
 

 
 

 
 

 

Improving the reliability of 
southwestern US water supply 
forecasting  
Science and Technology Program 
Research and Development Office 
Final Report No. ST-2018-8117-01 
 

 
Rio Grande Gorge at Rio Grande Gorge Bridge, NM 
 
 

U.S. Department of the Interior  April 2021 



 

 
 
 

 

 

REPORT DOCUMENTATION PAGE Form Approved  
OMB No. 0704-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this 
collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and 
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall 
be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.  
1. REPORT DATE (DD-MM-YYYY)  
30-09-2021 
 

2. REPORT TYPE 
Research  
 

3. DATES COVERED (From - To) 
2018-2021 
 

4. TITLE AND SUBTITLE  
Improving the resiliency of southwestern US water supply forecasting in the 
face of climate trends and variability 

5a. CONTRACT NUMBER 
WBS/WOID 
Research Office Cooperative Agreement 
5b. GRANT NUMBER 
 
 
5c. PROGRAM ELEMENT NUMBER 
1541 (S&T) 
 

6. AUTHOR(S)  
Andy Wood (PI), Josh Sturtevant, Lucas Barrett, Dagmar Llewellyn 
 
 

5d. PROJECT NUMBER 
ST-2018-8117-01 
 
5e. TASK NUMBER 
 
5f. WORK UNIT NUMBER 
 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)  
 
National Center for Atmospheric Research 
Research Applications Laboratory 
3450 Mitchell Ln 
Boulder, CO 80301 
 
 
 

8. PERFORMING ORGANIZATION REPORT 
NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
Science and Technology Program 
Research and Development Office 
Bureau of Reclamation 
U.S. Department of the Interior 
Denver Federal Center 
PO Box 25007, Denver, CO 80225-0007 
 

10. SPONSOR/MONITOR'S ACRONYM(S) 
Reclamation  
 
11. SPONSOR/MONITOR'S REPORT 
NUMBER(S) 
 ST-2018-8117-01 
 
 

12. DISTRIBUTION/AVAILABILITY STATEMENT  
Final Report may be downloaded from https://www.usbr.gov/research/projects/index.html 

 
13. SUPPLEMENTARY NOTES 
 
14. ABSTRACT 

Recent decades have experienced strong trends in hydrometeorology in the western US with declining 
watershed runoff efficiency, which may be undermining the accuracy of conventional seasonal streamflow 
prediction methods that support water supply forecasts. There is a critical need to develop strategies to 
enhance the reliability of seasonal streamflow prediction methods so that they to continue to provide 
accurate, unbiased and reliable predictions by accounting for such variability.  This project created an 
unusually detailed modeling and ESP prediction (hindcast) resource that helped to understand new 
strategies for water supply prediction in the Upper Rio Grande River basin.  It was generated to have 

https://www.usbr.gov/research/projects/index.html


 

3 
 

specific relevance to the URGWOM management model.  A key finding from the project analysis is that 
ESP-based approaches to water supply volume disaggregation is likely to be viable as an operational 
strategy for Reclamation, and that ESP-based sequences were more on average more skillful than analog-
based sequences.  Additional analysis into climate predictability in the western US suggested that sub-
seasonal to seasonal climate forecasts may have the potential to offset streamflow predictability losses due 
to warming trends and declining snowpack. 
 
15. SUBJECT TERMS  
water supply forecasting, climate trends, S2S prediction, water operations and management, modeling 
 
16. SECURITY CLASSIFICATION OF:  17. LIMITATION 

OF ABSTRACT 
18. NUMBER 
OF PAGES  

19a. NAME OF RESPONSIBLE PERSON 
Dagmar Llewellyn 

a. REPORT 
U 
 

b. ABSTRACT 
U  

THIS PAGE  
U 

  19b. TELEPHONE NUMBER (Include area code) 
505-250-5493 

Standard Form 298 (Rev. 8/98) 
Prescribed by ANSI Std. Z39.18  

 



 

4 
 

Mission Statements 
The Department of the Interior (DOI) conserves and manages the 
Nation’s natural resources and cultural heritage for the benefit and 
enjoyment of the American people, provides scientific and other 
information about natural resources and natural hazards to address 
societal challenges and create opportunities for the American 
people, and honors the Nation’s trust responsibilities or special 
commitments to American Indians, Alaska Natives, and affiliated 
island communities to help them prosper. 
 
The mission of the Bureau of Reclamation is to manage, develop, 
and protect water and related resources in an environmentally and 
economically sound manner in the interest of the American public. 

Disclaimer 
Information in this report may not be used for advertising or 
promotional purposes. The data and findings should not be 
construed as an endorsement of any product or firm by the Bureau 
of Reclamation, Department of Interior, or Federal Government. 
The products evaluated in the report were evaluated for purposes 
specific to the Bureau of Reclamation mission. Reclamation gives 
no warranties or guarantees, expressed or implied, for the products 
evaluated in this report, including merchantability or fitness for a 
particular purpose. 
 

Acknowledgements 
The Science and Technology Program, Bureau of Reclamation, 
sponsored this research.  
 

 



 

5 
 

Improving the resiliency of 
southwestern US water supply 
forecasting in the face of 
climate trends and variability 
 
 
     Final Report No. ST-2018-8117-01 
 
Prepared by: 

• Andrew Wood, National Center for Atmospheric Research.  
• Josh Sturtevant, formerly of National Center for Atmospheric Research 
• Lucas Barrett, Bureau of Reclamation, Upper Colorado Basin Region, Albuquerque Area Office 
• Dagmar Llewellyn, Bureau of Reclamation, Upper Colorado Basin Region, Albuquerque Area 

Office 
 
Directorate: Upper Colorado Basin Region, Albuquerque Area Office 
Reclamation Principal Investigator: Dagmar Llewellyn, Civil Engineer (Hydrologic), Water Management 
Division 



 

6 
 

Peer Review  
Bureau of Reclamation 
Research and Development Office 
Science and Technology Program 
 
Final Report No. ST-2018-8117-01 
 
Improving the resiliency of southwestern US water supply forecasting in the 
face of climate trends and variability 

 
_______________________________ 
Prepared by: Andrew Wood 
Project Scientist III, National Center for Atmospheric Research 

 
_______________________________ 
Prepared by: Lucas Barrett 
Bureau of Reclamation, Albuquerque Area Office 

 
_______________________________ 
Prepared by: Dagmar Llewellyn 
Bureau of Reclamation, Albuquerque Area Office 

 
_______________________________ 
Peer Review by: Flavio Lehner 
Cornell University 
 
 
 
“This information is distributed solely for the purpose of pre-dissemination peer 
review under applicable information quality guidelines. It has not been formally 
disseminated by the Bureau of Reclamation. It does not represent and should not 
be construed to represent Reclamation’s determination or policy.” 

  



 

7 
 

Contents 

Page 
 
Mission Statements ................................................................................................... 4 
Disclaimer ................................................................................................................... 4 
Acknowledgements.................................................................................................... 4 
Peer Review  ............................................................................................................... 6 
 Contents ..................................................................................................................... 7 
Executive Summary .................................................................................................. 9 

Need for research .................................................................................................. 9 
Research questions ................................................................................................ 9 
Methods used to address the research questions ............. Error! Bookmark not 

defined. 
Conclusions ........................................................................................................... 9 

1.  Introduction ........................................................................................................ 11 
1.1.  Project background ..................................................................................... 11 
1.2  Previous work .............................................................................................. 11 
1.3  Problem Statement ....................................................................................... 12 
1.4  Study objectives and approach.................................................................... 12 
1.5  Study team and partners .............................................................................. 14 

2.  Methods and Data .............................................................................................. 14 
2.1  Watershed modeling with SUMMA and mizuRoute ................................ 14 

2.1.1  Model structure ................................................................................... 15 
2.1.2  Model Attributes................................................................................. 16 
2.1.2 Model parameters ................................................................................ 17 
2.1.3  Model decisions .................................................................................. 19 
2.1.5  Model output specification ................................................................ 20 
2.1.6  Model development ............................................................................ 20 
2.1.6  Model calibration ............................................................................... 21 

2.2  Meteorological model forcings with GMET and MetSim ........................ 22 
2.3 Ensemble Streamflow Prediction for Water Supply................................... 23 

2.3.1 Forecast Ensemble Generation ........................................................... 23 
2.3.2  Forecast Ensemble Post-processing .................................................. 23 

2.3.3 Real-time forecasts with SHARP ............................................................. 25 
2.3.4 ESP-based runoff shape analysis .............................................................. 26 
2.4  Upper Rio Grande River Water Operations Model ................................... 26 
2.4.1  Major inflow locations ............................................................................. 27 
2.5 Climate predictability analysis ..................................................................... 28 

3.  Results .................................................................................................................. 29 
3.1 ESP model implementation, calibration and hindcasting........................... 29 
3.2 ESP-based hydrograph shape analysis to support AOP ............................. 35 
3.3 Real-time ESP hindcasting ........................................................................... 37 
3.3 Climate predictability analysis ..................................................................... 37 
3.4 Partner interactions ....................................................................................... 39 

4.  Discussion ............................................................................................................ 39 



 

8 
 

Recommendations, implementation, or next steps ......... Error! Bookmark not 
defined. 

5.  Data Location...................................................................................................... 40 
References ................................................................................................................. 41 
Appendix ................................................................................................................... 43 
 



Southwestern Water Supply Forecasting 

9 
 

Executive Summary 

Need for research 
Recent decades have seen strong low-frequency variability in hydrometeorology in the 

western US, with major river basins such as the Colorado, the Rio Grande, Columbia and the 
Sacramento-San Joaquin exhibiting significant floods and droughts and, in some areas, declining 
runoff efficiencies.  Recent studies (Lehner et al, 2017; Woodhouse et al, 2016) find evidence 
that this variability is undermining the accuracy and predictive skill of conventional seasonal 
streamflow prediction methods that support water supply forecasts, which are based on 
assumptions of hydrometeorological stationarity – and in particular, on fixed relationships 
between winter rainfall and snowpack and spring runoff.  Such streamflow forecasts form a 
central input not only to water resources management but also to stakeholders’ planning 
decisions as each water year progresses.  There is thus a critical need to develop strategies to 
enhance the reliability of seasonal streamflow prediction methods so that they to continue to 
provide accurate, unbiased and reliable predictions by accounting for such variability.  

