, the number of iterations required to achieve convergence and the 
computational effort.  Many authors use the number of objective function 
evaluations (NFEs) as a measure of computational effort.  For the PSO algorithm, 
for instance, the number of objective function evaluations required for each 
generation is given by the size of the population (np) times the number of 
iterations (iter) or, NFE = np*iter (disregarding initialization).  For a problem of 
any given dimensionality (dim), the larger the population size, the more likely that 
one or more of the individuals in the population will be initialized to the vicinity 
of the global optima in the search space.  All else being the same, a larger 
population might then be expected to use fewer iterations to converge more 
rapidly and converge on the global (rather than local) optima.  The drawback to 
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large population sizes is that each member of the population must be evaluated at 
each generation.  For complex objective function, with a larger number of 
dimensions, this can greatly increase the computational effort, requiring 
significantly longer solution times. 

RCGA Parameters 

The basic RCGA algorithm described in Appendix 8 has two parameters in 
addition to population size (np).  These are reproduction probability parameter, 
also known as the crossover rate (χ) and the mutation rate parameter (μ).  

As alluded to in Appendix 8, there are an amazing variety of reproductive 
variations in the realm of basic real coded genetic algorithm.  The RCGA 
algorithm used here was restricted to the subset of possibilities wherein two 
parents produce either one or two offspring.  Following implementation of one of 
the parent selection approaches, the reproduction probability parameter (χ) 
controls the likelihood the two selected parents will successfully reproduce.  
Typically, this parameter is chosen in the range of 0.50 to 1.00.  A number of 
authors suggest setting this parameter from 0.90 to 0.95.  Low values of the 
reproductive probability parameter or crossover rate (χ) effectively limit the 
genetic diversity in the population from one generation to the next.  At the 
extreme, this can diminish the searching capabilities of population leading to a 
much more rapid and potentially premature convergence.  The mutation rate 
probability parameter (μ) controls the rate of spontaneous genetic mutation in the 
offspring.  Note that random mutations can be fitness enhancing or fitness 
degrading.  This parameter controls the actions of any one of the various mutation 
schemes which may be employed in the RCGA.  While the specifics of these 
mutation approaches differ in their details, high values of this parameter result in 
larger injections of genetic diversity in the population, increasing search behavior 
in the population.  For complex or multimodal problems this can lead to a higher 
probability the global optima will be identified, naturally at the expense of 
convergence speed.  For convex problems, this additional genetic diversity is 
primarily manifested as increased solution time and expense.  A relatively lengthy 
review of studies on the effects of np, χ and μ on RCGA performance can be 
found in Haupt and Haupt (2004). 
 

Table 3.  RCGA Parameter Summary 

Name Abbreviation Range Setting Used 

Population size np 10 – 2*dim 40 

Reproductive probability χ 0.50 – 1.00 0.90 

Mutation probability μ 0.01 – 0.50 0.02 
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DE Parameters 

The basic DE algorithm described in Appendix 9 has two parameters in addition 
to population size (np).  These are the parent scale parameter (F) and the 
crossover (CR) parameter. 

In the DE algorithm, the offspring or donor vector is constructed from three 
randomly chosen members of the population scaled by the parameter F.  This 
parameter controls the importance of the parent traits, relative to those of the 
offspring.  High values of F diminish the searching capabilities of population 
leading to a much more rapid convergence.  This can lead to a higher probability 
of spurious convergence, or convergence at the location of a local optimum.  
Typically, this parameter is chosen in the range from 0.10 to 1.0.  The crossover 
parameter (CR) controls the probability of crossover.  If a randomly generated 
value exceeds the CR value, the parental trait is passed to the donor individual; 
otherwise the offspring trait is maintained.  Greater values of the CR parameter 
have the effect of favoring offspring traits in the population, over succeeding 
generations.  Relatively high CR values increase the range of search behavior in 
the population.  For complex or multimodal problems this can lead to a higher 
probability the global optima will be identified, albeit at the expense of 
convergence speed.  The CR parameter is typically chosen in the range from 0.10 
to 1.0. 
 

Table 4.  DE Parameter Summary. 

Name Abbreviation Range Setting Used 
Population size np dim – 3*dim 100 
Population scale parameter F 0.10 – 1.00 0.80 
Crossover parameter CR 0.10 – 1.00 0.30 

PSO Parameters 

The basic PSO algorithm described in Appendix 10 has two parameters in 
addition to population size (np).  These are the cognitive weight parameter (c1) 
and the social weight (c2) parameter. 

The cognitive weight (c1) parameter in the PSO algorithm controls the weight or 
importance of personal best information found by the individual particle itself, 
relative to the other members of the swarm.  If the value of this parameter is 
relatively high, more weight or memory is accorded to locations in the search 
space that the individual particle has personally visited and less weight is given to 
information provided by the other members of the swarm.  As a result, relatively 
high c1 values increase the searching behavior of the particle.  For complex or 
multimodal problems this can lead to a higher probability that the global optima 
will be identified, albeit at the expense of convergence speed.  The social weight 
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(c1) parameter in the PSO algorithm controls the weight or importance of social 
information found by the individual particle itself, relative to the other members 
of the swarm.  The specifics depend on whether the neighborhood or global 
optimization strategy is employed.  If the value of this parameter is relatively 
high, more weight or memory is accorded to locations in the search space which 
have been visited (collectively) by other members of the swarm and less weight is 
given to the particle’s own personal best information.  As a result, relatively high 
c2 values reduce the searching behavior of the particle, leading to a much more 
rapid convergence.  For complex or multimodal problems this can lead to a higher 
probability of spurious convergence, or convergence at the location of a local 
optimum.  For convex problems with only a single optima, rapid converge is a 
desirable characteristic. 
 

Table 5.  PSO Parameter Summary 

Name Abbreviation Range Setting Used 
Population size np 20 – 50, dim 20 
Cognitive weight1 c1 1.0 – 4.0 2.80 
Social weight1 c2 1.0 – 4.0 1.30 

1 The Clerc (2006) constriction factor, used in this effort, requires c1 + c2 ≥ 4.0. 

Variant Selection 

Disregarding hybrid approaches (which are discussed elsewhere in this document) 
a wide range of variations on the basic evolutionary algorithms have been 
described, and are in use.  To reiterate, the term “variants” is used in this 
document as a general descriptor for these.  The number of variants seems to be 
proportional to the elapsed time since the algorithm was first described and seems 
limited only by aggregate researcher creativity and the need to differentiate 
research products for publication. 

This effort benefited from a relatively extensive search of the pertinent literature 
completed previously (S&T Scoping Project ID Number 5992).  This component 
of the study allowed for the admittedly subjective identification of the mainstream 
algorithm variants.  One editorial aside-- several of these algorithm variants are 
considerably more complex than the underlying algorithms themselves.  Some of 
the mainstream and potentially useful variants are described subsequently and 
were implemented for this research effort. 

RCGA Variants 

As a class, the RCGA and GA’s exhibit the greatest range of variants on the basic 
algorithm.  Disregarding the hybrid approaches (discussed elsewhere), there are 
an astonishing number of parent selection approaches, population survival 
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methods, mutation rules and crossover approaches, some of which are amazingly 
incredibly complex and computationally intensive.  Haupt and Haupt (2004), 
Michelwicz (1996, 2010) and Peltokangas and Sorsa (2008) provide a relatively 
extensive sampling of these variants. 

Parent selection in the RCGA is the method by which two parents are selected 
from the population for potential reproduction.  Three parent selection methods 
were selected from the literature for use in this research effort.  They are the 
random parent selection method (Random2), the four person tournament method 
(Tournament4) and the two person tournament approach (Tournament2).  Under 
the Random2 method, one individual is selected systematically from the 
population as a whole and a second (different) individual is selected randomly 
from the population.  The two selected individuals are then available for potential 
reproduction (crossover and mutation).  The tournament4 approach selects four 
different individuals from the population as a whole.  Two of these individuals 
then compete and the one with the greater fitness becomes a semifinalist.  The 
two other individuals then compete and the one with the greater fitness enters the 
semifinals.  Finally, the two semifinalists compete, and the one with the greater 
fitness wins and is available for potential reproduction.  The tournement2 
approach selects two different individuals from the population as a whole.  These 
individuals then compete and the one with the greater fitness becomes a potential 
parent. 

Crossover is the mechanism by which two potential parents exchange genetic 
material to create one or more offspring.  Crossover in the RCGA context differs 
considerably from the binary GA case and numerous approaches have been 
developed to simulate this process.  In the context of RCGA, the arithmetic 
crossover (Arithmetic) approach (Michalewicz 1996), the Laplace crossover 
(Laplace) approach (Deep and Thakur 2007), the linear crossover (Linear) 
approach (Wright 1991) and the heuristic crossover (heuristic) approach 
(Michalewicz 1996) were implemented for this research effort.  The Laplace 
crossover approach is described in detail in Appendix 8.  The linear (Linear) 
crossover approach produces three offspring using an extrapolation approach.  An 
extrapolation weight, often 0.50, is employed.  Any variable straying outside the 
feasible search domain is either censored or the solution is discarded-- the two 
offspring with the greatest fitness are retained.  The uniform arithmetic 
(Arithmetic) crossover approach is often attributed to Michelwicz (1996).  This 
approach uses a randomly generated value (0, 1) to form a set of weights (α, 1-α) 
which are then used to create a linear combination of the parent genes.  A variant 
of this approach utilizes a different random value (and hence weight) for each 
choice variable represented in the parent genetic material.  The heuristic crossover 
approach (Heuristic) was also developed by Michaelwicz (1996) primarily for use 
in constrained optimization problems.  The heuristic approach generates a 
possible offspring from a randomly weighted differencing of the parent’s genetic 
material, added to the superior parent’s existing genetic material.  If the offspring 
lies outside of the feasible domain, a new random weight is generated until a 
feasible solution is obtained. 
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Mutation helps to ensure genetic diversity is maintained in the population and 
some of the mutation variants described in the literature are quite ingenious.  For 
purposes of this research effort three mutation approaches were selected and 
implemented.  These approaches include the Gaussian mutation approach 
(Gaussian), the nonuniform mutation (Michalewicz 1996) approach 
(Nonuniform), and the uniform mutation (Uniform) approach (Michalewicz 
1996).  The nonuniform mutation approach is described in Appendix 8 and is not 
further described here.  Under the Gaussian approach, a normally distributed 
random variable is added to the gene selected for mutation.  This approach is 
relatively simple and effective in many applications although it does require the 
variance of the distribution to be specified, in some manner.  Under the Uniform 
approach, genes have an equal probability of mutation.  A gene selected for 
mutation is replaced with a uniform random value generated within the feasible 
search domain.  This approach has two advantages.  First, it is relatively easy to 
implement.  Second, it executes rapidly. 

Survival or recruitment, sometimes also known as replacement, is the process of 
determining which individuals from the offspring population and the parent 
population will survive into the next generation.  There are a wide variety of 
recruitment approaches, which have evolved over time (see Reeves 2010 p. 71 for 
a summary).  For purposes of this research effort, three survival approaches were 
selected from the literature and implemented in code.  These are the traditional 
(Traditional) approach, the Elite_1 approach (Bucknall 2002) and a more general 
characterization of the elite approach, the elite np (Elite_NP) approach. 

The traditional approach to recruitment is fairly straightforward—only the 
offspring survive into subsequent generations.  While easily implemented in code, 
there is a distinctive logic flaw inherent with this approach.  In the traditional 
approach there is a probability the individual with the highest fitness will be 
eliminated from the gene pool, slowing the evolutionary process and the search 
for an optima. 

The Elite_1 approach preserves the genetic material from the fittest individual in 
the gene pool from one generation to the next.  In the Elite_1 recruitment 
approach, the parents are ranked from highest fitness to lowest fitness and the 
offspring are ranked from highest fitness to lowest.  The parent individual with 
the highest fitness (the Elite_1) replaces the lowest ranked offspring, provided it 
is of superior fitness.  The remaining offspring and the Elite_1 individual, survive 
into the next generation. 

There are many potential variations on the elitism approach.  Conceptually, the 
retained elite fraction could vary all the way up to NP (here assuming a constant 
population size is maintained).  For purposes of this project, the Elite_NP 
approach was employed.  Under this approach all of the parent and offspring 
individuals are pooled and then sorted by fitness.  The most-fit NP individuals 
from the pool are then retained and survive into the next generation, the less fit 
individuals are removed from the gene pool.  This approach greatly increases 
convergence speed, often dramatically.  Unfortunately, the genetic diversity of the 
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population diminishes as well and the likelihood of spurious convergence, or 
convergence at a local optimal point, increases. 

DE Variants 

Like the other evolutionary algorithms explored here, there are a number of 
variants on the basic DE algorithm.  Disregarding the hybrid approaches 
(discussed elsewhere), there are a large number of mutation rules and crossover 
approaches, some of which are amazingly ingenious.  Many of these build upon 
the seminal DE paper (Price and Storn 1995, 1997) which described 23 crossover 
and mutation combinations.  Over time, a shorthand approach for describing and 
categorizing the more mundane of these variants has evolved.  The notation 
DE/x/y/z is often used for this purpose.  In this notation, x is used to specify the 
vector to be mutated which can be “Rand” (a randomly chosen member of the 
population) or “Best” (the member of the population with the current best fitness), 
y represents the number of difference vectors used, and, z denotes the type of 
crossover scheme employed.  The most common crossover variant is the “Bin” or 
binary crossover approach. 

For purposes of this research effort, six different crossover and mutation 
approaches were selected.  These include the originally described 
DE/RAND/1/BIN and the DE/BEST/1/BIN approaches, but also include some of 
the more promising and exotic approaches such as the random scale factor 
(DERANDSF) approach, the trigonometric (TRIGON) approach, the time varying 
scale factor approach (DETVSF) and the self adaptive (SELFADAPT) approach 
(Brest et al 2006 version).  These variants were sufficiently represented in the 
mainstream literature to warrant further investigation. 

PSO Variants 

Many examples of PSO variants can be found in the literature, the majority of 
which are reviewed in Valle et al (2008).  Disregarding hybrid approaches 
(discussed elsewhere in this document) the two enduring variants appear to be the 
application of global or neighborhood optimization strategies.  In the global 
optimization strategy, crossover is a linear combination of the best fitness value 
found by any of the members of the swarm (globally) and a particle’s personal 
best fitness.  This optimization approach results in faster convergence but also 
decreases searching behavior and increases the likelihood of spurious 
convergence or identification of a local, rather than global, optimal point.  This 
optimization strategy should be distinguished from the neighborhood (or local) 
optimization strategy.  In the neighborhood optimization strategy, crossover is a 
linear combination of the best fitness location identified by any of the members of 
a particle’s neighborhood and the particle’s own personal best fitness value.  
Figure 8 illustrates a globally connected swarm of np=8 (Panel A) and an np=8 
swarm with a 3-member neighborhood structure or topology (Panel B). 
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Figure 8.  Globally connected (A) and 3-neighbor (B) swarms. 

 
The use of a neighborhood structure serves to limit the information about the 
search space available to any single member of the swarm. Neighborhoods can, 
and are, constructed in a variety of shapes or topologies and follow an amazingly 
creative set of behavioral rules (see Kennedy and Mendes (2002) for some of the 
details).  For purposes of this research, a star-type neighborhood topology, limited 
to five total members (including the particle itself) was employed.  These 5-
member neighborhoods limit the overlap or interconnection in the swarm.  With 
each succeeding generation, information about the location of potential optima 
effuses from neighbor to neighbor, and from neighborhood to neighborhood 
within the swarm.  This approach results in enhanced searching behavior, slower 
convergence times, and it reduces the probability of spurious convergence and 
convergence on local optima within the search space.  The 5-member star-type 
neighborhood configuration proved to be relatively straightforward to implement 
in code and highly effective in application. 

Following the literature review component of this research effort, Clerc’s 
constriction coefficient (2006) was selected for use in the PSO algorithm.  This 
PSO variant is described more completely in Appendix 10. 

Development Process 
This research project required an extensive behind the scenes software 
development effort.   For the most part, the evolutionary algorithms examined in 
this research effort are rather new and certainly not commercially available.  A 
relatively large-scale and time consuming development effort was required to 
make them operational. 
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Development Platform 

Borland Developer Studio 2006 for Windows, an object oriented rapid application 
development (RAD) environment was employed for coding and construction of 
test platforms.  This development environment is designed for use on Microsoft 
Windows 32 Kb operating systems, such as Windows XP.  Although the 
development environment has web, web application, C, C++ and .NET 
capabilities, the Delphi language was used throughout this project. Delphi is an 
object oriented language which evolved from the Turbo PASCAL language, 
popular in the early 1980’s. 

