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Executive Summary 
Seasonal wetlands are an important habitat for many aquatic species, including juvenile anadromous 
fish. In the past, the delineation of seasonal wetlands by traditional methods used by Reclamation 
has been very limited and often inaccurate. A new methodology was created to automatically 
delineate seasonal wetlands from satellite imagery using machine learning methods. The primary 
intended application of this research was to identify potential habitat for juvenile anadromous fish, 
but the methodology would be applicable to any project where identification of seasonal wetlands is 
desired. 
 
Wetland delineation was achieved through use of imagery from the Planet Labs, Inc. (Planet) 
satellite constellation. Indices were calculated from the wavelength data provided by Planet’s 
satellites for a pair of images of the Redding area, one before and one after a major rainfall event. 
A multidimensional space was created by combining the two images and providing index values for 
each pixel on each day. State-of-the-art machine learning methods were applied to the 
multidimensional space, classifying each pixel as a member of different clusters. Some of these 
clusters were observed to correspond to areas which were flooded in one image but not the other. 
The total area of these clusters could be used to calculate an estimate of floodplain acreage.  
 
This method relied upon georeferencing based on manual identification of multiple identical points 
to correct the limitations of Planet's georeferencing. It also relied upon manual identification of 
useful images to compare flooded against dry states and upon analysis of the clustered results to 
identify clusters representing flooded pixels. It is possible that other image sources such as Sentinel-
2 would have better georeferencing applied to the images before being provided to the public, 
obviating the need additional processing before applying the classification method. The method 
tested on the Redding area could be applied to other areas but manual identification of flooded and 
dry images, analysis of the clusters outputted to find clusters corresponding to flooded areas (which 
may involve iterative improvement of the clustering algorithm) and potentially manual 
georeferencing would have to be conducted. Application of the method more generally, for example 
to a broader set of imagery of a larger area, would require automatization of these manual processes. 
 
While additional research is needed to verify the accuracy of the results, this methodology has the 
potential to identify seasonal wetlands over a large area at a much lower cost than traditional 
methods. 
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1. Introduction 

1.1 Author’s Note 
The Principal Investigator of this project, Zackary Leady, left Reclamation before completing this 
report. As a result, this report has been compiled in his absence using a limited set of available 
documentation. 

1.2 Background and Research Goals 
Anadromous fish such as Chinook salmon are born from eggs laid in gravelly stream beds and 
achieve maturity while traveling toward the ocean down wider and wider streams. They live their 
adult lives in the oceans, where they are harvested by commercial fisheries and other predators, and 
return to inland streams in order to breed, supporting recreational fishing along the way. Populations 
of anadromous fish rearing in California streams have dropped in the last century as dams, levees, 
and other human structures have blocked or degraded their habitat. This decrease has harmed 
economic and environmental interests in California and elsewhere, and much effort continues to be 
exerted to increase anadromous fish populations. 
 
Among these efforts is habitat restoration downstream of spawning areas, where juveniles feed and 
grow. If too many juveniles are produced by hatcheries and natural spawning for the available 
habitat, the nutrition of the fish will suffer and deaths from not only malnutrition but downstream 
predation and other causes will increase; juvenile habitat availability can become a bottleneck on the 
entire system. Because availability of floodplain habitat has been correlated with increased growth in 
juveniles and is recognized as being ‘in critically short supply’, this often takes the form of increasing 
available floodplain. Estimation of the area of juvenile habitat available is therefore important for 
modeling anadromous fish populations or developing habitat restoration plans (Moyle et al., 2008).  
 
It is difficult, however, to accurately assess the available juvenile floodplain habitat at any given place 
and time. Floodplains are by nature ephemeral, and their extent must be measured in time as well as 
space. Inundated areas not attached to the main stem, meanwhile, are not valid habitat. Satellite 
imagery has been used to estimate floodplain extent using Landsat and other satellites, but imagery 
for any given site is only captured rarely. More recently, a denser network of smaller satellites has 
been developed by Planet called PlanetScope (Planet Labs, 2021). Imagery from Planet’s satellites 
offer more frequent images of any given location, and have been used in floodplain estimation in 
other areas of the world (Cooley et al., 2017). Our goal is to estimate juvenile habitat availability 
along Central Valley streams in recent years while assisting in estimation of floodplain in future 
seasons using this dataset. 
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2. Literature Review 
A literature review was undertaken to better understand the current knowledge regarding various 
topics related to the development of a deep learning algorithm, including machine learning, distance 
metrics, dimensionality reduction, clustering, supervised learning, and unsupervised learning. The 
results of this literature review are summarized below. 

2.1 Machine Learning 
Machine learning is an analysis method in which neural networks of varying structures take data as 
an input and output categorizations or other labelings that represent an algorithmic understanding of 
the underlying structure of the data. This offers a compelling alternative to manual expert review of 
thousands of satellite images. In particular, the sub-field known as ‘deep learning’, because its 
networks are built out of multiple layers, has seen success in the last decade and has been 
incorporated into processes used by computing giants including Microsoft, Google and Facebook. 
In Unsupervised Convolutional Neural Networks (CNNs), the deep, complicated network can take 
many different shapes but generally repeatedly performs mathematics similar to convolution, 
resulting in the synthesis of information about a small region and the passing on of this information 
to a higher-level analytical network. CNNs have shown remarkable aptitude at problems such as 
image segmentation and identification (e.g. identifying whether a picture contain a cat, a dog, or 
both, and which pixels are part of the cat object, the dog object, or neither) despite being 
unsupervised by human intelligence during the computational process. Conversely, analysis of 
remote sensing imagery such as Planet data has often been undertaken via supervised methods such 
as hyperspectral image classification, but this requires the existence of a large set of labeled training 
data (Zhu et al., 2017, Zhang et al., 2016, LeCun et al., 2015). 

2.2 Distance Metrics 
Many distance measures, the most familiar of which is the Euclidian distance, exist to calculate 
differences and similarities between individual pixels. For example, the Minkowski distance is a 
generalization of the Euclidian method where the exponent can be varied, while Mahalanobis 
distance uses the covariance matrix of the data and is equivalent to squared Euclidian distance for 
uncorrelated data. It is difficult to determine an absolute ranking from best to worst; different 
distance measures perform best for different datasets (Kumar et al., 2014). This is likely due to each 
metric’s tendencies to create clusters with different qualities; for example the Manhattan distance 
method (distance applied along only the streets of a regular city grid with no diagonal paths, in 
essence) produces ‘hyperrectangular’ clusters, which may be desirable if one is clustering items that 
tend to have rectangular shapes, such as city blocks. Another factor is the tradeoff between 
simplicity of method and complexity of data returned. Partitioning methods are relatively simple but 
only contain one layer of information about pixel-to-pixel relationships, while hierarchical methods 
often have many opaque parameters to be set but are capable of discerning multiple levels of 
similarity between classes of pixels (Xu and Wunsch, 2005). 
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2.3 Dimensionality Reduction 
Reducing the number of dimensions in a dataset while retaining the most important differences and 
similarities between the data points is a difficult problem that can nevertheless yield significant gains 
by simplifying the problem space. Principal Component Analysis (PCA) draws directly from linear 
algebra principles to essentially re-orient the axes underneath the dataset. First, the axis along which 
the largest amount of variance exists is identified and each data point is rescaled along this axis or 
component; then an orthogonal axis explaining the next-largest amount of variance is identified and 
each data point rescaled; and so on as far as one wishes to go. The benefit of PCA is that, by 
definition, it orders the new axes of the dataset by importance. The user can then select whatever 
number of components are justified by balancing computational time and loss of data. PCA is often 
used to reduce data into a plottable number of dimensions (Wold et al., 1987). 
 
PCA is a linear algorithm, which can result in an inadequate representation of the similarity between 
data points whose relationships include non-linearity. Among the nonlinear dimensionality reduction 
techniques created to resolve this issue is Stochastic Neighbor Embedding (SNE), which turns 
Euclidean distances into conditional probabilities that a point would be picked as a neighbor based 
on a Gaussian probability density. However, this requires careful parameterization of features such 
as step size, momentum in gradient descent during optimization, and assumptions of Gaussian noise 
magnitude and rate of reduction. A further development, t-Distributed Stochastic Neighbor 
Embedding (t-SNE), uses a cost function that is less difficult to parameterize and assumes a 
Student-t distribution, not a Gaussian distribution, for low-dimensional similarities. A variety of 
methods for optimization and tuning exist (van der Maaten and Hinton, 2008). 
 
Uniform Manifold Approximation and Projection (UMAP) is a recent development in dimension 
reduction using advanced concepts in topology to identify and preserve similarities and differences 
in the data while embedding it into a smaller dimensional space. It is scalable and avoids 
computational restrictions on number of dimensions, and in testing on selected datasets has been 
shown to outperform t-SNE. UMAP is intended to be ‘a general purpose dimension reduction 
technique for machine learning’ (McInnes and Healy, 2018). 

2.4 Clustering 

One key aspect of learning relevant to this task is the choice of a clustering algorithm. These 
methods attempt to partition the dataset into optimal clusters, which offers a promising platform for 
the classification of pixels in a satellite image as floodplain or not. Clustering can be performed via 
hierarchical methods, in which nested groups are created, or via partitional (non-hierarchical) 
methods, as in the K-family of algorithms. For large datasets, density-based algorithms which 
require data points offer a more computationally efficient solution (Xu and Wunsch, 2005. 
 
The aforementioned partitional clustering methods are known as the K-family because they require 
the user to define the number of clusters, K, into which the data is to be partitioned. K-family 
algorithms use Euclidean distance around initially random cluster centers or centroids, then iterate 
toward a minimum total Euclidean distance between each point and its cluster’s centroid. This 
method is relatively simple but has difficulty dealing with data in which clusters appear of different 
sizes and densities, and different results can be produced depending on the K value and initial 
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centroids selected. The K-medoids algorithm also starts with random selection of ‘medoids’, but in 
this case it chooses from amongst the data points and attempts to minimize pairwise distance 
metrics such as Manhattan distance, which can help avoid the bias toward circular- or oval-shaped 
clusters engendered by use of squared Euclidian distance (Kumar et al., 2014; Xu and Wunsch, 
2005). 
 
Many clustering techniques introduced to overcome the limitations of the K-family partitional 
algorithms. CLARANS builds on the K-medoids method using graph theory principles, examining 
randomly chosen neighbor nodes until local optima are found and searching randomly for new 
candidate medoids. This method can achieve higher quality results but still works in quadratic 
computational time, making it inefficient for large datasets. DBSCAN (Density Based Spatial 
Clustering of Applications with Noise) takes a density-based approach in an attempt to avoid the 
aforementioned difficulties of the K-family of algorithms in dealing with varying densities across the 
problem space. The user specifies a density threshold and a clustering is built based on the density 
structure of the dataset, with data points in nearby less dense areas grouped into the clusters (Xu and 
Wunsch, 2005). A hierarchical clustering method built off of DBSCAN, called HDBSCAN, offers 
the benefits which redound from learning the hierarchical structure of relationships within one’s 
dataset. Through the hierarchical paradigm different thresholds for inclusion of data points can be 
applied in different areas, allowing for a more nuanced classification of ‘noise’ data (Campello et al., 
2015). Improvements upon HDBSCAN include ‘accelerated HDBSCAN*’, which eliminates a 
distance scale parameter from the set of user choices and reduces the computational run time from 
quadratic to N log N (McInnes and Healy, 2017). 