Research questions and methods 
The objective of this project was to assess and improve the reliability of water supply forecasting 
methods in the face of hydrometeorological variability.  The NCAR Project Team sought to 
develop, refine, evaluate, and demonstrate prototype strategies for incorporating meteorological 
variability into current operational statistical (Statistical Water Supply, or SWS) and model-
based ensemble (Ensemble Streamflow Prediction, or ESP) water supply prediction methods.  In 
the Upper Rio Grande basin, the relative value of the new ensemble streamflow forecasts and 
their impact on water management outcomes will be assessed qualitatively and quantitatively, 
comparing enhanced predictions (hindcasts) versus official predictions for prior years, in part by 
leveraging existing Reclamation RiverWare reservoir system models.  A particular question 
investigated was whether ESP forecasts could be used to disaggregate operational volume 
forecast to provide input to management models.  NCAR also aimed to assess the broader 
regional sensitivity of seasonal hydrologic predictability to long-term variability and trends, and 
the sufficiency of current operational meteorological forecasts (particularly for temperature) to 
improve the resiliency of water supply forecasts across the western US.  To this end, sub-
seasonal weather and seasonal climate forecasts were processed and analyzed.  

Conclusions 
Overall, the analysis demonstrated that the ESP-based approach to water supply volume 
disaggregation is likely to be viable as an operational strategy for Reclamation, and that ESP-
based sequences were on average more skillful than analog-based sequences, from a daily error 
standpoint.  We note that the ESP-based traces will have a different characteristic than the 
analogs, in that if the median or mean ESP sequence is used, it will be smoother than an 
observed sequence from an individual year.  As a result, it will not over-prescribe (without skill) 
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various runoff timings throughout the season, but equally it will not provide a realistic variability 
from week to week (because it smooths out such unpredictable variations).  Depending on the 
quality of the model in different locations and the nature of the inflow point (e.g., into a reservoir 
or into the mainstem), it may be the preferable strategy to adopt.   

At a presentation to Reclamation operators and URGWOM experts, it was noted that 
some locations in the basin have a bimodal runoff pattern due to both natural causes (such as 
different snowmelt timing from different headwater areas) and management (e.g., groundwater 
driven irrigation returns).  To that the extent these causes are represented in the model (i.e., the 
natural effects), they would likely show up in muted fashion in the ESP mean or median shapes, 
but the management driven effects would not.  Analog sequences might identify this behavior 
better than ESP in some locations.  The NCAR team subsequently spent time assessing whether 
this bi-model behavior could be identified in observed flow records, and did not find strong 
support for this theory in the data. 

This project created an unusually detailed modeling and ESP prediction (hindcast) 
resource that helped to understand new strategies for water supply prediction in the Upper Rio 
Grande River basin.  It was generated to have specific relevance to the URGWOM management 
model, and shared with other groups who are doing capability development research in the Rio 
Grande, and will likely have continued importance following this project.      
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1.  Introduction 

1.1.  Project background 
The scarcity of water has been a defining feature in western United States (US) water 

management for its entire history, and associated decisions affect the welfare of the general 
public across multiple economic and social sectors.  Water supply forecasts represent a critical 
input to this decision-making, providing sub-seasonal to interannual outlooks that help to guide 
reservoir operations planning, often through the use of reservoir management models.  In the 
western US, over half of the annual streamflow is derived from snow, which together with 
watershed soil moisture provides the core information used in spring to predict variations in the 
snowmelt runoff period that commonly refills reservoir storages that were depleted throughout 
the fall and winter seasons, enabling allocations for water supply and agriculture during the 
relatively drier summer season.  Since the 1930s, the predictive relationship between watershed 
moisture conditions and future runoff volumes has been exploited using statistical forecast 
methods by the Natural Resources Conservation Service (NRCS) [Helms et al., 2008], which in 
recent decades has collaborated with the National Weather Service (NWS) River Forecast 
Centers (RFCs) to issue seasonal water supply forecasts (for predictands such as April-July 
runoff volume) throughout the western United States [Pagano et al, 2014].  The NWS also 
introduced a model-based method of water supply forecasting (WSF) termed ensemble 
streamflow prediction (ESP), which applies hydrologic and river routing models to produce 
forecasts of watershed runoff and streamflow [Day, 1985; Twedt et al., 1977].   

In the Upper Rio Grande (URG) basin, until 2020, the NRCS statistical volume forecasts 
were the only operational predictions available for use in driving water system projections with 
the Upper Rio Grande Water Operations Model (URGWOM).  These multi-month volume 
forecasts were disaggregated to daily streamflow traces (sequences) at multiple URGWOM 
inflow points through the selection of analogue years (based on volume and expert judgement) to 
enable storage and release forecasts to be made with URGWOM, supporting the development of 
annual operating plans.  In 2019-2020, the NWS developed new ESP-based WSFs for the URG, 
providing an expanded set of information for potential use in managing URG water resources.  
Such ESPs are used to provide inflow forecasts for reservoir systems throughout the western US 
and internationally.  In general, though climate forecasting exists in various forms (either based 
on climate indices such as El Nino, or on climate model forecasts), such climate information is 
not yet widely used to inform ESP-based forecasting in the US.   

1.2  Previous work 
Prior research collaborations involving the current project team focused on the potential 

for climate forecasts to enhance WSF in the URG.  In particular, the team tried to improve our 
understanding of whether climate trends have impacted (a) the relationship between watershed 
climate and runoff; and (b) whether any loss in predictability due to temperature trends could be 
offset through incorporating climate model forecasts of temperature into statistical predictions.  
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This work, which relied on paleoclimate reconstructions of runoff efficiency, found that runoff 
efficiency varies primarily in proportion to precipitation, but that there exists a clear secondary 
influence of temperature. In years of low precipitation, very low runoff efficiencies are made 
2.5–3 times more likely by high temperatures. This temperature sensitivity appears to have 
strengthened in recent decades, implying future water management vulnerability should recent 
warming trends in the region continue (Lehner et al. 2017a).  The downward trend in runoff 
efficiency over the last 30 years was shown to be significant, thus the team explored the benefits 
of including available seasonal temperature forecasts into seasonal streamflow forecast models to 
improve their skill. To that end, they used the publicly available seasonal climate forecasts from 
the North American Multi-Model Ensemble (NMME; 7 models) and later was able to add 
forecasts from the proprietary European Centre for Medium Range Weather Forecasts (ECMWF; 
1 model), leveraging an ongoing collaboration between ECMWF and Dr. Wood, the NCAR PI 
for the project.  The large ensemble prediction dataset was analyzed for the URG region, and the 
team corroborated that they could indeed improve the streamflow forecast skill for key 
headwater gages in the Colorado and Rio Grande by around 10% in hindcasts over the period 
1987-2016 by adding temperature information to the current operational forecasting approach by 
the Natural Resources Conservation Service (NRCS) (Lehner et al. 2017b). This work involved 
collaboration with the NRCS, which assessed the potential for the work to improve their 
operational predictions for the URG and elsewhere.  

1.3  Problem Statement 
Recent decades have seen strong low-frequency variability in hydrometeorology in the 

western US, with major river basins such as the Colorado, the Rio Grande, Columbia and the 
Sacramento-San Joaquin exhibiting significant floods and droughts and, in some areas, declining 
runoff efficiencies.  Recent studies (Lehner et al, 2017; Woodhouse et al, 2016) find evidence 
that this variability is undermining the accuracy and predictive skill of conventional seasonal 
streamflow prediction methods that support water supply forecasts, which are based on 
assumptions of hydrometeorological stationarity – and in particular, on fixed relationships 
between winter rainfall and snowpack and spring runoff.  Such streamflow forecasts form a 
central input not only to water resources management but also to stakeholders’ planning 
decisions as each water year progresses.  There is thus a critical need to develop strategies to 
enhance the reliability of seasonal streamflow prediction methods so that they to continue to 
provide accurate, unbiased and reliable predictions by accounting for such variability. Three 
related scientific needs are: 

• to understand the underlying hydrometeorological dynamics,  

• to assess the broader west-wide extent of potential changes in 
hydrometeorological predictability, and  

• to measure the potential of current operational meteorological predictions to 
strengthen water supply forecasts to support critical operational decisions. 

1.4  Study objectives and approach 
The objective of this project was to assess and improve the reliability of water supply 

forecasting methods in the face of hydrometeorological variability.  The NCAR Project Team 
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sought to develop, refine, evaluate, and demonstrate prototype strategies for incorporating 
meteorological variability into current operational statistical (Statistical Water Supply, or SWS) 
and model-based ensemble (Ensemble Streamflow Prediction, or ESP) water supply prediction 
methods.  In the Upper Rio Grande basin, the relative value of the new streamflow forecasts and 
their impact on water management outcomes will be assessed qualitatively and quantitatively, 
comparing enhanced predictions (hindcasts) versus official predictions for prior years, in part by 
leveraging existing Reclamation RiverWare reservoir system models.  NCAR also aimed to 
assess the broader regional sensitivity of seasonal hydrologic predictability to long-term 
variability and trends, and the sufficiency of current operational meteorological forecasts 
(particularly for temperature) to improve the resiliency of water supply forecasts across the 
western US.  A number of tasks were outlined to meet these objectives.  

Task 1 – Refinement, evaluation and demonstration of enhanced Water Supply 
Forecast approaches in the Upper Rio Grande River basin:  Continue and refine prior 
research in the Upper Rio Grande basin to improve the skill of statistical water supply forecasts 
by using NOAA National Multi-Model Ensemble (NMME) temperature forecasts. This will 
include techniques such as ensemble member selection and weighing based on NMME forecasts 
for use in frameworks such as ESP water supply forecasts.   These approaches will be applied to 
locations in the basin identified through coordination with Reclamation.  Software will be 
developed for the NMME data acquisition and processing, and for the statistical and ESP-based 
hindcast and forecast applications. Software development will aim to facilitate incorporation of 
enhancements into existing operational forecast frameworks and also to enable use by entities 
not currently producing forecasts.  

Task 2 – Assessment of Water Supply Forecast method resiliency across the western 
US: The NCAR Project Team will analyze historical observations (including precipitation, snow 
water equivalent, temperature and runoff) across the Reclamation domain to identify locations in 
which climate variability and trends are altering the predictability of spring runoff (or other key 
hydrologic phenomena).  Retrospective watershed model simulations of hydrologic variability 
will be conducted to investigate changes to physical mechanisms and their drivers.  The 
assessments will focus on 30-50 basins of interest to Reclamation, using a physically-oriented 
modeling approaches.  