The Borland Delphi 2006 compiler produces native Windows 32 Kb executable 
code.  This environment eases the development of Windows based graphical user 
interfaces while allowing full code control.  Of particular advantage for this 
project, the development environment includes visual component libraries (VCLs) 
for advanced graphics and database integration.  These VCLs along with others 
for printer and device control, disk file operations and interfacing with the 
windows environment are implemented with “drag and drop” functionality in a 
fully visual integrated development environment.  This greatly streamlines the 
development of Windows based applications allowing the researcher/developer to 
devote their resources to code development.  The integrated graphics capabilities 
were a major consideration in the decision to deploy this platform. 

Other development platforms were reviewed for possible use in this project.  
These platforms included MATLAB ( www.mathworks.com ), a commercially 
available package widely used in engineering applications, the open source 
European equivalent, SCILAB (www.scilab.org ) and the open source general 
purpose statistical package, R (www.r-project.org ).  However, none of these 
platforms appeared to offer the ease of development, stability and integrated 
graphics capabilities required for this effort. 

Three Phases of Development 

Following the selection of candidate algorithms, a three phase development 
process was undertaken.  First, the algorithm was coded and tested on three 
unconstrained test problems.  Second, the algorithm was coded and tested on the 
dynamic economic dispatch problem.  Third, a testing environment was 
developed for each algorithm. 

Phase 1—Development with Test Problems. 
Working from pseudo-code, flow charts, verbal descriptions in journal articles, 
code snippets and in some rare cases, translating from purportedly functional C 
source code, the selected algorithms were coded in Delphi, debugged and brought 
to a operating state.  The three unconstrained three dimensional (3-D) test 
problems described in Appendix 14 were used during this phase to debug, and 

http://www.mathworks.com/�
http://www.scilab.org/�
http://www.r-project.org/�


Development Process 

49 

more importantly, test the functioning and solution behavior of the coded 
algorithms. 

A graphical user interface (GUI) was developed for each application.  These 
GUI’s (naturally) share a number of common features and functionality.  Shared 
features include a tabbed page for selecting an initialization strategy, a tabbed 
page for selecting a convergence strategy and convergence tolerance and a tabbed 
page for controlling visualization.  

Each GUI also has an Algorithm tabbed page which is customized for each 
algorithm.  This customized tabbed page allows for easy user control of 
parameters specific to the algorithm and allows different variations of each 
algorithm to be selected.  For example, the Algorithm tabbed page for the DE 
algorithm allows the user to select from a list of Mutation strategies, select the 
number of individuals in the population (np), set the value of the scale parameter 
(F) and select the value of the crossover (CR) parameter.  In contrast, the RCGEN 
algorithm tabbed page allows the user to set the number of individuals in the 
population (np), select a parent selection strategy, select a crossover approach, 
select a mutation strategy and select a recruitment approach. 

All of the applications share a common output GUI configuration, shown in 
Figure 9.  Each application has a numerical output window and a graphical output 
window.  The latter allows for real-time visualization of solution progress, a 
feature which has proven to be invaluable. 

The behavior of the algorithms using different parameter settings and optional 
variants was observed both numerically and visually by judicious application of 
the integrated graphics capability.  Figure 9 illustrates the graphical output screen 
of the RCGA program at iteration 6 during a solution of the Alpine function.  This 
figure shows the plan view of this relatively complex function (see Appendix 14 
for further details about this and other test functions).  In the figure, the blue 
diamonds illustrate the (x,y) locations for each of the np=40 individuals in the 
population.  The single red diamond located in the upper right-hand quadrant 
indicates the location of the optimal solution in the bounded search space. 

The integrated graphics allows the researcher to observe the solution behavior in 
real-time while simultaneously monitoring the algorithm’s numerical progress 
toward a solution.  Progress metrics are written to the status bar at the bottom of 
graphics window.  As reported in the status bar, shown in Figure 9, this plot is for 
the sixth iteration, the most fit individual in the population has a fitness (Fit) of 
7.786E+000,  the standard deviation (SD) of population fitness is 2.225E+000 and 
the visual delay (Del) is set to 100 milliseconds. 

Implementation of these evolutionary algorithms involved overcoming a number 
of technical travails.  This included selecting and developing a random 
(pseudorandom) generator, the use of low discrepancy sequences, the 
development of appropriate convergence or stopping criteria and the development 
and application of constraint and constraint handling methods. 
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Figure 9.  RCGEN program 
solving the alpine function. 

 
 
 

 
Implementation of these evolutionary algorithms involved overcoming a number 
of technical travails.  This included selecting and developing a random 
(pseudorandom) generator, the use of low discrepancy sequences, the 
development of appropriate convergence or stopping criteria and the development 
and application of constraint and constraint handling methods. 

Phase 2—Economic Dispatch Problem 
Working from the code base developed in Phase 1, the evolutionary algorithms 
were adapted for solution of the hydropower dynamic economic dispatch problem 
with constraints.  The economic dispatch problem described in Appendices 3 
through 5 was used during this phase to debug and complete initial tests on the 
coded algorithms.  The economic dispatch problem is a constrained optimization 
problem and accommodating this class of problem required a further and rather 
extensive coding effort in its own right. 

The graphical user interface (GUI) developed in Phase 1 was modified to 
accommodate the dynamic economic dispatch problem.  Specifically, additional 
tabbed pages were added to the existing GUI’s to allow for the added complexity 
of this problem class.  Added GUI features included a tabbed page for selecting 
seasonal avoided cost (price) data (summer or winter) and for selecting either a 1-
day (24 hours) or 1-week (168 hours) analysis period, a tabbed page for 
controlling the constraints on minimum and maximum release rates, ramp rates 
and the amount of water scheduled for release during the analysis period.  
Additionally, a tabbed page was added to allow for more detailed monitoring of 
the numeric progress towards a solution.  
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All of the common output GUI’s were modified to better suit the dynamic 
economic dispatch problem.  The graphical output for this application was 
modified, as shown in Figure 10, to illustrate the minimum and maximum 
constraints and display the optimal hourly pattern of generation and release.  The 
numerical output window was revised to show the hourly details of the optimal 
solution for this problem.  An additional numeric output window was added to 
record selected intermediate output metrics for each iteration (or generation) as 
the algorithm evolved towards a solution.  This proved to be an invaluable 
debugging aid.  Figure 10 illustrates the graphical output for a default solution of 
the dynamic economic dispatch problem solved for 1-week (168 hours) during the 
summer season. 
 

 

Figure 10.  HDDE solution to 168-hour economic dispatch problem. 

 

Phase 3—Testing Environment 
The purpose of Phase 3—development of a testing environment, was to construct 
a framework for the unattended replication of experiments while saving success 
metrics, performance measures, numerical outcomes and other summary data for 
subsequent statistical analysis.  As described previously in this document, 
evolutionary algorithms are stochastic in nature.  For any given set of starting 
values, an algorithm may achieve a different, slightly different, or vastly different 
solution.  Or, it may fail altogether.  This range of potential outcomes arises 
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because of (a) the initialization approach employed, (b) the random underpinnings 
of their solution behaviors, and (c) the approach implemented to detect 
convergence on a solution.  Consequently, a single successful solution, while 
indicative, is by no means conclusive evidence of the successful application of 
one of these algorithms.  In the context of evolutionary algorithms, replicated 
trials followed by statistical analysis are required to support even minimal 
conclusions about their suitability for a specific class of problem. 

Phase 3 required using the code base developed in Phase 2, and adding additional 
code to allow for repeatedly running the algorithm and recording salient success 
and performance measures for each run.  Relative to the development effort 
expended in Phase 1 and Phase 2, this was readily accomplished and required 
only minor modifications to both the input and output GUI’s.  However it 
required only limited (additional) code development.  The testing environment 
developed in this, the final Phase of the development effort, was utilized to 
produce the replicated experimental results described subsequently in this 
document. 
 

 

Figure 11.  Test environment graphical output. 

Experiments Undertaken 
Given the number of parameters, options, algorithm variants, input vectors and 
problem features described, there are a very large number of experiments could be 
undertaken.  While a comprehensive effort would surely be a valuable 
contribution to the state of knowledge, resource limitations dictated that only 
selected experiments be completed and reported in this document.  The 
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experiments which are described here were selected primarily to provide insights 
about the applicability of EA’s to the dynamic economic dispatch problem, their 
performance and the factors which might influence this decision  

Initialization Approaches 

Review of the pertinent literature revealed a number of efforts which reported 
systematic differences in EA performance resulting from initialization method.  
The literature on this topic was both extensive and conclusive—the use of the 
uniform random approach for initialization was judged to be inferior to other 
approaches.  Based on this body of literature, considerable researcher effort was 
allocated to developing, testing and applying promising alternative initialization 
approaches to the hydropower problems examined in this research effort.  This 
required the testing and development of four low discrepancy sequences including 
the Niederieter, the Habor, the Weyl/Torus and the Halton (see Appendix 13 for 
additional explanation) as well as the opposition based learning (OBL) method. 
 
After coding and validating the functioning of these different initialization 
approaches, a systematic set of performance experiments was undertaken.  For 
purposes of the replicated initialization experiments described here, 50 trials were 
undertaken on the 24-hour constrained dynamic economic dispatch problem (24-
hour, problem dimensions = 24) using the summer price vector described in 
Appendix 15.  To ensure a valid comparison across algorithms, the population 
(swarm) size was set at 50 individuals for all of the evolutionary algorithms 
(np=50).  It should be noted the performance of some of the EA’s, such as PSO 
and RCGA may be disadvantaged by setting the population size to this level for 
this comparatively small dimension problem.  A common stopping rule, the 
Elite_SD rule ( with tol=1.0e-04), was employed for all of the replicated 
experiments. 
 
Table 6.  Initialization Approaches — Experimental Results 

Approach 
RCGA DE PSO 

Mean 
Iter 

Mean CPU 
time (Sec) 

Mean 
Iter 

Mean CPU 
time (Sec) 

Mean 
Iter 

Mean CPU 
time (Sec) 

Random 494 0.195 242 0.115 447 0.506 
Neiderieter 506 0.202 245 0.116 452 0.517 
Weyl/Torus 500 0.199 242 0.114 442 0.497 
Habor 495 0.194 241 0.114 438 0.496 
Halton 471 0.185 243 0.114 443 0.500 
OBL 491 0.193 244 0.116 446 0.504 

 
 
Table 6 summarizes the results of the replicated initialization experiments.  The 
results shown in this table are both unremarkable and unexpected.  For the 
constrained dynamic economic dispatch problem, there appears to be no 
discernable difference between the uniform random initialization approach and 
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any of the other approaches.  While this result appears to contradict the results 
reported in many earlier studies, none of the preceding studies focused on this 
particular type of constrained optimization problem.  Scrutiny of this table 
suggests the Halton Sequence may provide small performance gains for this 
problem.  However no statistical analysis has yet been undertaken to confirm or 
refute this observation. 

Stopping Rules 

Consistent with the philosophy of evolutionary programs, a convergence or 
stopping rule should utilize the fitness information available at each iteration, be 
simple and effective.  In keeping with this theme, one approach is to use the 
population mean and standard deviation for detecting convergence.  
Operationally, the mean and/or standard deviation of the solutions found by all of 
the individuals in the swarm or population are calculated for each iteration.  When 
these metrics change by less than a pre-set tolerance, or fall within an acceptable 
tolerance, the algorithm has converged on a solution.  The advantage of this 
method is that it is relatively easy to implement, is problem and scale invariant 
and is brutally effective.  Arguably, this approach may be overly conservative and 
computationally inefficient often requiring an extensive number of iterations for 
all of the members of a swarm or population to converge on the optimal point. 

Zielinski et al (2006), Zielinski and Laur (2007) and Zielinski and Laur (2008) 
explore the subject of convergence rules for particle swarm optimization (PSO) 
and differential evolution (DE).  They examine single objective problems with 
different dimensions using varying population sizes.  In aggregate, the authors 
systematically explored the performance of a suite of approaches, some of which 
were quite esoteric.  They recommend two methods for use with PSO and two 
methods for use with DE.  They suggest a variant of the standard deviation 
approach be examined more fully in future research efforts.  

Motivated by the work of Zielinski and Laur (2008), two additional convergence 
criteria were developed and investigated in this research effort.  These were the 
elite mean (Elite_Mean) and elite standard deviation (Elite_SD) approaches.  
These two approaches are based on the observation that one or more members of 
the swarm or population will identify the optimal point well before the other 
members of their cohort.  We will call the portion of the population which 
converges rapidly, the “elites.”  At each iteration, uninformed members of the 
cohort will continue to search in the solution space, sometimes far from the 
optimal point.  It can, and often does, require many additional iterations for all of 
the members of a swarm or population to converge on the optimal point, 
previously discovered by a few individuals.  Observations made in the early 
phases of this project suggest that a disproportionately large number of iterations 
are required to produce convergence in the last quartile of the swarm or 
population. 
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The elite mean and elite standard deviation stopping rules are based on the 
empirical observation that a subset of particles (the elites) converge very rapidly 
and a subset of the remaining individuals converge extremely slowly.  To take 
advantage of this, calculation of the elite mean and elite standard deviation 
convergence metrics are based solely on the behavior of the elite or best 
performing particles.  The behavior of the lower performing individuals, which 
potentially could take many more iterations to converge, is ignored. 

Identification of the elite members of the swarm or population is, of course, 
somewhat problematic for the purposes described.  Since we do not know a priori 
the optima for a given problem, we cannot know with certainty if say, the two 
most fit particles in iteration number 561 have converged on the solution, or not.  
If the elite proportion of the population were defined as the most-fit 5%, the 
potential for spurious convergence may be quite high.  Alternatively, defining the 
elite proportion of the swarm as the most-fit 99% may result in significant and 
unwarranted computational cost.  This choice represents a fundamental analysis 
trade-off which is to some extent arbitrary, but is surely problem dependent. 

During this research some exploration of this trade-off was undertaken.  This 
exploration could not be described as either comprehensive or conclusive.  
However, it was sufficiently extensive to make some inferences about the 
application of these stopping rules to the types of problems examined here.  After 
some experimentation, the elite proportion of the population was defined as that 
90% of the population or swarm which was most fit.  By definition, the 
individuals classified as elites varied dynamically from one iteration to the next.  
Using this definition for the elites resulted in excellent computational 
performance with very little likelihood for spurious or premature convergence.  
These stopping rules are relatively easy to implement, do not add extensive 
computational overhead and proved to be very effective for the types of 
optimization problems we examined. 

For purposes of the replicated stopping rule experiments, 50 trials were 
undertaken on the 24-hour constrained dynamic economic dispatch problem (24-
hour, problem dimensions = 24) using the summer price vector described in 
Appendix 15.  To ensure a valid comparison of the different stopping rules, the 
population (swarm) size was set at 50 individuals for all of the evolutionary 
algorithms (np=50).  It should be noted that some of the EA’s, such as PSO and 
RCGA may be disadvantaged by setting the population size to this level for this 
comparatively small problem.  For applicable “elite” approaches, the elite fraction 
was set to 0.90.  In all cases the convergence tolerance (ctol) was set at 1.0e-04.  
 
Figure 12 shown below compares the performance of four different stopping rules 
on this same problem.  It compares the mean central processing unit (CPU) time, 
measured in seconds, required for convergence over 50 trials between the 
maximum iteration approach (maximum iterations = 5000), the population 
standard deviation (Pop_SD) approach, the elite standard deviation (Elite_SD) 
approach and the elite mean (Elite_Mean) approach.  
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Figure 12.  Results of Stopping Rule Experiments (dim=24). 

 
As shown in this figure, there is a large difference between the mean 
computational time required to achieve convergence, when convergence is 
specified as reaching 5000 iterations, and the CPU time required by the three 
stopping rules which intelligently monitor the progress of the calculation metrics 
(Pop_SD, Elite_Mean and Elite_SD).  Although not reported here, the mean 
precision of the solutions at convergence is very similar.  Over the course of 
repeated calculations and when the dimensionality of the problem increases, the 
reduced time necessary to achieve convergence is a substantial advantage to the 
researcher.  It is also apparent there is little discernable difference between the 
CPU time required for convergence when Pop_SD, Elite_Mean and Elite_SD 
convergence criteria are employed.  Potentially, there may be computational 
advantages to the use of the Elite_Mean approach, however no statistical analysis 
was undertaken to explore this possibility further. 

Comparative Performance 

In cases where both approaches are applicable (smooth, continuous twice 
differentiable functions) evolutionary algorithms have been found to be slower 
than traditional calculus based approaches.  Exploration of the comparative 
performances of both approaches on the dynamic economic dispatch problem 
described earlier provides useful context and serves as a point of departure for 
many of the replicated experiments which will be reported subsequently. 
 
