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Executive Summary 
Reclamation alone holds 8,116 miles of in-service water conveyance canals within its infrastructure 
inventory.  Many of these canal systems have aged beyond their original intended lifespan and are 
showing signs of aging and disrepair, extensive seepage and embankment failure events are becoming 
increasingly common, and consequences of canal failures within urban corridors are constantly 
increasing due to urban encroachment on these water conveyance structures.  In addition to the 
problem of increased risk related to canal embankment failures, concentrated and distributed seepage 
poses a major challenge to water conservation due to significant water conveyance system losses.   
 
As a result, there is an ongoing need to identify and comprehensively characterize canal seepage, both 
for safety-related and water conservation efforts and is the main motivation for this proposed research. 
The seepage detection and characterization in canal sites by means of the Synthetic-Aperture Radar 
(SAR) satellite remote sensing technology is an important research topic to evaluate suitable resolution 
and realistic limitations of the SAR to detect canal seepage and be used as a comprehensive monitoring 
technique for identification of potential seep locations at canal infrastructure. 
 
SAR data processing platforms for identification of potential seep locations at canals are reviewed, 
summarized, and selected for this research. The InSAR Scientific Computing Environment (ISCE) 
designed for the purpose of processing Interferometric Synthetic Aperture Radar (InSAR) data was 
chosen to perform timeseries analysis to identify known seepage locations in Truckee Canal. 
 
In this research, C-band Sentinel-1A and -1B satellite imagery data with historical 6- or 12-day repeat 
cycles are collected to cover the Truckee Canal project site and the timeseries analysis to identify 
potential seepage locations was performed. L-band Advanced Land Observing Satellite (ALOS) 
imagery data was not used for timeseries analysis because historical ALOS satellite imagery acquisitions 
were planned with 46-day repeat cycles that does not offer a sufficient temporal resolution to capture 
time-lapse responses following operation events or standing water events in summer. 
 
The InSAR data processing results at known seep locations indicate that corresponding dates of canal 
watering-up/de-watering correlate with the changes of SAR mean line-of-sight (LOS) velocity 
(mm/year) values obtain from timeseries analysis at known seep locations.  
 
C-band radar operating system at shorter wavelengths than L-band are more sensitive to sparse and 
low biomass vegetation. Therefore, L-band and P-band will be suitable Satellite frequency bands with 
high resolutions to detect seepage other than C-band Satellite imagery data. Although P-band is most 
preferred for seepage detection, its use is limited to airborne deployments using airborne Uninhabited 
Aerial Vehicle Synthetic Aperture Radar (UAVSAR). Water seepage through the canal prism into the 
subsurface soil layers is a major water conveyance loss in irrigation canal systems.  If the canal seepage 
is monitored and detected by using the InSAR monitoring technology with proper satellite frequency 
bands, canal prism and embankments can be properly maintained in the long-term canal infrastructure 
performance.  
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1. Background 
Water resources are conveyed by canal infrastructure systems to water users. Water loss along 
irrigation canals is inevitable due to evaporation and transpiration in the water cycle.  However, the 
major water conveyance loss in irrigation canal systems is seepage water through the canal prism into 
the subsurface soil layers. Seepage that is not properly detected and repaired can result in a potential 
canal prism failure in the long-term canal infrastructure performance. A more effective water 
conveyance system for water resources is critical as population increases and climate change influences 
drought years. 
 
Synthetic Aperture Radar (SAR) satellite remote sensing technology has been broadly applied to 
various fields and produced an extraordinary range of applications including agriculture, disaster 
monitoring and mitigation, water resource management, environmental monitoring, mineral 
exploration, land use mapping, and coastal eco-system monitoring (Lievens et al., 2011; Leroux et al., 
2016; Magagi et al., 2013; Das et al., 2001, 2014; Kim et al., 2017a; 2017b; 2016a; 2016b; 2014; 2012; 
2011; 2010). SAR technology application is growing rapidly and has significantly contributed on 
several areas with varying spatial resolutions.   
 
SAR satellite remote sensed imagery data have become an important tool to obtain earth image data 
by measuring electromagnetic radiation reflected from surface and subsurface materials. Satellites with 
SAR sensors can cover much larger areas and are highly effective in damage surveys since SAR can be 
used regardless of sunlight and weather conditions. For example, a significant event, the Kobe 
earthquake areas with heavy damage and liquefaction were identified and observed by using SAR 
satellite imagery data (Yamazaki, 2003).   
 
The InSAR technique could lead to the ability for Reclamation to 1) quickly and effectively identify 
previously unknown seepage areas on a system-wide or even nation-wide scale, 2) monitor known 
seepage areas for disconcerting changes, 3) help in identifying priority sections for focused 
maintenance efforts, 4) differentiate between suspected seepage and natural groundwater drainage 
phenomena not related to canal water losses, 5) evaluate canal liner performance based on pre/post 
installation seepage levels, 6) evaluate canal damage repair and other proactive maintenance activities 
(e.g., berm installations) based on pre/post seepage conditions, 7) identify changes in seepage 
following standard canal dredging activities, which have occasionally been suspected of initiating or 
exacerbating seepage losses, 8) identify other structures/areas/phenomena that could be better 
characterized using this technology 
 
The InSAR technique will provide enhanced seepage detection and characterization approaches to the 
Reclamation area offices and other agencies, directly help Reclamation manage water resources 
efficiently, and potentially be applicable to other earthen embankment sites and structures in order to 
identify and prioritize potential repair locations to promote healthy water conveyance and storage 
infrastructure. These periodically collected SAR data and the time-series analysis results will provide 
valuable information within a short time period to detect any potential risks.   
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2. Scope of Research  
For the proof-of-concept research effort of the InSAR technique to provide enhanced seepage 
detection and characterization approaches in canals, the following tasks were performed: (1) getting 
known seep location data from the Lahontan Basin Area Office (LBAO) in the Truckee Canal, (2) 
providing prioritized known seep location data for the InSAR data processing, (3) Collecting historical 
46-day and 6- or 12-day repeat imagery data from ALOS and Sentinel satellites at study areas, (4) 
installing piezometer and observation wells perpendicular to some of the known seepage locations, 
(5) performing slug tests to estimate hydraulic conductivity values of subsurface soils at selected 
known seep locations along the canal, (6) developing and calibrating seepage models, (7) conducting 
InSAR timeseries analyses to evaluate whether the SAR approach is feasible for detecting seepage 
locations throughout the Truckee Canal test-site, and (8) finalizing a summary report of findings of 
this research effort. 
 
