

U.S. Department of the Interior
Bureau of Reclamation
Technical Service Center
Denver, Colorado March 2012

Technical Report S&T-2011-486

Advanced Algorithms for
H

ydropower Optimization

Legal Notice

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government, nor any agency thereof, nor any of their employees
nor any of their contractors, subcontractors or their employees,
make any warranty, express or implied or assume any legal liability
or responsibility for the accuracy, completeness, or usefulness of
any information, apparatus, product or process disclosed, or
represent that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise does
not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any
agency thereof, or any of their contractors or subcontractors. The
views and opinions expressed herein do not necessarily state or
reflect those of the United States Government, any agency thereof,
or any of their contractors.

Cover photo: A view of Glen Canyon Dam jet tubes during the 1996 Beach/Habitat Building Flow
(Reclamation file photo).

i

Technical Report S&T- 2011- 486

Advanced Algorithms for Hydropower
Optimization

This Research Report was prepared by the U.S. Department of the Interior,
Bureau of Reclamation, Technical Service Center, Denver, Colorado.

Prepared by: David A. Harpman, Ph.D. Date
Natural Resource Economist
Economics and Resource Planning Team, 86-68212

Peer Review: Jonathan L. Platt, MSc. Date
Natural Resource Economist
Economics and Resource Planning Team, 86-68212

Peer Review: Steven M. Coberly, P.E. Date
Electrical Engineer
Hydropower Technical Services, 86-68440

REVISIONS

Date

Description

P
re

pa
re

d

C
he

ck
ed

A

dm
in

is
tra

tiv
e

A

pp
ro

va
l

P
ee

r R
ev

ie
w

ii

Celebration of Reclamation's 100th Anniversary at Hoover Dam.

iii

Project Funding
This research project was funded in Fiscal Years 2010 and 2011 by the U.S.
Bureau of Reclamation’s Science and Technology Program, Project Identification
Number 486. Additional support from the University of Denver, Colorado State
University and Argonne National Laboratory is gratefully acknowledged.

Credits
Dr. David Raff, Hydraulic Engineer, U.S. Bureau of Reclamation, Denver,
Colorado, constructed the graphics shown in Appendix 14 using MATLAB
version 4.x. His technical assistance is gratefully acknowledged.

Mr. Thomas Veselka, Energy Systems Engineer, Argonne National Laboratory,
contributed substantive portions of the narrative and graphics in Appendix 2.
Figure 18 is reproduced from Veselka et al. (2010b) and used with the permission
of the ever-gracious Mr. Veselka.

Acknowledgments

This document has benefited immeasurably from the
gracious assistance and technical guidance provided by the
collaborative research team. In alphabetical order, the
members of the team are:

Dr. Craig A. Bond, Colorado State University
Dr. Darrell G. Fontane, Colorado State University
Dr. George W. Heine, U.S. Bureau of Land Management
Mr. Thomas D. Veselka, Argonne National Laboratory

Any errors are the sole responsibility of the author.

Advanced Algorithms for Hydropower Optimization

v

Contents

Page

Project Funding .. iii
Credits ... iii
Acknowledgments .. iii
Executive Summary ...1
Introduction ..1
Hydropower Problems...2

Economic Dispatch ..2
Dynamic Economic Dispatch ..3
Unit Dispatch ...3

The Dynamic Economic Dispatch Problem ...3
Optimization Review ...5

Purpose ...5
Stationary Points ..6
Extremal Points ..6
Global and Local Extremal Points ...6
Convex and Concave Functions...7
Calculus of Unconstrained Optimization ...8
Limits of Calculus Based Optimization ...9

Selected Terms ...9
Algorithm ...9
Heuristic ...9
Objective Function ...10
Penalty..10
Fitness ..10

Optimization Approaches ...11
Taxonomy of Optimization Approaches ..11
Traditional Solution Algorithms ..12
Heuristic Optimization Methods ..12
Comparison of Approaches..13

Heuristics and Microcomputers ...17
EAs in the Wild ..19
Related Algorithms ..20

Hybrid Algorithms ...20
Memetic Algorithms ..20

EA Selection Process ..21
Algorithm Selection ...21
Candidate Selection ...21
Selection Criteria ...21
Algorithms Selected ...22

Real Coded Genetic Algorithm (RCGA) ...22

Advanced Algorithms for Hydropower Optimization

vi

Differential Evolution (DE) ...23
Particle Swarm Optimization (PSO) ..23
Lambda Search (LS) ..23

Initialization..24
Purpose and Implications ...24
Random ..25
Use of Sequences ...26
Other ..27

Constraints and Constraint Handling ..28
Types of Constraints ..28
Constraint Handling Methods ..28

Problem Reformulation ..29
Rejection of Infeasible Solutions ...29
Penalty Approaches ...29
Feasibility Preserving Methods..30
Repair Methods ..30
Mixed Approaches ...30

Fitness Comparisons with Constraints ...31
Performance Measures ..32

Algorithm Performance Metrics ..32
Real-life Engineering Problems ...32
Nature of Evolutionary Algorithms ...33
Multiple Trial Approach ..33
Common Measures of Performance...34

Accuracy ..34
Reliability ...34
Robustness ...34
Efficiency ...35

Algorithm Stopping Criteria ...35
Introduction ..35
The Trade-Off ..35
Calculus Based Criteria..36
Criteria for Evolutionary Algorithms...38

Parameters, Tuning, and Variants ...40
Population Size ..40
RCGA Parameters ..41
DE Parameters ...42
PSO Parameters ...42
Variant Selection ..43
RCGA Variants ..43
DE Variants ..46
PSO Variants ..46

Development Process ...47
Development Platform ...48
Three Phases of Development ...48

Phase 1—Development with Test Problems..48

Contents

vii

Phase 2—Economic Dispatch Problem ...50
Phase 3—Testing Environment ...51

Experiments Undertaken ..52
Initialization Approaches ...53
Stopping Rules ...54
Comparative Performance ...56
Problem Dimensions and Input Vectors ..58
Binding Constraints ...61

Conclusion ..63
Future Directions ...64
Collaborators ..64
Literature Cited ...66
Appendix 1. Objectives for Dispatch ...78

Introduction ..78
Economic Dispatch ..78
Peak Shaving ..78
Native Load First ...79
Buy/Sell and Generate ...79

Appendix 2. Ancillary Services and Dispatch ..80
Ancillary Services ..80
Dispatch Effects ...80

Appendix 3. Hydropower Plant Specifications ..83
Release, Head and Generation ...83
Minimum and Maximum Release Constraints ..84
Generator Specifications ..84
Plant Description ..85

Appendix 4. Release, Head and Efficiency ...86
Appendix 5. Calculus of Dynamic Dispatch ...89

Example Problem ...89
A Specific Example Problem ...90
Introducing Slack Variables ...91
Slack Variable Formulation ...92
Analytic Solution ...93
Lagrange Multipliers ..94

Appendix 6. Newton-Raphson Method ...95
Appendix 7. Lambda Search Algorithm ...98
Appendix 8. Real Coded Genetic Algorithm ..103

Introduction ..103
Binary GA ..103
Real Coded GA ..104
RCGA Terms ...104
Individual Components ..105
Basic RCGA Algorithm ...105

Appendix 9. Differential Evolution ...110
Introduction ..110
Description of DE ..110

Advanced Algorithms for Hydropower Optimization

viii

DE Terms ...110
Individual Components ..111
Basic DE Algorithm ...111

Appendix 10. Particle Swarm Optimization ...115
Introduction ..115
Description of PSO ..115
PSO Terms ...115
Individual Components ..116
Basic PSO Algorithm ...116
Modified PSO ..117

Appendix 11. Clerc’s K...119
Appendix 12. Random Numbers ...120
Appendix 13. Low Discrepancy Sequences ...123
Appendix 14. Test Functions for Algorithm Development125

Introduction ..125
Test Function 1—Sphere ...125
Test Function 2—Ridge ...126
Test Function 3—Alpine..128

Appendix 15. 24-Hour Price Vector ..130
Appendix 16. 168-Hour Winter Prices. ...131
Appendix 17. 168-Hour Summer Prices ...132
Appendix 18. Dimension and Input Experiment. ..133
Appendix 19. Maximum Release Constraint Experiment.............................134
Appendix 20. Minimum Release Constraint Experiment135
Appendix 21. Program Dictionary ..136

Tables

Page

Table 1. Traditional and Evolutionary Algorithms .. 14
Table 2. Selected Nature-Inspired Optimization Algorithms 19
Table 3. RCGA Parameter Summary... 41
Table 4. DE Parameter Summary. ... 42
Table 5. PSO Parameter Summary .. 43
Table 6. Initialization Approaches — Experimental Results............................... 53
Table 7. Convergence Performance and Cost .. 58
Table 8. Maximum and Minimum Release Constraints 84
Table 9. Generator Specifications .. 84
Table 10. Efficiency Parameter Values ... 87
Table 11. Dimension and Input Results ... 133
Table 12. Maximum Release Constraint Results ... 134
Table 13. Minimum Release Constraint Results... 135
Table 14. Program Dictionary.. 136

Contents

ix

Figures
Page

Figure 1. Nonlinear function with multiple local extrema. 6
Figure 2. Convex (panel A) and concave (panel B) functions. 7
Figure 3. Taxonomy of optimization approaches. ... 11
Figure 4. Lattice points in a search space (np=49). ... 25
Figure 5. Uniform random initialization (np=50). ... 25
Figure 6. Weyl initialization (np=50). ... 26
Figure 7. Convergence behavior with differential evolution. 39
Figure 8. Globally connected (A) and 3-neighbor (B) swarms. 47
Figure 9. RCGEN program solving the alpine function. 50
Figure 10. HDDE solution to 168-hour economic dispatch problem. 51
Figure 11. Test environment graphical output. .. 52
Figure 12. Results of Stopping Rule Experiments (dim=24). 56
Figure 13. Convergence behavior over 50 Iterations .. 57
Figure 14. Prices used for analysis. ... 59
Figure 15. Results of Dimension and Input Vector Experiment 60
Figure 16. Maximum constraint effects (dim=168). .. 62
Figure 17. Minimum constraint effects (dim=168). .. 62
Figure 18. Ancillary services and dispatch. ... 81
Figure 19. Release, head, and generation relationship... 85
Figure 20. Release, head, and efficiency. .. 88
Figure 21. The Lambda search algorithm. ... 101
Figure 22. The basic RCGA algorithm. .. 106
Figure 23. The basic DE algorithm. ... 111
Figure 24. The basic PSO algorithm. .. 117
Figure 25. Plots of the first 250 points generated by four RNG methods. 124
Figure 26. Plan and 3-D views of the Sphere function. 126
Figure 27. Plan and 3-D views of the Ridge function.. 127
Figure 28. Plan and 3-D views of the Alpine function 129

Advanced Algorithms for Hydropower Optimization

1

Executive Summary
The advent of personal computers in the mid-1980s gave rise to an era of
unparalleled advances in heuristic optimization research. These new optimization
algorithms are not based on traditional calculus-based approaches, but instead
have their origins in physical and biological processes. Three promising
evolutionary algorithms (EAs) were identified from the emerging literature; the
real coded genetic algorithm (RCGA), differential evolution (DE) and particle
swarm optimization (PSO). These EAs were then applied to an important
hydropower problem—the constrained dynamic economic dispatch problem. A
suite of replicated experiments were conducted to assess their performance
characteristics. These experiments were used to compare the performance of
these EA’s with a traditional solution approach, and to explore the influence of
initialization approaches, convergence criteria, the dimensions of the problem, the
role of problem inputs and the effects of binding constraints. Relative to
traditional calculus based approaches, these three evolutionary algorithms exhibit
longer solution times—characterized by rapid identification of the region
containing the optimum, followed by a slow convergence on the optimum. For
this problem, the choice of initialization approach appears to have no appreciable
effect on solution times. Convergence times become longer as the problem size
increases and, for some of the algorithms, when constraints are binding. The
reliability of the EA’s proved to be excellent and their convergence speeds are
acceptable for use in operational decision-making. As a practical matter, the
majority of applied hydropower optimization problems are non-convex and
discontinuous. These conditions preclude the use of traditional calculus based
algorithms. In contrast, evolutionary algorithms are robust under these
conditions. Continuing development and testing of these algorithms, leading
towards operational deployment, is now ongoing.

Introduction
Within the last 30 years, a variety of new optimization heuristics have been
described in the power engineering literature. These heuristic approaches rely on
innovative search techniques, drawn from biological and physical processes.
Although computationally intensive, these methods can solve difficult constrained
optimization problems, like the dynamic economic dispatch problem, quickly and
reliably.

This research describes several of the most promising of these new optimization
approaches, applies them to example economic dispatch problems and
systematically assesses their performance. The goal of this effort is to identify

Advanced Algorithms for Hydropower Optimization

2

algorithms which can help guide the hydropower economic dispatch decisions and
improve efficiency, generating more electric power with less water.

Reclamation plays a highly visible leadership role in the electric power industry.
The Bureau is the second largest producer of hydroelectric power in the United
States and, if it were a utility, would rank as the ninth largest electric utility on the
basis of production capacity. We operate 58 power plants with an installed
capacity of 14,809 MW and produce approximately 40 billion kWh of energy
annually. As a registered generation and transmission owner-operator,
Reclamation plays a key role in regional reserve sharing agreements and is a
member of the Western Electricity Coordinating Council (WECC).

By statute, Reclamation's electric power must be marketed at the lowest possible
rates consistent with sound business practice. The goal of this research project is
to identify and apply advanced approaches allowing the operation of Reclamation
hydropower plants in a more efficient manner generating more electricity per
acre-foot of water released. This research is fully consistent with Reclamation's
mandate and reflects our stewardship responsibilities as a water and power
provider. Improved efficiency will result in the generation of more electric power
using less water benefitting water and power users, as well as the American
taxpayer.

Hydropower Problems
The focus of this research effort is on the dynamic economic dispatch problem
which is of particular importance to Reclamation and other hydropower
owner/operators. There are several mathematically related hydropower problems
which can sometimes prove confusing. To ensure a common basis for
understanding, three of these problems are summarized in this section. These are
the (static) economic dispatch problem, the dynamic economic dispatch problem
and the unit commitment problem.

Economic Dispatch

The static economic dispatch problem is a mathematical optimization problem
which identifies how to optimally manage one or more operating hydropower
units together in a single time-step, typically a one hour period. This problem
assumes the hydropower units have been previously committed or operating.
Static economic dispatch problems typically consider the minimum and maximum
output constraints of each available unit as well as their engineering
characteristics, such as head, release and efficiency characteristics.

The Dynamic Economic Dispatch Problem

3

Dynamic Economic Dispatch

The dynamic economic dispatch problem, which is the focus of this research, is
an extension of the static dispatch problem. It is a mathematical optimization
problem which can identify how to optimally manage one or more hydropower
units over a specified time horizon. The time horizon considered might consist of
a day (24-hours), a week (168-hours) or some other period. Like the static
problem, the dynamic economic dispatch problem also assumes the hydropower
units are currently committed or operating. Typically such problems consider the
minimum and maximum output constraints of each available unit, and their
engineering characteristics. A unique feature of dynamic economic dispatch
problem is their consideration of a multiple time-step planning horizon and their
ability to include time-step to time-step ramp rate constraints on each unit, or
combination of units.

The dynamic economic dispatch problem underlies many high visibility
hydropower planning analyses. Its efficient and accurate solution is of paramount
importance in such studies. Prominent Reclamation examples include studies of
the economic impacts of changing operations at the Aspinall Unit (Veselka et al
2003) and Glen Canyon Dam (Harpman 1999).

Unit Dispatch

The unit commitment or unit dispatch problem is a complex 2-step mathematical
optimization problem. Solution of this problem requires (a) identification of the
combination of available hydropower units to operate (or shut down) in a single
time-step, such as a 1–hour period, and, (b) how to managed the committed
hydropower units in an optimal manner. The decision to operate or shut down a
unit is a binary (0/1) decision, typically with some associated cost and often with
some minimum time constraint imposed between startup and shutdown decisions.
Assuming there are n available hydropower units, the unit dispatch problem is of
size 2n. This aspect of the problem poses a potentially large and difficult-to-solve
integer programming effort. Once the optimal units have been committed, the
economic dispatch problem, described previously, is solved for those units.

The Dynamic Economic Dispatch
Problem
The hydropower plant operator is faced with a challenging dynamic optimization
problem. Given the amount of water available for release and the anticipated
price of electricity over a particular time horizon (T), the plant operator must
decide how much water to release for generation in each period (t) in order to
maximize the economic value of the electricity produced. Typically, the total

Advanced Algorithms for Hydropower Optimization

4

amount of water available for release (Q) over the planning horizon is fixed and
known. The vector of prices (R) over the planning horizon (T) is assumed or
anticipated, based on prior experience and knowledge.

In general, the optimal dynamic dispatch problem can be written in mathematical
notation as shown in equations (1) through (6).

[Editor’s note: Equations throughout this report are too complex to be made accessible for vision-impaired
readers. Contact David Harpman at 303-445-2733 or DHarpman@usbr.gov for help with specific equations.

(1) ∑
T

ttt qpRMaximize
1

)(

 subject to:

(2) ∑ ≤
T

t Qq
1

(3) 0≥tp

(4) maxmin qqq t ≤≤

(5) maxmin ppp t ≤≤

(6) rrateqabs ≤∆)(

Where: Rt = price ($/MWh) at time (t)
 pt = generation (MW) at time (t)
 qt = release (cfs or af) at time (t)
 Q = total release (af).
 qmin = minimum release.
 qmax = maximum release
 pmin = minimum generation level.
 pmax = maximum generation level
 ∆q = change in q from t to t+1.
 rrate = maximum ramp rate.

In practice, the operator attempts to maximize economic value over the time
horizon by producing electricity when it is most valuable. While doing so, s/he
cannot exceed the amount of water available for release over the time horizon
(equation 2), must respect the minimum and maximum release levels (equation 4),
must respect the minimum and maximum generation levels (equation 5) and must
necessarily accommodate the ramp rate limitations of the plant in moving from
one release level to the next, if any (equation 6).

This problem falls into the class of mathematical problems known as constrained
optimization problems. Depending on the nature of the generation and head
relationships, the problem may be highly nonlinear.

mailto:DHarpman@usbr.gov�

Optimization Review

5

Solution of the optimal dynamic dispatch problem represents a daunting
mathematical undertaking. In general, it is not possible to solve this type of
problem analytically and highly specialized computer software must be employed
to obtain a numerical solution to the problem. The efficient and rapid solution of
this class of problem is the focus of this research effort.

The dynamic economic dispatch problem, as it has been described here, reflects a
purely economic objective. This approach is employed in the vast majority of
economic, engineering and research applications. In some settings, the operator’s
motivations are more complex and their objectives may vary from this purely
economic approach. Appendix 1 describes several different but plausible
objective functions. Use of any of these alternative objective functions, will lead
to optimal solutions which may differ in character from those obtained in this
study.

The dynamic economic dispatch objective used in this study is a simplified
version of reality since it does not allow for the possible provision of ancillary
services by the hydropower plant. Ancillary services are electrical products, other
than energy generation, which help maintain reliable system operations in
accordance with good utility practice. Two ancillary services in particular,
spinning reserves and regulation, can affect the optimal economic dispatch
decision. Appendix 2 further discusses ancillary services and describes how their
provision might be expected to affect economic dispatch.

Appendix 5 sketches out the analytic solution of the dynamic economic dispatch
problem using calculus. This appendix is particularly useful because it contains a
specific example which draws upon the details of the problem explored
throughout the remainder of this document.

Optimization Review

Purpose

The focus of this report is on the optimization of functions which are commonly
encountered in hydropower operations. This section serves as a review of this
relatively specialized topic. It provides some relevant background including a
common understanding of the mathematical terms used throughout the remainder
of this document, as well as some high-level insights into the mathematics of
optimization.

Advanced Algorithms for Hydropower Optimization

6

Stationary Points

A stationary point is a point for which the first derivative of the function is zero.
A stationary point can be a point of inflection, a saddle point or an extrema. A
point of inflection is a point where the derivative changes sign from positive to
negative. A saddle point is a point in n-dimensions for which the first derivatives
are zero, but which is not an optima. Such points are caused by the coincidence
of say, a maximum point in one or more dimensions and a minimum point in one
or more different dimensions. An extremal point is a “true” optima, which can be
either a minimum or maximum point.

Extremal Points

Over the domain of permissible real number values, a function may have a variety
of so called, “extremal points.” In the realm of mathematical optimization, these
are known as extremum, extrema, minima, maxima, minimum points or
maximum points, depending on the author and the context. Alternatively, these
same points may be called, “optima” or optimal points. Again, the choice of
terminology varies with the author’s style and discipline.

Global and Local Extremal Points

A generic nonlinear function is plotted in two dimensions (2D) over the real
number domain [-∞, +∞] in Figure 1. This generic nonlinear function is
multimodal. In other words, it has multiple extremal points, a characteristic
which is not uncommon in applied work. Multiple local extrema are known by
various terms including multiple local optima, multiple optima and/or multiple
local optimal points. Some authors refer to such functions as ill-behaved or
complex.

Figure 1. Nonlinear function with multiple local extrema.

Optimization Review

7

The generic nonlinear function shown in Figure 1 has a single global extrema or
optima, in this case a maximum, at point B. The function also has two local
optima, one at point A and the other at point C.

Identification of the global optima (point B) for a nonlinear function such as this
one can be extremely difficult for traditional calculus based optimization
algorithms. Typically, these algorithms will identify the extremal point which is
closest to their given starting position. For example, if the optimizer is started at a
point to the right of point C, it will generally converge on point C. Point C is the
local, rather than the global optima.

Convex and Concave Functions

In general, it is not possible to prove mathematically that a given local extrema is
the global extrema, except in the case of mathematical functions with certain
specific characteristics known as convex or concave functions. These terms have
very specific mathematical definitions (see Boyd and Vandenberghe (2006) for
the many details). The general concepts are readily illustrated in two dimensions
(2D), avoiding a lengthy theoretical discussion. A function which is (strictly)
convex (from above) is shown in Figure 2 panel A. As shown in this figure, a line
drawn between any two points on a convex function will not intersect the function
at any other point. A function which is (strictly) concave (from above) is shown
in Figure 2 panel B. As shown in this figure, a line drawn between any two points
on a concave function will not intersect the function at any other point.

Figure 2. Convex (panel A) and concave (panel B) functions.

Convex and concave functions have appealing properties which facilitate
mathematical optimization. Strictly convex functions, such as the example shown
in Figure 2 panel A, have a single (unique) maxima, and that single extrema is the
global maximum. Strictly concave functions, such as the example shown in
Figure 2 panel B, have a single (unique) minima, and that extrema is the global
minimum point.

Advanced Algorithms for Hydropower Optimization

8

Calculus of Unconstrained Optimization

Since the time of Sir Isaac Newton (circa 1400), mathematicians, economists and
engineers have collectively devoted vast amounts of effort to the study of
optimization, with a particular focus on convex optimization problems with linear
constraints. Not surprisingly, calculus based optimization approaches are
routinely taught to all engineers and economists. Most students of these
disciplines have wonderful memories of their many calculus courses.

Although exposure to these topics is rather wide-spread, a cursory review of
calculus based optimization is a useful digression. All students of calculus will
recall the first order necessary conditions (FOC’s) for the existence of an optima
are that the first derivatives are equal to zero. This is illustrated mathematically in
equation (7).

(7) 0
)(
=

∂
∂

i

i

x
xf

An alternative but equivalent restatement of this condition is that the gradient, or
vector of first partial derivatives, is equal to zero (equation 8).

(8) 0)(=∇ xf

Points where this occurs are points where a line tangent to the function is
horizontal, or flat. This occurs at all stationary points which may be a point of
inflection, a saddle point or an optimal point. While all optima are flat spots, not
all flat spots are optima. At a saddle point, for example, the vector of first
derivative is zero, but it is not an extrema. Consequently, the first order
conditions are said to be a necessary, but not sufficient condition for identifying
an optimum point.

The sufficient or second order sufficient condition (SOC) for indentifying an
optima is that the Hessian matrix, or matrix of second partial derivatives, must be
negative definite (for a maxima) or positive definite (for a minima). A matrix is
said to be positive definite if zTMz > 0 for all non-zero vectors z with real entries.
A matrix is said to be negative definite if zTMz < 0 for all non-zero vectors z with
real entries. The determinate of a real symmetric positive definite matrix is
strictly positive (all eigenvalues are positive). The determinate of a real
symmetric negative definite matrix is strictly negative (all eigenvalues are
negative).

(9) 0)(2

<
∂∂

∂

ji xx
xf for a maximum

Selected Terms

9

(10) 0)(2

>
∂∂

∂

ji xx
xf for a minimum

The second order conditions are used as a test to ensure the vector of derivatives
is not only zero everywhere, but is diminishing in all dimensions (for a maximum)
or increasing in all directions (for a minimum). If the first order necessary
conditions and the second order conditions hold at a particular point, we can be
sure the identified point is at least a local optimal point.

Limits of Calculus Based Optimization

Calculus based optimization is elegant and efficient but has some practical
limitations. Application of calculus based optimization techniques is limited to
functions which are smooth, continuous and twice-differentiable. Calculus based
optimization technologies cannot (readily) be applied to cases where derivatives
either do not exist or cannot be calculated. Objective functions which are
discontinuous or are undefined arise relatively frequently in hydropower
optimization problems.

Selected Terms
Like any branch of science, there are some terms used to describe mathematical
optimization approaches which are not commonly encountered in other fields. As
an aid to understanding the narrative which follows, it will be useful to define
some of these terms.

Algorithm

“A detailed sequence of actions to perform to accomplish some task. Named after
an Iranian mathematician, Al-Khawarizmi. Technically, an algorithm must reach
a result after a finite number of steps, thus ruling out brute force search methods
for certain problems, though some might claim that brute force search was also a
valid (generic) algorithm. The term is also used loosely for any sequence of
actions (which may or may not terminate)” (Computer Dictionary Online 2010).

Heuristic

“A rule of thumb, simplification, or educated guess that reduces or limits the
search for solutions in domains that are difficult and poorly understood. Unlike
(true) algorithms, heuristics do not guarantee optimal, or even feasible, solutions

Advanced Algorithms for Hydropower Optimization

10

and are often used with no theoretical guarantee” (Computer Dictionary Online
2010).

In practice, the term algorithm is often used interchangeably with the term
heuristic. However, mathematicians typically reserve their use of the word
algorithm to describing optimization approaches for which there is a theoretical
mathematical basis for expecting a favorable result. Typically, mathematicians
employ the term heuristic to describe any of the non-traditional optimization
approaches not supported by mathematical theory.

Objective Function

The object of mathematical optimization is to minimize or maximize a specified
mathematical expression. This expression is known as an objective function.

Penalty

Many applied mathematical optimization problems have natural or logical
constraints on the values which can be considered in the solution. For example,
physical (quantity) measurements are typically non-negative.

One approach to characterizing constraints in a constrained mathematical
optimization problem is to arithmetically disadvantage, or penalize, solution
results which violate a constraint. This topic is discussed in much greater detail in
subsequent sections of this document. A penalty function is used to compute the
numerical magnitude of the disadvantage caused by one or more constraint
violations. A penalty is the value returned by a penalty function.

Fitness

In cases where penalty functions are used to characterize constraint violations, a
fitness function is maximized or minimized instead of an objective function. A
fitness function returns the numerical value of the fitness—defined as the
objective function value plus the value of the penalties for constraint violations, if
any.

Optimization Approaches

11

Optimization Approaches

Taxonomy of Optimization Approaches

For purposes of this document and the discussion which follows, it will prove
useful to provide some type of taxonomy or classification scheme to illustrate the
relationships between these two optimization approaches. Figure 3 provides some
structure for this discussion.

As shown in Figure 3, optimization approaches can be divided into traditional
(calculus based) optimization algorithms and heuristic algorithms. The latter
class of optimization methods may also be described as metaheuristics or heuristic
optimizers, depending on the author and the source.

The focus of this research is on a sub-set of optimization methods which are
classified as heuristic algorithms. Even so, comparison and understanding of
these methods is facilitated by some familiarity with traditional methods and
approaches.

Figure 3. Taxonomy of optimization approaches.

Advanced Algorithms for Hydropower Optimization

12

Traditional Solution Algorithms

Optimization problems have traditionally been addressed with a variety of
traditional calculus based methods and throughout the remainder of this
document, these approaches will be referred to as “traditional” or calculus based
approaches. Calculus based optimization approaches are routinely taught to all
engineers and economists. Most students of these disciplines will surely have
fond memories of the many hours they devoted to mastery of this topic!

Since the time of Sir Isaac Newton (circa 1400), mathematicians, economists and
engineers have collectively devoted vast amounts of effort to the study of
optimization, with a particular focus on convex optimization problems with
constraints. There are many books devoted to this subject, one of the many
modern examples being the tome by Boyd and Vandenberghe (2006).

Numerical solution of convex optimization problems is typified by the Newton-
Raphson approach and its many variants. This approach has been taught to
engineers and economists since the early 1950’s (for example, see Wood and
Wollenberg (1996) or Rau (2003)) and is the subject of Appendix 6 in this
document.

As described in Press et al (1989) and Judd (1999), the Newton-Raphson
approach has been largely supplanted by some of its recent and more advanced
variants. At the present time, two approaches are in the forefront of current
calculus based optimization technology. These are the sequential quadratic
programming (SQQ) method, and, the generalized reduced gradient (GRG)
method. Both of these methods are aptly described in Rau (2003). The SQQ
method is often used in high-end commercially available optimization platforms,
such as LINGO (www.lindo.com). The GRG method has found its niche as the
optimization solver incorporated in all currently shipping versions of Microsoft
Excel (Fylstra et al 1998). As such, it may well be the world’s most frequently
used optimization algorithm. In any case, it is almost certainly the most widely
installed optimization package! As bundled with the ubiquitously available Excel
program, the solver is broadly employed in graduate and undergraduate teaching
(for example, see Weber 2007).

Heuristic Optimization Methods

The focus of this research is on the application of a subset of the heuristic
optimization methods shown in Figure 3. Heuristic optimization approaches are
based on the application of rules and logic which reduce the search space and
allow for solution of difficult optimization problems. Generalizing rather broadly,
we can classify these methods into the three categories shown; evolutionary
algorithms, other nature based algorithms and logical algorithms.

http://www.lindo.com/�

Optimization Approaches

13

Evolutionary algorithms explicitly characterize crossover, mutation and selection
operators (Engelbrecht 2005). As might be expected by their name, evolutionary
algorithms are based on the concept of biological evolution. These approaches
are based on the improvement of an artificial population of individuals over a
series of generations or iterations. Each individual carries a solution to the
optimization problem. At each generation, the most fit individuals in the
population reproduce and their offspring survive into the next generation, the less
fit individuals die and their inferior genes are lost. The fitness of the population
and the quality of the solutions found, improve over time. Genetic algorithms,
differential evolution and particle swarm optimization fall into this category of
algorithms.

There are an amazing variety of optimization heuristics related to living
organisms, their behavior or some other natural physical phenomenon. Among
these are ant colony optimization, bee optimization, firefly optimization and a
host of others. As might be surmised, some of these algorithms are predicated on
the collective food location strategies typified by the species.

For purposes of this document, we will classify these remaining approaches as
logical heuristic search algorithms. While these may be very different from one
another in search strategy, they are based on logical insights, experience and in-
depth knowledge of one or more types of optimization problems. As shown in
Figure 3, this category includes such well-known heuristics as Tabu search and
Extremal optimization. It also includes some less well known but quite effective
algorithms such as the Substitution-based Non-linear Approximation Procedure
(SNAP) algorithm developed by Veselka, Schoepfle and Mahalik (2003)

Comparison of Approaches

Much of the research effort described in this report is focused on the application
of evolutionary algorithms to a common hydropower optimization problem. A
comparison of these two classes of algorithms and their respective suitability to
this problem will provide both some background and rationale. Table 1 compares
a number of pertinent characteristics of these two types of approaches.

