Advanced Algorithms for Hydropower Dispatch

CSU Meeting 4/25/2011 version

Opt research CSUmeeting4-27-2011.pp

About This Project

- Title: Advanced Optimization Algorithms for Hydropower Dispatch (S&T Project ID# 486)
- FY2011 support graciously provided by Reclamation's Science and Technology Research Program.
- David A. Harpman, Principal Investigator
- Collaborators: Argonne National Laboratory and Colorado State University.
- Further details can be found at: <u>http://www.usbr.gov/research/science-and-</u> <u>tech/projects/</u>

Research Objectives

- Investigate practical application of these approaches.
- Explore performance characteristics of these algorithms on hydropower problems of specific interest to Reclamation, and others.
- Potentially, develop solvers for installation at Reclamation powerplants.
- Scholarly products.

Algorithm Selection Criteria

- Designed for continuous *R* domain.
- Multiple cites in "mainstream" literature.
- Suitability for constrained optimization.
- Power system applications.

Maximize $\sum_{1}^{T} R_{i} p_{i}(q_{i})$	
subject to: $\sum_{i=1}^{T} q_i \leq Q$ $p_i \geq 0$	Where: $R_i = price (S/MWh) at time (1)$ $p_i = generation (MW) at time (1)$ $q_i = release (cfs or af) at time (1)$ G = total release (af). $q_{ink} = minimum release.$ $q_{ank} = maximum release$ $p_{am} = minimum release$ $p_{am} = minimum release$
$q_{\max} \le q_t \le q_{\max}$ $p_{\min} \le p_t \le p_{\max}$	Δq = change in q from t to t+1. rrate = maximum ramp rate.
$abs(\Delta q) \leq rrate$	

Hydropower Dispatch Problem (2)

Problem Feature	Details
Generation p(q, elev)	nonlinear in q
Dimensions	t={24, 168}
Head h(q, elev)	varies with q
Total release (Q)	user selectable
Prices (R)	summer, winter
Reservoir elevation	variable (set)
qmax, qmin	user selectable
Ramp rate	user selectable

Phases of Development

- Initial development on unconstrained test problems.
- Application to constrained hydropower dispatch problem.
- Construction of testing environment.

Progress To-Date

Algorithm	Test Program	Unit Dispatch	Economic Dispatch	Testing Environment
PSO	Complete	Working prototype	Complete	Complete
DE	Complete	Working prototype	Complete	Complete
RCGA	Complete	TBD	Complete	Complete
Bees	TBD	TBD	TBD	TBD
Lambda Search	NA	TBD	Complete	NA

Progress To-Date (2)

- Meetings with collaborators. •
- Concurrent report writing.
- Planned briefing for Reclamation. Ongoing experiments.
- • Other.

Planned Experiments

- N-trials with statistical analysis.
- Initialization approaches.
- Starting and stopping criteria.
- Parameter settings, variants.
- Problem specifications.
- Compare algorithm performance.
- Other.

Suggestions, Comments & Guidance

6

Live Demo (1)

Real coded genetic algorithm (RCGA)

Live Demo (2)

Hydropower dispatch with RCGA