Task 3 – Assessment of NOAA National Multi-Model Ensemble climate forecast 
skill and potential to enhance Water Supply Forecasts for Reclamation-managed 
watersheds across the western US:  Techniques developed in prior and related research by the 
NCAR team will be extended to assess climate forecast skill from the NOAA National Multi-
Model Ensemble (NMME) across the western US.  In addition to NMME predictions, forecasts 
based on approaches funded by Reclamation and other federal agencies will also be evaluated.  
For those forecast approaches found to have skill, their use in existing and new frameworks will 
be explored toward enhancing water supply forecasts. 

Task 4 – Assessment of Upper Rio Grande basin water management using enhanced 
forecasts: The impact of improved seasonal streamflow forecasting will be assessed from the 
perspective of water management in the Upper Rio Grande basin.  Focusing on selected prior 
years, NCAR will qualitatively evaluate the potential impacts of forecast improvements through 
discussions with Reclamation’s water operations team. To the extent possible, quantitative 
assessments of forecast improvements on operations will be pursued using the RiverWare 
reservoir systems model. 
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1.5  Study team and partners 
The research team included Andy Wood (NCAR), Josh Sturtevant (NCAR) Dagmar 

Llewellyn (Reclamation) and Lucas Barrett (Reclamation).  Flavio Lehner was a co-investigator 
at NCAR before leaving to join Cornell University.  Other external partners such as the NRCS 
National Water and Climate Center (NWCC, Portland, OR), and in particular Angus Goodbody, 
also interacted at times during the project to continue to pursue the prospects for operational 
climate-informed statistical WSF.  

2.  Methods and Data 

2.1  Watershed modeling with SUMMA and mizuRoute 
Understanding hydrological processes across a range of spatiotemporal scales is crucial to 
support myriad hydrometeorological applications in water security, energy supply, weather and 
climate adaptation planning, as well as facilitate investigating fundamental hydrology questions. 
Process-based hydrological models are a widely implemented tool to simulate water, energy and 
momentum fluxes within or between different hydrologic domains and subsystems. Over last 
few decades, process-based hydrological models of various concepts and structures have been 
modified and tested to obtain hydrologic predictions across a range of spatial (gridded, regional, 
continental, global etc.) scales to handle different scientific and engineering problems. Yet the 
collection of available models, which differ in arbitrary specifics, do not provide for systematic 
and controlled assessment and research into the relationship between model performance and 
specific modeling decisions, including model structure, parameters and parameterizations. To 
address this challenge, Clark et al. (2015a, 2015b) created a flexible modeling framework, 
namely the Structure for Unifying Multiple Modeling Alternatives (SUMMA), as a platform for 
testing and benchmarking different modeling approaches and parameterizations, different 
process representations across spatial scales, and different representations of spatial variability 
and hydrological connectivity.   
 
The majority of SUMMA-based development to date has focused on the introduction and 
validation of process-oriented test cases, such as the demonstration of the sensitivity of snow 
accumulation and melt to the choice of parameterization.  Watershed applications supporting 
calibrated streamflow modeling and prediction have only recently been supported through this 
project, among several sponsored by Reclamation and the US Army Corps of Engineers.  To use 
SUMMA for the prediction activities undertaken in the Upper Rio Grande River basin required: 

• The testing of an a priori SUMMA implementation with an initial configuration that 
provides a foundation for a range of applications;  

• The development of scripts and workflows for model configuration, calibration, 
simulation and ensemble forecasting.   

• The one-way coupling of SUMMA runoff to streamflow routing via the mizuRoute 
channel routing model (Mizukami et al., 201X; 202X) 
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• The implementation of the SUMMA and mizuRoute models within a real-time prediction 
system, and in this case the System for Hydromet Research, Applications and Predictions 
(SHARP) that is run at NCAR.  

• The SUMMA code base supported the generation of a full range of hydrologic processes, 
but other model components and workflows necessary for users to apply SUMMA to a 
non-point watershed application did not exist.  Work required included the creation of a 
priori parameter and attribute datasets capable of yielding credible baseline simulations; 
selection of calibration parameters and a strategy and workflows for model calibration; 
parameter sufficient lacked usable input parameter datasets; a stable structural 
configuration and initial model decision set, as well as output configurations; and long-
term model forcings for use in off-the-shelf application.  In addition, workflows 
supporting prediction applications such as seasonal forecasting were needed for water 
management partners supporting the development of SUMMA.   

 
Similar to all hydrologic models, SUMMA input comprises static attributes and parameters and 
time-varying meteorological forcings; and unlike many models, SUMMA also requires a model 
decisions list.  Where possible, existing NLDAS CONUS-wide datasets were used to derive the a 
priori SUMMA model attributes and parameters.  NLDAS2 datasets represent a quality 
controlled and spatially distributed land surface modeling resource for CONUS at 1/8th degree 
grid resolution and have been widely applied for various applications in water resources (Xia et 
al., 2012c, 2012b).  
 
The mizuRoute multi-method channel routing model (Mizukami et al, 2016) was implemented to 
route SUMMA hydrologic total runoff (surface and subsurface) through the basin’s stream 
channel network and calculate streamflow.  The model network is defined by the reach-based 
global MERIT-Hydro Flowlines network (Yamazaki et al, 2019), after extracting stream channel 
segments local to URG basin, and adding necessary routing parameters.  The network resolves 
the stream reaches and key flow locations at an intermediate scale, somewhat finer than the 
HUC12 SUMMA model scale.  A unit hydrograph (UH) routing method (termed ‘impulse 
response function’ or IRF in mizuRoute) was applied.  As noted earlier regarding SUMMA, the 
complexity (density) of this network and routing algorithm influences the agility, usability and 
computational efficiency of the routing model solution.  For the purposes of bulk spring runoff 
prediction, this intermediate-scale, intermediate-complexity modeling approach was chosen to 
enhance the computational feasibility of running multiple sequences of ensemble predictions.   

2.1.1  Model structure 
 
In SUMMA, the spatial organization has a 2-level hierarchy, including hydrologic response units 
(HRUs) that are nested within grouped response units (GRUs) to represent the modeling domain.  
The units can have any dimensionality, such as grid or polygon shapes.  To achieve a balance in 
complexity that allowed the model to represent a useful degree of spatial heterogeneity without 
being prohibitively expensive (computationally) to run, the URG implementation (like others 
used in related projects for Reclamation) used a single HRU per GRU, and the distributed 
parameters were estimated for HRUS and GRUs defined by the USGS HUC12 watershed 
boundary dataset.  The a priori SUMMA model was configured with 3 soil layers, one aquifer 
layer, and a maximum of 5 snow layers.  The nominal depth of the soil layers is fixed at 2 
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meters, which is consistent with other land models used in large domain applications, while the 
height of the snow layers varies.  The model timestep was set at 3 hours, versus 1 hour of less 
which is more common in process oriented modeling, but is more demanding (and limiting) 
computationally and with regard to model inputs and outputs.  Sensitivity testing of these choices 
(e.g., 3 layer versus 8 layer soil, different timesteps, different total soil depths) was done using a 
CAMELS SUMMA dataset, confirming that these would be efficient selections making an 
acceptable tradeoff between model agility and complexity. For instance, due to the adaptive 
time-stepping of the SUMMA model, the difference in performance between the 3 hourly and 1 
hourly models was second-order.  
 
The mizuRoute model has been implemented in the course of this and related projects on several 
different channel routing networks, including the NHDPlusV2 network used in the National 
Water Model (NWM), with 2.7 million reaches nationwide; the much coarser Geospatial Fabric 
developed by the USGS, and the MERIT Hydro Flowlines network.  The latter was chosen for 
this project because of its ability to resolve the stream channel network and key flow locations at 
an intermediate scale, somewhat finer than the HUC12 SUMMA model scale.  As noted earlier 
regarding SUMMA, the complexity (density) of this network affects the agility, usability and 
computational efficiency of the routing model solution.   

2.1.2  Model Attributes 
SUMMA uses the 14 model attributes listed in Table 1. For a priori implementation, we adopted 
seven variables with spatially distributed values from the existing LIS-NLDAS2 dataset used for 
other NLDAS2 models already supported in LIS (e.g., NOAH-mp).   Four attributes 
(measurement height above bare ground, contour length, average tangent slope) were set to 
default constants.  The remaining four model attributes are related to identification of grid cells 
or HRUs within the hydrological model and hence, they have no direct relevance to NLDAS2 
topographical/land data features. 
 
Table 1. List of updated SUMMA attributes 
Attribute name Description Implementation 
elevation NLDAS elevation Distributed – NLDAS2 
HRUarea Area of each HRU  Distributed – NLDAS2 
latitude Latitude of HRU's centroid point Distributed – NLDAS2 
longitude Longitude of HRU's centroid point Distributed – NLDAS2 
slopeTypeIndex Index defining slope type Distributed – NLDAS2 
soilTypeIndex Index defining soil type Distributed – NLDAS2 
vegTypeIndex Index difining vegetation type Distributed – NLDAS2 
contourLength Contour length of HRU Constant – default 
downHRUindex Id of downslope HRU (0 = basin 

outlet) 
Constant – default 

hruId Id of each HRU Distributed – NLDAS2 
mheight Measurement height above bare 

ground 
Constant – default 

tan_slope Average tangent slope of HRU Constant – default 
gruId Id of group response unit (GRU) Distributed – NLDAS2 
hru2gruId Id of GRU to which HRU belongs Distributed – NLDAS2 
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2.1.2 Model parameters 
SUMMA uses two different types of parameters for the two levels of the spatial hierarchy:  HRU 
(‘local’) and GRU (‘basin’). Local parameters are used to define variables and constants 
representing conservation and thermodynamic equations as well as numerical schemes used 
within SUMMA modeling framework. More specifically, local parameters are mainly related to 
water and energy fluxes within the physical domain of snow, soil and vegetation canopy, their 
mathematical models and computational strategy. Basin related parameters define hydrologic 
aquifers and baseflow properties that are necessary for flow routing applications.   
 
SUMMA also allows for a hierarchy in the specification of parameters for these spatial levels.  
Two separate files define values for local and basin parameters that are constant over the global 
domain of the run; however, during model simulations, these a priori values are overwritten by 
values for the same parameters if they are attached to soil and vegetation types (attributes) 
specified individually for each HRU, as provided in parameter tables for soil (eg, STAS, STAS-
RUC) and vegetation (eg, USGS-RUC, Modified MODIS) categories.  SUMMA enables a third 
set of ‘trial’ parameters that overwrite the table-based parameters in turn, and appear in a 
separate input file that is distributed over all the HRUs or GRUs of the model.  All levels of the 
parameters may be updated in calibration, depending on the update scripts that have been 
developed for this purpose.    
 