2.5 Supervised Learning 
Supervised learning incorporates labeled training data, accelerating the learning process by offering 
examples that can be applied to the dataset under examination. This is often used in tasks such as 
image classification (i.e., is this an image of a cat or a tractor?), image segmentation (which parts of 
this image, labeled pixel by pixel, are road, which are sky, which are tractor, which are cat, etc.), as 
well as instance segmentation (which parts of the image are cat #1 and which are cat #2, which sky 
pixels are clouds and which are clear, separate identification of the left and right treads on the 
tractor; in general, identifying the boundaries of multiple instances of similar objects). 
 
The DeepLab method applies filtering to different layers of the deep convolutional network, among 
other contributions, in an attempt to achieve superior image segmentation (L.-C. Chen et al., 2018a). 
This atrous convolution method continues to be pursued in successor models such as DeepLabv3+ 
(L.-C. Chen et al., 2018b). Developed in the medical field, the U-Net method applies the 
convolutional neural network to biomedical image processing, where each pixel in the image must 
be assigned a class. The method uses ‘a u-shaped architecture’ in which the original image is 
processed into a data object with fewer pixels but many more channels per pixel, then re-processed 
into an image of the same pixel-channel dimensions as the original image. This output is a pixel-by-
pixel classification in which each pixel’s value is defined by operations involving data from across 
the image (Ronneberger et al., 2015). This method has been extended to probabilistic segmentation, 
the generation of multiple equally probable segmentation hypotheses (Kohl et al., 2018). The SegNet 
method uses non-linear upsampling to eliminate a learning step as pooled information from the 
original image is decoded into feature classifications. It is designed with efficiency in mind, in terms 
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of memory, computational load, and number of trainable parameters. This method was inspired by 
unsupervised learning methods but requires supervised learning to establish the classifications by 
which the image is to be segmented (Badrinarayanan et al., 2016). 

2.6 Unsupervised Learning 
Due to the lack of reliable labeled wetland data, this analysis pursued an unsupervised approach. 
Multiple unsupervised learning methods were considered. The ‘W-Net’ method is so named because 
its basic architecture is akin to two applications of the U-Net method: Once to encode unsupervised 
labels and again to apply them. This represents an attempt to apply the benefits of the U-Net 
method to pixel classification in an unsupervised setting. This is one example of auto-encoding, an 
aspect of unsupervised machine learning in which representations are algorithmically found so that 
dimensionality can be reduced and relationships can be identified which may lead to classification 
and labeling of pixels in the analyzed imagery (Xia and Kulis, 2017). 
 
The Generative Adversarial Network (GAN) offers another take on deep learning. In its original 
application it was used for image generation, but in later years it has been applied to unsupervised 
learning and its structure has been adapted, including the coupling of multiple GANs. In the original 
version of this paradigm, two neural networks, the Generator and the Discriminator, play a minimax 
game; the Generator creates images from real and fake data, and the Discriminator attempts to 
identify each image’s provenance. Ideally a Nash equilibrium is reached and, in the original 
application, synthetic images with an appropriate relationship to the data are created (Bashmal et al., 
2018). A sub-class of this method known as MARTA GANs have been used for unsupervised 
satellite image classification; the Generator learns to create synthetic training images similar to the 
original data and the Discriminator learns features of the true data (Lin et al., 2017). An information-
theoretic extension to GAN called InfoGAN has been developed to maximize “the mutual 
information between a small subset of the latent variables and the observation” (X. Chen et al., 
2016).  
 
Joint Unsupervised Learning (JULE) uses CNNs in a ‘recurrent process’ paradigm, in which merging 
and clustering operations constitute the forward pass and CNN-based representation learning 
constitutes the backward pass. This was originally developed for classification of full images into 
categories (Yang et al., 2016), but the method has been extended to segmentation of medical images 
(in other words, labeling of each pixel as a member of one of many groups), including 
accommodating three-dimensional images (Moriya et al., 2018). Further developments along these 
lines in the image classification area exist, which report superior classifications on test datasets 
(Tzoreff et al., 2018). 
 
The aforementioned methods and the purposes for using them often overlap; for example, the 
original application of JULE did not use K-means clustering to initialize clustering, but it specifies 
that it could, and the JULE image segmentation method utilizes K-means clustering to reduce 
dimensionality from the trained CNN to the final image. For this reason, it would be misleading to 
draw hard lines between the different methods. To generalize, however, it may be fair to summarize 
these methods as a progression of more and more intricate designs, all building on previous 
methodologies. While classification of individual images is a portion of this project, ultimately the 
goal is to string together multiple images into a time series and then cluster based on the estimated 
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presence or absence of water across time as well as space. Many different methods have been 
applied across a variety of fields. Distance metrics and other generalized clustering concepts can be 
adapted to this paradigm, and the selection of a metric and a method (e.g. hierarchical or 
partitioning) continues to be dependent on the dataset to be analyzed (Aghabozorgi et al., 2015). 

3. Methodology and Results 

3.1 Image selection and pre-processing 
Imagery from Planet was selected for use in this project for the following reasons: (1) the imagery 
has a high resolution of ~4 meters, (2) Planet has a large constellation of satellites (~150 satellites 
currently in orbit), allowing for short revisit times of ~1-2 days, and (3) at the time the project was 
initiated, data were available to government researchers at no cost through the Open California 
program. The Open California program was terminated in 2019, so if additional imagery is required, 
it will need to be acquired at cost or from another source. Sentinel-2 (collected by the European 
Space Agency and distributed by the United States Geological Survey (USGS)) was identified as a 
potential no-cost alternative source for imagery, but it has lower spatial resolution (~10m) and a 
slightly longer revisit time (2-3 days). Reclamation’s primary point of contact at Planet was Joseph 
Mascaro. 
 
Approximately 8 terabytes of data were downloaded, covering the domain of the Central Valley 
Improvement Act (CVPIA) over a period of approximately 2.5 years. These data were stored on the 
USGS Yeti supercomputer, through a partnership with the USGS. If Reclamation wishes to use 
these data in the future, they will likely need to be transferred to a Reclamation location. 
 
Two areas with known seasonal wetlands were selected for preliminary analysis: one near Redding, 
CA, and one including a portion of the Cosumnes River. The former contains both Redding’s 
downtown area and potential floodplain habitat in the Turtle Bay area, while the latter is a managed 
floodplain area which has been studied and mapped by fisheries biologists (Ribeiro et al., 2004). 
These two areas are referred to as the Redding area and Cosumnes area, respectively, throughout the 
report. 
 

3.1.1 Comparison of Top of Atmosphere and Surface Radiance Imagery Products 
Planet provides three different imagery projects: Basic Scenes (Level 1B), Ortho Scenes (Level 3B), 
and Ortho Tile products (Level 3A). Additionally, the Ortho Scene product is available as either of 
Top of Atmosphere Radiance (at sensor) product or a Surface Reflectance image product (Planet 
Labs, 2021). The Surface reflectance product is processed to top-of-atmosphere reflectance and then 
atmospherically corrected to bottom of atmosphere reflectance, which ensures consistency across 
localized atmospheric conditions and minimizes uncertainty in spectral response across time and 
location. Standard atmospheric models are used along with MODIS water vapor, ozone, and aerosol 
data (Planet Labs, 2018).  
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However, the surface reflectance product is only available worldwide since October 2017, and for 
selected agricultural regions starting in 2016. For our areas of interest, surface reflectance products 
were identified starting in November 2016 for the Consumes area and August 2016 for the Redding 
area. 
 
In order to determine whether the difference in consistency between radiance and reflectance 
imagery is significant, a pair of images were analyzed from the Redding area that were collected 
before and during the Carr Fire, which burned July 23 to August 30, 2018.  
 
The selected images were from July 2 and August 14, 2018. As no rain was recorded during this time 
period, the amount of ground surface change is expected to be minimal. No changes in the ground 
surface were identified in a visual comparison of the two images. The smoke is clearly visible on the 
image from August 14, and thus it is expected that the concentration of aerosols will be significantly 
greater on this image. As the surface reflectance product is corrected for the effect of aerosols, it is 
expected that the surface reflectance products for these two images will be more similar than the 
top-of-atmosphere radiance images. Figure 1 shows the selected images in true color. 
 
Figure 2 shows the Band 2 (green) image for top-of-atmosphere radiance product (left) and surface 
reflectance product (right), for July 2 (top) and August 14 (middle), and the differences between the 
two dates (bottom). Figure 3 shows the same set of images for Band 4 (near infrared). The green and 
near-infrared bands are the primary bands of interest in this study. 
 
Table 1 shows the correlation coefficients for the top-of-atmosphere radiance and surface 
reflectance images. Correlation coefficients are scaled from 0 to 1, with higher numbers indicating 
that the images are more similar to one another. The comparison shows that the surface reflectance 
images have the same or slightly lower consistency compared to the top-of-atmosphere radiance 
images. 
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Figure 1: True-color comparison between the top-of-atmosphere radiance and surface reflectance 
products for the two selected dates (07/02/18 and 08/14/18). Note that for each date, the two products 
are visually indistinguishable. 
 
Table 1: Correlation coefficients for a comparison between the July 2 and August 14 images, for top-of-
atmosphere radiance and surface reflectance products. 

Band Top-of-Atmosphere 
Radiance 

Surface Reflectance 

1 0.812 0.808 
2 0.865 0.863 
3 0.927 0.925 
4 0.959 0.959 
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Figure 2: Comparison of Band 2 (green) top-of-atmosphere radiance (left) and surface reflectance (right) 
products for image taken on July 2, 2018 (top) and August 14, 2018 (middle). The top-of-atmosphere 
radiance images for each date and surface reflectance for each date are displayed using the same color 
scale, but the scales for the two sets of data differ as the units are different. The bottom panel shows the 
absolute value of the difference between the above images. The differences are normalized by the mean 
value of the 07/02/2018 image products and plotted on the same scale for easier comparison. 
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Figure 3: Same as Figure 2, but for Band 4 (near infrared). 
 
Other effects for which the surface reflectance product is corrected include solar zenith angle and 
water vapor data (Planet Labs, 2018). The vast majority of images for our two study areas were taken 
within an hour of 12:00 p.m. local time, and for the images taken outside of that time, we were not 
able to identify any for which a surface reflectance product was provided. Thus, we do not expect 
there to be a significant effect from the correction for solar zenith angle, especially because the angle 
is rounded to the nearest 10 degrees for purposes of correction. While the effect of water vapor data 
may be more significant, it is difficult to separate the effects of water vapor corrections from the 
ground surface changes that result from precipitation. 
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While this analysis is limited in scope, it shows that surface reflectance images are no more 
consistent than top-of-atmosphere radiance images for a pair of images with the same ground 
surface conditions but different atmospheric images, and thus the choice of which type of images to 
use is not expected to make a significant difference in our analysis. 