The hydropower problems examined here are inherently nonlinear with both
nonlinear and linear constraints. Both traditional and evolutionary algorithms can
be applied to these types of problems. Very fast and incredibly reliable traditional
algorithms are available for solving problems with linear objective functions and
constraints. However, traditional algorithms are typically less efficient when
applied to nonlinear objectives and nonlinear constraints. They typically require
longer solution times and can fail to identify a solution more frequently in this
setting.

Advanced Algorithms for Hydropower Optimization

14

Table 1. Traditional and Evolutionary Algorithms

Characteristic Traditional Algorithms Evolutionary Algorithms
Problem formulation Linear or nonlinear Linear or nonlinear
Mathematical
requirements

Smooth, continuous and
twice differentiable

Can be piecewise,
discontinuous and non-
differentiable

Allowable constraints Equality, inequality, linear or
non-linear.

Equality, inequality, linear or
nonlinear.

Mathematical
requirements

Calculus, linear and matrix
algebra operations

Primitive mathematical
operators only (add, subtract,
multiply, divide)

Function return Single solution Multiple solutions
Nature of outcome Deterministic Stochastic
Optimal point Extremal point closest to

starting position usually
identified. This may or may
not be the global optima.

Extremal point within search
range usually identified. This
is more likely to be the global
optima.

Memory requirements Extensive Modest
Convergence
characteristics

Slow large-scale search
Fast local convergence

Fast large-scale search
Slow local convergence

Solution time Short Often lengthy
Code implementation Complex (very) Unsophisticated

Many commonly encountered hydropower problems are nonlinear, nonconvex,
and have discontinuities. This includes the dynamic economic dispatch problem
and the unit dispatch problem examined here. Perhaps the chief strength of
evolutionary programs is their applicability to these types of real-world
hydropower problems, a factor which largely motivated this research effort. The
mathematical requirements for applying traditional optimization algorithms are
rather restrictive. Typically, traditional algorithms can only be employed when
the objective function and the constraints are smooth, continuous and twice
differentiable. In contrast, evolutionary algorithms can solve a much wider range
of problems including those which are discontinuous, piecewise, are not convex
and which cannot be differentiated.

Both traditional and evolutionary algorithms can solve constrained optimization
problems with various types of constraints including equality, inequality, linear
and nonlinear constraints. Traditional algorithms are less well suited to solving
optimization problems with nonlinear constraints. The solution of problems with
one or more equality constraints can be problematic for evolutionary algorithms.

The mathematical requirements for implementing evolutionary algorithms are far
less onerous than they are for traditional (calculus based) algorithms. In both
philosophy and practice evolutionary algorithms are not based on calculus and do

Optimization Approaches

15

not use calculus constructions for obtaining a solution. In fact, some authors
consider this to be their greatest strength! Evolutionary algorithms use only
primitive mathematical operators such as addition, subtraction, multiplication and
division. Traditional algorithms are, of course, founded in calculus concepts. As
a result, they use not only gradient vectors (vectors of first partial derivatives) and
hessian matrices (matrices of second partial derivatives), but also have advanced
linear algebra requirements. These advanced mathematical constructs are error
prone to derive and code, difficult to implement numerically and require an
extremely high degree of knowledge and skill on the part of the
researcher/programmer. Judd, a master of understatement, writes “Many readers
could write acceptable unconstrained optimization code, but it is much more
difficult to write good, stable, reliable code for constrained optimization (Judd
1999, page 142)

Traditional (calculus based) optimization algorithms return one single solution. It
is the solution to the problem, as every economics and engineering student is
acutely aware. A fundamental difference between traditional and evolutionary
algorithms is that evolutionary algorithms return a population of solutions. This
difference in solution paradigm is both unfamiliar and potentially confusing.

To expand upon this concept, we must recall that evolutionary algorithms
characterize a population of individuals. This population is of say size, np, which
could consist of from 5 to 100 individuals or more. Fundamentally, each of these
np individuals stores a solution (in some cases, more than one). The stored
solution consists of not only the optimal function value, but the vector of values
which produces it. As the evolutionary process proceeds, each of these np
solutions evolves and becomes better, or more “fit.” When the evolutionary
process terminates, the result is np, not necessarily unique, individual solutions--
not one single solution. As a practical matter, the analyst will often choose to
report the best of these np individual solutions as the solution. Since evolutionary
algorithms are probabilistic in nature, each new run will produce slightly different
results (in contrast with a traditional algorithm which produces identically the
same result for a given starting condition). In the case of evolutionary algorithms,
it is customary to undertake multiple runs and report the mean and other
descriptive statistics for the outcomes.

Many real-world optimization problems have more than one optimal or extremal
point. At an extremum, the first order necessary conditions (FOCs) for a
minimum or maximum are satisfied. In the case of a traditional calculus based
algorithm, the specific extrema identified by the algorithm depends primarily on
the starting conditions specified by the analyst. These types of functions are the
bane of researchers everywhere! In the absence of detailed knowledge about the
optimal surface, the usual procedure is to restart the traditional algorithm at many
different points in the solution space and search for the global optimum point.
Problems which exhibit multiple local optima can often be solved by these
calculus based methods. However, there is no theoretical or practical way to

Advanced Algorithms for Hydropower Optimization

16

guarantee the solution identified by the researcher is the global solution to the
problem.

Evolutionary algorithms are sometimes described as global optimizers owing to
their well-documented ability to identify the global optima within the given
search space. Notwithstanding the published glowing reports, an equal body of
published evidence suggests this behavior is not universally observed.
Furthermore, it cannot be proved theoretically that they can be relied upon to
identify the global best solution. It is most certainly true that relative to
traditional algorithms, evolutionary programs carry more solutions through the
iteration process and have much greater exploratory ability. These two
characteristics enable evolutionary algorithms to more exhaustively traverse the
solution space. Consequently, they are much more likely than traditional
algorithms to identify the global optima.

Traditional optimization algorithms make heavy use of vectors, matrices and
linear algebra operations, which themselves exact a huge computer memory
overhead. Consequently, traditional optimization algorithms require extensive
amounts of computer memory, especially for the solution of sizable problems. As
little as ten years ago the practical usage of traditional optimization algorithms
was restricted by the amount of physical and virtual memory addressable by
existing microcomputers. In contrast, evolutionary algorithms do not make use of
vectors, matrices or other advanced mathematical structures or operators. Their
memory requirements are quite modest for similar size problems.

In cases where they can be applied, traditional calculus based optimization
algorithms are known for their rapid converge properties. This is especially true
in the case of convex functions with linear constraints. Experiments show that for
traditional optimization algorithms, the initial phases of search are quite slow.
Once they have identified the region where the optima resides, local convergence
to the final solution is often very fast. Evolutionary algorithms on the other hand,
exhibit behavior which is very much the opposite. Experiments on evolutionary
algorithms demonstrate the initial search phase is very fast—the algorithms
quickly and efficiently locate the region of the optima. However, the local
convergence of these algorithms is slow, in some cases, painfully so. Typically,
large amounts of time are required for the population to converge on an optimal
point, after the region where it is located has been isolated.

The computational resources required by traditional calculus based algorithms
and evolutionary algorithms differ profoundly. Not surprisingly, the time
required to achieve convergence is vastly different. Traditional algorithms
require large amounts of memory but typically require less than 100 major
iterations to converge to a solution. Evolutionary algorithms often require
thousands or tens of thousands of iterations to converge to a solution. While it is
true that evolutionary algorithms utilize only primitive mathematical operations—
it is no understatement to say they do so intensively! Prior to the advent of

Heuristics and Microcomputers

17

microcomputers, the lack of sufficient computing power and sheer cost of
computer resources precluded the use of evolutionary algorithms for civilian
purposes.

One of the advantages of evolutionary algorithms is their ease of implementation.
Unlike traditional algorithms, effective cutting-edge evolutionary algorithms are
routinely developed by researchers and hobbyists. As of December 2010, there a
number of toolboxes and working computer codes are available. Even so, many
researchers with limited resources, develop research grade evolutionary
algorithms using high level computer languages such as C++, C, Fortran, Java,
Visual Basic and Delphi. This is rarely the case for traditional calculus based
algorithms.

Heuristics and Microcomputers
Heuristic algorithms are computationally intensive and scientific advances in
heuristics are necessarily related to the nearly unimaginable innovations in
computer technology made within the last thirty years. Arguably, there are two
fundamental aspects of this evolution—vast improvements in computational
speed, and, the widespread availability of microcomputers.

The computational resources required by traditional calculus based algorithms of
yesteryear and modern evolutionary algorithms differ profoundly. Traditional
algorithms require relatively large amounts of available memory but typically
require less than 100 major iterations to converge to a solution. In contrast,
evolutionary algorithms often require thousands, tens of thousands or even
millions of iterations to converge on a solution. While evolutionary algorithms
utilize only primitive mathematical operations—they do so intensively!

Although this fact is often overlooked by the young, computers are a relatively
recent invention. Depending on the source, the first fully programmable
computer was debuted in the 1940s. These early computers were large
centralized hardware installations which we now describe as, “mainframe”
computer architectures. Relative to the current norms, they were incredibly
expensive, slow and ponderous. Access to the then existing computational
resources was rationed and limited to a few elite civilian researchers, and
members of the defense establishment. Experiments using unproven technologies
or computationally intensive processes were exceedingly rare.

The advent of microcomputers changed this paradigm. The Apple II personal
computer was introduced in 1977 and the International Business Machines (IBM)
Company marketed their first computer in 1981. Microcomputers were designed
to be used independently of institutional controls and shared usage constraints.
They could be purchased relatively cheaply by individual researchers, and
perhaps most importantly-- were consistently and conveniently available for use.

Advanced Algorithms for Hydropower Optimization

18

Even the early microcomputers were technically and numerically capable tools.
As further technological innovations were made, hardware costs (memory and
storage) fell dramatically and computational speeds increased. These
characteristics made it possible for established mainstream researchers, as well as
hobbyists and researchers working at the fringes of established theory and
practice, to purchase microcomputers and to experiment with their ideas freely
and at little cost.

Modern researchers often take for granted the massive computational power at
their disposal. Since this is particularly true in the case of younger researchers, a
brief divergence will provide a useful point of reference. The pace of hardware
and speed improvements since the appearance of personal computers has been
dizzying. For example, the Apollo 11 mission in 1969, which successfully landed
men on the moon, used an onboard computer which had eight times less memory
and ran at a much lower speed than the IBM XT personal computer released in
1981 (Robertson 2009). The basic configuration of a 1981 IBM XT computer had
16 kilobytes (0.000016 gigabytes) of random access memory (RAM), 10
megabytes (0.010 gigabytes) of hard drive storage and ran at a central processor
unit (CPU) clock speed of 4.077 megahertz (0.004077 gigahertz). By way of a
modern comparison, the laptop used for writing this document operates at a CPU
speed of 2.66 gigahertz, a 652.4 fold clock speed increase relative to the IBM XT.
This medium-price range laptop also has an addressable memory space of 4
gigabytes, over 250,000 times larger than the 1981 IBM XT, and hard disk
storage of 150 gigabytes, which is 15,000 times more disk storage space.

Not surprisingly-- the birth of heuristic optimization algorithms is inextricably
tied to the rise of the microcomputer. Most certainly, the spread of
microcomputers and their computational capability provided the essential tools
for heuristic algorithm development. Conceptual approaches which had here-to-
for been theoretical constructions, could be coded and tested. And they were.
Not surprisingly, the description of many heuristic optimization algorithms dates
back to this time. Examples include the development of genetic algorithms
(1977), the description of particle swarm optimization (1995), simulated
annealing (1983) and differential evolution (1995).

The cost of computer hardware, computer software and computer time no longer
place an upper limit on the scale or scope of research agendas. The relaxing of
these constraints has unleashed many different threads of research on heuristic
optimization algorithms. Attitudes about computer resources used in research
have also changed. Computational cost is now primarily a question of researcher
patience. It is of little consequence to many researchers if their personal computer
runs ten seconds, ten minutes or ten hours to achieve a solution. Improvements in
the available computational tools, their low cost and near-universal availability
have given rise to golden age of heuristic optimization research!

EAs in the Wild

19

EAs in the Wild
Evolutionary algorithms (EAs) belong to a larger class of algorithms best
described as being inspired by natural phenomenon, particularly the behavior of
different organisms. These are often called nature based, nature inspired, or in
some cases, biological algorithms. The universe of nature inspired algorithms is
large and creative. Nature inspired algorithms span the realm from bacteria (Kim,
Abraham and Cho 2007), to fireflies (Yang 2009), raindrops (Shah-Hosseini
2009), ants (Dorigo and Stutzle 2004) and beyond. Newly described algorithms
appear in the literature on a regular basis. A selection of the more common and
better documented nature inspired algorithms is shown in Table 2.

Table 2. Selected Nature-Inspired Optimization Algorithms

Algorithm References
Ant colony optimization (ACO) Dorigo and Stutzle (2004)
Artificial immune system optimization Cutello and Nicosia (2002)
Bacterial foraging optimization Kim, Abraham and Cho (2007)
Bee optimization Karaboga and Bosturk (2007);

Pham et al (2006)
Cuckoo algorithm Yang and Deb (2009, 2010)
Differential evolution (DE) Storn and Price (1995, 1997)
Firefly optimization Yang (2010)
Fish optimization Huang and Zhou (2008)
Genetic algorithms (GA) Haupt and Haupt (2004)
Particle swarm optimization (PSO) Eberhart and Kennedy (1995);

Kennedy and Eberhart (2001)
Raindrop optimization Shah-Hosseini (2009)
Simulated annealing Kirkpatrick, Gelatt, and Vecchi (1983)

The evolutionary algorithms, including genetic algorithms, particle swarm
optimization, and differential evolution are a sub-category of the nature inspired
optimization algorithms. Evolutionary algorithms and their characteristics are the
focus of this research and are discussed in greater detail in subsequent sections of
this document.

Research on nature inspired algorithms is ongoing and active. There have been
several evaluations and performance comparisons of nature inspired algorithms.
These have typically focused on the less-esoteric members of this algorithm class.
The most expansive of these evaluations is found in the book by Wahde (2008).
Readily obtainable studies by Potter et al (2009) and Mezura-Montes and Lopez-
Ramirez (2007) are also very useful contributions to this line of research.

Advanced Algorithms for Hydropower Optimization

20

Related Algorithms

Hybrid Algorithms

Hybrid evolutionary algorithms are frequently and routinely encountered in the
applied literature. As distinct from memetic algorithms, which combine
evolutionary algorithms and traditional (calculus based) algorithms, hybrid
algorithms are constructed from two or more evolutionary algorithms. The
resultant hybrid algorithm is often described as being (potentially) superior to
either parent, especially in certain specific problem domains.

Hybrid combinations of nearly every evolutionary algorithm have been described.
There are a plethora of hybrid combinations for PSO, DE, ACO and GA’s and
there are also hybrid combinations of other less well-known algorithms such as
bee algorithms. Engelbrecht (2005) reviews several hybrid PSO algorithms
including GA based PSO, DE based PSO (also see Liu, Cai and Wang (2008) and
ACO based PSO. Banks, Vincent and Anyakoha (2008) review about 25 different
hybrids and Neri and Tirronen (2010) cite about 30 more. A quick electronic
perusal of the recent literature reveals a remarkable number of hybrid
combinations and variants thereof.

At least some part of this activity may be driven by the need for researchers to
differentiate their publication products. Even so, based on the existing number of
different hybrids, this appears to be an incredibly fertile topical area for future
research.

Memetic Algorithms

Memetic algorithms harness the global search characteristics of evolutionary
algorithms with the fast local search properties of traditional (calculus based)
optimization methods. Evolutionary algorithms such as PSO, DE and RCGA are
able to rapidly and efficiently locate the neighborhood of the global optima, or a
set of candidate optima. Typically however, their local convergence properties
are rather slow. Evolutionary algorithms spend a disproportionate amount of time
achieving convergence, after the neighborhood of the optima has been identified.
Memetic algorithms utilize evolutionary algorithms to identify the neighborhood
of an optimal point and then pass control of the optimization process to a
traditional algorithm.

Engelbrecht (2005) reviews several PSO based memetic algorithms including hill-
climbing PSO, stochastic local search PSO and gradient based PSO approaches.
Additionally, there are a number of relatively comprehensive studies of memetic
approaches. Particularly revealing are studies of GA based memetic algorithms
(Li, Ong, Le and Gob 2008), DE based memetic algorithms (Neri and Tirronen
2010) and a comparison of different evolutionary based approaches (Nguyen, Ong

EA Selection Process

21

and Krasnogor 2007). Based on the available evidence, this two-step approach is
quite efficient for continuous, differentiable functions and has the potential to
stimulate many related threads of research.

EA Selection Process

Algorithm Selection

The selection of specific algorithms for this research was informed by the existing
professional published and grey literature, applications to similar problems,
performance reports and several practical considerations. As described in Table
2, the universe of evolutionary algorithms described in the literature is diverse and
growing at a very rapid pace. Potentially, a number of different evolutionary
algorithms could be applied to hydropower dynamic economic dispatch and unit
dispatch problems. As with any research effort, this one was constrained by the
resources available; primarily funding and researcher time. These and other
practical constraints dictated, to some extent, the range and number of algorithms
which could be explored.

Candidate Selection

An initial preliminary literature review was undertaken to identify candidate
evolutionary algorithms for use in this research. The initial literature exploration
was followed by a relatively extensive review of the power engineering literature
with a focus on identifying intersections between the candidate algorithms and
previous applications to electric power system problems. Subsequently, a more
intensive review of the recent literature pertinent to specific candidate algorithms
was conducted.

The literature review process resulted in identification of five candidate
algorithms. These algorithms were; particle swarm optimization (PSO), genetic
algorithms (GA), differential evolution (DE), ant colony optimization (ACO) and
the Bees algorithm (BA).

Selection Criteria

Selection of evolutionary algorithms for this research project required some
artistry and judgment. One factor which weighed heavily in the selection process
was the depth and breadth of previous applications. The widespread use of a
particular algorithm and the number of examples where it has been applied to a
particular class of optimization problem provides some evidence of the
algorithm’s efficacy and potential for application in other arenas. For example,

Advanced Algorithms for Hydropower Optimization

22

both GA and PSO have been very extensively applied to an amazing variety of
problem types. In contrast, the literature on the dragon-fly algorithm consists of a
small handful of specific applications, the bulk of which are by the same author.
With limited investigational resources to devote, the decision to eliminate the
latter from consideration was rather straightforward

The hydropower dynamic economic dispatch problem and the unit dispatch
problem are both examples of constrained optimization problems. For this
reason, a substantial part of the decision process was focused on evolutionary
algorithms which had been applied to the general class of constrained
optimization problems. Although many of the evolutionary algorithms listed in
Table 2 could potentially be modified, in some way, to accommodate constraints,
it seemed prudent to limit the search to algorithms for which published examples
existed. This eliminated some relatively promising algorithms from the subset of
algorithms retained for further investigation. The Bees algorithm, for example, is
a new and seemingly quite efficient evolutionary algorithm. Although they may
exist, or be in process, no previous applications of BA to constrained optimization
problems were uncovered during the literature search. As a result, this algorithm
was not considered for further investigation.

Finally, the choice of evolutionary algorithms was further limited to those
algorithms designed for the continuous real number domain. Although many
applied problems can be specified in discrete forms (in fact, all continuous
problems can be re-specified as discrete approximations), the most natural and
appealing choice for solving a continuous real-valued problem is to use an
algorithm which operates in the continuous real-valued domain. Ant colony
optimization (ACO) is certainly a promising candidate algorithm, but is primarily
useful in the discrete domain. For this reason, ACO was eliminated from further
consideration.

Algorithms Selected

Based on the multiphase literature review, previous application to constrained
optimization problems and limiting the choices to continuous real-valued
algorithms resulted in a relatively small subset of evolutionary algorithms which
were retained for detailed investigation. This subset includes; RCGA, DE and
PSO. The lambda search (LS) algorithm, a traditional calculus based approach,
was also chosen for use as a point of comparison. A short description of each of
these algorithms follows while the details of these four algorithms are described
more fully in Appendices 7, 8, 9 and 10.

Real Coded Genetic Algorithm (RCGA)
Genetic algorithms were the first of the evolutionary algorithms to be described in
the literature. They use techniques inspired by evolutionary biology including
inheritance, mutation, selection, and crossover. This research focuses on the less-

EA Selection Process

23

studied real coded genetic algorithm which is faster and more naturally applied to
the dynamic economic dispatch problem, than the binary variant.

Genetic algorithms are based on virtual populations which are termed individuals
(or phenotypes). For each generation or iteration, the fitness of every individual
in the population is evaluated and the most fit individuals are selected and
modified (recombined and possibly randomly mutated) to form a new population.
The new population survives into the next generation or iteration of the algorithm.
The algorithm terminates when a satisfactory fitness level has been achieved or
the maximum number of iterations has occurred. Appendix 8 contains a complete
description of RCGA.

Differential Evolution (DE)
Differential evolution (DE) was jointly developed by Storn and Price (1995,
1997) and is one of the more recently described global heuristic optimization
methods. In many respects, it resembles a simplified form of genetic algorithm,
albeit with several distinct and highly desirable performance characteristics.

The DE approach is based on a virtual population of np-independent individuals.
During each generation, these individuals reproduce and undergo selection. Only
the fittest individuals in the population survive to reproduce in the next
generation. Over successive generations, the population becomes increasingly fit
—thereby identifying the optimum (minimum or maximum) of a function. DE is
described in considerably more detail in Appendix 9.

Particle Swarm Optimization (PSO)
PSO is a global heuristic optimization method. It was invented by Kennedy and
Eberhart (1995) who developed the concept by observing the behavior of flocking
birds. PSO is classified as a stochastic, population-based evolutionary computer
algorithm for problem solving.

PSO utilizes np-independent virtual particles, which "fly" through the search
domain, have a memory and are able to communicate with other members of their
"swarm." Each particle has only one purpose—to identify the optimum (minimum
or maximum) of a function within the feasible search space. PSO is described in
more detail in Appendix 10.

Lambda Search (LS)
The lambda search (LS) algorithm is a traditional, calculus based approach, and
its application to dispatch problems is rather well established and is described in
Wood and Wollenberg (1996). The LS algorithm is arguably the fastest of the
traditional calculus based methodologies which can be applied to this particular
problem. It cleverly exploits the structure of this class of constrained
optimization problem to reduce the number of decision variables to one (1). The
LS algorithm is thus a univariate optimization approach and, as such, needs to
identify the value of only a single unknown variable, rather than d-unknown

Advanced Algorithms for Hydropower Optimization

24

variables. Consequently, when it can be applied, it is very efficient. The LS
algorithm was employed in this research effort primarily as a basis for comparing
the selected EA algorithms. The LS algorithm and its application to the dynamic
economic dispatch problem are described in Appendix 7.

Initialization
The first step in all of the heuristic optimization algorithms is to identify the
starting positions of a specified number (np) of particles or individuals in the d-
dimensional search space. This process is termed, “initialization.”

Purpose and Implications

The choice of initialization strategy and its properties can profoundly influence
the outcome of a heuristic optimizer. The successful identification of the global
optima is dependent on the proximity of the initial points. To the extent an
initialization approach does not adequately cover a particular region in the search
space, and this region contains the global optima, the algorithm may fail to
identify the global optima. Or, if the chosen initialization method places a
number of particles in the region of the search space hosting a local optima, the
algorithm may become trapped and converge on the local, rather than the global
optima. Second, the number of iterations, the computational effort required and
the convergence time required are related to the proximity of the initialized points
to the optima. Finally, to the extent the initialization process is stochastic, the
point of algorithm convergence, local versus global extrema and the precision of
convergence will also vary.

In cases where the location of the solution is a priori unknown (which
encompasses the majority of applied cases), it is desirable to distribute the np
particles “equally” and “uniformly” within the search space. When the points are
strategically distributed in this fashion, the probability that at least one point is
close to the global maxima or minima is increased. On that concept, most
researchers would agree. However, the mechanics of positioning a finite number
of points in d-dimensional space such that they are approximately equally
distributed is a nontrivial problem.

A 2-dimensional illustration conveys a considerable amount of information about
this problem. Figure 4 illustrates the equal and uniform distribution of 49 points
in 2-dimensional space. Some of the points are blue colored and some are open
points colored yellow. In this figure, all of the points are positioned at each
vertex of a lattice overlaid on the contour plot of a function whose maxima is
identified with a green star. Most observers would agree these 49 points are
equally and uniformly distributed in the bounded space and indeed, this can be

Initialization

25

proven mathematically for this contrived case. The nature of the initialization
problem becomes more evident if, for example, we limit the number of points to
only the open yellow colored points, np=12. Devising a mechanism for allocating
the 12 yellow colored points equally and uniformly in the search space is much
more problematic. The complexity of this task grows immensely as the number
of dimensions increases beyond the 2-dimensional example shown here.

Figure 4. Lattice points in a
search space (np=49).

Random

The vast majority of applied work employs the uniform random distribution to
initially locate points in the search space. Figure 5 illustrates a random
initialization of np=50 points in 2-dimensional bounded [1, 1] space.

Figure 5. Uniform random
initialization (np=50).

Visual comparison of Figure 4 (lattice points) with Figure 5 (random
initialization) reveals some stark differences. In the random initialization

Advanced Algorithms for Hydropower Optimization

26

example (Figure 5), the points are considerably more numerous in some regions
of the search area than in other regions. This is typical of random initialization
methods, which often result in a non-systematic location of the initialized points
within the bounded area. Clerc (2008) concisely describes this phenomenon in
the first section title of a widely cited paper as, “Uniform Random Distributions:
Easy but Bad.”

One frequent contributor to poor random initialization performance is failure to
employ a high quality random number generator (RNG). Random sequences
produced by an RNG are an important component of this research. As described
in Appendix 12, considerable effort was devoted to identifying and implementing
an appropriate RNG for use in this research project. Interested readers are
referred to Appendix 12 for additional technical information on this important
topic.

Use of Sequences

In the last few years, some researchers have proposed the use of low discrepancy
sequences for initialization purposes. Low discrepancy sequences are also called
quasi-random or sub-random sequences. The points in these sequences are said to
be more systematically located in the search space, with fewer gaps and more
equal spacing between points. Low discrepancy sequences in the EA literature
include the Sobol (Pant, Thangaraj, Singh and Abraham 2008), Van der Corput
(Pant, Thangaraj and Abraham 2009) and Halton (Uy, Hoai, McKay and Tuan
2007) sequences, to name but a few.

Figure 6 displays a Weyl low discrepancy sequence initialization in the [1,1]
space. It graphically illustrates the potential advantages of employing low
discrepancy methods for initialization. Relative to the random initiation
approach, low discrepancy sequence initialization can produce more uniform and
systematic locations of points in the search space, with fewer gaps and more equal
spacing between points. Low discrepancy sequences figured rather prominently
in this research effort and are
described more fully in Appendix
13. Appendix 13 also contains a
useful comparison of random
initialization with several low
discrepancy sequences.

Figure 6. Weyl initialization
(np=50).

Initialization

27

Other

Several recent efforts have utilized other logical and mathematical approaches for
initialization. A selection of these approaches include the simplex method
(Parsopoulos and Vrahatis 2002), quadratic interpolation (Pant, Singh and
Abraham 2009), tessellations (Richards and Ventura 2004) and the opposition
method (Rahnamayan, Tizhoosh and Salama 2008, Omran 2009).

The simplex method is a rudimentary optimization technique developed by Nelder
and Mead (1965). As described in Press et al (1989), it is slow, relatively robust
and readily coded. As applied in this context, np particles are first randomly
initialized in the search space. Each of these individuals is then used as a starting
point for a user specified number of simplex iterations. The simplex algorithm
moves the point towards a local or global extrema. As might be anticipated, this
procedure improves the fitness of each particle vis a vis their randomly initialized
positions. Collectively, the fitness of the initial points is improved. These
improved starting positions improve the performance of the heuristic optimizer
and accelerate its convergence. Like all of the approaches described here, the
simplex method entails some additional implementation complexity and imposes
some computational overhead.

The opposition method was originally described by Rahnamayan, Tizhoosh and
Salama (2008) and is employed for initialization purposes by Omran (2009), who
uses the term opposition based learning (OBL). The OBL procedure improves the
starting fitness of the initialized points using an ingenious approach.
Implementation of this approach is conceptually straightforward. First, np
individuals are randomly initialized in the search space bounded by [a, b]. An
additional np “opposite” points are calculated using the opposition equation
shown in equation 11.

(11) io pbap −+=

This procedure results in a total population of 2*np individuals, or particles. The
fitness of these 2*np particles are assessed and the particles are sorted by their
fitness. The np most fit particles are retained and their positions are used to
initialize or start the heuristic optimizer. Like the other approaches described
here, the OBL method entails some additional implementation complexity and
computational burden.

Previous research has focused on the application of different initialization
methods to a suite of test problems. Their potential efficacy when applied to the
solution of the hydropower problems examined here is unknown. Subsequent
sections of this document will report the results of experiments which explore the
use of several of these initialization techniques.

Advanced Algorithms for Hydropower Optimization

28

Constraints and Constraint Handling

Types of Constraints

Constraints separate the solution space into feasible and infeasible spaces. The
resulting feasible solution space is generally limited and can be discontinuous,
even when the optimization problem is not. Constraint equations can be linear or
nonlinear in nature. In general, there are three classes of constraint equations.
These broad classes are; boundary constraints, equality constraints and inequality
constraints.

Boundary constraints serve to define the borders of the solution space. Boundary
constraints commonly take the form of simple upper or lower bounds on the
independent variables. These are called “box” constraints. However, simple
bounds are not the only types of boundary constraints. For example, the
circumference of a hypersphere (a sphere in multi-dimensional space) is also a
boundary constraint. An example of a simple lower bound constraint is shown in
equation (12).

(12) cxi >

Equality constraints specify that a function of the independent variables is equal
to a scalar constant. For example the amount of electricity generated (supplied) at
a given instant must be equal to the amount of electricity demanded at that time.
An example of an equality constraint is shown in equation (13).

(13) kxxx =++ 321

Inequality constraints specify that a function of the independent variables must be
greater than or equal to, or less than or equal to, a given scalar constant. For
example, the contents of a reservoir must be less than or equal to the storage
capacity of the reservoir. A simple example of an inequality constraint is shown
in equation (14).

 (14))(xfvt ≤

Constraint Handling Methods

Research on the incorporation of constraints in evolutionary programming
methods and the solution of constrained optimization problems with evolutionary
methods is rather voluminous. Carlos Coello Coello published a widely cited
synopsis of this work (Coello Coello 2002) and maintains an online annotated
bibliography summarizing this ever-expanding body of research
(http://www.cs.cinvestav.mx/~constraint/index.html). In September 2010, this
bibliography exceeded 89 pages in length.

http://www.cs.cinvestav.mx/~constraint/index.html�

Constraints and Constraint Handling

29

Generalizing rather broadly from the literature, constraint handling techniques can
be classified into six categories.

Problem Reformulation
An approach borrowed from traditional calculus based optimization methods is to
reformulate or convert a constrained optimization problem into an unconstrained
problem. For example, many constrained optimization problems encountered by
engineers and economists can be solved by employing the method of Lagrange
(see Appendix 5 for an example of this approach). The method of Lagrange is
based on cleverly introduced artificial variables (such as λ) and slack variables.
Using this approach some constrained optimization problems can be converted to
unconstrained problems and readily solved. Other and more complex
mathematical reformulation approaches can also be employed. For instance,
Monson and Seppi (2005) describe a mathematical approach for projecting
equality constraints onto a reduced (homomorphous) solution space. The
reformulated unconstrained problem is solved and the values of the variables in
the original problem can then be calculated.