To create a useful calibration parameter set, a priori values were estimated for approximately 40 
parameters affecting a broad range of hydrologic processes (listed in Table 2).  Nine of these 
were given distributed values associated with their soil and vegetation type library values (and 
are listed as ‘distributed’).  The maximum snow albedo parameter based on NLDAS Noah-MP 
snow albedo dataset.  In contrast to calibration effort focusing on table-based settings for 
parameters, these can be set differently for each individual HRU.  Not all are likely to be chosen 
for a given calibration effort, and more are likely to be added in the future.  SUMMA has over 
200 parameters, though not all are likely to be useful in model calibration. 
 
Table 2. List of updated SUMMA parameters with NLDAS2 

Parameter name Description Distributed (D) or 
Constant (C) and 
Relevance 

critSoilTranspire Critical vol. liquid water content when 
transpiration is limited 

(D) Evapotranspiration  

critSoilWilting Critical vol. liquid water content when plants 
are wilting 

(D) Evapotranspiration  

fieldCapacity Soil field capacity (vol. liquid water content 
when baseflow begins) 

(D) Evapotranspiration  

k_soil Soil hydraulic conductivity (D) Soil water transmission 
theta_res Soil residual volumetric water content (D) Soil water storage 
theta_sat Soil porosity (D) Soil water storage 
vGn_alpha Van Genutchen alpha parameter (D) Soil water transmission 
vGn_n Van Genutchen n parameter (D) Soil water transmission 
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albedoMax Maximum snow albedo (D) Snowmelt 
Fcapil capillary retention as a fraction of the total 

pore volume 
(C) Snowmelt 

albedoDecayRate Albedo decay rate (C) Snowmelt 
albedoRefresh critical mass necessary for albedo refreshment (C) Snowmelt 
aquiferBaseflowExp Baseflow exponent (C) Baseflow  
aquiferBaseflowRate baseflow rate when aquifer storage = aquifer 

Scale Factor 
(C) Baseflow  

heightCanopyTop height of canopy top (D) Snow accumulation 
and melt, 
evapotranspiration, 
interception 

heightCanopyBottom height of canopy bottom (D) Snow accumulation 
and melt, 
evapotranspiration, 
interception 

f_impede Ice impedence parameter (C) Snowmelt 
frozenPrecipMultip frozen precipitation multiplier (C) Snow accumululation 
k_macropore saturated hydraulic conductivity for 

macropores 
(C) Soil water transmission 

mpExp empirical exponent in macropore flow equation (C) Soil water transmission 
mw_exp Exponent for melt water flow (C) Snowmelt 
qSurfScale scaling factor in the surface runoff 

parameterization 
(C) Runoff  

refInterceptCapRain reference canopy interception capacity per unit 
leaf area (rain) 

(C) Canopy interception 

refInterceptCapSnow canopy interception capacity per unit leaf area 
(snow) 

(C) Canopy interception  

routingGammaScale scale parameter in Gamma distribution used 
for sub-grid routing 

(C) Hillslope Routing  

routingGammaShape shape parameter in Gamma distribution 
used for sub-grid routing 

(C) Hillslope Routing 

summerLAI maximum leaf area index at the peak of the 
growing season 

(C) Evapotranspiration, 
interception 

tempCritRain critical temperature where precipitation is rain (C) Snow accumulation 
tempRangeTimestep temperature range over the timestep (C) Numerics 
theta_mp minimum volumetric liquid water content for 

macropore flow 
(C) Soil water transmission 

throughfallScaleRain scaling factor for throughfall (rain) (C) Precipitation  
wettingFrontSuction Green-Ampt wetting front suction (C) Infiltration 
windReductionParam canopy wind reduction parameter (C) Evapotranspiration 
zScale_TOPMODEL scale factor for TOPMODEL-ish baseflow 

parameterization 
(C) Baseflow  
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Figure 1. Selected SUMMA distributed attributes and parameters over CONUS 

2.1.3  Model decisions 
SUMMA offers flexibility in selecting different modeling decisions from a list of options to 
identify process representation, numerical implementation and parameterizations of 
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thermodynamic and hydrologic fluxes. With these choices, modelers are able to test different 
combinations of modeling parameterizations and assess their impact on model behavior and 
output configurations. For SUMMA implementation, we have selected a set of model decisions 
depending on data availability and computational efficiency. For instance, STATSGO and 
MODIS 20-category datasets are selected to obtain soil and vegetation features. Among different 
choices, we have employed iterative numerical scheme and an analytical approach to calculate 
flux derivatives. To obtain snow and leaf area index, we select a scheme that allows for LAI 
calibration with a fixed seasonal pattern. The vertical distribution of soil water was implemented 
based on mixed form of Richard’s equation (Celia et al., 1990) and groundwater 
parameterization was defined using the big bucket concept, which has a non-linear baseflow 
curve that is not dissimilar to that used in the VIC model. Our model simulations were based on 
a constant hydraulic conductivity along the depth of the soil instead of using the power law 
profile. A more simplied Raupach (Raupach, 1994) equation is employed for parameterizing 
vegetation roughness length and displacement height. Canopy emissivity and snow interception 
was implemented as a function of diffuse transmissivity and inverse function of new snow 
density, respectively. Albedo was represented by a constant decay rate and Beer’s Law (Mahat 
and Tarboton, 2012) was chosen as canopy shortwave radiation method. The thermal 
conductivity of snow was represented by Jordan (1991) equation and soil conductivity was 
considered a function of soil wetness.   

2.1.5  Model output specification 
 
SUMMA allows for flexible output configuration, specified in an output control file.  Users can 
specify not only the flux and state variables (and parameters) that can be output, but their 
frequency and a small number of statistical operations that can be applied (such as the maximum 
value over a period).  For this work, a number of output variable configurations were developed.  
These include primarily a full process description profile that provides timestep-level states and 
fluxes sufficient to determine the full energy and water balance of different model spaces 
(canopy, snow, soil, aquifer); and a reduced ‘water balance’ profile that provides major states 
and fluxes at a daily time-step, as well as basin (GRU) runoff for routing.  The latter 
configuration is used for model calibration, evaluation and forecasting, due to its efficiency 
(small storage footprint as well as increased model simulation speed).   
 
During the course of this and related projects (see Discussion), the decision was made to use a 
hillslope runoff delay function within SUMMA at the basin (GRU) level, thus basin runoff is a 
key output variable.  This allows for the use of a SUMMA model configuration that may have 
varying HRU (subbasin) choices to support the same routing spatial configurations; and also 
allows the model runoff lateral flow timing to be calibrated jointly with other model parameters, 
versus calibrating GRU scale timing within the channel routing model.   
 

2.1.6  Model development 
 
The work of this project and the related S&T SUMMA applications projects were challenged by 
a number of model code and implementation issues throughout the project, necessitating a 
number of interventions by the project’s NCAR PI to upgrade the model capabilities and correct 
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software bugs.  Some of these upgrades led to the release of SUMMA version 3.0, due to the 
reconfiguration of SUMMA inputs to facilitate their use in the forecasting and model calibration 
context.  Key changes and bug fixes are documented in the SUMMA repository, and some of the 
key changes or fixes include the following: 

• The ability to provide exact restarts for modelled basin runoff, which is essential for 
forecasting and other applications 

• Addition of GRU and HRU information to model outputs to facilitate split domain runs 
• Bug fixes to correct the calculation of model runoff (several bugs) 
• Revision of internal model balance checks to fix errors and enable reliable simulation 

completion, reducing convergence difficulties 
• Improved documentation and messaging on model failures (to facilitate diagnosis) 
• Reconfiguration of input model configuration and decisions files to facilitate templating 

usage in a forecast workflow 
• Ability to use different data types for hruIds to enable use with HUC12 domains   

MizuRoute model code changes were also implemented on specifications from this (and related) 
projects to facilitate templating of control files, better handling of different input formats, and 
more intuitive specification of time parameters related to restarts (forecast initialization).  

2.1.6  Model calibration 
Because SUMMA had not been applied for streamflow prediction is prior studies, significant 
effort was made to develop a model streamflow calibration strategy.  In addition to exposing a 
range of trial parameters for users to manipulate in a distributed fashion, a smaller tractable set of 
parameters was identified to enable SUMMA to be optimized to produce streamflow of 
acceptable quality – i.e., a Kling Gupta Efficiency (KGE) value of greater than 0.7.  This set of 
calibration parameters was chosen and refined over several months to impact key hydrologic 
processes, leading to a set of 13 parameters that are highlighted in bold in Table 2.  These 
parameters affect infiltration, evapotranspiration and interception, soil water storage and 
transmission, snow accumulation and melt, aquifer baseflow generation, and hillslope runoff 
timing.  The selection of a small but effective set of calibration parameters is critical because 
optimization algorithms perform best within a small parameter search space.   
 
This project and the related SUMMA S&T projects adopted and developed workflows for 
SUMMA calibration using a multi-method general parameter optimization program called 
Ostrich (Matott et al., 2013).   Ostrich has become an in-house capability being actively 
developed by Reclamation.1 In Ostrich, the Dynamically Dimensioned Search (DDS) algorithm 

 
1 Ostrich is an example of technology transfer facilitated by S&T projects at NCAR led by the PI of this project, 
Andy Wood. Ostrich was investigated rom available online tools and adopted in late 2016 by PI Wood in the interest 
of moving beyond two optimization tools commonly used by NCAR and Reclamation (SCE and MOCOM) over the 
last decade or more.  This effort was funded under the Coop Agreement PWP4 project.  Dr. Wood later organized an 
Ostrich workshop in Spring 2018 at NCAR led by a key Ostrich and optimization method developer, Dr. Bryan 
Tolson (who was hosted for a visit to NCAR from the University of Waterloo), and Wood invited Reclamation 
personnel to participate in the workshop.  Following the workshop, Dr. Wood worked with Reclamation contacts to 
apply Ostrich for the VIC model, and hosted various Reclamation personnel accounts on NCAR high performance 
computing systems to facilitate the interaction.  These interactions helped to spur Reclamation interest in Ostrich 
optimization techniques, which later led to other Ostrich applications in Reclamation and Ostrich code maintenance 
and development being overtaken by Reclamation (https://github.com/usbr/ostrich).  Dr. Wood also hired Dr. Hongli 
 

https://github.com/usbr/ostrich
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(Tolson & Shoemaker, 2007) was used to adjust model parameters.  A shell script workflow for 
applying Ostrich-DDS was written to leverage high-performance computing on the NCAR 
Cheyenne system.  The workflow sets initial parameter ranges based on the SUMMA local 
parameter range specifications, runs a split domain simulation in which parameter multipliers are 
calibrated, merges the outputs and runs the mizuRoute model to produce streamflow, and 
assesses performance.  A number of supporting scripts for generating initial parameter limit files, 
updating parameters in text and netcdf input files, and assessing performance, were written to 
support the workflow.  Aside from Andy Wood, other contributors have included Manabendra 
Saharia (funded under PWP4), and Hongli Liu (funded under S&T 178).  This model calibration 
workflow has now been adopted and incorporated into SUMMA projects at the University of 
Washington and University of Saskatchewan, and will be used by the SUMMA community as it 
grows.   