3.1.2 Georeferencing 
In order to improve the consistency in the geolocations of the Planet images, approximately 50 
images were georeferenced to 2016 NAIP imagery, using ArcMap software. 
 
The images were first projected from the original WGS geographic coordinate system to a projected 
coordinate system, NAD83 UTM Zone 10N, with a pixel size of 4 meters. A 4 km by 4 km area of 
interest was then selected for the Redding images, and another one for the Cosumnes images. The 
images were then clipped to these areas of interest, with a 40-meter buffer on each side, in order to 
ensure that images would still cover the entire area of interest after georeferencing. The areas of 
interest were selected by calculating the area over which all the images for that location overlapped, 
and then extending that area to cover more of the areas known to be subject to seasonal inundation, 
and to reach the desired size. Images that did not cover the known seasonal inundation areas were 
discarded. The Cosumnes area of interest fell on the border of two coverage areas, so adjacent 
images were mosaicked prior to georeferencing as necessary. 
 
Twenty-five control points were then selected for each set of images (Redding and Cosumnes). 
These control points were selected to be adequately distributed throughout the image and to be 
located at points that were expected to experience minimal change over time and to be identifiable 
on all images, such as corners of buildings or intersections of roads. Prior to georeferencing, the 
majority of location differences between the Planet data and the NAIP imagery were within the 
nominal location accuracy of 10 meters, but some were greater, with one image differing from the 
NAIP imagery by about 70 meters. Not all control points were used for each image, due to images 
not covering the full area of interest, or to the control points not being identifiable because of cloud 
cover or other reasons. Georeferencing was performed using a first-order polynomial (affine) 
transformation. 
 
For the Redding images, the number of control points used for each image ranged from 15-25, with 
a mean of 23.6. The root-mean-square (RMS) error ranged from 1.70 m to 4.21 m, with a mean of 
2.33 m, with only one image having a RMS error greater than the pixel size of 4 m.  
 
For the Cosumnes images, 18 images used all 25 control points, while the other two used 24 control 
points, for a mean of 24.9. The RMS error ranged from 2.08 m to 4.25 m, with a mean of 2.95 m. 
Two images had a RMS error greater than 4 m. 
 
The georeferencing control points for each site are shown in Figure 4 and Figure 5.  
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Figure 4. Redding georeferencing control points, along with an example image. 
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Figure 5. Cosumnes georeferencing control points, along with an example image. 
 

3.1.3 Spectral Consistency 
As the wetlands analysis is dependent on detecting spectral changes between images due to 
flooding, it is important that the signal caused by flooding is much stronger than the differences 
between images due to other causes. Two pairs of test images that were recorded by different 
satellites on the same day, one pair in the wet season and one in the dry season, were analyzed to 
quantify the cross-image differences.   
 
Figure 6 show the Cosumnes images for Band 2 (green; left) and Band 4 (near infrared; right). 
These are the primary bands of interest. The pair of test images are shown in the top and middle, 
with the bottom image showing the absolute value of the difference between them plotted on the 
same scale. The two images have correlation coefficients of 0.991 for band 2 and 0.993 for band 
4, indicating a high degree of consistency between the images.  
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Figure 6: Comparison between Cosumnes images in a dry period. Both images were recorded on 31 
August 2016. The top images show the green band (left) and near infrared band (right) for an image 
recorded by satellite 0e26. The middle images show the green band (left) and near infrared band (right) 
for an image recorded by satellite 0e03. The bottom images show the absolute value of the difference 
between the green bands (left) and near infrared bands (right). All images are plotted using the same 
color scale (bottom). 
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3.2 Image classification 
In order to simplify the problem space, four-band data from Planet’s satellites (near infrared, red, 
green, blue) are synthesized into two indices well established in the remote sensing analysis 
community. The Normalized Difference Water Index (NDWI) is calculated by dividing green minus 
near infrared values by the sum of green and near infrared, while the Normalized Difference 
Vegetation Index (NDVI) is calculated by dividing the difference between near infrared and red 
values by the sum of those two values. In short, NDWI = (G – NIR) / (G + NIR) and NDVI = 
(NIR – R) / (NIR + R), where G, R, NIR, stand for green, red, and near infrared, respectively. 
These indices are not perfect detectors of water and vegetation, but they provide a good start at 
identifying water (Hussain et al., 2013). and have been applied to Planet data for that purpose 
(Tetteh and Schönert, 2015; Cooley et al., 2017).  
 
Mapping analyses of wetland data have used data sources including LiDAR (Vondrasek, 2015; 
Serran and Creed, 2015) Landsat (Quinn and Epshtein, 2013; Quinn and Burns, 2015; Jones, 2015; 
Pekel et al., 2016; Allen, 2015; Verpoorter et al., 2012; Pasquarella et al., 2016), Worldview (Lane et 
al., 2014), Synthetic Aperture Radar (SAR) satellites (Martinez and Le Toan, 2007; Schmitt et al., 
2018), and of course Planet satellite data (Cooley et al., 2017), as well as combinations of Landsat 
and Planet data (Gabrielsen, et al., 2016), Landsat and Unmanned Aerial Vehicle (UAV) (O’Brien, 
2016), and multiple satellite datasets (Prigent et al., 2016). In general, water masks are formed 
through analytical processes, often utilizing indices as described above; methods applied to the data 
range from manual determination of index threshold values to deep learning approaches. These 
studies offer guidance for our approach. 
 
The JULE method explained above is implemented in Python. This code offers high-level 
implementations of the complicated processes necessary in creating and using CNNs. A high-quality 
dataset used in image analysis competitions exists depicting the German city of Potsdam. This 
includes imagery of the River Havel as well as urban areas, offering a platform for assessment of the 
method. After confirming a Python workflow that achieved segmentation and labeling of the 
Potsdam image, the method was applied to the Central Valley imagery that had been obtained from 
Planet. 
 
The insights gained from working with and reading about the models and concepts above led to the 
creation of a testbed successfully labeling ephemeral floodplain. The extreme wet season of 2016-
2017 offered ample opportunity for identifying images of these areas before and during large flood 
events. After combining various analytical pathways from among those described above, a method 
of dimensionality reduction using PCA followed by K-means clustering across pixels defined by the 
difference between their NDVI and NDWI index values and the average across the images at both 
time steps resulted in actionable outputs. This method successfully identified many pixels which 
were dry in one picture and inundated in the next, despite changes in water color (after a major 
flood event the water is sediment-laden and brown, while in pre-flood conditions it is bluer), 
potential confounding effects due to some urban surfaces’ similar index values to bodies of water, 
and the possibility of other differences in calibration between the satellite sensors which recorded 
the images. 
 
Unfortunately, this code contains very limited documentation, but the code is included as Appendix 
A, to allow for its future use or extension. 
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4. Future Work 
As described above, determination of a suitable distance metric must largely be guided by 
performance on the target dataset. In order to upscale this effort to encompass larger portions of 
the Sacramento Valley’s potential juvenile salmonid habitat or other areas of interest, the 
performance of various distance metrics should be evaluated to determine which distance metric or 
metrics are appropriate for the dataset. The UMAP method described above has promise as a 
method of reducing dimensionality while maintaining as many of the features of the full dataset as 
possible. As time series become longer and the number of images under analysis increase, this 
capacity may be essential to reduce computational complexity. 
 
Of the clustering methods previously mentioned, two partitioning and one hierarchical method are 
particularly good candidates for future use. K-medoids and K-means are variants on the same 
relatively simple idea of partitioning, while HDBSCAN is a more complex density-based hierarchical 
method which may be required if the underlying data structure becomes too complex for the 
relatively simple computations applied by the K-family of algorithms. If analysis progresses, various 
clustering methods should be applied to the data to observe which methods best identify 
spatiotemporal floodplain extent. 
 
Dimensionality reduction can be used not only to reduce computational complexity but also to 
create a meaningful image in two or three dimensions for visualization by end-users and 
programmers. UMAP offers this capacity. It is possible that representations of complex multi-image 
time series classifications generated by UMAP would contain information about the relationship 
between one type of pixel and another, which in turn could aid the viewer in interpreting a classified 
image with labeled pixels. This could assist in describing or deciphering the differences and 
similarities between different types of floodplain, or pixels that are incorrectly classed as floodplain. 
 
While Planet data offer imagery at high spatial and temporal resolution by comparison with other 
satellite imagery datasets, data quality issues must be considered. Each image is not as well 
geolocated as the smaller number of images generated by other data sources such as Landsat, 
meaning that further processing is required before the combination of multiple images into a time 
series (Cooley et al., 2017). Currently we have utilized manual geolocation corrections on several 
representative sets of images to correct this issue. This method is scalable to a limited degree; 
seasons and locations selected by subject matter experts could be addressed with limited turnaround 
time. Automated methods of addressing this issue would be necessary to scale-up this application. 
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Appendix A 
The following text contains the Python 3 code written by Zackary Leady to implement the deep 
learning algorithm. As previously mentioned, Zackary Leady left Reclamation prior to producing this 
report, and no further documentation of this code is available. 
 
 
# -*- coding: utf-8 -*- 
""" 
Created on Fri May 31 15:22:13 2019 
 
@author: zleady 
""" 
 
import os 
import sys 
import logging 
import datetime 
import argparse 
import rasterio 
import numpy as np 
import pandas as pd 
from scipy.stats import wasserstein_distance 
from scipy.spatial import distance 
from sklearn.preprocessing import MinMaxScaler, StandardScaler, RobustScaler 
from sklearn.cluster import KMeans 
from sklearn.decomposition import PCA 
from sklearn.manifold import TSNE 
import umap 
import hdbscan 
from plotly.offline import plot 
import plotly.graph_objs as go 
import plotly.figure_factory as ff 
 
 
def create_logger(log_file): 
    """ Zack's Generic Logger function to create onscreen and file logger 
 
    Parameters 
    ---------- 
    log_file: string 
        `log_file` is the string of the absolute filepathname for writing the 
        log file too which is a mirror of the onscreen display. 
 
    Returns 
    ------- 
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    logger: logging object 
 
    Notes 
    ----- 
    This function is completely generic and can be used in any python code. 
    The handler.setLevel can be adjusted from logging.INFO to any of the other 
    options such as DEBUG, ERROR, WARNING in order to restrict what is logged. 
 