The dynamic economic dispatch problem described earlier in the text and 
discussed more fully in Appendices 3 and 4 is an example of the type of problem 
which can be solved by both evolutionary algorithms and using traditional 
approaches.  This problem was strategically constructed expressly to facilitate this 
performance comparison and the other experiments described here.  For purposes 
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of the replicated performance experiment described here, 50 trials were 
undertaken on the 24-hour constrained dynamic economic dispatch problem using 
the summer price vector described in Appendix 15.  To facilitate the desired 
comparison, the population (swarm) size was set at 50 individuals (np=50) for all 
of the evolutionary algorithms.  Certain EA’s, such as PSO and RCGA may be 
disadvantaged by setting the population size to this level for this comparatively 
small problem.  The Elite_SD stopping rule with the elite fraction set to 0.90 was 
employed for all of the evolutionary algorithms with the convergence tolerance 
set at 1.0e-04.  The Lambda Search algorithm is a deterministic algorithm and, for 
a given starting point in the search space, the solution results produced are 
identical for each replication.  For this reason the LS algorithm was run only once.  
For the LS algorithm, the convergence tolerance was set to 1.0e-08.  The 
parameter settings chosen produce a water release of 10,000 af (to two decimal 
digits of precision) for both the evolutionary algorithms and the Lambda Search 
algorithm, again facilitating this performance comparison. 
 
Figure 13 compares the convergence behavior of the Lambda Search algorithm 
with that of the EA’s for the first 50 iterations.  As shown in this plot, the LS 
algorithm is initially quite far from the optimal point, and then oscillates around 
the optimal point rather wildly.  This behavior illustrates its relatively poor global 
search capabilities.  Once it identifies the optimal region however, the oscillatory 
behavior dampens and the algorithm rapidly converges.  The LS algorithm 
achieves convergence to a tolerance of 1.0e-08 in approximately 28 iterations.  In 
contrast, the EA’s are able to identify the region containing the optimum point, 
very quickly, illustrating their relative strength in global search.  However, the 
three EA’s require many additional iterations to converge on the optimal point 
(Refer to Figure 11 for further insights on this subject).  Again, this illustrates 
their relatively poor local search capabilities. 
 

Figure 13. Convergence behavior over 50 Iterations 
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Table 7 summarizes the convergence results for each of these algorithms and the 
quality of the solutions they identify.  As shown in Table 7 the LS algorithm is 
able to converge on a final solution very quickly relative to any of the EA’s.  Over 
the 50 trials, the EA’s are able to identify the same mean solution, albeit at a 
much higher cost in terms of the number of iterations and the central processing 
unit (CPU) time required. 
 
Table 7.  Convergence Performance and Cost 

Algorithm Mean Best 
Solution 

S.D. Best 
Solution Mean Iter Mean CPU 

time (msec) 
LS1 127,097.33 na   28 ≤0.002 
RCGA 127,097.24 6.198e-01 500 196 
DE 127,097.33 1.645e-04 242 114 
PSO 127,097.33 1.960e-04 445 500 

1 Lambda search is a deterministic approach and each trial produces the same outcome.  The 
results reported here were generated by a single trial at ctol=1.0e-08. 

 
In some ways, the performance comparison illustrated in Figure 13 and Table 7 is 
not fully representative of the differences which might be expected in applied 
work.  The Lambda Search algorithm (Appendix 7) is perhaps the fastest of the 
traditional calculus based methodologies which can be applied to this particular 
problem.  It exploits the structure of this class of constrained optimization 
problem to reduce the number of decision variables from dim=24 to dim=1 (λ).  
The LS algorithm is thus a univariate optimization approach and, as such, needs 
to identify the value of only a single unknown variable, rather than 24 or 168 
unknown variables.  Naturally, it is quite fast!  More general approaches such as 
the Newton-Raphson approach described in Appendix 6 and the generalized 
reduced gradient (GRG) method used in spreadsheet solvers, require the addition 
of artificial variables and slack variables (see Appendix 5).  For these algorithms, 
the total number of unknown variables is typically much larger than the 
dimensions of the problem.  Moreover, commercially available optimization 
engines typically employ numeric derivatives rather than the analytic derivatives 
found in the LS algorithm.  In aggregate, these requirements increase the problem 
size (often more than double the problem size) and complexity.  These factors 
may greatly reduce the apparent computational advantages of calculus based 
approaches demonstrated here. 

Problem Dimensions and Input Vectors 

At early stages of this research project, an increase in solution times was observed 
as the size of the constrained optimization problem increased.  Similar increases 
in the solution times are the norm for calculus based optimization approaches.  A 
systematic investigation of this (apparent) performance degradation seemed 
warranted. 
 



Experiments Undertaken 

59 

A priori, the influence of increasing the dimensionality of the optimization 
problem seemed relatively easy to foresee.  Increases in the problem size are 
expected to increase the number of unknown variables, the size of the storage 
vectors needed, the time to manipulate those vectors and the computational cost 
of evaluating the fitness function. 
 
The influence of changing the input price vectors is somewhat less obvious. 
Figure 14 illustrates the 168-hour summer and winter input hourly price vectors 
used in this analysis and reported in Appendices 16 and 17.  This 1-week graph 
starts on a Sunday, on the left-hand side and ends on a Saturday, on the right-hand 
side.  In the summer, electricity prices are generally higher, have only a single 
peak during the day and typically have a greater daily range than do the winter 
prices.  The winter prices exhibit the typical two-peaks per day characteristic of 
electricity prices in cold weather climates. 
 
 

 
Figure 14.  Prices used for analysis. 

 
Examination of Figure 14 might lead to two different hypotheses about the 
influence of summer and winter input price vectors on convergence speed.  The 
winter prices have more variation in any given day.  This might lead to the 
hypothesis the winter price vector might cause slower convergence.  
Alternatively, the summer prices have a greater range in magnitude during any 
given day.  This would lead to the hypothesis the summer prices might result in 
slower convergence speeds.  It is unclear which of these two hypotheses might be 
supported by the experimental outcomes. 
 
Both the potential effect of increased problem size and the use of different input 
price vectors were explored.  For purposes of the replicated stopping rule 
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experiments, 50 trials were conducted on both the 24-hour and 168-hour 
constrained dynamic economic dispatch problems using both the summer and 
winter price vectors.  For these experiments, the population size (np) varied across 
the different algorithms as shown in Tables 3, 4, and 5 found earlier in the 
document.  The Elite_SD stopping rule was employed with the elite fraction set to 
0.90.  In all cases the convergence tolerance (ctol) was set at 1.0e-04. 
  
The detailed results of this experiment are reported in tabular form in Appendix 
18.  Figure 15 shown below summarizes the results of this experiment.  This 
figure compares the mean central processing unit (CPU) time, measured in 
seconds, required for convergence over the 50 trials. 
 

 
Figure 15.  Results of Dimension and Input Vector 
Experiment 

 
As shown in Figure 15, there is a marked difference in convergence times, across 
all of the EA’s, when the size (dimensions) of the problems are increased from 24 
to 168 hours (a 7-fold increase in dimension).  The associated increase in 
convergence time is much greater than proportional to the increase in problem 
size.  The DE algorithm seems to have a clear performance advantage relative to 
the other EA’s tested.  This outcome is consistent for all of the trials in which 
only one constraint (the release volume equality constraint) is binding.  However, 
this performance advantage is not observed when additional constraints are 
binding, as described in the following section. 
 
Inspection of this plot also shows the choice of input price vector appears to have 
some influence on convergence times.  Convergence times when the summer 
price input vector is employed are slightly longer than when the winter price 
vector is used.  The statistical significance of this difference, if any, remains to be 
explored. 
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Binding Constraints 

During the development process, an increase in solution times was observed when 
there were minimum or maximum binding constraints (other than the total release 
constraint, which is always binding).  This was not necessarily expected by the 
research team since calculus based optimization approaches do not, apparently at 
least, suffer as much from this phenomenon.  A systematic investigation of this 
(apparent) performance degradation seemed warranted. 
 
A mixed system of penalty functions and repair methods were employed for all of 
the EA’s examined in this project.  Some of the repair approaches are quite 
involved.  More frequent and intensive calls to these penalty and repair 
subroutines are likely to result in longer solution times. 
 
The potential effects of minimum and maximum binding constraints were 
systematically explored.  Based on the results of previous experiments, it was 
thought there could be an interaction effect between the binding constraints and 
the input price vectors employed.  A 2x2 experimental design was used to 
investigate this possibility. 
 
For purposes of the constraint experiments, 50 trials were conducted using the 
168-hour constrained dynamic economic dispatch problems.  Both the summer 
and winter price vectors were used in these comparisons.  For these experiments, 
the population size (np) varied across the different algorithms as shown in Tables 
3 through 5 found earlier in the text.  The Elite_SD stopping rule was employed 
with the elite fraction set to 0.90.  In all experiments the convergence tolerance 
(ctol) was set at 1.0e-04. 
 
The detailed results of these experiments are reported in tabular form in 
Appendices 19 and 20.  Figures 16 and 17 neatly summarize the results of these 
experiments.  Both figures compare the mean central processing unit (CPU) time, 
measured in seconds, required for convergence over the 50 trials. 
 
As shown in Figure 16, when the maximum release constraint is set to 6,000 cfs 
(binding), there is a marked difference in convergence times for all of the EA’s 
examined.  Relative to the base case (when the maximum release constraint is not 
binding), for DE and PSO, the convergence times increase.  While for RCGA, the 
convergence time appears to decrease, relative to the nonbinding maximum 
release constraint case.  Some degradation of the solution quality was apparent, 
particularly for RCGA and PSO (See Appendices 19 and 20).  
 
Inspection of Figure 16 also suggests that when the maximum release constraint is 
binding, the choice of input price vector has an independent influence on 
convergence times.  For two of the three EA’s (RCGA and DE), convergence 
times when the summer price input vector is employed are slightly longer than 
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when the winter price vector is used.  For PSO, the opposite appears to be the 
case.  The statistical significance of these differences remains to be explored. 
 

 
Figure 16.  Maximum constraint effects (dim=168). 

 

 
Figure 17.  Minimum constraint effects (dim=168). 

 
Figure 17 summarizes the results when the minimum constraint is set to 4,000 cfs 
(binding).  As shown in Figure 17, relative to the nonbinding base case, when the 
minimum constraint is binding, there are apparent difference in convergence 
times, across all of the EA’s examined.  Relative to the nonbinding base case, for 
DE and PSO, the convergence times increase, while for RCGA, it again appears 
to decrease. 
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Further inspection of this plot (Figure 17) also shows that when the minimum 
release constraint is binding, the choice of input price vector appears to have an 
independent influence on convergence times.  Convergence times for RCGA, DE 
and PSO are slightly longer when the summer price input vector is employed.  
Again, the statistical significance of these apparent differences remains to be 
explored in the future. 
 
To reiterate, the results obtained in these and preceding experiments are relatively 
voluminous.  They include not only the results described here but additional 
metrics of solution quality and dispersion.  Further results from the release 
constraint experiments can be found in Appendices 19 and 20. 

Conclusion 
Three promising evolutionary algorithms (EA’s) were identified from the 
emerging heuristic optimization literature; the real coded genetic algorithm 
(RGGA), differential evolution (DE) and particle swarm optimization (PSO).  
These algorithms were applied to an important hydropower problem—the 
constrained dynamic economic dispatch problem.  A relatively extensive suite of 
replicated experiments were conducted to assess their performance characteristics.  
These experiments systematically explored the influence of initialization 
approaches, convergence criteria, the dimensions of the problem, the role of 
problem inputs and the effects of binding constraints.  The results show the 
convergence behavior of evolutionary algorithms differs from traditional calculus 
based approaches.  Evolutionary algorithms exhibit longer solution times—
characterized by rapid identification of the region containing the optimum, with 
relatively slow local convergence.  The choice of different initialization 
approaches appears to have no effect on solution times, for the particular problem 
examined.  Replicated experiments indicate convergence times for all three EAs 
are longer for higher dimension problems.  For DE and PSO, convergence times 
increase when additional constraints are binding.  Input price vectors with greater 
dynamic ranges appear to degrade convergence times for DE, with mixed results 
for PSO.  The aggregate experimental evidence indicates these algorithms can 
reliably solve this class of problem, within acceptable time-frames.  Many applied 
hydropower optimization problems are discrete, non-convex and discontinuous.  
These characteristics preclude the application of traditional calculus-based 
algorithms.  In contrast, evolutionary algorithms are readily applied to such 
problems and could provide near real-time solutions and guidance for everyday 
operational decisions at Reclamation’s hydropower plants.  
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Future Directions 
The replicated experimental results described here indicate the three selected 
evolutionary algorithms, PSO, RCGA and DE, are able to accurately and reliably 
solve the constrained dynamic economic dispatch problem.  For optimization 
problems where both methods are applicable (e.g. smooth, convex functions), 
evolutionary algorithms have considerably longer solution times than traditional, 
calculus-based approaches.  The strength of evolutionary algorithms however, is 
they are able to successfully solve a much broader range of problems, including 
discrete, discontinuous and non-convex problems.  The hydropower unit 
commitment problem is such a problem, and one with widespread, practical, 
everyday management application at Reclamation hydropower plants. 
 
Research applying these algorithms to the more complex hydropower unit 
commitment problem is now ongoing.  This effort is entitled, Phase 2- Advanced 
Optimization Algorithms for Hydropower Dispatch, Project ID 3906 and is 
scheduled for completion in Fiscal Year 2013. 
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Appendix 1.  Objectives for Dispatch 

Introduction 

This appendix compares and contrasts several alternative objective functions 
which could be used to characterize the dispatch of hydropower plants.  In the 
dynamic economic dispatch problem, the objective function describes the 
owner/operators’ hourly dispatch decisions.  This mathematical description of the 
decision process is crucially important to the outcome of the optimization process.  
In the vast majority of published literature, it is presumed that hydropower owners 
dispatch their plants to maximize economic benefits.  While this is quite often a 
prime consideration, it is not the only factor shaping the hourly dispatch decision.  
In fact, there are a wide range of potential specifications for the objective 
function.  These alternate characterizations may embody a number of real-world 
strategic and institutional considerations--beyond purely economic motives. 

Economic Dispatch 

Hydropower dispatch for maximum economic benefit is also known as (pure) 
economic dispatch.  Most models of hydropower operations assume that 
hydropower plant owners behave as though they have this sole objective and 
make their dispatch decisions consistent with it.  Operationally, the 
owner/operator of the hydropower plant uses their available storage water to 
generate electricity when the price is highest, subject to the physical, operational 
and environmental constraints on the powerplant.  Economists are particularly 
fond of this characterization since it reflects the tenants of economic theory.  
Many engineering texts also base their expositions on this objective function (e.g. 
Wood and Wollenberg 1996, Rau 2003). 

This objective function represents the maximum economic benefits which could 
be received in the absence of institutional or other strategic considerations or 
constraints.  Since these institutions or strategic constraints are typically rather 
dynamic and management specific, they can change at any time.  As a result, this 
objective function may be preferred for long-term economic studies. 

Peak Shaving 

Typically, the highest observed prices for electricity correspond to the hours when 
load is greatest.  This occurs because the most expensive thermal plants must be 
dispatched to meet load during these peak periods.  Hydropower plants can be 
employed to reduce the load during these peak periods, reducing the need for 
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dispatch of expensive thermal plants and reducing the overall system costs.  This 
dispatch strategy is known as, “peak shaving.”  Peak shaving is the objective 
function used in a number of electricity system models including General Electric 
Corporation’s well known Multi-Area Production Simulation (MAPS) model 
(General Electric Corporation 2008).  The underlying algorithm was described by 
Stachus, Bell and Cashman (1990) and later by Simopoulos, Kavatza and Voumas 
(2007).  It has been employed for modeling the complex hydropower operations 
at Glen Canyon Dam (Harpman 1999).  Recently, the peak shaving approach has 
been used in a variety of renewable resource integration studies including a recent 
study for the National Renewable Energy Laboratory (General Electric 
Corporation 2010).  In the context of renewable energy studies, the peakshaving 
algorithm is typically employed to shave the peaks of the load minus the 
generation from renewable intermittent sources. 

Native Load First 

The stated objective of some entities is to a serve their native load first, using their 
owned hydropower resources, and then to profit from the sale of any remaining 
generation.  If they have surplus energy or capacity, after meeting their own 
system load, they will sell it to others on either the firm or spot markets.  If they 
are resource short, they must buy energy to make up the shortfall.  The strategy of 
serving native load first, may or may not be consistent (probably is not) with 
either minimizing production costs in the larger interconnected system or 
maximizing the economic benefits afforded by their owned resources.  This 
objective has been espoused by Western Area Power Administration as describing 
their operation of the Colorado River Storage Project hydropower resources 
(Veselka, et al 2010). 