2.2  Meteorological model forcings with GMET and MetSim 
The Gridded Meteorological Ensemble Tool (GMET) methodology is based on multiple logistic 
and linear regression using static geophysical attributes to predict precipitation and temperature 
across a grid (Clark and Slater, 2006; Newman, 2015).  Regression errors are used to condition 
spatially correlated Gaussian random fields for ensemble generation.  The spatial regression 
approach for interpolating situ meteorological observations uses spatially distributed information 
as predictor fields in an ordinary least squares (OLS) linear regression to explain the spatial 
distribution of point in situ observations.  In this project’s application of GMET, the spatial 
predictors are static geophysical attributes (slope, elevation, latitude, and longitude).  The 
regression was applied to predict daily precipitation, mean temperature, and diurnal temperature 
range (DTR) for each target grid cell, on each day, based on the current observed values of those 
variables within a sample from the 30 nearest meteorological stations and given their relationship 
to the local terrain features at the station locations.  This strategy generated dynamic (time-
varying) uncertainty estimates that are driven by daily observed meteorological conditions.   
 
In support of this project and related SUMMA modeling projects funded by S&T, GMET was 
applied for the period 1970 to present at both 1/8th and 1/16th degree resolutions, yielding daily 
precipitation and temperature minima and maxima.  The resulting outputs were spatially 
remapped to SUMMA HUC12 modeling fabric and then disaggregated to 3-hourly time 
resolution and to a full set of meterological fields (including radiation, pressure, humidity, wind 
variables) using MetSim (Bennett et al, 2020), a python-based wrapper for the MTCLIM 
program (Running et al, 1989).  
 
This approach was applied to the entire western US, and the model forcing inputs for the URG 
domain were extracted from the large Reclamation-oriented forcing dataset.  During the course 
of the project, significant bugs not only in SUMMA, but also in GMET and MetSim were 
detected and corrected, leading to 2 regenerations of the entire forcing dataset, as well as 1 
recalibration of the entire URG SUMMA model and its ESP hindcasts.  
 
 

 
Liu, a student of Dr. Tolson, as a post-doc working on S&T Project 178; she helped develop the Ostrich-based 
approaches now being used with SUMMA at NCAR, and the Universities of Washington and Saskatchewan.   
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2.3 Ensemble Streamflow Prediction for Water Supply 

2.3.1 Forecast Ensemble Generation 
This study is one of the first applications of SUMMA and mizuRoute that is specifically 

calibrated to generate streamflow and be used in a forecasting and data assimilation context. A 
number of run workflows were used, as illustrated in Figure Y.  The standard ESP forecasting 
process involves running a 1 year spin-up simulation, beginning in a dry part of the year (often 
October 1) prior to the first forecast date, and saving a model state at the end of the timestep 
preceding the forecast.  If no data assimilation is performed (termed an ‘open loop’ simulation), 
it may be possible to save these states in the course of a continuous model run, depending on the 
model capabilities.  In SUMMA, the state is saved at the end of the run and used to restart 
SUMMA to run until the next desired state date.  For this application, split domain runs were 
made, meaning that the all of the individual GRU simulations were run in parallel, and the state 
and output files were merged back together.  MizuRoute runs to generate the associated 
streamflows were also conducted using the SUMMA runoff, and mizuRoute state files were also 
generated on the forecast dates.   The ensemble forecast runs were for a 365-day forecast 
horizon, with 40 members associated with the meteorological sequences from 1979-2018.  These 
were also run with a split domain, merged, routed, and the resulting streamflow was post-
processed into NetCDF and CSV table formats holding daily forecasted flows for analysis (i.e., 
aggregation into the April-July inflow volumes).  For each forecast ensemble, the meteorological 
trace year matching the initialization year was removed before the forecast verification to avoid 
including a ‘perfect forecast’ in the sense that using observed meteorology in the forecast period 
to drive SUMMA.  All of the forecasting and data assimilation steps were run using bash scripts 
with automatic submission of model runs to the Cheyenne high performance computing cluster.   

2.3.2  Forecast Ensemble Post-processing 
Ensemble streamflow forecasts contain biases arising from a number of sources, 

including any systematic biases from a mis-match in forecast meteorology and model calibration 
meteorology, and model bias.  Bias is different from random errors that lead to uncertainty in a 
forecast, and instead represents a persistent tendency for the model errors in a particular 
tendency to center on a value other than zero.  Model biases are inevitable because the model is 
an abstraction of the real world, may not account for all processes (such as groundwater 
extraction or channel loss), and the impossibility of calibrating the model for all outcomes of 
interest.  Often, for instance, models are calibrated to minimize errors in daily flows overall, but 
this does not guarantee that flows over an aggregated period such the April-July runoff period.  
Forecasts are also affected by random initialization error, which can arise from a combination of 
model bias and random errors (random and systematic) in real-time meteorological forcings – 
especially since the real-time meteorological observing network is degraded and provisional 
relative to more quality controlled and filled historical period observations.   

In this project, we applied two techniques to correct for model bias and random 
initialization errors.  For the first, we used the retrospective simulations from the overlapping 
period of the retrospective simulation and observed flows to calculate rolling mean biases (equal 
to the simulated flow divided by the observed flow) for each day of the calendar year (DOY).  
These were calculated over time windows of a specified length, and after sensitivity testing a 
window length of 21 days was used, centered on each DOY.  The biases, termed bias correction 
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factors, or BC factors, are then applied to the daily values of the ensemble forecast flows.  
Because the same meteorological sequences used to drive the retrospective model simulation are 
used in the ESP forecast technique, we calculate the BC factors for the retrospective period 
multiple times, leaving out two years year in turn from each calculation.  When the BC factors 
are applied to an ESP trace, the BC factor calculated leaving out the meteorological year from 
that trace and the following year is used, so that the bias correction cannot use information that is 
known only in hindsight.  An example of the family of resulting factors is shown in Figure Z 
(results section).  The model bias correction is effective in correcting for seasonally varying bias 
tendencies in the model which would also be present in the ESP forecasts, such as a tendency to 
an early freshet or to low summer flows.  

To correct for random initialization error, a blending approach (which is commonly used 
in the NWS River Forecast Centers) is applied to ensure that the starting streamflow forecast 
value is equal to the most recent observation.  Streamflow simulation error (versus the 
observation) is calculated for each ensemble forecast member at the forecast start date and time, 
and subtracted from each forecast member.  The error is linearly damped to zero after a user-
specified length of time, and after that lead time the adjustment is zero, so that the blended 
forecast is equal to the raw forecast.  It is difficult to establish one blending period that fits all 
forecast situations – i.e., an optimal blend length in a rising hydrograph may differ from one in a 
falling hydrograph – thus this modifying the blend length in real-time is a common practice in 
NWS RFCs.  In an automated application such as hindcasting, as in this study, it was necessary 
to choose a single blend value, and 14 days was chosen.  The blending step is performed after 
any bias-correction.  More sophisticated approaches for such post-processing that combine both 
bias correction and blending (including auto-regressive error approaches) exist, but were beyond 
the scope of this project to investigate. 

The overall ensemble forecast workflow, including these post-processing steps, is shown 
in Figure Y.  The post-processing was applied in different permutations in this study, and 
various versions of the ensemble forecasts were provided: raw, bias-corrected, blended, and bias-
corrected and blended.  If the model is very well calibrated, the bias-correction step adds little to 
the forecast skill and can even degrade it due to its cross-validated application.  
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Figure 2.  Schematic of the workflow for ensemble forecasting in this study 
 
 

2.3.3 Real-time forecasts with SHARP 
Although the hydrologic forecasting component of the project focused heavily on retrospective 
simulation and hindcasting, the project also endeavored to provide real-time ensemble 
predictions for the inflow locations developed for ensemble analysis.  To this end, the modeling 
and forcing components described above are combined within a real-time workflow using the 
System for Hydromet Analysis Research and Prediction (SHARP), which uses a task scheduling 
system called EcFlow.  EcFlow was developed by the European Centre for Medium Range 
Forecasting (ECMWF), where it runs global model weather forecasting and analysis suites 
(https://www.ecmwf.int/en/learning/training/introduction-ecmwf-job-scheduler-ecflow), and it is 
also used in parts of NOAA.  SHARP currently runs in real-time on a small cluster computing 
system at NCAR (called Hydro-C1, which is partly funded by Reclamation and USACE).   
 
SHARP had been developed under PWP4 and used to run real-time forecasts, but needed to be 
updated for new model versions and data stream changes, as well as to be able run more complex 
models over larger domain such as the URG basin.  This project supported these upgrades, which 
enabled it to produce real-time seasonal ESPs for the URG and also to generate daily real-time 
daily 10-day deterministic forecasts for the Reclamation Forecast Shootout Competition2.  To 
make real time predictions, model retrospective simulations must be connected with daily spinup 
simulations to generate the real-time model states needed for initializing forecasts.  To drive 
these simulations, raw meteorological station data must be efficiently downloaded, quality 
controlled and gap filled, then used to create model forcings.  The forcings drive SUMMA and 
mizuRoute model simulations to morning of the forecast, and generate a current watershed 
model state.  From this state, ESP forecasts are generated and post-processed into the ensemble 
forecast product that can be used as input to a reservoir model (such as URGWOM).   
 
For this project and others (including the Shootout), a 16-member 1/8th degree GMET forcings 
are created each morning, spanning the entire western US domain (enclosing Reclamation’s 
service area).  It is then further processed into HUC12-based SUMMA 3-hourly forcings for the 
550-watershed Shootout cutout of the full domain and the URG basin, and used to run 16 spin-up 
simulations of the SUMMA and MizuRoute models.  For the Shootout Competition, ensemble 
weather forecasts from ECMWF were also downloaded and processed into SUMMA forcings 
and used to generate 15-day streamflow forecasts.  For the Shootout, the SUMMA forecasts were 
blended with the most recent observations, in a basic form of post-processing.  In the seasonal 
ESP context for the upper Rio Grande, both bias-correction and blending were applied.  An 
example of a hindcast series generated for a control point on the Rio Grande River is shown in 
Figure 6 (results section).    