Rejection of Infeasible Solutions
Unlike traditional calculus based optimization approaches, evolutionary
algorithms carry multiple solutions through each generation and iteration.
Perhaps the most direct method of ensuring that infeasible solutions are not used
in the formulation of the solution in the next generation is to preclude them.
Using this approach, potential solutions are first tested for feasibility. If a
candidate solution is feasible, it can be stored as a solution and used as a basis to
search for solutions in the next generation. However, if a potential solution is
tested and found to be infeasible, it is not admitted as a solution and not used as a
search basis in future iterations.

Penalty Approaches
A commonly employed constraint handling method is to mathematically
disadvantage or penalize solutions which are infeasible. This approach is widely
used both in traditional calculus based applications as well as in the application of
evolutionary algorithms. In the evolutionary algorithm case, applied to a
maximization problem, fitness (F) is often defined as the sum of the objective
function value (f(x) minus the infeasibility penalties (P), if any as shown in (15).

(15) F=f(x) - P.

If we assume that a variable, say (x), is subject to a simple upper bound
constraint, a penalty function may be defined as shown in equation (16).

(16)








<
−+>=

=
0,

)(, 2

kxif
kxuckxif

p

In this case, if x>=k, then the penalty is calculated as some constant (c) plus a
scalar (u) times the square of the amount that x exceeds the upper bound (k). This

Advanced Algorithms for Hydropower Optimization

30

construction ensures that, (a) there is a penalty if x exactly equals the bound, k,
and, (b) the magnitude of penalty increases rapidly as x exceeds the upper bound.

The penalty function approach is quite effective in evolutionary algorithm setting
since it serves to disadvantage the set of solutions which are infeasible, relative to
those which are feasible. In this context, the individuals with the greatest fitness
form the basis for potential solutions in succeeding generations. As a result, the
population will select for or move towards the feasible solution space with each
new iteration.

The weakness of the penalty function approach is that specification of the penalty
function (in the example above, the penalty function is specified as quadratic) and
the magnitudes of the penalty function parameters (c and u in the example above)
must be determined using judgment and experimentation. In cases where there
are a large number of constraints, this can be rather problematic. Farmani and
Wright (2003) describe a self-adaptive formulation which can overcome this
problem, albeit at the cost of some additional complexity.

Feasibility Preserving Methods
An alternative approach is to identify a set of feasible starting solutions and then
ensure that each candidate solution is itself feasible. Examples of this approach
are described in Engelbrecht (2005) and Paquet and Engelbrecht (2003, 2007). In
these sources, the authors introduce the Converging Linear Particle Swarm
Optimization (CLPSO) algorithm. This algorithm solves an optimization problem
with an arbitrary number of linear constraints.

Repair Methods
In this constraint handling approach, an operator or rule is used to construct a
feasible solution from a solution which is infeasible. Consider, for example, an
inequality constraint on the variable (x) which restricts x to be less than or equal
to a scalar constant (k). An operator which corrects for (or repairs) an infeasible
value of this variable might be constructed as shown in equation (17).

 (17)








=<=
=>

=
xxkxif
kxkxif

xrf
,

,
)|(

Repair methods are widely used in evolutionary algorithms since they are both
readily implemented and effective.

Mixed Approaches
In practice, most applications of evolutionary algorithms use a combination of all
of the constraint handling methods described thus far. It is not uncommon for a
particular application to reformulate some part of the problem to an unconstrained
representation and to also employ penalty functions, repair methods and reject
infeasible solutions. As shown in the literature, the artistry is in the identification
of the most effective approach or combination of approaches for the efficient
solution of a particular class of problems. As might be anticipated, the

Constraints and Constraint Handling

31

recommended approach varies with the type of evolutionary algorithm employed
and is almost certainly problem specific.

Fitness Comparisons with Constraints

Pair wise comparison of two solutions to identify which is the most fit is
relatively straightforward for unconstrained optimization problems. In the case of
constrained optimization problems, such comparisons are made considerably
more complex because of the potentially confounding influence of the penalty
function. To illustrate this problem more fully, first recall that when applied to a
maximization problem, fitness (F) is often defined as the sum of the objective
function value (f(x) minus the infeasibility penalty (P), if any.

(18) F=f(x) - P.

It may also be useful for the discussion which follows to recall that for
constrained maximization problems, an infeasible solution is typically one in
which one or more variables exceed their upper bound restrictions. By definition,
the objective function value in these cases is higher than it would be if the
solution were feasible.

Typically, the analyst may spend considerable time understanding the nuances of
their particular optimization problem and judiciously selecting the values of the
penalty function parameters. This systematic approach will help the analyst to
properly scale the penalty function value in relation to the objective function
values. Even so, identification of the “most fit” solution in a pair wise
comparison remains problematic. The operative question in such cases being--
does the (negative) value of the penalty function outweigh the objective function
value? What if the penalty is rather small compared to the value of the objective
function? In recognition of this logical and mathematical dilemma, most
applications of evolutionary algorithms utilize an oft-cited work on this subject by
Deb (2000).

Following Deb (2000), for any pair wise comparison of solutions, there are three
possible cases. These are; (1) both solutions are feasible (the penalty is zero), (2)
one solution is feasible (the penalty is zero) and the other solution is not feasible
(the penalty is nonzero), and, (3) both solutions are not feasible (the penalties are
both nonzero). Deb (2000) devised a comparison scheme for selecting the most-
fit solution under each of these cases. This scheme is described in the bullet list
which follows.

• If both solutions are feasible, select the solution with the greatest fitness.
Owing to the fact the penalty is zero for both solutions; this is equivalent
to selecting the solution with the highest value of the objective function.

• If one solution is feasible and the other solution is not feasible, then select
the feasible solution without regard to its fitness value. It is useful to note

Advanced Algorithms for Hydropower Optimization

32

that under this criteria, the value of the objective function is not a factor in
the decision process.

• If both solutions are infeasible, select the solution which has the lowest
value of the penalty function (the most feasible solution). Once again, the
value of the objective function does not play a role in this decision.

The selection scheme devised by Deb is straightforward and readily implemented
in code. It has found wide-spread application and acceptance in evolutionary
algorithms. Although it is not entirely foolproof, it is often used and (very) often
cited.

Performance Measures

Algorithm Performance Metrics

Ascertaining the success of an evolutionary algorithm in identifying the solution
to an optimization problem can be a rather subjective undertaking. Furthermore,
discerning real, rather than apparent, differences between two evolutionary
algorithms can be especially problematic. These difficulties arise for two
disparate reasons: (1) the characteristics of real-life engineering problems, and,
(2) the nature of evolutionary algorithms. Some further explanation will help to
put both of these subjects in perspective.

Real-life Engineering Problems

Many, if not all, readers of this document are familiar with solving textbook
example optimization problems. The majority of these problems are convex, and
each has a single known optimal solution. Generally, the objective is to solve
these find the optima of such problems, typically with a traditional, calculus based
approach. Identifying the minimum or maximum point is often undertaken
analytically, for relatively simple textbook problems. More complex problems
are attacked with a variety of numeric methods, such as the Newton Raphson
method referred to previously and described in Appendix 6. When the latter
approach is utilized, the focus is to efficiently and reliably identify the optimal
point to within some acceptable level of numeric precision.

In contrast to textbook optimization problems, many real-life engineering
optimization problems have unknown optimal points. [If their solutions were
known, there would be no need for algorithms to solve them]. To state the
obvious point, there is no way to know when the optima has been found.
Complex, ill-behaved problems with multiple local optima are relatively common
in applied efforts. Algorithms may converge on a particular local optima, or may

Performance Measures

33

converge on a different local optima when started from varying initial positions.
This gives rise to a further complexity—identifying which, if any, of the
identified local optima is the maxima or minima of the function.

Nature of Evolutionary Algorithms

The inherent nature of evolutionary algorithms can obscure the attainment of the
optima and certainly makes it much more difficult to discern between two
competing candidate algorithms. First, unlike calculus based solution approaches,
evolutionary algorithms carry multiple solutions throughout the iteration process.
For example, EA’s carry one solution with each member of the population. In the
population, some of these solutions are inferior solutions and one of them is the
“best” solution. Furthermore, these solutions vary with each application of the
algorithm. For any given algorithm trial, the np solutions are randomly initialized
(the most common approach, see Appendix 12) within the search space. By
random chance, some of the initialized solutions may land in the feasible solution
region, or perhaps not. The specific initialization process and the initialization
itself give rise to varying degrees of progress towards a solution. Likewise the
stochastic nature of the solution algorithm, as manifested at each generation or
iteration, has an influence on the algorithms rate of progress towards
identification of the optima. For one trial, a series of fortuitously generated
random values may result in a rapid convergence on the optima. For a different
trial, a series of unfortunately generated random values may result in a failure to
converge, a premature convergence, spurious convergence or a lengthy
convergence to the optima. Consequently, evolutionary algorithms may return
different solutions for multiple independent trials, even when applied to the same
problem. Clearly, the convergence behavior of an evolutionary algorithm will
vary with each trial or experiment.

Multiple Trial Approach

Owing to the complexities of real-life engineering problems and the inherent
characteristics of evolutionary algorithms, a multiple or replicated trial approach
is typically employed to gauge their success and compare efficacy between two
candidate algorithms. A trial is one independent application of the algorithm to a
specific problem. Typically a pre-set number of trials, for example 50
replications, are carried out on the same problem and selected measures of
success are extracted for each of the trials. At each trial, a new initialization of
the population occurs and a new random sequence is generated. In aggregate, the
resultant measures of success then serve as a more appropriate and informative
gauge of algorithm success. Formal statistical analysis of replicated success
measures, compared across candidate algorithms, allows for reasoned selection of
more effective algorithms.

Advanced Algorithms for Hydropower Optimization

34

Common Measures of Performance

Although there are many possible performance metrics, four measures are most
commonly encountered in the literature. These are accuracy, reliability,
robustness and efficiency. Other metrics including diversity and coherence are
discussed in texts but seldom encountered in the professional literature.

Accuracy
As might be expected, solution accuracy is of paramount importance in assessing
algorithm performance. In the case of functions with a known global best
solution, accuracy is assessed as the difference between the best solution achieved
by the algorithm and the known global best solution, at a particular number of
iterations. For functions with unknown global optima, accuracy is the fitness of
the global best solution attained by the algorithm over a given number of
iterations.

If the accuracy of two different evolutionary algorithms is being compared, the
usual practice is to compare this metric for the same number of function
evaluations (FE’s) rather than iterations. This is said to provide a better basis for
comparison since some algorithms may require more per-iteration function
evaluations than others, thus being more computationally intensive and, in the
process, obtaining more information about the search space.

When the derivative of the function can be computed, derivative information can
be used to assess the quality of the solution achieved. If the derivative can be
computed, it ought to be zero, or very near to zero, at the optimal point identified
by the algorithm. Of course, the derivative will be zero at any stationary point,
including both global and local optima. For this reason derivative information is
not entirely informative.

Reliability
Algorithm reliability is of great importance both to researchers and practitioners.
The greater the certainty that an algorithm will (a) converge, and, (b) converge on
the global optima—the more the more useful the algorithm is. For evolutionary
algorithms, reliability may be assessed by measuring the percent of solutions
which fall within an acceptable tolerance of the known global optima, for a given
number of iterations. Or, when prior knowledge of the function is unavailable, as
the percent of solutions which converge to a specified tolerance for some
specified number of iterations. This metric is especially applicable to highly
complex functions for which convergence is less common and somewhat less
informative for better behaved functions for which convergence is routine.

Robustness
Robustness is a term used to describe the variance around a particular
performance criteria. The variance around a success metric is a measure of
dispersion. The smaller the variance over some given number of iterations, the
more robust or stable the algorithm is judged to be.

Algorithm Stopping Criteria

35

Efficiency
Efficiency is a measure of the resource cost or effort incurred to achieve a
solution with a desired level of accuracy. Efficiency is typically measured in
terms of the number of iterations (or generations) required by the algorithm, the
central processor time (CPU) time required, or the number of function evaluations
(FE’s) required to achieve a solution.

In the context of evolutionary algorithms, efficiency is a particularly relevant
performance metric and is especially telling relative to traditional optimization
approaches. Evolutionary algorithms are known for being computationally
intensive and requiring relatively long computational efforts to achieve solutions.
For functions which can be solved with traditional calculus based approaches,
efficiency comparisons between traditional solution approaches and evolutionary
algorithms are often rather revealing.

Algorithm Stopping Criteria

Introduction

The preponderance of numerical optimization algorithms are based on some sort
of iterative or repetitive procedure. An important aspect of these algorithms is the
design of intelligent convergence or stopping rules. These rules detect when the
routines have converged on a solution, and then halt the iterative process.

The Trade-Off

The design of stopping rules necessarily requires an explicit trade-off between
computational cost (a function of the number of iterations and hence, time) and
solution accuracy. At best, numerical optimization algorithms can provide an
approximation of the true solution vector, not the exact solution. In general, the
numerical accuracy of the solution vector is improved with each succeeding
iteration. Theoretically, a numerical algorithm can identify the exact solution in
an infinite number of iterations. In more technical terms, these algorithms can be
shown to achieve the true solution only asymptotically. Luckily, most research
requirements can be satisfied by an answer that is “close enough” to the true
solution and is available in a finite timeframe. Two interlinked questions emerge.
How close is “close enough,” and, what is an acceptable computational cost?

In many optimization applications, the scale and nature of the problem will
suggest an appropriate level of accuracy. In many financial applications, for
example, an absolute accuracy of $1.00 (the nearest dollar) or $0.01 (the nearest
cent) is more than sufficient. In other cases, accuracy requirements are less clear
cut. Almost all numerical methods texts include a discussion of this subject.

Advanced Algorithms for Hydropower Optimization

36

Interestingly enough, the specifics of computer hardware and software design
limit the number of significant digits of accuracy which can be achieved. This
places an upper bound on the how close is “close enough” question. Press, et al
(1999), Judge (1998), among other, have useful discussions of these limitations on
numeric accuracy. Press, et al (1999) has an especially useful discussion of this
topic and the roles that data type, word length, register size play. As a rule of
thumb, both Press, et al (1999) and Judge (1998) admonish the researcher not to
specify an accuracy level greater than the square root of the machine accuracy.
For most computers with a 32-bit word length, machine accuracy is around 3×10-

8. This suggests that a tolerance level (δ, ε) of around 1.7320×10-4 is about the
best that can reasonably be expected.

In the early days of computer assisted research, computational cost was a much
more important consideration than it is today. At the dawn of the computer age,
research teams were quite literally charged for each millisecond of computer time
they used. Because computer hardware was both expensive and rare, researchers
paid for, or were allocated, a computer budget. Other researchers depended on
the same hardware and research researchers dared not exceed their computer
budgets, or severe sanctions were levied.

In modern times, the widespread availability of microcomputers, their speed and
their relatively low cost, combine to make computational cost a less-important
consideration. Computational cost is now primarily a question of researcher
patience, rather than a funding issue. To most researchers, it is unimportant if the
computer runs ten seconds, ten minutes or ten hours to reach a solution (as long as
it does so). If long run-times are anticipated, it may prove convenient to schedule
an overnight computer run. Some routine mathematical simulations are expected
to take several hours, to a day or more to complete. A decade ago, computational
costs of this magnitude were an unimaginable research luxury!

Calculus Based Criteria

Typically, convergence criteria for calculus based optimization algorithms are
based on the first order conditions for an extrema—which require the first
derivative to be equal to zero. In the multivariate optimization context, the first
order conditions require the gradient vector to equal zero. As a practical matter,
the norm of the gradient vector is evaluated to detect when this has occurred.

Judd (1999, p. 104) provides a concise and straightforward explanation of a two-
fold stopping criteria or rule. First, a test is applied to identify whether or not the
solution vector is changing significantly between iterations. Second, a test is
applied to identify whether or not the first order conditions are met. This
combined approach is shown in equations (19) and (20).

(19))1(1 nnn xxx +<−+ ε

Algorithm Stopping Criteria

37

Where: n = iteration number
 x = solution vector
 ε = convergence criteria
 ║m║ = norm of the vector m.

Equation (19) compares the norm of the difference between solution vectors at
two different iterations with epsilon (ε) times one plus the norm of the solution
vector from the last iteration. This part of the stopping rule identifies whether or
not the solution vectors achieved at two different iterations are the same, or
approximately so. The formulation guards against division by zero and allows for
the researcher to set some desired level of ε for detecting when this has occurred.

If the first part of the convergence test is satisfied, the next step is to see if the
solution vector at iteration (n) satisfies the first order conditions for an optimum.
As might be expected, this test focuses on whether the gradient vector is zero, or
approximately so. This part of the stopping rule is described by equation (20).

(20)))(1()(nn xfxf +≤∇ δ

Where: n = iteration number
 x = solution vector
 ∆f(x) = gradient of the function.
 δ = convergence criteria.
 ║m║ = norm of the vector m.
 |f(x)| = absolute value of the solution.

Again, this well-devised formulation guards against the possibility f(x)≈0 and a
possible division by zero.

If both parts of the converge test (equations 19 and 20) are satisfied, the solution
vector has converged to an approximate optimal point. If the solution vector
(equation 19) has converged, but the first order conditions are not met (equation
20), the solution has converged, but not near an optima.

Convergence tolerances, epsilon (ε) and gamma (δ) are used to test when this rule
is satisfied. These tolerances are set by the analyst. Both of these control
parameters are commonly encountered in optimization routines and, as discussed
in Judd (1999), Press et al (1998) and elsewhere, are limited by the ability of the
computer platform to characterize real numbers.

Advanced Algorithms for Hydropower Optimization

38

Criteria for Evolutionary Algorithms

The stopping criteria employed for traditional calculus based optimization
procedures are not applicable to evolutionary algorithms. There are two reasons
for this. First, evolutionary algorithms are multiple solution methods; they carry a
number of solutions throughout the iterative computation process. In the case of
particle swarm optimization (PSO), for example, each member of the swarm
stores its (own) personal best solution. If the swarm size is n=40, forty solutions
are maintained and iteratively improved during the lifespan of the swarm. In
contrast, calculus based optimization algorithms carry only a single solution
throughout the computation process.

Secondly, the stopping or convergence criteria for traditional calculus based
optimization approaches, not surprisingly, rely on calculus concepts (e.g.
derivatives, gradients, hessians, etc). Evolutionary algorithms require only
primitive mathematical structures, do not need and generally eschew advanced
mathematical constructs, such as derivatives. In fact, their derivative-free nature
is often touted as one of the advantages of these algorithms. Furthermore,
evolutionary algorithms are often applied in situations where the underlying
functions are discontinuous and ill-behaved. In these cases derivatives for the
underlying functions either cannot be analytically derived, or simply don’t exist.
This makes it impossible to apply the stopping rules used in traditional calculus
based optimization approaches.

An ideal stopping rule for evolutionary algorithms represents an acceptable trade-
off between computational efficiency and the probability of detecting
convergence on the true optima. At the same time, such a rule should minimize
the likelihood of prematurely halting the iterations before the true optimal point is
identified.

The preponderance of published articles found in the evolutionary algorithm
literature employ the maximum number of iterations as a stopping rule. Using
this approach, the algorithm proceeds until a pre-set maximum number of
iterations have been completed-- then it halts. The “best” solution from the
population of solutions is identified and then reported. The primary advantage of
this approach is it is simple to implement. This stopping rule is frequently used to
compare the behavior of alternative parameter settings and algorithm variants.
The disadvantage is profound—the preset maximum number of iterations may or
may not correspond to the number of iterations required for algorithm
convergence. For example, if the maximum number of iterations is set at 1000
and convergence is achieved at 10 iterations, there are 990 unnecessary iterations.
Conversely, if convergence does not occur until 5,500 iterations, the results
returned for 1000 iterations will not reflect the optimal solution to the problem.
Since evolutionary algorithms are stochastic, their rates of convergence vary in a
probabilistic manner. As applied to a given problem, one trial may converge in
50 iterations and another trial in 120 iterations. Without prior knowledge of the
problem’s convergence behavior, there is no known technique for effectively

Algorithm Stopping Criteria

39

setting the maximum number of iterations. All of these factors argue against the
application of this stopping rule—except for comparative purposes.

Figure 7 illustrates the convergence behavior for the 24-hour dynamic economic
dispatch problem solved using differential evolution (DE). This plot shows the
mean fitness by iteration for 50 trials. This is a maximization problem and the
fitness improves as the number of iterations increases. As shown, large
improvements in fitness are made initially with the majority of the improvements
occurring in the first 1,000 iterations. Fitness improvements thereafter are made
only slowly and at extensive computational cost, relative to the accuracy obtained.

Figure 7. Convergence behavior with differential evolution.

As the number of iterations increases, the estimated solution asymptotically
approaches the true solution. For this particular 50 trial experiment, the mean
solution at 1,000 iterations is $127,079.25 and at 5,000 iterations, it is
$127,097.14. This represents an improvement of about $17.89 (0.14%) at a cost
of 4,000 additional iterations, which represents a 400% increase in computational
cost.

The subject of stopping rules is not well addressed by the available texts such as
Engelbrecht (2005), Kennedy and Eberhart (2001) on evolutionary programming.
However some of the more recent research efforts have focused on this topic, for
example Zielinski et al (2006), Zielinski and Laur (2007) and Zielinski and Laur
(2008). The potential efficacy of the suggested approaches when applied to the
solution of the hydropower problems examined here is unknown. Consequently,
a non-trivial amount of effort was devoted to this subject as part of this research
effort. Subsequent sections of this document will report the results of
experiments which explore the use of several different stopping or convergence
approaches.

Advanced Algorithms for Hydropower Optimization

40

Parameters, Tuning, and Variants
This section of the document describes the choice of parameter values and
selection of the subset of algorithm variants examined in this research effort. The
simple descriptor, “variants” is used to denote these algorithm variants throughout
the remainder of this discussion. Considered in aggregate, these two subjects
constitute a substantial portion of the literature devoted to evolutionary
algorithms. As this is primarily an applied research effort, a less extensive and
less systematic approach was employed.

Evolutionary algorithms have a relatively large number of parameters and
approach variants. For example, the size of the population (np) is a user
controllable parameter in all of the approaches examined here but each of these
algorithms has additional parameters, some of which may interact with each
other. Similarly, each of the evolutionary algorithms examined here includes user
selectable algorithm variations, such as the neighborhood or global optimization
strategies in PSO and the wide range of mutation strategies in DE. Selection of
the appropriate value for these parameters and as well as choosing the particular
logic, strategy and operational variants are specific to the logic of each
evolutionary algorithm. Conclusions about the effects of parameter setting are
mixed. Some researchers report effective applications of these algorithms are
quite sensitive to parameter choice while others have suggested their efficacy is
largely insensitive to the specific combination of parameter values chosen. Other
researchers have reported that parameter choice is problem specific. On the topic
of algorithm variants, the available evidence is also less than clear. The literature
abounds with newly described variations for each of these evolutionary
algorithms. Seemingly without exception, each of these variants is stated to
dominate the other variants described in the previous literature.

Population Size

All evolutionary algorithms are multiple solution processes. The number of
solutions, or population size, influences the performance of these algorithms and
their successful application. There is an explicit tradeoff between the size of the
population, the number of iterations required to achieve convergence and the
computational effort. Many authors use the number of objective function
evaluations (NFEs) as a measure of computational effort. For the PSO algorithm,
for instance, the number of objective function evaluations required for each
generation is given by the size of the population (np) times the number of
iterations (iter) or, NFE = np*iter (disregarding initialization). For a problem of
any given dimensionality (dim), the larger the population size, the more likely that
one or more of the individuals in the population will be initialized to the vicinity
of the global optima in the search space. All else being the same, a larger
population might then be expected to use fewer iterations to converge more
rapidly and converge on the global (rather than local) optima. The drawback to

Parameters, Tuning, and Variants

41

large population sizes is that each member of the population must be evaluated at
each generation. For complex objective function, with a larger number of
dimensions, this can greatly increase the computational effort, requiring
significantly longer solution times.

RCGA Parameters

The basic RCGA algorithm described in Appendix 8 has two parameters in
addition to population size (np). These are reproduction probability parameter,
also known as the crossover rate (χ) and the mutation rate parameter (μ).

As alluded to in Appendix 8, there are an amazing variety of reproductive
variations in the realm of basic real coded genetic algorithm. The RCGA
algorithm used here was restricted to the subset of possibilities wherein two
parents produce either one or two offspring. Following implementation of one of
the parent selection approaches, the reproduction probability parameter (χ)
controls the likelihood the two selected parents will successfully reproduce.
Typically, this parameter is chosen in the range of 0.50 to 1.00. A number of
authors suggest setting this parameter from 0.90 to 0.95. Low values of the
reproductive probability parameter or crossover rate (χ) effectively limit the
genetic diversity in the population from one generation to the next. At the
extreme, this can diminish the searching capabilities of population leading to a
much more rapid and potentially premature convergence. The mutation rate
probability parameter (μ) controls the rate of spontaneous genetic mutation in the
offspring. Note that random mutations can be fitness enhancing or fitness
degrading. This parameter controls the actions of any one of the various mutation
schemes which may be employed in the RCGA. While the specifics of these
mutation approaches differ in their details, high values of this parameter result in
larger injections of genetic diversity in the population, increasing search behavior
in the population. For complex or multimodal problems this can lead to a higher
probability the global optima will be identified, naturally at the expense of
convergence speed. For convex problems, this additional genetic diversity is
primarily manifested as increased solution time and expense. A relatively lengthy
review of studies on the effects of np, χ and μ on RCGA performance can be
found in Haupt and Haupt (2004).

Table 3. RCGA Parameter Summary

Name Abbreviation Range Setting Used

Population size np 10 – 2*dim 40

Reproductive probability χ 0.50 – 1.00 0.90

Mutation probability μ 0.01 – 0.50 0.02

Advanced Algorithms for Hydropower Optimization

42

DE Parameters

The basic DE algorithm described in Appendix 9 has two parameters in addition
to population size (np). These are the parent scale parameter (F) and the
crossover (CR) parameter.

In the DE algorithm, the offspring or donor vector is constructed from three
randomly chosen members of the population scaled by the parameter F. This
parameter controls the importance of the parent traits, relative to those of the
offspring. High values of F diminish the searching capabilities of population
leading to a much more rapid convergence. This can lead to a higher probability
of spurious convergence, or convergence at the location of a local optimum.
Typically, this parameter is chosen in the range from 0.10 to 1.0. The crossover
parameter (CR) controls the probability of crossover. If a randomly generated
value exceeds the CR value, the parental trait is passed to the donor individual;
otherwise the offspring trait is maintained. Greater values of the CR parameter
have the effect of favoring offspring traits in the population, over succeeding
generations. Relatively high CR values increase the range of search behavior in
the population. For complex or multimodal problems this can lead to a higher
probability the global optima will be identified, albeit at the expense of
convergence speed. The CR parameter is typically chosen in the range from 0.10
to 1.0.

Table 4. DE Parameter Summary.

Name Abbreviation Range Setting Used
Population size np dim – 3*dim 100
Population scale parameter F 0.10 – 1.00 0.80
Crossover parameter CR 0.10 – 1.00 0.30

PSO Parameters

The basic PSO algorithm described in Appendix 10 has two parameters in
addition to population size (np). These are the cognitive weight parameter (c1)
and the social weight (c2) parameter.

The cognitive weight (c1) parameter in the PSO algorithm controls the weight or
importance of personal best information found by the individual particle itself,
relative to the other members of the swarm. If the value of this parameter is
relatively high, more weight or memory is accorded to locations in the search
space that the individual particle has personally visited and less weight is given to
information provided by the other members of the swarm. As a result, relatively
high c1 values increase the searching behavior of the particle. For complex or
multimodal problems this can lead to a higher probability that the global optima
will be identified, albeit at the expense of convergence speed. The social weight

Parameters, Tuning, and Variants

43

(c1) parameter in the PSO algorithm controls the weight or importance of social
information found by the individual particle itself, relative to the other members
of the swarm. The specifics depend on whether the neighborhood or global
optimization strategy is employed. If the value of this parameter is relatively
high, more weight or memory is accorded to locations in the search space which
have been visited (collectively) by other members of the swarm and less weight is
given to the particle’s own personal best information. As a result, relatively high
c2 values reduce the searching behavior of the particle, leading to a much more
rapid convergence. For complex or multimodal problems this can lead to a higher
probability of spurious convergence, or convergence at the location of a local
optimum. For convex problems with only a single optima, rapid converge is a
desirable characteristic.

Table 5. PSO Parameter Summary

Name Abbreviation Range Setting Used
Population size np 20 – 50, dim 20
Cognitive weight1 c1 1.0 – 4.0 2.80
Social weight1 c2 1.0 – 4.0 1.30

1 The Clerc (2006) constriction factor, used in this effort, requires c1 + c2 ≥ 4.0.

Variant Selection

Disregarding hybrid approaches (which are discussed elsewhere in this document)
a wide range of variations on the basic evolutionary algorithms have been
described, and are in use. To reiterate, the term “variants” is used in this
document as a general descriptor for these. The number of variants seems to be
proportional to the elapsed time since the algorithm was first described and seems
limited only by aggregate researcher creativity and the need to differentiate
research products for publication.

This effort benefited from a relatively extensive search of the pertinent literature
completed previously (S&T Scoping Project ID Number 5992). This component
of the study allowed for the admittedly subjective identification of the mainstream
algorithm variants. One editorial aside-- several of these algorithm variants are
considerably more complex than the underlying algorithms themselves. Some of
the mainstream and potentially useful variants are described subsequently and
were implemented for this research effort.

RCGA Variants

As a class, the RCGA and GA’s exhibit the greatest range of variants on the basic
algorithm. Disregarding the hybrid approaches (discussed elsewhere), there are
an astonishing number of parent selection approaches, population survival

Advanced Algorithms for Hydropower Optimization

44

methods, mutation rules and crossover approaches, some of which are amazingly
incredibly complex and computationally intensive. Haupt and Haupt (2004),
Michelwicz (1996, 2010) and Peltokangas and Sorsa (2008) provide a relatively
extensive sampling of these variants.

Parent selection in the RCGA is the method by which two parents are selected
from the population for potential reproduction. Three parent selection methods
were selected from the literature for use in this research effort. They are the
random parent selection method (Random2), the four person tournament method
(Tournament4) and the two person tournament approach (Tournament2). Under
the Random2 method, one individual is selected systematically from the
population as a whole and a second (different) individual is selected randomly
from the population. The two selected individuals are then available for potential
reproduction (crossover and mutation). The tournament4 approach selects four
different individuals from the population as a whole. Two of these individuals
then compete and the one with the greater fitness becomes a semifinalist. The
two other individuals then compete and the one with the greater fitness enters the
semifinals. Finally, the two semifinalists compete, and the one with the greater
fitness wins and is available for potential reproduction. The tournement2
approach selects two different individuals from the population as a whole. These
individuals then compete and the one with the greater fitness becomes a potential
parent.

Crossover is the mechanism by which two potential parents exchange genetic
material to create one or more offspring. Crossover in the RCGA context differs
considerably from the binary GA case and numerous approaches have been
developed to simulate this process. In the context of RCGA, the arithmetic
crossover (Arithmetic) approach (Michalewicz 1996), the Laplace crossover
(Laplace) approach (Deep and Thakur 2007), the linear crossover (Linear)
approach (Wright 1991) and the heuristic crossover (heuristic) approach
(Michalewicz 1996) were implemented for this research effort. The Laplace
crossover approach is described in detail in Appendix 8. The linear (Linear)
crossover approach produces three offspring using an extrapolation approach. An
extrapolation weight, often 0.50, is employed. Any variable straying outside the
feasible search domain is either censored or the solution is discarded-- the two
offspring with the greatest fitness are retained. The uniform arithmetic
(Arithmetic) crossover approach is often attributed to Michelwicz (1996). This
approach uses a randomly generated value (0, 1) to form a set of weights (α, 1-α)
which are then used to create a linear combination of the parent genes. A variant
of this approach utilizes a different random value (and hence weight) for each
choice variable represented in the parent genetic material. The heuristic crossover
approach (Heuristic) was also developed by Michaelwicz (1996) primarily for use
in constrained optimization problems. The heuristic approach generates a
possible offspring from a randomly weighted differencing of the parent’s genetic
material, added to the superior parent’s existing genetic material. If the offspring
lies outside of the feasible domain, a new random weight is generated until a
feasible solution is obtained.