Buy/Sell and Generate 

A number of larger utilities and other entities have sufficient owned resources and 
a large enough market presence and access to transmission that they can purchase, 
sell or generate electricity, at their option.  By judiciously purchasing on the open-
market, generating when necessary and economic, and selling when electricity 
prices are high, these entities can leverage the use of their owned hydropower 
resources and their market presence in order to maximize economic benefits.  
Such a strategy can be used to increase the benefits afforded by limited pondage 
(storage) hydropower plants.  This strategy is discussed in considerable detail in 
Edwards, Howitt and Flaim (1996), Edwards, Flaim and Howitt (1999) and 
Edwards (2003) in association with the optimal operation of hydropower plants in 
the Upper Colorado River Basin. 
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Appendix 2.  Ancillary Services and 
Dispatch 

Ancillary Services 

In addition to providing energy and capacity, hydropower plants are large-scale 
providers of ancillary services.  Ancillary services are defined by FERC (1995) 
as, “… those services necessary to support the transmission of electric power 
from the producer to the purchaser given the obligations of control areas and 
transmitting utilities within those control areas to maintain reliable operations of 
the interconnected transmission system.” 
 
Ancillary services help maintain reliable system operations in accordance with 
good utility practice.  Some of these services include spinning reserve, non-
spinning reserve, replacement reserve, regulation/load following, black start, 
reactive power and voltage support.  Quick start times, fast ramping capabilities, 
and the ability for rapid corrective responses to changes in grid conditions make 
hydropower plants an excellent resource for providing ancillary services.  

Dispatch Effects 

Two ancillary services in particular, spinning reserves and regulation, can affect 
the optimal economic dispatch problem.  Figure 18 shows how providing 
ancillary services can reduce the operating range of a power plant.  Spinning 
reserves reduce maximum scheduled operations.  On the other hand, regulation 
affects both maximum and minimum production levels.  The influence of these 
services on dispatch operations is described below.  
 
Regulation is the amount of operating reserve capacity required by the control 
area to respond to automatic generation control to assure that the Area Control 
Error meets these two conditions: that it (1) equals zero at least one time in all 10-
minute periods and (2) falls within specified limits to manage the inadvertent flow 
of energy between control areas. 
 
Hydropower plants can provide regulation services by responding quickly to 
moment-by-moment up and down movements in control area electricity demand 
using Automatic Generation Control (AGC).  Larger plants, multi-unit plant, are 
particularly well suited for providing this service because at least one or more of 
their turbines are always on-line, and they operate at sufficiently high output 
levels such that sudden decreases in load will not reduce generation below their 
technical or regulatory minimum output levels.  
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Figure 18.  Ancillary services and 
dispatch. 

 
To provide regulation-up service, generation levels must be sufficiently low such 
that a power plant can respond to instantaneous decreases in grid loads without 
exceeding their output capability.  Regulation-up services will incur an 
opportunity cost when maximum power plant sales during peak periods are 
required to be lower than the plant’s capability.  The power plant’s average hourly 
production level must be at or below the plant’s capability minus the regulation-
up service level.  Under either scenario, regulation-up service does not incur any 
opportunity costs under all but very high hydropower conditions since the dam is 
operating below the maximum power plant capacity.  It is of note that at many 
times, the regulatory flow rate is significantly below the physical plant limit.  It 
should also be noted that providing regulation services may not affect either 
hourly ramping or daily changes at a powerplant. 
 



Advanced Algorithms for Hydropower Optimization 

82 

Spinning reserves are defined as generating capacity that is running at a zero load, 
connected to an output bus, synchronized to the electric system, and ready to take 
immediate load.  The portion of unloaded synchronized generating capacity, 
controlled by the power system operator, must be capable both of being loaded in 
10 minutes and kept running continuously for a set period of hours.  
 
When a generator supplies spinning reserve services, it will increase output in 
response to an outage situation.  The increased output fills the generation void 
created by a generator in a balancing authority that suddenly ceases to produce 
power.  Spinning reserves may also be called upon when an abrupt transmission 
line outage will no longer permit the reliable transport of power into a region.  
Generation levels in normal conditions must be sufficiently low such that when an 
outage occurs, it can increase output levels by its spinning reserve obligation 
without exceeding the maximum capability of the generator. 
 
Spinning reserve services require that maximum production levels do not exceed 
the plant’s capability minus the amount of spinning reserves required.  Providing 
spinning reserves also requires that one or more turbines operate below capability 
or in a spinning state without producing power.  The former condition may 
require the unit to operate in a sub-optimal state, while the latter releases water 
without power production to spin the turbines under no load.  These additional 
requirements typically incur opportunity costs, because capacity must be reserved 
at the high end of operations to accommodate the spinning reserves.  Unlike 
regulation-down services, spinning reserves do not affect minimum generation 
levels.  
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Appendix 3.  Hydropower Plant 
Specifications 

Release, Head and Generation 

For the dynamic economic dispatch problem, the equation used to characterize 
real power generation at the hydropower plant is shown in (21). 
 

(21)   
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Where: 
 pi = (real) electric power generated (mw) by the generator 
 γ = 62.40, specific weight of water at 50 degrees Fahrenheit (lbs/ft3). 
 effi= efficiency factor1

 qi = release (cfs) from the generator 
 (dimensionless) for the generator. 

 Q = total release from all sources. 
 elev = reservoir elevation (ft above mean sea level). 
 head = net head (ft) 
 fptokw = 737.5, foot-pounds to kilowatt conversion factor (kW/(ft-lbs/sec) 
 
For purpose of this problem net head is defined as the difference between the 
reservoir elevation and the tailwater elevation.  While it is assumed the reservoir 
elevation is known, the elevation of the tailwater varies with the total release from 
all sources, Q.  More explicitly, the head depends not only on the releases made 
from the powerplant but also from the outlet works, if any.  For our purposes, we 
characterize net head as shown in (22). 
 
(22)   )]10([ Qwwelevhead ×+−=  
 
Where: 
 head = generation head (ft) 
 elev = reservoir elevation (ft above mean sea level). 
 w0 = 1708.186,  tailwater height (ft above mean sea level) when Q=0.0 
 w1 = 0.0070, change in tailwater elevation as release changes (ft/cfs) 
 Q = total release from all sources 
 
 

                                                 
1 In this application the efficiency (eff) is represented as a constant.  More generally, efficiency 

may vary as a function of release and head. 
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The fully specifie relationship for generation at time (t) as a function of release 
and head is then (23). 
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Collecting terms, the generation equation can be further simplified as shown in 
(24).  Note that equation (24) is nonlinear and quadratic in qt. 
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Minimum and Maximum Release Constraints 

For the hydropower plant, the minimum and maximum release constraint values 
are shown in Table 8. 
 

Table 8.  Maximum and Minimum Release 
Constraints 

Outlet Minimum 
release (cfs) 

Maximum 
release (cfs) 

 k w 
Generator 0.0 12,000 
Outlet works 0.0 15,000 

 
 

Generator Specifications 

The engineering specifications for the (aggregate) generator characterized at the 
hydropower plant are shown in Table 9. 
 

Table 9.  Generator Specifications 

Efficiency (eff) 0.85 
Capacity 239.9551 MW1 

1 The maximum occurs at an elevation of 
2008.18560 and a release of 12,000 cfs. 
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Plant Description 

As described, the relationship between release, net head and generation is 
relatively complex.  Figure 19 illustrates this relationship.  At a given reservoir 
elevation, for releases between the minimum necessary release and the maximum 
release, the relationship is approximately linear.  Once the maximum release 
capability of a given turbine has been reached, no additional generation from that 
unit can be achieved.  Releases in excess of a given turbine’s release capability 
must be made from another turbine, or from the outlet works.  Such releases cause 
an increase in the tailwater elevation, a decrease in net head and a decline in the 
generation from that unit. 

 
Figure 19.  Release, head, and generation 
relationship. 
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Appendix 4.  Release, Head and 
Efficiency 
The efficiency parameter (eff) for the universal power equation described 
previously in Appendix 3, determines the rate at which falling water is converted 
into electrical energy.  Efficiency is typically measured as a decimal fraction or a 
percent.  The relationship between release, head and generation contained in 
Appendix 3 utilizes a static value for the efficiency (eff) which is constant for all 
values of head and release.  In general however, the efficiency of a Francis turbine 
varies depending on the head and the release rate and this relationship is unique to 
the design of each turbine runner and the site where it is installed. 

In response to previous review comments, this appendix describes the more 
general relationship between efficiency, release and head.  The generic 
mathematical relationships developed in this appendix are purposely specified in 
terms of percent of maximum release and percent of maximum head, to allow for 
the ease of application in this and future research efforts. 

To accommodate generic and nonspecific use, the relationship between total 
release, head and efficiency becomes slightly more complex, but remains 
reasonably tractable.  A plausible relationship between release and head is the 
quadratic function shown in equation (25). 

(25)   bestE
head

bestQqE +
−−

=
2)(  

Where:  E = efficiency (dimensionless) 
  q = total release (cfs) 
  bestQ = the release yielding the highest value of E 
  head = gross head (feet) 
  bestE = the highest value of E which can be attained. 
 
The values for bestQ and bestE for a particular research application must be 
calculated.  The maximum value of E which can be obtained at a given head is 
computed using expression (26).. 
 

(26)   100*





 += A

maxhead
headA*bestE  

 
Where:  bestE = the maximum efficiency (dimensionless) 
  A = scalar parameter (0<A≤1). 
  head = gross head (feet) 
  maxhead = the maximum normal gross head at this site. 
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The value of Q which produces the maximum efficiency, for a given head is 
described by equation (27). 
 
(27)   )(* bestEMaxEBbestEbestQ −+=  
 
Where:  bestQ = the release which produces the maximum value of E (cfs) 

bestE = the maximum efficiency (dimensionless) 
  B = scalar parameter (0<B≤1). 
  maxE = the value of bestE obtained by evaluating equation (26)  

with the head set equal to the maximum head 
dimensionless). 

 
For purposes of this exposition, the values of the parameters used are illustrated in 
Table 10 shown below.  Naturally, these parameter values will vary, depending on 
the details of the specific research application being examined. 
 
 

Table 10.  Efficiency 
Parameter Values 

Parameter Value 
maxhead 400.00 

A 0.450 
B 0.400 

 
Using the parameter values shown in Table 10 in expressions 25 and 26, the 
relationship between release, head and efficiency, described by equation (27) can 
be plotted for three different levels of gross head as shown in Figure 20. 
 
As illustrated in this figure, the expression for efficiency as a function of release 
and head (equation 27) provides a very reasonable representation of the 
relationships between these variables.  For instance, at a gross head of 400 feet, 
the maximum efficiency is 90 percent at a gate opening of 90 percent.  At a lower 
head of 300 feet, the maximum efficiency is 78.75 percent at a gate opening of 83 
percent.  This relationship closely tracks and is similar to the observed efficiency 
characteristics at many hydropower facilities where Francis turbines are 
employed. 
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Figure 20.  Release, head, and efficiency. 
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Appendix 5.  Calculus of Dynamic 
Dispatch 
This appendix reviews the traditional or calculus based approach for the solution 
of the optimal dynamic dispatch problem using a specific example.  This 
approach dates back to the days of Sir Isaac Newton and is routinely taught in 
economics, engineering and physical science classes.  To keep the size of the 
example reasonably tractable, the problem explored here is limited to a two period 
(T=2) problem.  To facilitate illustration, this example problem includes fewer 
constraints than the general problem.  

Example Problem 

For purposes of this example, the hydropower plant operator is given an amount 
of water for release (Q) over a planning horizon of T=2.  We assume s/he knows 
price of electricity (R) over each of the T-periods.  The plant operator must decide 
how much water to release for generation in each period (t) to maximize revenue 
over the planning horizon.  In this example we will presume there are constraints 
on the total amount of water available for release (Q) and the maximum amount 
of water which can be released in each period. 
  
This example optimal dynamic dispatch problem can be written in mathematical 
notation as shown in equations (28) through (30). 
 

(28)  ∑
T

ttt qpRMaximize
1

)(  

  subject to: 
 

(29)   ∑ ≤
T

t Qq
1

 

 
(30)   }..1{max Tqq tt ∈∀≤  
 
Where:  Rt = price ($/MWh) at time (t) 

pt = generation (MW) at time (t) 
  qt = release (cfs or af) at time (t) 
  Q = total release (af). 
  qmax = maximum release 
  T = 2 
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We will assume here that the maximum release constraints do not vary across the 
planning horizon.  For this reason, qmax is the same for all periods (t).  
 
The objective of the plant operator is to maximize revenue over the time horizon 
(T=2) by generating electricity when it is most valuable.  While doing so, s/he 
cannot exceed the amount of water available for release over the planning horizon 
(constraint equation 29).  The amount of water released in any one period must be 
less than or equal to the maximum water release constraint (equation 30). 

A Specific Example Problem 

As described so far, the example is very general.  To facilitate further 
understanding and demonstrate how to solve these types of problems, we will 
fully specify the mathematical form.  Drawing on our previous exposition and 
Appendix 3, the relationship between generation, release and head can be 
specified as (31). 
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where:  γ = 62.40, specific weight of water at 50 degrees Fahrenheit (lbs/ft3). 
 effi= efficiency factor2

 elev = reservoir elevation (ft above mean sea level). 
 (dimensionless) for the generator. 

 fptokw = 737.5, foot-pounds to kilowatt conversion factor (kW/(ft-lbs/sec) 
w0 = 1708.186, height of the tailwater (ft above mean sea level) when 
Q=0.0 
w1 = 0.0070, rate of change in tailwater elevation as release changes 
(ft/cfs) 

 
 
Exploiting the many constants in (31), it will be expedient to form a simpler 
constant as shown in (32). 
 

(32)  
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We can then write out the relationship between generation, elevation and release 
as the simpler and more streamlined expression (33). 
 
(33)   ]1)0[( 2

tttt qWqWelevAp +−×=  
 

                                                 
2 In this application the efficiency (eff) is represented as a constant.  More generally, efficiency 

may vary as a function of release and head. 
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The fully specified optimal dynamic dispatch problem can be written in 
mathematical notation as shown in equations (34) through (36). 
 

(34)  ∑ +−××
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tttt qWqWelevARMaximize
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  subject to: 
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(36)   }..1{max Tqq tt ∈∀≤  
 
This class of constrained optimization problem occurs frequently and 
conceptually can be solved using the Kuhn-Tucker conditions or by the 
introduction of artificial slack variables.  We choose the latter approach, since 
arguably it is both simpler and more tractable. 

Introducing Slack Variables 

The constraints (35 to 36) in the fully specified example problem above are 
inequality equations.  We can convert these inequalities to equalities by 
introducing some artificial variables known as “slack variables.”  We will denote 
the slack variables as, “Sx” where the subscript (x) identifies the context of the 
specific slack variable.  For purposes of the numerical solution example 
(introduced subsequently), we will insure the slack values in each equation are 
nonnegative, by specifying them as squared terms.  This serves to restrict the 
value of the (squared) slack variable to be zero, or some positive value. 
 
Introducing slack variables into the inequality constraints (35 to 36) yields the 
corresponding equality constraints (37 to 38). 
 

(37)   ∑ =+
T

Qt QSq
1

2  

 
(38)   max

2
max qSqt =+  

 
A closer look at the water balance equation (37) will help to illustrate the use of 
slack variables and their meaning in an equation.  In the event less water is 
released over the planning horizon than is available (the sum of the qt is less than 
Q), the value of S2 will be positive and nonzero.  This indicates there is extra or 
“slack” water remaining in the reservoir which has not been released for 
generation.  If the constraint is binding (the sum of the amount of water release 
exactly equals Q), then the value of S2 will be zero.  This indicates that all of the 
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water available for release during the planning horizon has been released and 
there is no extra water (no slack) remaining.  

Slack Variable Formulation 

Incorporating the constraint equations as equality constraints with slack variables, 
the fully specified example problem then can be restated as equations (39) 
through (41). 
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An analytical solution to this problem can be found using the method of 
Lagrange.  We do so by first forming a Lagrangian expression and then 
maximizing it as shown in (42). 
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A Lagrangian expression embodies both the original objective function, and each 
of the constraints.  The introduction of Lagrange multipliers (λ, γ) is a clever 
mathematical device.  The underlying logic is that either the value of the 
Lagrange multiplier is zero, the value in parentheses (the constraint) is zero, or 
both.  The resulting Lagrangian expression incorporates T*1+1 or 3 new 
Lagrangian variables; one Lambda (λ) for the water release constraint and a set of 
T Gammas (γ), one for each maximum release constraint.  
 