 
2 Due to lack of directed funding support to cover system and model upgrades and maintenance during the Shootout, 
NCAR entries into that competition were later discontinued.  

https://www.ecmwf.int/en/learning/training/introduction-ecmwf-job-scheduler-ecflow


Southwestern Water Supply Forecasting 

26 
 

2.3.4 ESP-based runoff shape analysis 
A primary application of the NCAR SUMMA ESP hindcasts was to assess whether the new ESP 
forecasts coming online from the NWS WGRFC could be used as an alternative to the current 
analog-based practice of selecting flow sequences to use in disaggregating NRCS water supply 
volume forecasts.  The proposed strategy is to use the ESP ensemble median or mean to provide 
the ‘shape’ or daily sequence of flows that would deliver the predicted volume.  These sequences 
could be used to as input to URGWOM, supporting the development of the AOP and other 
analyses.    
 
Such an analysis is feasible if sufficient ESP hindcasts are available, and to this end, NCAR 
generated a multi-decadal series of hindcasts and worked with Reclamation to collect and re-
process multiple years of past AOP analog-based predictions for comparison.  The skill of the 
two approaches was compared for spring forecasts using data from 2012 to 2019, for 20 
locations in the URG above Otowi Bridge, NM.  

2.4  Upper Rio Grande River Water Operations Model 
The Upper Rio Grande Water Operations Model (URGWOM) was developed using the RiverWare 
software application created by the Center for Advanced Decision Support for Water and 
Environmental Systems (CADSWES) at the University of Colorado at Boulder. URGWOM was 
developed though years of interagency collaboration. URGWOM is a computational water 
operations model that uses the principals of mass conservation to simulate physical processes and 
policy operations. URGWOM simulates river and reservoir operations from the Colorado 
headwaters of the Rio Grande to Hudspeth County Texas. The physical processes simulated in 
URGWOM include hydrologic travel times, reservoir evaporation and seepage, conveyance losses to 
deep percolation, river channel evaporation, evapotranspiration by riparian and agricultural 
vegetation, surface water-groundwater interaction, and municipal wastewater and irrigation return 
flows. URGWOM consists of a policy set that simulates management operations throughout the 
basin including flood control, irrigation demands, transmountain diversions, the Rio Grande 
Compact, municipal, and industrial demands, Native American water rights, Endangered Species Act 
compliance, and recreational uses. URGWOM was developed with the intent to be capable of 
monitoring the multiple entities that are allocated within the system. URGWOM is designed to be 
used for a variety of applications including:  
 

• Accounting Application - Daily timestep, data driven up to the current date accounting of 
native and trans-basin (San Juan – Chama Project) water in the system.  

• Water Operations Application - Daily timestep rule-based Annual Operating Plan (AOP) 
runs that use both observed data and forecast data to simulate the remainder of the year. 

• Planning Application - Daily or monthly timestep rule-based runs for planning projects.  
 
Some information paraphrased from Volume 1: Physical Documentation 
https://www.spa.usace.army.mil/Missions/Civil-Works/URGWOM/Documentation/ 
 
The Water Operations Application (i.e., AOP runs) uses a mixture of observed data and 
forecasted data to run. The AOP run is started on the last day of observational data and then uses 
the forecasted data to simulate the remainder of the year. Up until recently the only forecast data 

https://www.spa.usace.army.mil/Missions/Civil-Works/URGWOM/Documentation/
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that was available was the NRCS bulk volume forecast. This provided a volume throughout the 
snowmelt season (usually March – July or April – September) at specific points needed for 
URGWOM to run. These NRCS forecasts are generally issued monthly starting January or 
February and going to around June (varies depending on how long runoff season is lasting). 
Reclamation, Army Corps of Engineers, and New Mexico Interstate Stream Commission use 
URGWOM and these forecasts to do at least monthly AOP runs from the start of the NRCS 
forecasts until about the end of irrigation season. The model will apply the volume forecast 
provided by the NRCS to a daily historical hydrograph selected by the closest historical year to 
the forecasted volume. The remainder of the year will use historical data to fill in the 
hydrograph. These forecasts help plan our decisions and how we operate until the end of the 
year. They also assist us in informing the public on what we expect river conditions and reservoir 
levels to be at throughout the year. In April, Reclamation has a large meeting with the public 
showing the results from the April AOP run and discussing what is planned. In addition to these 
they also assist in directing our releases from Elephant Butte to help maximize power generation, 
while still meeting downstream irrigation needs and avoiding high evaporation areas and cultural 
sites in Caballo. Because of this they are vital to Reclamation.  

2.4.1  Major inflow locations 
URGWOM has several dozen inflow points, of which some are minor and can be estimated in 
relation to other larger flow locations.  Table 3 summarizes these points according to the 
following key: 

• Green – Must have for AOP run 
• White – Will use historical data based on selected year to fill in data if there is no time 

series input 
• Yellow – Same as white, except these points are significant for monsoon flow.  

Table A1 in the Appendix summarizes addition local (intervening drainage) inflow points for 
URGWOM.  
 
 
 
Table 3.  URGWOM Inflow points 

Gages/Points in URGWOM where Flows are Required 

Station Name USGS ID 

Flow Data 
Decimal 
Latitude 

Flow Data 
Decimal 

Longitude HUC CO DWR ID 
North Clear Creek Below 
Continental Reservoir N/A 37.888 -107.204 N/A NCLCONCO 
Rio Grande at Thirty Mile 
Bridge near Creede N/A 37.725 -107.256 N/A RIOMILCO 
South Fork Rio Grande at 
South Fork N/A 37.659 -106.649 N/A RIOSFKCO 
Nortron Drain Near La Sauses N/A 37.335 -105.771 N/A NORDLSCO 

Inflow into Platora Reservoir N/A N/A N/A N/A N/A 
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Los Pinos River near Ortiz N/A 36.982 -106.074 N/A LOSORTCO 
San Antonio River at Ortiz N/A 36.993 -106.038 N/A SANORTCO 
Rio Grande near Lobatos CO  08249200 37.080 -105.760 13011002 RIOLOBCO 
Rio Blanco Above Diversion 09343300 37.204 -106.812 14080101 RIOBLACO 
Little Navajo Above Little Oso 
Diversion 09345200 37.077 -106.811 14080101 LITOSOCO 
Navajo Above Oso Diversion 09244400 37.030 -106.737 14080101 NAVOSOCO 
Embudo Creek at Dixon 08279000 36.211 -105.913 13020101   
Galisteo Creek below Galisteo 
Dam NM 08317950 35.465 -106.214 13020201   
Jemez River near Jemez NM 08324000 35.662 -106.743 13020202   
North Floodway Channel near 
Alameda NM 08329900 35.198 -106.600 13020203   
Rio Chama near La Puente/El 
Vado Local Inflow 08284100 36.663 -106.633 13020102   
Rio Puerco near Bernardo NM 08353000 34.409 -106.853 13020204   
Rio Pueblo de Taos below Los 
Cordovas NM 08276300 36.378 -105.668 13020101   
Red River below Fish 
Hatchery near Questa NM 08268820 36.683 -105.654 13020101   

South Diversion Channel 
above Tijeras Arroyo near 
Albuquerque NM 08330775 35.003 -106.657 13020203   
Tijeras Arroyo near 
Albuquerque NM 08330600 35.003 -106.648 13020203   
Willow Creek above Heron 
Reservoir near Los Ojos NM 08284200 36.743 -106.626 13020102   

Key: 
Green – Must have for AOP run 
White – Will use historical data based on selected year to fill in data if there is no time series input 
Yellow – Same as white, except these points are significant for monsoon flow.  

2.5 Climate predictability analysis 
A second thrust of this proposal was planned to focus on west-wide climate and hydrologic 
predictability -- to examine the proposition that trends in climate may be eroding seasonal 
streamflow predictability, and to assess where and when sub-seasonal to seasonal climate 
forecasts may be able to offset this loss.  There has been some evidence that streamflow 
predictability may be degrading due to warmer temperatures and consequent loss of snowpack, 
which is a major source of forecast skill in spring for seasonal runoff.  An earlier study focused 
on the URG and Upper Colorado River basins found that seasonal climate model forecasts for 
temperature could improve statistical water supply forecasts (Lehner et al, 2017b).  
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To support this focus, SUMMA was implemented and calibrated for the CAMELS 761-basin 
dataset spanning CONUS (Addor et al, 2017; Newman et al, 2015), and the western US basins 
were subsetted for further analysis.  The calibration workflow had to be updated to enable 
parallel automated calibration.  An original calibration using NLDAS forcings was performed for 
the entire CAMELS dataset, and a second calibration based on GMET 1/16th degree western US 
forcings was also performed).   
 
Two sources of climate information were developed.  For sub-seasonal lead times (out to 35 
days), the NCEP Global Ensemble Forecast System (GEFS) precipitation and temperature 
forecasts were downloaded and processed, and mapped to the western CAMELS basins.  An 
initial skill analysis for the GEFS forecasts was conducted.  The National Multi-Model Ensemble 
(NMME) datasets and real-time data streams, including mapping to HUC4 watershed units, that 
were created in a prior S2S project involving Reclamation’s Sarah Baker were updated and 
maintained (at https://hydro.rap.ucar.edu/s2s/).  The skill analyses for the NMME created earlier 
were not updated, and the data were not analyzed for this project, but the processed HUC4 
datasets represent a resource for the community.  
 
More effort was allocated toward the Rio Grande forecasting tasks in this project than was 
originally scoped, leading to a URG focus that extended through the entire project.  As a result, 
the western-US focused predictability analyses only reached an initial stage.  

3.  Results 

3.1 ESP model implementation, calibration and hindcasting 
For the URG domain, over 20 locations were implemented for SUMMA and mizuRoute, 
resulting in the domain shown in Figure 4.  These were calibrated, from upstream headwater 
basins in Colorado to the downstream mainstem location at Otowi Bridge, NM (Table 4).  The 
implementation of Ostrich for calibrating the URG presented a challenge not addressed in other 
calibration efforts for stand-alone basins.  The 20 basins included many nested or downstream 
locations, such that after headwater basins were calibrated, their results needed to be nested into 
the calibration process for the downstream basins.  An efficient strategy for doing so was 
devised, but this requirement added complexity to the calibration workflow.  
 
