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Executive Summary 
This research was aimed at developing an environmental DNA (eDNA) methodology that can 
monitor for listed aquatic species upstream of water delivery facilities and improve water supply 
reliability. The eDNA methodology can detect listed species without capture, handling and “take,” 
because it requires only water samples. The central research question was can eDNA monitoring in a 
hydrodynamically complex environment be used as a tool for monitoring listed fishes, e.g. Delta 
Smelt and steelhead. Our methods were two pronged: 1) develop a quantitative tool that can be used 
to design sampling and analyze eDNA data to provide high accuracy and less bias than commonly-
used regression approaches and 2) conduct caged Delta Smelt and steelhead field experiments in a 
tidal environment to evaluate the effects of tidal action and distance from the DNA source on the 
quantity of eDNA in a water sample. The quantitative tool developed as part of this project, 
“artemis”, was written in R and has been made publicly available. The artemis tool did produce less 
bias than commonly used regression approaches (see Chapter 1) and can be used to produce eDNA 
sampling designs that allow quantitative statements about the probability of detection. The caged 
fish experiments showed that the natural log of DNA quantity (ln[eDNA]) decreased with sampling 
distance from the cage just as expected. Furthermore, ln[eDNA] decreased through time after the 
removal of the caged fish from the water and artemis successfully estimated the range of values that 
described the strength of this negative relationship. An important conclusion was that Delta Smelt 
and steelhead DNA could be reliably detected in a tidally-influenced environment. However, a 
higher proportion of non-detection in replicates was observed in the tidal system than would have 
been expected in a unidirectional system (e.g. a canal) and drogue data from this project suggested 
this might be because the eDNA plume may not be homogenously mixed throughout the water 
column. So, increasing the number of samples in tidal-environment applications will be necessary to 
compensate for this phenomenon. Furthermore, under the range of conditions in which we worked, 
we found that Delta Smelt biomass was directly related to the probability of eDNA detection. In 
addition, when a positive DNA detection occurred, Delta Smelt biomass was directly related to the 
concentration of DNA in that sample. The next logical steps for the eDNA methodology and the 
validated quantitative tool artemis are field applications such as using eDNA sampling to guide 
target species capture or identification of listed species approaching a water intake.
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1. Foundation 

1.1 Preface 
Water diversions are often reduced at certain times of the year when listed fish species are thought 
to be in the zone of influence of these operations. The studies described in this report lay the 
foundation for being able to reduce water diversions only when there is evidence that the listed fish 
are present using a non-invasive method that does not risk “take” of the listed species. This non-
invasive approach, called environmental DNA, will also allow the U.S. Department of the 
Interior/Bureau of Reclamation (Reclamation) to contribute to listed species recovery by reducing 
water diversions when the listed fish’s DNA is detected in the zone of influence. 
 
When fish are present in a body of water, they routinely shed DNA. This DNA can be acquired 
through filtering a given amount of water from the water body in question. The DNA presence and 
concentration is then measured through quantitative polymerase chain reaction (qPCR) analysis. 
Thus, from a non-invasive water sample, DNA detection can provide indirect evidence of the 
presence of listed species. In this document, a tool is described that allows quantitative statements 
about the probability of detection when no positive DNA detections are made at a characterized 
sampling point. Thus, using this tool, the lack of detection can provide quantitative information 
regarding the absence of the listed species. In summary, in this report a quantitative tool is 
described, fit to data from field experiments, and used to evaluate the influence of distance of a 
sample point from fish-DNA source and biomass of the fish present at the source (a live pen that 
constrains the fish to a given location). 
 
This report begins with Chapter 1 in which the quantitative modeling and analysis tool, “artemis,” is 
described. Section 1.2 provides the complete manuscript sent to the journal “Environmental DNA” 
(https://onlinelibrary.wiley.com/journal/26374943). In Chapter 2, artemis models are fit to data 
from two field experiments. Sections 2.1 through 2.8 provide the complete manuscript that is in 
preparation for the journal “Public Library of Science – One” (https://journals.plos.org/plosone/). 
In Chapter 3, the influence of the target fish biomass in the live pen on the DNA concentration is 
described. 
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1.2 The artemis Package for Environmental DNA Analysis in R* 

*: This chapter has been submitted to the journal Environmental DNA 
(https://onlinelibrary.wiley.com/journal/26374943) 

1.2.1 Abstract 
 
We introduce artemis, a new package for the R statistical programming environment designed to 
analyze quantitative Polymerase Chain Reaction (qPCR) data from environmental DNA studies. The 
artemis package directly addresses several challenges for analyzing eDNA survey data, including the 
censorship of data generated by qPCR analysis. The performance of artemis models is compared to 
commonly-used regression approaches using both simulated and experimental data. We demonstrate 
that the models in artemis have several favorable characteristics compared to standard regression 
approaches, yielding more accurate estimates, less bias, and better prediction performance while 
offering similar ease of use. Lastly, we discuss possible trade-offs and considerations for choosing 
the most appropriate analysis approach for eDNA survey data. 
 

1.2.2 Introduction 
Environmental DNA (eDNA) surveys provide an indirect yet noninvasive (Sigsgaard et al. 2015), 
unharmful, sensitive (Fernández et al. 2019; Pilliod et al. 2013), inexpensive (Akre et al. 2019), and 
rapid way to detect rare, cryptic, or invasive organisms in water (Fukumoto, Ushimaru, and 
Minamoto 2015; Goldberg et al. 2013). Given these strengths, sampling for and detecting eDNA 
using quantitative Polymerase Chain Reaction (qPCR) has gained popularity over the past 20 years 
(Dejean et al. 2012; Moyer et al. 2014) and is now broadly used to sample and indirectly infer 
presence of taxa in a variety of aquatic environments. However, widespread sampling and detection 
of eDNA by ecologists and conservation biologists is unstandardized, and the field is in need of 
standards for analysis and reporting (Fediajevaite et al. 2021). In addition, managers need assistance 
to understand the biological significance of a set of eDNA observations. This paper describes how 
probability statements about species presence can be developed using the artemis package and an 
eDNA sampling scheme. 
 

Estimating [eDNA] via qPCR 
In eDNA samples that undergo fluorescence-based quantitative real-time PCR, the amount of 
eDNA present in the sample is estimated from the number of quantification cycles of qPCR 
(hereafter the “Cq” value) completed before amplification takes place during qPCR. By this process, 
the concentration of eDNA is not directly measured. The relationship between eDNA concentration 
([eDNA]) and Cq values is determined via a standard curve generated in the lab from the assay for 
the target species. The standard curve is specific to the lab reagents and techniques used. This 
standard curve formula typically takes the form: 
 
 Cq = β ∗ ln([eDNA]) + α (1) 

Where α is the intercept and β is the slope for the standard curve equation and ln([eDNA]) is the 
natural logarithmic concentration of eDNA (ln[eDNA]). These coefficients are determined in the lab 
during the calibration process. A higher Cq value, i.e. more quantification cycles, corresponds to a 

https://onlinelibrary.wiley.com/journal/26374943
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lower concentration of eDNA in a sample. Above a pre-determined threshold, additional 
quantification cycles are not attempted. Although this threshold would ideally correspond to when 
the [eDNA] concentration is zero, the threshold for Cq values typically corresponds to a non-zero 
eDNA concentration. Since “non-detection” is taken to be any sample which requires more than the 
threshold number of cycles to detect, a data censoring process occurs. Crucially, because the Cq 
values are dependent on the standard curve and hence the specifics of a particular lab, the censoring 
point is also lab dependent. 
 
This censoring process can create several issues for analyzing qPCR data from eDNA samples. The 
most concerning issue is that failure to take the data censoring process into account may lead to 
biases in model estimates and invalid confidence or credible intervals. Additionally, when there is a 
large amount of data clustered at the censoring point, the estimated measurement error will be 
artificially low. This would in turn give rise to unrealistic expectations for the results of planned 
sampling efforts, and/or biased predictions. 
 
To mitigate these issues in the analysis of our own eDNA data, we developed the artemis package 
for the R programming environment. In artemis, we implement a set of models to directly estimate 
the effect of predictors on the latent (unobserved) response variable, ln[eDNA]. This is 
accomplished by linking ln[eDNA]to the observed response variable (Cq) via the standard curve 
parameters. Our objects here are to introduce the censored latent variable models in the artemis R 
package, and to demonstrate how the artemis R package can be used in the analysis of qPCR data 
from eDNA samples. We compare the performance of artemis to several other commonly-used 
modeling approaches in eDNA research and discuss the benefits and trade-offs for each. 

Common approaches to analyzing eDNA data 
qPCR data from eDNA studies are often modeled via a binary response model, e.g. some form of 
binomial regression (Moyer et al. 2014; Song, Small, and Casman 2017; Hinlo et al. 2017) or 
occupancy models (Schmidt et al. 2013; Dorazio and Erickson 2018). In these, the response is a 
binary variable signifying the presence/absence of eDNA in the sample. In the case of occupancy 
models, presence/absence is a binary latent (unobserved) variable estimated from the observed 
binary detection of eDNA in the sample. In both, a binary variable indicates whether a sample had a 
Cq value below the censoring point, i.e., the detection threshold. Using standard and widely 
available statistical models and programmatic tools, these analysis methods allow for easy estimation 
of various covariates on the probability of the target species’ presence. 
 
Using a binary response for eDNA studies has the advantage of ease of analysis, as many statistical 
programs can estimate a binomial model. However, this ease of analysis within a study comes with a 
trade-off - it is difficult to comparing between studies. Binary response models are dependent on the 
threshold which defines a non-detection. This cutoff threshold is a function of 1) the standard 
curve, which defines the ln[eDNA] that corresponds to the threshold value, and 2) researcher 
decisions. For example, in response to the level of sensitivity of an assay, some researchers might 
use a maximum Cq threshold of 35 cycles (Huver et al. 2015), while others use 40 or even 45 cycles 
(Piggott 2016). Thus the ln[eDNA] which corresponds to the maximum Cq value for a particular set 
of extractions varies between studies, and therefore “presence” of a target species across studies can 
refer to different actual concentrations of eDNA in samples. 
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One solution to this quandary is to model either the Cq values themselves, or the 
concentration/copy number as a continuous response variable in a linear regression. Similar to a 
binary analysis, the effects of various covariates on the response can be estimated. In particular, 
using the ln[eDNA] or copy number avoids some of the issues outlined above. Similar to a binary 
response variable, modeling ln[eDNA] or copy number can be accomplished using common 
statistical software. However, as with binomial implementations, the continuous Cq, concentration, 
or copy number is still associated with the detection threshold: since the standard curve, which is 
lab-dependent, defines the concentration at which further qPCR cycles are not attempted, the 
standard curve defines a statistical censoring point for the response variable, regardless of whether it 
is modeled as binary or continuous. 
 