There are 8 choice variables in the Lagrangian expression (equation 42).  The set 
of choice variables includes T=2 water releases (the q’s), the (T*1+1) or 3 
Lagrangian variables and the (T*1+1) or 3 slack variables (S). 
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Analytic Solution 

The first order necessary conditions (FOC’s) for a maximum require the first 
derivatives of the function be equal to zero at the optimum.  Taking the first 
partial derivatives of the Lagrangian function (42) with respect to each of the 8 
choice variables, yields the set or vector of 8 differential equations shown in 
equations (43) to (50). 
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Conceptually, this set of simultaneous differential equations can be solved to find 
the values of q, λ, γ and S.  And for this relatively simple example, analytic 
solution is certainly feasible.  In many practical applications, T is larger and there 
are many more constraints.  In many, if not most real-world applications, it is not 
possible to solve this type of problem analytically.  
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Lagrange Multipliers 

Lagrange multipliers hold a special significance to economists, engineers and 
economists.  They are interpreted as the shadow price, dual price or the value of 
the marginal unit of the resource.  To place this in context, consider Lambda (λ), 
the Lagrange multiplier for the water constraint.  Lambda represents the marginal 
value of an additional unit of water when allocated optimally.  When Lambda is 
positive, this indicates that an additional unit of water will have a value of λ.  If 
Lambda is zero, this suggests that an additional unit of water will not add any 
value, if more were available.  When Lambda is negative, this indicates that 
additional releases will cause the maximum revenue to decline. 
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Appendix 6.  Newton-Raphson Method 
Newton’s method, or the Newton-Raphson method as it is called in the 
multivariate context, is a calculus based numerical optimization and root-finding 
technology.  Historically, it dates back to the dawn of calculus and the time of Sir 
Isaac Newton (circa 1400).  As described in Press, et al (1989), it is an extremely 
powerful optimization approach, derived from a 2nd order Taylor Series 
expansion.  Underlying this method is a fundamental and deceptively simple 
mathematical insight-- any arbitrary nonlinear function can be locally 
approximated by a quadratic expression.  Variants of the original method form a 
large family of nonlinear optimization techniques (Press, et al 1989, Judd 1999). 
 
The derivation of the Newton-Raphson method is short and relatively 
straightforward.  Let x be a vector of decision variables and f(x) be an arbitrary 
multivariate function of these variables.  A 2nd order Taylor Series expansion 
(ignoring the remainder term) of f(x) around x. is then given by equation (51). 
 

(51) 
2

))((
))(()()(

2
1

''

1
'

1
nnn

nnnnn
xxxf

xxxfxfxf
−

+−+≅ +
++  

 
Here, we introduce the subscript ”n” to denote the iteration number.  In vector 
notation, this expression can be rewritten as (52) 
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)(  is the gradient, or vector of first partial derivatives, for 

the function evaluated at x=xn and 
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 is the Hessian matrix, or matrix of 

second partial derivatives, also evaluated at x=xn.. 
 
Maximizing the left-hand side of equation (52) with respect to xn+1 yields the 
following vector expression of first order conditions: 
 
(53) 0)( 1 =−×+ + nnnn xxHF  
 
Using matrix algebra and solving this equation for xn+1 gives us the well-known 
Newton-Raphson algorithm (54) 
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The expression for the Newton-Raphson iterative solution approach is detailed in 
equation (54).  In the Newton-Raphson algorithm, the vector of estimated choice 
variables (x) in the next iteration (n+1) is obtained by post-multiplying the inverse 
of the Hessian matrix by the gradient vector and then subtracting the result from 
the estimated vector available in the current iteration (n).  This computation is 
dependent on the properties of the Hessian matrix (H) and its inverse.  Provided 
that H-1 exists and is negative define, this expression can be solved iteratively to 
obtain estimates of the decision vector (x). 
 
Computation of the H-inverse matrix can be a resource intensive and 
computationally expensive process, particularly for moderate to large problems 
and when the H matrix is sparse or poorly scaled.  As Judd (1999), Press, et al 
(1989) and others have advised, well-designed implementations of this algorithm 
do not invert the H matrix directly.  Instead, clever applications of matrix algebra 
are used to solve for the x vector, without (directly) undertaking the matrix 
inversion step. 
 
Although an exceptionally powerful technique, the Newton-Raphson algorithm 
can fail, and sometimes does so,”… in a spectacular fashion” (Press et al 1989).  
This approach is dependent on the researcher’s ability to provide a starting value 
for the vector of decision variables, x, (a.k.a., a guess) which is reasonably close 
to the true solution.  If the supplied starting value for the vector x, is too far from 
the true solution, the algorithm will fail, particularly in cases where the function 
being maximized is complex or ill-behaved.  As with other approaches, the 
Newton-Raphson method is subject to a variety of numerical computation issues 
including scaling, truncation, round-off error and specification error.  These 
maladies often become apparent to the researcher when the H matrix becomes 
singular or ill-conditioned. 
 
Numerical and computation problems involving the H matrix are sufficiently 
common that a stream of research on alternative but closely relatedtimization 
algorithms has arisen.  These research efforts have spawned an impressive 
number of alternative approaches, typically classified as “quasi-Newton” or 
“variable metric” methods (see Press, et al 1989).  
 
For our example problem, the vector of choice variables (x) is defined as: 
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The gradient vector (vector of first partial derivatives), obtained by differentiating 
the Lagrangian expression with respect to each of the choice variables is given by 
(56). 
 

(56)  



































−
+−
+−

−−

−−+−
−−+−

=
∂
∂

=

∑

22

11

2
2,2max

2
1,1max

1

2

2222

1111

2
2

2
)(
)(

)(

120
120

γ

γ

λ

γ

γ

λ

γ
γ
λ

γλ
γλ

S
S
S

Sqq
Sqq

qSQ

qAWRAWR
qAWRAWR

x
LF

T

t

i

 

 
The bordered Hessian is the matrix of second partial derivatives.  For our example 
problem the Hessian matrix is derived as shown in equation (57). 
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The Newton-Raphson approach iterative procedure starts with an initial vector of 
the decision variables supplied by the research.  The iterative process is continued 
until a pre-set convergence or stopping criteria is achieved.  At an optimal point, 
the gradient vector should be equal to zero.  Judd (1999) recommends a combined 
stopping criteria which considers the both the norm of the gradient vector and the 
change in the solution vector from one iteration to the next. 
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Appendix 7.  Lambda Search Algorithm 
Appendix 5 describes the analytical solution of the optimal dynamic dispatch 
problem.  This appendix illustrates a simplified version of the dynamic dispatch 
problem and illustrates its solution using a calculus based traditional approach, 
known as lambda search.  
 
As described previously, the hydropower plant operator is faced with a 
challenging dynamic optimization problem.  Given the amount of water available 
for release and the anticipated price of electricity over a particular time horizon 
(T), the plant operator must decide how much water to release for generation in 
each period (t) in order to maximize revenue.  Typically, the total amount of water 
available for release (Q) over the planning horizon is fixed and known.  The 
vector of prices (R) over the planning horizon (T) is assumed or anticipated, based 
on prior experience and knowledge. 
 
Ignoring (for now) the other constraints shown in the more general optimal 
dynamic dispatch problem, we can write a streamlined version of the problem as 
equations (58) through (59).  For purposes of this exposition we will assume the 
operator will release all of the water planned for release during the planning 
horizon.  We can then eliminate the inequality sign from equation (59). 
 

(58)  ∑
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Where:  Rt = price ($/MWh) at time (t) 
  pt  = generation (MW) at time (t) 
  qt = release (cfs or af) at time (t) 
  Q = total release (af). 
 
The fully specified relationship between generation, release and head (see 
Appendix 3) is described by equation (60). 
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where:  γ = 62.40, specific weight of water at 50 degrees Fahrenheit (lbs/ft3). 
 effi= efficiency factor3

 elev = reservoir elevation (ft above mean sea level). 
 (dimensionless) for the generator. 

 fptokw = 737.5, foot-pounds to kilowatt conversion factor (kW/(ft-lbs/sec) 
w0 = 1708.186, height of the tailwater (ft above mean sea level) when 
Q=0.0 
w1 = 0.0070, rate of change in tailwater elevation as release changes 
(ft/cfs) 

 
Incorporating this information, we can then write out a specific relationship for 
the simplified dynamic economic dispatch problem as (61). 
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This type of optimization problem can be addressed using the method of 
Lagrange.  The Lagrangian expression for this constrained maximization problem 
is written as (63). 
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We can solve this problem by finding the qt’s and the λ which maximize the 
Lagrangian function.  Before proceeding, we can further simplify this expression.  
Exploiting the many constants in (63), we will form a simpler constant as shown 
in (64). 
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If we make this substitution, the Lagrangian expression becomes the somewhat 
less complicated expression shown in (65). 
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3 In this application the efficiency (eff) is represented as a constant.  More generally, efficiency 

may vary as a function of release and head. 
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The first order necessary conditions (FOCs) for a maximum are that each of the 
partial derivatives of the Lagrangian function must equal zero.  The first order 
conditions for this expression are shown in equations (66) through (71). 
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Analytic solution of this system of FOCs would be difficult if not impossible, 
even for low-dimension (low T) problems.  The form of this problem and the 
resulting set of FOCs can be exploited and solved using a relatively 
straightforward numerical technique known as lambda search (Wood and 
Wollenberg 1996). 
 
By examining the set of FOCs we can identify three useful features of these 
expressions.  First, the single variable lambda (λ) is common to the first 1..T 
expressions.  Second, the FOCs are of a relatively tractable form which can 
readily be solved for qt if λ is known.  Finally, all of the qt’s must sum up to 
exactly equal Q, at an optimal point.  These three characteristics allow us to apply 
the lambda search numerical algorithm. 
 
The lambda search algorithm and its application to dispatch problems is rather 
well established and is described in Wood and Wollenberg (1996).  The use of 
this algorithm and much of the discussion which follows draws heavily from that 
source. 
 
The lambda search algorithm, summarized in Figure 21, begins with a starting 
value for λ which is typically developed by an informed guess.  Given this 
starting λ value, the expressions for the (T) first derivatives can be used to 
compute a set of output levels for each period (t).  In order to meet the water use 
constraint, all of the qt values should sum exactly to the amount of water available 



Appendix 7.  Lambda Search Algorithm 

101 

for release (Q).  In practice, there is usually some error which we will define as 
ε=Q-Σqt.  We would be satisfied if the absolute value of this error (|ε|} was less 
than some arbitrarily small value which we will call the convergence tolerance 
(ctol).  In the default case, a tolerance level of 0.01 is employed.  It is unlikely 
that |ε|<ctol on the first iteration unless we make an extremely lucky guess for the 
value of λ!  Since the probability of this happening is virtually zero, the algorithm 
requires a minimum of at least 2 iterations.  On the second iteration a simple 
heuristic or rule is used to “set” the value of λ.  This heuristic works as follows; if 
ε>0 set λ2=λ1*0.90, if ε<0 set λ2=λ1*1.10, 
 
At the end of the second iteration, if |ε|<ctol, the algorithm terminates and the 
result is written to an output window.  In the event that |ε|>ctol, a new value of λ 
is projected.  
 
If more than 2 iterations are required, a more sophisticated approach to projecting 
λ is employed.  Because there are constraints on the values that qt can take, there 
are discontinuities in λ.  Due to these discontinuities, interval bisection (Press et al 
1989) is used to identify a new value of lambda for iterations 3 and higher.  This 
new or “projected” value of λ is used in the subsequent iteration. 
 
These iterations or loops continue until the difference between the sum of the qt ‘s 
and Q is driven to within the user specified convergence tolerance.  For logical 
reasons, the qt‘s are constrained to remain nonnegative during these iterations. 
 
 

 
Figure 21.  The Lambda search algorithm. 
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Potentially, the iterative process used in this algorithm can fail due to oscillations, 
round-off error, truncation or incorrect specification of the problem.  In this 
application, the number of iterations is limited to some pre-set maximum to 
prevent the process from continuing forever should such a failure occur. 
 
Although failures are certainly possible, our experience shows this algorithm 
converges very rapidly for this particular type of optimization problem. 
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Appendix 8.  Real Coded Genetic 
Algorithm 

Introduction 

Genetic algorithms (GAs) are almost certainly the first evolutionary algorithms 
ever described in the literature.  The GA is an optimization approach which is 
based on genetic principles and natural selection.  A GA guides a population 
composed of many individuals as it evolves under specified selection rules 
towards a state of maximum fitness. 
 
The method was originally developed by John Holland (1975) starting in the 
1960’s.  Work by De Jong (1975), one of Holland’s graduate students, pioneered 
the practical application of GA’s for optimization which stimulated many threads 
of related research.  An applied study by another one of his graduate students, 
David Goldberg (1989), spurred further interest in GA’s.  Since then, GA’s have 
since been applied in nearly every discipline making use of optimization 
techniques, with Rajkumar, Vekara and Alander (2008) citing a staggering 20,488 
applications.  An amazing number of books have been written on GA’s as typified 
by Michalewicz (1996), Michalewicz (2010), Haupt and Haupt (2004) and others.  
Pertinent to this research, Rajkumar, Vekara and Alander (2008) report 948 
published GA applications in the realm of power systems engineering.  

Binary GA 

The original GA’s described by Holland (1975) and others, utilizes a binary 
encoding scheme to represent numerical values and is often referred to as binary 
GA.  These original GA’s code the values of the choice variables into strings of 
1’s and 0’s which mimics the manner in which genes are stored on the 
chromosome.  All subsequent manipulations, such as crossover and mutation, are 
then carried out on these binary encoded strings.  The resultant new chromosomes 
are then decoded from their binary form to return the actual values of the choice 
variables. 
 
Like other evolutionary algorithms, the GA has a number of notable advantages 
over traditional (calculus based) optimization methods.  It can accommodate 
continuous, discrete, nonlinear and complex objective functions as well as many 
forms of constraints.  GA’s do not rely on gradient information and the ability to 
calculate a derivative is not required for implementation.  GA’s are more likely to 
identify a global extrema and less prone to converge on a local optima.  This 
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approach is especially well suited for complex optimization problems 
characterized by multiple local extrema. 

Real Coded GA 

Real coded genetic algorithms (RCGA) are a continuous or real valued variant of 
the original (binary) GA’s.  Real coded genetic algorithms are naturally suited for 
optimization of real or continuously valued objective functions.  RCGA 
algorithms were employed exclusively in this research effort because they are 
computationally more efficient and because they are better suited to the test 
problems examined. 
 
Like binary GA’s, the RCGA approach is based on a virtual population of np-
independent individuals.  The population lives and evolves over a number of 
generations.  During each generation, individuals are selected from the population 
to become potential parents.  The selected parents may successfully reproduce to 
produce offspring which have some probability of undergoing mutation.  The 
resulting offspring and/or their more fit parents are recruited into the next 
generation, surviving to potentially reproduce in subsequent generations.  Over 
successive generations, the population becomes increasingly fit —thereby 
identifying the optimum (minimum or maximum) of a function. 
 
In terms of efficiency and speed, RCGA algorithms have a clear-cut advantage 
over binary GA’s.  RCGA do not require encoding and decoding of the choice 
variables.  Particularly for large dimension problems, this can be a tremendous 
speed advantage.  Representation of real-valued variables as binary strings 
requires the analyst to make a tradeoff between the precision and string size.  As 
the numeric precision is increased, considerably longer binary strings and 
additional memory are required.  High precision characterizations necessarily 
increase storage memory requirements along with the computational overhead 
associated with reading and writing these binary strings.  RCGA, which 
characterizes real-valued decision variables as..real-valued variables, does not 
suffer from this problem. 

RCGA Terms 

There are several GA specific terms commonly used in the literature.  Among 
these are the following. 
 

• Fitness function- objective function value plus penalties, if any. 
• Fitness- value of the fitness function 
• Current fitness− an individual’s (own) fitness 
• Population best – best fitness achieved by any individual in the population 
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Individual Components 

Each of the np individuals in the virtual population consists of the following 
components, where d is the number of dimensions in the problem: 
 

• Coordinates of its current position: x=(x1…xd) 
• Current fitness 

 
In the context of GA’s, the vector of decision variables is called a chromosome.  
An individual decision variable is termed a gene. 
 
Operationally, each individual is typically coded as either an object, in object 
oriented programming languages such as C#, or as a record type. 

Basic RCGA Algorithm 

The basic RCGA algorithm is relatively straightforward as illustrated in Figure 
22.  First, each of the np members of the population is created, their positions 
initialized in the search space and their fitness evaluated and stored.  The RCGA 
iterative evolutionary process then begins.  During each iteration or generations: 

a. parent chromosomes are selected for potential reproduction;  
b. with some probability, the selected parents successfully reproduce via a 

crossover procedure (crossover is similar to sexual reproduction in that 
each parent donates part of its chromosomes to the offspring); 

c. with a given probability, each offspring is subject to mutation; 
d. the fitness of each offspring is evaluated and stored;  
e. using a recruitment strategy, the resultant offspring and parents are 

recruited into the next generation; and,  
f. the best fitness of the population is updated. 

 
At the end of each generation, a test is applied to determine if the population has 
converged.  If the population has converged, the iterative process is terminated 
and the results are reported.  If the population has not converged, a new iteration 
is undertaken.  This process continues until the either the population has 
converged or the maximum number of iterations has been completed. 
 
There are a variety of available schemes for parental selection.  The most 
frequently encountered approaches are the roulette wheel and the tournament 
methods.  The roulette wheel approach can only be used when the fitness function 
does not change sign.  In other words, it can only be used if the value returned by 
fitness function is strictly positive, or strictly negative.  The fitness functions for 
the three experimental test functions and the power system applications can and 
do change signs, negating the utility of this approach.  Owing to practical details 
such as this, the tournament selection approach was employed in this research 
effort, as it has been for many other applications. 
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Figure 22. The basic RCGA algorithm. 