    """ 
    logger = logging.getLogger() 
    logger.setLevel(logging.INFO) 
# create console handler and set level to info 
    handler = logging.StreamHandler() 
    handler.setLevel(logging.INFO) 
    formatter = logging.Formatter("%(levelname)s - %(message)s") 
    handler.setFormatter(formatter) 
    logger.addHandler(handler) 
# create error file handler and set level to info 
    handler = logging.FileHandler(log_file,  "w", encoding=None, delay="true") 
    handler.setLevel(logging.INFO) 
    formatter = logging.Formatter("%(levelname)s - %(message)s") 
    handler.setFormatter(formatter) 
    logger.addHandler(handler) 
    return logger 
 
 
def tiffs_in_dir(image_directory): 
    img_files = [] 
    logging.info('Searching for tiffs in: \n {}'.format(image_directory)) 
    for img_file in os.listdir(image_directory): 
        if img_file.endswith(".tif"): 
            img_files.append(os.path.join(image_directory, img_file)) 
    return img_files 
 
 
def load_image_array(image_path): 
    img_obj = rasterio.open(image_path) 
    img_arr = img_obj.read() 
    logging.info("Image {} has {} indices and {} shape" 
                 .format(image_path, img_obj.indexes, img_arr.shape)) 
    return img_arr 
 
 
def gen_NDWI(image_path, write_path): 
    with rasterio.open(image_path) as dataset: 
        green_band2 = dataset.read(2) 



Seasonal Wetland Delineation with Remote Sensing 

22 

        nir_band4 = dataset.read(4) 
        np.seterr(divide='ignore', invalid='ignore') 
        ndwi = ((green_band2.astype(float) - nir_band4.astype(float)) / 
                (green_band2.astype(float) + nir_band4.astype(float))) 
        kwargs = dataset.meta 
        kwargs.update(dtype=rasterio.float32, count=1) 
        if not os.path.exists(os.path.join(write_path, 'ndwi')): 
            os.mkdir(os.path.join(write_path, 'ndwi')) 
        output_path = os.path.join(write_path, r"ndwi\{}_ndwi.tif" 
                                   .format(os.path.basename(image_path) 
                                           .split(".")[0])) 
        with rasterio.open(output_path, 'w', **kwargs) as dst: 
            dst.write_band(1, ndwi.astype(rasterio.float32)) 
 
 
def gen_NDVI(image_path, write_path): 
    with rasterio.open(image_path) as dataset: 
        red_band3 = dataset.read(3) 
        nir_band4 = dataset.read(4) 
        np.seterr(divide='ignore', invalid='ignore') 
        ndvi = ((nir_band4.astype(float) - red_band3.astype(float)) / 
                (nir_band4.astype(float) + red_band3.astype(float))) 
        kwargs = dataset.meta 
        kwargs.update(dtype=rasterio.float32, count=1) 
        if not os.path.exists(os.path.join(write_path, 'ndvi')): 
            os.mkdir(os.path.join(write_path, 'ndvi')) 
        output_path = os.path.join(write_path, r"ndvi\{}_ndvi.tif" 
                                   .format(os.path.basename(image_path) 
                                           .split(".")[0])) 
        with rasterio.open(output_path, 'w', **kwargs) as dst: 
            dst.write_band(1, ndvi.astype(rasterio.float32)) 
 
 
def create_auxillary_bands(image_files_lst, write_path): 
    logging.info('Generating NDWI and NDVI for {} image files' 
                 .format(len(image_files_lst))) 
    for image_path in image_files_lst: 
        gen_NDWI(image_path, write_path) 
        gen_NDVI(image_path, write_path) 
 
 
def gen_class_label_dataset(class_labels_path): 
    class_dict = {} 
    class_labels_arr = load_image_array(class_labels_path) 
    logging.info('Shape of class labels array: {}' 
                 .format(class_labels_arr.shape)) 
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    unique_values, unique_counts = np.unique(class_labels_arr, 
                                             return_counts=True) 
    logging.info('Unique values of the class_labels_array: {}' 
                 .format(unique_values)) 
    logging.info('Unique counts for each unique value: {}' 
                 .format(unique_counts)) 
    # reshape class_labels_arr to 1D instead of 2D image array 
    # class_labels_arr.shape = (1, 1000, 1000) 
    class_labels_arr = class_labels_arr.reshape(class_labels_arr.shape[1] * 
                                                class_labels_arr.shape[2]) 
    # new class_labels_arr.shape = (1,000,000;) 
    logging.info('Shape of class labels array changed to 1D array: {}' 
                 .format(class_labels_arr.shape)) 
    for i, uv in enumerate(unique_values): 
        # indices_unique_value is actually a list of arrays of len() 1 so [0] 
        # indices_unique_value[0] is a 1D array of the indices that match uv 
        indices_unique_value = np.where(class_labels_arr == uv) 
        logging.info('Looping on index i: {} and unique_value uv: {}' 
                     .format(i, uv)) 
        logging.info("Length of indices_unique_value array:" + 
                     "{} should match unique_counts: {}" 
                     .format(len(indices_unique_value[0]), unique_counts[i])) 
        assert len(indices_unique_value[0]) == unique_counts[i] 
        class_dict[uv] = [indices_unique_value[0], unique_counts[i]] 
    return class_labels_arr, class_dict 
 
 
def gen_pixel_timeseries(image_files_lst, ndvi_files_lst, ndwi_files_lst): 
    date_order = [] 
    final_array = np.empty((0, 6, 1000, 1000),dtype=np.float32) 
    for img_file in image_files_lst: 
        img_file_base = os.path.basename(img_file).split(".")[0] 
        for ndvi_file in ndvi_files_lst: 
            ndvi_file_base = os.path.basename(ndvi_file).split(".")[0] 
            if img_file_base in ndvi_file_base: 
                for ndwi_file in ndwi_files_lst: 
                    ndwi_file_base = os.path.basename(ndwi_file).split(".")[0] 
                    if img_file_base in ndwi_file_base: 
                        date_order.append(ndwi_file_base.split("_")[0]) # change from Z to V 
naming 
                        logging.info('Found match img {} == ndvi {} == ndwi {}' 
                                     .format(img_file_base, ndvi_file_base, 
                                             ndwi_file_base)) 
                        img_arr = load_image_array(img_file) 
                        ndvi_arr = load_image_array(ndvi_file) 
                        ndwi_arr = load_image_array(ndwi_file) 
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                        logging.info("Shape of image: {}; Shape of ndvi: {};" 
                                     "Shape of ndwi: {}".format(img_arr.shape, 
                                                                ndvi_arr.shape, 
                                                                ndwi_arr.shape) 
                                     ) 
                        concat_arr = np.concatenate([img_arr, ndvi_arr, 
                                                     ndwi_arr]) 
                        logging.info('Concat arr shape: {}' 
                                     .format(concat_arr.shape)) 
                        concat_arr = concat_arr[np.newaxis, :] 
                        logging.info('Concat arr new shape: {}' 
                                     .format(concat_arr.shape)) 
                        if(concat_arr.shape[2] == 1000 and 
                           concat_arr.shape[3] == 1000): 
                            logging.info('old final array growing shape: {}' 
                                         .format(final_array.shape)) 
                            final_array = np.concatenate([final_array, 
                                                          concat_arr], 
                                                         axis=0) 
                            logging.info('new final array growing shape: {}' 
                                         .format(final_array.shape)) 
    logging.info('Final array end shape: {}'.format(final_array.shape)) 
    return final_array, date_order 
 
 
def gen_main_datasets(image_files_lst, write_path, class_labels_path): 
    ndvi_dir = os.path.join(write_path, 'ndvi') 
    ndwi_dir = os.path.join(write_path, 'ndwi') 
    logging.info('Looking for NDVI files in: \n {}'.format(ndvi_dir)) 
    logging.info('Looking for NDWI files in: \n {}'.format(ndwi_dir)) 
    ndvi_files_lst = tiffs_in_dir(ndvi_dir) 
    logging.info('Found {} ndvi paths'.format(len(ndvi_files_lst))) 
    ndwi_files_lst = tiffs_in_dir(ndwi_dir) 
    logging.info('Found {} ndwi paths'.format(len(ndwi_files_lst))) 
    assert len(image_files_lst) == len(ndvi_files_lst) == len(ndwi_files_lst) 
    class_labels_arr, class_dict = gen_class_label_dataset(class_labels_path) 
    pixel_timeseries_arr, date_order = gen_pixel_timeseries(image_files_lst, 
                                                            ndvi_files_lst, 
                                                            ndwi_files_lst) 
    return class_labels_arr, class_dict, pixel_timeseries_arr, date_order 
 
 
def create_class_pixel_timeseries_graphs(write_path, date_order, 
                                         class_dict, pixel_timeseries_arr): 
    # shape of pixel_timeseries_arr should be 
    # (# of images, # of bands, x pixels, y pixels) 
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    pd_date = [pd.to_datetime(x) for x in date_order] 
    plot_data = [] 
    plot_data_3d = [] 
    for ck in class_dict.keys(): 
        class_dict_obj = class_dict.get(ck) 
        class_indices = np.random.choice(class_dict_obj[0], size=3) 
        for indx in class_indices: 
            reclaimed_2d_indx = np.unravel_index(indx, 
                                                 (pixel_timeseries_arr 
                                                  .shape[2], 
                                                  pixel_timeseries_arr 
                                                  .shape[3])) 
            ndvi_pixel_graph_timeseries = pixel_timeseries_arr[:, 4, 
                                                               reclaimed_2d_indx[0], 
                                                               reclaimed_2d_indx[1]] 
            ndwi_pixel_graph_timeseries = pixel_timeseries_arr[:, 5, 
                                                               reclaimed_2d_indx[0], 
                                                               reclaimed_2d_indx[1]] 
            temp_trace_ndvi = go.Scatter(x=pd_date, 
                                         y=ndvi_pixel_graph_timeseries, 
                                         mode="lines", 
                                         name='{}_{}_ndvi'.format(ck, indx), 
                                         legendgroup='{}_ndwi'.format(ck)) 
            temp_trace_ndwi = go.Scatter(x=pd_date, 
                                         y=ndwi_pixel_graph_timeseries, 
                                         mode="lines", 
                                         name='{}_{}_ndwi'.format(ck, indx), 
                                         legendgroup='{}_ndvi'.format(ck)) 
            plot_data.append(temp_trace_ndvi) 
            plot_data.append(temp_trace_ndwi) 
            temp_trace_3d = go.Scatter3d(x=pd_date, 
                                         y=ndvi_pixel_graph_timeseries, 
                                         z=ndwi_pixel_graph_timeseries, 
                                         name='{}_{}'.format(ck, indx)) 
            plot_data_3d.append(temp_trace_3d) 
    # 2D 
    layout = go.Layout() 
    fig = go.Figure(data=plot_data, layout=layout) 
    fname = os.path.join(write_path, 'class_pixel_timeseries_ndvi_ndwi.html') 
    plot(fig, filename=fname, auto_open=False, show_link=False, 
         config=dict(displaylogo=False)) 
    # 3D 
    layout3d = go.Layout() 
    fig3d = go.Figure(data=plot_data_3d, layout=layout3d) 
    fname3d = os.path.join(write_path, 
                           'class pixel_timeseries_3d_ndvi_ndwi.html') 
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    plot(fig3d, filename=fname3d, auto_open=False, show_link=False, 
         config=dict(displaylogo=False)) 
    return 
 