Statistical censoring is a well-studied phenomenon where data values above or below a certain 
threshold value are recorded as the threshold value. Conceptually, this represents a partially missing 
value - it is known that the value is beyond the threshold, but its exact value is unknown. A naive 
analysis of censored data which does not take this into account (such as the linear modeling of Cq, 
eDNA concentration, or copy number described above) will overestimate the certainty associated 
with values near or at the threshold. In eDNA studies, when all ln[eDNA] or copy number values 
are relatively high (i.e. far from the censoring point) the censoring point will have negligible impact 
on the analysis. However, when there are many values near the censoring point (i.e. near the limit of 
detection), estimates will be biased. 
 
Therefore, there is a need to take the above issues into consideration in eDNA analyses, while also 
providing the ease of use of common statistical programs. 
 

Modeling qPCR eDNA Data with artemis 
We created the artemis R package to implement a set of Bayesian censored latent variable models, 
which mitigate the issues with commonly-used statistical analysis techniques on qPCR data. At its 
core, artemis is a specialized Generalized Linear Model (GLM), where the predictors are assumed to 
affect the latent response variable additively, 
 ln[eDNA]i = Xiβ (2) 

where β is a vector of effects on ln[eDNA]i, and Xi is a vector of predictors. Since artemis directly 
models the effect of the predictors on the latent variable, ln[eDNA], it is unnecessary for the 
researcher to back-transform the data prior to modeling. Internally, artemis conducts this conversion 
using the user-supplied values for the standard curve formula, 

 Cqˆ i = αstd_curve + βstd_curve ∗ ln[eDNA]i (3) 

Where αstd_curve and βstd_curve are fixed values from calibration in the lab prior to qPCR. Internally, the 
back-transformed ln[eDNA]i values are considered a sample with measurement error from the true 
ln[eDNA]i value (ln[eDNAˆ]i) in the extract, with values above the threshold censored to be equal to 
the threshold (i.e. a truncated normal distribution), 

 ln[eDNA]i ∼ Trunc.Normal(ln[eDNAˆ]i,σCq,U)  (4) 



Environmental DNA 

5 

Where the observed ln[eDNA]i values are censored at the predetermined concentration threshold, 
U. This threshold concentration value is internally calculated from the user-supplied threshold on 
Cq. 
 
Importantly, the ln[eDNAˆ]i values in the model are not censored, allowing the latent variable to 
reflect the “true” log-concentration of eDNA beyond the censorship point. To appropriately 
condition model estimates on the censoring process, the likelihood that a sampled ln[eDNA] value 
will exceed the threshold is a function of the measurement error and the estimated latent ln[eDNAˆ]i 
value. We calculate this likelihood using the normal cumulative distribution function, Φ(), 
 Pr(ln[eDNA]i > U) = 1 − Φ(ln[eDNAˆ]i − µi/σ) (5) 

Thus, the models in artemis account for the data censoring process by estimating the probability that 
the observed value will exceed the threshold. 
 
This model formulation makes several assumptions, namely that 1) ln[eDNA] is uniform within a 
sample, 2) ln[eDNA] is sampled with normally-distributed errors with censorship at the detection 
threshold, and 3) there are no false detections, i.e. the measurement error cannot result in a positive 
detection when the target species’ eDNA is not present in the sample. 
 
Importantly, this formulation produces estimates of the effect sizes which are modeled directly on 
ln[eDNA] or copy number, rather than Cq, therefore are independent of the standard curve and can 
be compared between studies that use different standard curves. This model formulation also 
accounts for the data censoring at the upper limit of qPCR cycles, handling uncertainty and reducing 
bias in the estimates. 
 

Overview of artemis Functionality 
In addition to the modeling framework described above, the artemis package includes several utility 
and convenience functions associated with the planning and analysis of eDNA surveys and 
sampling. Taken all together, the functions in the artemis R package can be grouped into a few 
categories: modeling, simulation, post-hoc analyses, and utilities. Modeling and simulation are 
primarily introduced here, with detailed vignettes available for post-hoc analyses and utilities 
included in the package installation or via the package website (fishsciences.github.io/artemis). 
 

Modeling 
The modeling functions in artemis are intended to be drop-in replacements for lm() or glm() (R 
Core Team 2021) while utilizing the generative model as described in the previous section. An 
example call to the modeling function eDNA_lm() is, 
 
eDNA_lm(Cq ~ Distance_m, 

data = eDNA_data, 
std_curve_alpha = 21.2, 
std_curve_beta = -1.5) 

Note that the parameters for the conversion to ln[eDNA] are user-provided. Just as with other 
modeling functions in R, the user provides a formula for the model in the form response ~ 
predictors. 
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The data for the model formula is supplied as a data frame object passed to the data argument of 
eDNA_lm(). Although the model technically uses the latent variable ln[eDNA] “under the hood” as 
the response to the predictors, the formula in eDNA_lm() is expressed on Cq, since Cq is typically 
present in the raw output of qPCR analysis. 
 
Internally, the conversion between Cq and ln[eDNA] is conducted using standard curve coefficients 
provided by the user. Importantly, these can be specified as a vector of αstd_curve and βstd_curve values 
corresponding to the rows of the user’s input data. This allows the use of multiple standard curves 
within the same model. Thus, data from different studies or data which use multiple standard curves 
can easily be analyzed together. 
 
For mixed- or random-effects models, the modeling function eDNA_lmer() can be used. The 
formula syntax follows the convention of lmer() (Bates et al. 2015) and specifies the random effects 
in the model with,  
 
(parameter | grouping variable) 
 
Both model types are fit using a Bayesian model fit via the Stan MCMC program (Stan Development 
Team 2021). In both artemis modeling functions, additional parameters can be passed to control the 
MCMC algorithm via the “...” arguments. 
 

Simulation 
The simulation functions sim_eDNA_lm() and sim_eDNA_lmer() allow researchers to see the 
implications of assumptions on the expected concentration of eDNA, e.g. how ln[eDNA] responds 
to hypothetical environmental effects. This can be important both to understand effects estimated 
by an artemis model fit to collected data, and/or as method to design a study prior to collecting data. 
 
The simulation functions are based on the generative model outlined previously and are populated 
similarly. As with the artemis modeling functions, the relationships in the simulation are specified 
using a model formula. Then, the user provides a set of parameters (i.e. the “effects”) for the linear 
model on ln[eDNA], the standard curve coefficients, and the measurement error on ln[eDNA]. 
Lastly, the user provides the covariate levels for which simulations are desired and the number of 
simulations to generate. 
 
For example, a simulation call might be specified as, 
 
sim_eDNA_lm(Cq ~ distance + volume, 

            variable_list = list(Cq = 1, 
                                       distance = c(0, 10, 50), 
                                       volume = c(50, 200)), 
                                       betas = c(intercept = -10.6, 
                                       distance = -0.05, 
                                       volume = 0.01), 
                   sigma_ln_eDNA = 1, 
                   std_curve_alpha = 21.2, 
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                   std_curve_beta = -1.5) 

 

Installation 
The artemis package is open-source, and will be or is available via the Comprehensive R Archive 
Network (CRAN), and can be installed from within R via install.packages("artemis"). The latest 
development version and source code is also available via GitHub at 
https://github.com/fishsciences/artemis. 
 

1.2.3 Methods 
 
To demonstrate the strength and utility of the artemis package for modeling eDNA data, we 
compare the models in the artemis package to standard mixed-effects analysis. To ensure that the 
results were directly comparable, competing models were fit using the rstanarm R package (v2.21.1) 
(Goodrich et al. 2020), a Bayesian modeling package. The stanarm package was chosen for several 
reasons. First, the rstanarm and artemis packages both use the Stan probabilistic programming 
language as a back-end to estimate parameters (Stan Development Team 2021). Furthermore, many 
of the defaults in artemis functions mirror those in rstanarm, which in turn mirror those of the (g)lm 
(R Core Team 2021) and (g)lmer (Bates et al. 2015) functions. Both artemis and rstanarm models 
support similar model comparison metrics, allowing one-to-one comparisons between models. 

Simulated data 
We simulated 500 datasets using the generative process outlined previously in Section 1.3 with 
known parameter values. We then used two different eDNA modeling approaches to recover 
(estimate) the original parameters used to simulate the data: a linear mixed-effects model, and 
artemis’s censored-data mixed-effects model. 
 
For this task, only models which directly estimate effects on the latent or back-transformed 
ln[eDNA] values were compared. Hence, the simulations first simulated ln[eDNA] values then 
converted these to Cq values via a hypothetical standard curve. These Cq values were used directly 
by the artemis models (which internally convert to ln[eDNA]) but had to be back-transformed to 
ln[eDNA] prior to modeling with rstanarm. For the purposes of this demonstration, we simulated an 
experiment with two different filtered volumes, 50 and 100mL, and ten different distances from 
eDNA emission source spread equidistant from 0 to 1000 m. Additionally, we simulated three filters 
per measurement and three technical replicates per filter. 
 
Note that while artemis contains similar functions to simulate data, we opted to replicate the data in 
base R, outside of artemis’s functions, for transparency. All data and code is freely available at 
github.com/fishsciences/artemis_methods and included as supplemental information to this 
publication. 

Experimental data 
In addition to simulated data, we also employed a previously-collected experimental data set for the 
task of model comparison. The data used were the qPCR results from a Delta Smelt “live pen” 
experiment conducted in the primary intake channel of the Tracy Fish Collection Facility (TFCF). 

https://github.com/fishsciences/artemis
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The TFCF collects fish before they are permanently entrained into Reclamation’s Central Valley 
Project (CVP). This water intake is located in the southwest portion of the CVP, in the Sacramento - 
San Joaquin River Delta, California, USA (Bowen et al. 2004). The experiment was completed on 
2017-08-02, part of a series of live pen experiments at the CVP in coordination with the TFCF in 
August-September of 2017. All water filtering, eDNA extraction, and qPCR analysis procedures 
associated with the experiment followed those described in Schumer et al. (2019). 
 