 
Tournament selection is readily coded and executes very quickly.  In the 
tournament selection approach, two individuals are chosen at random from the 
population.  The chosen two individuals compete and the one with greater fitness 
is retained as a potential parent.  Two more individuals are then randomly selected 
from the population and the fitter of the two is retained as a potential parent.  The 
two potential parents which result then enter the reproduction process. 
 
There are many different reproductive strategies described in the GA literature.  
Reproduction is similar to sexual reproduction in mammals and is characterized 
by the potential successful exchange of genetic material with a relatively high 
probability.  If the parents successfully exchange their genes, their offspring have 
some the potential for mutation, which may be fitness improving or fitness 
degrading, with a much lower probability. 
 
All of the crossover and mutation approaches described subsequently are designed 
for two parents producing one or two offspring.  As in the natural world, some 
reproductive scenarios involve two parents producing a single offspring, two 
parents producing two offspring, two parents producing multiple offspring and 
even more than two parents producing a single offspring.  Each of these schemes 
has its proponents and attendant niche literature.  Other than practicality, there 
seems to be little evidence for selecting a particular scheme.  For purposes of this 
research effort, the reproduction schemes considered were limited to two parents 
producing two offspring, or two parents producing a single offspring. 
 
Parental traits are conveyed to the potential offspring via the so called crossover 
procedure.  In the crossover process both parents intermingle their genes to 
produce offspring.  Numerous approaches have been developed to simulate this 
process.  In the context of RCGA, the arithmetic crossover approach 
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(Michalewicz 1996), the Laplace crossover approach (Deep and Thakur 2007), 
the linear crossover approach (Wright 1991) and the heuristic crossover approach 
(Michalewicz 1996) are routinely encountered in the literature.  These four 
crossover approaches were implemented for this research effort.  For reasons of 
brevity, only the Laplace approach is described.  
 
The Laplace crossover approach was developed by Deep and Thakur (2007) and 
exploits the properties of the Laplace statistical distribution.  Initially, the two 
prospective parents are subjected to a probability of reproduction test.  The 
probability of (successful) reproduction is typically set at a relatively high level, 
with many researchers using a value of 0.90 for this parameter.  A uniformly 
distributed random number between 0 and 1 is then generated.  If this random 
value is less than or equal to the probability of reproduction, the two parents may 
reproduce.  If it is not, the two parents fail to produce any offspring.  Depending 
on their fitness ranking and the recruitment approach employed, their lineage may 
not continue into future generations.  Assuming they are allowed to reproduce, 
another uniformly distributed (0,1] random number (ux) is generated.  This value 
is used to generate a random value β which follows the Laplace distribution as 
shown in equation (72). 
 
(72)  )5.0*21ln(*)5.0(* −−−−= uxuxsignbµβ  
 
In this equation b which is restricted to (b>0) is the scale (dispersion) parameter 
for the Laplace distribution and μ is the mean or location parameter.  Larger b 
values produce a random variable β, having a greater dispersion around the parent 
genes.  Smaller b values produce a random variable β, which has a smaller 
dispersion around the parent genes. 
 
Two offspring are then generated by the following expressions. 
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Where:   i = dimension 
     x(J) = parent J {1, 2} 
      y(J) = offspring J {1, 2} 

 
Assuming the parents successfully reproduce, their offspring are subject to a small 
probability of mutation.  Mutation serves to increase the diversity of the solutions.  
Mutation is nothing more than a random change of selected genes on the 
chromosome.  The effects of a mutation may be fitness enhancing or fitness 
degrading. 
 
There are a large number of mutation rules and described in the literature, some of 
which are quite ingenious.  A sampling of mutation approaches include; Gaussian 
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mutation, nonuniform mutation (Michalewicz 1996), power mutation (Deep and 
Thakur 2007), uniform mutation (Michalewicz 1996) and boundary mutation 
(Michalewicz 1996).  In the context of RCGA, uniform mutation and nonuniform 
mutation (Michalewicz 1996) are the two approaches predominately employed.  
Both of these mutation approaches were implemented for this research effort.  For 
the sake of brevity, only the latter mutation approach will be described. 
 
The genetic material to be mutated at the kth generation is denoted as x, xi is 
bounded by {li, ui} where li is the lower bound and ui the upper bound on x in 
dimension (i).  The mutated value of x is given by equation (74). 
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In equation (74), τ is a random binary digit that take on the value of either 1 or 0.  
The value of the function ∆ is determined by equation (75). 
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Where: α = a uniform random number [0,1] 
 T= maximum number of generations 
 b = parameter determining the degree of non-uniformity 
 k = generation number 
 
The equation for ∆(k,y) returns a value in the range [0,y] so that the probability of 
returning a number close to zero increases as k, the number of generations, 
increases.  During the initial generations (low value of k), the non-uniform 
mutation approach promotes a uniform search and in later generations (high 
values of k) the search space contracts, leading to a more localized search 
(Michalewicz 1996).  
 
Recruitment, sometimes known as replacement, is the process of determining 
which individuals from the offspring population and the parent population will 
survive into the next generation.  There are a wide variety of recruitment 
approaches, which have evolved over time (see Reeves 2010 p. 71 for a 
summary).  The traditional (simple) approach, the Elite 1 approach (Bucknall 
2002) and more generally, the Elite k approach. 
 
The traditional approach to recruitment is fairly straightforward—only the 
offspring survive into subsequent generations.  While easily implemented in code, 
there is a distinctive logic flaw inherent with this approach.  In the traditional 
approach there is a probability the individual with the highest fitness will be 
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eliminated from the gene pool, slowing the evolutionary process and the search 
for an optima. 
 
The Elite 1 approach preserves genetic material from the fittest individual in the 
gene pool.  This method is used extensively in applied research and is 
fundamentally effective.  In the Elite 1 recruitment approach, following 
reproduction, the parents are ranked from highest fitness to lowest fitness and the 
offspring are ranked from highest fitness to lowest.  The parent individual with 
the highest fitness (the Elite 1) replaces the lowest ranked offspring, provided it is 
of superior fitness.  The remaining offspring and the Elite 1 individual, survive 
into the next generation. 
 
As might be anticipated, there are many potential variations on the Elite 1 
approach.  Limiting the population size to NP, the retained Elite fraction may vary 
from k=2 up to NP.  Haupt and Haupt (2004, p. 62) present an example in which 
the top four elites (k=4) are retained in the next generation.  The limiting case is 
the Elite NP approach, in which the fittest NP individuals from the combined 
parent and offspring pool, are selected for survival into the next generation.  The 
convergence speed characteristics of these approaches improve as k increases to 
NP, however the diversity of the potential solutions is diminished and the 
likelihood of spurious convergence, or premature convergence, at a local optima, 
also increases. 
 
In aggregate, the RCGA approach clearly embodies the notion of evolutionary 
progression or, “survival of the fittest.”  The more fit individuals reproduce and 
pass their traits along to future generations.  As in the natural world, the less fit 
individuals die and their inferior traits are expunged from the gene pool. 
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Appendix 9.  Differential Evolution 

Introduction 

Differential evolution (DE) is one of the more recently described global heuristic 
optimization methods.  As described on their website 
(www.icsi.berkeley.edu/~storn/code.html), it was jointly developed by Storn and 
Price (1995, 1997) and also Price and Storn (1997).  The newly described DE 
algorithm managed to finish 3rd at the First International Contest on Evolutionary 
Computation (1stICEO) which was held in Nagoya, Japan in May 1996.  Since 
that time, there have been an impressive number of DE applications 
encompassing at least three books (Price, Storn and Lampinen 2005, Feoktistov 
2006, Chakraborty 2008 as well as several hundred published articles (see Neri 
and Tirronen (2010) for an overview). 

Description of DE 

The DE approach is based on a virtual population of np-independent individuals.  
During each generation, these individuals reproduce and undergo selection.  Only 
the most-fit individuals in the population survive to reproduce in the next 
generation.  Over successive generations, the population becomes increasingly fit 
—thereby identifying the optimum (minimum or maximum) of a function. 
 
Although computationally intensive, DE has a number of notable advantages over 
traditional (calculus based) optimization methods.  It can accommodate 
continuous, discrete, nonlinear and complex objective functions as well as many 
forms of constraints.  DE does not rely on gradient information and the ability to 
calculate a derivative is not required for implementation.  DE is more likely to 
identify a global extrema and less prone to converge on a local optima.  This 
approach is especially well suited for complex optimization problems 
characterized by multiple local extrema. 

DE Terms 

There are several DE specific terms commonly used in the literature.  Among 
these are the following. 
 

• Fitness function- objective function value plus penalties, if any. 
• Fitness- value of the fitness function 
• Current fitness− an individual’s (own) fitness 
• Global best (g) – best fitness achieved by any individual in the population 

http://www.icsi.berkeley.edu/~storn/code.html�
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Individual Components 

Each of the np individuals in the population consists of the following components, 
where d is the number of dimensions in the problem: 
 

• Coordinates of its current position: x=(x1…xd) 
• Current fitness 

 
Operationally, each individual is coded as either an object, in object oriented 
programming languages such as C#, or as a record type. 

Basic DE Algorithm 

The basic DE algorithm is amazingly simple as illustrated in Figure 23.  First, 
each of the np particles in the population is created, their positions are initialized 
in the search space and their fitness evaluated.  The DE iterative evolutionary 
process then begins.  During each of these iterations or generations, (a) each of 
the 1…np particles reproduces, (b) each parent individual is compared to the 
resultant offspring and the fitter of the two survives into the next generation, and, 
(c) the global best fitness of the population is updated. 
 

 
Figure 23.  The basic DE algorithm. 

 
At the end of each generation, a test is applied to determine if the population has 
converged.  If the population has converged, the iterative process is terminated 
and the results are reported.  If the population has not converged, a new iteration 
is undertaken.  This process continues until the either the population has 
converged or the maximum number of iterations has been completed. 
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There are a large number of mutation rules and crossover approaches described in 
the literature, some of which are amazingly ingenious.  A shorthand approach for 
describing and categorizing these variants has evolved.  The notation DE/x/y/z is 
often used for this purpose.  In this notation, x is used to specify the vector to be 
mutated which can be “Rand” (a randomly chosen member of the population) or 
“Best” (the member of the population with the current best fitness), y represents 
the number of difference vectors used, and, z denotes the type of crossover 
scheme employed.  The most common crossover variant is the “Bin” or binary 
crossover approach. 
 
For purpose of this Appendix, one of the most common mutation and crossover 
approaches, the DE/Rand/1/Bin approach, will be described.  Interpretation of this 
shorthand notation indicates this method employs the “Rand” random method for 
selecting members of the population for the mutation process, uses “1” one 
difference vector in the mutation phase and uses the “Bin” or binary crossover 
method. 
 
The DE/Rand/1/Bin variant of DE is illustrated in equations (76) and (77).  
Equation (76) describes the “Rand/1” mutation scheme. 
 
(76)  ])3[]2[(]1[][ rprpFrpid jjjj −+=  
 
  Where: 
   d =offspring or donor individual 
   j=dimension index 
   i = individual index 
   r1, r2, r3 = random integer4

   p = parent individual  
 

F  = scale parameter. 
 
The offspring or donor vector is constructed from three randomly chosen and 
mutually exclusive members of the population, scaled by the parameter F.  The 
scale parameter F is generally chosen in the range 0.1 to 1.0.  Rahnamayan and 
Wang (2008) recommend a value of 0.50.  Optimal values of F are explored by 
Pedersen (2010). 
 
Parental traits are conveyed to the potential offspring via the so called crossover 
procedure.  In DE, the most commonly encountered crossover process is the 
independent binomial experiment, or binary “Bin” crossover method.  This 
crossover approach is shown in equation (77). 
 
 

                                                 
4 Where i≠r1≠r2≠r3. 
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  where: 
   d = offspring or donor 
   p = parent individual 
   j=dimension index 
   i = individual index 
   randi = uniform random deviate 
   CR = crossover parameter 
 
In each dimension, a parent’s traits are passed to the offspring if a uniform 
randomly drawn value exceeds the value of CR, the crossover parameter, a binary 
decision process.  If the uniform random value is less than or equal to CR, the 
traits from the mutation process are retained by the offspring.  The crossover 
parameter, CR is generally chosen in the range 0.10 to 1.0.  Rahnamayan and 
Wang (2008) recommend a value of 0.90.  Optimal values of CR are explored by 
Pedersen (2010). 
 
In aggregate, the traits of the potential offspring are determined by mutation and 
crossover.  Using these traits or x-values, the fitness of each offspring is evaluated 
and then stored. 
 
Following reproduction, the fitness of the offspring is compared with the fitness 
of the parent individual in a process termed, selection.  In the DE algorithm, 
selection follows the straightforward elite selection process as illustrated in 
equation (78),  
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  where: 
   pi,t+1 = member of next generation 
   d = offspring or donor 
   p = parent individual 
 
As shown in equation (78), the process of selection embodies the notion of 
evolutionary progression or, “survival of the fittest.”  In DE selection, the fitness 
of the parent and the offspring are compared and only the most fit of the two 
survive, reproduce and pass their traits along to future generations.  As in the 
natural world, the less fit individuals die and their inferior traits are expunged 
from the gene pool. 
 
In comparison to other algorithms described in this document, DE has several 
practical advantages.  First, it is simple and efficiently coded with minimal 
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memory requirements.  Second, the selection criteria described in equation (78) 
ensures that each individual passing to the next generation is at least as fit as its 
parent.  The evolutionary process always moves towards the optima.  This is a 
particularly desirable feature of this algorithm. 
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Appendix 10.  Particle Swarm 
Optimization 

Introduction 

Particle swarm optimization (PSO) is a global heuristic optimization method.  
Kennedy and Eberhart (1995) reportedly developed the concept by observing the 
behavior of flocking birds.  Since that time, there have been an impressive 
number of PSO applications encompassing at least three books (Kennedy and 
Eberhardt 2001, Engelbrecht 2005, Clerc 2006) and over one thousand published 
articles. 

Description of PSO 

The PSO approach exploits the behavior of np-independent virtual particles, 
which "fly" through the search domain, have a memory and are able to 
communicate with other members of their "swarm." Each particle has a single 
purpose—to better its fitness—and thereby identify the optimum (minimum or 
maximum) of a function. 
 
Although computationally intensive, PSO has many advantages over traditional 
optimization methods.  It can accommodate continuous, discrete, nonlinear and 
complex objective functions as well as many forms of constraints.  PSO is more 
likely to identify a global extrema and less prone to converge on a local optima.  
This approach is especially well suited for complex optimization problems 
characterized by multiple local extrema. 

PSO Terms 

There are several PSO specific terms commonly used in the literature.  Among 
these are the following. 
 

• Fitness function- objective function value plus penalties, if any. 
• Fitness- value of the fitness function 
• Personal best (p)− a particle’s (own) best fitness 
• Global (or neighborhood) best (g) – best fitness achieved by the swarm (or 

neighborhood sub-swarm) 
• Velocity (v)− change in location from one iteration to the next along a 

single dimension 
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Individual Components 

Each of the np particles in the swarm consists of the following components, where 
d is the number of dimensions in the problem: 
 

• Coordinates of its position: x=(x1…xd) 
• Current velocity: v=(v1…vd) 
• Personal best position: p=(p1…pd) 
• Global (or neighborhood) best position: g=(g1…gd) 

 
Operationally each particle is typically coded as either an object, in object 
oriented programming languages such as C#, or as a record type. 

Basic PSO Algorithm 

The basic PSO algorithm is relatively straightforward as illustrated in Figure 24.  
First, each of the np particles in the swarm is created and their positions and 
velocities are initialized.  The PSO iterative process then begins.  During each of 
these iterations, (a) the fitness each of the 1…np particles is evaluated, (b) the 
personal best and global (or neighborhood) best of each particle in the swarm are 
updated, and, (c) a new velocity and a new particle position are computed.  A test 
is then applied to determine if the swarm has converged.  If the swarm has 
converged, the iterative process is terminated and the results are reported.  If the 
swarm has not converged, a new iteration is undertaken.  This process continues 
until the swarm has either converged or the maximum number of iterations has 
been completed. 
 
The velocity, or change in the location of each particle in a given dimension, is 
updated according to the rule illustrated in equation (79). 
 
(79)  ][][)]1([)( 2211 dddddd xprandcxgrandctvwtv −+−+−=  
 
  Where: 
   w = inertia coefficient 
   c1,c2 = cognitive and social weights 
   rand = uniform random value 
   v = velocity     x = current location 
   g = global best     p = personal best 
   t=iteration counter or index. 
 
The new velocity of each particle depends on the velocity in the previous 
iteration, an inertia coefficient (w), the cognitive weight (c1), a social weight (c2), 
the particle’s current location in each of the d-dimensions (xd), two random 
uniform deviates, the particle’s own personal best position (pd), and the global (or 
neighborhood) best position (gd). 
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Figure 24. The basic PSO algorithm. 