Parameters, Tuning, and Variants

45

Mutation helps to ensure genetic diversity is maintained in the population and
some of the mutation variants described in the literature are quite ingenious. For
purposes of this research effort three mutation approaches were selected and
implemented. These approaches include the Gaussian mutation approach
(Gaussian), the nonuniform mutation (Michalewicz 1996) approach
(Nonuniform), and the uniform mutation (Uniform) approach (Michalewicz
1996). The nonuniform mutation approach is described in Appendix 8 and is not
further described here. Under the Gaussian approach, a normally distributed
random variable is added to the gene selected for mutation. This approach is
relatively simple and effective in many applications although it does require the
variance of the distribution to be specified, in some manner. Under the Uniform
approach, genes have an equal probability of mutation. A gene selected for
mutation is replaced with a uniform random value generated within the feasible
search domain. This approach has two advantages. First, it is relatively easy to
implement. Second, it executes rapidly.

Survival or recruitment, sometimes also known as replacement, is the process of
determining which individuals from the offspring population and the parent
population will survive into the next generation. There are a wide variety of
recruitment approaches, which have evolved over time (see Reeves 2010 p. 71 for
a summary). For purposes of this research effort, three survival approaches were
selected from the literature and implemented in code. These are the traditional
(Traditional) approach, the Elite_1 approach (Bucknall 2002) and a more general
characterization of the elite approach, the elite np (Elite_NP) approach.

The traditional approach to recruitment is fairly straightforward—only the
offspring survive into subsequent generations. While easily implemented in code,
there is a distinctive logic flaw inherent with this approach. In the traditional
approach there is a probability the individual with the highest fitness will be
eliminated from the gene pool, slowing the evolutionary process and the search
for an optima.

The Elite_1 approach preserves the genetic material from the fittest individual in
the gene pool from one generation to the next. In the Elite_1 recruitment
approach, the parents are ranked from highest fitness to lowest fitness and the
offspring are ranked from highest fitness to lowest. The parent individual with
the highest fitness (the Elite_1) replaces the lowest ranked offspring, provided it
is of superior fitness. The remaining offspring and the Elite_1 individual, survive
into the next generation.

There are many potential variations on the elitism approach. Conceptually, the
retained elite fraction could vary all the way up to NP (here assuming a constant
population size is maintained). For purposes of this project, the Elite_NP
approach was employed. Under this approach all of the parent and offspring
individuals are pooled and then sorted by fitness. The most-fit NP individuals
from the pool are then retained and survive into the next generation, the less fit
individuals are removed from the gene pool. This approach greatly increases
convergence speed, often dramatically. Unfortunately, the genetic diversity of the

Advanced Algorithms for Hydropower Optimization

46

population diminishes as well and the likelihood of spurious convergence, or
convergence at a local optimal point, increases.

DE Variants

Like the other evolutionary algorithms explored here, there are a number of
variants on the basic DE algorithm. Disregarding the hybrid approaches
(discussed elsewhere), there are a large number of mutation rules and crossover
approaches, some of which are amazingly ingenious. Many of these build upon
the seminal DE paper (Price and Storn 1995, 1997) which described 23 crossover
and mutation combinations. Over time, a shorthand approach for describing and
categorizing the more mundane of these variants has evolved. The notation
DE/x/y/z is often used for this purpose. In this notation, x is used to specify the
vector to be mutated which can be “Rand” (a randomly chosen member of the
population) or “Best” (the member of the population with the current best fitness),
y represents the number of difference vectors used, and, z denotes the type of
crossover scheme employed. The most common crossover variant is the “Bin” or
binary crossover approach.

For purposes of this research effort, six different crossover and mutation
approaches were selected. These include the originally described
DE/RAND/1/BIN and the DE/BEST/1/BIN approaches, but also include some of
the more promising and exotic approaches such as the random scale factor
(DERANDSF) approach, the trigonometric (TRIGON) approach, the time varying
scale factor approach (DETVSF) and the self adaptive (SELFADAPT) approach
(Brest et al 2006 version). These variants were sufficiently represented in the
mainstream literature to warrant further investigation.

PSO Variants

Many examples of PSO variants can be found in the literature, the majority of
which are reviewed in Valle et al (2008). Disregarding hybrid approaches
(discussed elsewhere in this document) the two enduring variants appear to be the
application of global or neighborhood optimization strategies. In the global
optimization strategy, crossover is a linear combination of the best fitness value
found by any of the members of the swarm (globally) and a particle’s personal
best fitness. This optimization approach results in faster convergence but also
decreases searching behavior and increases the likelihood of spurious
convergence or identification of a local, rather than global, optimal point. This
optimization strategy should be distinguished from the neighborhood (or local)
optimization strategy. In the neighborhood optimization strategy, crossover is a
linear combination of the best fitness location identified by any of the members of
a particle’s neighborhood and the particle’s own personal best fitness value.
Figure 8 illustrates a globally connected swarm of np=8 (Panel A) and an np=8
swarm with a 3-member neighborhood structure or topology (Panel B).

Development Process

47

Figure 8. Globally connected (A) and 3-neighbor (B) swarms.

The use of a neighborhood structure serves to limit the information about the
search space available to any single member of the swarm. Neighborhoods can,
and are, constructed in a variety of shapes or topologies and follow an amazingly
creative set of behavioral rules (see Kennedy and Mendes (2002) for some of the
details). For purposes of this research, a star-type neighborhood topology, limited
to five total members (including the particle itself) was employed. These 5-
member neighborhoods limit the overlap or interconnection in the swarm. With
each succeeding generation, information about the location of potential optima
effuses from neighbor to neighbor, and from neighborhood to neighborhood
within the swarm. This approach results in enhanced searching behavior, slower
convergence times, and it reduces the probability of spurious convergence and
convergence on local optima within the search space. The 5-member star-type
neighborhood configuration proved to be relatively straightforward to implement
in code and highly effective in application.

Following the literature review component of this research effort, Clerc’s
constriction coefficient (2006) was selected for use in the PSO algorithm. This
PSO variant is described more completely in Appendix 10.

Development Process
This research project required an extensive behind the scenes software
development effort. For the most part, the evolutionary algorithms examined in
this research effort are rather new and certainly not commercially available. A
relatively large-scale and time consuming development effort was required to
make them operational.

Advanced Algorithms for Hydropower Optimization

48

Development Platform

Borland Developer Studio 2006 for Windows, an object oriented rapid application
development (RAD) environment was employed for coding and construction of
test platforms. This development environment is designed for use on Microsoft
Windows 32 Kb operating systems, such as Windows XP. Although the
development environment has web, web application, C, C++ and .NET
capabilities, the Delphi language was used throughout this project. Delphi is an
object oriented language which evolved from the Turbo PASCAL language,
popular in the early 1980’s.

The Borland Delphi 2006 compiler produces native Windows 32 Kb executable
code. This environment eases the development of Windows based graphical user
interfaces while allowing full code control. Of particular advantage for this
project, the development environment includes visual component libraries (VCLs)
for advanced graphics and database integration. These VCLs along with others
for printer and device control, disk file operations and interfacing with the
windows environment are implemented with “drag and drop” functionality in a
fully visual integrated development environment. This greatly streamlines the
development of Windows based applications allowing the researcher/developer to
devote their resources to code development. The integrated graphics capabilities
were a major consideration in the decision to deploy this platform.

Other development platforms were reviewed for possible use in this project.
These platforms included MATLAB (www.mathworks.com), a commercially
available package widely used in engineering applications, the open source
European equivalent, SCILAB (www.scilab.org) and the open source general
purpose statistical package, R (www.r-project.org). However, none of these
platforms appeared to offer the ease of development, stability and integrated
graphics capabilities required for this effort.

Three Phases of Development

Following the selection of candidate algorithms, a three phase development
process was undertaken. First, the algorithm was coded and tested on three
unconstrained test problems. Second, the algorithm was coded and tested on the
dynamic economic dispatch problem. Third, a testing environment was
developed for each algorithm.

Phase 1—Development with Test Problems.
Working from pseudo-code, flow charts, verbal descriptions in journal articles,
code snippets and in some rare cases, translating from purportedly functional C
source code, the selected algorithms were coded in Delphi, debugged and brought
to a operating state. The three unconstrained three dimensional (3-D) test
problems described in Appendix 14 were used during this phase to debug, and

http://www.mathworks.com/�
http://www.scilab.org/�
http://www.r-project.org/�

Development Process

49

more importantly, test the functioning and solution behavior of the coded
algorithms.

A graphical user interface (GUI) was developed for each application. These
GUI’s (naturally) share a number of common features and functionality. Shared
features include a tabbed page for selecting an initialization strategy, a tabbed
page for selecting a convergence strategy and convergence tolerance and a tabbed
page for controlling visualization.

Each GUI also has an Algorithm tabbed page which is customized for each
algorithm. This customized tabbed page allows for easy user control of
parameters specific to the algorithm and allows different variations of each
algorithm to be selected. For example, the Algorithm tabbed page for the DE
algorithm allows the user to select from a list of Mutation strategies, select the
number of individuals in the population (np), set the value of the scale parameter
(F) and select the value of the crossover (CR) parameter. In contrast, the RCGEN
algorithm tabbed page allows the user to set the number of individuals in the
population (np), select a parent selection strategy, select a crossover approach,
select a mutation strategy and select a recruitment approach.

All of the applications share a common output GUI configuration, shown in
Figure 9. Each application has a numerical output window and a graphical output
window. The latter allows for real-time visualization of solution progress, a
feature which has proven to be invaluable.

The behavior of the algorithms using different parameter settings and optional
variants was observed both numerically and visually by judicious application of
the integrated graphics capability. Figure 9 illustrates the graphical output screen
of the RCGA program at iteration 6 during a solution of the Alpine function. This
figure shows the plan view of this relatively complex function (see Appendix 14
for further details about this and other test functions). In the figure, the blue
diamonds illustrate the (x,y) locations for each of the np=40 individuals in the
population. The single red diamond located in the upper right-hand quadrant
indicates the location of the optimal solution in the bounded search space.

The integrated graphics allows the researcher to observe the solution behavior in
real-time while simultaneously monitoring the algorithm’s numerical progress
toward a solution. Progress metrics are written to the status bar at the bottom of
graphics window. As reported in the status bar, shown in Figure 9, this plot is for
the sixth iteration, the most fit individual in the population has a fitness (Fit) of
7.786E+000, the standard deviation (SD) of population fitness is 2.225E+000 and
the visual delay (Del) is set to 100 milliseconds.

Implementation of these evolutionary algorithms involved overcoming a number
of technical travails. This included selecting and developing a random
(pseudorandom) generator, the use of low discrepancy sequences, the
development of appropriate convergence or stopping criteria and the development
and application of constraint and constraint handling methods.

Advanced Algorithms for Hydropower Optimization

50

Figure 9. RCGEN program
solving the alpine function.

Implementation of these evolutionary algorithms involved overcoming a number
of technical travails. This included selecting and developing a random
(pseudorandom) generator, the use of low discrepancy sequences, the
development of appropriate convergence or stopping criteria and the development
and application of constraint and constraint handling methods.

Phase 2—Economic Dispatch Problem
Working from the code base developed in Phase 1, the evolutionary algorithms
were adapted for solution of the hydropower dynamic economic dispatch problem
with constraints. The economic dispatch problem described in Appendices 3
through 5 was used during this phase to debug and complete initial tests on the
coded algorithms. The economic dispatch problem is a constrained optimization
problem and accommodating this class of problem required a further and rather
extensive coding effort in its own right.

The graphical user interface (GUI) developed in Phase 1 was modified to
accommodate the dynamic economic dispatch problem. Specifically, additional
tabbed pages were added to the existing GUI’s to allow for the added complexity
of this problem class. Added GUI features included a tabbed page for selecting
seasonal avoided cost (price) data (summer or winter) and for selecting either a 1-
day (24 hours) or 1-week (168 hours) analysis period, a tabbed page for
controlling the constraints on minimum and maximum release rates, ramp rates
and the amount of water scheduled for release during the analysis period.
Additionally, a tabbed page was added to allow for more detailed monitoring of
the numeric progress towards a solution.

Development Process

51

All of the common output GUI’s were modified to better suit the dynamic
economic dispatch problem. The graphical output for this application was
modified, as shown in Figure 10, to illustrate the minimum and maximum
constraints and display the optimal hourly pattern of generation and release. The
numerical output window was revised to show the hourly details of the optimal
solution for this problem. An additional numeric output window was added to
record selected intermediate output metrics for each iteration (or generation) as
the algorithm evolved towards a solution. This proved to be an invaluable
debugging aid. Figure 10 illustrates the graphical output for a default solution of
the dynamic economic dispatch problem solved for 1-week (168 hours) during the
summer season.

Figure 10. HDDE solution to 168-hour economic dispatch problem.

Phase 3—Testing Environment
The purpose of Phase 3—development of a testing environment, was to construct
a framework for the unattended replication of experiments while saving success
metrics, performance measures, numerical outcomes and other summary data for
subsequent statistical analysis. As described previously in this document,
evolutionary algorithms are stochastic in nature. For any given set of starting
values, an algorithm may achieve a different, slightly different, or vastly different
solution. Or, it may fail altogether. This range of potential outcomes arises

Advanced Algorithms for Hydropower Optimization

52

because of (a) the initialization approach employed, (b) the random underpinnings
of their solution behaviors, and (c) the approach implemented to detect
convergence on a solution. Consequently, a single successful solution, while
indicative, is by no means conclusive evidence of the successful application of
one of these algorithms. In the context of evolutionary algorithms, replicated
trials followed by statistical analysis are required to support even minimal
conclusions about their suitability for a specific class of problem.

Phase 3 required using the code base developed in Phase 2, and adding additional
code to allow for repeatedly running the algorithm and recording salient success
and performance measures for each run. Relative to the development effort
expended in Phase 1 and Phase 2, this was readily accomplished and required
only minor modifications to both the input and output GUI’s. However it
required only limited (additional) code development. The testing environment
developed in this, the final Phase of the development effort, was utilized to
produce the replicated experimental results described subsequently in this
document.

Figure 11. Test environment graphical output.

Experiments Undertaken
Given the number of parameters, options, algorithm variants, input vectors and
problem features described, there are a very large number of experiments could be
undertaken. While a comprehensive effort would surely be a valuable
contribution to the state of knowledge, resource limitations dictated that only
selected experiments be completed and reported in this document. The

Experiments Undertaken

53

experiments which are described here were selected primarily to provide insights
about the applicability of EA’s to the dynamic economic dispatch problem, their
performance and the factors which might influence this decision

Initialization Approaches

Review of the pertinent literature revealed a number of efforts which reported
systematic differences in EA performance resulting from initialization method.
The literature on this topic was both extensive and conclusive—the use of the
uniform random approach for initialization was judged to be inferior to other
approaches. Based on this body of literature, considerable researcher effort was
allocated to developing, testing and applying promising alternative initialization
approaches to the hydropower problems examined in this research effort. This
required the testing and development of four low discrepancy sequences including
the Niederieter, the Habor, the Weyl/Torus and the Halton (see Appendix 13 for
additional explanation) as well as the opposition based learning (OBL) method.

After coding and validating the functioning of these different initialization
approaches, a systematic set of performance experiments was undertaken. For
purposes of the replicated initialization experiments described here, 50 trials were
undertaken on the 24-hour constrained dynamic economic dispatch problem (24-
hour, problem dimensions = 24) using the summer price vector described in
Appendix 15. To ensure a valid comparison across algorithms, the population
(swarm) size was set at 50 individuals for all of the evolutionary algorithms
(np=50). It should be noted the performance of some of the EA’s, such as PSO
and RCGA may be disadvantaged by setting the population size to this level for
this comparatively small dimension problem. A common stopping rule, the
Elite_SD rule (with tol=1.0e-04), was employed for all of the replicated
experiments.

Table 6. Initialization Approaches — Experimental Results

Approach
RCGA DE PSO

Mean
Iter

Mean CPU
time (Sec)

Mean
Iter

Mean CPU
time (Sec)

Mean
Iter

Mean CPU
time (Sec)

Random 494 0.195 242 0.115 447 0.506
Neiderieter 506 0.202 245 0.116 452 0.517
Weyl/Torus 500 0.199 242 0.114 442 0.497
Habor 495 0.194 241 0.114 438 0.496
Halton 471 0.185 243 0.114 443 0.500
OBL 491 0.193 244 0.116 446 0.504

Table 6 summarizes the results of the replicated initialization experiments. The
results shown in this table are both unremarkable and unexpected. For the
constrained dynamic economic dispatch problem, there appears to be no
discernable difference between the uniform random initialization approach and

Advanced Algorithms for Hydropower Optimization

54

any of the other approaches. While this result appears to contradict the results
reported in many earlier studies, none of the preceding studies focused on this
particular type of constrained optimization problem. Scrutiny of this table
suggests the Halton Sequence may provide small performance gains for this
problem. However no statistical analysis has yet been undertaken to confirm or
refute this observation.

Stopping Rules

Consistent with the philosophy of evolutionary programs, a convergence or
stopping rule should utilize the fitness information available at each iteration, be
simple and effective. In keeping with this theme, one approach is to use the
population mean and standard deviation for detecting convergence.
Operationally, the mean and/or standard deviation of the solutions found by all of
the individuals in the swarm or population are calculated for each iteration. When
these metrics change by less than a pre-set tolerance, or fall within an acceptable
tolerance, the algorithm has converged on a solution. The advantage of this
method is that it is relatively easy to implement, is problem and scale invariant
and is brutally effective. Arguably, this approach may be overly conservative and
computationally inefficient often requiring an extensive number of iterations for
all of the members of a swarm or population to converge on the optimal point.

Zielinski et al (2006), Zielinski and Laur (2007) and Zielinski and Laur (2008)
explore the subject of convergence rules for particle swarm optimization (PSO)
and differential evolution (DE). They examine single objective problems with
different dimensions using varying population sizes. In aggregate, the authors
systematically explored the performance of a suite of approaches, some of which
were quite esoteric. They recommend two methods for use with PSO and two
methods for use with DE. They suggest a variant of the standard deviation
approach be examined more fully in future research efforts.

Motivated by the work of Zielinski and Laur (2008), two additional convergence
criteria were developed and investigated in this research effort. These were the
elite mean (Elite_Mean) and elite standard deviation (Elite_SD) approaches.
These two approaches are based on the observation that one or more members of
the swarm or population will identify the optimal point well before the other
members of their cohort. We will call the portion of the population which
converges rapidly, the “elites.” At each iteration, uninformed members of the
cohort will continue to search in the solution space, sometimes far from the
optimal point. It can, and often does, require many additional iterations for all of
the members of a swarm or population to converge on the optimal point,
previously discovered by a few individuals. Observations made in the early
phases of this project suggest that a disproportionately large number of iterations
are required to produce convergence in the last quartile of the swarm or
population.

Experiments Undertaken

55

The elite mean and elite standard deviation stopping rules are based on the
empirical observation that a subset of particles (the elites) converge very rapidly
and a subset of the remaining individuals converge extremely slowly. To take
advantage of this, calculation of the elite mean and elite standard deviation
convergence metrics are based solely on the behavior of the elite or best
performing particles. The behavior of the lower performing individuals, which
potentially could take many more iterations to converge, is ignored.

Identification of the elite members of the swarm or population is, of course,
somewhat problematic for the purposes described. Since we do not know a priori
the optima for a given problem, we cannot know with certainty if say, the two
most fit particles in iteration number 561 have converged on the solution, or not.
If the elite proportion of the population were defined as the most-fit 5%, the
potential for spurious convergence may be quite high. Alternatively, defining the
elite proportion of the swarm as the most-fit 99% may result in significant and
unwarranted computational cost. This choice represents a fundamental analysis
trade-off which is to some extent arbitrary, but is surely problem dependent.

During this research some exploration of this trade-off was undertaken. This
exploration could not be described as either comprehensive or conclusive.
However, it was sufficiently extensive to make some inferences about the
application of these stopping rules to the types of problems examined here. After
some experimentation, the elite proportion of the population was defined as that
90% of the population or swarm which was most fit. By definition, the
individuals classified as elites varied dynamically from one iteration to the next.
Using this definition for the elites resulted in excellent computational
performance with very little likelihood for spurious or premature convergence.
These stopping rules are relatively easy to implement, do not add extensive
computational overhead and proved to be very effective for the types of
optimization problems we examined.

For purposes of the replicated stopping rule experiments, 50 trials were
undertaken on the 24-hour constrained dynamic economic dispatch problem (24-
hour, problem dimensions = 24) using the summer price vector described in
Appendix 15. To ensure a valid comparison of the different stopping rules, the
population (swarm) size was set at 50 individuals for all of the evolutionary
algorithms (np=50). It should be noted that some of the EA’s, such as PSO and
RCGA may be disadvantaged by setting the population size to this level for this
comparatively small problem. For applicable “elite” approaches, the elite fraction
was set to 0.90. In all cases the convergence tolerance (ctol) was set at 1.0e-04.

Figure 12 shown below compares the performance of four different stopping rules
on this same problem. It compares the mean central processing unit (CPU) time,
measured in seconds, required for convergence over 50 trials between the
maximum iteration approach (maximum iterations = 5000), the population
standard deviation (Pop_SD) approach, the elite standard deviation (Elite_SD)
approach and the elite mean (Elite_Mean) approach.

Advanced Algorithms for Hydropower Optimization

56

Figure 12. Results of Stopping Rule Experiments (dim=24).

As shown in this figure, there is a large difference between the mean
computational time required to achieve convergence, when convergence is
specified as reaching 5000 iterations, and the CPU time required by the three
stopping rules which intelligently monitor the progress of the calculation metrics
(Pop_SD, Elite_Mean and Elite_SD). Although not reported here, the mean
precision of the solutions at convergence is very similar. Over the course of
repeated calculations and when the dimensionality of the problem increases, the
reduced time necessary to achieve convergence is a substantial advantage to the
researcher. It is also apparent there is little discernable difference between the
CPU time required for convergence when Pop_SD, Elite_Mean and Elite_SD
convergence criteria are employed. Potentially, there may be computational
advantages to the use of the Elite_Mean approach, however no statistical analysis
was undertaken to explore this possibility further.

Comparative Performance

In cases where both approaches are applicable (smooth, continuous twice
differentiable functions) evolutionary algorithms have been found to be slower
than traditional calculus based approaches. Exploration of the comparative
performances of both approaches on the dynamic economic dispatch problem
described earlier provides useful context and serves as a point of departure for
many of the replicated experiments which will be reported subsequently.

The dynamic economic dispatch problem described earlier in the text and
discussed more fully in Appendices 3 and 4 is an example of the type of problem
which can be solved by both evolutionary algorithms and using traditional
approaches. This problem was strategically constructed expressly to facilitate this
performance comparison and the other experiments described here. For purposes

Experiments Undertaken

57

of the replicated performance experiment described here, 50 trials were
undertaken on the 24-hour constrained dynamic economic dispatch problem using
the summer price vector described in Appendix 15. To facilitate the desired
comparison, the population (swarm) size was set at 50 individuals (np=50) for all
of the evolutionary algorithms. Certain EA’s, such as PSO and RCGA may be
disadvantaged by setting the population size to this level for this comparatively
small problem. The Elite_SD stopping rule with the elite fraction set to 0.90 was
employed for all of the evolutionary algorithms with the convergence tolerance
set at 1.0e-04. The Lambda Search algorithm is a deterministic algorithm and, for
a given starting point in the search space, the solution results produced are
identical for each replication. For this reason the LS algorithm was run only once.
For the LS algorithm, the convergence tolerance was set to 1.0e-08. The
parameter settings chosen produce a water release of 10,000 af (to two decimal
digits of precision) for both the evolutionary algorithms and the Lambda Search
algorithm, again facilitating this performance comparison.

Figure 13 compares the convergence behavior of the Lambda Search algorithm
with that of the EA’s for the first 50 iterations. As shown in this plot, the LS
algorithm is initially quite far from the optimal point, and then oscillates around
the optimal point rather wildly. This behavior illustrates its relatively poor global
search capabilities. Once it identifies the optimal region however, the oscillatory
behavior dampens and the algorithm rapidly converges. The LS algorithm
achieves convergence to a tolerance of 1.0e-08 in approximately 28 iterations. In
contrast, the EA’s are able to identify the region containing the optimum point,
very quickly, illustrating their relative strength in global search. However, the
three EA’s require many additional iterations to converge on the optimal point
(Refer to Figure 11 for further insights on this subject). Again, this illustrates
their relatively poor local search capabilities.

Figure 13. Convergence behavior over 50 Iterations

Advanced Algorithms for Hydropower Optimization

58

Table 7 summarizes the convergence results for each of these algorithms and the
quality of the solutions they identify. As shown in Table 7 the LS algorithm is
able to converge on a final solution very quickly relative to any of the EA’s. Over
the 50 trials, the EA’s are able to identify the same mean solution, albeit at a
much higher cost in terms of the number of iterations and the central processing
unit (CPU) time required.

Table 7. Convergence Performance and Cost

Algorithm Mean Best
Solution

S.D. Best
Solution Mean Iter Mean CPU

time (msec)
LS1 127,097.33 na 28 ≤0.002
RCGA 127,097.24 6.198e-01 500 196
DE 127,097.33 1.645e-04 242 114
PSO 127,097.33 1.960e-04 445 500

1 Lambda search is a deterministic approach and each trial produces the same outcome. The
results reported here were generated by a single trial at ctol=1.0e-08.

In some ways, the performance comparison illustrated in Figure 13 and Table 7 is
not fully representative of the differences which might be expected in applied
work. The Lambda Search algorithm (Appendix 7) is perhaps the fastest of the
traditional calculus based methodologies which can be applied to this particular
problem. It exploits the structure of this class of constrained optimization
problem to reduce the number of decision variables from dim=24 to dim=1 (λ).
The LS algorithm is thus a univariate optimization approach and, as such, needs
to identify the value of only a single unknown variable, rather than 24 or 168
unknown variables. Naturally, it is quite fast! More general approaches such as
the Newton-Raphson approach described in Appendix 6 and the generalized
reduced gradient (GRG) method used in spreadsheet solvers, require the addition
of artificial variables and slack variables (see Appendix 5). For these algorithms,
the total number of unknown variables is typically much larger than the
dimensions of the problem. Moreover, commercially available optimization
engines typically employ numeric derivatives rather than the analytic derivatives
found in the LS algorithm. In aggregate, these requirements increase the problem
size (often more than double the problem size) and complexity. These factors
may greatly reduce the apparent computational advantages of calculus based
approaches demonstrated here.

Problem Dimensions and Input Vectors

At early stages of this research project, an increase in solution times was observed
as the size of the constrained optimization problem increased. Similar increases
in the solution times are the norm for calculus based optimization approaches. A
systematic investigation of this (apparent) performance degradation seemed
warranted.

Experiments Undertaken

59

A priori, the influence of increasing the dimensionality of the optimization
problem seemed relatively easy to foresee. Increases in the problem size are
expected to increase the number of unknown variables, the size of the storage
vectors needed, the time to manipulate those vectors and the computational cost
of evaluating the fitness function.

The influence of changing the input price vectors is somewhat less obvious.
Figure 14 illustrates the 168-hour summer and winter input hourly price vectors
used in this analysis and reported in Appendices 16 and 17. This 1-week graph
starts on a Sunday, on the left-hand side and ends on a Saturday, on the right-hand
side. In the summer, electricity prices are generally higher, have only a single
peak during the day and typically have a greater daily range than do the winter
prices. The winter prices exhibit the typical two-peaks per day characteristic of
electricity prices in cold weather climates.

Figure 14. Prices used for analysis.

Examination of Figure 14 might lead to two different hypotheses about the
influence of summer and winter input price vectors on convergence speed. The
winter prices have more variation in any given day. This might lead to the
hypothesis the winter price vector might cause slower convergence.
Alternatively, the summer prices have a greater range in magnitude during any
given day. This would lead to the hypothesis the summer prices might result in
slower convergence speeds. It is unclear which of these two hypotheses might be
supported by the experimental outcomes.

Both the potential effect of increased problem size and the use of different input
price vectors were explored. For purposes of the replicated stopping rule

Advanced Algorithms for Hydropower Optimization

60

experiments, 50 trials were conducted on both the 24-hour and 168-hour
constrained dynamic economic dispatch problems using both the summer and
winter price vectors. For these experiments, the population size (np) varied across
the different algorithms as shown in Tables 3, 4, and 5 found earlier in the
document. The Elite_SD stopping rule was employed with the elite fraction set to
0.90. In all cases the convergence tolerance (ctol) was set at 1.0e-04.

The detailed results of this experiment are reported in tabular form in Appendix
18. Figure 15 shown below summarizes the results of this experiment. This
figure compares the mean central processing unit (CPU) time, measured in
seconds, required for convergence over the 50 trials.

Figure 15. Results of Dimension and Input Vector
Experiment

As shown in Figure 15, there is a marked difference in convergence times, across
all of the EA’s, when the size (dimensions) of the problems are increased from 24
to 168 hours (a 7-fold increase in dimension). The associated increase in
convergence time is much greater than proportional to the increase in problem
size. The DE algorithm seems to have a clear performance advantage relative to
the other EA’s tested. This outcome is consistent for all of the trials in which
only one constraint (the release volume equality constraint) is binding. However,
this performance advantage is not observed when additional constraints are
binding, as described in the following section.

Inspection of this plot also shows the choice of input price vector appears to have
some influence on convergence times. Convergence times when the summer
price input vector is employed are slightly longer than when the winter price
vector is used. The statistical significance of this difference, if any, remains to be
explored.

Experiments Undertaken

61

Binding Constraints

During the development process, an increase in solution times was observed when
there were minimum or maximum binding constraints (other than the total release
constraint, which is always binding). This was not necessarily expected by the
research team since calculus based optimization approaches do not, apparently at
least, suffer as much from this phenomenon. A systematic investigation of this
(apparent) performance degradation seemed warranted.

A mixed system of penalty functions and repair methods were employed for all of
the EA’s examined in this project. Some of the repair approaches are quite
involved. More frequent and intensive calls to these penalty and repair
subroutines are likely to result in longer solution times.

The potential effects of minimum and maximum binding constraints were
systematically explored. Based on the results of previous experiments, it was
thought there could be an interaction effect between the binding constraints and
the input price vectors employed. A 2x2 experimental design was used to
investigate this possibility.

For purposes of the constraint experiments, 50 trials were conducted using the
168-hour constrained dynamic economic dispatch problems. Both the summer
and winter price vectors were used in these comparisons. For these experiments,
the population size (np) varied across the different algorithms as shown in Tables
3 through 5 found earlier in the text. The Elite_SD stopping rule was employed
with the elite fraction set to 0.90. In all experiments the convergence tolerance
(ctol) was set at 1.0e-04.

The detailed results of these experiments are reported in tabular form in
Appendices 19 and 20. Figures 16 and 17 neatly summarize the results of these
experiments. Both figures compare the mean central processing unit (CPU) time,
measured in seconds, required for convergence over the 50 trials.

As shown in Figure 16, when the maximum release constraint is set to 6,000 cfs
(binding), there is a marked difference in convergence times for all of the EA’s
examined. Relative to the base case (when the maximum release constraint is not
binding), for DE and PSO, the convergence times increase. While for RCGA, the
convergence time appears to decrease, relative to the nonbinding maximum
release constraint case. Some degradation of the solution quality was apparent,
particularly for RCGA and PSO (See Appendices 19 and 20).

