

Seasonal/Temporary
Wetland/Floodplain Delineation
using Remote Sensing and Deep
Learning
Science and Technology Program
Research and Development Office
Final Report No. ST-2020-1867-01

U.S. Department of the Interior March 12, 2021

iii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining
the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for
reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a
currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)
12-03-2021

2. REPORT TYPE
Research

3. DATES COVERED (From - To)
2017-10-01 – 2020-09-30

4. TITLE AND SUBTITLE
Seasonal/Temporary Wetland/Floodplain Delineation using Remote Sensing
and Deep Learning

5a. CONTRACT NUMBER
20XR0680A1-RY15412018WP31883

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER
1541 (S&T)

6. AUTHOR(S)
Vanessa King, Hydrologist

5d. PROJECT NUMBER

Final Report No. ST-2020-1867-01
5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Planning Division, Decision Analysis Branch
California-Great Basin Regional Office
Bureau of Reclamation
U.S. Department of the Interior
2800 Cottage Way, W-2830
Sacramento, CA 95825

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Science and Technology Program
Research and Development Office
Bureau of Reclamation
U.S. Department of the Interior
Denver Federal Center
PO Box 25007, Denver, CO 80225-0007

10. SPONSOR/MONITOR'S ACRONYM(S)
Reclamation

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

Final Report ST-2020-1867-01

12. DISTRIBUTION/AVAILABILITY STATEMENT
Final Report may be downloaded from https://www.usbr.gov/research/projects/index.html

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Seasonal wetlands are an important habitat for many aquatic species, including juvenile anadromous fish. In the past, the delineation
of seasonal wetlands has been very limited and often inaccurate by traditional methods used by Reclamation. A new methodology
was created to automatically delineate seasonal wetlands from satellite imagery using machine learning methods. While additional
research is needed to verify the accuracy of the results, this methodology has the potential to identify seasonal wetlands over a large
area at a much lower cost than traditional methods.
15. SUBJECT TERMS
Remote sensing, wetlands, machine learning

16. SECURITY CLASSIFICATION OF: 17. LIMITATION

OF ABSTRACT
18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON

a. REPORT
U

b. ABSTRACT
U

THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

https://www.usbr.gov/research/projects/index.html

iv

v

Mission Statements
The Department of the Interior (DOI) conserves and manages the
Nation’s natural resources and cultural heritage for the benefit and
enjoyment of the American people, provides scientific and other
information about natural resources and natural hazards to address
societal challenges and create opportunities for the American people,
and honors the Nation’s trust responsibilities or special commitments
to American Indians, Alaska Natives, and affiliated island
communities to help them prosper.

The mission of the Bureau of Reclamation is to manage, develop, and
protect water and related resources in an environmentally and
economically sound manner in the interest of the American public.

Disclaimer
Information in this report may not be used for advertising or
promotional purposes. The data and findings should not be construed
as an endorsement of any product or firm by the Bureau of
Reclamation, Department of Interior, or Federal Government. The
products evaluated in the report were evaluated for purposes specific
to the Bureau of Reclamation mission. Reclamation gives no
warranties or guarantees, expressed or implied, for the products
evaluated in this report, including merchantability or fitness for a
particular purpose.

Acknowledgements
The Science and Technology Program, Bureau of Reclamation,
sponsored this research. Planet Labs, Inc. supported this project by
providing free access to aerial imagery. The United States Geological
Survey contributed the use of a supercomputer.

vi

Seasonal/Temporary
Wetland/Floodplain
Delineation using Remote
Sensing and Deep Learning

Final Report No. ST-2020-1867-01

prepared by

California-Great Basin Regional Office
Vanessa King, Hydrologist

Cover image: A seasonal wetland near Redding, California, delineated using the
methodology developed in this project.

vii

Peer Review
Bureau of Reclamation
Research and Development Office
Science and Technology Program

Final Report ST-2020-1867-01

Report Title

Prepared by: Vanessa King
Hydrologist, California-Great Basin Region Planning Division