 
After the particle’s velocity has been updated, its position is updated using 
equation (80). 
 
(80)  )()1()( tvtxtx ddd +−=  
 
  where: 
   v = velocity 
   x = current location 
 
As shown, each particle’s new position depends on its position in the previous 
iteration and the new (updated) velocity. 

Modified PSO 

A modified version of the basic PSO algorithm was employed for the research 
described in this document.  This modification consisted of augmenting the basic 
PSO algorithm with a selection mechanism, identical to that employed in the DE 
algorithm.  The PSO selection routine ensured the individuals which survived into 
the next generation would be at least as fit as their parents. 
 
The basic PSO algorithm described previously in this Appendix was fast and 
highly successful when applied to the unconstrained optimization problems in 
Phase 1 of the development process.  However, when applied to the constrained 
dynamic economic dispatch problem in Phase 2 of the development process, it 
failed to achieve convergence.  The basic PSO algorithm was able to quickly 
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locate the neighborhood of the optimal solution, but then ran for many thousands 
of iterations without converging to a tolerance of 1.0e-04.  This convergence 
failure behavior was exhibited over a range of social and personal acceleration 
coefficient (C1 and C2) values and for all reasonable convergence criterion 
settings.  Considerable effort was expended to diagnose and remedy this 
behavior—without appreciable progress. 
 
Ultimately, a modified version of the basic PSO algorithm was developed for 
application to the constrained dynamic economic dispatch problem.  The structure 
of the basic PSO algorithm as reported in equations (79) and (80) was retained.  
The population update mechanism found in the basic PSO algorithm was altered 
from the usual unconditional approach to a selection process.  This selection 
process ensured that the personal best fitness of each particle was non-decreasing 
over each successive generation. 
 
Following reproduction, the personal best fitness of the offspring is compared 
with the personal best fitness of the parent.  As in the DE algorithm, selection 
follows the straightforward elite selection process as illustrated in equation (81),  
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  where: 
   pi,t+1 = member of next generation 
   d = offspring or donor 
   p = parent individual 
 
The fitness of the parent and the offspring are compared using the approach 
described in Deb (2000) and only the most fit of the two survive to pass their 
traits along to future generations.  The selection mechanism described in equation 
(81) ensures that each individual passing to the next generation is at least as fit as 
its parent.  The evolutionary process always moves the swarm towards the 
optimal point.  This is a particularly desirable feature and reliably leads the 
modified PSO algorithm to convergence. 
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Appendix 11.  Clerc’s K 
Early empirical studies established the PSO algorithm could fail to converge, even 
when the social and personal acceleration coefficients (c1, c2) were properly 
defined.  In essence, the swarm could diverge or explode, rather than converge.  
Two methods are in common usage to counteract this potential behavior.  These 
are Clerc’s constriction factor or coefficient (K), and, the use of an inertia weight. 

For purposes of this research effort, the approach developed by Clerc and 
Kennedy (2002) was employed.  As further described in Clerc (2006) the 
constriction coefficient (k) is applied as shown in equation (82) below. 
 
(82)  ]}[][)]1({[)( 2211 dddddd xprandcxgrandctvktv −+−+−=  

 
  Where: 
   k = Clerc’s constriction coefficient 
   c1,c2 = cognitive and social weights 
   rand = uniform random value 
   v = velocity     x = current location 
   g = global best     p = personal best 
   t=iteration counter or index. 
 
The simplest case is known as a the Type 1 coefficient which is defined as shown 
in equation (83) 
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This constriction factor improves the convergence of the PSO algorithm over time 
by damping particle oscillation in the neighborhood of a potential optima, while 
preserving the search behavior of the swarm.  Its main disadvantage is that it is 
not as effective in promoting convergence, as for example, an inertia weight.  
Unlike an inertia weight however, it does not drastically diminish a swarm’s 
ability to explore promising new solution regions, once one potential optimal 
point has been discovered. 
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Appendix 12.  Random Numbers 
The research effort described here is focused on algorithms and techniques which 
are randomly varying or stochastic in nature.  These algorithms necessarily make 
use of random number generators (RNGs).  The performance of these algorithms 
and the results obtained with them are critically dependent on the speed and 
quality of these underlying RNGs.  
 
All of the optimization algorithms explored here make extensive use of RNGs in 
three important phases of their operation, (a) initialization, (b) selection and (c) 
search.  Initialization—a finite number of particles or individuals are distributed 
in the d-dimensional search space.  Although other methods have been proposed, 
the typical approach is to randomly initialize the individuals using an RNG.  
Selection—selection of the fittest individual, construction of a neighborhood 
topology or other grouping mechanisms and reproduction in the population are 
typically guided by a randomized choice process.  These actions are all based on 
an RNG.  Search—at each step or iteration of the algorithm, the search activity is 
influenced by a random component or influence.  These random influences are 
supplied by an RNG. 
 
Although it may prove surprising to the layperson, the descriptive term “random 
number generator” is largely a misnomer (see, for example, Knuth 2002 and Judd 
1999).  As a rule, researchers reserve the word random, “…for the output of an 
intrinsically random process, like the elapsed time between clicks of a Gieger 
counter placed next to a sample of some radioactive element” (Press et al 1989).  
Software based random number generators are inherently deterministic (For a 
given set of parameters and starting value(s), they produce identical results).  For 
this reason, most researchers and mathematicians employ the terms quasi-random 
or pseudorandom to describe software based RNGs. 
 
Many RNG implementations are based on the linear congruential generator 
method.  A linear congruential generator is an iterative mathematical relationship 
of the form shown in equation (84). 
 
(84)    mcXaX tt mod)*(1 +=+  
 
In equation (84), a, b and m are integers and “mod” is the modulo operator which 
returns the remainder when the expression in parentheses is divided by m.. 
 
As shown in (84) the analyst supplies a random seed, or starting value (Xt).  
Given this random seed and values for a, b and m, a random deviate (Xt+1) is 
produced.  This deviate is then used as the seed for producing the next random 
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value.  A mathematical property of expression (84) is that it will eventually repeat 
itself, with a period that is no greater than m. 
 
The values for a, b and m and the random seed must be chosen with some care.  
Generally, m is chosen to be as large an integer as possible.  As a practical matter, 
its size is limited by the interaction of the software and the computer hardware.  In 
ANSI C, the maximum integer value is specified to be only 32767 (corresponding 
to the Delphi 16 bit SMALLint type).  As described further in Press et al (1989), 
these limitations will result in the randomly generated points lying on at most 
327681/3 or 32 planes (in three dimensional space).  If a, b and m are not carefully 
selected, the points will lie on far fewer planes (Press et al 1989).  As a result, the 
analyst could unknowingly be focusing their attention on a relatively small and 
discrete portion of the search region. 
 
Modern programming languages such as Visual BASIC, FORTRAN, C/C++, 
Java and Borland Delphi all contain RNG implementations as part of their 
supplied feature set.  Unfortunately, these built-in system RNGs are of uneven 
quality and some have readily demonstrable flaws. 
 
The existing numerical analysis literature contains numerous and rather blunt 
warnings to researchers about the failings of system RNGs.  The writings of Park 
and Miller (1988), Klimasauskas (2002), Knuth (2002) and Judd (1999) are 
especially accessible examples.  One of the more informative assessments of this 
topic is provided by Press, et al (1989).  They caution researchers to be very, very 
suspicious of system supplied random number generators, which often resemble 
equation (84).  They write that, “If all scientific papers whose results are in doubt 
because of bad rand()s [RNGs] were to disappear from library shelves, there 
would be a gap on each shelf as big as a fist (Press, et al 1989, page 214). 
 
There are quite a large number of statistical tests available for discerning the 
capability of RNGs to produce random sequences.  These range from well-known 
statistical techniques such as the Chi-Square test, the runs test, the monobit test 
and the continuous RNG test (Vicaria 2003), to more esoteric and complex 
approaches such as the Knuth spectral test (Knuth 2002).  A frequently employed 
and well known suite of RNG tests, known as the Diehard test suite, was 
developed by George Marsaglia (currently available for purchase from: 
http://www.stat.fsu.edu/pub/diehard/ ).  A new, improved and Open Public 
License (OPL) version, called the DieHarder test suite, has been developed by 
Robert G. Brown (freely available from: 
http://www.phy.duke.edu/~rgb/General/dieharder.php ). 
 
Of direct pertinence to this study, Klimasauskas (2002) has employed a battery of 
statistical tests to examine the system RNGs supplied with a wide range of 
programming languages including IBM FORTRAN, Visual BASIC, Delphi 
Object Pascal (parent of the Delphi programming language) and Visual C/C++ as 
well as some spreadsheet software tools such as Microsoft Excel.  He reported 

http://www.stat.fsu.edu/pub/diehard/�
http://www.phy.duke.edu/~rgb/General/dieharder.php�
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that all of the commonly available system RNGs failed the standard tests for 
randomness, some spectacularly! 
 
In light of this disconcerting evidence, the selection of an RNG for use in this 
study proved to be a nontrivial decision.  It was clearly inadvisable to use the 
system RNG, which was known to be flawed.  Conversely, the circumstances of 
this research did not warrant the use of a cryptographic grade RNG such as the 
Microsoft Crypotography API (see Vicaria 2003 for a description).  To allow for 
scientific replication and for purposes of comparability, it seemed essential to 
explicitly document the RNG that was employed and to use it consistently 
throughout the study.  After carefully considering the available options, a well-
proven, if not state-of-the-art RNG was adopted for use.  All of the algorithms 
developed during this research effort employ a Delphi coded implementation of 
the Mersenne Twister RNG (Matsumoto and Nishimura 1998) developed by 
David Butler and obtained from the SourceForge Library, 
http://fundementals.sourceforge.net/units.html.  This algorithm is also known by 
its Association for Computational Machinery (ACM) identification number as 
algorithm MT19937. 
 

http://fundementals.sourceforge.net/units.html�
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Appendix 13.  Low Discrepancy 
Sequences 
Low discrepancy sequences are those whose points are approximately 
proportionally distributed within the space enclosed by a set with arbitrary 
boundaries.  Low-discrepancy sequences are also called quasi-random or sub-
random sequences.  This is a possible source of confusion, since they are often 
used as a substitute for randomly generated sequences.  Some commonly 
encountered examples of low discrepancy sequences are the Sobol sequence, the 
Neiderreiter sequence, the Weyl sequence, the Haber sequence, the Halton 
sequence and the Hammersley sequence. 
 
Appendix 12 described random number generators (RNGs), their properties and 
some of their weaknesses.  As noted there, the optimization algorithms explored 
in this document make extensive use of RNGs for, (1) initialization, (2) selection, 
and (3) search. 
 
As research on these heuristic optimization algorithms has progressed, several 
authors have suggested the usage of RNGs may not be the preferred approach 
(Clerc 2008).  Conceptually, what is desirable is not randomness per se but an 
exhaustive and systematic distribution of np-points in the d-dimensional search 
space.  For optimization algorithm applications, while employing RNGs is 
convenient, RNGs have some well-known drawbacks.  Clerc (2008) summarizes 
this problem rather well in the title to the first paragraph of his paper as, “Uniform 
Random Distributions: Easy but Bad.” 
 
A subset of recent research efforts has focused attention on the potential 
advantages of employing low discrepancy sequences in heuristic algorithms 
instead of the more traditional RNGs.  The hypothesis is, these sequences may be 
better suited to usage for initialization, selection and search applications.  Applied 
research by Richards and Ventura (2004), Pant, Thangaraj and Abraham (2009), 
and Uy, Hoai, McKay and Tuan (2007) certainly seems to provide empirical 
evidence supporting this view. 
 
This research thread is based on the mathematical properties of low discrepancy 
sequences which allow them to more exhaustively and systematically span the d-
dimensional search space.  While these properties can be statistically 
demonstrated, the visual approach provides much the same intuition.  Figure 25 
shows plots of the first 250 points in 2-dimensions over the range (0,1) generated 
using the Mersenne Twister RNG (described in Appendix 12), the Neiderreiter 
sequence, the Weyl sequence and the Haber sequence. 
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Figure 25.  Plots of the first 250 points generated by four RNG methods. 

 
A visual comparison of these plots illustrates that points generated by the low 
discrepancy sequences are more regularly distributed in the 2-dimentional space 
than those from the RNG.  Compared to the RNG plot, there are fewer “gaps” 
between the low discrepancy points and the space between points is more even.  
This figure demonstrates one potential advantage of low discrepancy sequences.  
Other research indicates the points generated by RNGs tend to collapse around the 
origin as the number of dimensions increase.  Certain low discrepancy sequences, 
such as the Sobol, have not shown this behavior in empirical studies.  Both of 
these outcomes point to the potential advantages of employing low discrepancy 
sequence methods for heuristic optimization, especially in high dimensional 
cases. 
 
One component of this research effort was to investigate the potentials advantages 
of employing some of these low discrepancy sequences.  As part of that effort, 
computer codes for the Neiderreiter, Weyl, Haber, Halton and Torus sequences 
were developed.  This code was based on MatLab code from the EconToolbox 
which accompanies Miranda and Fackler (2006).  The prime numbers utilized in 
coding these sequences were drawn from Caldwell (2009). 
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Appendix 14.  Test Functions for 
Algorithm Development 

Introduction 

This Appendix describes three optimization test functions which were employed 
in the early phases of algorithm development, including coding, testing, 
performance visualization and validation.  Each of these functions is a previously 
studied 3-dimensional (3-D) continuous, unconstrained, optimization problem.  
The test functions selected were restricted to three dimensions to facilitate 
implementation and to allow for real-time visualization of the algorithm’s 
behavior in the search space.  These test functions facilitated development of the 
evolutionary algorithms, prior to their application to the more difficult and higher 
dimension electric power-related problems, which were the focus of this research. 

By design, this research effort utilizes only a small and rather rudimentary subset 
of the universe of test functions investigated by other authors.  As popularized by 
De Jong (1975), many existing studies examine the performance of evolutionary 
algorithms on a suite of optimization test functions (for example, see Mishra 2007 
or Mezura-Montes and Flores-Mendoza 2009).  There are numerous optimization 
test functions available for this purpose, some of which are exceedingly complex.  
A sample of the test functions encountered in this literature is described in De 
Jong (1975), Haupt and Haupt (2004), Engelbrecht (2005), Price, Storn and 
Lampinen (2005), Feoktistov (2006) and other sources.  

Test Function 1—Sphere 

The sphere function is one of the most rudimentary 3-D optimization problems.  It 
is a symmetric, continuous real-valued function possessing a single (global) 
optimal point.  This function is defined over the set of all real numbers, however a 
bounded search range is used in this application. 

In 3-D, the equation describing the sphere function is (85). 

(85)    22 yxZ −−=  

The gradient of this test function is especially useful as a device for ascertaining 
the quality of a solution on convergence.  For this test function, the expression for 
the gradient, or vector of first partial derivatives, is shown in equation (86). 
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The domain for the sphere function is the real number line (-∞≤ x ≤+∞).  For test 
purposes however, the search domain for the independent variables (x, y) was 
restricted to the bounded interval (-2≤ x ≤+2).  

The maximum value of Z for this test optimization function is Z=0.0.  This 
maximum Z value is obtained when x=0.0 and y=0.0. 
 
 

Plan View 3-D View 

  

Figure 26.  Plan and 3-D views of the Sphere function. 

 
Figure 26 illustrates the plan (top) view and the 3-D view of test function 1, the 
sphere function.  As shown in this figure, the contours are symmetric about the 
optimal point.  The global maximum is the sole optima in the bounded search 
space. 

The sphere function is perhaps the most rudimentary of all optimization test 
problems.  It is symmetric about the origin, easily implemented in code and 
readily solved.  This function was used primarily for early-stage development of 
the evolutionary algorithms employed in this research.  This test function allowed 
for visual verification of algorithm functioning and effectiveness during the 
coding process. 

Test Function 2—Ridge 

The ridge function is a somewhat more complex 3-D optimization problem.  It is 
a continuous but not a symmetric function.  It has a single (global) optimal point 
located at the top of a ridge, bounded on either side by steep canyons.  This 
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function is defined over the set of all real numbers, however a bounded search 
range is used in this application. 

In 3-D, the equation describing the ridge function is (87). 

(87)   yx eeeyxZ 22 −−+=  

The gradient of this test function is especially useful as a device for ascertaining 
the quality of a solution on convergence.  For this test function, the expressions 
for the gradient, or vector of first partial derivatives, is shown in equations (88) 
and (89) 
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The domain for the ridge function is the real number line (-∞≤ x ≤+∞).  For test 
purposes however, the search domain for the independent variables (x, y) was 
restricted to the bounded interval (-2≤ x ≤+2).  

The maximum value of Z for this test optimization function is Z=-1.00.  This 
maximum Z value is obtained when x=0.0 and y=0.50. 