The strategy of this research study consists of the following general task descriptions: 
 
Task1: Obtain the following existing known seep data from the Lahontan Basin Area Office (LBAO) 
along the Truckee Canal in Nevada: (1) seep locations (e.g., x and y coordinates), (2) when the seep 
happened (e.g., date and time), (3) when the seep was repaired with maintenance periods (e.g., date 
and time for any repairs or maintenance), (4) when the canal was watering-up/de-watering annually 
(e.g., time period of March through November), (5) channel water levels at known seep locations for 
a boundary condition, and (6) observation well response (x, y coordinates and reading data) near 
known or unknown  seep locations during the seepage losses.    
 
Task2: Provide prioritized known seep location data to initiate a feasibility level of proof-of-concept 
efforts for the SAR seepage detection approach. LBAO has more than 40 seeps mapped in GIS and 
a number of seeps that have been repaired since 2015; these known seep locations should be 
prioritized for the SAR seepage detection application. Corresponding annual dates of canal watering-
up and de-watering will help focus the SAR Technology data locations and times of interest for the 
initial proof-of-concept effort. 
 
Task3: Collect historical 46-day and 6- or 12-day repeat imagery data from ALOS and Sentinel satellites 
at study areas to cover the mountains of Sierra Nevada between the Central Valley of California and 
the Great Basin and San Juan Mountains in the Rocky Mountains in southwestern Colorado and 
northwestern New Mexico. 
 
Task 4: Install piezometer and observation wells perpendicular to the canal at some of the known 
seepage locations to calibrate the seepage models. The hydraulic head data measured from the 
piezometer/observation wells will be useful to ground truth points for validating the SAR data and 
tuning initial seepage models to estimate seepage rates and hydraulic conductivity values of subsurface 
soils.  
 
Task 5: perform slug tests to estimate hydraulic conductivity values of subsurface soils at selected 
known seep locations along the canal, 
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Task 6: Develop and calibrate energy transport and hydraulic models. The seepage models will include 
geological profiles for the entire study site and be calibrated with hydraulic conductivities quantified 
from slug tests.  
 
Task 7: Perform timeseries analyses of SAR data with the following analyses: 1) identify the spatial 
changes in SAR image data that likely correlate with known seepage targets, and 2) conduct time 
lapse analyses based on the coordinates of known seeps and corresponding dates of canal operations 
 
Task 8: Evaluate the need for the continuation of research and the extension/application of the effort 
to additional canal systems/sites throughout the US, contingent on the results and success of this 
initial proof-of-concept research effort. 
 
Task 9: Finalize a summary report of findings from this research effort. The findings of this study will 
be reviewed by interested regional partners and TSC researchers. All the findings will be included in a 
report. 

3. Previous Work  
Synthetic Aperture Radar (SAR) satellite remote sensing technology has been broadly applied to 
various fields and produced an extraordinary range of applications including agriculture, disaster 
monitoring and mitigation, water resource management, environmental monitoring, mineral 
exploration, land use mapping, and coastal eco-system monitoring (Lievens et al., 2011; Leroux et al., 
2016; Magagi et al., 2013; Das et al., 2001, 2014; Kim et al., 2017a; 2017b; 2016a; 2016b; 2014; 2012; 
2011; 2010). SAR technology application is growing rapidly and has significantly contributed on 
several areas with varying spatial resolutions.  The spatial resolution is categorized as low (30m or 
more), medium (5m to 30m), high (1m to 5m), or very high (1m or less).   
 
L-band SAR sensor is an easy approach to process and implement due to its relatively lower 
frequencies (e.g., 1 to 2 GHz), less expensive equipment, and wider beam width with a return interval 
of 6 days and multi-polarization. L-band SAR satellite remote sensing technology can be used to detect 
and quantify potential seepage losses for more rapid and global management at canal embankments.  
 
The time-lag analyses result from the SAR responses could be validated in comparing to volumetric 
water content (VWC) obtained from the field or laboratory test data. The VWC is a vital parameter in 
water resource management in the agricultural and ecological fields. There are several methods used 
to estimate VWCs. Equipment for direct soil water content measurements varies and is available from 
many manufacturers (IAEA, 2008). A neutron probe device is calibrated for in situ conditions at 
various depths. The correlation between the measured gravimetric soil water content and neutron 
probe ratio is relatively high and volumetric water contents are estimated from gravimetric water 
contents (Jabro et al., 2005). 
 
The SAR satellites data has been widely used in (1) water-related applications such as snow depth 
estimation, river channel mapping, soil moisture retrieval, and aquifer volume changes, and (2) 
deformation-related applications such as volcano monitoring, earthquake damage mapping, ice stream 
motion, landslide monitoring, and land subsidence due to sink holes and waste-water disposal 
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activities. The C- and L-band SAR remote sensing technology can assist in identifying seepage 
locations or channel planform changes at canal, river, and levee structures. 
 
A primary benefit of this technology is that, in most cases, a significant amount of historical data exists 
which can be used to “hind-cast” previous performance. These data can then be used to inform 
locations and techniques for more detailed investigations or can be used to constrain models. 
 
Satellite-based radar has better capability than optical/thermal infrared in detecting wetness under 
vegetation and topsoil. There are three key practical considerations necessary to monitor canal seepage 
remotely: spatial resolution, temporal resolution, and spatial coverage. The SAR data at 10- m spatial 
resolution estimates surface volumetric water content (VWC) of soil near canals allowing for estimates 
of canal seepage that can be compared with field/lab test results. However, speckling noise from 
backscattering of thermal, vegetation, and surface roughness might cause challenges in mitigating 
potential errors in the SAR data. There are multiple possible causes of the missed detection, including 
rain events that may cause speckling noise or a radar signal associated with wetting may be too small. 
Reduction of the missed detections will be investigated in the future using the following approaches: 
1) multi-temporal despeckling method, which has not been implemented, may reduce the noise, 2) a 
spatial feature enhancement by the nonlocal mean filter, 3) systematically removing the vegetation 
effect using the physical model approach that worked effectively for soil moisture studies, 4) 
examining the longer wavelength observation to identify subsurface seepage such as L-band ALOS 
satellite data or NASA’s L- or P-airborne data, 5) using the approaches for the Soil Moisture Active 
Passive mission (SMAP) to derive soil moisture which could provide more detailed information of 
wetting due to seepage, and 6)  spatially multi-looking the ground range detected (GRD) data product 
to reduce speckle noise and Sentinel Application Platform (SNAP) satellite software provided by 
European Space Agency (ESA). 
 