Inspection of Figure 16 also suggests that when the maximum release constraint is
binding, the choice of input price vector has an independent influence on
convergence times. For two of the three EA’s (RCGA and DE), convergence
times when the summer price input vector is employed are slightly longer than

Advanced Algorithms for Hydropower Optimization

62

when the winter price vector is used. For PSO, the opposite appears to be the
case. The statistical significance of these differences remains to be explored.

Figure 16. Maximum constraint effects (dim=168).

Figure 17. Minimum constraint effects (dim=168).

Figure 17 summarizes the results when the minimum constraint is set to 4,000 cfs
(binding). As shown in Figure 17, relative to the nonbinding base case, when the
minimum constraint is binding, there are apparent difference in convergence
times, across all of the EA’s examined. Relative to the nonbinding base case, for
DE and PSO, the convergence times increase, while for RCGA, it again appears
to decrease.

Conclusion

63

Further inspection of this plot (Figure 17) also shows that when the minimum
release constraint is binding, the choice of input price vector appears to have an
independent influence on convergence times. Convergence times for RCGA, DE
and PSO are slightly longer when the summer price input vector is employed.
Again, the statistical significance of these apparent differences remains to be
explored in the future.

To reiterate, the results obtained in these and preceding experiments are relatively
voluminous. They include not only the results described here but additional
metrics of solution quality and dispersion. Further results from the release
constraint experiments can be found in Appendices 19 and 20.

Conclusion
Three promising evolutionary algorithms (EA’s) were identified from the
emerging heuristic optimization literature; the real coded genetic algorithm
(RGGA), differential evolution (DE) and particle swarm optimization (PSO).
These algorithms were applied to an important hydropower problem—the
constrained dynamic economic dispatch problem. A relatively extensive suite of
replicated experiments were conducted to assess their performance characteristics.
These experiments systematically explored the influence of initialization
approaches, convergence criteria, the dimensions of the problem, the role of
problem inputs and the effects of binding constraints. The results show the
convergence behavior of evolutionary algorithms differs from traditional calculus
based approaches. Evolutionary algorithms exhibit longer solution times—
characterized by rapid identification of the region containing the optimum, with
relatively slow local convergence. The choice of different initialization
approaches appears to have no effect on solution times, for the particular problem
examined. Replicated experiments indicate convergence times for all three EAs
are longer for higher dimension problems. For DE and PSO, convergence times
increase when additional constraints are binding. Input price vectors with greater
dynamic ranges appear to degrade convergence times for DE, with mixed results
for PSO. The aggregate experimental evidence indicates these algorithms can
reliably solve this class of problem, within acceptable time-frames. Many applied
hydropower optimization problems are discrete, non-convex and discontinuous.
These characteristics preclude the application of traditional calculus-based
algorithms. In contrast, evolutionary algorithms are readily applied to such
problems and could provide near real-time solutions and guidance for everyday
operational decisions at Reclamation’s hydropower plants.

Advanced Algorithms for Hydropower Optimization

64

Future Directions
The replicated experimental results described here indicate the three selected
evolutionary algorithms, PSO, RCGA and DE, are able to accurately and reliably
solve the constrained dynamic economic dispatch problem. For optimization
problems where both methods are applicable (e.g. smooth, convex functions),
evolutionary algorithms have considerably longer solution times than traditional,
calculus-based approaches. The strength of evolutionary algorithms however, is
they are able to successfully solve a much broader range of problems, including
discrete, discontinuous and non-convex problems. The hydropower unit
commitment problem is such a problem, and one with widespread, practical,
everyday management application at Reclamation hydropower plants.

Research applying these algorithms to the more complex hydropower unit
commitment problem is now ongoing. This effort is entitled, Phase 2- Advanced
Optimization Algorithms for Hydropower Dispatch, Project ID 3906 and is
scheduled for completion in Fiscal Year 2013.

Collaborators
Members of the collaborative research team played a pivotal role in the success of
this research project. Their generous and invaluable technical contributions to
this effort are gratefully acknowledged. The research team for this project was
comprised of the following individuals.

Dr. Craig A. Bond, Assistant Professor
Department of Agricultural and Resource Economics
Colorado State University
Ft. Collins, Colorado 80523
(970) 491-6951
Craig.bond@colostate.edu

Dr. Darrell G. Fontane, Professor
Department of Civil Engineering
Colorado State University
Ft. Collins, Colorado 80523
(970) 491-5247
fontane@engr.colostate.edu
Darrell.Fontane@ColoState.Edu

mailto:Craig.bond@colostate.edu�
mailto:fontane@engr.colostate.edu�
mailto:Darrell.Fontane@ColoState.Edu�

Collaborators

65

Dr. George W. Heine, Mathematical Analyst
National IRM Center
U.S. Bureau of Land Management
Denver, Colorado 80225
(303) 236-0099
George_heine@blm.gov

Mr. Thomas D. Veselka, Senior Power Engineer
DIS Division
Argonne National Laboratory
Argonne, Illinois 60439
(630) 252-3449
tdveselka@anl.gov

mailto:George_heine@blm.gov�
mailto:tdveselka@anl.gov�

Advanced Algorithms for Hydropower Optimization

66

Literature Cited

Ao, Youyun and Hongqin Chi. “Dynamic Differential Evolution for Constrained
Real-Parameter Optimization.” Journal of Advances in Information Technology
Vol.1 No. 1. (February 2010):43-51.

Banks, Alec, Jonathan Vincent and Chukwudi Anyakoha. “A Review of Particle
Swarm Optimization. Part I: Background and Development. Natural Computing
Vol 6 No. 4 (December 2007): 467-484.

Banks, Alec, Jonathan Vincent and Chukwudi Anyakoha. “A Review of Particle
Swarm Optimization. Part II: Hydridization, Combinatorial, Multicriteria and
Constrained Optimization, and Indicative Applications.” Natural Computing Vol
7 No. 1 (March 2008): 467-484.

Boyd, Stephen and Lieven Vandenberghe. Convex Optimization. New York
City, New York: Cambridge University Press. 2004. (revised 2006). 730 pages.

Brest, Jamez, Viljem Zumer and Mirjam Sepesy Maucec. “Self-Adaptive
Differential Evolution Algorithm in Constrained Real-Parameter Optimization.”
Pages 919-926 in, Proceedings of the 2006 IEEE Congress on Evolutionary
Computation. Vancouver, British Columbia, Canada. July 16-21, 2006.

Blackwell, Tim Jurgen Branke and Xiaodong Li. “Particle Swarms for Dynamic
Optimization Problems.” In, Swarm Intelligence—Introduction and Applications.
Springer Natural Computing Series. Leiden Center for Natural Computing.
Christian Blum and Daniel Merkle, Editors. Springer-Verlang: Berlin, Germany.
2008.

Blum, Christian and Xiaodong Li. “Swarm Intelligence in Optimization.” In,
Swarm Intelligence—Introduction and Applications. Springer Natural Computing
Series. Leiden Center for Natural Computing. Christian Blum and Daniel
Merkle, Editors. Springer-Verlang: Berlin, Germany. 2008.

Boyang Li, Yew-Soon Ong, Minh Nghia Le, Chi Keong Goh: Memetic Gradient
Search. IEEE Congress on Evolutionary Computation 2008: 2894-2901.

Bratton, Don and Tim Blackwell. “A Simplified Recombinant PSO.” In, Swarm
Intelligence—Introduction and Applications. Springer Natural Computing Series.
Leiden Center for Natural Computing. Christian Blum and Daniel Merkle,
Editors. Springer-Verlang: Berlin, Germany. 2008.

Bucknall, Julian. “Ant Colony Optimizations.” The Delphi Magazine Issue 136
(December 2006):17-22.

Literature Cited

67

Bucknall, Julian. “Round & Round—How Random are Your Numbers?” The
Delphi Magazine Issue 33 (May 1988):18-25.

Caldwell, Chris. “The Prime Pages—Prime Number Research, Records and
Resources.” University of Tennessee. http://primes.utm.edu . Last accessed on
12/17/2009.

Carlisle, Anthony and Gerry Dozier. “An Off-The-Shelf PSO.” Proceedings of
the Workshop on Particle Swarm Optimization. Indianapolis, IN. 2001.

Chakraborty, Uday K (Editor), Advances in Differential Evolution. Studies in
Computational Intelligence, Volume 143. Springer-Verlang: Belin, Germany.
2008.

Chandrum, K., N. Subrahmanyam and M. Sydulu. “Brent Method for Dynamic
Economic Dispatch with Transmission Losses.” Iranian Journal of Electrical and
Computer Engineering Vol. 8 No. 1 (Winter-Spring 2009):16-22,

Coelho, Leandro do Santos and Viviana C. Mariani. “Improved Differential
Algorithms for Handling Economic Dispatch Optimization with Generator
Constraints.” Energy Conversion and Management. Vol. 48 No. 5 (May
2007):1631-1639.

Coello Coello, Carlos A. “Theoretical and Numerical Constraint-Handling
Techniques Used With Evolutionary Algorithms: A Survey of the State Of the
Art.” Computer Methods in Applied Mechanics and Engineering 191 No. 11-12
(January 2002): 1245-1287.

Computer Dictionary Online. Web based dictionary of computer terms. Located
at: www.computer-dictionary-online.org Last accessed on 28 September 2010.

Clerc, Maurice. “Initializations for Particle Swarm Optimization.” Unpublished
manuscript. 24 December 2008. Available from: http://clerc.maurice.free.fr/pso/.
Last accessed on 12/31/2009.

Clerc, Maurice. “Confinements and Biases in Particle Swarm Optimization.”
Unpublished manuscript. 12 March 2006. Available from:
http://clerc.maurice.free.fr/pso/ . Last accessed on 01/04/2010.

Clerc, Maurice. Particle Swarm Optimization. London, England: ISTE
Publishing Company. 2006.

Clerc, Maurice and James Kennedy. “The Particle Swarm—Explosion, Stability
and Convergence in a Multidimensional Complex Space.” IEEE Transactions on
Evolutionary Computation Vol 6 No. 1 (February 2002): 58-73.

http://primes.utm.edu/�
http://www.computer-dictionary-online.org/�
http://clerc.maurice.free.fr/pso/�
http://clerc.maurice.free.fr/pso/�

Advanced Algorithms for Hydropower Optimization

68

Cutello, Vincenzo and Giuseppe Nicosia "An Immunological Approach to
Combinatorial Optimization Problems" in, Lecture Notes in Computer Science,
Vol. 2527. Proceedings of the 8th Ibero-American Conference on AI: Advances
in Artificial Intelligence. 2002 pp. 361–370.

Das, Swagatam, Ajith Abraham and Amit Konar. “Particle Swarm Optimization
and Differential Evolution Algorithms: Technical Analysis, Applications and
Hybridization Perspectives.” Advances of Computational Intelligence in
Industrial Systems Vol. 116. Ying Liu et al. (Eds.), Studies in Computational
Intelligence, Springer Verlag, Germany, 2008. pp. 1–38.

Deb, Kalyanmoy. “An Efficient Constraint Handling Method for Genetic
Algorithms.” Computer Methods in Applied Mechanics and Engineering Vol. 186
No. (2-4) (June 2000): 311-338.

Deep, Kusum and Manoj Thakur. “A New Crossover Operator for Real Coded
Genetic Algorithms.” Applied Mathematics and Computation Vol. 188 No. 1
(May 2007):895-911.

De Jong, Kenneth A. “Analysis of the Behavior of a Class of Genetic Adaptive
Systems.” Unpublished Ph.D. Dissertation. Computer and Information Sciences.
University of Michigan, Ann Arbor. 1975.

Dorigo, Marco and Thomas Stutzle. Ant Colony Optimization: MIT Press, Inc.
July 2004. 319 pages.

Eberhart, Russell C. and James Kennedy. “A New Optimizer Using Particle
Swarm Theory.” Proceedings of the Sixth International Symposium on Micro
Machine and Human Science, Nagoya, Japan, October 1995; 39-43.

Edwards, Brian K. The Economics of Hydroelectric Power. New Horizons in
Environmental Economics. Northampton, Massachusetts: Edward Elgar
Publishing Inc. 2003.

Edwards, Brian K., Silvio J. Flaim, and Richard E. Howitt. “Optimal Provision of
Hydroelectric Power Under Environmental and Regulatory Constraints.” Land
Economics. Vol 75 No. 2 (May 1999):267-283.

Edwards, Brian K., Richard E. Howitt, and Silvio J. Flaim. “Fuel, Crop, and
Water Substitution in Irrigated Agriculture.” Resource and Energy Economics 18
No. 3 (October 1996):311-331.

Engelbrecht, Andries P. Fundamentals of Computational Swarm Intelligence.
Hoboken, New Jersey: John Wiley & Sons, Ltd. 2005.

Literature Cited

69

Farmani, Raziyeh and Jonathan A. Wright. “Self-Adaptive Fitness Formulation
for Constrained Optimization.” IEEE Transactions on Evolutionary Computation
Vol. 7 No. 5 (October 2003):445-455.

Feoktistov, Vitaliy. Differential Evolution—In Search of Solutions Volume 5 in
Optimization and its Applications Series. Panos M. Pardalos, Managing Editor.
Springer, New York, NY. 2006.

Forsund, Finn R. Hydropower Economics International Series in Operations
Research and Management Science. Frederic S. Hillier, Series Editor. New
York, NY. Springer. 2010.

Fylstra, Daniel, Leon Lasdon, John Watson and Allen Warren. “Design and Use
of the Microsoft Excel Solver.” Interfaces 28 No. 5 (September-October)
1998:29-55.

General Electric Energy Corporation. Western Wind And Solar Integration Study
Prepared for the National Renewable Energy Laboragory. GE Energy.
Schenectady, NY. May 2010. 536 pages.

General Electric Energy Corporation. MAPSTM Multi-Area Production Simulation
Model Product Description. GE Energy. Schenectady, NY. March 2008. 33
pages.

Goldberg, David E. Genetic Algorithms in Search Optimization, and Machine
Learning. Reading, Massachusetts: Addison-Wesley Professional Inc. 1989
(reissued). 432 pages.

Gong, Wenyin, Alvaro Fialho and Zhihua Cai. “Adaptive Strategy Selection in
Differential Evolution.” Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO) 2010. July 7-11, 2010. Portland, Oregon.
ACM Press, Inc. 2010.

Haupt, Randy L. and Sue Ellen Haupt. Practical Genetic Algorithms. 2nd Edition.
John Wiley and Son, Inc, New York, N.Y. 2004. 192 pages.

Harpman, David A. "Assessing the Short-Run Economic Cost of Environmental
Constraints on Hydropower Operations at Glen Canyon Dam." Land Economics
75 No. 3 (August 1999):390-401.

Helwig, Sabine and Rolf Wanka. “Particle Swarm Optimization in High-
Dimensional Bounded Search Spaces.” Proceedings of the 2007 IEEE Swarm
Intelligence Symposium. 1-5 April 2007 Honolulu, HI, Pages 198-205.

Holland, John H. Adaption in Natural and Artificial Systems. Ann Arbor:
University of Michigan Press. 1975.

Advanced Algorithms for Hydropower Optimization

70

Hu, Xiaohui and Russell Eberhart. “Solving Constrained Nonlinear Optimization
Problems with Particle Swarm Optimization.” Pages 203-206 in, Proceedings of
the 6th World Multiconference on Systemics, Cybernetics and Informatics (SCI
2002), Orlando, USA. 2002.

Huang, Hua-Juan and Yong-Quan Zhou. “Hybrid Artificial Fish Swarm
Algorithm For Global Optimization Problems” Journal of Computer Applications.
Vol. 28, no. 12 (December 2008): 3062-3064.

Judd, Kenneth L. Numerical Methods in Economics. Second Printing.
Cambridge, Massachusetts: MIT Press. 1999.

Karaboga, Dervis and Bahriye Basturk. “A Powerful and Efficient Algorithm for
Numerical Function Optimization: Artificial Bee Colony (ABC) Algorithm.”
Journal of Global Optimization 39 No. 3 (November 2007):459-471.

Kennedy, James and Rui Mendes. “Population Structure and Particle Swarm
Performance.” Evolutionary Computation, 2002. CEC '02. Proceedings of the
2002 Congress. Honolulu, HI , USA. 12 May 2002 - 17 May 2002. pages 1671
– 1676.

Kennedy, James and Russell C. Eberhart. Swarm Intelligence. San Francisco,
CA: Morgan Kaufmann Academic Press, 2001.

Kim, Dong Hwa, Ajith Abraham and Jae Hoon Cho. “A Hybrid Genetic
Algorithm and Bacterial Foraging Approach for Global Optimization.”
Information Sciences Vol 177 No. 18 (September 2007): 3918–3937.

Kirkpatrick, Scott, Charles D. Gelatt, M. P. Vecchi. “Optimization by Simulated
Annealing” Science, New Series, Vol. 220 No. 4598 (May 1983): 671-680.

Klimasauskas, Casimir C. “Not Knowing Your Random Number Generator
Could be Costly: Random Generators-- Why They are Important.” Personal
Computer Artificial Intelligence Vol 16 No. 3 (May/June 2002):52-59.

Knuth, Donald E. The Art of Computer Programming: Seminumerical Algorithms
Vol 2. 3rd Edition. Massachusetts: Addison-Wesley Press, Inc. 2002.

Kumar, Awadhesh. “Dynamic Economic Dispatch Using Particle Swarm
Optimization.” Unpublished Masters Thesis. Electrical and Instrumentation
Engineering Department, Thapar University, Patiala. June 2009.

Lee, Kwang Y. and Jong-Bac Park. “Application of Particle Swarm Optimization
to Economic Dispatch Problem: Advantages and Disadvantages.” in, proceedings
of the Power Systems Conference and Exposition, 2006. Atlanta, GA. Oct. 29 -
Nov. 1 2006. pages 188 – 192.

Literature Cited

71

Li, Boyang, Yew-Soon Ong, Minh Nghia Lee and Chi Keong Goh. “Memetic
Gradient Search.” Evolutionary Computation 2008. Proceedings of the 2008
IEEE World Congress on Computational Intelligence. Hong Kong, China. June
1-6, 2008. pages 2894 – 2901.

Liu, Hui, Zixing Cai and Yong Wang. “Hybridizing Particle Swarm Optimization
with Differential Evolution for Constrained Numerical and Engineering
Optimization.” Applied Soft Computing Vol 10 No. 2 (March 2010):629-640.

Matsumoto, Makoto and Takuji Nishimura. “Mersenne Twister: A 623-
Dimensionally Equidistributed Uniform Pseudorandom Number Generator.”
Association for Computing Machinery (ACM) Transactions on Modeling and
Computer Simulations Vol 8 No. 1 (January 1998):3-30.

Mezura-Montes, Efren and Blanca Cecilia Lopez-Ramirez. “Comparing Bio-
Inspired Algorithms in Constrained Optimization Problems.” Pages 662-669 in,
Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2007, 25-
28 September 2007, Singapore. 2007

Mezura-Montes, Efren, Jesus Velazquez-Reyes and Carlos A. Coello Coello.
“Modified Differential Evolution for Contrained Optimization” Pages 25-32 in,
Proceedings of the 2006 IEEE Congress on Evolutionary Computation.
Vancouver, British Columbia, Canada. July 16-21, 2006.

Mezura-Montes, Efren and Jorge Isacc Flores-Mendoza. “Improved Particle
Swarm Optimization in Constrained Numerical Search Spaces.” in Raymond
Chiong (Editor), Nature-Inspired Algorithms for Optimisation, pages: 299-332,
Springer-Verlag, Studies in Computational Intelligence Series Vol. 193, 2009.

Michalewicz, Zbigniew. Genetic Algorithms + Data Structures = Evolution
Programs. 3rd Ed. Springer. 1996. 387 pages.

Michalewicz, Zbigniew and David B. Fogel. How to Solve it: Modern Heuristics.
2nd Ed. Springer. 2010. 554 pages.

Mishra, S.K. “Global Optimization by Differential Evolution and Particle Swarm
Methods Evaluation on Some Benchmark Functions.” MPRA Paper No. 1005,
posted 07 November 2007. http://mpra.ub.uni-muenchen.de/1005 .

Miranda, Mario J. and Paul L. Fackler. Applied Computational Economics and
Finance. Cambridge, Massachusetts: MIT Press. 2006.

Monson, Christopher K. and Kevin D. Seppi. “Linear Equality Constraints and
Homomorphous Mappings in PSO.” in, Proceedings of the 2005 IEEE World
Congress on Evolutionary Computation, Vol. 1 pages 73-80. Edinburgh,
Scotland. September 5, 2005.

http://mpra.ub.uni-muenchen.de/1005�

Advanced Algorithms for Hydropower Optimization

72

Nelder, John A. and Roger Mead. “A Simplex Method for Function
Minimization” Computer Journal 7 No. 4 (January 1965):308-313.

Neri, Ferrante and Ville Tirronen. “Recent Advances in Differential Evolution: A
Survey and Experimental Analysis.” Artificial Intelligence Review 33 Nos. 1-2
(February 2010): 61-106.

Nguyen, Q. H., Yew-Soon Ong, Natalio Krasnogor. “A Study on the Design
Issues of Memetic Algorithm.” IEEE Congress on Evolutionary Computation
2007: 2390-2397

Noman, Nasimul and Htoshi Iba. “Accelerating Differential Evolution Using
Adaptive Local Search.” IEEE Transactions on Evolutionary Computation Vol.
12 No. 1 (February 2008):107-125.

Omran, Mahamed G.H. “Using Opposition-based Learning with Particle Swarm
Optimization and Barebones Differential Evolution.” Chapter 23 in, Particle
Swarm Optimization. Edited by Aleksandar Lazinica. Vienna, Austria: INTECH-
Education and Publishing. January 2009. 476 pages.

Omran, Mahamed G.H., Andries P. Engelbrecht and Ayed Salman. “Bare Bones
Differential Evolution.” European Journal of Operations Research Vol 196 No. 1
(July 2009):128-139.

Paquet, Ulrich and Andries P. Engelbrecht. “Particle Swarms for Linearly
Constrained Optimization.” Fundamenta Informaticae Vol. 76 No. 1-2 (March
2007):147-170.

Paquet, Ulrich and Andries P. Engelbrecht. “A New Particle Swarm Optimiser
for Linearly Constrained Optimization.” in, proceedings of the 2003 IEEE World
Congress on Evolutionary Computation Vol. 1 pages 227-233. Canberra,
Australia. December 8-13, 2003.

Pant, Millie, Radha Thangaraj, Ved Pal Singh and Alith Abraham. “Particle
Swarm Optimization Using Sobol Mutation.” Pages 367 to 372 in, The
Proceedings of the 2008 First International Conference on Emerging Trends in
Engineering and Technology. Nagpur, India. 16-18 July 2008.

Pant, Millie, Radha Thangaraj and Alith Abraham. “Low Discrepancy Initialized
Particle Swarm Optimization for Solving Constrained Optimization Problems.”
Fundamenta Informaticae 95 No. 4 (December 2009):1-21.

Pant, Millie, Ved Pal Singh and Alith Abraham. “Differential Evolution using
Quadratic Interpolation for Initializing the Population.” Pages 375 to 380 in,
Proceedings of the 2009 Advance Computing Conference, IACC 2009. IEEE
International. Delhi, India. 6-7 March 2009.

Literature Cited

73

Park, Stephen K. and Keith W. Miller, "Random Number Generators: Good Ones
Are Hard to Find." Communications of the Association for Computing Machinery
(ACM), Vol. 31 No. 10 (October 1988): 1192-1201.

Parsopoulos, Konstantinos E, and Michel N. Vrahatis. “Initializing the Particle
Swarm Optimizer Using the Nonlinear Simplex Method” In, Advances in Intelligent
Systems, Fuzzy Systems, Evolutionary Computation. The Artificial Intelligence
Series. Edited by A. Grmela and N.E. Mastorakis. World Scientific and Engineering
Academy and Society (WSEAS) Press: Interlaken, Switzerland. 2002.

Pedersen, Magnus Erik Hvass. “Tuning & Simplifying Heuristical Optimization.”
Unpublished Ph.D. Thesis. School of Engineering Sciences, Computational
Engineering and Design Group. University of Southampton. England. January 2010.

Peltokangas Riikka and Aki Sorsa. “Real-coded Genetic Algorithms and Nonlinear
Parameter Identification.” Report A No. 48. Control Engineering Laboratory,
University of Oulu. April 2008.

Pham, D.T., A. Ghanbarzadeh, E. Koc., S. Otri, S. Rahim and M. Zaidi. “The
Bees Algorithm—A Novel Tool for Complex Optimization Problems.”
Innovative Production Machines and Systems 2006 Virtual Conference. July
2006. Available from:
http://conference.iproms.org/forums/iproms_2006/optimisation_techniques. Last
accessed on 12/29/2009.

Pomeroy, Paul. “An Introduction to Particle Swarm Optimization.” March 2003.
Online article accessed at: www.adaptiveview.com/articles.

Potter, Walter D., Eric Drucker, Pete Bettinger, Frederick Maier, Max Martin, D.
Luper, M. Watkinson, G. Handy, C. Hayes. “Diagnosis, Configuration, Planning,
and Pathfinding: Experiments in Nature-Inspired Optimization.” in, Natural
Intelligence for Scheduling, Planning and Packing Problems. Studies in
Computational Intelligence. Vol. 250. Berlin, Germany: Springer Verlag. 2009.
pages 267-294.

Press, William H., Brian P. Flannery, Saul A. Teukolsky and William T.
Vetterling. Numerical Recipes in Pascal—The Art of Scientific Computing. New
York: Cambridge University Press. 1989.

Price, Kenneth V. and Rainer M. Storn. "Differential Evolution" Dr. Dobb's
Journal Issue 264 (April 1997):18-24 and 78.

Price, Kenneth V., Rainer M. Storn and Jouni A. Lampinen. Differential
Evolution - A Practical Approach to Global Optimization. Springer-Verlang:
Belin, Germany. 2005. 538 pages.

http://conference.iproms.org/forums/iproms_2006/optimisation_techniques�
http://www.adaptiveview.com/articles�

Advanced Algorithms for Hydropower Optimization

74

Rahnamayan, Shahryar and G. Gary Wang. “Solving Large Scale Optimization
Problems by Opposition-Based Differential Evolution (ODE). “WSEAS
Transactions on Computers 10 Vol. 7 (October 2008):1792-1804.

Rahnamayan, Shahryar, Hamid R. Tizhoosh and Magdy M.A. Salama.
“Opposition-Based Differential Evolution.” Chapter 6 in, Advances in Differential
Evolution. Studies in Computational Intelligence, Volume 143. Edited by Uday
K. Chakraborty. Springer-Verlang: Belin, Germany. 2008.

Rajkumar, N. Timo Vekara and Jarmo T. Alander. “A Review of Genetic
Algorithms in Power Engineering.” in, AI and Machine Consciousness—
Proceedings of the 13th Finish Artificial Intelligence Conference. Tapani Raiko,
Penti Haikonen and Jaakko Vayrynen, editors. Esppo, Finland. August 20-22,
2008. pages 15-32.

Reeves, Collin R. “Genetic Algorithms.” Chapter 3 in, Handbook of
Metaheuristics 2nd Edition. edited by Michel Gendreau and Jean-Yves Potvin.
Springer Business and Science: New York City, NY. 2010. 650 pages.

Rau, Narayan S. Optimization Principles—Practical Applications to the
Operation and Markets of the Electric Power Industry. IEEE Press Series on
Power Engineering. P.M. Anderson, Series Editor. New York, New York: John
Wiley and Sons. 2003. 339 pages.

Richards, Mark and Dan Ventura. “Choosing a Starting Configuration for
Particle Swarm Optimization.” pages 2309–2312 in, Proceedings of the Joint
Conference on Neural Networks. July 2004.

Robertson, Grant. “How Powerful was the Apollo 11 Computer?” Download
Squad. Weblogs, Inc. RSS Feed. July 20, 2009 at 8:30 pm.

Shah-Hosseini, Hamedi, “The Intelligent Water Drops Algorithm: A Nature-
Inspired Swarm-Based Optimization Algorithm.” International Journal of Bio-
Inspired Computation, Vol. 1, Nos. 1 and 2 (January 2009):71-79.

Simopoulos, Dimitris N. Stavroula D. Kavatza and Costas D. Voumas. “An
Enhanced Peak Shaving Method for Short Term Hydrothermal Scheduling.”
Energy Conversion and Management Vol. 40 No. 1 (November 2007): 2018-
3024.

Staschus, Konstantin, Andrew M. Bell, and Eileen Cashman. “Usable Hydro
Capacity, Electric Utility Production Simulations, and Reliability Calculations.”
Institute of Electrical and Electronics Engineers (IEEE), Transactions on Power
Systems Vol 5 No. 2 (May 1990):531-538.

Literature Cited

75

Storn, Rainer M. and Kenneth V. Price. Differential Evolution—A Simple and
Efficient Adaptive Scheme for Global Optimization over Continuous Spaces.
Technical Report TR-95-12, International Computer Science Institute. March
1995. Available from: http://www.icsi.berkeley.edu .

Storn, Rainer M. and Kenneth V. Price. “Differential Evolution—A Simple and
Efficient Heuristic for Global Optimization over Continuous Spaces.” Journal of
Global Optimization 11 No. 4 (December 1997):341-359.

Tang, Jun and Xiaojuan Zhao. “A Hybrid Particle Swarm Optimization with
Adaptive Local Search.” Journal of Networks Vol. 5 No. 4 (April 2010):411-418.

Tang, K., X. Yao, P. N. Suganthan, C. MacNish, Y. P. Chen, C. M. Chen, and Z.
Yang. Benchmark Functions for the CEC'2008 Special Session and Competition
on Large Scale Global Optimization. Technical Report, Nature Inspired
Computation and Applications Laboratory, USTC, China, 2007.

Uy, Nguyen Quang, Nguyen Xuan Hoai, RI McKay, and Pham Minh Tuan.
“Initializing PSO with Randomised Low-Discrepancy Sequences: The
Comparative Results.” Pages 1985-1992 in, Proceedings of the IEEE Congress on
Evolutionary Computation, CEC 2007, 25-28 September 2007, Singapore. 2007.

Valle, Yamille del, Ganesh Kumar Venayagamoorthy, Salman Mohagheghi, Jean-
Carlos Hernandez and Ronald G. Harley. “Particle Swarm Optimization: Basic
Concepts, Variants and Applications in Power Systems.” IEEE Transactions on
Evolutionary Computation Vol 12 No. 2 (April 2008):171-195.

Veselka, Thomas D., Leslie D. Poch, Clayton S. Palmer, Samuel Loftin and Brent
Osiek Financial Analysis of Experimental Releases Conducted at Glen Canyon
Dam during Water Years 1997 through 2005 ANL/DIS-10-7 August 2010.
[REVISED VERSION]

Veselka, Thomas D., Leslie D. Poch, Clayton S. Palmer, Samuel Loftin and Brent
Osiek. Ex Post Power Economic Analysis of Record of Decision Operational
Restrictions at Glen Canyon Dam ANL/DIS-10-6. Argonne National Laboratory.
Argonne, Illinois. April 2010. 96 pages.

Veselka, Thomas D., O. Benjamin Schoepfle and Matthew Mahalik. CRSP
Basin-Wide Economic Methodology—Modeling the Aspinall Cascade. Systems
Science Group, Argonne National Laboratory. Argonne, Illinois: Argonne
National Laboratory. July 2003.

Vicaria, Fernando. “Totally Random—Getting a Truly Random Number.”
Delphi Informant 9. No. 10 (October 2003):8-14.

http://www.icsi.berkeley.edu/�

Advanced Algorithms for Hydropower Optimization

76

Wahde, Mattias. Biologically Inspired Optimization Methods-- An Introduction
Southampton, MA: WIT Press. 2008. 225 pages.

Weber, Ernst Juerg. “Optimal Control Theory for Undergraduates Using the
Microsoft Excel Solver Tool.” Computers in Higher Education Economics
Review (Cheer) 19 No. 1 (2007):4-15.