Figure 27 illustrates the plan (top) view and the 3-D view of test function 2, the so 
called ridge function.  As shown in this figure, the contours are asymmetric about 
the optimal point.  The global maximum is the sole optima in the bounded search 
space.  It lies at the top of a long gently sloping ridge with canyons on either side.  
 

Figure 27.  Plan and 3-D views of the Ridge function. 

Plan View 3-D View 
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The slope of the ridge changes very gradually, often causing premature 
convergence for certain types of gradient based algorithms and poorly 
parameterized evolutionary algorithms.  A single badly calculated step can send 
the solution down one of the precipitous canyons on either side of the ridge, 
causing the algorithm to fail. 

In the general scheme of things, the ridge function is a relatively straightforward 
optimization test problem.  It is easily implemented in code, although not so 
readily solved.  This function was used as a test bed during the development of 
the evolutionary algorithms described in this research.  This test function allowed 
for visual verification of algorithm functioning and effectiveness during the 
coding process. 

Test Function 3—Alpine 

The Alpine test function, as described by Clerc (2006) and Haupt and Haupt 
(2004), is a complex 3-D optimization problem.  It is a continuous, but not 
symmetric function.  It has a multiple local optima and a single (global) optimal 
point in the search space.  This function is defined over the set of all real numbers 
and has multiple local optima in that range (as might be expected).  A finite 
bounded search range is used in this application. 

In 3-D, the equation describing the Alpine function is (90). 

(90)   xyyxZ *)sin()sin( ×=  

The gradient of this test function is especially useful as a device for ascertaining 
the quality of a solution at convergence.  For this test function, the expressions for 
the gradient, or vector of first partial derivatives, is shown in equation (91). 

(91)   iix xx
x
ZZ 2)tanh( +=

∂
∂

=∇  

The domain for the ridge function is the real number line (-∞≤ x ≤+∞).  For test 
purposes however, the search domain for the independent variables (x, y) was 
restricted to the bounded interval (-10≤ x ≤+10).  

The maximum value of Z for this test optimization function is Z=7.885600724.  
The maximum Z value is obtained when x=7.917052686 and y=7.917052686.  
This point is located in the upper right-hand quadrant of the plot. 

Figure 28 illustrates the plan (top) view and the 3-D view of test function 3, the 
Alpine function.  As shown in this figure, the contours are quite complex.  There 
are multiple local optima in the search space.  The global maximum (in this 
bounded search space) is located at the top of Mount Blanc (as termed by Clerc 
2006) or Longs Peak (as termed by Haupt and Haupt 2004), in the upper right-
hand quadrant of the plot.  Mount Blanc is surrounded by lesser peaks.  
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Encountering any of these lesser peaks will cause a gradient based algorithm to 
converge and announce it has located a solution.  Identification of the global 
optima in this search space is extremely difficult. 
 

Plan View 3-D View 

  

Figure 28.  Plan and 3-D views of the Alpine function 

 
In the general scheme of things, the Alpine function is a relatively complicated 
optimization test problem.  It is quite easily implemented in code, although not so 
readily solved, particularly by gradient based methods.  This function was used 
extensively during the development of the evolutionary algorithms described in 
this research.  This test function allowed for visual verification of algorithm 
functioning and effectiveness in a complicated solution space. 
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Appendix 15.  24-Hour Price Vector 
The 1-day summer and winter hourly electricity prices (avoided costs) used in this 
analysis are shown in this appendix.  These prices span a one day period (24 
hours) and were generated by the ESIM03 model (Harpman 2006). 

Price units:  dollars per megawatt-hour ($/MWh). 

Summer Winter 

Hour Price 
($/MWh) Hour Price 

($/MWh) 
1 45.85 1 39.49 
2 45.11 2 39.07 
3 44.71 3 38.99 
4 44.75 4 39.28 
5 45.16 5 40.16 
6 46.35 6 42.21 
7 48.08 7 45.12 
8 49.86 8 47.41 
9 53.37 9 47.60 

10 56.45 10 47.23 
11 58.26 11 46.77 
12 59.23 12 45.85 
13 59.89 13 45.02 
14 60.53 14 44.24 
15 61.07 15 43.80 
16 61.45 16 43.98 
17 61.46 17 46.19 
18 60.94 18 49.26 
19 59.98 19 50.15 
20 59.51 20 49.41 
21 59.08 21 48.40 
22 57.09 22 46.38 
23 51.11 23 43.46 
24 48.07 24 41.37 
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Appendix 16.  168-Hour Winter Prices. 
The hourly winter electricity prices (avoided costs) used in this analysis are 
shown in this appendix.  These prices span a 1-week (168-hour) period, starting 
on Sunday and ending on Saturday, and were generated by the ESIM03 model 
(Harpman 2006). 

Price units:  dollars per megawatt-hour ($/MWh). 

 

Hour Price 
1 39.42 
2 38.86 
3 38.73 
4 38.74 
5 39.13 
6 40.03 
7 41.38 
8 42.81 
9 43.65 

10 43.94 
11 43.85 
12 43.52 
13 43.11 
14 42.62 
15 42.30 
16 42.47 
17 43.78 
18 46.82 
19 47.60 
20 47.23 
21 46.42 
22 44.74 
23 42.62 
24 40.49 

Hour Price 
25 39.49 
26 39.07 
27 38.99 
28 39.28 
29 40.16 
30 42.21 
31 45.12 
32 47.41 
33 47.60 
34 47.23 
35 46.77 
36 45.85 
37 45.02 
38 44.24 
39 43.80 
40 43.98 
41 46.19 
42 49.26 
43 50.15 
44 49.41 
45 48.40 
46 46.38 
47 43.46 
48 41.37 

Hour Price 
49 40.10 
50 39.53 
51 39.43 
52 39.64 
53 40.54 
54 42.66 
55 45.78 
56 48.04 
57 47.89 
58 47.28 
59 46.57 
60 45.76 
61 44.88 
62 44.31 
63 43.82 
64 43.99 
65 46.35 
66 49.49 
67 50.49 
68 49.69 
69 48.70 
70 46.66 
71 43.58 
72 41.51 

Hour Price 
73 40.30 
74 39.76 
75 39.64 
76 39.83 
77 40.66 
78 42.66 
79 45.66 
80 47.84 
81 47.80 
82 47.22 
83 46.62 
84 45.83 
85 45.15 
86 44.64 
87 44.00 
88 44.31 
89 46.41 
90 49.22 
91 50.09 
92 49.17 
93 48.13 
94 46.18 
95 43.39 
96 41.43 

Hour Price 
97 40.19 
98 39.64 
99 39.46 

100 39.64 
101 40.42 
102 42.28 
103 44.88 
104 47.00 
105 46.96 
106 46.49 
107 45.88 
108 44.89 
109 43.88 
110 43.49 
111 43.20 
112 43.31 
113 45.01 
114 47.75 
115 48.38 
116 47.75 
117 46.93 
118 45.23 
119 43.01 
120 41.15 

Hour Price 
121 39.96 
122 39.39 
123 39.18 
124 39.28 
125 39.92 
126 41.56 
127 43.28 
128 45.03 
129 45.61 
130 45.67 
131 45.31 
132 44.36 
133 43.58 
134 43.21 
135 42.93 
136 43.04 
137 43.99 
138 46.41 
139 46.37 
140 45.21 
141 44.00 
142 43.27 
143 42.24 
144 40.84 

Hour Price 
145 39.72 
146 39.08 
147 38.88 
148 38.89 
149 39.30 
150 40.19 
151 41.35 
152 42.40 
153 43.26 
154 43.49 
155 43.25 
156 42.79 
157 42.24 
158 41.72 
159 41.39 
160 41.52 
161 42.61 
162 44.08 
163 44.75 
164 44.35 
165 43.68 
166 43.04 
167 41.91 
168 40.55 
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Appendix 17.  168-Hour Summer Prices 
The hourly summer electricity prices (avoided costs) used in this analysis are 
shown in this appendix.  These prices span a 1-week (168 hour) period, starting 
on Sunday and ending on Saturday, and were generated by the ESIM03 model 
(Harpman 2006). 

Price units:  dollars per megawatt-hour ($/MWh). 

 

Hour Price 
1 45.95 
2 45.20 
3 44.58 
4 44.16 
5 44.05 
6 44.11 
7 44.39 
8 45.58 
9 47.41 

10 48.97 
11 50.23 
12 52.95 
13 54.54 
14 55.80 
15 56.53 
16 57.31 
17 57.86 
18 57.92 
19 57.07 
20 56.73 
21 56.44 
22 53.47 
23 49.16 
24 47.12 

Hour Price 
25 45.85 
26 45.11 
27 44.71 
28 44.75 
29 45.16 
30 46.35 
31 48.08 
32 49.86 
33 53.37 
34 56.45 
35 58.26 
36 59.23 
37 59.89 
38 60.53 
39 61.07 
40 61.45 
41 61.46 
42 60.94 
43 59.98 
44 59.51 
45 59.08 
46 57.09 
47 51.11 
48 48.07 

Hour Price 
49 46.73 
50 45.91 
51 45.39 
52 45.18 
53 45.50 
54 46.71 
55 48.40 
56 50.14 
57 53.78 
58 56.66 
59 58.01 
60 58.95 
61 59.91 
62 60.55 
63 60.81 
64 60.93 
65 60.64 
66 59.91 
67 59.02 
68 58.64 
69 58.39 
70 56.38 
71 50.12 
72 47.82 

Hour Price 
73 47.09 
74 46.19 
75 45.64 
76 45.36 
77 45.69 
78 46.82 
79 48.49 
80 50.25 
81 54.20 
82 56.76 
83 58.06 
84 59.12 
85 60.08 
86 60.77 
87 61.24 
88 61.51 
89 61.37 
90 60.64 
91 59.67 
92 59.16 
93 58.66 
94 56.66 
95 51.28 
96 48.17 

Hour Price 
97 46.76 
98 45.91 
99 45.56 

100 45.17 
101 45.47 
102 46.59 
103 48.23 
104 49.96 
105 53.42 
106 56.08 
107 57.36 
108 58.49 
109 59.36 
110 59.94 
111 60.62 
112 60.93 
113 60.87 
114 60.30 
115 59.18 
116 58.65 
117 58.22 
118 56.42 
119 51.42 
120 48.33 

Hour Price 
121 46.90 
122 46.13 
123 45.61 
124 45.19 
125 45.46 
126 46.55 
127 48.19 
128 50.00 
129 53.73 
130 55.96 
131 57.33 
132 58.33 
133 59.17 
134 59.65 
135 60.18 
136 60.37 
137 60.05 
138 58.92 
139 57.62 
140 56.91 
141 56.53 
142 54.91 
143 49.95 
144 47.85 

Hour Price 
145 46.42 
146 45.69 
147 45.10 
148 44.62 
149 44.57 
150 44.79 
151 45.33 
152 46.69 
153 48.60 
154 50.21 
155 53.58 
156 54.94 
157 55.55 
158 55.96 
159 56.17 
160 56.36 
161 56.39 
162 56.16 
163 55.41 
164 55.08 
165 54.81 
166 52.49 
167 49.10 
168 47.20 
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Appendix 18.  Dimension and Input 
Experiment.  
The numerical results of replicated experiments (ntrials=50) using different 
problem dimensions and input price vectors are reported in this appendix.  Some 
of these results are summarized in graphic form in the main body of the report. 
 
Table 11.  Dimension and Input Results 

Parameter 
1 Day (24 hrs) 1 Week (168 hrs) 

Summer Winter Summer Winter 
LS1 Mean best  127,097.33 103,653.36 921,829.41 752,472.91 

S.D. best na na na na 
Mean Iter 28 28 28 28 
Mean CPU ≤0.002 ≤0.002 ≤0.002 ≤0.002 

RCGA Mean best  127,097.32 103,653.35 921,829.15 752,472.64 
S.D. best 1.528e-03 6.861e-01 1.831e-03 9.153e-02 
Mean Iter 635 621 5224 4904 
Mean CPU 0.198 0.195 9.860 9.258 

DE Mean best  127,097.33 103,653.36 921,829.43 752,472.90 
S.D. best 2.517e-04 1,911e-04 1.716e-04 1.767e-04 
Mean Iter 242 244 916 916 
Mean CPU 0.229 0.223 5.493 5.266 

PSO Mean best  127,097.33 103,653.36 921,829.41 752,472.88 
S.D. best 1.960e-04 1.706e-04 2.5116e-04 2.054e-04 
Mean Iter 491 492 4941 4821 
Mean CPU 0.176 0.192 11.811 11.420 

1 Lambda search is a deterministic approach and each trial produces the same outcome.  The 
results reported here were generated by a single trial at ctol=1.0e-08. 
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Appendix 19.  Maximum Release 
Constraint Experiment 
The numerical results of replicated experiments (ntrials=50) using a (binding) 
maximum release constraint of 6,000 cfs are reported in this appendix.  Some of 
these results are summarized in graphic form in the main body of the report. 
 
Table 12.  Maximum Release Constraint Results 

Parameter 
168-hour Base Case 

Maximum Release 
Constraint 6,000 cfs 

(Binding) 
Summer Winter Summer Winter 

LS1 Mean best  921,829.41 752,472.91 916,144.65 751,391.53 
S.D. best na na na na 
Mean Iter 28 28 28 28 
Mean CPU ≤0.002 ≤0.002 0.016 ≤0.002 

RCGA Mean best  921,829.15 752,472.64 915,545.85 751,075.56 
S.D. best 1.831e-03 9.153e-02 6.768e-01 1.030e-01 
Mean Iter 5224 4904 1534 1727 
Mean CPU 9.860 9.258 8.903 5.609 

DE Mean best  921,829.43 752,472.90 916,109.84 751,380.07 
S.D. best 1.716e-04 1.767e-04 1.709e-04 1690e-04 
Mean Iter 916 916 979 1101 
Mean CPU 5.493 5.266 17.225 14.552 

PSO Mean best  921,829.41 752,472.88 914,330.41 751,129.29 
S.D. best 2.5116e-04 2.054e-04 2.533e-04 2.855e-04 
Mean Iter 4941 4821 2401 3931 
Mean CPU 11.811 11.420 15.731 17.334 

1 Lambda search is a deterministic approach and each trial produces the same outcome.  The 
results reported here were generated by a single trial at ctol=1.0e-08. 
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Appendix 20.  Minimum Release 
Constraint Experiment 
 
The numerical results of replicated experiments (ntrials=50) using a (binding) 
minimum release constraint of 4,000 cfs are reported in this appendix.  Some of 
these results are summarized in graphic form in the main body of the report. 
 
Table 13. Minimum Release Constraint Results 

Parameter 
168-hour Base Case 

Minimum Release 
Constraint 4,000 cfs 

(Binding) 
Summer Winter Summer Winter 

LS1 Mean best  921,829.41 752,472.91 920,125.14 752,403.53 
S.D. best na na na na 
Mean Iter 28 28 28 28 
Mean CPU ≤0.002 ≤0.002 ≤0.002 ≤0.002 

RCGA Mean best  921,829.15 752,472.64 919,739.98 752,344.70 
S.D. best 1.831e-03 9.153e-02 1.151e-00 6.765e-02 
Mean Iter 5224 4904 2311 2679 
Mean CPU 9.860 9.258 6.957 5.971 

DE Mean best  921,829.43 752,472.90 920,122.73 752,403.51 
S.D. best 1.716e-04 1.767e-04 1.665e-04 1.588e-04 
Mean Iter 916 916 1271 1277 
Mean CPU 5.493 5.266 13.950 10.325 

PSO Mean best  921,829.41 752,472.88 919,621.85 752,401.83 
S.D. best 2.5116e-04 2.054e-04 3.369e-04 2.633e-04 
Mean Iter 4941 4821 5384 6233 
Mean CPU 11.811 11.420 22.78 19.191 

1 Lambda search is a deterministic approach and each trial produces the same outcome.  The 
results reported here were generated by a single trial at ctol=1.0e-08. 
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Appendix 21.  Program Dictionary 
The table below contains the names of the programs used in this analysis and a 
description of their purpose.  This will help facilitate location of the source code 
file and their reuse at a later date. 
 

Table 14.  Program Dictionary 

EA Filename Purpose 
RCGA RCGEN Development  
RCGA HDRCGA Economic dispatch 
RCGA HDRCGAP1 Testing environment 
DE DE04 Development  
DE HDDE Economic dispatch 
DE HDDEP1 Testing environment 
PSO PSO4 Development  
PSO HDPSO Economic dispatch 
PSO HDMPSOP1 Testing environment 

 
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 

Mission Statements 
 
The U.S. Department of the Interior protects America’s natural 
resources and heritage, honors our cultures and tribal communities, 
and supplies the energy to power our future. 
 
 
 
The mission of the Bureau of Reclamation is to manage, develop, 
and protect water and related resources in an environmentally and 
economically sound manner in the interest of the American public. 
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