The upcoming NASA-ISRO SAR (NISAR) is planning on launching a dual-frequency synthetic 
aperture radar in September 2022 that is expected to have advanced radar imaging to observe and 
understand natural processes on ground surface. Our goal is to utilize the radar ability to detect under 
vegetation and topsoil with frequent monitoring over a continental scale and apply it towards 
operational monitoring of canal leaks and implement more sophisticated algorithms that have been 
used widely in the SAR community. 
 
The L-band SAR can provide more detailed analysis of canal seepage by: 1) cataloging the spatial 
variations in SAR satellite images related to shallow (≤5 cm below ground surface) soil moisture 
distributions, 2) conducting time-lapse analyses for temporal change detection on a per-satellite- 
image-pixel basis, and 3) identifying spatio-temporal changes following operations and maintenance 
events along canals (e.g., watering-up of a canal system, or pre/post embankment lining or repair 
efforts), in order to help evaluate changes in performance and hydrologic conditions along the 
embankment. 
 
This seepage detection approach using the C- and L-band SAR satellite remote sensing technology 
provides a technique to quantify potential seepage losses by location and over time, for more rapid 
and global management of canal embankments. 
 
The SAR data processing consists of five major steps: (1) SAR data collection, (2) data pre-processing, 
(3) interferogram generation, (4) phase unwrapping, and (5) geocoding. 
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Step 1. In SAR data collection, multiple-year L-band and C-band satellite image data archived from 
the ALOS-1(L-band) and Sentinel-1A/B (C-band) can be searched, accessed, and collected from 
SSARA (Seamless SAR Archive). https://web- services.unavco.org/brokered/ssara/gui. 
Step 2. In the pre-processing step, orbit data are used to compute offset vectors on pixel level from 
Single Look Complex (SLC) images. The processed image is resampled to the master grid. Co-
registered stacks of single-look complex (SLC) data can be created to generate surface displacement 
time-series followed by further analysis of the phase and amplitude. 
Step 3. In the interferogram generation, interferometric products are computed to generate the 
complex interferogram and the coherence images. The interferometric phase can be corrected for the 
phase of a ground control reference point and coherence changes can be compared through time. 
Step 4. In the phase unwrapping step, original phase from the wrapped phase representation is 
reconstructed with a sophisticated phase unwrapping algorithm. 
Step 5. In the geocoding, the unwrapped phase is converted to a height and the pixel coordinates are 
georeferenced. The generated products can be modified for contouring and layering with GIS 
programs. 
 
SAR satellite remote sensing technology using 10-m full resolution and 30-m multi-looked data can 
be used to detect soil moisture content and time-lapse fluctuations in concentrated and distributed 
seepage. Historical and recent SAR satellite imagery from multiple missions and international space 
agencies are available to download for free. Multiple-year L-band and C-band SAR data archived from 
the ALOS-1(L-band, 46-day repeat, 2006-2011) and Sentinel-1A/B (C-band, 6- and 12-day repeat, 
2015- present) satellites are readily available with more L-band data available in the future from ALOS-
2 (2014-present) and NISAR (launching in 2022). Future radar missions, such as NASA-ISRO SAR 
(NISAR) operating at L-band are expected to have improved Radar Frequency Interference (RFI) and 
geolocation. SAR satellite remote sensing technology aids in effective detection of seepage loss areas 
on a wide scale allowing for a rapid evaluation/monitoring of canal embankment systems, and efficient 
cost saving to cover nationwide canal sites. 

4. SAR Processing Platform  
The following SAR data processing platforms are described within this section: (1) Google Earth 
Engine (GEE), (2) SNAP (Sentinel Application Platform), and (3) ISCE/MintPy.  

4.1 Google Earth Engine 
Google introduced Google Earth Engine (GEE) to enhance the applications of satellite imagery for 
large scale applications in the 2010s. GEE is a web-based platform providing global-scale geospatial 
analysis with preprocessed Sentinel-1 backscatter images and the cloud computing infrastructure 
(Gorelick, et. al., 2017).  
The GEE cloud-based platform provides new options for researchers interested in geospatial data 
analysis as providing machine learning algorithms and massive computational capabilities of remote 
sensing data on various societal issues including drought, water management, disaster, disease, and 
climate monitoring. 
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The advantage of the GEE cloud-based platform is its computational speed as utilizing Google’s 
servers. The GEE platform provides constantly updated datasets and the datasets can be accessed 
within the code editor (https://code.earthengine.google.com).  

 
Figure 1. Earth Engine Code Editor with a web-based Integrated Development Environment (IDE) 
for the Earth Engine JavaScript Application Programming Interfaces (APIs). 
 
The simplified procedure how to visualize different composites in Google Earth Engine is as follows.  
 
Step 1. Preparation framework  
The framework to prepare Sentinel-1 SAR backscatter Analysis Ready Data (ARD) is briefly described 
in Figure 15. The framework includes additional border noise correction, speckle filtering, and 
radiometric terrain normalization and can be applied to a Sentinel-1 GEE image collection. The 
additional preprocessing is optional and can be revised on application needs and specific requirements 
for the analysis. The framework is initiated in both the Python application programming interface 
(API) and GEE Java script (Mullissa et al. 2021).  
 

https://code.earthengine.google.com/
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Figure 2. Preparation framework to create Sentinel-1 ARD in GEE. The dark and light grey boxes 
depict mandatory and optional preprocessing steps, respectively (Mullissa et al. 2021).  
 
Step 2. Specify an area of interest and Sentinel-1 data selection 
Selection of the location of the study area is necessary to specify the processing extent of the geospatial 
analysis and avoid redundant computations.  
Sentinel-1 imagery data collection in GEE includes Sentinel-1 Ground Range Detected (GRD) scenes 
that are processed as using the Sentinel-1 Toolbox to generate a calibrated and ortho-corrected 
product.  
The daily updated data collection includes all Sentinel 1-A and 1-B GRD image products acquired in 
both ascending and descending orbits in interferometric wideswath (IW) mode. The Sentinel-1 GRD 
images have a pixel spacing of 10 m at which the full information detail is guaranteed, and a spatial 
resolution  
Sentinel-1 satellites provide temporally dense and high spatial resolution synthetic aperture radar 
(SAR) imagery and acquires images globally every 6 to 12 days. Sentinel-1 GRD data in the GEE 
catalogue can be collected as all the preprocessing steps require the data to be in linear scale. Sentinel-
1 imagery in single polarization (i.e., VH or VV) or dual polarization mode (i.e., VV and VH) can be 
considered (Di Martino et.al., 2013). 
 