In this experiment, one-hundred live (cultured) Delta Smelt were placed in a rigid, meshed enclosure 
(the “live pen”) that was suspended from the primary louvers in the intake channel. Two sets of 
three water samples each were then filtered at 10m intervals, beginning at 10 m and ending at 50 m 
from near to far in the downstream direction relative to the live pen. The first set of three samples 
pulled 50mL of water through each filter at each interval; the second set of three samples pulled 
200mL per filter at each interval. This procedure was then replicated in the upstream direction (from 
far to near) relative to the live pen. Each filter was extracted and analyzed three times with qPCR 
(three technical replications). The qPCR data from these experiments is plotted in Figure 1.1. 
Approval for the experiment was via United States Fish and Wildlife Service (protocol 2017 
§10(a)(1)(A) recovery permit TE-027742-5) and California Department of Fish and Wildlife 
(protocol 2017 MOU under Scientific Collecting Permit SC-005544). 
 
To model the experimental data, we assume a fixed effect of distance (m) and volume sampled (mL). 
For mixed-effects models, we assume a random intercept term for each unique filter (FilterID). 

Model comparison 
Two different methods were used to compare performance between the standard mixed-effects 
linear model and the artemis model. First, the Pareto-Smoothed Leave-one-out Information Criteria 
was calculated for each model using the loo package in R (Yao et al. 2017). This metric assesses a 
model’s performance by approximating predictive performance on out-of-sample data. This 
provides a measure of how well the model performs relative to its risk of overfitting to the data. 
Next, each model was used to predict the expected response values for a second experimental data 
set, collected in the same system and following the same procedures as described above. From these 
predictions, the Root Mean Square Error (RMSE) was calculated. This allowed for a realistic 
example of out-of-sample prediction error for each model. 
 
To broaden the comparisons to other models commonly used to analyze eDNA data, we also 
compared the classification performance between binomial models. First, we fit a binomial mixed-
effects model to the first experimental data set. The modeled response was “presence,” a binary 
variable indicating whether the Cq of an observation was lower than the detection threshold, 
according to its standard curve. The model was fit similarly to the mixed-effects linear model, again 
using the rstanarm R package. We then generated a predicted value (presence or absence) for each 
observation in the in-sample data set (the data used to estimate model parameters) and the out-of-
sample data set (data not used to estimate parameters). Since the Bayesian model produces many 
posterior predictions, we took a predicted “presence” to be when 50% or more of the posterior 
predictions were presences. To compare to the model fit with artemis, predictions were generated 
for each observation. The median predicted Cq value was taken as the predicted value, and each 
prediction was then classified as a presence or an absence, according to whether the predicted value 
was below or above the detection threshold. 
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Finally, to compare the classification performance for the in-sample and out-of-sample predictions, 
the precision (the proportion of positive predictions that agree with those found in the data) and 
recall (the proportion of positives in the data that were correctly predicted) were calculated. A 
precision of 1 indicates the model had no false positives. A recall of 1 indicates the model had no 
false negatives (Google 2020). 
 

1.2.4 Results 
 

Simulated data 
Based on 500 simulated data sets, the standard linear mixed-effects models produced biased 
estimates. The estimates for the four generative model parameters (Intercept, βdistance, βvolume, 
and σ), were all skewed from the true values used to generate the data set (Figure 1.2). One effect of 
this bias was the 95% Credible Intervals produced from the standard model did not include the true 
values in 14% of cases, higher than the expected rate. 
 
By contrast, the estimates produced by the censored-data mixed effects model in artemis were 
centered around the true values for all four parameters. Additionally, the 95% credible intervals 
included the true parameter values in all but 3.8% of cases, which is within the expected range. 

Experimental data 
When fit to the same experimental data, artemis models demonstrated favorable characteristics 
compared to alternative models. While the differences in parameter estimates were relatively small 
(Table 1.1), the predictive performance as measured by the Pareto-Smoothed Leave-One-Out 
Information Criteria suggested the artemis models fit the data better compared to widely-used 
alternatives (Table 1.2). Furthermore, when the parameter estimates for each model were used to 
generate predictions for a second set of experimental data, the artemis models had lower Root Mean 
Square Error (RMSE) on the predictions.  
 
In a comparison between artemis models and a binomial mixed-effects model fit to the same data 
(Table 1.3), the binomial data had better precision and recall for the in-sample data relative to the 
artemis model (0.92 vs. 0.72 precision; 0.94 vs. 0.88 recall). However, when used to classify out-of-
sample data, the binomial model’s performance showed similar results to the artemis predictions in 
precision (0.57 vs 0.56 precision), but worse recall (0.69 vs 0.77 recall). This suggests that the 
binomial model was overfit to the original data. These metrics suggest the binomial model would 
produce more false negatives compared to the artemis classification predicting the same data. 
 

1.2.5 Discussion 
 
We were motivated to create the artemis package out of the need for better contextualization of 
both non-detections and the strength of positive detections in eDNA studies. To answer questions 
such as “Would we have detected the species of interest if it were within a certain distance from the 
sampling site?” we needed to understand the parameters of the sampling regime in that system. For 
example, how quickly did the concentration of eDNA decrease with distance? How much did the 
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filtered volume of water increase the concentration of eDNA in the filter? We first tried to address 
these questions using off-the-shelf statistical models, but the results were not robust. 
 
Our analysis demonstrates the bias potentially introduced by data censorship, as well as how that 
bias can be mitigated with the use of models which explicitly account for censorship. In the case of 
censored data, like the data generated from a qPCR analysis, the assumptions of a standard linear 
model are not met, and we cannot reliably expect valid intervals or unbiased model estimates from 
it. A model that accounts for the data generation process is needed, but custom statistical models are 
often inaccessible to the average researcher. By mimicking the syntax of the lmer package and the lm 
function in base R, the artemis R package provides a simple replacement for standard linear models 
in R, and also contains several utilities and convenience functions for working with eDNA data and 
model estimates. More importantly, however, the artemis package implements statistical models 
which account for the data censorship inherent to qPCR data.  
 
In situations where the primary interest is to understand how the concentration of eDNA responds 
to various sampling or environmental factors, the models in artemis are drop-in replacements for 
standard linear models. However, when the primary interest is to estimate presence or absence of a 
target species, artemis requires some additional steps. First, an artemis model needs to be fit to 
observed data from the system of interest, for example from a live pen or other controlled 
experiment. Then, using the estimates, we can produce predictions of the probability of positive 
detection for a certain set of conditions. In other words, after calibrating our estimates, we can 
predict how likely we would be to not detect a species if it were present, given some conditions on 
the sampling. While not the exact corollary to traditional occupancy or presence/absence modeling, 
this may be more informative in some situations. 
 
Environmental DNA sampling studies are often of interest where other forms of sampling are 
difficult or impossible, or to supplement an existing sampling procedure (Adams et al. 2019). The 
species of interest may be quite rare. For these situations, a standard presence/absence analysis 
might lead one to conclude absence, with uncertainty. By contrast, while they do require the 
additional step of parameterizing for a given sampling procedure, environment, and design, the 
models implanted in artemis allow probability statements like the following to be made: “If the 
species of interest were within 50 m of our sampling site, we would have had 95% probability of 
detecting it.” 
 
The censored latent variable models in artemis performed better in multiple metrics compared to 
standard linear mixed effects models, against both simulated and observed data. While we 
demonstrate here that biased estimates are possible when fitting standard linear models to censored 
data, the degree of bias will depend on the exact characteristics of the data set. In general, the more 
observations which experience censorship, the more bias there can be in the estimates. As we 
observed in the model comparison task, this can invalidate computed Credible Intervals. 
 
A mechanistic model of eDNA movement and diffusion from point source might be preferable to 
statistical models such as those estimated by artemis. In our experience conducting eDNA field 
surveys and experiments, however, parameterizing mechanistic models of particle diffusion and flow 
to contextualize eDNA data is difficult, cost-prohibitive, and time-consuming, and is often not fully 
transferable to new environments. The artemis package provides a modeling framework that allows 
for a simple method to generate probability statements from our qPCR data, which in turn allows us 
to quickly make decisions about future eDNA sampling designs. 
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Future work 
Although artemis was designed to model ln[eDNA] values as the latent response, the functions are 
sufficiently general to allow other response variables as well. For example, copy number can easily 
be used, so long as the correct standard curve parameters are provided for the conversion from Cq 
to copy number. However, the functions have not been extensively tested on copy number, and 
there might be some aspects of copy number as a latent response variable which require a different 
model parameterization. More testing is needed. 
 
It is generally known that qPCR results in more variable measurements as concentrations of eDNA 
decrease. During the Beta development stage, we implemented a basic parameterization to allow for 
this in the model. This initial attempt was based on normally-distributed errors which increase as 
concentrations decrease. However, the errors appear to be more likely Poisson-distributed. Initial 
testing reveals some issues with using normally-distributed errors. Further work is needed to 
evaluate and implement the most robust method to model the mechanisms involved. 
 

1.2.6 Conclusion 
The need for non-invasive, cost-effective sampling, especially for low-density, cryptic, or difficult-to-
sample populations, is growing and will continue to drive development of molecular-based methods 
(Adams et al. 2019). This need also includes effective early-detection for invasive species (Milián-
García et al. 2021; Sepulveda et al. 2019). As monitoring programs continue to adopt eDNA 
methods more broadly, there is an accompanying demand for robust, reliable, open-source analysis 
and modeling tools. 
 
To address many of the issues that arise when analyzing data from qPCR analysis using standard 
statistical methods, we developed the artemis R package, which includes many utility and 
convenience functions in support of eDNA research and analysis. Importantly, the artemis package 
provides drop-in replacements for linear modeling functions in R. It does this with latent variable 
models that are customized to the data generating process inherent to qPCR data derived from 
eDNA samples. These models show less bias and more predictive accuracy for censored qPCR data 
when compared to standard linear models. 
 