The GMET and SUMMA model dataset generation had to be rebuilt several times during the 
course of the project due to the discovery and correction of bugs in the GMET and SUMMA 
software.  The SUMMA model was recalibrated twice to accommodate code changes, with the 
final recalibration being completed in June 2021.  Retrospective runs and hindcasts were 
regenerated on each occasion.  Where possible, naturalized flows were obtained (such as for 
Otowi Bridge) for use in calibration and evaluation; otherwise observed flows from the USGS 
were used.  An example of a calibration outcome for one location is shown in Figure 5.   
 
The development of the model flow bias-correction step was strongly motivated by the interest in 
providing forecasted hydrograph shapes for combination with official volume forecasts as a 
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possible replacement for the expert analog selection approach used currently.  Because ESP 
forecast models are likely to have some degree of model bias, this could bias the shapes derived 
from this strategy.  Python-based codes for bias correction and forecast blending were 
developed.  Figure 3 illustrates the impact of a correction for site with a strong over-simulation 
bias during the peak runoff season.   
 

 
 
 
Figure 3. Illustration of the impact of bias correction on ESP forecasts.  
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Table 4.  List of basin locations calibrated  
 
ID # USGS Name Gage ID URGWOM Name State Latitud

e 
Longitud
e 

HUC12 ID Reach ID # 
HUC12 
Basins 

1 Rio Grande at 
Thirtymile Bridge 
nr Creede 

0821350
0 

ThirtyMileBridge.Gag
e Inflow 

CO 37.725 -107.255 13010001010
6 

7500009
7 

6 

2 Rio Grande at 
Wagon Wheel 
Gap 

0821750
0 

WagonWheelGap.Gag
e Inflow 

CO 37.767 -106.831 13010001100
6 

7500004
1 

35 

3 South Fork Rio 
Grande at South 
Fork 

0821950
0 

SouthFork.Gage 
Inflow 

CO 37.657 -106.649 13010001110
6 

7500006
7 

6 

4 Rio Grande nr 
Del Norte 

0822000
0 

DelNorte.Gage Inflow CO 37.689 -106.460 13010001130
6 

7500003
0 

52 

5 Platoro Reservoir 
Inflow 

0824500
0 

Platoro.Inflow CO 37.355 -106.544 13010005010
9 

7500034
4 

9 

6 Conejos River nr 
Mogote 

0824650
0 

Mogote.Gage Inflow CO 37.054 -106.187 13010005040
5 

7500046
1 

13 

7 San Antonio nr 
Ortiz 

0824750
0 

RioSanAntonioAtOrti
z.Gage Inflow 

NM 36.993 -106.038 13010005030
2 

7500049
8 

2 

8 Los Pinos nr 
Ortiz 

0824800
0 

RioLosPinosAtOrtiz.G
age Inflow 

NM 36.982 -106.073 13010005020
4 

7500049
5 

4 

9 Red River below 
fish hatchery nr 
Questa 

0826682
0 

RedRiverBlwFishHatc
hery.Gage Inflow 

NM 36.683 -105.654 13020101030
4 

7500049
9 

4 

10 Rio Pueblo De 
Taos bl Los 
Cordovas 

0827630
0 

RioPuebloDeTaosAtL
osCordovas.Gage 
Inflow 

NM 36.379 -105.668 13020101060
7 

7500066
6 

11 

11 Embudo Ck at 
Dixon 

0827900
0 

EmbudoCreekAtDixo
n.Gage Inflow 

NM 36.211 -105.914 13020101090
9 

7500070
2 

9 
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12 Rio Chama nr La 
Puente 

0828410
0 

ElVadoLocalInflow.L
ocal Inflow 

NM 36.663 -106.633 13020102040
2 

7500046
6 

20 

13 Jemez R bl Jemez 
Canyon Dam 

0832900
0 

BlwJemez.Gage 
Inflow 

NM 35.390 -106.535 13020202050
6 

7500089
0 

30 

14 Jemez R nr Jemez 0832400
0 

NrJemez.Gage Inflow NM 35.662 -106.743 13020202040
3 

7500090
6 

15 

15 Rio Grande at 
Otowi Bridge 

0831300
0 

Otowi.Gage Inflow NM 35.875 -106.142 13020101130
4 

7500087
0 

385 

16 Rio Blanco bl 
Blanco Diversion 

0934330
0 

RioBlanco.Inflow CO 37.204 -106.812 14080101030
4 

7701931
7 

4 

17 Navajo R at Oso 
Diversion 

0934440
0 

NavajoRiver.Inflow CO 37.030 -106.738 14080101060
6 

7701930
8 

5 

18 Pecos R ab Santa 
Rosa Lk 

0838265
0 

PecosAbvSantaRosa NM 35.059 -104.761 13060001111
1 

7500132
0 

71 

19 Willow Ck 
Reservoir Inflow 

0821650
0 

AzoteaWillow.Inflow
2 

CO 37.856 -106.927 13010001070
2 

7500012
8 

2 

20 San Luis Valley N/A N/A CO 37.653 -105.700 13010003070
3 

7500027
3 

75 

21 "Rio Grande near 
Lobatos CO 

0825150
0 

Lobatos.Gage Inflow CO 37.079 -105.757 13010002110
2 

7500046
0 

144 

22 "Rio Grande at 
Embudo NM 

0827950
0 

Embudo Rio Grande NM 36.206 -105.964 13020101110
4 

7500062
8 

211 

23 "Rio Chama near 
Chamita NM 

0829000
0 

Rio Chama NM 36.074 -106.112 13020102160
4 

7500063
8 

83 
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Figure 4. SUMMA and mizuRoute model configuration over the URG domain (upstream of 
Otowi Bridge, NM), with some control points (corresponding to Table 4) identified.  
 
 
The San Luis Valley drainage from the eastern and northern headwaters is a closed basin, in 
which runoff is used for groundwater recharge, and then pumped back out into the main stem of 
the Rio Grande R.  Representing this break in flow in the SUMMA and mizuRoute model 
sequence required implementing a new capability in mizuRoute, allowing for user specified 
abstraction and input of flow into the stream reach network.   
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Figure 5. Example Calibration of the SUMMA and mizuRoute model configuration for Otowi 
Bridge, NM.  
 
The SUMMA and mizuRoute configuration for the URG was used to produce multi-decadal 
series of ESP hindcasts (365 days long with 40 members) for all of the calibrated locations in the 
basin, for several spring initialization dates (March 1, April 1, May 1).  An example of a hindcast 
series is shown in Figure 6.   
 
 
 



Southwestern Water Supply Forecasting 

35 
 

 
Figure 6.  A hindcast ESP dataset for water supply (April-July) streamflow.  Bias correction 
from a retrospective simulation is applied to reduce forecast bias.  The hindcast series enables 
skill assessment (quantifying uncertainty) and provides background context for real-time 
predictions.  

3.2 ESP-based hydrograph shape analysis to support AOP 
The ESP-based shape analysis analyzed forecasts made by Reclamation and NCAR hindcasts 
between 2012-2019 for 20 locations in the URG basin.  The KGE score was used as a metric of 
performance, measuring the daily agreement of the projected flow for April-July versus the AOP 
analog flow.  Both were scaled to the total volume of the NRCS official forecast.  An example of 
this analysis is shown in Figure 7.  A histogram of skill scores across all locations and all spring 
forecast dates is shown in Figure 8.  
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Figure 7.  Composite plot showing the comparison of ESP projected daily inflow sequences 
versus Reclamation AOP inflow sequences, for the Del Norte gage.    
 

 
Figure 8.  Summary of the comparison between analog and ESP based trace creation for 
URGWOM input locations.      
 
Overall, the analysis demonstrated that the ESP-based approach to volume disaggregation is 
likely to be viable as an operational strategy for Reclamation, and that ESP-based sequences 
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were more on average more skillful than analog-based sequences, from a daily error standpoint.   
We note that the ESP-based traces will have a different characteristic than the analogs, in that if 
the median or mean ESP sequence is used, it will be smoother than an observed sequence from 
an individual year.  As a result, it will not over-prescribe (without skill) various runoff timings 
throughout the season, but equally it will not provide a realistic variability from week to week 
(because it smooths out such unpredictable variations).  Depending on the quality of the model in 
different locations and the nature of the inflow point (e.g., into a reservoir or into the mainstem), 
it may be the preferable strategy to adopt.   
 
At a presentation to Reclamation operators and URGWOM experts, it was noted that some 
locations in the basin have a bimodal runoff pattern due to both natural causes (such as different 
snowmelt timing from different headwater areas) and management (e.g., groundwater driven 
irrigation returns).  To that the extent these causes are represented in the model (i.e., the natural 
effects), they would likely show up in muted fashion in the ESP mean or median shapes, but the 
management driven effects would not.  Analog sequences might identify this behavior better than 
ESP in some locations.  The NCAR team subsequently spent time assessing whether this bi-
model behavior could be identified in observed flow records, and did not find strong support for 
this theory in the data.   

3.3 Real-time ESP hindcasting 
In the spring of 2021, the SUMMA/mizuRoute URG models were implemented within the 
SHARP real-time system (run on the RAL Hydro-c1 compute cluster) and used to generate real-
time ESP forecasts.  Forecast shapes were extracted and scaled to match NRCS official forecast 
volumes, and formatted into tables suitable for input into URGWOM, and provided to 
Reclamation as a comparison point with official inputs from agency sources.   
 
Unfortunately, errors were soon discovered in the SHARP implementation, which is a complex 
workflow requiring a range of detailed specifications and data stream connections needed for 
real-time / automated operation.  An incorrect copy of the SUMMA parameters had been used.  
Although these were corrected and the forecasts regenerated, the corrected forecasts were 
completed after AOP planning for 2021 was finished.  
 
We note that the original goals of the project did not include producing real-time ESP 
predictions, versus retrospective analysis, though it was of interest to AAO. The goal of the ESP 
implementation was to create a sandbox of forecast data similar to what would be provided by 
operational agencies (i.e., MBRFC) once their implementation of forecasting models (including 
recalibration) for ESP prediction is completed.  It is rare that the agencies also generate hindcasts 
to support this type of analysis and exploration, thus the NCAR datasets complement the agency 
datasets and afford a means to assess different strategies for using official forecasts.   