Step 3. Time frame & sensor parameters selection 



Report Number/Chapter (Odd Pages) 

8 
 

The user is required to setup time frame of pre- and post-event periods and Sentinel-1 imagery is 
acquired a minimum of every 12 days for each point globally. Sentinel-1 has different polarization 
options that "VV" means vertically polarized signal transmitted out and vertically polarized signal 
received, whereas VH refers to vertically polarized signal transmitted out, and horizontally polarized 
signal is received. 

VV: single co-polarization, vertical transmit/vertical receive 
HH: single co-polarization, horizontal transmit/horizontal receive 
VV + VH: dual-band cross-polarization, vertical transmit/horizontal receive 
HH + HV: dual-band cross-polarization, horizontal transmit/vertical receive 

 
User also can select between ‘VH’ and ‘VV’ polarization to perform the analysis. ‘VH’ is widely used, 
since it is more sensitive to changes on the land surface, while ‘VV’ is rather susceptible to vertical 
structures and might be useful to delineate open water from land surface (e.g. a large water body).   
User might choose between ‘DESCENDING’ and ‘ASCENDING’ pass direction, depending on the 
study area. It is necessary to select the same pass direction for the images being compared to avoid 
false positive signals caused by differences of the viewing angle when performing change detection.  
 
 

 
Figure 3. Revisit and coverage frequency of the Sentinel-1 constellation, showing which areas are 
mainly covered with descending or ascending imagery. Source: 
https://sentinel.esa.int/web/sentinel/missions/sentinel-1/observation-scenario 
Entire Sentinel-1 GRD archive in Google Earth Engine is filtered by the instrument mode, the 
polarization, pass direction, and spatial resolution at the boundary of the area of interest.  

https://sentinel.esa.int/web/sentinel/missions/sentinel-1/observation-scenario
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Step 4. Preprocessing 
Information from Sentinel-1 Level-1 Ground Range Detected (GRD) imagery in Google Earth 
Engine has already undergone the following preprocessing steps: (1) Apply-orbit-file (updates orbit 
metadata), (2) ARD border noise removal (removes low intensity noise and invalid data on the scene 
edges), (3) Thermal noise removal (removes additive noise in sub-swaths), (4) Radiometric calibration 
(computes backscatter intensity using sensor calibration parameters), (5) Terrain-correction 
(orthorectification), (6) Conversion of the backscatter coefficient (σ°) into decibels (dB). 
Border noise artifacts were produced when transforming the raw data to level-1 products by the 
Sentinel-1 Instrument Processing Facility software (IPF). The presence of border noise in Sentinel-1 
GRD products is one of the unwanted artifacts that should be removed before further analysis. 
 
Speckle filtering is an important component of SAR image preprocessing as all SAR images are 
inherently affected by speckle. Users can evaluate the performance of speckle filters qualitatively by 
visually checking the speckle reduction in homogeneous regions and the preservation of subtle 
features, such as roads and point scatterers, in the filtered images or quantitatively using the equivalent 
number of looks (ENL) or coefficient of variation in homogeneous regions in the image.  
Radiometric terrain normalization is important to mitigate the effect of topography on the SAR 
backscatter. Angular between the SAR image and the terrain geometry based radiometric terrain 
normalization implemented in GEE depends only on angles, from which a simplified relation between 
the image and terrain can be derived. 
The implementation of speckle filters and radiometric terrain normalization in GEE gives the user 
options to use different parameters for preprocessing the Sentinel-1 images depending on the 
envisioned application and scale of processing.  
The processing steps are performed automatically when running the Google Earth Engine script. It is 
useful to understand how the data is being processed, which datasets are used, and what limitations 
the analysis may have for each case.  
 
Step 5. Visualize results in GEE and export products  
When all parameters are selected, run the script and visualize results in GEE. The layers that the user 
is interested in can be checked or unchecked and a screenshot of the map can be taken as an overview. 
To export the generated products into a Google Drive account, click on ‘Tasks’ in the top-right corner 
of the code editor and hit ‘RUN’, and choose where to save the file.  
The processed Sentinel-1 ARD image collection can be formatted to a linear power or dB scale. In 
the absence of radiometric terrain normalization, the data is processed in sigma naught (σ0). To export 
the processed image collection, provided are the export-to-asset option so that every image in the 
collection can be exported to a GEE asset. To aid in visualization and interpretation, the output data 
format can be changed to a dB scale by the user. 
 

4.2 Sentinel Application Platform (SNAP) 
Sentinel Application Platform (SNAP) is a common architecture for all Sentinel Toolboxes, which is 
useful for earth observation processing and analysis. It is a software with incorporated utilities for 
interferogram generation and stacking.  
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Interferometric synthetic aperture radar (InSAR) processing exploits the phase signal difference 
between two complex radar SAR acquisitions/observations taken from slightly different sensor 
positions to extract information and analyze the shape and deformation of the earth’s surface or 
objectives. 
 
SAR is an active microwave imaging system obtained from active sensors to detect reflected responses 
from objectives irradiated by artificially generated energy sources.  
 
The basic measurement from SAR signals includes amplitude and phase information of the complex 
image.  The amplitude is the strength of the radar response of radio-frequency electromagnetic signal 
reflected from a target and the phase is the fraction of a single and multi-looked radar wavelength.  

 
The Sentinel-1A and Sentinel-1B European radar imaging satellites launched on April 3, 2014 and 
April 25, 2016, respectively carries C-band SAR sensors, and delivers repeated many SAR acquisitions. 
InSAR technique, a remote sensing technique, using two or multiple SAR phase images performs 
time‐series analysis to monitor ground deformation changes with many SAR acquisitions 
 
The Sentinel-1 Toolbox (S1TBX) is being developed for European Space Agency (ESA) and called 
the Sentinel Application Platform (SNAP).  The Sentinel-1 Toolbox (S1TBX) consists of (1) a 
collection of processing tools, (2) data product readers and writers and (3) a display and analysis 
application to support the large archive of data from European Space Agency (ESA) SAR missions. 
The Sentinel-1 Toolbox (S1TBX) includes various processing tools for calibration, speckle filtering, 
co-registration, orthorectification, mosaicking, data conversion, polarimetry and interferometry. The 
SNAP processing tools for earth observation and analysis could be run independently from the 
command-line as well as integrated within the graphical user interface. The common features of the 
SNAP tools include the followings: (1) very fast image display and navigation of giga-pixel images, (2) 
Graph Processing Framework (GPF) for creating user-defined processing chains, (3) advanced layer 
management allows adding and manipulation of new, (4) flexible band arithmetic using arbitrary 
mathematical expressions, (5) accurate reprojection and ortho-rectification to common map 
projections, (6) geo-coding and rectification using ground control points, (7) multi-threading and 
multi-core processor support, and (8) graph processing framework. 
 