Environmental DNA 

12 

1.2.7 Figures 
 

 
Figure 1.1. Plot of experimental live pen data from two experiments at the Tracy Fish Collection Facility 
(TFCF) in the Central Valley Project (CVP), California, USA. These data were used to test different analysis 
techniques for environmental DNA (eDNA) survey data. Each point represents one technical replicate. The 
Cq of each technical replicate has been converted to ln[eDNA] via the standard curve, where ln[eDNA] = 
(Cq − αStdCurve)/βStdCurve. The dotted line represents the threshold of detection for the assay. 
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Figure 1.2: Comparison of lmer vs eDNA_lmer to recover parameters from 500 simulated datasets. Blue 
areas are the 95% Credible Intervals, while black areas are the median parameter estimates. The “true 
value” used in the simulation is marked as a dashed line. 
Note: lmer = “Linear Mixed-Effects Models” package in base R (Bates et al., 2015); 
(https://www.rdocumentation.org/packages/lme4/versions/1.1-27.1/topics/lmer)). 

1.2.8 Tables 
 
Table 1.1: Model estimates and 90% credible intervals (CI) for the fixed effect parameters from the 
rstanarm and artemis packages fit to the same data 
Parameter rstanarm 90% CI artemis 90% CI 

(Intercept) -5.6 -6.6 – -4.5 -5.4 -6.8 – -4.1 
Distance_m -0.14 -0.16 – -0.11 -0.17 -0.21 – -0.14 
Volume_mL 0.0029 -0.002 – 0.0079 0.0049 -0.002 – 0.012 
sigma 0.86 0.77 – 0.95 1.2 1 – 1.4 
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Table 1.2: Model comparison using Pareto-Smoothed Leave-One Out Information Criteria, ranked in 
descending order of predictive performance (top row is best). Lower values of Leave-One Out Information 
Criteria indicate better predictive performance. 
Model Leave-One 

Out 
Information 
Criteria 

Effective 
Number of 
Parameters 

Difference in 
Expected log-
predictive density 

Std. Error of the 
difference in expected 
log-predictive density 

artemis: mixed-effects 497.9 49.4 0.0 0.0 
rstanarm: mixed-effects 520.1 51.7 -11.1 17.1 
artemis: fixed-effects 643.6 3.8 -72.9 12.8 
rstanarm: fixed-effects 725.8 3.6 -114.0 16.5 
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Table 1.3: Model classification comparison of in-sample (data used to fit the original model) and out-of-
sample (data not used to fit the original model) using precision and recall. Precision is the proportion of 
classifications which were in fact correct. A precision of 1.0 indicates no false positive classifications. Recall 
is the proportion of actual positives correct. A recall of 1.0 indicates no false negatives. 
Model Precision Recall 

binomial: in-sample 0.92 0.94 
artemis: in-sample 0.72 0.88 
binomial: out-of-sample 0.57 0.69 
artemis: out-of-sample 0.56 0.77 
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2. Tidal influence on environmental DNA 
detections for Delta Smelt* 

*: This chapter will be submitted to the journal PloS one (https://journals.plos.org/plosone/) 

2.1 Abstract 
Current ecosystem conditions within the San Francisco Estuary are considered inhospitable to many 
native estuarine species and has imperiled the endemic Delta Smelt (Hypomesus transpacificus). 
Programmatic monitoring regimes conducted by Government Agencies are insufficient for 
associating Delta Smelt occurrence with relevant habitat attributes, thus limiting inference about the 
relationships between putative habitat, restoration activities, and Delta Smelt population response.  
A further challenge to biological monitoring is the reluctance of authorities to permit directed 
surveys of listed fishes, e.g. Delta Smelt, due to the potential harm caused by physical handling. 
Indirect observation of macro-organisms via detection of DNA from environmental sampling has 
proved a compelling alternative monitoring approach, particularly for rare and/or protected species. 
Yet, the factors that influence detection of DNA in estuarine habitat are not well characterized, 
which has hindered refinement of eDNA sampling methods for detecting Delta Smelt occurrence. 
This study employed a fixed sampling array to explore how the ebb and flow of tidal phases affected 
Delta Smelt eDNA detection. Our primary objective was to estimate the effects of covariate metrics 
on ln[eDNA] observed in the tidal environment.  Our secondary objectives were to quantify the 
difference between the effect of distance on ln[eDNA] in the tidal system with that of a 
unidirectional system and to estimate the effect of time elapsed since target species absence in tidal 
system on ln[eDNA] observed. Model predictors with a consistent effect on ln[eDNA] were: 
distance (from DNA source), eddy diffusivity, time (following removal of DNA source), side (tidal 
direction), and species (DNA source).  The effect of distance from source on ln[eDNA] was 
consistently negative regardless of system, however, a higher proportion of non-detection was 
observed in the tidal system than would have been expected in a unidirectional system. DNA 
detections decreased over time, suggesting that positive DNA detections from estuarine water 
sampling are more likely to co-occur contemporaneously with the actual presence of individuals 
within habitat sampled. These findings improve the capabilities to design sampling strategies that 
will detect target species within an estimated probability, if individuals are present within a specified 
distance.  Enhanced detections using eDNA sampling approaches would refine determinations of if 
and when Delta Smelt are present at a location, which in turn lessens known information gaps 
related to species occurrence and distribution. 
 

2.2 Introduction 
Dramatic alterations of the San Francisco Estuary have been ongoing since the Gold Rush (mid-
19th century), with the current ecosystem conditions considered inhospitable to many native 

https://journals.plos.org/plosone/
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estuarine watershed species (Cloern and Jassby 2012; MAST 2015).  The Delta Smelt (Hypomesus 
transpacificus, McAllister) is a small osmerid fish (120-mm maximum length) endemic to the San 
Francisco Estuary that has experienced a significant decline in population abundance over the past 
several decades (Hobbs et al. 2017).  The inadequacy of existing habitat to sustain Delta Smelt is 
exemplified by decreasing population abundance observed in long-term monitoring programs 
despite increasing effort, with an acute downward inflection occurring in the early 1980’s (Stompe et 
al. 2020), resulting in the species being listed as ‘threatened’ in 1993 under the federal Endangered 
Species Act (ESA) (USFWS 1993).  The most recent abundance index for Delta Smelt sub-adults 
has been zero 2018-2020 (White 2020). 
 
A recent review of government agency Delta Smelt population-monitoring regimes utilizing various 
physical sampling gear (e.g., trawl, seine net) documented information gaps related to occurrence 
and distribution that created significant challenges to testing hypotheses about factors limiting 
population recovery (MAST 2015).  For example, unknown distributions of smelt predators, Delta 
Smelt, and Delta Smelt prey negatively affects evaluations of both predation risk (top down) and 
food availability (bottom up) on Delta Smelt abundance and distribution.  Additionally, life cycle 
modelling efforts lack inputs such as the habitat used by Delta Smelt for spawning and the habitat 
characteristics associated with reproductive success.  The low encounter rates (high frequency of 
zero catches) result in imprecise survey estimates and inconclusive relationships between habitat 
attributes and population response ( MAST 2015; Polansky et al. 2019).  Additionally, permitted 
‘take’ under the state and federal ESA generally curtail ancillary survey activities that directly target 
or that may encounter Delta Smelt.  Therefore, sensitive and non-injurious monitoring approaches 
that do not require ‘take’ are needed to obtain biological information on Delta Smelt in their native 
habitat.  One compelling approach to enhance detection of rare species applies molecular diagnostic 
methods that detect taxon-specific DNA in the environment. 
 
Environmental DNA (eDNA) is simply DNA that is isolated from environmental samples, such as 
from water, rather than directly from an organism.  Molecular techniques are used to amplify the 
target organism DNA once nucleic acids are extracted from the environmental samples.  
Fluorescence-based quantitative real-time Polymerase Chain Reaction (qPCR) – the benchmark for 
detection of nucleic acids – enables measurement of DNA with speed, specificity, and sensitivity 
(Wittwer et al. 1997; Bustin et al. 2009).  As such, qPCR has been applied extensively in molecular 
diagnostics, medicine, and life sciences (Bustin 2000; Handelsman 2004; Kubista et al. 2006; 
Thomsen and Willerslev 2015; Cocolin and Ercolini 2015; Chiu and Miller 2019).  Molecular species 
diagnostic tools have been particularly directed toward describing microbial diversity, as microbes 
are difficult to observe visually within samples taken from the environment (e.g., soil, water, air) 
(Morris et al. 2002; Venter et al. 2004; Martellini et al. 2005; Lee et al. 2020).  The fields of biology 
and ecology have only recently embraced detection of macro-organism DNA from the environment 
to elucidate species presence (Ficetola et al. 2008; Thomsen et al. 2012; Rees et al. 2014; Roussel et 
al. 2015).  Nevertheless, when one considers how to encounter and sample eDNA, it is instructive to 
consider it a particle (Turner et al. 2014) that degrades rapidly in aquatic systems (Balasingham et al. 
2017), with general recommendations regarding approaches for sampling and subsequent analysis of 
eDNA available (Bustin et al. 2009; Goldberg et al. 2016).   
 
The regulatory structure of the United States as defined by the Federal Endangered Species Act 
necessitates the serial monitoring and management of individuals species, such as Delta Smelt.  This 
structure is entirely suited to eDNA and species-specific qPCR.  A point relevant to detection of 
Delta Smelt eDNA though is the factors that influence detection of DNA in estuarine habitat are 



Environmental DNA 

18 

also not well characterized (Port et al. 2016; Schmelzle and Kinziger 2016; Shelton et al. 2019; Crane 
et al. 2021). Chapter 1 investigated the use of ‘censored latent variable models’ to study the response 
of qPCR-based eDNA particle detections to specific environmental and sampling variables, 
including volume of water sampled, number of qPCR technical replicates, and distance from eDNA 
source.  Although early forms of the model examined how the log-concentration of eDNA 
(ln[eDNA]) in filtered samples responds to biomass of, and distance from, target organisms in 
unidirectional aquatic systems (e.g., streams and rivers), they did not evaluate how multidirectional, 
tidally- influenced systems affect detections (Jane et al. 2015; Schumer et al. 2019).  The salient 
factor is the ebb and flow of tide could alter the detection of target particles (e.g., expected effect of 
distance or time) relative to a system with one-way (unidirectional) flow, which in turn could change 
predicted detections (i.e., survey design) or interpretation of a detection (i.e., context). This lack of 
quantitative data on the sensitivity of eDNA surveys to a quintessential characteristic of tidal 
environments limits further refinement of eDNA as a tool for detecting Delta Smelt occurrence and 
thus developing successful recovery actions for the species.   
 