Peer Review: Michael Wright
Hydrologist, California-Great Basin Region Planning Division

viii

Acronyms and Abbreviations
CNN Convolutional Neural Network
DBSCAN Density Based Spatial Clustering of Applications with Noise
GAN Generative Adversarial Network
HDBSCAN Hierarchical DBSCAN
JULE Joint Unsupervised Learning
LiDAR Light Detection and Ranging
NDMI Normalized Difference Moisture Index
NDVI Normalized Difference Vegetation Index
NDWI Normalized Difference Water Index
PCA Principal Components Analysis
Planet Planet Labs, Inc.
Reclamation Bureau of Reclamation
SNE Stochastic Neighbor Embedding
t-SNE t-Distributed Stochastic Neighbor Embedding
UAV Unmanned Aerial Vehicle
UMAP Uniform Manifold Approximation and Projection
USGS United States Geological Survey

ix

Contents

Page

Mission Statements .. v
Disclaimer .. v
Acknowledgements .. v
Peer Review .. vii
Acronyms and Abbreviations .. viii
Executive Summary .. xi
1. Introduction .. 1

1.1 Author’s Note .. 1
1.2 Background and Research Goals .. 1

2. Literature Review ... 2
2.1 Machine Learning .. 2
2.2 Distance Metrics .. 2
2.3 Dimensionality Reduction ... 3
2.4 Clustering ... 3
2.5 Supervised Learning .. 4
2.6 Unsupervised Learning... 5

3. Methodology and Results .. 6
3.1 Image selection and pre-processing ... 6

3.1.1 Comparison of Top of Atmosphere and Surface Radiance Imagery
Products ... 6
3.1.2 Georeferencing .. 11
3.1.3 Spectral Consistency ... 13

3.2 Image classification ... 15
4. Future Work .. 16
References ... 17
Appendix A ... 20
Appendix B... 44

Seasonal Wetland Delineation with Remote Sensing

xi

Executive Summary
Seasonal wetlands are an important habitat for many aquatic species, including juvenile anadromous
fish. In the past, the delineation of seasonal wetlands by traditional methods used by Reclamation
has been very limited and often inaccurate. A new methodology was created to automatically
delineate seasonal wetlands from satellite imagery using machine learning methods. The primary
intended application of this research was to identify potential habitat for juvenile anadromous fish,
but the methodology would be applicable to any project where identification of seasonal wetlands is
desired.

Wetland delineation was achieved through use of imagery from the Planet Labs, Inc. (Planet)
satellite constellation. Indices were calculated from the wavelength data provided by Planet’s
satellites for a pair of images of the Redding area, one before and one after a major rainfall event.
A multidimensional space was created by combining the two images and providing index values for
each pixel on each day. State-of-the-art machine learning methods were applied to the
multidimensional space, classifying each pixel as a member of different clusters. Some of these
clusters were observed to correspond to areas which were flooded in one image but not the other.
The total area of these clusters could be used to calculate an estimate of floodplain acreage.

This method relied upon georeferencing based on manual identification of multiple identical points
to correct the limitations of Planet's georeferencing. It also relied upon manual identification of
useful images to compare flooded against dry states and upon analysis of the clustered results to
identify clusters representing flooded pixels. It is possible that other image sources such as Sentinel-
2 would have better georeferencing applied to the images before being provided to the public,
obviating the need additional processing before applying the classification method. The method
tested on the Redding area could be applied to other areas but manual identification of flooded and
dry images, analysis of the clusters outputted to find clusters corresponding to flooded areas (which
may involve iterative improvement of the clustering algorithm) and potentially manual
georeferencing would have to be conducted. Application of the method more generally, for example
to a broader set of imagery of a larger area, would require automatization of these manual processes.

While additional research is needed to verify the accuracy of the results, this methodology has the
potential to identify seasonal wetlands over a large area at a much lower cost than traditional
methods.

Seasonal Wetland Delineation with Remote Sensing

1

1. Introduction

1.1 Author’s Note
The Principal Investigator of this project, Zackary Leady, left Reclamation before completing this
report. As a result, this report has been compiled in his absence using a limited set of available
documentation.

1.2 Background and Research Goals
Anadromous fish such as Chinook salmon are born from eggs laid in gravelly stream beds and
achieve maturity while traveling toward the ocean down wider and wider streams. They live their
adult lives in the oceans, where they are harvested by commercial fisheries and other predators, and
return to inland streams in order to breed, supporting recreational fishing along the way. Populations
of anadromous fish rearing in California streams have dropped in the last century as dams, levees,
and other human structures have blocked or degraded their habitat. This decrease has harmed
economic and environmental interests in California and elsewhere, and much effort continues to be
exerted to increase anadromous fish populations.