The steps for InSAR processing with a SNAP (Sentinel Application Platform) are as follows.  
 
Step 1: Open raw data  
Open raw data of the zipped Sentinel-1A or -1B Interferometric Wide (IW) Single Look Complex 
(SLC) or Ground Range Detected (GRD) products.  
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Figure 4. Product explorer and a base map 

 
Step 2: View the products  
 
Each Sentinel-1A or -1B product consists of metadata, vector data, tie-point grids, and bands. The 
bands contain the actual raster data, organized by polarization and sub-swaths of S1 IW products. The 
virtual intensity band is to assist in visualizing the complex data.  
 
SAR images include the intensity of radar reflections from ground. The more reflection we have, the 
brighter the image. The intensity of radar reflections from ground is a measure of moisture and 
roughness in order to get soil moisture and roughness maps. A SAR image is very dark if we have low 
backscatter, and it is very bright if we have severe backscatter. Therefore, the brighter image indicates 
that something has changed on ground.  
 

 
 

Figure 5. Visualization of the complex data using a virtual intensity band. 
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Step 3: Thermal noise removal (TNR) and apply orbit file 
 
Sentinel Application Platform (SNAP) software provides a Thermal Noise Removal (TNR) module 
to remove thermal noise from the channel intensities of polarimetric Sentinel-1 data. To estimate the 
noise-free matrix, noise correction on the complex data is applied. 
 
Apply precision orbit correction with Apply-Orbit-File (AOF). Orbit file data can be downloaded by 
S1TBX and include information about the accurate position of the satellite image during the 
acquisition of SAR data. The Precise Orbit Ephemerides (POE) orbit files cover approximately 28 
hours and contain orbit state vectors at fixed time steps of 10-second intervals. The POE files are 
generated every day and delivered within 20 days after data acquisition.  
 

  
Figure 6. Thermal Noise Removal (TNR) module and apply orbit file 

 
 
Step 4: Perform Border Noise Remove (BNR) and radiometric correction   
 
The Sentinel-1 Ground Range Detected (GRD) product generated by the Instrument Processing 
Facility of the European Space Agency (ESA) has noise artifacts at the image borders of both left and 
right sides of the satellite’s cross track. The Sentinel-1 border noise removal is important to mitigate 
backscatter from Sentinel-1 SAR data for time-series analysis and control SAR data quality for the 
large-scale data processing.  
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Figure 7. Border Noise Remove (BNR) and radiometric correction   
 
Radiometric calibration or radiometric correction is to convert the raw digital image data recorded by 
satellite sensors into common physical scales based on known reflectance measurements taken on the 
ground's surface and avoid radiometric errors or distortions.  
 
 
Step 5: Co-register the images  
 
Image co-registration is conducted for the comparison of two or more images in a series to understand 
any change. For interferometric processing, multiple images must be co-registered into a stack. One 
image is selected as the reference or master and the other images are the slaves that all other images 
are aligned. The rationale of co-registration is to ensure that each ground target or image become 
aligned to the same range and azimuth pixel in both the master and the slave images.  

 

 
 

Figure 8. Co-registration of the images   
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Step 6: Multi-Temporal speckle filter 
 
Radar image brightness is normally expressed in σo (sigma-nought) which is the radar backscatter per 
unit area. The unit of σo is [m2/m2], expressed in decibel (dB). Radar backscatter amplitude is provided 
as two separate images for the Horizontal- Horizontal (HH) and Horizontal-Vertical (HV) 
polarizations.  
 
In order to accurately interpret the content of a SAR image, the radar polarization is a parameter to 
affect the strength of the backscatter. Current spaceborne radar systems operate with linear 
polarization where the radar signals are transmitted and received at horizontal (H) and/or vertical (V) 
polarization. 
 
In general, speckle filtering allows a clear increase in the Equivalent Number of Looks (ENL) 
according to the filtering spatial resolution through a progressive smoothing of the speckle. Speckle 
filtering allows to improve slope estimation at the pixel scale. However, it implies a degradation of the 
multi-look pixel size. 

 

  
(a)                                                           (b) 

Figure 9. Multi-Temporal speckle filter with the Lee filter: (a) raw Sentinel-1 L1C GRD VH band 
image delivered by ESA; (b) Same Sentinel-1 VH band after use of spatial Lee filter 

 
 
Step 7: Terrain correction 
 
Terrain correction removes the effect of variations in the observations due to the topography near 
observation sites and corrects geometric distortions that lead to geolocation errors. Topographic phase 
contributions are typically removed using a known Digital Elevation Model (DEM) to emphasize 
phases related to deformation. S1TBX will automatically find and download the DEM segment 
required for correcting your interferogram of interest. 
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Figure 10. Range doppler terrain correction 
 
 
Step 9: Export Data  
The final geocoded data can be exported from S1TBX in a variety of formats with GeoTIFF, KMZ 
and various specialty formats.   
 
 

 
 

Figure 11. An image processed in the Truckee canal test site using SNAP  
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A full interferometry processing chain from dual-orbit Sentinel-1A and Sentinel-1B SAR data, open-
source routines from the Sentinel Application Platform (SNAP), and Stanford Method for Persistent 
Scatterers (StaMPS) is introduced in Figure 24 (Mancini, et. al, 2021). The figure indicates that the 
processing of time series of displacements from a cluster of continuous global navigation satellite 
system stations can be used to provide a global reference frame for line-of-sight–projected velocities 
and validate velocity maps after the decomposition analysis. 
 

     
 
Figure 12. Combined SNAP–StaMPS workflow adopted in the present study for the S1 data 
processing (Mancini, et. al, 2021)  
 
The processing of long-time series of displacements from continuous global navigation satellite system 
stations is used to provide a global reference frame for line-of-sight (LOS) velocities and validate 
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velocity maps after the decomposition analysis. Figure 25 shows that the combined Sentinel 
Application Platform (SNAP) and Stanford Method for Persistent Scatterers (StaMPS) workflow can 
be a reliable tool for S1 data processing based on the validation procedure (Mancini, et. al, 2021) 

4.3 InSAR Scientific Computing Environment (ISCE) 
The InSAR Scientific Computing Environment (ISCE) is a framework designed for the purpose 
of processing Interferometric Synthetic Aperture Radar (InSAR) data. The framework aspects of 
ISCE have been designed as a general software development framework. The ISCE is an open 
source with a modular software framework capable of supporting the geophysical research, 
InSAR data processing, and data modeling communities.  