We implemented this study to explore how the ebb and flow of tidal phases affects our ability to 
detect Delta Smelt eDNA using qPCR and whether the sensitivity of qPCR permits development of 
eDNA surveys with a high probability of detecting Delta Smelt. The goal was to increase the 
sophistication of eDNA analysis interpretations to lessen the known information gaps for Delta 
Smelt population monitoring. Our first objective was to estimate the effects of covariate metrics on 
ln[eDNA] observed in the tidal environment, which would improve DNA detection predictions.  
Based on our previous observations in unidirectional systems (i.e., Chapter 1), we hypothesized that 
closer proximity to, and higher biomass of, the eDNA source positively affects sensitivity of qPCR 
by increasing the concentration of eDNA in the environment and subsequently within 
environmental samples.  We further hypothesized that tidal phase would significantly affect the 
probability of detection in the San Francisco Estuary (estuarine habitat occupied by Delta Smelt), 
but in uncertain ways because the effects of tides on eDNA concentration are relatively unclear at 
this time in comparison to the effects observed in unidirectional systems.  If our hypotheses are true, 
then we expected to observe consistently higher concentrations of eDNA in samples collected closer 
to eDNA sources and that tidal ebb and flow would affect detections in a significant and consistent 
way. Our subsequent objectives were to quantify the difference between the effect of distance on 
ln[eDNA] in the tidal system collections with samples taken in unidirectional systems and to 
estimate the effect of time elapsed since target species absence in tidal system on ln[eDNA] 
observed.  We discuss how the quantification of effects on ln[eDNA] in filtered samples can be used 
to design powerful eDNA sampling strategies with consistent probabilities of detection to inform 
recovery planning with data related to occurrence and distribution for Delta Smelt. 

2.3 Materials and Methods 

2.3.1 Environmental DNA Sampling Array 
The field study was designed to estimate the effects of tide and sampling effort on the sensitivity of 
qPCR to detect the eDNA of Delta Smelt in the San Francisco Estuary.  Further, the experimental 
data were collected explicitly for analysis using the censored data models developed in Chapter 1.  
We implemented the study via two experiments (on October 22, 2019, and December 12, 2020, 
respectively) which coincided with suitable water temperatures to deploy live fish and were not 
associated with high freshwater inflows caused by storms.  Additionally, all eDNA collection events 
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likely occurred prior to the Delta Smelt spawning season, which is estimated to occur from February 
to June (Moyle et al. 2016), to reduce the potential for detections of natural-origin Delta Smelt.  We 
constructed a fixed distance eDNA collection array in Shag Slough (Figure 2.1), which allowed us to 
sample across a representative range of times and locations that might characterize tidal phases of 
Delta Smelt habitat.  Shag Slough is located in Solano County, California in the northeastern portion 
of the San Francisco Estuary watershed where freshwater discharge enters into the tidally-influenced 
Delta (ESA 2014).  In the first experiment (October 22, 2019), a known count and biomass of live 
(cultured) Delta Smelt (Hypomesus transpacificus) and a control species (i.e., Northern Anchovy, 
Engraulis mordax) were secured in floating cages at the array center (Table 2.1). In the second 
experiment (December 12, 2020), these same two species were used but in addition a third species 
was included in the floating cage: steelhead trout (Oncorhynchus mykiss) from Coleman National Fish 
Hatchery (Anderson, CA). Multiple control species were used as contingency in case the sampling or 
laboratory processes were compromised for a species.  For both experiments, sampling stations 
were established in both along-channel directions at discrete distances to increase likelihood of 
collecting eDNA across the bi-directional ebb and flow of tidal phases.  The floating cages and 
sampling stations were moored 15 meters from the water’s edge using a laser rangefinder, buoys and 
either 18 kg (cages) or 5.5kg (stations) anchors.  The distance between the array center (fish cages) 
and each sampling station was determined using a Garmin GPSMAP® 64. For crew safety, water 
filtration occurred onshore at each station by pumping water through three separate 20-30 m lengths 
of sterile Masterflex L/S® 15 peroxide-cured silicone tubing (Cole Parmer ®) that extended from 
cordless drill driven Masterflex L/S® Easy-Load® II peristaltic pump heads to the buoy-based 
water collection sites positioned 50-60 cm below water surface.  All non-sterile array equipment was 
decontaminated with 20% bleach solution and rinsed with fresh water prior to deployment.  Prior to 
live fish deployment, control samples were filtered from the array to confirm Delta Smelt and 
control species were not present. 
 

2.3.2 Environmental DNA Collection 
To reduce the possibility for among-station variation in eDNA detections associated sampling at 
different times, all stations within the array were sampled simultaneously at proscribed times for the 
duration of each experiment.  Collections were synchronizing using two-way radios and verbal 
prompts. Control stations, located outside the array, were sampled immediately following each 
simultaneously sampled eDNA collection. Three filter replicates were collected per station, with 
water filtration procedures following (Bergman et al. 2016), but modified to use Millipore Sterivex™ 
0.45 µm sterile filter units (EMD Millipore).  Total water volume collected per filter was fixed at 
100ml. 
 
To limit the potential for contamination between sampling events, sterile gloves were worn, and all 
sampling consumables were pre-packaged in the laboratory, itemized by station and time point.  
Gloves were immediately disposed of after each use into a sealed trash bag. After water filtration, 
Sterivex™ filters were end-capped, labelled, and immediately placed into a sterile sealed secondary 
container stored on ice. All filters were transferred to a –20 C freezer for storage prior to DNA 
extraction. Sterile tubing was deployed at the start of each experiment, but installation was not 
altered during the sampling period.  A coordinated equipment cleaning protocol for rinsing 
peroxide-cured silicone tubing was implemented prior to each sample event. Staff were first 
prompted to pump water through tubing without attaching a filter for approximately two minutes at 
maximum speed to replace and rinse water volume in each tubing line multiple times.  Following 
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rinsing, filters were attached and eDNA collection occurred.  After eDNA collections, pumps were 
reversed to evacuate water from all lines.  Additionally, eDNA field controls (ultrapure water) were 
collected and analyzed to confirm equipment was clean of detectable target DNA.   
 
Experimental parameters differed between events, such as array distance intervals, sampling times 
relative to tide, quantity of fish deployed in cages, and control species used.  Sampling took place 
during two events: October of 2019 and December of 2020 (Table 2.1).  On October 22-23, 2019, 
eDNA was collected every three hours over a full 25-hour tidal cycle.  Floating cages containing 
Delta Smelt and Anchovy were deployed the first 13 hours of sampling, then removed, with 
sampling continuing an additional 12 hours. The three filter replicates per station were collected in 
parallel.  The December 11-12, 2020, sampling event was a refinement of the 2019 effort.  Sampling 
interval was reduced from 3 hours to every 45 minutes over the course of a single low to high tidal 
cycle, with live steelhead trout added as a control species. Filter replicates per station were collected 
in-series, with each filter taking 1-2 minutes to process. A single additional collection event was 
conducted on December 12, 2020, 24 hours after removal of the live pens present 11-December. 
After each experiment, all living individuals were euthanized according to professional society 
guidelines (Jenkins et al. 2014) and all specimens were maintained in cold storage: 1) Delta Smelt 
with the Reclamation’s Tracy Fish Collection Facility and steelhead with Cramer Fish Sciences (West 
Sacramento, CA). 

2.3.3 Environmental DNA Laboratory Analysis 
DNA from all samples and controls were extracted using DNeasy PowerWater Sterivex™ Kit 
(Qiagen) following the manufacturer’s recommendations. Sample and control technical replicates 
(Table 2.2) were analyzed for the presence of Delta Smelt and Northern Anchovy mitochondrial 
DNA using assays published in Baerwald et al. (2011) and Sassoubre et al. (2016), respectively. 
Samples collected on December 11-12, 2020 were also analyzed for presence of Rainbow Trout 
mitochondrial DNA (Brandl et al. 2015).  The qPCR amplification mixture final volume of 10ul 
included 4ul template, 5ul 2x Applied Biosystems TaqMan Environmental PCR Master Mix and 
varying final primer and probe concentrations (Table 2.2).  Thermocycling was performed using the 
Applied Biosystems QuantStudio™ 3 following: 10 min at 95° C, then 40 cycles of 15 sec at 95° C 
and 1 min at assay specific annealing temperature (Table 2.2). Each qPCR plate included three no 
template controls (ultra-pure water) and three positive controls (2 ng/µl Delta Smelt, Northern 
Anchovy or Rainbow Trout/Steelhead Trout genomic DNA).  All PCR master mixes were made 
inside a UV sterilized PCR enclosed workstation. All PCR reactions were conducted on instruments 
located outside of the main lab in a separate portion of the building.  Results of the qPCR reactions 
were analyzed using QuantStudio™ Design & Analysis Software with the magnitude of the qPCR 
signal reported as quantification cycle (Cq).  

2.3.4 Hydrodynamic Modeling 
A two-dimensional hydrodynamic model was developed and applied to characterize the movement 
of water that transported and mixed the eDNA material emitted by the fish samples in the floating 
cages.  The modeling software, Delft3D-FLOW (Deltares 2021), was configured to represent the 
4.5-km straight segment of Shag Slough that contained the floating cages (Figure 2.1). The model’s 
horizontal grid cell size was four meters square and in the vertical direction a single layer was used 
for depth-averaged conditions. Bathymetry within the model domain was excerpted from a larger 
digital elevation data set (Fregoso et al. 2017).  To generate currents within the domain, tidally-
varying water levels were specified at the model’s southern boundary. These water level boundary 
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conditions consisted of the observed water levels at the monitoring station at the southern end of 
Liberty Island, approximately 4.7 km south of the model’s south boundary (California Data 
Exchange Center Station ID=LIB; 38.24210, -121.68490). In addition, observed wind speed and 
direction from the Hastings Tract East CIMIS station was applied as a surface stress across the 
model domain.   
 