 
def create_class_banded_graphs(write_path, date_order, 
                               class_dict, pixel_timeseries_arr): 
    ndvi_plot_data = [] 
    ndwi_plot_data = [] 
    for ck in class_dict.keys(): 
        class_dict_obj = class_dict.get(ck) 
        x_2d_indx_lst = [] 
        y_2d_indx_lst = [] 
        for indx in class_dict_obj[0]: 
            reclaimed_2d_indx = np.unravel_index(indx, 
                                                 (pixel_timeseries_arr 
                                                  .shape[2], 
                                                  pixel_timeseries_arr 
                                                  .shape[3])) 
            x_2d_indx_lst.append(reclaimed_2d_indx[0]) 
            y_2d_indx_lst.append(reclaimed_2d_indx[1]) 
        ck_data = pixel_timeseries_arr[:, :, x_2d_indx_lst, 
                                       y_2d_indx_lst] 
        for b in [4, 5]: 
            max_lst = [] 
            min_lst = [] 
            for t in range(pixel_timeseries_arr.shape[0]): 
                print(pixel_timeseries_arr.shape) 
                print(ck_data.shape) 
                max_vec = np.max(ck_data[t, b, :]) 
                min_vec = np.min(ck_data[t, b, :]) 
                max_lst.append(max_vec) 
                min_lst.append(min_vec) 
            if b == 4: 
                ndvi_plot_data.append([ck, max_lst, min_lst]) 
            elif b == 5: 
                ndwi_plot_data.append([ck, max_lst, min_lst]) 
    for aux_band in [['ndvi', ndvi_plot_data], ['ndwi', ndwi_plot_data]]: 
        plot_data = [] 
        for obj in aux_band[1]: 
            x = date_order 
            x_rev = date_order[::-1] 
            y1_upper = obj[1] 
            y1_lower = obj[2] 
            trace_temp = go.Scatter(x=x+x_rev, y=y1_upper+y1_lower, 
                                    fill='tozerox', 
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                                    showlegend=True, 
                                    name='{}'.format(obj[0])) 
            plot_data.append(trace_temp) 
        layout = go.Layout() 
        fig = go.Figure(data=plot_data, layout=layout) 
        fname = os.path.join(write_path, '{}_class_banded.html' 
                             .format(aux_band[0])) 
        plot(fig, filename=fname, auto_open=False, show_link=False, 
             config=dict(displaylogo=False)) 
    return 
 
 
def create_class_2d_density_graphs(write_path, date_order, 
                                   class_dict, pixel_timeseries_arr): 
    pd_date = [pd.to_datetime(x) for x in date_order] 
    assert len(pd_date) == len(range(pixel_timeseries_arr.shape[0])) 
    for t, dt in zip(range(pixel_timeseries_arr.shape[0]), pd_date): 
        ndvi = pixel_timeseries_arr[t, 4, :, :] 
        ndwi = pixel_timeseries_arr[t, 5, :, :] 
        ndvi_plot = ndvi.reshape(ndvi.shape[0]*ndvi.shape[1]) 
        ndwi_plot = ndwi.reshape(ndwi.shape[0]*ndwi.shape[1]) 
        print(ndvi.shape, ndwi.shape) 
        plot_data = [] 
         
        for ck in class_dict.keys(): 
            if not ck == 0: 
                class_dict_obj = class_dict.get(ck) 
                x_2d_indx_lst = [] 
                y_2d_indx_lst = [] 
                for indx in class_dict_obj[0]: 
                    reclaimed_2d_indx = np.unravel_index(indx, 
                                                         (pixel_timeseries_arr 
                                                          .shape[2], 
                                                          pixel_timeseries_arr 
                                                          .shape[3])) 
                    x_2d_indx_lst.append(reclaimed_2d_indx[0]) 
                    y_2d_indx_lst.append(reclaimed_2d_indx[1]) 
                x0 = [x for x in ndvi[x_2d_indx_lst, y_2d_indx_lst]] 
                y0 = [x for x in ndwi[x_2d_indx_lst, y_2d_indx_lst]] 
                print(len(x0), x0[0], len(y0), y0[0]) 
                trace0 = go.Scattergl(x=x0, y=y0, mode='markers', 
                                      name='c{}'.format(ck), 
                                      marker=dict(size=2, opacity=1.0), 
                                      showlegend=True) 
                plot_data.append(trace0) 
        trace1 = go.Scattergl(x=ndvi_plot, y=ndwi_plot, mode='markers', name='points', 
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                              marker=dict(color='rgb(0,0,100)', 
                                          size=1, opacity=0.4), 
                              showlegend=False) 
        plot_data.append(trace1) 
        trace2 = go.Histogram2dContour(x=ndvi_plot, y=ndwi_plot, name='density', 
                                       ncontours=20, colorscale='Hot', 
                                       reversescale=True, showscale=False, 
                                       showlegend=False) 
        plot_data.append(trace2) 
        trace3 = go.Histogram(x=ndvi_plot, name='x density', 
                              marker=dict(color='rgb(102,0,0)'), 
                              showlegend=False, 
                              yaxis='y2') 
        plot_data.append(trace3) 
        trace4 = go.Histogram(y=ndwi_plot, name='y density', 
                              marker=dict(color='rgb(102,0,0)'), 
                              showlegend=False, 
                              xaxis='x2') 
        plot_data.append(trace4) 
        layout = go.Layout(showlegend=True, autosize=False, 
                           width=800, height=750, 
                           xaxis=dict(domain=[0, 0.85], showgrid=False, 
                                      zeroline=False), 
                           yaxis=dict(domain=[0, 0.85], showgrid=False, 
                                      zeroline=False), 
                           margin=dict(t=50), 
                           hovermode='closest', 
                           bargap=0, 
                           xaxis2=dict(domain=[0.85, 1], showgrid=False, 
                                       zeroline=False), 
                           yaxis2=dict(domain=[0.85, 1], showgrid=False, 
                                       zeroline=False)) 
        fig = go.Figure(data=plot_data, layout=layout) 
        fname = os.path.join(write_path, 
                             'dt{}_t{}_class_density2d.html' 
                             .format(dt.date(), t)) 
        plot(fig, filename=fname, auto_open=False, show_link=False, 
             config=dict(displaylogo=False)) 
    return 
 
 
def create_class_distance_heatmaps(write_path, class_dict, 
                                   pixel_timeseries_arr): 
    print(pixel_timeseries_arr.shape) 
    reshaped_pixel_arr = pixel_timeseries_arr.reshape([pixel_timeseries_arr 
                                                       .shape[0], 
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                                                       pixel_timeseries_arr 
                                                       .shape[1], 
                                                       pixel_timeseries_arr 
                                                       .shape[2] * 
                                                       pixel_timeseries_arr 
                                                       .shape[3]]) 
    input_dist_ck_arr_lst = [] 
    input_dist_arr_lst = [] 
    for ck in sorted(class_dict.keys()): 
        if not ck == 0: 
            class_indices = class_dict.get(ck) 
            class_data = reshaped_pixel_arr[:, :, class_indices[0]] 
            print(ck, class_data.shape) 
            class_vector_data = class_data.reshape([class_data.shape[2], 
                                                    class_data.shape[0] * 
                                                    class_data.shape[1]]) 
            print(class_vector_data[0:10, :]) 
            print(class_vector_data.shape) 
            input_dist_ck_arr_lst.append([ck, class_vector_data]) 
            input_dist_arr_lst.append(class_vector_data) 
    import itertools 
    iter_class_combinations = list(itertools 
                                   .combinations([x[0] for x in 
                                                  input_dist_ck_arr_lst], 2)) 
    print(iter_class_combinations) 
    distance_metric_lst = ['euclidean', 'correlation', 'cosine', 'mahalanobis', 
                           'wasserstein'] 
    for dist in distance_metric_lst: 
        if dist == 'wasserstein': 
            pass 
#            for combo in iter_class_combinations: 
#                u_indx = combo[0]-1 
#                v_indx = combo[1]-1 
#                print(combo, u_indx, v_indx) 
#                u = input_dist_ck_arr_lst[u_indx][1] 
#                v = input_dist_ck_arr_lst[v_indx][1] 
#                calculated_dist = wasserstein_distance(u, v) 
#                print(calculated_dist) 
        else: 
            X_arr = np.vstack(input_dist_arr_lst) 
            print(dist, X_arr.shape) 
            calculated_dist = distance.pdist(X_arr, metric=dist) 
            print(dist, calculated_dist.shape) 
            square_dist = distance.squareform(calculated_dist) 
            print(dist, square_dist.shape) 
            data = [] 



Seasonal Wetland Delineation with Remote Sensing 

30 

            trace1 = go.Heatmap(z=square_dist) 
            data.append(trace1) 
            layout = go.Layout() 
            fig = go.Figure(data=data, layout=layout) 
            fname = os.path.join(write_path, 
                                 '{}_class_distance_heatmap.html'.format(dist)) 
            plot(fig, filename=fname, auto_open=False, show_link=False, 
                 config=dict(displaylogo=False)) 
    return 
 
 
def create_direct_comparison_class_distance_heatmaps(write_path, class_dict, 
                                                     pixel_timeseries_arr): 
    distance_metric_lst = ['euclidean', 'correlation', 'cosine', 'mahalanobis', 
                           'wasserstein'] 
    import itertools 
    iter_class_combinations = list(itertools 
                                   .combinations([x for x in 
                                                  sorted(class_dict.keys()) 
                                                  if not x == 0], 
                                                 2)) 
    print(iter_class_combinations) 
    reshaped_pixel_arr = pixel_timeseries_arr.reshape([pixel_timeseries_arr 
                                                       .shape[2] * 
                                                       pixel_timeseries_arr 
                                                       .shape[3], 
                                                       pixel_timeseries_arr 
                                                       .shape[0] * 
                                                       pixel_timeseries_arr 
                                                       .shape[1]]) 
    print(reshaped_pixel_arr.shape) 
    print(reshaped_pixel_arr[0:10, :]) 
    for class_combo in iter_class_combinations: 
        print(class_combo) 
        class0_data_dict = class_dict.get(class_combo[0]) 
        class1_data_dict = class_dict.get(class_combo[1]) 
        class0_indices = class0_data_dict[0] 
        class1_indices = class1_data_dict[0] 
        class0_data_arr = reshaped_pixel_arr[class0_indices, :] 
        class1_data_arr = reshaped_pixel_arr[class1_indices, :] 
        logging.info('class0: {} = {} = {}' 
                     .format(class_combo[0], class0_data_dict[1], 
                             class0_data_arr.shape)) 
        logging.info('class1: {} = {} = {}' 
                     .format(class_combo[1], class1_data_dict[1], 
                             class1_data_arr.shape)) 
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        for dist in distance_metric_lst: 
            if dist == 'wasserstein': 
                calculated_dist = distance.cdist(class0_data_arr, 
                                                 class1_data_arr, 
                                                 metric=lambda u, v: wasserstein_distance(u, v)) 
            else: 
                calculated_dist = distance.cdist(class0_data_arr, 
                                                 class1_data_arr, metric=dist) 
            logging.info('{}, {}'.format(dist, calculated_dist.shape)) 
            data = [] 
            trace1 = go.Heatmap(z=calculated_dist) 
            data.append(trace1) 
            layout = go.Layout() 
            fig = go.Figure(data=data, layout=layout) 
            fname = os.path.join(write_path, 
                                 '{}_{}_{}_class_compare_dist_heatmap.html' 
                                 .format(dist, class_combo[0], 
                                         class_combo[1])) 
            plot(fig, filename=fname, auto_open=False, show_link=False, 
                 config=dict(displaylogo=False)) 
    return 
 