 
Applications of SAR are various and one of the principal applications of the SAR technology is 
represented by the interferometric SAR (InSAR) technique.  The InSAR technique depends on the 
measurement of the phase difference between two or more complex SAR images acquired from 
different orbital positions and times. 
 
The phase of the SAR image is a function of the distance between the satellite and the ground. It is 
determined primarily by the distance between the satellite antenna and the ground targets. The phase 
of each SAR image pixel carries range information to a small fraction of the SAR wavelength. The 
amplitude corresponds to the degree of strength of the radar backscatter and the phase corresponds 
to the position on a map where the data come from. 
 
The SAR data processing consists of five major steps although not always in the following order: (1) 
SAR data collection, (2) data pre-processing, (3) interferogram generation, (4) phase unwrapping, and 
(5) geocoding. 
 
Step 1. SAR data collection 
Historical multiple-year L-band and C-band satellite image data archived from the ALOS-1(L-band) 
and Sentinel-1A/B (C-band) can be searched, accessed, and collected from the Seamless SAR Archive 
(SSARA) Federated Data Search and Access link.  
(https://web-services.unavco.org/brokered/ssara/gui) 
 
 
Step 2. Data pre-processing 
Orbit data are used to compute offset vectors at pixel level from Single Look Complex (SLC) images. 
The effects of orbit positions and earth curvature are removed. Because the satellite is in different 
orbit positions for the two acquisitions, the distance between satellite and ground will vary across the 
image. 
 
The processed image is resampled to the master grid. Two images from the same track and frame will 
be separated in time and still shifted slightly. Cross-correlate subsets of the two images using amplitude 
correlation to estimate the shift between the images.  
 
Co-registered stacks of single-look complex (SLC) data can be created to generate surface 
displacement time-series followed by further analysis of the phase and amplitude. The process of 

https://web-services.unavco.org/brokered/ssara/gui
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multi-looking is applied to reduce phase noises by the averaging of adjacent samples or low pass 
filtering of interferogram and to improve the SAR image quality by reducing the speckle.  
 
Step 3. Interferogram generation 
An interferogram is formed by multiplying one SLC image (master image) by the complex conjugate 
of the other SLC images (slave images). Interferometric products are computed to generate the 
complex interferogram and the coherence images. The interferometric phase can be corrected for the 
phase of a ground control reference point and coherence changes can be compared through time. 
Interferometric phase at each SAR image pixel, depends on the difference in the travel paths from the 
SAR sensor to the considered resolution cell during the acquisition of each image. 
 
Step 4. Phase unwrapping  
Unwrapping is the process of converting the cyclical phase signal from the interferogram into a 
smooth deformation signal. Several different algorithms exist for unwrapping. Original phase from 
the wrapped phase representation is reconstructed with a sophisticated phase unwrapping algorithm. 
The interferogram is filtered and unwrapped. 
 

 
 

Figure 13. Wrapped phase timeseries at Truckee canal study site. 
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Figure 14. Unwrapped phase timeseries at Truckee canal study site.  

 

 
Figure 15. Unwrap phase and wrap checkpoint at Truckee canal study site. 

 
 
Step 5. Geocoding 
Unwrapped phase is converted to a height and the pixel coordinates are georeferenced. Interferogram 
is registered to a Digital Elevation Model (DEM) with forward or backward mapping to apply a 
topographic correction. The processing data are converted from radar coordinates of range and 
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azimuth to geographic coordinates for the final processing step. The generated products can be 
modified for contouring and layering with geographic information system (GIS) programs.  
 

 
 

Figure 16. The routine processing workflow of InSAR time series analysis: (blue ovals) correcting 
unwrapping errors and inverting for the raw phase time-series and (green ovals) correcting for noise 

from different sources to obtain the displacement time-series (Yunjun et. al., 2019). 
 
InSAR technique has solved various geodetic applications and ground deformation measurements. A 
new challenge is to monitor global surface deformation with high precision and large computing 
power. Figure 29 show the routine processing workflow of InSAR time series analysis. The MintPy 
script takes a stack of co-registered and unwrapped interferograms and generates the displacement 
time-series. The workflow consists of two main blocks: correcting unwrapping errors and inverting 
for the raw phase time-series (blue ovals) and correcting for noise from different sources to obtain 
the displacement time-series (green ovals). 
 
For this research, the InSAR data processing was performed using the ISCE platform and MintPy 
time-series software was used for the InSAR time-series analysis in the project site.   
 
MintPy is the Miami INsar Time-series software in Python.  It is an open-source package for InSAR 
time series analysis. It reads the stack of interferograms (co-registered and unwrapped) in ISCE, ARIA, 
FRInGE, HyP3, GMTSAR, SNAP, GAMMA or ROI_PAC format, and produces three-dimensional 
(2D in space and 1D in time) ground surface displacement in line-of-sight (LOS) direction.  
 
MintPy reads a stack of interferograms (unwrapped interferograms, coherence and connected 
components from SNAPHU if available) and the geometry files (DEM, lookup table, incidence angle, 
etc.).  MintPy is modulized in Python with utilities classes and functions and well commented in the 
code level.  
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5. Results  

5.1 VADOSE/W Hydraulic Model  
Seepage analyses at some cross sections were conducted using the computer program VADOSE/W 
(GEO-SLOPE, 2012).  VADOSE/W software is a finite element program that can be used to model 
movement and distribution of pore water within porous materials such as soil and bedrock. 
VADOSE/W can model both saturated and unsaturated flow in response to climatic conditions 
making it possible to analyze seepage as a function of time while considering infiltration, precipitation, 
surface water runoff and ponding, plant transpiration, actual evaporation, and heat flow.   
 

 
(a) 

 
(b) 

Figure 17. Modeling domain geometry (a) and total head contour (b) at transect 1 using 
VADOSW/W  

 

As an example of VADOSE/W hydraulic models, Figure 17 shows the geometry of a cross 
section view (a) and total head contours (b) simulated using the VADOSE/W modeling program.  
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Figure 18. Comparison of canal head vs seepage flux. 