To predict the transport of eDNA by the tidal currents, a virtual tracer was introduced into the 
model domain in the grid cell containing the floating cages. The tracer was added to the cell at a 
constant rate for the same 13-hour period that the cages were deployed during the October 2019 
sampling event. This tracer was advected by the currents predicted by the hydrodynamic model, 
yielding a continuous prediction of the concentration of the tracer throughout Shag Slough, relative 
to its initial concentration in the cell with the floating cages. The model only advects the tracer with 
the predicted average flow velocity at the scale of the grid cells. Smaller scale turbulence can also 
locally mix water and the constituents carried by the water (e.g., the virtual tracer and eDNA).  To 
account for this sub-grid process, additional dispersal of the virtual tracer is predicted as a function 
of the horizontal eddy diffusivity (K). Without detailed velocity and/or dye-tracking measurements, 
K can only be estimated to within a likely range. To simulate range of likely tracer dispersal, the 
model was run three times, with identical conditions except for three levels of K: high diffusivity (K 
= 1.0 m2/s), moderate diffusivity (K = 0.5 m2/s), and low diffusivity (K = 0.1 m2/s).  

Flow-following Drogues 
During the December 11, 2020 sampling event, a set of drogues were deployed to track the 
movement of water as a function of tidal currents and wind.  The drogues were constructed from 
two thin plastic sheets, 15 cm by 45 cm, that were intersected along their shorter dimension to form 
a cross shape, thereby creating an underwater ‘sail’.  Tethered above the plastic sail was a waterproof 
box which contained a GlobalStat DG-200 GPS receiver and logger, with a nominal horizontal 
accuracy of 1-5 meters, depending on satellite connectivity. Weight was added just below the sail to 
align the sail vertically in the water column and to submerge nearly all the waterproof box, thereby 
minimizing the potential for wind acting on the box to transport the drogue. The loggers were 
configured to record position every 30 seconds.  
 
Every half hour, from 9:30 am until 3:00 pm, one of the nine drogues was released just south of the 
floating cages. The drogues then freely drifted with the currents at the top of the water column, to 
track the likely trajectory of water which passed through the floating cages. If a drogue drifted close 
enough to shore to run aground, it was re-deployed a few meters from shore with a long pole.  

2.3.5 Environmental DNA Statistical Analysis 
The objectives of the statistical analysis were threefold: 1) Estimate the effects of covariate metrics 
on ln[eDNA] in the tidal experiments; 2) Quantify the difference between the effect of distance on 
ln[eDNA] in the tidal samples with samples taken in unidirectional systems; and 3) Estimate the 
effect of time elapsed since live pen removal on ln[eDNA] in the tidal experiments. We used the 
software package `artemis` (version 1.1.0, Espe et al. in review) in the R programming environment 
(version 4.0.5, R Core Team 2021) to fit all models in the analysis. Briefly, `artemis` implements a 
censored latent variable model (essentially a generalized linear model) to estimate the log-
concentration of eDNA in environmental samples.  The model assumes i) that observations are 
exchangeable (i.e., observations vary by measurement error but are otherwise uniform, given the 
model formula provided); ii) ln[eDNA] is sampled with normally-distributed errors, and iii) there are 
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no false detections, i.e. the measurement error cannot result in a positive detection when eDNA is 
not present within the sample. 
 
To address analysis objectives 1 and 3, separate candidate models were fit to the data from each 
sampling event (October 2019 and December 2020). Nine candidate models were fit to the data 
from October 2019, incorporating different combinations of predictors, including the virtual tracer 
concentration values predicted at each distance interval by the three modeled eddy diffusivity (K) 
values. The other predictors considered in the October 2019 event candidate models were absolute 
distance in meters from the fish cage, target species (Delta Smelt or Anchovy), time elapsed before 
and/or after live pen removal, and array side (north or south of the cage).  All continuous numeric 
variables were converted to z-scores prior to modeling to increase Markov Chain Monte-Carlo 
(MCMC) sampling efficiency. A unique ID for each filter was included in all candidate models as a 
random effect, to allow for the association of qPCR technical replicates conducted on each filter 
DNA extraction. A single model fit to the December 2020 data was similar in structure but differed 
by the tidal metrics included and did not include predictors for eDNA tidal dispersion. Tidal 
predictors for this experiment were water velocity in feet per second (ft/s) and river stage in feet (ft), 
both derived from publicly available data on the California Data Exchange Center for environmental 
station gauge (Station ID=SGG; 38.31833, -121.69306) located approximately 2,000 meters north of 
the deployed fish cage. The remaining model predictors were absolute distance from the cage (in 
meters, scaled to the October 2019 distances for ease of comparison and interpretation) and target 
species (Delta Smelt, Northern Anchovy, and steelhead trout). As with the October 2019 collection 
associated model, unique filter ID was included with random effects. Model comparison and 
selection was conducted within sampling events via Pareto-Smoothed Leave-one-out Cross 
Validation (LOO) model selection (Vehtari et al. 2017) using the ‘loo’ package (version 2.4.1, Vehtari 
et al. 2020). All modeled data and code are available at https://github.com/fishsciences/2020-Tidal-
eDNA-Analysis. 
 
For statistical analysis objective 2, data from previously conducted live car studies allowed us to 
compare results from this tidally-influenced dataset to one collected from a unidirectional system 
(see Chapter 1). The unidirectional dataset was collected in the primary intake canal at Reclamation’s 
Tracy Fish Collection Facility (near Byron, CA), and followed the same live pen deployment and 
eDNA sampling, extraction, and analysis procedures as the tidal sampling events. The unidirectional 
dataset was only used in the evaluation of statistical analysis objective 2, where all differences in 
covariate levels between experiments (number of Delta Smelt and volume filtered) could be 
accounted for with the incorporation of random effects. Statistical analysis objective 2 was then 
addressed with a single model combining data from the unidirectional experiment and both tidal 
experiments. By parameterizing the interaction between distance and system (tidal vs. 
unidirectional), the model was able to estimate the variance in the effect of distance between 
systems. The model structure is presented in Table 2.3.  
 

2.4 Results 
Data from 8,904 qPCR reactions were generated across the two tidal experiments analyzed, with 
technical replicates analyzed per filter, event, and species shown in Table 2.2. Overall, the 
proportion of positive detections (across target species) was 0.08.  More specifically, 669 of 8904 
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total technical replicates had a Cq value lower than the assay DNA detection threshold of 40.0. The 
proportion of positive detections by tidal experiment, distance, and sampling times are plotted in 
Figures 2.2 and 2.3, overlaid with scaled metrics of tidal phase for the respective experiment. 
 

2.4.1 Objective (1) Covariate effects on ln[eDNA] 
An index of final models of (ln[eDNA]) and predictors is presented in Table 2.3. In the October 
tidal sampling event, all levels of eddy diffusivity (K) were positively associated with ln[eDNA]. 
Pareto-Smoothed Leave-one-out Cross Validation (LOO) model selection (Vehtari et al. 2017) of 
the models fit to the October 2019 data suggested all models had similar predictive performance. 
This implies that all levels of eddy diffusivity produced equivalent out-of-sample prediction error 
given the other covariates. For the October tidal sampling event, the north side of the array had a 
consistently positive effect on ln[eDNA]. Target species (live Delta Smelt) was strongly positively 
associated with ln[eDNA] (Table 2.3; Figure 2.4). In the models fit to the December 2020 sampling 
event, both distance and side (north) were found to have a consistent effect on ln[eDNA] (Table 2.4; 
Figure 2.4). The target species Rainbow Trout had a strongly positive effect on ln[eDNA] relative to 
Delta Smelt and Northern Anchovy. The 95% credible interval for the coefficient estimates of both 
tidal water velocity (ft/s) and river stage (ft) overlapped with zero (Figure 2.4), indicating no 
consistent effects on ln[eDNA] for this event. 
 

2.4.2 Objective (2) Effect of distance in tidal vs. unidirectional experiments 
Distance had a consistently negative effect on ln[eDNA] in both unidirectional and tidal systems (-
0.763 – -0.081 95% CI). The effect of distance did not vary across systems consistently (-3.067 – 
1.686). In other words, the effect of distance on ln[eDNA] was consistently negative (ln[eDNA] 
decreased with increasing distance from the live pen), regardless of system. While target eDNA were 
observed throughout the array’s extent during experiments, a higher proportion of positive technical 
replicates were observed at collection stations closer to the fixed position of the live car and fewer 
positives at > 400 meters from the live pen (Figure 2.2-Figure 2.3). 
 

2.4.3 Objective (3) Effect of time elapsed since live pen removal on ln[eDNA] in the 
tidal experiments 
No detections were recorded in the samples taken 24 hours after removal of the floating cage used 
in the December 2020 event.  In the October 2019 event, the proportion of positive technical 
replicates decreased with time following cage removal; the model estimated that time elapsed since 
live pen removal had a consistently negative effect on ln[eDNA] (-0.138 - -0.048 95% CI; Table 2.4; 
Figure 2.4). 

2.5 Discussion 
We conducted field trials to collect eDNA within tidally influenced Shag Slough, an area that lies 
within the historic range of Delta Smelt (Merz et al. 2011; MAST 2015).  The Shag Slough field trial 
demonstrated that Delta Smelt, steelhead trout, and Northern Anchovy DNA could be reliably 
detected within the sampling array at concentrations (ln[eDNA]) and distances in alignment with 
sampling design expectations. Those expectations were that higher proportions of positive 
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detections would be observed closer to the source of eDNA modulated by covariate effect priors 
(e.g., 10-6 ng/µl DNA detection threshold (from standard curve), -2.476 ln[eDNA] per meter from 
DNA source), and that patterns of detection would be correlated with direction of tidal flow.  
However, overall, a higher proportion of non-detection in technical replicates were observed in the 
tidal system than would have been expected in a unidirectional system, particularly at distances 
closer to the floating cages.  
 
Given the effect of distance on ln[eDNA] estimated from unidirectional system data (-2.476 
ln[eDNA] per meter from DNA source; Table 2.4), we hypothesized that DNA detections would 
decrease with distance within the fixed distance array of tidally influenced Shag Slough. Yet, the 
proportion of positive detections at the closest absolute distances in the October 2019 sampling 
event (1m and 50m) was lower than expected, and the estimated effect of absolute distance from 
DNA source on ln[eDNA] collected was small: its 95% CI overlapped with zero (Table 2.4; Figure 
2.4). We speculate that our monitored covariates failed to capture one or more effects operating on 
ln[eDNA] available for extraction from the filters.  For example, during the October 2019 
experiment, the plume of eDNA emitted from the floating cages may have been relatively narrow 
and patchy when close to the source. Variable mixing could have deflected this narrow plume away 
from the closest sampling stations, lowering the proportion of positive detections. At intermediate 
distances, as the plume spread out, it may have been more likely to be sampled.  
 