3.3 Climate predictability analysis 
Although the climate predictability analysis intended in the project was not completed to the 
extent outlined in the tasks (due to extra effort devoted to the Rio Grande components), the 
initial stages did investigate GEFS-based predictability out to 35 days in the western US 
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CAMELS basins (Figures 9).  Daily precipitation and temperature forecast skill were found 
primarily in the first 10 days of the forecast (and example is shown in Figure 10).  It is likely 
that the datasets addressed in this project can help to offset some losses in hydrologic prediction 
skill arising from a loss of snowpack, but this question was not fully investigated. The CAMELs 
based datasets and models created in this project will be a valuable resource for further 
investigation.   
 

 
Figure 9.  Western US CAMELS basins used for GEFS climate predictability analysis.  The 
values shown are for the GEFS 1/16th degree remapped maximum temperature (Celsius). 
 

 
Figure 10.  Example of a preliminary analysis of predictability for one CAMELS basin, 
comparing GEFS forecasted temperature anomalies versus GMET-based observations.    
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3.4 Partner interactions, presentations and publications 
This project supported a range of partner interactions that were either briefed, participated 
directly in project meetings (which occurred either once monthly or every two weeks), or made 
use of the datasets created by the project.  

• A current S&T project led by Erin Towler (NCAR) and Dagmar Llewellyn was given 
ESP hindcasts from this project 

• Andy Wood provided feedback on proposals by WGRFC and RTI toward calibrating 
models and creating ESPs in the upper Rio Grande, and provided feedback on project 
results.  

• The project results have been reviewed by, and are of interest to State of NM personnel 
and researchers focusing on seasonal prediction in the Rio Grande basin 

• An S&T project led by Marketa McGuire and U. of Washington’s Bart Nijssen was given 
the SUMMA models from this study to use in work on refining streamflow post-
processing. 

• The workflows and post-processing (bias correction and blending) routines of this project 
were used in S&T project 1881 (led by Jordan Lanini) and shared with TSC’s Marketa 
McGuire.  

• The study team interacted with Angus Goodbody, a hydrologic forecaster at NRCS, to 
facilitate NRCS evaluation of statistical forecast techniques with NMME early in the 
project.  These interactions are continuing as of September 2021 with NRCS being 
interested in project methods for incorporating NMME temperature forecasts into volume 
predictions 

• The project presented to the URGWOM Technical Group Meeting, March 9th, 2021 
• The project presented work at national science meetings, including the American 

Geophysical Union and American Meteorological Society.  Project elements have also 
been included in presentations to DOE/ORNL, the Canadian Global Water Futures 
project, internally at NCAR.  

• The Canadian Global Water Futures project is using workflows for SUMMA and 
mizuRoute model implementation and calibration and forecasting.  

• A publication on the use of ESP forecasts to disaggregate volume forecasts for use in 
water supply modeling is underway.  Unfortunately, the departure of the project staff 
member from NCAR (Josh Sturtevant) led to the loss of the Google accounts that held 
the partially completed draft.  It will be rewritten this fall, with the likely title: 
 Sturtevant, J, AW Wood, L Barrett, D Llewellyn, F Lehner, 2021.  Assessment of 
seasonal streamflow forecast strategies for Upper Rio Grande basin water management 
using SUMMA watershed modeling, AMS J. Hydromet. (target) 

4.  Discussion 
This work scope described above contained elements that were achieved through the synergistic 
efforts of this project together with other Cooperative Agreement (CA) projects, including PWP4 
and S&T projects 1881, 8116 and 178.  The motivations for developing SUMMA and mizuRoute 
as a new modeling resource for Reclamation applications and research include its process-related 
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flexibility, the superior coding standards (which enable organized and efficient development), 
the growing expert development and user community, and the model design, which separates 
numerics from process parameterizations and allows for an expanded degree of user control over 
the numerical solutions.  The latter consideration is important because of the higher 
sophistication of the numerical solver, with adaptive time-stepping in all parts of the model space 
that enables relatively smoother hydrologic response behavior compared to other models, a 
characteristic that is important during model calibration.  In many regards SUMMA represents 
an advance over the watershed models that have previously been available for applications 
research, and an important new community-based solution for hydrologic modeling to assess 
water security and water management strategies.  Because SUMMA is new, however, and had 
not been used previously for such applications, its adoption has required the creation of an 
entirely new ecosystem of workflows for implementing, calibrating and developing SUMMA 
applications.  Even more importantly, it has required a build-up of experience in SUMMA 
performance and the detection, diagnosis and correction of numerous model code software bugs 
to allow SUMMA to be run reliably over large domains.  Almost none of this capacity existed at 
the start of the projects listed above, and these projects are credited with engendering this highly 
valuable outcome and resource for Reclamation and the community.  
 

This project created an unusually detailed modeling and ESP prediction (hindcast) 
resource that has proven essential in understanding new strategies for water supply prediction in 
the Upper Rio Grande River basin.  It was generated to have specific relevance to the 
URGWOM management model, and shared with other groups who are doing capability 
development research in the Rio Grande.  It will likely have continued importance following this 
project.   

5.  Data Location 
This project was instrumental in creating standard workflows for SUMMA modeling, 

calibration and forecasting, and python-based plots for visualization of SUMMA simulation and 
forecast results.  These have become part of the SUMMA script ecosystem that is being used in 
multiple S&T projects as well as by collaborators in other institutions. They are, for now, housed 
in a private Github repository (https://github.com/NCAR/hydro_model_utils.git ) that will be 
made public in the near future.  

 
All data files from this project are archived in the form of tarred and gzipped files on an ftp site 
at:   ftp://ftp.rap.ucar.edu/pub/andywood/SnT/8117/.  

 
Core software used in the project, such as models, are contained in online repositories, including: 

• github.com/NCAR/summa (public) 
• github.com/NCAR/mizuRoute (public) 
• github.com/NCAR/GMET (public) 
• github.com/NCAR/SHARP (private) 

https://github.com/NCAR/hydro_model_utils.git
ftp://ftp.rap.ucar.edu/pub/andywood/SnT/8117/


Southwestern Water Supply Forecasting 

41 
 

• https://github.com/NCAR/hydro_model_utils (private) 
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Appendix 
 
Table A1.  URGWOM local inflow points 

Local Inflows Required in URGWOM 
From 

  

To 

Station 
Name 

USGS 
ID 

Flow 
Data 

Decima
l 

Latitud
e 

Flow 
Data 

Decimal 
Longitud

e HUC 
CO DWR 

ID 
Station 
Name 

USGS 
ID 

Flow 
Data 

Decima
l 

Latitud
e 

Flow 
Data 

Decimal 
Longitud

e HUC 
CO DWR 

ID 
Rio 
Grande 
at Thirty 
Mile 
Bridge 
near 
Creede N/A 37.725 -107.256 N/A RIOMILCO   

Rio 
Grande 
at 
Wagon 
Wheel 
Gap N/A 37.767 -106.831 N/A RIOWAGCO 

Rio 
Grande 
at 
Wagon 
Wheel 
Gap N/A 37.767 -106.831 N/A RIOWAGCO   

Rio 
Grande 
near Del 
Norte, 
CO N/A 37.689 -106.460 N/A RIODELCO 

Rio 
Grande 
near Del 
Norte, 
CO N/A 37.689 -106.460 N/A RIODELCO   

Rio 
Grande 
at 
Monte 
Vista N/A 37.609 -106.149 N/A RIOMONCO 

Rio 
Grande 
at N/A 37.609 -106.149 N/A RIOMONCO   

Rio 
Grande N/A 37.481 -105.878 N/A RIOALACO 
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Monte 
Vista 

at 
Alamosa 

Rio 
Grande 
at 
Alamosa N/A 37.481 -105.878 N/A RIOALACO   

Rio 
Grande 
above 
Trincher
a Creek 
near La 
Sauses N/A 37.316 -105.743 N/A RIOTRICO 

Conejos 
River 
Below 
Platoro 
Reservoi
r N/A 37.355 -106.544 N/A CONPLACO   

Conejos 
River 
near 
Mogote N/A 37.054 -106.187 N/A 

CONMOGC
O 

San 
Antonio 
River at 
Ortiz N/A 36.993 -106.038 N/A SANORTCO   

San 
Antonio 
River 
near 
Manassa N/A 37.177 -105.878 N/A SANMANCO 

Conejos 
River 
near 
Mogote N/A 37.054 -106.187 N/A 

CONMOGC
O   

North 
Branch 
Conejos 
River 
near 
Conejos N/A N/A N/A N/A NORCONCO 

Rio 
Grande 
above 
Trincher
a Creek 
near La 
Sauses N/A 37.316 -105.743 N/A RIOTRICO   

Rio 
Grande 
near 
Lobatos 
CO  

0824920
0 37.080 -105.760 

1301100
2 RIOLOBCO 

Rio 
Chama 
below El 
Vado 

0828500
0 36.594 -106.733 

1302010
2     

Rio 
Chama 
above 
Abiquiu 8286500 36.319 -106.599 

1302010
2   
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Reservoi
r 

Reservoi
r 

Rio 
Chama 
below 
Abiquiu 
Reservoi
r 

0828700
0 36.237 -106.417 

1302010
2     

Rio 
Chama 
near 
Chamita 

0829000
0 36.074 -106.112 

1302010
2   

Rio 
Grande 
near 
Lobatos 
CO  

0824920
0 37.080 -105.760 

1301100
2 RIOLOBCO   

Rio 
Grande 
near 
Cerro 
NM 

0826350
0 36.740 -105.683 

1302010
1   

Rio 
Grande 
near 
Cerro 
NM 

0826350
0 36.740 -105.683 

1302010
1     

Rio 
Grande 
below 
Taos 
Junction 
Bridge 
near 
Taos 8276500 36.320 -105.754 

1302010
1   

Rio 
Grande 
below 
Taos 
Junction 
Bridge 
near 
Taos 8276500 36.320 -105.754 

1302010
1     

Rio 
Grande 
at 
Embudo 

0827950
0 36.206 -105.964 

1302010
1   

Rio 
Grande 
at 
Embudo 

0827950
0 36.206 -105.964 

1302010
1     

Rio 
Grande 
at Otowi 
Bridge 

0831300
0 35.875 -106.142 

1302010
1   

Rio 
Grande 
at Otowi 
Bridge 

0831300
0 35.875 -106.142 

1302010
1     

Rio 
Grande 
above 
Cochiti N/A N/A N/A N/A   
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Jemez 
River 
near 
Jemez 
NM 

0832400
0 35.662 -106.743 

1302020
2     

Jemez 
River 
below 
Jemez 
Canyon 
Dam 

0832900
0 35.390 -106.535 

1302020
2   

Below 
Elephant 
Butte 8361000 33.149 -107.207 

1303010
1     

Rio 
Grande 
above 
Caballo N/A N/A N/A N/A   
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