Figure 18 shows the comparison of canal head and seepage flux values estimated from the 
VADOSE/W modeling at site 1. The results at site 1 location indicates that corresponding dates 
of canal watering-up/de-watering correlate with the changes of seepage flux values. 

 

The results of the seepage loss rates estimated VADOSE/W models are summarized in Table 1.  

 

Table 1.  Summary of VADOSW/W modeling results 

 
 
Slug tests were performed at Truckee canal monitoring wells and piezometers. A slug test estimates 
the hydraulic properties of aquifer formations. A slug test raises or lowers the groundwater level in a 
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well bore by injecting or removing a known slug volume. The water level response during rising 
head or falling head displacements is recorded with elapsed time using a transducer.  
 
The advantages of a slug test are that (1) it is quick and easy to perform (e.g., a test can be completed 
within a few minutes), (2) has a low cost (e.g., many tests can be performed in a single day), (3) only 
the test well is needed (no other observation wells), and (4) no pumping is required, and therefore, 
no water is produced (which is good for hydrogeologic investigations of contaminated sites). The 
disadvantages of a slug test are (1) it only evaluates a small portion of the aquifer (pumping tests 
provide a more regional estimate of aquifer conductivity) and (2) results may be profoundly affected 
by the gravel pack in the borehole adjacent to the well screen. 
 
 
 

 
Figure 19. Slug test conducted at a Ferretto monitoring well in the Truckee Canal: (a) photo of 

monitoring well; (b) raw data obtained the slug testing program.   
As an example, the plots of the time-drawdown analysis results calculated for the Bouwer-Rice and 
Springer Gelhar methods conducted at a Ferretto monitoring well in the Truckee canal are shown in 
Figures 20. 
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Figure 20. Normalized water-level displacement as a function of time with (a) Bouwer and Rice and 
(b) Springer Gelhar best-fit type curves at a Ferretto monitoring well in the Truckee Canal 

 
Analysis of the slug tests was performed by the following methods: (1) Bouwer-Rice (1976), (2) 
Springer-Gelhar (1991), and KGS Model (1994) (HydroSOLVE, 2007). The information of 
identified monitoring wells and piezometers is summarized in Table 2. The results of the 
hydrogeological parameters estimated using the AQTESOLV program at the monitoring wells and 
piezometers are summarized in Table 3.  
 

Table 2.  Truckee canal monitoring wells and piezometers 

 
 

Table 3.  Summary of slug test analyses results 

 
 
 
Average values of the hydraulic conductivity (K) estimated from slug tests conducted at the 
monitoring wells and piezometers range from 0.4 to103.7 ft/day. The slug test results indicate that the 
aquifer system at a Ferretto monitoring is pervious with sand and gravel materials. The hydraulic 
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conductivity (K) estimated from the other monitoring wells and piezometers indicate semi-pervious 
geologic formation. 
 

5.2 InSAR Data Processing Results  
For this research, C-band Sentinel-1A and -1B satellite imagery data with historical 6- or 12-day 
repeat cycles are collected to cover a project site and analyzed for the timeseries analysis. Even 
though L-band Advanced Land Observing Satellite (ALOS) imagery data was collected, the data was 
not used for timeseries analysis because historical satellite imagery acquisitions are planned with 46-
day repeat cycles since the timing of acquisitions easily miss to capture any seep events. 
 
The nature of radar scattering is a function of the wavelengths of the features on the surface. A radar 
wavelength shorter than the features results in a brighter image. Backscatter is the term used to 
describe the variety of reflection angles resulting from the radar bounce. The backscatter is a function 
of the incidence angle, θ. The radar return is a function of slope, roughness and dielectric constant. 
 
A satellite emits a radar pulse. The radar is backscattered. Amplitude and phase of echo (return) are 
recorded at the satellite. At angles less than 30 degrees, backscatter is dominated by slope; it is 
dominated by roughness between 30 and 70 degrees; after that shadowing becomes a problem.  
Slopes nearly orthogonal to the radar pulse reflect more brightly than those at a steeper angle. 
Terrain roughness is defined by the RMS of height variation relative to the radar wavelength.  
 
Brighter areas on the image means rougher terrain. Moisture increases dielectric constant, increasing 
reflectivity and pixel brightness. This varies with material as well. SAR images also inherently contain 
noise, often called speckle. Speckle manifests as the apparently random placement of conspicuously 
bright or dark pixels. 

 
Line of sight (LOS) is the level of obstruction on the path between two points. The level of obstruction 
in a LOS determines not only the visibility from one point to another but also the quality of signal 
reception for wireless transmissions.  
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(a) (b) 

 

 
                               (c)                                                                  (d) 

Figure 21. Simulations for weight functions performance assessment in InSAR data processing: (a) 
Simulated unwrapped phase; (b) Spatial coherence; (c) Coherence as a function of time; and (d) Root 

Mean Square (RMS) of residual phase timeseries as a function of time. 

 

 

 



Report Number/Chapter (Odd Pages) 

27 
 

 
Figure 22. Mean line-of-sight (LOS) velocity (cm/year) map obtained from InSAR data processing 

at Truckee canal study domain for 2017 and 2018. 

  

The Sentinel-1 SAR imagery data with acquisition cycles of 6 to12 days were used for this research, 
the InSAR data processing results at known seep locations indicates that corresponding dates of 
canal watering-up/de-watering correlate with the changes of SAR mean line-of-sight (LOS) velocity 
(mm/year) values obtain from timeseries analysis at known seep locations. However, still the 
Sentinel-1 SAR imagery data have relatively low spatial resolution for detecting the small scale of the 
seeps. 

 

 

 

 
 

Volumetric water contents were measured at the seep locations using a portable handheld probe 
(HS2P HydroSense II) during irrigation season.  In 2019, the soil moisture content remained dry due 
to low stage and flow in the canal.  In 2020, the soil water content increased along with canal flow.  
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(a) (b) 

  
                               (c)                                                                  (d) 

Figure 23. InSAR data processing at Frog Pond Seep (Piezo FP, USGS 393513119241001): (a) Soil 
water content measured at the seep location (b) Time series of mean line-of-sight (LOS) distance 

(mm); (c) Identified known seepage sites; and (c) Mean line-of-sight (LOS) velocity (cm/year). 

 

 
  

(a) (b) 

  
                               (c)                                                                  (d) 

 

Figure 24. InSAR data processing at Willows Seep (Piezo 3.5, USGS 393650119174701): (a) Soil 
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water content measured at the seep location (b) Time series of mean line-of-sight (LOS) distance 
(mm); (c) Identified known seepage sites; and (c) Mean line-of-sight (LOS) velocity (cm/year). 