The eDNA particle collection strategy performed here was more intensive than would typically 
occur, which allowed detection complexity to be uncovered that in practice would be unobservable 
during a more routine eDNA monitoring survey. A management application of this observation is 
that when designing a sampling protocol in a tidal environment a researcher may 1) increase the 
number of samples near the sampling point of interest to compensate for this phenomenon or 2) 
measure mixing rate. Detection strength of eDNA was statistically associated with the north tidal 
direction in both experimental events, particularly in the December 2020 event, suggesting tidal 
seasonality could also influence eDNA distribution. As the bulk of water movement in the 
December 2020 event was in the northward direction when the DNA source was present and 
eDNA collection interval was every 45 minutes, this suggests that the movement of eDNA particles 
newly introduced to a system are broadly reflective of water movement. More specifically, the “Side” 
covariate was estimated to have a positive effect size on concentration of eDNA (Figure 2.4).  
Additionally, an association was observed between proportion of positive technical replicates and 
distance/direction from DNA source during the October 2019 event (Figure 2.2).  Intuitively, the 
distribution of particles (eDNA) present at time of sampling from an estuarine system would be 
influenced by the particle concentration, the underlying hydrological conditions, and the spatial 
relationship between DNA source and collection location (Port et al. 2016; O’Donnell et al. 2017; 
Shelton et al. 2019).  In practice, the concentration of eDNA present will likely be low at time of 
sampling (i.e., in vicinity of level of detection) if the target macro-organism is rare (Jerde et al. 2016; 
Crane et al. 2021).  As mentioned, an unexpected increase in non-detections were observed at 
certain times and stations within the fixed array.  Mixing by wind, as indicated by the December 
2020 drogue data, suggests that the eDNA plume may not be homogenously mixed by tidal currents 
alone on fine scales (10s of meters) and may have been deflected laterally away from the sampling 
array.  The complex fine scale flow patterns observed here to influence positive detections of eDNA 
particles could complicate integration of eDNA detections into tools used by Government Agencies 
to manage hydrology more regionally (e.g., Department of Water Resources Delta Simulation Model 
II or CalSim 3).  We suggest that management applications would benefit from emphasizing the 
design of sampling regimes where the concentration of eDNA is expected to be at detectable levels 
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given desired biological criteria (e.g., a specific biomass/distance range), rather than focus on the 
ln[eDNA] observed in a given sample.  Further, while eDNA sampling designs should be robust to 
stochastic localized flow characteristics, randomization and aggregation of eDNA collection 
locations likely would be needed to align eDNA observations with other monitoring methods 
(O’Donnell et al. 2017; Shelton et al. 2019). 
 
The relationship between the effects of distance from eDNA source and particle concentration (as 
predicted by eddy diffusivity, K) is complex.  DNA particle density does decline with distance (Table 
2.4); however, the strength of this decline varies by situation.  For the observations from the 
October 2019 event, we note that K was predictive of ln[eDNA] when included in the same model 
as distance, but also that distance became predictive when the K parameter was omitted 
(supplementary materials). This suggests that the predictor K may be functioning in the model in 
much the same way as distance. Model selection only slightly favored the ‘with-K’ relative to ones 
that only included distance.  Accounting for hydrological covariates in the tidal environment from 
which eDNA collections will occur could lead to better predictions regarding the distribution of 
DNA detections, although fine scale (<100 meters) differences in fish community structure have 
been observed even within high energy nearshore marine habitat (Port et al. 2016). 
  
Not all hydrological metrics were predictive in these data.  The tidal water velocity and river stage 
predictors in the December 2020 sampling event were not predictive of ln[eDNA], but distance was 
(Figure 2.4).  Combined with observations above suggesting tidal direction influences the pattern of 
positive detections, and that there is a distance effect in both tidal and unidirectional systems, it is 
likely preferable to make eDNA collections during a consistent tidal phase for the intended 
application.  For example, collecting during a slack tide may localize the particle distribution for fish 
close to the sampling station; and collecting during high tidal velocity would increase the probability 
of detecting eDNA emitted from a greater distance away (in relevant direction) from the collection 
location. 
 
DNA detections decreased over time.  It was unclear whether this was due to eDNA particle 
degradation or to particles being advected away from sampling array stations (e.g., transverse to 
shore) and decreasing in concentration below qPCR detection threshold (Jerde et al. 2016).  Flow-
following drogues, equipped with GPS loggers, during the December 2020 event suggested that 
when westerly cross-slough wind speeds exceeded 3 m/s, transverse flow could have been a factor 
(supplemental). For the first three hours after deployment of the fish cages, all the drogues remained 
close to the western bank of the slough (supplemental). Once the wind speed exceeded 3 m/s 
(supplemental), the drogues drifted eastward with the wind, and most of the drogues were located 
along the eastern bank for the remainder of the event.  Although drogue movement is not a perfect 
surrogate for eDNA trajectory, the drogues’ eastward translocation suggested that eDNA may have 
been moved away from the sampling array along the western bank. 
 
Following the removal of the fish cage during the October 2019 experimental event, the model 
indicated with certainty that ln[eDNA] decreased over time, despite the “pulse” of eDNA that could 
have occurred in association with cage removal. In the December 2020 tidal experiment there were 
no positive detections the day after live pen removal.  These observations in the two experiments 
suggested that for rare species such as Delta Smelt, positive DNA detections from estuarine water 
sampling would likely occur contemporaneously with the actual occurrence of individuals within 
habitat sampled.   This observation is consistent with the effective sampling area being reported as 
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10s of meters to a few 100 meters in both marine (Port et al. 2016; O’Donnell et al. 2017; Shelton et 
al. 2019) and freshwater environment (Jane et al. 2015; Wilcox et al. 2016; Jerde et al. 2016). 
 
 
As more experience is gained regarding factors that affect DNA detection in estuarine systems, 
surveys will be constructed with enhanced detection efficiency.  For example, implementing 
different water collection strategies may add capabilities to eDNA collection. Fixed point sampling 
at large water diversions (e.g., pumping stations) is practical. Yet, given the scale of estuarine habitat 
within the range of Delta smelt (1,100 square miles; Suisun Bay to Sacramento on the Sacramento 
River and to Mossdale on the San Joaquin River) using fixed position sampling as the only sampling 
approach would likely be impractical for reliable detection of extremely rare eDNA (as is the case 
with Delta smelt). Rather for detection of rare DNA within a large geographic area, alternatives to 
fixed point sampling would likely be required, such as spatially integrated collections using transects 
to sample water. Transect sampling would then inform when and where to utilize point sampling at 
specific locations (e.g., restored habitat, water diversions). However, DNA detections of rare species 
occurred in this study in a tidal environment using point sampling methods. The paradigm that 
DNA is shed into the environment by macro-organisms and this DNA can be aggregated within 
environmental samples and detected using nucleic acid amplification seems without question.  The 
challenges lie with improving specific means of encountering sufficient target DNA to achieve 
detection thresholds for rare organisms and the interpretations from observations generated. 

2.6 Conclusion 
Statistical model predictors with a consistent effect on ln[eDNA] were distance (from DNA source), 
eddy diffusivity, time (following removal of DNA source), side (tidal direction), and species (DNA 
source).  The observed effect of distance on ln[eDNA] was reduced in tidal system relative to 
unidirectional system. DNA detections decreased over time, suggesting that positive DNA 
detections from estuarine water sampling would likely occur contemporaneously with the actual 
occurrence of individuals within habitat sampled.  These findings, coupled with workflow 
customized for eDNA approaches (e.g. see artemis description in Chapter 1), enable sampling 
regimes to be constructed with more predictable detection capabilities targeting a specific biological 
question.  Further, the general approach described here, using a fixed known DNA source to refine 
effect sizes for relevant sampling covariates within the desired study habitat offers a means to 
quickly characterize a location prior to designing a field effort for the target organism.  Yet, 
efficiencies are needed for both deployment of control species and increased scale of eDNA 
collection.  Specific to Delta Smelt, near-term needs would be to efficiently characterize any 
remaining habitat (by hydrological type) where sampling covariates are unconfirmed.  To justify this 
activity, an agreement by regulatory authorities on characterization is needed.  Longer-term 
objectives pertain to adoption of eDNA as a monitoring method (i.e., eDNA considered not 
experimental) and mechanisms for adopting new tools (eDNA) within the regulatory environment. 
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2.6 Figures 
 

 
Figure 2.1. Location within Central Valley California, USA where eDNA collections occurred. 
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Figure 2.2. Proportion of positive detections (Anchovy and Delta Smelt combined) by sampling time 
(October 2019 event). The closest recorded river stage (ft) data has been matched to sampling time and 
overlaid on the plot by scaling its range (1.66 – 5.72 ft) to the primary y-axis. The dashed vertical line 
indicates live pen removal time. The distances closest to the live pen (-1 and 1) have been grouped at 
distance = “1”, as they were for modeling. 
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Figure 2.3. Proportion of positive detections (Anchovy, Steelhead, and Delta Smelt combined) by sampling 
time (December 2020 event). The closest recorded river stage (ft) data has been matched to sampling 
time and overlaid by scaling its range (1.66 – 5.72 ft) to the primary y-axis. For illustration of the delay in 
detection with river stage, more of the tidal cycle is shown than was captured by the experimental 
sampling intervals. 
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Figure 2.4. Estimated covariate effects by model. Dots are the median of the posterior probability; 
segments span 95% Credible Interval of posterior probability. 
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2.7 Tables 

 

Table 2.1.  Sampling event by live pen species deployed, time interval between water filter events, total 
hours of experiment, north (-) / south (+) distance intervals from live pen, +/- distance to control sample 
sites and filter technique (simultaneous filters collect 3 filters from same stream source; in-series filter 
collect each filter from the same stream source consecutively).      