Among these efforts is habitat restoration downstream of spawning areas, where juveniles feed and
grow. If too many juveniles are produced by hatcheries and natural spawning for the available
habitat, the nutrition of the fish will suffer and deaths from not only malnutrition but downstream
predation and other causes will increase; juvenile habitat availability can become a bottleneck on the
entire system. Because availability of floodplain habitat has been correlated with increased growth in
juveniles and is recognized as being ‘in critically short supply’, this often takes the form of increasing
available floodplain. Estimation of the area of juvenile habitat available is therefore important for
modeling anadromous fish populations or developing habitat restoration plans (Moyle et al., 2008).

It is difficult, however, to accurately assess the available juvenile floodplain habitat at any given place
and time. Floodplains are by nature ephemeral, and their extent must be measured in time as well as
space. Inundated areas not attached to the main stem, meanwhile, are not valid habitat. Satellite
imagery has been used to estimate floodplain extent using Landsat and other satellites, but imagery
for any given site is only captured rarely. More recently, a denser network of smaller satellites has
been developed by Planet called PlanetScope (Planet Labs, 2021). Imagery from Planet’s satellites
offer more frequent images of any given location, and have been used in floodplain estimation in
other areas of the world (Cooley et al., 2017). Our goal is to estimate juvenile habitat availability
along Central Valley streams in recent years while assisting in estimation of floodplain in future
seasons using this dataset.

Seasonal Wetland Delineation with Remote Sensing

2

2. Literature Review
A literature review was undertaken to better understand the current knowledge regarding various
topics related to the development of a deep learning algorithm, including machine learning, distance
metrics, dimensionality reduction, clustering, supervised learning, and unsupervised learning. The
results of this literature review are summarized below.

2.1 Machine Learning
Machine learning is an analysis method in which neural networks of varying structures take data as
an input and output categorizations or other labelings that represent an algorithmic understanding of
the underlying structure of the data. This offers a compelling alternative to manual expert review of
thousands of satellite images. In particular, the sub-field known as ‘deep learning’, because its
networks are built out of multiple layers, has seen success in the last decade and has been
incorporated into processes used by computing giants including Microsoft, Google and Facebook.
In Unsupervised Convolutional Neural Networks (CNNs), the deep, complicated network can take
many different shapes but generally repeatedly performs mathematics similar to convolution,
resulting in the synthesis of information about a small region and the passing on of this information
to a higher-level analytical network. CNNs have shown remarkable aptitude at problems such as
image segmentation and identification (e.g. identifying whether a picture contain a cat, a dog, or
both, and which pixels are part of the cat object, the dog object, or neither) despite being
unsupervised by human intelligence during the computational process. Conversely, analysis of
remote sensing imagery such as Planet data has often been undertaken via supervised methods such
as hyperspectral image classification, but this requires the existence of a large set of labeled training
data (Zhu et al., 2017, Zhang et al., 2016, LeCun et al., 2015).

2.2 Distance Metrics
Many distance measures, the most familiar of which is the Euclidian distance, exist to calculate
differences and similarities between individual pixels. For example, the Minkowski distance is a
generalization of the Euclidian method where the exponent can be varied, while Mahalanobis
distance uses the covariance matrix of the data and is equivalent to squared Euclidian distance for
uncorrelated data. It is difficult to determine an absolute ranking from best to worst; different
distance measures perform best for different datasets (Kumar et al., 2014). This is likely due to each
metric’s tendencies to create clusters with different qualities; for example the Manhattan distance
method (distance applied along only the streets of a regular city grid with no diagonal paths, in
essence) produces ‘hyperrectangular’ clusters, which may be desirable if one is clustering items that
tend to have rectangular shapes, such as city blocks. Another factor is the tradeoff between
simplicity of method and complexity of data returned. Partitioning methods are relatively simple but
only contain one layer of information about pixel-to-pixel relationships, while hierarchical methods
often have many opaque parameters to be set but are capable of discerning multiple levels of
similarity between classes of pixels (Xu and Wunsch, 2005).

Seasonal Wetland Delineation with Remote Sensing

3

2.3 Dimensionality Reduction
Reducing the number of dimensions in a dataset while retaining the most important differences and
similarities between the data points is a difficult problem that can nevertheless yield significant gains
by simplifying the problem space. Principal Component Analysis (PCA) draws directly from linear
algebra principles to essentially re-orient the axes underneath the dataset. First, the axis along which
the largest amount of variance exists is identified and each data point is rescaled along this axis or
component; then an orthogonal axis explaining the next-largest amount of variance is identified and
each data point rescaled; and so on as far as one wishes to go. The benefit of PCA is that, by
definition, it orders the new axes of the dataset by importance. The user can then select whatever
number of components are justified by balancing computational time and loss of data. PCA is often
used to reduce data into a plottable number of dimensions (Wold et al., 1987).