 
def create_class_distance_distplots(write_path, class_dict, 
                                    pixel_timeseries_arr): 
    distance_metric_lst = ['chebyshev','cityblock','correlation', 'euclidean', 'seuclidean', 
'cosine', 'mahalanobis', # 'correlation', 
                           'wasserstein'] 
    import itertools 
    iter_class_combinations = list(itertools 
                                   .combinations([x for x in 
                                                  sorted(class_dict.keys()) 
                                                  if not x == 0], 
                                                 2)) 
    print(iter_class_combinations) 
    print(pixel_timeseries_arr.shape) 
#    pixel_timeseries_arr = pixel_timeseries_arr[:,4:6,:,:] 
#    print(pixel_timeseries_arr.shape) 
#    print(pixel_timeseries_arr[0,:,0:3,0:3]) 
#    print(pixel_timeseries_arr.max()) 
#    print(pixel_timeseries_arr.min()) 
    reshaped_pixel_arr = pixel_timeseries_arr.reshape([pixel_timeseries_arr 
                                                       .shape[2] * 
                                                       pixel_timeseries_arr 
                                                       .shape[3], 
                                                       pixel_timeseries_arr 
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                                                       .shape[0] * 
                                                       pixel_timeseries_arr 
                                                       .shape[1]]) 
    print(reshaped_pixel_arr.shape) 
    print(reshaped_pixel_arr[0:10, :]) 
    for dist in distance_metric_lst: 
        hist_data = [] 
        group_labels = [] 
        for class_combo in iter_class_combinations: 
            print(class_combo) 
            class0_data_dict = class_dict.get(class_combo[0]) 
            class1_data_dict = class_dict.get(class_combo[1]) 
            class0_indices = class0_data_dict[0] 
            class1_indices = class1_data_dict[0] 
            class0_data_arr = reshaped_pixel_arr[class0_indices, :] 
            class1_data_arr = reshaped_pixel_arr[class1_indices, :] 
            logging.info('class0: {} = {} = {}' 
                         .format(class_combo[0], class0_data_dict[1], 
                                 class0_data_arr.shape)) 
            logging.info('class1: {} = {} = {}' 
                         .format(class_combo[1], class1_data_dict[1], 
                                 class1_data_arr.shape)) 
            if dist == 'wasserstein': 
                calculated_dist = distance.cdist(class0_data_arr, 
                                                 class1_data_arr, 
                                                 metric=lambda u, v: 
                                                         wasserstein_distance(u,v)) 
            else: 
                calculated_dist = distance.cdist(class0_data_arr, 
                                                 class1_data_arr, metric=dist) 
            logging.info('{}, {}'.format(dist, calculated_dist.shape)) 
            hist_dist = calculated_dist.flatten() 
            logging.info('calculated dist shape: {} \n flattened shape: {}' 
                         .format(calculated_dist.shape, hist_dist.shape)) 
            hist_dist_lst = [x for x in hist_dist] 
            hist_data.append(hist_dist_lst) 
            group_labels.append('c{}_c{}'.format(class_combo[0], class_combo[1])) 
        fig = ff.create_distplot(hist_data, group_labels, show_hist=False, show_rug=False) 
        fname = os.path.join(write_path, 
                             '{}_class_compare_dist_distplot.html'.format(dist)) 
        plot(fig, filename=fname, auto_open=False, show_link=False, 
             config=dict(displaylogo=False)) 
    return 
 
 
def exploratory_graph_analysis(class_labels_arr, class_dict, 
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                               pixel_timeseries_arr, date_order, write_path): 
#    create_class_pixel_timeseries_graphs(write_path, date_order, 
#                                         class_dict, pixel_timeseries_arr) 
#    create_class_2d_density_graphs(write_path, date_order, 
#                                   class_dict, pixel_timeseries_arr) 
#    create_class_distance_heatmaps(write_path, class_dict, 
#                                   pixel_timeseries_arr) 
#    create_direct_comparison_class_distance_heatmaps(write_path, class_dict, 
#                                                     pixel_timeseries_arr) 
#    create_class_distance_distplots(write_path, class_dict, 
#                                    pixel_timeseries_arr) 
    create_class_banded_graphs(write_path, date_order, 
                               class_dict, pixel_timeseries_arr) 
    return 
 
 
def gen_generic_embedding3_graph(embedding_arr, labels, title, file_name): 
    print(embedding_arr.shape) 
    print(labels.shape) 
    x_arr = embedding_arr[:, 0] 
    y_arr = embedding_arr[:, 1] 
    z_arr = embedding_arr[:, 2] 
    print(x_arr.shape, y_arr.shape, z_arr.shape) 
    embed_trace0 = go.Scatter3d(x=x_arr, 
                                y=y_arr, 
                                z=z_arr, 
                                mode='markers', 
                                marker=dict(size=2, color=labels, 
                                            colorscale='Viridis', 
                                            opacity=0.8), 
                                text=labels, hoverinfo='text') 
    plot_data = [embed_trace0] 
    layout = go.Layout(title=title) 
    fig = go.Figure(data=plot_data, layout=layout) 
    plot(fig, filename=file_name, auto_open=False, show_link=False, 
         config=dict(displaylogo=False)) 
    return 
 
 
def gen_generic_embedding2_graph(embedding_arr, labels, title, file_name): 
    x_arr = embedding_arr[:, 0] 
    y_arr = embedding_arr[:, 1] 
    plot_data = [] 
    for u in np.unique(labels): 
        print(u) 
        indx_u = np.where(labels == u) 
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#        print(indx_u[0]) 
        print(indx_u[0].shape) 
        x_u_arr = x_arr[indx_u[0]] 
        print(x_u_arr.shape) 
        y_u_arr = y_arr[indx_u[0]] 
        print(y_u_arr.shape) 
        if not u == 0: 
            embed_trace = go.Scattergl(x=x_u_arr, 
                                       y=y_u_arr, 
                                       mode='markers', 
                                       marker=dict(size=5, 
                                                   opacity=1.0), 
                                       name='c{}'.format(u)) 
        else: 
            embed_trace = go.Scattergl(x=x_u_arr, 
                                       y=y_u_arr, 
                                       mode='markers', 
                                       marker=dict(size=2, 
                                                   opacity=0.6), 
                                       name='c{}'.format(u)) 
        plot_data.append(embed_trace) 
#    plot_data = [embed_trace0] 
    layout = go.Layout(title=title) 
    fig = go.Figure(data=plot_data, layout=layout) 
    plot(fig, filename=file_name, auto_open=False, show_link=False, 
         config=dict(displaylogo=False)) 
    return 
 
def create_raw_data_embedding_pca(pixel_timeseries_arr, class_labels_arr, 
                                  class_dict, write_path, dim=3, 
                                  include_labels=True): 
    print(pixel_timeseries_arr.shape) 
    X = pixel_timeseries_arr.reshape([pixel_timeseries_arr.shape[2] * 
                                      pixel_timeseries_arr.shape[3], 
                                      pixel_timeseries_arr.shape[0] * 
                                      pixel_timeseries_arr.shape[1]]) 
    print(X.shape) 
    pca = PCA(n_components=dim) 
    solved_pca = pca.fit(X) 
    pca_arr = solved_pca.transform(X) 
    print(pca_arr) 
    print(pca_arr.shape) 
    print(solved_pca.explained_variance_ratio_) 
#    print(solved_pca.singular_values_) 
#    print(solved_pca.components_) 
    if include_labels is True: 
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        labels = class_labels_arr.reshape([class_labels_arr.shape[0]]) 
    else: 
        labels = np.zeros([X.shape[0]]) 
    pca_title = 'Raw PCA Embedding with Dim {}'.format(dim) 
    pca_filename = os.path.join(write_path, 
                                'raw_data_pca_embedding_dim{}.html' 
                                .format(dim)) 
    gen_generic_embedding2_graph(pca_arr, labels, pca_title, pca_filename) 
    return 
 
 
def create_raw_data_embedding_tsne(pixel_timeseries_arr, class_labels_arr, 
                                   class_dict, write_path, dim=3, 
                                   include_labels=True): 
    print(pixel_timeseries_arr.shape) 
    X = pixel_timeseries_arr.reshape([pixel_timeseries_arr.shape[2] * 
                                      pixel_timeseries_arr.shape[3], 
                                      pixel_timeseries_arr.shape[0] * 
                                      pixel_timeseries_arr.shape[1]]) 
    print(X.shape) 
    tsne = TSNE(n_components=dim) 
    solved_tsne = tsne.fit(X) 
    print(solved_tsne.kl_divergence_) 
    print(solved_tsne.n_iter_) 
    tsne_arr = solved_tsne.transform(X) 
    print(tsne_arr) 
    print(tsne_arr.shape) 
    if include_labels is True: 
        labels = class_labels_arr.reshape([class_labels_arr.shape[0], 1]) 
    else: 
        labels = np.zeros([X.shape[0], 1]) 
    tsne_title = 'Raw TSNE Embedding with Dim={}'.format(dim) 
    tsne_filename = os.path.join(write_path, 
                                 'raw_data_tsne_embedding_dim{}.html' 
                                 .format(dim)) 
    gen_generic_embedding3_graph(tsne_arr, labels, tsne_title, tsne_filename) 
    return 
 
 
def create_raw_data_embedding_umap(pixel_timeseries_arr, class_labels_arr, 
                                   class_dict, write_path, dim=3, 
                                   include_labels=True): 
    print(pixel_timeseries_arr.shape) 
    X = pixel_timeseries_arr.reshape([pixel_timeseries_arr.shape[2] * 
                                      pixel_timeseries_arr.shape[3], 
                                      pixel_timeseries_arr.shape[0] * 
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                                      pixel_timeseries_arr.shape[1]]) 
    print(X.shape) 
    reducer = umap.UMAP(n_components=dim) 
    solved_umap = reducer.fit(X) 
    umap_arr = solved_umap.transform(X) 
    print(umap_arr) 
    print(umap_arr.shape) 
    if include_labels is True: 
        labels = class_labels_arr.reshape([class_labels_arr.shape[0]]) 
    else: 
        labels = np.zeros([X.shape[0]]) 
    umap_title = 'Raw UMAP Embedding with Dim={}'.format(dim) 
    umap_filename = os.path.join(write_path, 
                                 'raw_data_umap_embedding_dim{}.html' 
                                 .format(dim)) 
    gen_generic_embedding2_graph(umap_arr, labels, umap_title, umap_filename) 
    return 
 