 
 

 
 
 

(a) (b) 

  
                               (c)                                                                  (d) 

 

Figure 25. InSAR data processing at Steam Pad Seep (SWC SP-4, USGS 393438119065401): (a) Soil 
water content measured at the seep location (b) Time series of mean line-of-sight (LOS) distance 

(mm); (c) Identified known seepage sites; and (c) Mean line-of-sight (LOS) velocity (cm/year). 
 
 

 
(a) (b) 
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                               (c)                                                                  (d) 

 

Figure 26. InSAR data processing at Red Barn Seep1 (SWC RB, USGS 393251119045701): (a) Soil 
water content measured at the seep location (b) Time series of mean line-of-sight (LOS) distance 

(mm); (c) Identified known seepage sites; and (c) Mean line-of-sight (LOS) velocity (cm/year). 

 
The InSAR data processing results at Frog pond, Willows, Stream Pad, and Red Barn known seep 
locations are presented in Figures 23 through 26. The results indicate that volumetric water contents 
were measured during irrigation season at the seep locations is corresponded with the mean line-of-
sight (LOS) values and the soil water content patten is matched along with groundwater levels 
measured in Frog pond. 

6. Discussions  
Satellite frequency bands with high resolutions to detect seepage:  
Airborne and spaceborne radar systems operate at various radar bands:  

x P-band: ~69.0 cm (BIOMASS) 
x L-band: ~23.5 cm (ALOS -2 PALSAR-2, SAOCOM-1, NISAR-L)  
x S-band: ~9.4 cm (NovaSAR, NISAR-S) 
x C-band: ~5.6 cm (Sentinel-1, Radarsat-2, RCM) 
x X-band: ~3.1 cm (TerraSAR-X, TanDEM-X, COSMO-SkyMed) 

Objects significantly smaller than the radar wavelength, become transparent to the radar, although 
they cause certain reduction of the amplitude of the signal. The smaller the objects, the less influence 
on the backscatter. L-band radar with longer wavelength radar signals consequently penetrate 
through the forest canopy since the small leaves are transparent and interact with the larger 
structures such as the larger branches of trees. On the other hand, C-band radar operating system at 
shorter wavelengths than L-band are more sensitive to sparse and low biomass vegetation. 

For future research to conduct InSAR data processing, it is recommended use high spatial resolution 
data acquired from P-band for seepage detection; although, the use of P-band is limited to airborne 
deployments or apply L-band radar that penetrates the vegetation and soil to detect the seeps under 
the vegetation coverage. Proxy measurements like coherence change detection and NDVI are 
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possible future approaches for combining remote sensing techniques to detect seeps rather than 
directly measuring soil moisture. 

  

SAR and InSAR combination for detecting soil moisture:  
SAR alone may not be processed with any accuracy for soil moisture. The SMAP-Sentinel hybrid 
product is 3km and 0-5 cm depth. SAR by itself is very speckled and hard to resolve even wet from 
dry. The specking is from backscattering of vegetation and surface roughness. Change detection has 
been applied with limited success – but using passive microwaves to ‘tie-down’ the aggregate VWC at 
9km, the SAR to scale the heterogeneity. However, the georeferencing in Sentinel has been found too 
poor for this as of late – at 1km. It would not work at approximately 10 m at this time for soil moisture 
and vegetation that’s growing and changing would have an effect on the backscatter. If this technology 
is not ready, the upcoming NISAR mission will likely improve the georectification issues. They are 
working on a soil moisture retrieval algorithm, but it will be at 0-5cm depth and most likely at 100 or 
200 m, not native resolution which is 10 m.  It is particularly poor in agricultural lands where crop 
growth affects surface roughness. Vegetation growth around canal (and irrigated lands) would have 
similar impacts on retrievals around canals.  
 
Characteristics of radar remote sensing have advantages compared to optical remote sensing as 
follows: (1) all weather capability (small sensitivity of clouds, light rain), (2) day and night operation 
(independence of sun illumination), (3) no effects of atmospheric constituents (multitemporal 
analysis), (4) sensitivity to dielectric properties (water content, biomass, ice), (5) sensitivity to surface 
roughness (ocean wind speed), (6) accurate measurements of distance (interferometry), (7) sensitivity 
to man-made objects, (8) sensitivity to target structure (use of polarimetry), and (9) subsurface 
penetration. The radar remote sensing also has inconvenient factors as follows: (1) complex 
interactions (difficulty in understanding, complex processing), (2) speckle effects (difficulty in visual 
interpretation), (3) topographic effects, and (4) effects of surface roughness.  

7. Conclusions and Recommendations 
InSAR remote sensing technology holds the potential to help identify unknown seepage, validate 
suspected canal seepage to differentiate from natural groundwater flow not related to canal losses, 
and identify changes in hydrologic parameters of interest such as hydraulic conductivity of canal 
embankments and foundation materials that may indicate progression of seepage pathways and 
internal erosion.  This research serves the interests of any Reclamation region or office that has 
water conveyance or storage infrastructure and will benefit from the use of InSAR data processing 
platform technologies performed by this research.   
 
The ALOS-1 SAR imagery data has very sparse acquisitions of about 3 to 4 per year and not 
sufficient for soil moisture or correlation time series analysis since the timing of acquisitions easily 
miss to capture any seep events. So, the Sentinel-1 SAR imagery data with more frequent 
acquisitions of 6 to12 days were used for this research, the InSAR data processing results at known 
seep locations indicates that corresponding dates of canal watering-up/de-watering correlate with 
the changes of SAR mean line-of-sight (LOS) velocity (mm/year) values obtain from timeseries 
analysis at known seep locations. However, still the Sentinel-1 SAR imagery data have relatively low 
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spatial resolution for detecting the small scale of the seeps.  Indirect measurements such as 
coherence change detection and NDVI are potential future approaches for combining remote 
sensing techniques to detect any potential seeps. 
 
For future research, the radar observation technique using high spatial resolution of airborne 
Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) can be feasible for filling in the 
gap between Reclamation’s water conservation mission and a seepage monitoring algorithm tool.  
Image fusion between airborne and spaceborne scenes is another way to improve the spatial 
resolution of the spaceborne SAR images. The enhanced SAR monitoring algorithm tool can be 
developed and the expertise in soil moisture retrieval and disturbance detection will efficiently 
identify the leaks from the canal infrastructures managed by Reclamation. 
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