Event Delta 
Smelt 
(count) 

Anchovy 
(count) 

Steelhead 
trout 
(count) 

Sampling 
interval 
(min) 

Total 
Hrs 
sampled 

Array 
intervals 
(+/- (m)) 

Control 
interval 
(+/- (m)) 

2019-10-22 54 50 NA 180 25 1; 50; 100; 
200; 400 

600* 

2020-12-11 25 25 15 45 6.5 25; 50; 100 600 
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Table 2.2.  The qPCR amplification summary.  Primary reference for qPCR primer and probe sequences 
given the target species, final primer and probe concentrations qPCR mixture volume of 10ul, 
thermocycling annealing temperatures used, and number of qPCR technical replicates performed per 
sample. 

Target Species Primer and 
Probe 

Primer and 
Probe 

Annealing 
Temperature 

Technical 
Replicates 

Technical 
Replicates 

  Reference Final 
Concentration   Oct 2019 Dec 2020 

Delta Smelt 
(Hypomesus 
transpacificus)  

Baerwald et al. 
2011 900nM/60nM 63°C 10 5 

Northern Anchovy, 
Engraulis mordax  

Sassoubre et al. 
2016 200nM/150nM 60°C 5 5 

Steelhead Trout, 
Oncorhynchus mykiss 

Brandl et al. 
2014 900 nM/200nM 60°C N/A 5 
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Table 2.3. Summary of mixed effects model formulas and their data sources. K refers to the particle 
concentration predicted by the level of eddy diffusivity, a value derived from ESA (2014) for the October 
2019 tidal experiments. 

Model Index Model Structure Data Source System type 
(sampling 
location) 

October 2019  Cq ~ K1.0 + Distance (m) + 
Species + Side + Time elapsed 
since cage removal (hrs) + FilterID 

October 22-23, 2019 
sampling event 

Tidal (Shag 
Slough) 

December 2020 Cq ~ Distance (m) + Species + 
Velocity (ft/s) + Side + River stage 
(ft) + FilterID 

December 11, 2020 Tidal (Shag 
Slough) 

Unidirectional Cq ~ Distance (m) + FilterID Delta smelt 
unidirectional live pen 
experiments, 2017-
2018 

Unidirectional 
(Central Valley 
Project) 
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Table 2.4. Estimated effect sizes for model estimates. Estimates are the effect on ln[eDNA]. Predictors with 
a consistent effect on ln[eDNA] are bolded. Intercepts represent the ln[eDNA] when all other predictors 
are held constant at 0 or their mean, depending on the predictor’s scale. The model parameter “ln[eDNA] 
sigma” is a variance estimate corresponding to the standard deviation of the effects on Cq. 

Model Index Model Parameter Mean 2.50% 97.50% 

Unidirectional Intercept -10.048 -10.761 -9.408 
Unidirectional Distance (m) -2.476 -3.114 -1.868 
Unidirectional ln(eDNA) sigma 1.188 1.008 1.409 
October 2019 Intercept -18.48 -19.224 -17.837 
October 2019 Particle concentration (K = 

1.0) 
1.18 0.77 1.603 

October 2019 Distance (m) -0.266 -0.71 0.19 
October 2019 Time elapsed since 

removal (hrs) 
-0.138 -0.233 -0.048 

October 2019 Target Species (Delta 
Smelt) 

2.065 1.866 2.263 

October 2019 Side (north) 0.745 0.124 1.415 
October 2019 ln(eDNA) sigma 1.366 1.272 1.469 
December 2020 Intercept -21.194 -22.301 -20.157 
December 2020 Distance (m) -0.4 -0.7 -0.12 
December 2020 Target spp (Delta Smelt) -0.469 -1.056 0.101 
December 2020 Target spp (Steelhead) 3.322 2.867 3.805 
December 2020 Tidal water velocity (ft/s) -0.029 -0.39 0.346 
December 2020 River stage (ft) -0.053 -0.434 0.311 
December 2020 Side (north) 2.413 1.699 3.131 
December 2020 ln(eDNA) sigma 2.298 2.024 2.62 
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3. Biomass Effects on Environmental DNA: 
Delta Smelt eDNA from Tidal 
Experiments 

 

3.1 Introduction 
The biomass of target fish species in the water is positively related to eDNA concentration in lentic 
(Doi et al. 2015) and lotic (Jane et al. 2015) habitats. In this component of the study, we studied the 
influence of fish biomass on eDNA in a tidal environment. We conducted two experiments. Each 
experiment began with a set of samples taken before Delta Smelt were introduced into the water at 
the experimental site in the San Francisco Bay-Delta (Delta). Each experiment then was executed 
with a different biomass of Delta Smelt (Table 3.1) inserted into a live pen and deployed in the 
waters of Shag Slough (2.1). 

3.2 Methods 
 
We initiated the two experiments on October 22, 2019 and December 12, 2020, respectively. We 
constructed a fixed distance eDNA collection array in Shag Slough, located in Solano County, 
California in the northeastern portion of the San Francisco Estuary watershed where freshwater 
discharge enters into the tidally-influenced Delta. In each experiment, a known count and biomass 
of live (cultured) Delta Smelt (Hypomesus transpacificus) were deployed in floating cages, i.e. live pens 
(Table 3.1). In addition, a control species (dead Northern Anchovy, Engraulis mordax) was secured in 
floating cages at the array center, with sampling stations established in both along-channel directions 
at discrete distances. Prior to live fish deployment, control water samples were filtered from 
sampling points ranging from 600 meters north (-600 in Figure 3.2) to 600 meters south (+600 in 
Figure 3.2) of the live pen location to confirm Delta Smelt and control species DNA were not 
present. To evaluate the success of eDNA detections across the various combinations of distance 
and biomass, we used Delta Smelt qPCR assays described in previous sections of this report and 
report the summary statistics of the Quantification Cycles (Cq) resulting from the qPCR runs.   

3.3 Results 
 
The biomass reported in Table 3.2 is the total mass of the Delta Smelt individuals reported in 
Column 2. The number of filters represents the number of water samples taken at each biomass 
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level. Descriptive statistics (mean, sd, and quantiles) report the findings for Quantification Cycles 
(Cq) which are inversely related to the concentration of DNA in each sample: Lower Cq values 
signify higher concentrations of environmental DNA in the sample. Cq values equal to 40 signify a 
non-detection of Delta Smelt DNA. 
 
The number of positive DNA detections and the DNA concentration in samples increased with 
biomass (Figure 3.1). We initiated each experiment with “control” samples and those were graphed 
as biomass of zero (0) g (Figure 3.2, Top): All samples taken when Delta Smelt biomass was zero (0) 
g were negative (i.e., no detection of Delta Smelt eDNA). Then, the live pen with Delta Smelt was 
deployed at distance “0.” We plotted data with respect to biomass and distance from DNA source in 
Figure 3.2. On inspection, we found that: 

• The number of positive DNA detections decreased with distance from the source, and 
• DNA concentration as measured by Quantification Cycles (Cq) increased with higher 

biomass. 
 

3.4 Discussion 
 
Under the range of conditions in which we worked, we found that Delta Smelt biomass was directly 
related to the probability of eDNA detection (Table 3.3). This made sense because 1) we studied 
three biomass levels, 0, 132, and 480 g (Table 3.2), 2) these biomass levels were composed of 0, 25, 
and 54 individual Delta Smelt, respectively, and 3) each individual fish generates intra- and 
extracellular DNA through release of mucus, feces, gametes and skin cells (Rourke et al. 2021). We 
observed some of the Delta Smelt adults we deployed expressed gametes but mucus, feces and skin 
cells were also all probable sources of DNA released into the water of Shag Slough during these 
experiments. Put simply, in the same period of time, more individuals tend to shed more DNA into 
the water than fewer individual fish. 
 
The fewer quantification cycles (Cq) needed to detect the target DNA, the higher the concentration 
of DNA in the sample (see Chapter One “Estimating [eDNA] via qPCR” above; Ruiz-Villalba et al. 
2021). So, it was evident from Figure 3.1, that there were more samples with smaller Cq values in the 
highest biomass level (480 g) compared to the intermediate level (132 g). Similarly, the intermediate 
biomass level exhibited more samples with smaller Cq values than did the minimum biomass level 
(zero (0) g). We concluded that when there was a positive detection, Delta Smelt biomass and 
distance from the DNA source were both related to the DNA concentration in a sample (Figure 
3.2).  This result was consistent with those of Rourke et al. (2021) who found that 57 of 63 reviewed 
studies found a positive relationship between eDNA and the abundance or biomass of the target 
fish species. 
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3.5 Figures 
 

 
 
Figure 3.1: Observed qPCR Quantification Cycle (Cq) values for each biomass level. Lower Cq 
values signify higher concentrations of environmental DNA in the sample. Cq values equal to 40 
signify a non-detection. 
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Figure 3.2: Observed qPCR Quantification Cycle (Cq) values for each biomass level by distance 
sampled from live pen. Negative distances are upstream of the live pen on an outgoing tide, while 
positive are downstream. Lower Cq values signify higher concentrations of environmental DNA in 
the sample. Cq values equal to 40 signify a non-detection. 
 

3.6 Tables 
 
Table 3.1: Summary of tidal environmental DNA experiments with two different biomass values of Delta 
Smelt placed in a live pen. 
 

Experiment 
Name Location 

Environment 
type Date 

Delta Smelt 
count 

Delta Smelt 
biomass (g) 

Tidal-01 Shag Slough Tidal Oct. 2019 54 480.3 
Tidal-03 Shag Slough Tidal Dec. 2020 25 132.2 
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Table 3.2: Summary of qPCR Quantification Cycles (Cq) values by biomass for two eDNA experiments 
using Delta Smelt. 

Biomass (g) N Delta 
Smelt 

N filters Mean Standard 
deviation 

Quantile 
(2.5%) 

Quantile 
(97.5%) 

0.0 0 33 40.00 0.00 40.00 40 
132.2 25 234 39.96 0.30 39.61 40 
480.3 54 283 39.67 0.97 35.88 40 

 
Table 3.3: Summary of detections, a positive Delta Smelt DNA detection was defined as a quantification 
cycle (Cq) result below the cutoff threshold of 40. 

Biomass (g) N filters N positive detection % positive detections 
0.0 33 0 0.0 
132.2 234 13 5.6 
480.3 283 91 32.2 
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