 
def create_analysis_embeddings(pixel_timeseries_arr, class_labels_arr, 
                               class_dict, write_path, dim=3, 
                               include_labels=True, metric=None): 
    if metric == 'wasserstein': 
        reducer = umap.UMAP(n_components=dim, 
                            metric=lambda u, v: wasserstein_distance(u, v)) 
        pca = PCA(n_components=2, 
                  metric=lambda u, v: wasserstein_distance(u, v)) 
    else: 
        reducer = umap.UMAP(n_components=dim, metric=metric) 
        pca = PCA(n_components=2, metric=metric) 
    X = pixel_timeseries_arr.reshape([pixel_timeseries_arr.shape[2] * 
                                      pixel_timeseries_arr.shape[3], 
                                      pixel_timeseries_arr.shape[0] * 
                                      pixel_timeseries_arr.shape[1]]) 
    if include_labels is True: 
        labels = class_labels_arr.reshape([class_labels_arr.shape[0], 1]) 
    else: 
        labels = np.zeros([X.shape[0], 1]) 
    solved_umap = reducer.fit(X) 
    umap_arr = solved_umap.transform(X) 
    print(umap_arr) 
    print(umap_arr.shape) 
    umap_title = 'Analysis UMAP Embedding with Dim={}'.format(dim) 
    umap_filename = os.path.join(write_path, 
                                 'analysis_umap_embedding_dim{}'.format(dim)) 
    gen_generic_embedding3_graph(umap_arr, labels, umap_title, umap_filename) 
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    solved_pca = pca.fit(X) 
    pca_arr = solved_pca.transform(X) 
    print(pca_arr) 
    print(pca_arr.shape) 
    print(solved_pca.explained_variance_ratio_) 
    pca_title = 'Analysis PCA Embedding with Dim={}'.format(2) 
    pca_filename = os.path.join(write_path, 
                                'analysis_pca_embedding_dim{}'.format(2)) 
    gen_generic_embedding3_graph(pca_arr, labels, pca_title, pca_filename) 
    return pca_arr, umap_arr 
 
 
def kmeans_analysis(X, raw_E, class_labels_arr, class_dict, 
                    write_path, k_lst=[], 
                    include_labels=True, dim=3, metric=None): 
    if include_labels is True: 
        labels = class_labels_arr.reshape([class_labels_arr.shape[0], 1]) 
    else: 
        labels = np.zeros([X.shape[0], 1]) 
    for k in k_lst: 
        kmeans = KMeans(n_clusters=k).fit(X) 
        klabels = kmeans.labels_ 
        logging.info('Finished kmeans for k={} and metric={}: and shape={}' 
                     .format(k, metric, klabels.shape)) 
        plot_data = [] 
        cluster_trace = go.Scatter3d(x=raw_E[:, 0], 
                                     y=raw_E[:, 1], 
                                     z=raw_E[:, 2], 
                                     mode='markers', 
                                     marker=dict(size=2, color=klabels, 
                                                 colorscale='Viridis', 
                                                 colorbar=dict( 
                                                         title='Cluster'), 
                                                 opacity=0.8), 
                                     text=klabels, hoverinfo='text') 
        if include_labels is True: 
            for ck in sorted(class_dict.keys()): 
                if not ck == 0: 
                    class_indices = class_dict.get(ck)[0] 
                    temp_class_arr = raw_E[class_indices, :] 
                    clabels = labels[class_indices, :] 
                    temp_class_trace = go.Scatter3d(x=temp_class_arr[:, 0], 
                                                    y=temp_class_arr[:, 1], 
                                                    z=temp_class_arr[:, 2], 
                                                    mode='markers', 
                                                    marker=dict(size=2, 
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                                                                opacity=1.0), 
                                                    text=clabels, 
                                                    hoverinfo='text') 
                    plot_data.append(temp_class_trace) 
        plot_data.append(cluster_trace) 
        cluster_title = ("Cluster Kmeans Embedding from Raw" + 
                         "Embedding of K={} Metric={}".format(k, metric)) 
        layout = go.Layout(title=cluster_title) 
        fig = go.Figure(data=plot_data, layout=layout) 
        fname = os.path.join(write_path, 
                             "kmeans_embedding_{}as3_k{}_{}.html" 
                             .format(dim, k, metric)) 
        plot(fig, filename=fname, auto_open=False, show_link=False, 
             config=dict(displaylogo=False)) 
        wklabels = klabels.reshape(1000, 1000) 
        logging.info('wklabels write out shape: {}'.format(wklabels.shape)) 
        with rasterio.open(write_path, 'ZRedImages', 
                           'T20161011_223732_3_1_0c54.tif') as img_data: 
            img_data.read() 
            print(img_data.indexes) 
            kwargs = img_data.meta 
            kwargs.update(dtype=rasterio.float32, count=1) 
            with rasterio.open(os.path.join(write_path, 
                                            "klabels_d{}_k{}_{}" 
                                            .format(dim, k, 
                                                    metric))) as kdst: 
                kdst.write_band(1, wklabels.astype(rasterio.float32)) 
            kdst.close() 
        img_data.close() 
    return klabels 
 
 
def hdbscan_analysis(X, raw_E, class_labels_arr, write_path, 
                     class_dict, 
                     min_cluster_size_lst=[], 
                     min_samples_lst=[], 
                     include_labels=True, dim=3, metric=None): 
    if include_labels is True: 
        labels = class_labels_arr.reshape([class_labels_arr.shape[0], 1]) 
    else: 
        labels = np.zeros([X.shape[0], 1]) 
    for mc in min_cluster_size_lst: 
        for ms in min_samples_lst: 
            #  cluster_selection_method='leaf' 
            clusterer = hdbscan.HDBSCAN(min_cluster_size=mc, 
                                        min_samples=ms, 
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                                        metric='euclidean').fit(X) 
            logging.info("""Clustering for min_cluster={}, 
                         min_samples={}, and metric={} has label shape: {}""" 
                         .format(ms, mc, metric, clusterer.labels_.shape)) 
            hlabels = clusterer.labels_ 
            n_c = clusterer.labels_.max() 
            logging.info("Number of clusters (add 1) : {}".format(n_c)) 
            plot_data = [] 
            cluster_trace = go.Scatter3d(x=raw_E[:, 0], 
                                         y=raw_E[:, 1], 
                                         z=raw_E[:, 2], 
                                         mode='markers', 
                                         marker=dict(size=2, color=hlabels, 
                                                     colorscale='Viridis', 
                                                     colorbar=dict( 
                                                             title='Cluster'), 
                                                     opacity=0.8), 
                                         text=hlabels, hoverinfo='text') 
            if include_labels is True: 
                for ck in sorted(class_dict.keys()): 
                    if not ck == 0: 
                        class_indices = class_dict.get(ck)[0] 
                        temp_class_arr = raw_E[class_indices, :] 
                        clabels = labels[class_indices, :] 
                        temp_class_trace = go.Scatter3d(x=temp_class_arr[:, 0], 
                                                        y=temp_class_arr[:, 1], 
                                                        z=temp_class_arr[:, 2], 
                                                        mode='markers', 
                                                        marker=dict(size=2, 
                                                                    opacity=1.0), 
                                                        text=clabels, 
                                                        hoverinfo='text') 
                        plot_data.append(temp_class_trace) 
            plot_data.append(cluster_trace) 
            cluster_title = ("Cluster HDBSCAN Embedding from Raw" + 
                             "Embedding of MC-MS={}-{} Metric={}" 
                             .format(mc, ms, metric)) 
            layout = go.Layout(title=cluster_title) 
            fig = go.Figure(data=plot_data, layout=layout) 
            fname = os.path.join(write_path, 
                                 "hdbscan_embedding_{}as3_mc{}_ms{}_{}.html" 
                                 .format(dim, mc, ms, metric)) 
            plot(fig, filename=fname, auto_open=False, show_link=False, 
                 config=dict(displaylogo=False)) 
            whlabels = hlabels.reshape(1000, 1000) 
            logging.info('whlabels write out shape: {}'.format(whlabels.shape)) 
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            with rasterio.open(write_path, 'ZRedImages', 
                               'T20161011_223732_3_1_0c54.tif') as img_data: 
                img_data.read() 
                print(img_data.indexes) 
                kwargs = img_data.meta 
                kwargs.update(dtype=rasterio.float32, count=1) 
                with rasterio.open(os.path.join(write_path, 
                                                "hlabels_d{}_mc{}_ms{}_{}" 
                                                .format(dim, mc, ms, 
                                                        metric))) as kdst: 
                    kdst.write_band(1, whlabels.astype(rasterio.float32)) 
                kdst.close() 
            img_data.close() 
    return hlabels 
 
 
def exploratory_embedding_analysis(class_labels_arr, class_dict, 
                                   pixel_timeseries_arr, date_order, 
                                   write_path): 
    raw_pca = create_raw_data_embedding_pca(pixel_timeseries_arr, 
                                            class_labels_arr, 
                                            class_dict, write_path, dim=2, 
                                            include_labels=True) 
#    sys.exit(0) 
#    create_raw_data_embedding_tsne(pixel_timeseries_arr, class_labels_arr, 
#                                   class_dict, write_path, dim=3, 
#                                   include_labels=True) 
    raw_umap = create_raw_data_embedding_umap(pixel_timeseries_arr, 
                                              class_labels_arr, 
                                              class_dict, write_path, dim=2, 
                                              include_labels=True) 
    sys.exit(0) 
    k_lst = [5, 7, 10, 15, 20] 
    m_lst = ['chebyshev', 'cityblock', 'correlation', 'euclidean', 
             'seuclidean', 'cosine', 'mahalanobis', 
             'wasserstein'] 
    # 'correlation', 
    for d in [30]: 
        for m in m_lst: 
            pca_arr, umap_arr = create_analysis_embeddings(pixel_timeseries_arr, 
                                                           class_labels_arr, 
                                                           class_dict, 
                                                           write_path, dim=d, 
                                                           include_labels=True, 
                                                           metric=m) 
            for X in [['pca', pca_arr, raw_pca], ['umap', umap_arr, raw_umap]]: 
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                print(X[0]) 
                # all clusterings in euclidean based on pca/umap reduction 
                kmeans_arr = kmeans_analysis(X[1], X[2], class_labels_arr, 
                                             class_dict, 
                                             write_path, k_lst=k_lst, 
                                             metric=m, 
                                             include_labels=True, dim=d) 
                #  rkmeans_arr = recombinator_kmeans_analysis(X[1]) 
                #  kmedoids_arr = kmedoids_analysis(X[1], k=[]) 
                hdbscan_arr = hdbscan_analysis(X[1], 
                                               min_cluster_size=[], 
                                               min_samples=[]) 
    return 
 