Weise, Thomas. Global Optimization—Theory and Practice 2nd Edition. eBook.
Version 2008-07-07. Available from: www.it-weise.de. 2008. 703 pages.

Wong, Tien-Tsin, Wai-Shing Luk and Pheng-Ann Heng. “Sampling with
Hammersley and Halton Points.” Journal of Graphics Tools 2 No. 2 (November
1997): 9-24.

Wolpert, David H. and William G. Macready. “No Free Lunch Theorems for
Optimization” IEEE Transactions on Evolutionary Computation Vol. 1 No. 1
(April 1997):67-82.

Wood, Allen J. and Bruce F. Wollenberg. Power Generation, Operation and
Control. 2nd Edition. New York, New York: John Wiley and Sons, 1996.

Wright, Alden H. “Genetic Algorithms for Real Parameter Optimization.” In,
Foundations of Genetic Algorithms. Gregory J.E. Rawlins (editor). San Mateo,
CA: Morgan Kaufmann. 1991. pp. 205-218.

Yang, Xin-She. “Firefly Algorithm, Stochastic Test Functions and Design
Optimization.” International Journal of Bio-Inspired Computation Vol 2 No. 2
(March 2010):78-84.

Yang, Xin-She and Suash Deb. “Engineering Optimization by Cuckoo Search.”
International Journal of Mathematical Modeling and Numerical Optimization.
Vol. 1 No.4 (April 2010):330-343.

Yang, Xin-She and Suash Deb. “Cuckoo Search via Levy Flights.” in,
Proceedings of the World Congress on Nature and Biologically Inspired
Computing (NaBIC 2009, India). IEEE Publications, USA. pages 210-214.

Zielinski, Karin and Rainer Laur. “Stopping Criteria for Differential Evolution in
Constrained Single-Objective Optimizations.” Chapter 5 in, Advances in
Differential Evolution. Studies in Computational Intelligence, Volume 143.
Edited by Uday K. Chakraborty. Springer-Verlang: Belin, Germany. 2008.

Zielinski, Karin, Petra Weitkemper, Rainer Laur and Karl-Dirk Kammeyer.
“Examination of Stopping Criteria for Differential Evolution based on a Power
Allocation Problem.” In, volume 3, pages 149–156, Proceedings of the 10th

http://www.it-weise.de/�

Literature Cited

77

International Conference on Optimization of Electrical and Electronic Equipment.
Brasov, Romania, 18-19 May 2006.

Zielinski, Karin and Rainer Laur. “Stopping Criteria for Constrained Single-
Objective Particle Swarm Algorithm.” Informatica 31 No. 1 (March 2007):51-59.

Advanced Algorithms for Hydropower Optimization

78

Appendix 1. Objectives for Dispatch

Introduction

This appendix compares and contrasts several alternative objective functions
which could be used to characterize the dispatch of hydropower plants. In the
dynamic economic dispatch problem, the objective function describes the
owner/operators’ hourly dispatch decisions. This mathematical description of the
decision process is crucially important to the outcome of the optimization process.
In the vast majority of published literature, it is presumed that hydropower owners
dispatch their plants to maximize economic benefits. While this is quite often a
prime consideration, it is not the only factor shaping the hourly dispatch decision.
In fact, there are a wide range of potential specifications for the objective
function. These alternate characterizations may embody a number of real-world
strategic and institutional considerations--beyond purely economic motives.

Economic Dispatch

Hydropower dispatch for maximum economic benefit is also known as (pure)
economic dispatch. Most models of hydropower operations assume that
hydropower plant owners behave as though they have this sole objective and
make their dispatch decisions consistent with it. Operationally, the
owner/operator of the hydropower plant uses their available storage water to
generate electricity when the price is highest, subject to the physical, operational
and environmental constraints on the powerplant. Economists are particularly
fond of this characterization since it reflects the tenants of economic theory.
Many engineering texts also base their expositions on this objective function (e.g.
Wood and Wollenberg 1996, Rau 2003).

This objective function represents the maximum economic benefits which could
be received in the absence of institutional or other strategic considerations or
constraints. Since these institutions or strategic constraints are typically rather
dynamic and management specific, they can change at any time. As a result, this
objective function may be preferred for long-term economic studies.

Peak Shaving

Typically, the highest observed prices for electricity correspond to the hours when
load is greatest. This occurs because the most expensive thermal plants must be
dispatched to meet load during these peak periods. Hydropower plants can be
employed to reduce the load during these peak periods, reducing the need for

Appendix 1. Objectives for Dispatch

79

dispatch of expensive thermal plants and reducing the overall system costs. This
dispatch strategy is known as, “peak shaving.” Peak shaving is the objective
function used in a number of electricity system models including General Electric
Corporation’s well known Multi-Area Production Simulation (MAPS) model
(General Electric Corporation 2008). The underlying algorithm was described by
Stachus, Bell and Cashman (1990) and later by Simopoulos, Kavatza and Voumas
(2007). It has been employed for modeling the complex hydropower operations
at Glen Canyon Dam (Harpman 1999). Recently, the peak shaving approach has
been used in a variety of renewable resource integration studies including a recent
study for the National Renewable Energy Laboratory (General Electric
Corporation 2010). In the context of renewable energy studies, the peakshaving
algorithm is typically employed to shave the peaks of the load minus the
generation from renewable intermittent sources.

Native Load First

The stated objective of some entities is to a serve their native load first, using their
owned hydropower resources, and then to profit from the sale of any remaining
generation. If they have surplus energy or capacity, after meeting their own
system load, they will sell it to others on either the firm or spot markets. If they
are resource short, they must buy energy to make up the shortfall. The strategy of
serving native load first, may or may not be consistent (probably is not) with
either minimizing production costs in the larger interconnected system or
maximizing the economic benefits afforded by their owned resources. This
objective has been espoused by Western Area Power Administration as describing
their operation of the Colorado River Storage Project hydropower resources
(Veselka, et al 2010).

Buy/Sell and Generate

A number of larger utilities and other entities have sufficient owned resources and
a large enough market presence and access to transmission that they can purchase,
sell or generate electricity, at their option. By judiciously purchasing on the open-
market, generating when necessary and economic, and selling when electricity
prices are high, these entities can leverage the use of their owned hydropower
resources and their market presence in order to maximize economic benefits.
Such a strategy can be used to increase the benefits afforded by limited pondage
(storage) hydropower plants. This strategy is discussed in considerable detail in
Edwards, Howitt and Flaim (1996), Edwards, Flaim and Howitt (1999) and
Edwards (2003) in association with the optimal operation of hydropower plants in
the Upper Colorado River Basin.

Advanced Algorithms for Hydropower Optimization

80

Appendix 2. Ancillary Services and
Dispatch

Ancillary Services

In addition to providing energy and capacity, hydropower plants are large-scale
providers of ancillary services. Ancillary services are defined by FERC (1995)
as, “… those services necessary to support the transmission of electric power
from the producer to the purchaser given the obligations of control areas and
transmitting utilities within those control areas to maintain reliable operations of
the interconnected transmission system.”

Ancillary services help maintain reliable system operations in accordance with
good utility practice. Some of these services include spinning reserve, non-
spinning reserve, replacement reserve, regulation/load following, black start,
reactive power and voltage support. Quick start times, fast ramping capabilities,
and the ability for rapid corrective responses to changes in grid conditions make
hydropower plants an excellent resource for providing ancillary services.

Dispatch Effects

Two ancillary services in particular, spinning reserves and regulation, can affect
the optimal economic dispatch problem. Figure 18 shows how providing
ancillary services can reduce the operating range of a power plant. Spinning
reserves reduce maximum scheduled operations. On the other hand, regulation
affects both maximum and minimum production levels. The influence of these
services on dispatch operations is described below.

Regulation is the amount of operating reserve capacity required by the control
area to respond to automatic generation control to assure that the Area Control
Error meets these two conditions: that it (1) equals zero at least one time in all 10-
minute periods and (2) falls within specified limits to manage the inadvertent flow
of energy between control areas.

Hydropower plants can provide regulation services by responding quickly to
moment-by-moment up and down movements in control area electricity demand
using Automatic Generation Control (AGC). Larger plants, multi-unit plant, are
particularly well suited for providing this service because at least one or more of
their turbines are always on-line, and they operate at sufficiently high output
levels such that sudden decreases in load will not reduce generation below their
technical or regulatory minimum output levels.

Appendix 2. Ancillary Services and Dispatch

81

Figure 18. Ancillary services and
dispatch.

To provide regulation-up service, generation levels must be sufficiently low such
that a power plant can respond to instantaneous decreases in grid loads without
exceeding their output capability. Regulation-up services will incur an
opportunity cost when maximum power plant sales during peak periods are
required to be lower than the plant’s capability. The power plant’s average hourly
production level must be at or below the plant’s capability minus the regulation-
up service level. Under either scenario, regulation-up service does not incur any
opportunity costs under all but very high hydropower conditions since the dam is
operating below the maximum power plant capacity. It is of note that at many
times, the regulatory flow rate is significantly below the physical plant limit. It
should also be noted that providing regulation services may not affect either
hourly ramping or daily changes at a powerplant.

Advanced Algorithms for Hydropower Optimization

82

Spinning reserves are defined as generating capacity that is running at a zero load,
connected to an output bus, synchronized to the electric system, and ready to take
immediate load. The portion of unloaded synchronized generating capacity,
controlled by the power system operator, must be capable both of being loaded in
10 minutes and kept running continuously for a set period of hours.

When a generator supplies spinning reserve services, it will increase output in
response to an outage situation. The increased output fills the generation void
created by a generator in a balancing authority that suddenly ceases to produce
power. Spinning reserves may also be called upon when an abrupt transmission
line outage will no longer permit the reliable transport of power into a region.
Generation levels in normal conditions must be sufficiently low such that when an
outage occurs, it can increase output levels by its spinning reserve obligation
without exceeding the maximum capability of the generator.

Spinning reserve services require that maximum production levels do not exceed
the plant’s capability minus the amount of spinning reserves required. Providing
spinning reserves also requires that one or more turbines operate below capability
or in a spinning state without producing power. The former condition may
require the unit to operate in a sub-optimal state, while the latter releases water
without power production to spin the turbines under no load. These additional
requirements typically incur opportunity costs, because capacity must be reserved
at the high end of operations to accommodate the spinning reserves. Unlike
regulation-down services, spinning reserves do not affect minimum generation
levels.

Appendix 3. Hydropower Plant Specifications

83

Appendix 3. Hydropower Plant
Specifications

Release, Head and Generation

For the dynamic economic dispatch problem, the equation used to characterize
real power generation at the hydropower plant is shown in (21).

(21)
1000

),(
×

×××
=

fptokw
elevQheadeffqp ii

i
γ

Where:
 pi = (real) electric power generated (mw) by the generator
 γ = 62.40, specific weight of water at 50 degrees Fahrenheit (lbs/ft3).
 effi= efficiency factor1

 qi = release (cfs) from the generator
 (dimensionless) for the generator.

 Q = total release from all sources.
 elev = reservoir elevation (ft above mean sea level).
 head = net head (ft)
 fptokw = 737.5, foot-pounds to kilowatt conversion factor (kW/(ft-lbs/sec)

For purpose of this problem net head is defined as the difference between the
reservoir elevation and the tailwater elevation. While it is assumed the reservoir
elevation is known, the elevation of the tailwater varies with the total release from
all sources, Q. More explicitly, the head depends not only on the releases made
from the powerplant but also from the outlet works, if any. For our purposes, we
characterize net head as shown in (22).

(22))]10([Qwwelevhead ×+−=

Where:
 head = generation head (ft)
 elev = reservoir elevation (ft above mean sea level).
 w0 = 1708.186, tailwater height (ft above mean sea level) when Q=0.0
 w1 = 0.0070, change in tailwater elevation as release changes (ft/cfs)
 Q = total release from all sources

1 In this application the efficiency (eff) is represented as a constant. More generally, efficiency

may vary as a function of release and head.

Advanced Algorithms for Hydropower Optimization

84

The fully specifie relationship for generation at time (t) as a function of release
and head is then (23).

(23)
1000

)]10([
×

×+−×××
=

fptokw
qWWeleveffq

p ttt
t

γ

Collecting terms, the generation equation can be further simplified as shown in
(24). Note that equation (24) is nonlinear and quadratic in qt.

(24)
1000

)]1)0[(2

×
+−××

=
fptokw

qWqWeleveff
p ttt

t
γ

Minimum and Maximum Release Constraints

For the hydropower plant, the minimum and maximum release constraint values
are shown in Table 8.

Table 8. Maximum and Minimum Release
Constraints

Outlet Minimum
release (cfs)

Maximum
release (cfs)

 k w
Generator 0.0 12,000
Outlet works 0.0 15,000

Generator Specifications

The engineering specifications for the (aggregate) generator characterized at the
hydropower plant are shown in Table 9.

Table 9. Generator Specifications

Efficiency (eff) 0.85
Capacity 239.9551 MW1

1 The maximum occurs at an elevation of
2008.18560 and a release of 12,000 cfs.

Appendix 3. Hydropower Plant Specifications

85

Plant Description

As described, the relationship between release, net head and generation is
relatively complex. Figure 19 illustrates this relationship. At a given reservoir
elevation, for releases between the minimum necessary release and the maximum
release, the relationship is approximately linear. Once the maximum release
capability of a given turbine has been reached, no additional generation from that
unit can be achieved. Releases in excess of a given turbine’s release capability
must be made from another turbine, or from the outlet works. Such releases cause
an increase in the tailwater elevation, a decrease in net head and a decline in the
generation from that unit.

Figure 19. Release, head, and generation
relationship.

Advanced Algorithms for Hydropower Optimization

86

Appendix 4. Release, Head and
Efficiency
The efficiency parameter (eff) for the universal power equation described
previously in Appendix 3, determines the rate at which falling water is converted
into electrical energy. Efficiency is typically measured as a decimal fraction or a
percent. The relationship between release, head and generation contained in
Appendix 3 utilizes a static value for the efficiency (eff) which is constant for all
values of head and release. In general however, the efficiency of a Francis turbine
varies depending on the head and the release rate and this relationship is unique to
the design of each turbine runner and the site where it is installed.

In response to previous review comments, this appendix describes the more
general relationship between efficiency, release and head. The generic
mathematical relationships developed in this appendix are purposely specified in
terms of percent of maximum release and percent of maximum head, to allow for
the ease of application in this and future research efforts.

To accommodate generic and nonspecific use, the relationship between total
release, head and efficiency becomes slightly more complex, but remains
reasonably tractable. A plausible relationship between release and head is the
quadratic function shown in equation (25).

(25) bestE
head

bestQqE +
−−

=
2)(

Where: E = efficiency (dimensionless)
 q = total release (cfs)
 bestQ = the release yielding the highest value of E
 head = gross head (feet)
 bestE = the highest value of E which can be attained.

The values for bestQ and bestE for a particular research application must be
calculated. The maximum value of E which can be obtained at a given head is
computed using expression (26)..

(26) 100*





 += A

maxhead
headA*bestE

Where: bestE = the maximum efficiency (dimensionless)
 A = scalar parameter (0<A≤1).
 head = gross head (feet)
 maxhead = the maximum normal gross head at this site.

Appendix 4. Release, Head and Efficiency

87

The value of Q which produces the maximum efficiency, for a given head is
described by equation (27).

(27))(* bestEMaxEBbestEbestQ −+=

Where: bestQ = the release which produces the maximum value of E (cfs)

bestE = the maximum efficiency (dimensionless)
 B = scalar parameter (0<B≤1).
 maxE = the value of bestE obtained by evaluating equation (26)

with the head set equal to the maximum head
dimensionless).

For purposes of this exposition, the values of the parameters used are illustrated in
Table 10 shown below. Naturally, these parameter values will vary, depending on
the details of the specific research application being examined.

Table 10. Efficiency
Parameter Values

Parameter Value
maxhead 400.00

A 0.450
B 0.400

Using the parameter values shown in Table 10 in expressions 25 and 26, the
relationship between release, head and efficiency, described by equation (27) can
be plotted for three different levels of gross head as shown in Figure 20.

As illustrated in this figure, the expression for efficiency as a function of release
and head (equation 27) provides a very reasonable representation of the
relationships between these variables. For instance, at a gross head of 400 feet,
the maximum efficiency is 90 percent at a gate opening of 90 percent. At a lower
head of 300 feet, the maximum efficiency is 78.75 percent at a gate opening of 83
percent. This relationship closely tracks and is similar to the observed efficiency
characteristics at many hydropower facilities where Francis turbines are
employed.

Advanced Algorithms for Hydropower Optimization

88

Figure 20. Release, head, and efficiency.

Appendix 5. Calculus of Dynamic Dispatch

89

Appendix 5. Calculus of Dynamic
Dispatch
This appendix reviews the traditional or calculus based approach for the solution
of the optimal dynamic dispatch problem using a specific example. This
approach dates back to the days of Sir Isaac Newton and is routinely taught in
economics, engineering and physical science classes. To keep the size of the
example reasonably tractable, the problem explored here is limited to a two period
(T=2) problem. To facilitate illustration, this example problem includes fewer
constraints than the general problem.

Example Problem

For purposes of this example, the hydropower plant operator is given an amount
of water for release (Q) over a planning horizon of T=2. We assume s/he knows
price of electricity (R) over each of the T-periods. The plant operator must decide
how much water to release for generation in each period (t) to maximize revenue
over the planning horizon. In this example we will presume there are constraints
on the total amount of water available for release (Q) and the maximum amount
of water which can be released in each period.

This example optimal dynamic dispatch problem can be written in mathematical
notation as shown in equations (28) through (30).

(28) ∑
T

ttt qpRMaximize
1

)(

 subject to:

(29) ∑ ≤
T

t Qq
1

(30) }..1{max Tqq tt ∈∀≤

Where: Rt = price ($/MWh) at time (t)

pt = generation (MW) at time (t)
 qt = release (cfs or af) at time (t)
 Q = total release (af).
 qmax = maximum release
 T = 2

Advanced Algorithms for Hydropower Optimization

90

We will assume here that the maximum release constraints do not vary across the
planning horizon. For this reason, qmax is the same for all periods (t).

The objective of the plant operator is to maximize revenue over the time horizon
(T=2) by generating electricity when it is most valuable. While doing so, s/he
cannot exceed the amount of water available for release over the planning horizon
(constraint equation 29). The amount of water released in any one period must be
less than or equal to the maximum water release constraint (equation 30).

A Specific Example Problem

As described so far, the example is very general. To facilitate further
understanding and demonstrate how to solve these types of problems, we will
fully specify the mathematical form. Drawing on our previous exposition and
Appendix 3, the relationship between generation, release and head can be
specified as (31).

(31)
1000

)]1)0[(2

×
+−××

=
fptokw

qWqWeleveff
p ttt

t
γ

where: γ = 62.40, specific weight of water at 50 degrees Fahrenheit (lbs/ft3).
 effi= efficiency factor2

 elev = reservoir elevation (ft above mean sea level).
 (dimensionless) for the generator.

 fptokw = 737.5, foot-pounds to kilowatt conversion factor (kW/(ft-lbs/sec)
w0 = 1708.186, height of the tailwater (ft above mean sea level) when
Q=0.0
w1 = 0.0070, rate of change in tailwater elevation as release changes
(ft/cfs)

Exploiting the many constants in (31), it will be expedient to form a simpler
constant as shown in (32).

(32)
1000×

×
=

fptokw
effALet γ

We can then write out the relationship between generation, elevation and release
as the simpler and more streamlined expression (33).

(33)]1)0[(2

tttt qWqWelevAp +−×=

2 In this application the efficiency (eff) is represented as a constant. More generally, efficiency

may vary as a function of release and head.

Appendix 5. Calculus of Dynamic Dispatch

91

The fully specified optimal dynamic dispatch problem can be written in
mathematical notation as shown in equations (34) through (36).

(34) ∑ +−××
T

tttt qWqWelevARMaximize
1

2]1)0[(

 subject to:

(35) ∑ ≤
T

t Qq
1

(36) }..1{max Tqq tt ∈∀≤

This class of constrained optimization problem occurs frequently and
conceptually can be solved using the Kuhn-Tucker conditions or by the
introduction of artificial slack variables. We choose the latter approach, since
arguably it is both simpler and more tractable.

Introducing Slack Variables

The constraints (35 to 36) in the fully specified example problem above are
inequality equations. We can convert these inequalities to equalities by
introducing some artificial variables known as “slack variables.” We will denote
the slack variables as, “Sx” where the subscript (x) identifies the context of the
specific slack variable. For purposes of the numerical solution example
(introduced subsequently), we will insure the slack values in each equation are
nonnegative, by specifying them as squared terms. This serves to restrict the
value of the (squared) slack variable to be zero, or some positive value.

Introducing slack variables into the inequality constraints (35 to 36) yields the
corresponding equality constraints (37 to 38).

(37) ∑ =+
T

Qt QSq
1

2

(38) max

2
max qSqt =+

A closer look at the water balance equation (37) will help to illustrate the use of
slack variables and their meaning in an equation. In the event less water is
released over the planning horizon than is available (the sum of the qt is less than
Q), the value of S2 will be positive and nonzero. This indicates there is extra or
“slack” water remaining in the reservoir which has not been released for
generation. If the constraint is binding (the sum of the amount of water release
exactly equals Q), then the value of S2 will be zero. This indicates that all of the

Advanced Algorithms for Hydropower Optimization

92

water available for release during the planning horizon has been released and
there is no extra water (no slack) remaining.

Slack Variable Formulation

Incorporating the constraint equations as equality constraints with slack variables,
the fully specified example problem then can be restated as equations (39)
through (41).

(39) ∑ +−××
T

tttt qWqWelevARMaximize
1

2]1)0[(

 subject to:

(40) ∑ =+
T

Qt QSq
1

2

(41) }..1{max

2
max, TqSq ttt ∈∀=+

An analytical solution to this problem can be found using the method of
Lagrange. We do so by first forming a Lagrangian expression and then
maximizing it as shown in (42).

(42)

∑

∑∑

+−+

−−++−××=

T

ttt

T

t

T

tttt

Sqq

qSQqWqWelevARLMax

1

2
,max

1

2

1

2

)(

)(]1)0[(

γ

λ

γ

λ

A Lagrangian expression embodies both the original objective function, and each
of the constraints. The introduction of Lagrange multipliers (λ, γ) is a clever
mathematical device. The underlying logic is that either the value of the
Lagrange multiplier is zero, the value in parentheses (the constraint) is zero, or
both. The resulting Lagrangian expression incorporates T*1+1 or 3 new
Lagrangian variables; one Lambda (λ) for the water release constraint and a set of
T Gammas (γ), one for each maximum release constraint.

There are 8 choice variables in the Lagrangian expression (equation 42). The set
of choice variables includes T=2 water releases (the q’s), the (T*1+1) or 3
Lagrangian variables and the (T*1+1) or 3 slack variables (S).

Appendix 5. Calculus of Dynamic Dispatch

93

Analytic Solution

The first order necessary conditions (FOC’s) for a maximum require the first
derivatives of the function be equal to zero at the optimum. Taking the first
partial derivatives of the Lagrangian function (42) with respect to each of the 8
choice variables, yields the set or vector of 8 differential equations shown in
equations (43) to (50).

(43) 0120 1111
1

=−−+−=
∂
∂ γλqAWRAWR
q
L

(44) 0120 2222
2

=−−+−=
∂
∂ γλqAWRAWR
q
L

(45) 0)(
1

2 =−−=
∂
∂ ∑

T

tqSQL
λλ

(46) 0)(2
1,1max

1

=+−=
∂
∂

γγ
SqqL

(47) 0)(2
2,2max

2

=+−=
∂
∂

γγ
SqqL

(48) 02 =−=
∂
∂

λ
λ

λS
S
L

(49) 02 1,1
1,

==
∂
∂

γ
γ

γ S
S
L

(50) 02 2,2
2,

==
∂
∂

γ
γ

γ S
S
L

Conceptually, this set of simultaneous differential equations can be solved to find
the values of q, λ, γ and S. And for this relatively simple example, analytic
solution is certainly feasible. In many practical applications, T is larger and there
are many more constraints. In many, if not most real-world applications, it is not
possible to solve this type of problem analytically.

Advanced Algorithms for Hydropower Optimization

94

Lagrange Multipliers

Lagrange multipliers hold a special significance to economists, engineers and
economists. They are interpreted as the shadow price, dual price or the value of
the marginal unit of the resource. To place this in context, consider Lambda (λ),
the Lagrange multiplier for the water constraint. Lambda represents the marginal
value of an additional unit of water when allocated optimally. When Lambda is
positive, this indicates that an additional unit of water will have a value of λ. If
Lambda is zero, this suggests that an additional unit of water will not add any
value, if more were available. When Lambda is negative, this indicates that
additional releases will cause the maximum revenue to decline.

Appendix 6. Newton-Raphson Method

95

Appendix 6. Newton-Raphson Method
Newton’s method, or the Newton-Raphson method as it is called in the
multivariate context, is a calculus based numerical optimization and root-finding
technology. Historically, it dates back to the dawn of calculus and the time of Sir
Isaac Newton (circa 1400). As described in Press, et al (1989), it is an extremely
powerful optimization approach, derived from a 2nd order Taylor Series
expansion. Underlying this method is a fundamental and deceptively simple
mathematical insight-- any arbitrary nonlinear function can be locally
approximated by a quadratic expression. Variants of the original method form a
large family of nonlinear optimization techniques (Press, et al 1989, Judd 1999).

The derivation of the Newton-Raphson method is short and relatively
straightforward. Let x be a vector of decision variables and f(x) be an arbitrary
multivariate function of these variables. A 2nd order Taylor Series expansion
(ignoring the remainder term) of f(x) around x. is then given by equation (51).

(51)
2

))((
))(()()(

2
1

''

1
'

1
nnn

nnnnn
xxxf

xxxfxfxf
−

+−+≅ +
++

Here, we introduce the subscript ”n” to denote the iteration number. In vector
notation, this expression can be rewritten as (52)

(52))()(
2
1)()()(1111 nnn

T
nnn

T
nnnn xxHxxFxxxfxf −−+−+≅ ++++

where:
x
xffF xn ∂

∂
=∇=

)(is the gradient, or vector of first partial derivatives, for

the function evaluated at x=xn and
xx
fH n ∂∂

∂
=

2

 is the Hessian matrix, or matrix of

second partial derivatives, also evaluated at x=xn..

Maximizing the left-hand side of equation (52) with respect to xn+1 yields the
following vector expression of first order conditions:

(53) 0)(1 =−×+ + nnnn xxHF

Using matrix algebra and solving this equation for xn+1 gives us the well-known
Newton-Raphson algorithm (54)

(54) nnnn FHxx 1

1
−

+ −=

Advanced Algorithms for Hydropower Optimization

96

The expression for the Newton-Raphson iterative solution approach is detailed in
equation (54). In the Newton-Raphson algorithm, the vector of estimated choice
variables (x) in the next iteration (n+1) is obtained by post-multiplying the inverse
of the Hessian matrix by the gradient vector and then subtracting the result from
the estimated vector available in the current iteration (n). This computation is
dependent on the properties of the Hessian matrix (H) and its inverse. Provided
that H-1 exists and is negative define, this expression can be solved iteratively to
obtain estimates of the decision vector (x).

Computation of the H-inverse matrix can be a resource intensive and
computationally expensive process, particularly for moderate to large problems
and when the H matrix is sparse or poorly scaled. As Judd (1999), Press, et al
(1989) and others have advised, well-designed implementations of this algorithm
do not invert the H matrix directly. Instead, clever applications of matrix algebra
are used to solve for the x vector, without (directly) undertaking the matrix
inversion step.

Although an exceptionally powerful technique, the Newton-Raphson algorithm
can fail, and sometimes does so,”… in a spectacular fashion” (Press et al 1989).
This approach is dependent on the researcher’s ability to provide a starting value
for the vector of decision variables, x, (a.k.a., a guess) which is reasonably close
to the true solution. If the supplied starting value for the vector x, is too far from
the true solution, the algorithm will fail, particularly in cases where the function
being maximized is complex or ill-behaved. As with other approaches, the
Newton-Raphson method is subject to a variety of numerical computation issues
including scaling, truncation, round-off error and specification error. These
maladies often become apparent to the researcher when the H matrix becomes
singular or ill-conditioned.

Numerical and computation problems involving the H matrix are sufficiently
common that a stream of research on alternative but closely relatedtimization
algorithms has arisen. These research efforts have spawned an impressive
number of alternative approaches, typically classified as “quasi-Newton” or
“variable metric” methods (see Press, et al 1989).

For our example problem, the vector of choice variables (x) is defined as:

(55)

































=

2

1

2

1

2

1

γ

γ

λ

γ
γ
λ

S
S
S

q
q

xn

Appendix 6. Newton-Raphson Method

97

The gradient vector (vector of first partial derivatives), obtained by differentiating
the Lagrangian expression with respect to each of the choice variables is given by
(56).

(56)



































−
+−
+−

−−

−−+−
−−+−

=
∂
∂

=

∑

22

11

2
2,2max

2
1,1max

1

2

2222

1111

2
2

2
)(
)(

)(

120
120

γ

γ

λ

γ

γ

λ

γ
γ
λ

γλ
γλ

S
S
S

Sqq
Sqq

qSQ

qAWRAWR
qAWRAWR

x
LF

T

t

i

The bordered Hessian is the matrix of second partial derivatives. For our example
problem the Hessian matrix is derived as shown in equation (57).

(57)

































−−
−

−
−−−

−−
−−

=
∂∂

∂
=

22

11

2

1

2

1

2

20020000
02002000
00200200

20000010
02000001
00200011
000101120
000011012

γ
γ

λ

γ

γ

λ

γ

γ

λ

S
S

S
S

S
S

AWR
AWR

xx
LH

ji

The Newton-Raphson approach iterative procedure starts with an initial vector of
the decision variables supplied by the research. The iterative process is continued
until a pre-set convergence or stopping criteria is achieved. At an optimal point,
the gradient vector should be equal to zero. Judd (1999) recommends a combined
stopping criteria which considers the both the norm of the gradient vector and the
change in the solution vector from one iteration to the next.

Advanced Algorithms for Hydropower Optimization

98

Appendix 7. Lambda Search Algorithm
Appendix 5 describes the analytical solution of the optimal dynamic dispatch
problem. This appendix illustrates a simplified version of the dynamic dispatch
problem and illustrates its solution using a calculus based traditional approach,
known as lambda search.

As described previously, the hydropower plant operator is faced with a
challenging dynamic optimization problem. Given the amount of water available
for release and the anticipated price of electricity over a particular time horizon
(T), the plant operator must decide how much water to release for generation in
each period (t) in order to maximize revenue. Typically, the total amount of water
available for release (Q) over the planning horizon is fixed and known. The
vector of prices (R) over the planning horizon (T) is assumed or anticipated, based
on prior experience and knowledge.

Ignoring (for now) the other constraints shown in the more general optimal
dynamic dispatch problem, we can write a streamlined version of the problem as
equations (58) through (59). For purposes of this exposition we will assume the
operator will release all of the water planned for release during the planning
horizon. We can then eliminate the inequality sign from equation (59).

(58) ∑
T

ttt qpRMaximize
1

)(

 subject to:

(59) ∑ =
T

t Qq
1

Where: Rt = price ($/MWh) at time (t)
 pt = generation (MW) at time (t)
 qt = release (cfs or af) at time (t)
 Q = total release (af).

The fully specified relationship between generation, release and head (see
Appendix 3) is described by equation (60).

(60)
1000

)]1)0[(2

×
+−××

=
fptokw

qWqWeleveff
p ttt

t
γ

Appendix 7. Lambda Search Algorithm

99

where: γ = 62.40, specific weight of water at 50 degrees Fahrenheit (lbs/ft3).
 effi= efficiency factor3

 elev = reservoir elevation (ft above mean sea level).
 (dimensionless) for the generator.

 fptokw = 737.5, foot-pounds to kilowatt conversion factor (kW/(ft-lbs/sec)
w0 = 1708.186, height of the tailwater (ft above mean sea level) when
Q=0.0
w1 = 0.0070, rate of change in tailwater elevation as release changes
(ft/cfs)

Incorporating this information, we can then write out a specific relationship for
the simplified dynamic economic dispatch problem as (61).

(61)
1000

)]1)0[(2

1 ×
+−××∑ fptokw

qWqWeleveff
RMaximize ttt

T

t
γ

 subject to:

(62) ∑ =
T

t Qq
1

This type of optimization problem can be addressed using the method of
Lagrange. The Lagrangian expression for this constrained maximization problem
is written as (63).

(63))(
1000

)]1)0[(
1

2

1
∑∑ −+

×
+−××

=
T

t
ttt

T

t qQ
fptokw

qWqWeleveff
RL λ

γ

We can solve this problem by finding the qt’s and the λ which maximize the
Lagrangian function. Before proceeding, we can further simplify this expression.
Exploiting the many constants in (63), we will form a simpler constant as shown
in (64).

(64)
1000×

×
=

fptokw
effALet γ

If we make this substitution, the Lagrangian expression becomes the somewhat
less complicated expression shown in (65).

(65))()]1)0[(
1

2

1
∑∑ −++−××=

T

tttt

T

t qQqWqWelevARL λ

3 In this application the efficiency (eff) is represented as a constant. More generally, efficiency

may vary as a function of release and head.

Advanced Algorithms for Hydropower Optimization

100

The first order necessary conditions (FOCs) for a maximum are that each of the
partial derivatives of the Lagrangian function must equal zero. The first order
conditions for this expression are shown in equations (66) through (71).

(66) 0]12)0[111
1

=−+−=
∂
∂ λqWWelevAR
q
L

(67) 0]12)0[222
2

=−+−=
∂
∂ λqWWelevAR
q
L

(68) 0]12)0[333
3

=−+−=
∂
∂ λqWWelevAR
q
L

(69) 

(70) 0]12)0[=−+−=
∂
∂ λTTT

T

qWWelevAR
q
L

(71) ∑ =−=
∂
∂ T

tqQL
1

0
λ

Analytic solution of this system of FOCs would be difficult if not impossible,
even for low-dimension (low T) problems. The form of this problem and the
resulting set of FOCs can be exploited and solved using a relatively
straightforward numerical technique known as lambda search (Wood and
Wollenberg 1996).

By examining the set of FOCs we can identify three useful features of these
expressions. First, the single variable lambda (λ) is common to the first 1..T
expressions. Second, the FOCs are of a relatively tractable form which can
readily be solved for qt if λ is known. Finally, all of the qt’s must sum up to
exactly equal Q, at an optimal point. These three characteristics allow us to apply
the lambda search numerical algorithm.

The lambda search algorithm and its application to dispatch problems is rather
well established and is described in Wood and Wollenberg (1996). The use of
this algorithm and much of the discussion which follows draws heavily from that
source.

The lambda search algorithm, summarized in Figure 21, begins with a starting
value for λ which is typically developed by an informed guess. Given this
starting λ value, the expressions for the (T) first derivatives can be used to
compute a set of output levels for each period (t). In order to meet the water use
constraint, all of the qt values should sum exactly to the amount of water available

Appendix 7. Lambda Search Algorithm

101

for release (Q). In practice, there is usually some error which we will define as
ε=Q-Σqt. We would be satisfied if the absolute value of this error (|ε|} was less
than some arbitrarily small value which we will call the convergence tolerance
(ctol). In the default case, a tolerance level of 0.01 is employed. It is unlikely
that |ε|<ctol on the first iteration unless we make an extremely lucky guess for the
value of λ! Since the probability of this happening is virtually zero, the algorithm
requires a minimum of at least 2 iterations. On the second iteration a simple
heuristic or rule is used to “set” the value of λ. This heuristic works as follows; if
ε>0 set λ2=λ1*0.90, if ε<0 set λ2=λ1*1.10,

At the end of the second iteration, if |ε|<ctol, the algorithm terminates and the
result is written to an output window. In the event that |ε|>ctol, a new value of λ
is projected.

If more than 2 iterations are required, a more sophisticated approach to projecting
λ is employed. Because there are constraints on the values that qt can take, there
are discontinuities in λ. Due to these discontinuities, interval bisection (Press et al
1989) is used to identify a new value of lambda for iterations 3 and higher. This
new or “projected” value of λ is used in the subsequent iteration.

These iterations or loops continue until the difference between the sum of the qt ‘s
and Q is driven to within the user specified convergence tolerance. For logical
reasons, the qt‘s are constrained to remain nonnegative during these iterations.

Figure 21. The Lambda search algorithm.

Advanced Algorithms for Hydropower Optimization

102

Potentially, the iterative process used in this algorithm can fail due to oscillations,
round-off error, truncation or incorrect specification of the problem. In this
application, the number of iterations is limited to some pre-set maximum to
prevent the process from continuing forever should such a failure occur.

Although failures are certainly possible, our experience shows this algorithm
converges very rapidly for this particular type of optimization problem.

Appendix 8. Real Coded Genetic Algorithm

103

Appendix 8. Real Coded Genetic
Algorithm

Introduction

Genetic algorithms (GAs) are almost certainly the first evolutionary algorithms
ever described in the literature. The GA is an optimization approach which is
based on genetic principles and natural selection. A GA guides a population
composed of many individuals as it evolves under specified selection rules
towards a state of maximum fitness.

The method was originally developed by John Holland (1975) starting in the
1960’s. Work by De Jong (1975), one of Holland’s graduate students, pioneered
the practical application of GA’s for optimization which stimulated many threads
of related research. An applied study by another one of his graduate students,
David Goldberg (1989), spurred further interest in GA’s. Since then, GA’s have
since been applied in nearly every discipline making use of optimization
techniques, with Rajkumar, Vekara and Alander (2008) citing a staggering 20,488
applications. An amazing number of books have been written on GA’s as typified
by Michalewicz (1996), Michalewicz (2010), Haupt and Haupt (2004) and others.
Pertinent to this research, Rajkumar, Vekara and Alander (2008) report 948
published GA applications in the realm of power systems engineering.

Binary GA

The original GA’s described by Holland (1975) and others, utilizes a binary
encoding scheme to represent numerical values and is often referred to as binary
GA. These original GA’s code the values of the choice variables into strings of
1’s and 0’s which mimics the manner in which genes are stored on the
chromosome. All subsequent manipulations, such as crossover and mutation, are
then carried out on these binary encoded strings. The resultant new chromosomes
are then decoded from their binary form to return the actual values of the choice
variables.

Like other evolutionary algorithms, the GA has a number of notable advantages
over traditional (calculus based) optimization methods. It can accommodate
continuous, discrete, nonlinear and complex objective functions as well as many
forms of constraints. GA’s do not rely on gradient information and the ability to
calculate a derivative is not required for implementation. GA’s are more likely to
identify a global extrema and less prone to converge on a local optima. This

Advanced Algorithms for Hydropower Optimization

104

approach is especially well suited for complex optimization problems
characterized by multiple local extrema.

Real Coded GA

Real coded genetic algorithms (RCGA) are a continuous or real valued variant of
the original (binary) GA’s. Real coded genetic algorithms are naturally suited for
optimization of real or continuously valued objective functions. RCGA
algorithms were employed exclusively in this research effort because they are
computationally more efficient and because they are better suited to the test
problems examined.

Like binary GA’s, the RCGA approach is based on a virtual population of np-
independent individuals. The population lives and evolves over a number of
generations. During each generation, individuals are selected from the population
to become potential parents. The selected parents may successfully reproduce to
produce offspring which have some probability of undergoing mutation. The
resulting offspring and/or their more fit parents are recruited into the next
generation, surviving to potentially reproduce in subsequent generations. Over
successive generations, the population becomes increasingly fit —thereby
identifying the optimum (minimum or maximum) of a function.

In terms of efficiency and speed, RCGA algorithms have a clear-cut advantage
over binary GA’s. RCGA do not require encoding and decoding of the choice
variables. Particularly for large dimension problems, this can be a tremendous
speed advantage. Representation of real-valued variables as binary strings
requires the analyst to make a tradeoff between the precision and string size. As
the numeric precision is increased, considerably longer binary strings and
additional memory are required. High precision characterizations necessarily
increase storage memory requirements along with the computational overhead
associated with reading and writing these binary strings. RCGA, which
characterizes real-valued decision variables as..real-valued variables, does not
suffer from this problem.

RCGA Terms

There are several GA specific terms commonly used in the literature. Among
these are the following.

• Fitness function- objective function value plus penalties, if any.
• Fitness- value of the fitness function
• Current fitness− an individual’s (own) fitness
• Population best – best fitness achieved by any individual in the population

Appendix 8. Real Coded Genetic Algorithm

105

Individual Components

Each of the np individuals in the virtual population consists of the following
components, where d is the number of dimensions in the problem:

• Coordinates of its current position: x=(x1…xd)
• Current fitness

In the context of GA’s, the vector of decision variables is called a chromosome.
An individual decision variable is termed a gene.

Operationally, each individual is typically coded as either an object, in object
oriented programming languages such as C#, or as a record type.

Basic RCGA Algorithm

The basic RCGA algorithm is relatively straightforward as illustrated in Figure
22. First, each of the np members of the population is created, their positions
initialized in the search space and their fitness evaluated and stored. The RCGA
iterative evolutionary process then begins. During each iteration or generations:

a. parent chromosomes are selected for potential reproduction;
b. with some probability, the selected parents successfully reproduce via a

crossover procedure (crossover is similar to sexual reproduction in that
each parent donates part of its chromosomes to the offspring);

c. with a given probability, each offspring is subject to mutation;
d. the fitness of each offspring is evaluated and stored;
e. using a recruitment strategy, the resultant offspring and parents are

recruited into the next generation; and,
f. the best fitness of the population is updated.

At the end of each generation, a test is applied to determine if the population has
converged. If the population has converged, the iterative process is terminated
and the results are reported. If the population has not converged, a new iteration
is undertaken. This process continues until the either the population has
converged or the maximum number of iterations has been completed.

There are a variety of available schemes for parental selection. The most
frequently encountered approaches are the roulette wheel and the tournament
methods. The roulette wheel approach can only be used when the fitness function
does not change sign. In other words, it can only be used if the value returned by
fitness function is strictly positive, or strictly negative. The fitness functions for
the three experimental test functions and the power system applications can and
do change signs, negating the utility of this approach. Owing to practical details
such as this, the tournament selection approach was employed in this research
effort, as it has been for many other applications.

Advanced Algorithms for Hydropower Optimization

106

Figure 22. The basic RCGA algorithm.

Tournament selection is readily coded and executes very quickly. In the
tournament selection approach, two individuals are chosen at random from the
population. The chosen two individuals compete and the one with greater fitness
is retained as a potential parent. Two more individuals are then randomly selected
from the population and the fitter of the two is retained as a potential parent. The
two potential parents which result then enter the reproduction process.

There are many different reproductive strategies described in the GA literature.
Reproduction is similar to sexual reproduction in mammals and is characterized
by the potential successful exchange of genetic material with a relatively high
probability. If the parents successfully exchange their genes, their offspring have
some the potential for mutation, which may be fitness improving or fitness
degrading, with a much lower probability.

All of the crossover and mutation approaches described subsequently are designed
for two parents producing one or two offspring. As in the natural world, some
reproductive scenarios involve two parents producing a single offspring, two
parents producing two offspring, two parents producing multiple offspring and
even more than two parents producing a single offspring. Each of these schemes
has its proponents and attendant niche literature. Other than practicality, there
seems to be little evidence for selecting a particular scheme. For purposes of this
research effort, the reproduction schemes considered were limited to two parents
producing two offspring, or two parents producing a single offspring.

Parental traits are conveyed to the potential offspring via the so called crossover
procedure. In the crossover process both parents intermingle their genes to
produce offspring. Numerous approaches have been developed to simulate this
process. In the context of RCGA, the arithmetic crossover approach

Appendix 8. Real Coded Genetic Algorithm

107

(Michalewicz 1996), the Laplace crossover approach (Deep and Thakur 2007),
the linear crossover approach (Wright 1991) and the heuristic crossover approach
(Michalewicz 1996) are routinely encountered in the literature. These four
crossover approaches were implemented for this research effort. For reasons of
brevity, only the Laplace approach is described.

The Laplace crossover approach was developed by Deep and Thakur (2007) and
exploits the properties of the Laplace statistical distribution. Initially, the two
prospective parents are subjected to a probability of reproduction test. The
probability of (successful) reproduction is typically set at a relatively high level,
with many researchers using a value of 0.90 for this parameter. A uniformly
distributed random number between 0 and 1 is then generated. If this random
value is less than or equal to the probability of reproduction, the two parents may
reproduce. If it is not, the two parents fail to produce any offspring. Depending
on their fitness ranking and the recruitment approach employed, their lineage may
not continue into future generations. Assuming they are allowed to reproduce,
another uniformly distributed (0,1] random number (ux) is generated. This value
is used to generate a random value β which follows the Laplace distribution as
shown in equation (72).

(72))5.0*21ln(*)5.0(* −−−−= uxuxsignbµβ

In this equation b which is restricted to (b>0) is the scale (dispersion) parameter
for the Laplace distribution and μ is the mean or location parameter. Larger b
values produce a random variable β, having a greater dispersion around the parent
genes. Smaller b values produce a random variable β, which has a smaller
dispersion around the parent genes.

Two offspring are then generated by the following expressions.

(73)
)1()2()2()2(

)2()1()1()1(

iiii

iiii

xxxy

xxxy

−+=

−+=

β

β

Where: i = dimension
 x(J) = parent J {1, 2}
 y(J) = offspring J {1, 2}

Assuming the parents successfully reproduce, their offspring are subject to a small
probability of mutation. Mutation serves to increase the diversity of the solutions.
Mutation is nothing more than a random change of selected genes on the
chromosome. The effects of a mutation may be fitness enhancing or fitness
degrading.

There are a large number of mutation rules and described in the literature, some of
which are quite ingenious. A sampling of mutation approaches include; Gaussian

Advanced Algorithms for Hydropower Optimization

108

mutation, nonuniform mutation (Michalewicz 1996), power mutation (Deep and
Thakur 2007), uniform mutation (Michalewicz 1996) and boundary mutation
(Michalewicz 1996). In the context of RCGA, uniform mutation and nonuniform
mutation (Michalewicz 1996) are the two approaches predominately employed.
Both of these mutation approaches were implemented for this research effort. For
the sake of brevity, only the latter mutation approach will be described.

The genetic material to be mutated at the kth generation is denoted as x, xi is
bounded by {li, ui} where li is the lower bound and ui the upper bound on x in
dimension (i). The mutated value of x is given by equation (74).

(74)








=−∆+
=−∆+

=
1),(
0),(

τ
τ

iflxkx
ifxukx

x
iii

iiiM
i

In equation (74), τ is a random binary digit that take on the value of either 1 or 0.
The value of the function ∆ is determined by equation (75).

(75) 












−=∆







 −

b

T
k

yyk
1

1),(α

Where: α = a uniform random number [0,1]
 T= maximum number of generations
 b = parameter determining the degree of non-uniformity
 k = generation number

The equation for ∆(k,y) returns a value in the range [0,y] so that the probability of
returning a number close to zero increases as k, the number of generations,
increases. During the initial generations (low value of k), the non-uniform
mutation approach promotes a uniform search and in later generations (high
values of k) the search space contracts, leading to a more localized search
(Michalewicz 1996).

Recruitment, sometimes known as replacement, is the process of determining
which individuals from the offspring population and the parent population will
survive into the next generation. There are a wide variety of recruitment
approaches, which have evolved over time (see Reeves 2010 p. 71 for a
summary). The traditional (simple) approach, the Elite 1 approach (Bucknall
2002) and more generally, the Elite k approach.

The traditional approach to recruitment is fairly straightforward—only the
offspring survive into subsequent generations. While easily implemented in code,
there is a distinctive logic flaw inherent with this approach. In the traditional
approach there is a probability the individual with the highest fitness will be

Appendix 8. Real Coded Genetic Algorithm

109

eliminated from the gene pool, slowing the evolutionary process and the search
for an optima.

The Elite 1 approach preserves genetic material from the fittest individual in the
gene pool. This method is used extensively in applied research and is
fundamentally effective. In the Elite 1 recruitment approach, following
reproduction, the parents are ranked from highest fitness to lowest fitness and the
offspring are ranked from highest fitness to lowest. The parent individual with
the highest fitness (the Elite 1) replaces the lowest ranked offspring, provided it is
of superior fitness. The remaining offspring and the Elite 1 individual, survive
into the next generation.

As might be anticipated, there are many potential variations on the Elite 1
approach. Limiting the population size to NP, the retained Elite fraction may vary
from k=2 up to NP. Haupt and Haupt (2004, p. 62) present an example in which
the top four elites (k=4) are retained in the next generation. The limiting case is
the Elite NP approach, in which the fittest NP individuals from the combined
parent and offspring pool, are selected for survival into the next generation. The
convergence speed characteristics of these approaches improve as k increases to
NP, however the diversity of the potential solutions is diminished and the
likelihood of spurious convergence, or premature convergence, at a local optima,
also increases.

In aggregate, the RCGA approach clearly embodies the notion of evolutionary
progression or, “survival of the fittest.” The more fit individuals reproduce and
pass their traits along to future generations. As in the natural world, the less fit
individuals die and their inferior traits are expunged from the gene pool.

Advanced Algorithms for Hydropower Optimization

110

Appendix 9. Differential Evolution

Introduction

Differential evolution (DE) is one of the more recently described global heuristic
optimization methods. As described on their website
(www.icsi.berkeley.edu/~storn/code.html), it was jointly developed by Storn and
Price (1995, 1997) and also Price and Storn (1997). The newly described DE
algorithm managed to finish 3rd at the First International Contest on Evolutionary
Computation (1stICEO) which was held in Nagoya, Japan in May 1996. Since
that time, there have been an impressive number of DE applications
encompassing at least three books (Price, Storn and Lampinen 2005, Feoktistov
2006, Chakraborty 2008 as well as several hundred published articles (see Neri
and Tirronen (2010) for an overview).

Description of DE

The DE approach is based on a virtual population of np-independent individuals.
During each generation, these individuals reproduce and undergo selection. Only
the most-fit individuals in the population survive to reproduce in the next
generation. Over successive generations, the population becomes increasingly fit
—thereby identifying the optimum (minimum or maximum) of a function.

Although computationally intensive, DE has a number of notable advantages over
traditional (calculus based) optimization methods. It can accommodate
continuous, discrete, nonlinear and complex objective functions as well as many
forms of constraints. DE does not rely on gradient information and the ability to
calculate a derivative is not required for implementation. DE is more likely to
identify a global extrema and less prone to converge on a local optima. This
approach is especially well suited for complex optimization problems
characterized by multiple local extrema.

DE Terms

There are several DE specific terms commonly used in the literature. Among
these are the following.

• Fitness function- objective function value plus penalties, if any.
• Fitness- value of the fitness function
• Current fitness− an individual’s (own) fitness
• Global best (g) – best fitness achieved by any individual in the population

http://www.icsi.berkeley.edu/~storn/code.html�

Appendix 9. Differential Evolution

111

Individual Components

Each of the np individuals in the population consists of the following components,
where d is the number of dimensions in the problem:

• Coordinates of its current position: x=(x1…xd)
• Current fitness

Operationally, each individual is coded as either an object, in object oriented
programming languages such as C#, or as a record type.

Basic DE Algorithm

The basic DE algorithm is amazingly simple as illustrated in Figure 23. First,
each of the np particles in the population is created, their positions are initialized
in the search space and their fitness evaluated. The DE iterative evolutionary
process then begins. During each of these iterations or generations, (a) each of
the 1…np particles reproduces, (b) each parent individual is compared to the
resultant offspring and the fitter of the two survives into the next generation, and,
(c) the global best fitness of the population is updated.

Figure 23. The basic DE algorithm.

At the end of each generation, a test is applied to determine if the population has
converged. If the population has converged, the iterative process is terminated
and the results are reported. If the population has not converged, a new iteration
is undertaken. This process continues until the either the population has
converged or the maximum number of iterations has been completed.

Advanced Algorithms for Hydropower Optimization

112

There are a large number of mutation rules and crossover approaches described in
the literature, some of which are amazingly ingenious. A shorthand approach for
describing and categorizing these variants has evolved. The notation DE/x/y/z is
often used for this purpose. In this notation, x is used to specify the vector to be
mutated which can be “Rand” (a randomly chosen member of the population) or
“Best” (the member of the population with the current best fitness), y represents
the number of difference vectors used, and, z denotes the type of crossover
scheme employed. The most common crossover variant is the “Bin” or binary
crossover approach.

For purpose of this Appendix, one of the most common mutation and crossover
approaches, the DE/Rand/1/Bin approach, will be described. Interpretation of this
shorthand notation indicates this method employs the “Rand” random method for
selecting members of the population for the mutation process, uses “1” one
difference vector in the mutation phase and uses the “Bin” or binary crossover
method.

The DE/Rand/1/Bin variant of DE is illustrated in equations (76) and (77).
Equation (76) describes the “Rand/1” mutation scheme.

(76)])3[]2[(]1[][rprpFrpid jjjj −+=

 Where:
 d =offspring or donor individual
 j=dimension index
 i = individual index
 r1, r2, r3 = random integer4

 p = parent individual

F = scale parameter.

The offspring or donor vector is constructed from three randomly chosen and
mutually exclusive members of the population, scaled by the parameter F. The
scale parameter F is generally chosen in the range 0.1 to 1.0. Rahnamayan and
Wang (2008) recommend a value of 0.50. Optimal values of F are explored by
Pedersen (2010).

Parental traits are conveyed to the potential offspring via the so called crossover
procedure. In DE, the most commonly encountered crossover process is the
independent binomial experiment, or binary “Bin” crossover method. This
crossover approach is shown in equation (77).

4 Where i≠r1≠r2≠r3.

Appendix 9. Differential Evolution

113

(77)








≤
>

=
CRrandifd
CRrandifp

id
ii

ii
j ,

,
][

 where:
 d = offspring or donor
 p = parent individual
 j=dimension index
 i = individual index
 randi = uniform random deviate
 CR = crossover parameter

In each dimension, a parent’s traits are passed to the offspring if a uniform
randomly drawn value exceeds the value of CR, the crossover parameter, a binary
decision process. If the uniform random value is less than or equal to CR, the
traits from the mutation process are retained by the offspring. The crossover
parameter, CR is generally chosen in the range 0.10 to 1.0. Rahnamayan and
Wang (2008) recommend a value of 0.90. Optimal values of CR are explored by
Pedersen (2010).

In aggregate, the traits of the potential offspring are determined by mutation and
crossover. Using these traits or x-values, the fitness of each offspring is evaluated
and then stored.

Following reproduction, the fitness of the offspring is compared with the fitness
of the parent individual in a process termed, selection. In the DE algorithm,
selection follows the straightforward elite selection process as illustrated in
equation (78),

(78)








>
≥

=+
iii

iii
ti pdifd

dpifp
P

,
,

1,

 where:
 pi,t+1 = member of next generation
 d = offspring or donor
 p = parent individual

As shown in equation (78), the process of selection embodies the notion of
evolutionary progression or, “survival of the fittest.” In DE selection, the fitness
of the parent and the offspring are compared and only the most fit of the two
survive, reproduce and pass their traits along to future generations. As in the
natural world, the less fit individuals die and their inferior traits are expunged
from the gene pool.

In comparison to other algorithms described in this document, DE has several
practical advantages. First, it is simple and efficiently coded with minimal

Advanced Algorithms for Hydropower Optimization

114

memory requirements. Second, the selection criteria described in equation (78)
ensures that each individual passing to the next generation is at least as fit as its
parent. The evolutionary process always moves towards the optima. This is a
particularly desirable feature of this algorithm.

Appendix 10. Particle Swarm Optimization

115

Appendix 10. Particle Swarm
Optimization

Introduction

Particle swarm optimization (PSO) is a global heuristic optimization method.
Kennedy and Eberhart (1995) reportedly developed the concept by observing the
behavior of flocking birds. Since that time, there have been an impressive
number of PSO applications encompassing at least three books (Kennedy and
Eberhardt 2001, Engelbrecht 2005, Clerc 2006) and over one thousand published
articles.

Description of PSO

The PSO approach exploits the behavior of np-independent virtual particles,
which "fly" through the search domain, have a memory and are able to
communicate with other members of their "swarm." Each particle has a single
purpose—to better its fitness—and thereby identify the optimum (minimum or
maximum) of a function.

Although computationally intensive, PSO has many advantages over traditional
optimization methods. It can accommodate continuous, discrete, nonlinear and
complex objective functions as well as many forms of constraints. PSO is more
likely to identify a global extrema and less prone to converge on a local optima.
This approach is especially well suited for complex optimization problems
characterized by multiple local extrema.

PSO Terms

There are several PSO specific terms commonly used in the literature. Among
these are the following.

• Fitness function- objective function value plus penalties, if any.
• Fitness- value of the fitness function
• Personal best (p)− a particle’s (own) best fitness
• Global (or neighborhood) best (g) – best fitness achieved by the swarm (or

neighborhood sub-swarm)
• Velocity (v)− change in location from one iteration to the next along a

single dimension

Advanced Algorithms for Hydropower Optimization

116

Individual Components

Each of the np particles in the swarm consists of the following components, where
d is the number of dimensions in the problem:

• Coordinates of its position: x=(x1…xd)
• Current velocity: v=(v1…vd)
• Personal best position: p=(p1…pd)
• Global (or neighborhood) best position: g=(g1…gd)

Operationally each particle is typically coded as either an object, in object
oriented programming languages such as C#, or as a record type.

Basic PSO Algorithm

The basic PSO algorithm is relatively straightforward as illustrated in Figure 24.
First, each of the np particles in the swarm is created and their positions and
velocities are initialized. The PSO iterative process then begins. During each of
these iterations, (a) the fitness each of the 1…np particles is evaluated, (b) the
personal best and global (or neighborhood) best of each particle in the swarm are
updated, and, (c) a new velocity and a new particle position are computed. A test
is then applied to determine if the swarm has converged. If the swarm has
converged, the iterative process is terminated and the results are reported. If the
swarm has not converged, a new iteration is undertaken. This process continues
until the swarm has either converged or the maximum number of iterations has
been completed.

The velocity, or change in the location of each particle in a given dimension, is
updated according to the rule illustrated in equation (79).

(79)][][)]1([)(2211 dddddd xprandcxgrandctvwtv −+−+−=

 Where:
 w = inertia coefficient
 c1,c2 = cognitive and social weights
 rand = uniform random value
 v = velocity x = current location
 g = global best p = personal best
 t=iteration counter or index.

The new velocity of each particle depends on the velocity in the previous
iteration, an inertia coefficient (w), the cognitive weight (c1), a social weight (c2),
the particle’s current location in each of the d-dimensions (xd), two random
uniform deviates, the particle’s own personal best position (pd), and the global (or
neighborhood) best position (gd).

Appendix 10. Particle Swarm Optimization

117

Figure 24. The basic PSO algorithm.

After the particle’s velocity has been updated, its position is updated using
equation (80).

(80))()1()(tvtxtx ddd +−=

 where:
 v = velocity
 x = current location

As shown, each particle’s new position depends on its position in the previous
iteration and the new (updated) velocity.

Modified PSO

A modified version of the basic PSO algorithm was employed for the research
described in this document. This modification consisted of augmenting the basic
PSO algorithm with a selection mechanism, identical to that employed in the DE
algorithm. The PSO selection routine ensured the individuals which survived into
the next generation would be at least as fit as their parents.

The basic PSO algorithm described previously in this Appendix was fast and
highly successful when applied to the unconstrained optimization problems in
Phase 1 of the development process. However, when applied to the constrained
dynamic economic dispatch problem in Phase 2 of the development process, it
failed to achieve convergence. The basic PSO algorithm was able to quickly

Advanced Algorithms for Hydropower Optimization

118

locate the neighborhood of the optimal solution, but then ran for many thousands
of iterations without converging to a tolerance of 1.0e-04. This convergence
failure behavior was exhibited over a range of social and personal acceleration
coefficient (C1 and C2) values and for all reasonable convergence criterion
settings. Considerable effort was expended to diagnose and remedy this
behavior—without appreciable progress.

Ultimately, a modified version of the basic PSO algorithm was developed for
application to the constrained dynamic economic dispatch problem. The structure
of the basic PSO algorithm as reported in equations (79) and (80) was retained.
The population update mechanism found in the basic PSO algorithm was altered
from the usual unconditional approach to a selection process. This selection
process ensured that the personal best fitness of each particle was non-decreasing
over each successive generation.

Following reproduction, the personal best fitness of the offspring is compared
with the personal best fitness of the parent. As in the DE algorithm, selection
follows the straightforward elite selection process as illustrated in equation (81),

(81)








>
≥

=+
iii

iii
ti pdifd

dpifp
P

,
,

1,

 where:
 pi,t+1 = member of next generation
 d = offspring or donor
 p = parent individual

The fitness of the parent and the offspring are compared using the approach
described in Deb (2000) and only the most fit of the two survive to pass their
traits along to future generations. The selection mechanism described in equation
(81) ensures that each individual passing to the next generation is at least as fit as
its parent. The evolutionary process always moves the swarm towards the
optimal point. This is a particularly desirable feature and reliably leads the
modified PSO algorithm to convergence.

Appendix 11. Clerc’s K

119

Appendix 11. Clerc’s K
Early empirical studies established the PSO algorithm could fail to converge, even
when the social and personal acceleration coefficients (c1, c2) were properly
defined. In essence, the swarm could diverge or explode, rather than converge.
Two methods are in common usage to counteract this potential behavior. These
are Clerc’s constriction factor or coefficient (K), and, the use of an inertia weight.

For purposes of this research effort, the approach developed by Clerc and
Kennedy (2002) was employed. As further described in Clerc (2006) the
constriction coefficient (k) is applied as shown in equation (82) below.

(82)]}[][)]1({[)(2211 dddddd xprandcxgrandctvktv −+−+−=

 Where:
 k = Clerc’s constriction coefficient
 c1,c2 = cognitive and social weights
 rand = uniform random value
 v = velocity x = current location
 g = global best p = personal best
 t=iteration counter or index.

The simplest case is known as a the Type 1 coefficient which is defined as shown
in equation (83)

(83) 0.4
40.2

0.2
21

2
>=+

−−−
= θ

θθθ
cck

This constriction factor improves the convergence of the PSO algorithm over time
by damping particle oscillation in the neighborhood of a potential optima, while
preserving the search behavior of the swarm. Its main disadvantage is that it is
not as effective in promoting convergence, as for example, an inertia weight.
Unlike an inertia weight however, it does not drastically diminish a swarm’s
ability to explore promising new solution regions, once one potential optimal
point has been discovered.

Advanced Algorithms for Hydropower Optimization

120

Appendix 12. Random Numbers
The research effort described here is focused on algorithms and techniques which
are randomly varying or stochastic in nature. These algorithms necessarily make
use of random number generators (RNGs). The performance of these algorithms
and the results obtained with them are critically dependent on the speed and
quality of these underlying RNGs.

All of the optimization algorithms explored here make extensive use of RNGs in
three important phases of their operation, (a) initialization, (b) selection and (c)
search. Initialization—a finite number of particles or individuals are distributed
in the d-dimensional search space. Although other methods have been proposed,
the typical approach is to randomly initialize the individuals using an RNG.
Selection—selection of the fittest individual, construction of a neighborhood
topology or other grouping mechanisms and reproduction in the population are
typically guided by a randomized choice process. These actions are all based on
an RNG. Search—at each step or iteration of the algorithm, the search activity is
influenced by a random component or influence. These random influences are
supplied by an RNG.