 
def standardize_data(X_arr, write_path, scaler_type='minmax'): 
    logging.warning('Note: scalers work on np.array columns not rows') 
    reshaped_scaler_arr = X_arr.reshape([X_arr.shape[2] * 
                                         X_arr.shape[3], 
                                         X_arr.shape[0] * 
                                         X_arr.shape[1]]) 
    print(X_arr.shape) 
    print(reshaped_scaler_arr.shape) 
    df_stats = pd.DataFrame.from_records(reshaped_scaler_arr) 
    print(df_stats.shape) 
    df_describe = df_stats.describe() 
    print(df_describe.shape) 
    pre_fname = os.path.join(write_path, 
                             'FeatureStats_{}.csv'.format(scaler_type)) 
    df_describe.to_csv(pre_fname, sep=",") 
    if scaler_type == 'minmax': 
        scaler = MinMaxScaler(feature_range=(0, 1)) 
    elif scaler_type == 'robust': 
        scaler = RobustScaler() 
    elif scaler_type == 'standard': 
        scaler = StandardScaler() 
    scaler_obj = scaler.fit(reshaped_scaler_arr) 
    scaled_data_arr = scaler_obj.transform(reshaped_scaler_arr) 
    df_scaled_stats = pd.DataFrame.from_records(scaled_data_arr) 
    df_scaled_describe = df_scaled_stats.describe() 
    post_fname = os.path.join(write_path, 
                              'FeatureScaledStats_{}.csv'.format(scaler_type)) 
    df_scaled_describe.to_csv(post_fname, sep=",") 
    print(scaled_data_arr.shape) 
    scaled_data_arr = np.nan_to_num(scaled_data_arr) 
    reshaped_output_arr = scaled_data_arr.reshape([X_arr.shape[0], 
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                                                   X_arr.shape[1], 
                                                   X_arr.shape[2], 
                                                   X_arr.shape[3]]) 
    print(reshaped_output_arr.shape) 
    return reshaped_output_arr 
 
 
if __name__ == "__main__": 
    # begin runtime clock 
    start = datetime.datetime.now() 
    # determine the absolute file pathname of this *.py file 
    abspath = os.path.abspath(__file__) 
    # from the absolute file pathname determined above, 
    # extract the directory path 
    dir_name = os.path.dirname(abspath) 
    # initiate logger 
    log_file = os.path.join(dir_name, 'ST1867_analyzer9000_{}.log' 
                            .format(start.date())) 
    create_logger(log_file) 
    # create the command line parser object from argparse 
    parser = argparse.ArgumentParser() 
    # set the command line arguments available to user's 
    parser.add_argument("--image_directory", "-imdr", type=str, 
                        help="Provide the absolute folder name containing PS\ 
                        images") 
    parser.add_argument("--class_labels_tif", "-cltif", type=str, 
                        help="Provide the absolute file path to the class\ 
                        labels tiff") 
    parser.add_argument("--write", "-w", type=str, 
                        help="Provide the absolute folder name for writing\ 
                        outputs, i.e. project directory") 
    parser.add_argument("--standardize", "-s", default=False, 
                        action='store_true', 
                        help="Provide True or False for standardizing\ 
                        the pixel data") 
    # create an object of the command line inputs 
    args = parser.parse_args() 
    # read the command line inputs into a Python dictionary 
    ini_dict = vars(args) 
    img_files_lst = tiffs_in_dir(ini_dict.get("image_directory")) 
    logging.info('Found total of {} images for processing' 
                 .format(len(img_files_lst))) 
    create_auxillary_bands(img_files_lst, ini_dict.get("write")) 
    (class_labels_arr, class_dict, pixel_timeseries_arr, 
     date_order) = gen_main_datasets(img_files_lst, ini_dict.get("write"), 
                                     ini_dict.get("class_labels_tif")) 
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    if ini_dict.get("standardize") is True: 
#        for st in ['minmax', 'robust', 'standard']: 
            pixel_timeseries_arr = standardize_data(pixel_timeseries_arr, 
                                                    ini_dict.get("write"), 
                                                    scaler_type='robust') 
#        sys.exit(0) 
    else: 
        logging.warning('You are proceeding with UNSTANDARIZED DATA') 
        ans = input("Are you sure you want to proceed?[Y/N]") 
        if 'N' in ans or 'n' in ans: 
            sys.exit(0) 
#    exploratory_graph_analysis(class_labels_arr, class_dict, 
#                               pixel_timeseries_arr, date_order, 
#                               ini_dict.get("write")) 
    exploratory_embedding_analysis(class_labels_arr, class_dict, 
                                   pixel_timeseries_arr, date_order, 
                                   ini_dict.get("write")) 
    elapsed_time = datetime.datetime.now() - start 
    logging.info('Runtime: {}'.format(elapsed_time)) 
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Appendix B 
 
The following pages contain slides from a presentation that was given by Zackary Leady to a group 
of Reclamation Science and Technology researchers on March 30, 2020. 
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Contextual Prelude

• Central Valley Improvement Act (CVPIA)
• Mandate to double salmon population

• Development of DSM models for Salmonids
• Need for habitat delineation values (acres)

• Temporary Floodplain is an excellent habitat for faster growth
• Consumnes River study

Jeffres, C. A., Opperman, J. J., & Moyle, P. B. (2008). Ephemeral floodplain habitats provide best 
growth conditions for juvenile Chinook salmon in a California river. Environmental Biology of 
Fishes, 83(4), 449-458. (54 days)

The Effect of Temporary Floodplain Habitat
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A Problem: How to Delineate?

• Traditional method
• Survey crew – millions of dollars (Trinity River)

• Remote Sensing Traditional method
• Normalized Difference Water Index (NDWI)

• Remote Sensing with Machine Learning
• Unsupervised or Supervised

S&T 1867: Temporary Floodplain Delineation using 
High Resolution Remote Sensing and Machine Learning

A Project

• Requirements:
• High Temporal and Spatial Resolution Data
• Automated geospatial toolkit
• Automated delineation toolkit
• Open Source / User Friendly
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A Problem Revisited: How to Delineate?
• High Temporal and Spatial Resolution
• Planet data, Sentinel-2 

• Automated Delineation
• Machine/Deep learning (computer vision)

• Open Source / User Friendly
• Python

What is Machine Learning?
• Machine Learning is a branch of AI
• Focuses on allowing computer to 

learn patterns without being 
explicitly programmed

• Unsupervised vs. Supervised
• Unsupervised – no labels 
• Supervised – labels
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Map of the 
Machine Learning 

World

Example Machine Learning Workflow
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What is Deep Learning?
• Deep learning is the use of 

multi-layered artificial neural 
networks

• An artificial neural network is a 
form of Machine Learning
• Learns by training on many input-

output pairs

• Universal function approximator

Deep Learning
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Conceptual Options for Delineation
• What if, given sufficient temporal and spatial resolution, satellite 

imagery were a time-series?

• Pixel or Object?

• Unsupervised or Supervised?

• Image, Numeric Time-Series, or Feature?

Satellite Imagery as a Time-Series (SITS)
Redding from 10/11/2016 - Planet Redding from 02/28/2017 - Planet
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Classical Approach: Thresholding
• Image is converted to greyscale or greyscale-like
• Histogram of pixel values segmented at a threshold point
• Binary (0-1) segmentation of higher or lower than threshold point

Traditional NDWI Thresholding
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Enhanced NDWI Thresholding
• Over many images in an SITS 

NDWI stack detection error is 
additive.
• Buildings
• Roads
• Bare Soil

• An enhanced NDWI thresholding 
method using local maxima and 
watershed segmentation 
algorithm reduces this error.

Enhanced NDWI Thresholding Result
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Thresholding Issues

• Each image in time must be looked at by a trained professional

• Two threshold values must be chosen

• Assumes bimodal distribution (land and water pixels)

Unsupervised Approach: Clustering
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Experimental Clustering Approach

Time Input Data

Derived Bands

Clustering

Clustering Issues
• Each cluster output image must be viewed to determine which 

“cluster” is temporary floodplain

• Clustering algorithm and hyperparameter choice

• Requires geospatial and machine learning professional

• Difficult to access cluster-quality
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• Convolutional Neural Networks (CNNs) are a type of neural net
• CNNs are SOTA for image-based deep learning

Supervised Approach: Deep Learning

Deep Semantic Segmentation
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Originally built for biomedical images and now being applied to 
satellite imagery

Deep Semantic Segmentation: U-net

U-net Building Detection

Training Input and Label Pair
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U-net Building Detection Prelim Results

Training Phase 1

Training Phase 2

Why buildings when we want Temporary 
Floodplain?

• Temporary Floodplain labels are 
very difficult to come by

• Enhanced NDWI Thresholding 
can be used to create a set of 
“noisy labels”

• Unfortunately those “noisy 
labels” really like buildings, 
roads, and bare soil

• Using U-nets for buildings and 
roads we can mask out “noisy 
labels”, improving the temporary 
floodplain labels

• The temporary floodplain U-net 
is the same as the other U-nets 
and form a U-net Ensemble
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U-net Workflow in Progress

Input Data

Building & Road 
U‐nets

Enhanced 
NDWI 

Thresholding

Temporary 
Floodplain Labels

Temporary 
Floodplain U‐net

Next Steps: U-net Iteration

• Development of more robust training and test datasets

• Ensemble U-net

• Sentinel-2, SAR data fusion
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Current Concerns
• Bare soil field confusion with flooded field 

• AROSICS (open-source, python) co-registering accuracy 

• Lack of Planet data moving forward, conversion to Sentinel-2

• Processing of 8 TB of data

Future Projects
• Hydrologic Models
• Entity-Aware LSTMs

• Crop Classification (ET)
• Input to ET models (water demand)

• Concrete crack detection

• Forecasting
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Please contact for additional questions:
Zackary Leady
zleady@usbr.gov
916-978-5088


	ST-2020-1867-01.pdf
	0BMission Statements
	1BDisclaimer
	2BAcknowledgements
	Peer Review
	Acronyms and Abbreviations
	Executive Summary
	1. Introduction
	1.1 Author’s Note
	1.2 Background and Research Goals

	2. Literature Review
	2.1 Machine Learning
	2.2 Distance Metrics
	2.3 Dimensionality Reduction
	2.4 Clustering
	2.5 Supervised Learning
	2.6 Unsupervised Learning

	3. Methodology and Results
	3.1 Image selection and pre-processing
	3.1.1 Comparison of Top of Atmosphere and Surface Radiance Imagery Products
	3.1.2 Georeferencing
	3.1.3 Spectral Consistency

	3.2 Image classification

	4. Future Work
	References
	Appendix A
	Appendix B

	RSWG_PPT_1867_20200327_handouts.pdf

		2021-03-12T07:25:09-0800
	VANESSA KING


		2021-03-12T09:03:55-0800
	MICHAEL WRIGHT