Although it may prove surprising to the layperson, the descriptive term “random
number generator” is largely a misnomer (see, for example, Knuth 2002 and Judd
1999). As a rule, researchers reserve the word random, “…for the output of an
intrinsically random process, like the elapsed time between clicks of a Gieger
counter placed next to a sample of some radioactive element” (Press et al 1989).
Software based random number generators are inherently deterministic (For a
given set of parameters and starting value(s), they produce identical results). For
this reason, most researchers and mathematicians employ the terms quasi-random
or pseudorandom to describe software based RNGs.

Many RNG implementations are based on the linear congruential generator
method. A linear congruential generator is an iterative mathematical relationship
of the form shown in equation (84).

(84) mcXaX tt mod)*(1 +=+

In equation (84), a, b and m are integers and “mod” is the modulo operator which
returns the remainder when the expression in parentheses is divided by m..

As shown in (84) the analyst supplies a random seed, or starting value (Xt).
Given this random seed and values for a, b and m, a random deviate (Xt+1) is
produced. This deviate is then used as the seed for producing the next random

Appendix 12. Random Numbers

121

value. A mathematical property of expression (84) is that it will eventually repeat
itself, with a period that is no greater than m.

The values for a, b and m and the random seed must be chosen with some care.
Generally, m is chosen to be as large an integer as possible. As a practical matter,
its size is limited by the interaction of the software and the computer hardware. In
ANSI C, the maximum integer value is specified to be only 32767 (corresponding
to the Delphi 16 bit SMALLint type). As described further in Press et al (1989),
these limitations will result in the randomly generated points lying on at most
327681/3 or 32 planes (in three dimensional space). If a, b and m are not carefully
selected, the points will lie on far fewer planes (Press et al 1989). As a result, the
analyst could unknowingly be focusing their attention on a relatively small and
discrete portion of the search region.

Modern programming languages such as Visual BASIC, FORTRAN, C/C++,
Java and Borland Delphi all contain RNG implementations as part of their
supplied feature set. Unfortunately, these built-in system RNGs are of uneven
quality and some have readily demonstrable flaws.

The existing numerical analysis literature contains numerous and rather blunt
warnings to researchers about the failings of system RNGs. The writings of Park
and Miller (1988), Klimasauskas (2002), Knuth (2002) and Judd (1999) are
especially accessible examples. One of the more informative assessments of this
topic is provided by Press, et al (1989). They caution researchers to be very, very
suspicious of system supplied random number generators, which often resemble
equation (84). They write that, “If all scientific papers whose results are in doubt
because of bad rand()s [RNGs] were to disappear from library shelves, there
would be a gap on each shelf as big as a fist (Press, et al 1989, page 214).

There are quite a large number of statistical tests available for discerning the
capability of RNGs to produce random sequences. These range from well-known
statistical techniques such as the Chi-Square test, the runs test, the monobit test
and the continuous RNG test (Vicaria 2003), to more esoteric and complex
approaches such as the Knuth spectral test (Knuth 2002). A frequently employed
and well known suite of RNG tests, known as the Diehard test suite, was
developed by George Marsaglia (currently available for purchase from:
http://www.stat.fsu.edu/pub/diehard/). A new, improved and Open Public
License (OPL) version, called the DieHarder test suite, has been developed by
Robert G. Brown (freely available from:
http://www.phy.duke.edu/~rgb/General/dieharder.php).

Of direct pertinence to this study, Klimasauskas (2002) has employed a battery of
statistical tests to examine the system RNGs supplied with a wide range of
programming languages including IBM FORTRAN, Visual BASIC, Delphi
Object Pascal (parent of the Delphi programming language) and Visual C/C++ as
well as some spreadsheet software tools such as Microsoft Excel. He reported

http://www.stat.fsu.edu/pub/diehard/�
http://www.phy.duke.edu/~rgb/General/dieharder.php�

Advanced Algorithms for Hydropower Optimization

122

that all of the commonly available system RNGs failed the standard tests for
randomness, some spectacularly!

In light of this disconcerting evidence, the selection of an RNG for use in this
study proved to be a nontrivial decision. It was clearly inadvisable to use the
system RNG, which was known to be flawed. Conversely, the circumstances of
this research did not warrant the use of a cryptographic grade RNG such as the
Microsoft Crypotography API (see Vicaria 2003 for a description). To allow for
scientific replication and for purposes of comparability, it seemed essential to
explicitly document the RNG that was employed and to use it consistently
throughout the study. After carefully considering the available options, a well-
proven, if not state-of-the-art RNG was adopted for use. All of the algorithms
developed during this research effort employ a Delphi coded implementation of
the Mersenne Twister RNG (Matsumoto and Nishimura 1998) developed by
David Butler and obtained from the SourceForge Library,
http://fundementals.sourceforge.net/units.html. This algorithm is also known by
its Association for Computational Machinery (ACM) identification number as
algorithm MT19937.

http://fundementals.sourceforge.net/units.html�

Appendix 13. Low Discrepancy Sequences

123

Appendix 13. Low Discrepancy
Sequences
Low discrepancy sequences are those whose points are approximately
proportionally distributed within the space enclosed by a set with arbitrary
boundaries. Low-discrepancy sequences are also called quasi-random or sub-
random sequences. This is a possible source of confusion, since they are often
used as a substitute for randomly generated sequences. Some commonly
encountered examples of low discrepancy sequences are the Sobol sequence, the
Neiderreiter sequence, the Weyl sequence, the Haber sequence, the Halton
sequence and the Hammersley sequence.

Appendix 12 described random number generators (RNGs), their properties and
some of their weaknesses. As noted there, the optimization algorithms explored
in this document make extensive use of RNGs for, (1) initialization, (2) selection,
and (3) search.

As research on these heuristic optimization algorithms has progressed, several
authors have suggested the usage of RNGs may not be the preferred approach
(Clerc 2008). Conceptually, what is desirable is not randomness per se but an
exhaustive and systematic distribution of np-points in the d-dimensional search
space. For optimization algorithm applications, while employing RNGs is
convenient, RNGs have some well-known drawbacks. Clerc (2008) summarizes
this problem rather well in the title to the first paragraph of his paper as, “Uniform
Random Distributions: Easy but Bad.”

A subset of recent research efforts has focused attention on the potential
advantages of employing low discrepancy sequences in heuristic algorithms
instead of the more traditional RNGs. The hypothesis is, these sequences may be
better suited to usage for initialization, selection and search applications. Applied
research by Richards and Ventura (2004), Pant, Thangaraj and Abraham (2009),
and Uy, Hoai, McKay and Tuan (2007) certainly seems to provide empirical
evidence supporting this view.

This research thread is based on the mathematical properties of low discrepancy
sequences which allow them to more exhaustively and systematically span the d-
dimensional search space. While these properties can be statistically
demonstrated, the visual approach provides much the same intuition. Figure 25
shows plots of the first 250 points in 2-dimensions over the range (0,1) generated
using the Mersenne Twister RNG (described in Appendix 12), the Neiderreiter
sequence, the Weyl sequence and the Haber sequence.

Advanced Algorithms for Hydropower Optimization

124

Figure 25. Plots of the first 250 points generated by four RNG methods.

A visual comparison of these plots illustrates that points generated by the low
discrepancy sequences are more regularly distributed in the 2-dimentional space
than those from the RNG. Compared to the RNG plot, there are fewer “gaps”
between the low discrepancy points and the space between points is more even.
This figure demonstrates one potential advantage of low discrepancy sequences.
Other research indicates the points generated by RNGs tend to collapse around the
origin as the number of dimensions increase. Certain low discrepancy sequences,
such as the Sobol, have not shown this behavior in empirical studies. Both of
these outcomes point to the potential advantages of employing low discrepancy
sequence methods for heuristic optimization, especially in high dimensional
cases.

One component of this research effort was to investigate the potentials advantages
of employing some of these low discrepancy sequences. As part of that effort,
computer codes for the Neiderreiter, Weyl, Haber, Halton and Torus sequences
were developed. This code was based on MatLab code from the EconToolbox
which accompanies Miranda and Fackler (2006). The prime numbers utilized in
coding these sequences were drawn from Caldwell (2009).

Appendix 14. Test Functions for Algorithm Development

125

Appendix 14. Test Functions for
Algorithm Development

Introduction

This Appendix describes three optimization test functions which were employed
in the early phases of algorithm development, including coding, testing,
performance visualization and validation. Each of these functions is a previously
studied 3-dimensional (3-D) continuous, unconstrained, optimization problem.
The test functions selected were restricted to three dimensions to facilitate
implementation and to allow for real-time visualization of the algorithm’s
behavior in the search space. These test functions facilitated development of the
evolutionary algorithms, prior to their application to the more difficult and higher
dimension electric power-related problems, which were the focus of this research.

By design, this research effort utilizes only a small and rather rudimentary subset
of the universe of test functions investigated by other authors. As popularized by
De Jong (1975), many existing studies examine the performance of evolutionary
algorithms on a suite of optimization test functions (for example, see Mishra 2007
or Mezura-Montes and Flores-Mendoza 2009). There are numerous optimization
test functions available for this purpose, some of which are exceedingly complex.
A sample of the test functions encountered in this literature is described in De
Jong (1975), Haupt and Haupt (2004), Engelbrecht (2005), Price, Storn and
Lampinen (2005), Feoktistov (2006) and other sources.

Test Function 1—Sphere

The sphere function is one of the most rudimentary 3-D optimization problems. It
is a symmetric, continuous real-valued function possessing a single (global)
optimal point. This function is defined over the set of all real numbers, however a
bounded search range is used in this application.

In 3-D, the equation describing the sphere function is (85).

(85) 22 yxZ −−=

The gradient of this test function is especially useful as a device for ascertaining
the quality of a solution on convergence. For this test function, the expression for
the gradient, or vector of first partial derivatives, is shown in equation (86).

Advanced Algorithms for Hydropower Optimization

126

(86) i
i

x x
x
ZZ 2−=
∂
∂

=∇

The domain for the sphere function is the real number line (-∞≤ x ≤+∞). For test
purposes however, the search domain for the independent variables (x, y) was
restricted to the bounded interval (-2≤ x ≤+2).

The maximum value of Z for this test optimization function is Z=0.0. This
maximum Z value is obtained when x=0.0 and y=0.0.

Plan View 3-D View

Figure 26. Plan and 3-D views of the Sphere function.

Figure 26 illustrates the plan (top) view and the 3-D view of test function 1, the
sphere function. As shown in this figure, the contours are symmetric about the
optimal point. The global maximum is the sole optima in the bounded search
space.

The sphere function is perhaps the most rudimentary of all optimization test
problems. It is symmetric about the origin, easily implemented in code and
readily solved. This function was used primarily for early-stage development of
the evolutionary algorithms employed in this research. This test function allowed
for visual verification of algorithm functioning and effectiveness during the
coding process.

Test Function 2—Ridge

The ridge function is a somewhat more complex 3-D optimization problem. It is
a continuous but not a symmetric function. It has a single (global) optimal point
located at the top of a ridge, bounded on either side by steep canyons. This

Appendix 14. Test Functions for Algorithm Development

127

function is defined over the set of all real numbers, however a bounded search
range is used in this application.

In 3-D, the equation describing the ridge function is (87).

(87) yx eeeyxZ 22 −−+=

The gradient of this test function is especially useful as a device for ascertaining
the quality of a solution on convergence. For this test function, the expressions
for the gradient, or vector of first partial derivatives, is shown in equations (88)
and (89)

(88) x
x e

x
ZZ −=

∂
∂

=∇ 00.1

(89) y
y ee

y
ZZ 222 −=
∂
∂

=∇

The domain for the ridge function is the real number line (-∞≤ x ≤+∞). For test
purposes however, the search domain for the independent variables (x, y) was
restricted to the bounded interval (-2≤ x ≤+2).

The maximum value of Z for this test optimization function is Z=-1.00. This
maximum Z value is obtained when x=0.0 and y=0.50.

Figure 27 illustrates the plan (top) view and the 3-D view of test function 2, the so
called ridge function. As shown in this figure, the contours are asymmetric about
the optimal point. The global maximum is the sole optima in the bounded search
space. It lies at the top of a long gently sloping ridge with canyons on either side.

Figure 27. Plan and 3-D views of the Ridge function.

Plan View 3-D View

Advanced Algorithms for Hydropower Optimization

128

The slope of the ridge changes very gradually, often causing premature
convergence for certain types of gradient based algorithms and poorly
parameterized evolutionary algorithms. A single badly calculated step can send
the solution down one of the precipitous canyons on either side of the ridge,
causing the algorithm to fail.

In the general scheme of things, the ridge function is a relatively straightforward
optimization test problem. It is easily implemented in code, although not so
readily solved. This function was used as a test bed during the development of
the evolutionary algorithms described in this research. This test function allowed
for visual verification of algorithm functioning and effectiveness during the
coding process.

Test Function 3—Alpine

The Alpine test function, as described by Clerc (2006) and Haupt and Haupt
(2004), is a complex 3-D optimization problem. It is a continuous, but not
symmetric function. It has a multiple local optima and a single (global) optimal
point in the search space. This function is defined over the set of all real numbers
and has multiple local optima in that range (as might be expected). A finite
bounded search range is used in this application.

In 3-D, the equation describing the Alpine function is (90).

(90) xyyxZ *)sin()sin(×=

The gradient of this test function is especially useful as a device for ascertaining
the quality of a solution at convergence. For this test function, the expressions for
the gradient, or vector of first partial derivatives, is shown in equation (91).

(91) iix xx
x
ZZ 2)tanh(+=

∂
∂

=∇

The domain for the ridge function is the real number line (-∞≤ x ≤+∞). For test
purposes however, the search domain for the independent variables (x, y) was
restricted to the bounded interval (-10≤ x ≤+10).

The maximum value of Z for this test optimization function is Z=7.885600724.
The maximum Z value is obtained when x=7.917052686 and y=7.917052686.
This point is located in the upper right-hand quadrant of the plot.

Figure 28 illustrates the plan (top) view and the 3-D view of test function 3, the
Alpine function. As shown in this figure, the contours are quite complex. There
are multiple local optima in the search space. The global maximum (in this
bounded search space) is located at the top of Mount Blanc (as termed by Clerc
2006) or Longs Peak (as termed by Haupt and Haupt 2004), in the upper right-
hand quadrant of the plot. Mount Blanc is surrounded by lesser peaks.

Appendix 14. Test Functions for Algorithm Development

129

Encountering any of these lesser peaks will cause a gradient based algorithm to
converge and announce it has located a solution. Identification of the global
optima in this search space is extremely difficult.

Plan View 3-D View

Figure 28. Plan and 3-D views of the Alpine function

In the general scheme of things, the Alpine function is a relatively complicated
optimization test problem. It is quite easily implemented in code, although not so
readily solved, particularly by gradient based methods. This function was used
extensively during the development of the evolutionary algorithms described in
this research. This test function allowed for visual verification of algorithm
functioning and effectiveness in a complicated solution space.

Advanced Algorithms for Hydropower Optimization

130

Appendix 15. 24-Hour Price Vector
The 1-day summer and winter hourly electricity prices (avoided costs) used in this
analysis are shown in this appendix. These prices span a one day period (24
hours) and were generated by the ESIM03 model (Harpman 2006).

Price units: dollars per megawatt-hour ($/MWh).

Summer Winter

Hour Price
($/MWh) Hour Price

($/MWh)
1 45.85 1 39.49
2 45.11 2 39.07
3 44.71 3 38.99
4 44.75 4 39.28
5 45.16 5 40.16
6 46.35 6 42.21
7 48.08 7 45.12
8 49.86 8 47.41
9 53.37 9 47.60

10 56.45 10 47.23
11 58.26 11 46.77
12 59.23 12 45.85
13 59.89 13 45.02
14 60.53 14 44.24
15 61.07 15 43.80
16 61.45 16 43.98
17 61.46 17 46.19
18 60.94 18 49.26
19 59.98 19 50.15
20 59.51 20 49.41
21 59.08 21 48.40
22 57.09 22 46.38
23 51.11 23 43.46
24 48.07 24 41.37

Appendix 16. 168-Hour Winter Prices.

131

Appendix 16. 168-Hour Winter Prices.
The hourly winter electricity prices (avoided costs) used in this analysis are
shown in this appendix. These prices span a 1-week (168-hour) period, starting
on Sunday and ending on Saturday, and were generated by the ESIM03 model
(Harpman 2006).

Price units: dollars per megawatt-hour ($/MWh).

Hour Price
1 39.42
2 38.86
3 38.73
4 38.74
5 39.13
6 40.03
7 41.38
8 42.81
9 43.65

10 43.94
11 43.85
12 43.52
13 43.11
14 42.62
15 42.30
16 42.47
17 43.78
18 46.82
19 47.60
20 47.23
21 46.42
22 44.74
23 42.62
24 40.49

Hour Price
25 39.49
26 39.07
27 38.99
28 39.28
29 40.16
30 42.21
31 45.12
32 47.41
33 47.60
34 47.23
35 46.77
36 45.85
37 45.02
38 44.24
39 43.80
40 43.98
41 46.19
42 49.26
43 50.15
44 49.41
45 48.40
46 46.38
47 43.46
48 41.37

Hour Price
49 40.10
50 39.53
51 39.43
52 39.64
53 40.54
54 42.66
55 45.78
56 48.04
57 47.89
58 47.28
59 46.57
60 45.76
61 44.88
62 44.31
63 43.82
64 43.99
65 46.35
66 49.49
67 50.49
68 49.69
69 48.70
70 46.66
71 43.58
72 41.51

Hour Price
73 40.30
74 39.76
75 39.64
76 39.83
77 40.66
78 42.66
79 45.66
80 47.84
81 47.80
82 47.22
83 46.62
84 45.83
85 45.15
86 44.64
87 44.00
88 44.31
89 46.41
90 49.22
91 50.09
92 49.17
93 48.13
94 46.18
95 43.39
96 41.43

Hour Price
97 40.19
98 39.64
99 39.46

100 39.64
101 40.42
102 42.28
103 44.88
104 47.00
105 46.96
106 46.49
107 45.88
108 44.89
109 43.88
110 43.49
111 43.20
112 43.31
113 45.01
114 47.75
115 48.38
116 47.75
117 46.93
118 45.23
119 43.01
120 41.15

Hour Price
121 39.96
122 39.39
123 39.18
124 39.28
125 39.92
126 41.56
127 43.28
128 45.03
129 45.61
130 45.67
131 45.31
132 44.36
133 43.58
134 43.21
135 42.93
136 43.04
137 43.99
138 46.41
139 46.37
140 45.21
141 44.00
142 43.27
143 42.24
144 40.84

Hour Price
145 39.72
146 39.08
147 38.88
148 38.89
149 39.30
150 40.19
151 41.35
152 42.40
153 43.26
154 43.49
155 43.25
156 42.79
157 42.24
158 41.72
159 41.39
160 41.52
161 42.61
162 44.08
163 44.75
164 44.35
165 43.68
166 43.04
167 41.91
168 40.55

Advanced Algorithms for Hydropower Optimization

132

Appendix 17. 168-Hour Summer Prices
The hourly summer electricity prices (avoided costs) used in this analysis are
shown in this appendix. These prices span a 1-week (168 hour) period, starting
on Sunday and ending on Saturday, and were generated by the ESIM03 model
(Harpman 2006).

Price units: dollars per megawatt-hour ($/MWh).

Hour Price
1 45.95
2 45.20
3 44.58
4 44.16
5 44.05
6 44.11
7 44.39
8 45.58
9 47.41

10 48.97
11 50.23
12 52.95
13 54.54
14 55.80
15 56.53
16 57.31
17 57.86
18 57.92
19 57.07
20 56.73
21 56.44
22 53.47
23 49.16
24 47.12

Hour Price
25 45.85
26 45.11
27 44.71
28 44.75
29 45.16
30 46.35
31 48.08
32 49.86
33 53.37
34 56.45
35 58.26
36 59.23
37 59.89
38 60.53
39 61.07
40 61.45
41 61.46
42 60.94
43 59.98
44 59.51
45 59.08
46 57.09
47 51.11
48 48.07

Hour Price
49 46.73
50 45.91
51 45.39
52 45.18
53 45.50
54 46.71
55 48.40
56 50.14
57 53.78
58 56.66
59 58.01
60 58.95
61 59.91
62 60.55
63 60.81
64 60.93
65 60.64
66 59.91
67 59.02
68 58.64
69 58.39
70 56.38
71 50.12
72 47.82

Hour Price
73 47.09
74 46.19
75 45.64
76 45.36
77 45.69
78 46.82
79 48.49
80 50.25
81 54.20
82 56.76
83 58.06
84 59.12
85 60.08
86 60.77
87 61.24
88 61.51
89 61.37
90 60.64
91 59.67
92 59.16
93 58.66
94 56.66
95 51.28
96 48.17

Hour Price
97 46.76
98 45.91
99 45.56

100 45.17
101 45.47
102 46.59
103 48.23
104 49.96
105 53.42
106 56.08
107 57.36
108 58.49
109 59.36
110 59.94
111 60.62
112 60.93
113 60.87
114 60.30
115 59.18
116 58.65
117 58.22
118 56.42
119 51.42
120 48.33

Hour Price
121 46.90
122 46.13
123 45.61
124 45.19
125 45.46
126 46.55
127 48.19
128 50.00
129 53.73
130 55.96
131 57.33
132 58.33
133 59.17
134 59.65
135 60.18
136 60.37
137 60.05
138 58.92
139 57.62
140 56.91
141 56.53
142 54.91
143 49.95
144 47.85

Hour Price
145 46.42
146 45.69
147 45.10
148 44.62
149 44.57
150 44.79
151 45.33
152 46.69
153 48.60
154 50.21
155 53.58
156 54.94
157 55.55
158 55.96
159 56.17
160 56.36
161 56.39
162 56.16
163 55.41
164 55.08
165 54.81
166 52.49
167 49.10
168 47.20

Appendix 18. Dimension and Input Experiment.

133

Appendix 18. Dimension and Input
Experiment.
The numerical results of replicated experiments (ntrials=50) using different
problem dimensions and input price vectors are reported in this appendix. Some
of these results are summarized in graphic form in the main body of the report.

Table 11. Dimension and Input Results

Parameter
1 Day (24 hrs) 1 Week (168 hrs)

Summer Winter Summer Winter
LS1 Mean best 127,097.33 103,653.36 921,829.41 752,472.91

S.D. best na na na na
Mean Iter 28 28 28 28
Mean CPU ≤0.002 ≤0.002 ≤0.002 ≤0.002

RCGA Mean best 127,097.32 103,653.35 921,829.15 752,472.64
S.D. best 1.528e-03 6.861e-01 1.831e-03 9.153e-02
Mean Iter 635 621 5224 4904
Mean CPU 0.198 0.195 9.860 9.258

DE Mean best 127,097.33 103,653.36 921,829.43 752,472.90
S.D. best 2.517e-04 1,911e-04 1.716e-04 1.767e-04
Mean Iter 242 244 916 916
Mean CPU 0.229 0.223 5.493 5.266

PSO Mean best 127,097.33 103,653.36 921,829.41 752,472.88
S.D. best 1.960e-04 1.706e-04 2.5116e-04 2.054e-04
Mean Iter 491 492 4941 4821
Mean CPU 0.176 0.192 11.811 11.420

1 Lambda search is a deterministic approach and each trial produces the same outcome. The
results reported here were generated by a single trial at ctol=1.0e-08.

Advanced Algorithms for Hydropower Optimization

134

Appendix 19. Maximum Release
Constraint Experiment
The numerical results of replicated experiments (ntrials=50) using a (binding)
maximum release constraint of 6,000 cfs are reported in this appendix. Some of
these results are summarized in graphic form in the main body of the report.

Table 12. Maximum Release Constraint Results

Parameter
168-hour Base Case

Maximum Release
Constraint 6,000 cfs

(Binding)
Summer Winter Summer Winter

LS1 Mean best 921,829.41 752,472.91 916,144.65 751,391.53
S.D. best na na na na
Mean Iter 28 28 28 28
Mean CPU ≤0.002 ≤0.002 0.016 ≤0.002

RCGA Mean best 921,829.15 752,472.64 915,545.85 751,075.56
S.D. best 1.831e-03 9.153e-02 6.768e-01 1.030e-01
Mean Iter 5224 4904 1534 1727
Mean CPU 9.860 9.258 8.903 5.609

DE Mean best 921,829.43 752,472.90 916,109.84 751,380.07
S.D. best 1.716e-04 1.767e-04 1.709e-04 1690e-04
Mean Iter 916 916 979 1101
Mean CPU 5.493 5.266 17.225 14.552

PSO Mean best 921,829.41 752,472.88 914,330.41 751,129.29
S.D. best 2.5116e-04 2.054e-04 2.533e-04 2.855e-04
Mean Iter 4941 4821 2401 3931
Mean CPU 11.811 11.420 15.731 17.334

1 Lambda search is a deterministic approach and each trial produces the same outcome. The
results reported here were generated by a single trial at ctol=1.0e-08.

Appendix 20. Minimum Release Constraint Experiment

135

Appendix 20. Minimum Release
Constraint Experiment

The numerical results of replicated experiments (ntrials=50) using a (binding)
minimum release constraint of 4,000 cfs are reported in this appendix. Some of
these results are summarized in graphic form in the main body of the report.

Table 13. Minimum Release Constraint Results

Parameter
168-hour Base Case

Minimum Release
Constraint 4,000 cfs

(Binding)
Summer Winter Summer Winter

LS1 Mean best 921,829.41 752,472.91 920,125.14 752,403.53
S.D. best na na na na
Mean Iter 28 28 28 28
Mean CPU ≤0.002 ≤0.002 ≤0.002 ≤0.002

RCGA Mean best 921,829.15 752,472.64 919,739.98 752,344.70
S.D. best 1.831e-03 9.153e-02 1.151e-00 6.765e-02
Mean Iter 5224 4904 2311 2679
Mean CPU 9.860 9.258 6.957 5.971

DE Mean best 921,829.43 752,472.90 920,122.73 752,403.51
S.D. best 1.716e-04 1.767e-04 1.665e-04 1.588e-04
Mean Iter 916 916 1271 1277
Mean CPU 5.493 5.266 13.950 10.325

PSO Mean best 921,829.41 752,472.88 919,621.85 752,401.83
S.D. best 2.5116e-04 2.054e-04 3.369e-04 2.633e-04
Mean Iter 4941 4821 5384 6233
Mean CPU 11.811 11.420 22.78 19.191

1 Lambda search is a deterministic approach and each trial produces the same outcome. The
results reported here were generated by a single trial at ctol=1.0e-08.

Advanced Algorithms for Hydropower Optimization

136

Appendix 21. Program Dictionary
The table below contains the names of the programs used in this analysis and a
description of their purpose. This will help facilitate location of the source code
file and their reuse at a later date.

Table 14. Program Dictionary

EA Filename Purpose
RCGA RCGEN Development
RCGA HDRCGA Economic dispatch
RCGA HDRCGAP1 Testing environment
DE DE04 Development
DE HDDE Economic dispatch
DE HDDEP1 Testing environment
PSO PSO4 Development
PSO HDPSO Economic dispatch
PSO HDMPSOP1 Testing environment

Mission Statements

The U.S. Department of the Interior protects America’s natural
resources and heritage, honors our cultures and tribal communities,
and supplies the energy to power our future.

The mission of the Bureau of Reclamation is to manage, develop,
and protect water and related resources in an environmentally and
economically sound manner in the interest of the American public.

	Project Funding
	Credits
	Acknowledgments
	Executive Summary
	Introduction
	Hydropower Problems
	Economic Dispatch
	Dynamic Economic Dispatch
	Unit Dispatch

	The Dynamic Economic Dispatch Problem
	Optimization Review
	Purpose
	Stationary Points
	Extremal Points
	Global and Local Extremal Points
	Convex and Concave Functions
	Calculus of Unconstrained Optimization
	Limits of Calculus Based Optimization

	Selected Terms
	Algorithm
	Heuristic
	Objective Function
	Penalty
	Fitness

	Optimization Approaches
	Taxonomy of Optimization Approaches
	Traditional Solution Algorithms
	Heuristic Optimization Methods
	Comparison of Approaches

	Heuristics and Microcomputers
	EAs in the Wild
	Related Algorithms
	Hybrid Algorithms
	Memetic Algorithms

	EA Selection Process
	Algorithm Selection
	Candidate Selection
	Selection Criteria
	Algorithms Selected
	Real Coded Genetic Algorithm (RCGA)
	Differential Evolution (DE)
	Particle Swarm Optimization (PSO)
	Lambda Search (LS)

	Initialization
	Purpose and Implications
	Random
	Use of Sequences
	Other

	Constraints and Constraint Handling
	Types of Constraints
	Constraint Handling Methods
	Problem Reformulation
	Rejection of Infeasible Solutions
	Penalty Approaches
	Feasibility Preserving Methods
	Repair Methods
	Mixed Approaches

	Fitness Comparisons with Constraints

	Performance Measures
	Algorithm Performance Metrics
	Real-life Engineering Problems
	Nature of Evolutionary Algorithms
	Multiple Trial Approach
	Common Measures of Performance
	Accuracy
	Reliability
	Robustness
	Efficiency

	Algorithm Stopping Criteria
	Introduction
	The Trade-Off
	Calculus Based Criteria
	Criteria for Evolutionary Algorithms

	Parameters, Tuning, and Variants
	Population Size
	RCGA Parameters
	DE Parameters
	PSO Parameters
	Variant Selection
	RCGA Variants
	DE Variants
	PSO Variants

	Development Process
	Development Platform
	Three Phases of Development
	Phase 1—Development with Test Problems.
	Phase 2—Economic Dispatch Problem
	Phase 3—Testing Environment

	Experiments Undertaken
	Initialization Approaches
	Stopping Rules
	Comparative Performance
	Problem Dimensions and Input Vectors
	Binding Constraints

	Conclusion
	Future Directions
	Collaborators
	Literature Cited
	Appendix 1. Objectives for Dispatch
	Introduction
	Economic Dispatch
	Peak Shaving
	Native Load First
	Buy/Sell and Generate

	Appendix 2. Ancillary Services and Dispatch
	Ancillary Services
	Dispatch Effects

	Appendix 3. Hydropower Plant Specifications
	Release, Head and Generation
	Minimum and Maximum Release Constraints
	Generator Specifications
	Plant Description

	Appendix 4. Release, Head and Efficiency
	Appendix 5. Calculus of Dynamic Dispatch
	Example Problem
	A Specific Example Problem
	Introducing Slack Variables
	Slack Variable Formulation
	Analytic Solution
	Lagrange Multipliers

	Appendix 6. Newton-Raphson Method
	Appendix 7. Lambda Search Algorithm
	Appendix 8. Real Coded Genetic Algorithm
	Introduction
	Binary GA
	Real Coded GA
	RCGA Terms
	Individual Components
	Basic RCGA Algorithm

	Appendix 9. Differential Evolution
	Introduction
	Description of DE
	DE Terms
	Individual Components
	Basic DE Algorithm

	Appendix 10. Particle Swarm Optimization
	Introduction
	Description of PSO
	PSO Terms
	Individual Components
	Basic PSO Algorithm
	Modified PSO

	Appendix 11. Clerc’s K
	Appendix 12. Random Numbers
	Appendix 13. Low Discrepancy Sequences
	Appendix 14. Test Functions for Algorithm Development
	Introduction
	Test Function 1—Sphere
	Test Function 2—Ridge
	Test Function 3—Alpine

	Appendix 15. 24-Hour Price Vector
	Appendix 16. 168-Hour Winter Prices.
	Appendix 17. 168-Hour Summer Prices
	Appendix 18. Dimension and Input Experiment.
	Appendix 19. Maximum Release Constraint Experiment
	Appendix 20. Minimum Release Constraint Experiment
	Appendix 21. Program Dictionary