PCA is a linear algorithm, which can result in an inadequate representation of the similarity between
data points whose relationships include non-linearity. Among the nonlinear dimensionality reduction
techniques created to resolve this issue is Stochastic Neighbor Embedding (SNE), which turns
Euclidean distances into conditional probabilities that a point would be picked as a neighbor based
on a Gaussian probability density. However, this requires careful parameterization of features such
as step size, momentum in gradient descent during optimization, and assumptions of Gaussian noise
magnitude and rate of reduction. A further development, t-Distributed Stochastic Neighbor
Embedding (t-SNE), uses a cost function that is less difficult to parameterize and assumes a
Student-t distribution, not a Gaussian distribution, for low-dimensional similarities. A variety of
methods for optimization and tuning exist (van der Maaten and Hinton, 2008).

Uniform Manifold Approximation and Projection (UMAP) is a recent development in dimension
reduction using advanced concepts in topology to identify and preserve similarities and differences
in the data while embedding it into a smaller dimensional space. It is scalable and avoids
computational restrictions on number of dimensions, and in testing on selected datasets has been
shown to outperform t-SNE. UMAP is intended to be ‘a general purpose dimension reduction
technique for machine learning’ (McInnes and Healy, 2018).

2.4 Clustering

One key aspect of learning relevant to this task is the choice of a clustering algorithm. These
methods attempt to partition the dataset into optimal clusters, which offers a promising platform for
the classification of pixels in a satellite image as floodplain or not. Clustering can be performed via
hierarchical methods, in which nested groups are created, or via partitional (non-hierarchical)
methods, as in the K-family of algorithms. For large datasets, density-based algorithms which
require data points offer a more computationally efficient solution (Xu and Wunsch, 2005.

The aforementioned partitional clustering methods are known as the K-family because they require
the user to define the number of clusters, K, into which the data is to be partitioned. K-family
algorithms use Euclidean distance around initially random cluster centers or centroids, then iterate
toward a minimum total Euclidean distance between each point and its cluster’s centroid. This
method is relatively simple but has difficulty dealing with data in which clusters appear of different
sizes and densities, and different results can be produced depending on the K value and initial

Seasonal Wetland Delineation with Remote Sensing

4

centroids selected. The K-medoids algorithm also starts with random selection of ‘medoids’, but in
this case it chooses from amongst the data points and attempts to minimize pairwise distance
metrics such as Manhattan distance, which can help avoid the bias toward circular- or oval-shaped
clusters engendered by use of squared Euclidian distance (Kumar et al., 2014; Xu and Wunsch,
2005).

Many clustering techniques introduced to overcome the limitations of the K-family partitional
algorithms. CLARANS builds on the K-medoids method using graph theory principles, examining
randomly chosen neighbor nodes until local optima are found and searching randomly for new
candidate medoids. This method can achieve higher quality results but still works in quadratic
computational time, making it inefficient for large datasets. DBSCAN (Density Based Spatial
Clustering of Applications with Noise) takes a density-based approach in an attempt to avoid the
aforementioned difficulties of the K-family of algorithms in dealing with varying densities across the
problem space. The user specifies a density threshold and a clustering is built based on the density
structure of the dataset, with data points in nearby less dense areas grouped into the clusters (Xu and
Wunsch, 2005). A hierarchical clustering method built off of DBSCAN, called HDBSCAN, offers
the benefits which redound from learning the hierarchical structure of relationships within one’s
dataset. Through the hierarchical paradigm different thresholds for inclusion of data points can be
applied in different areas, allowing for a more nuanced classification of ‘noise’ data (Campello et al.,
2015). Improvements upon HDBSCAN include ‘accelerated HDBSCAN*’, which eliminates a
distance scale parameter from the set of user choices and reduces the computational run time from
quadratic to N log N (McInnes and Healy, 2017).

2.5 Supervised Learning
Supervised learning incorporates labeled training data, accelerating the learning process by offering
examples that can be applied to the dataset under examination. This is often used in tasks such as
image classification (i.e., is this an image of a cat or a tractor?), image segmentation (which parts of
this image, labeled pixel by pixel, are road, which are sky, which are tractor, which are cat, etc.), as
well as instance segmentation (which parts of the image are cat #1 and which are cat #2, which sky
pixels are clouds and which are clear, separate identification of the left and right treads on the
tractor; in general, identifying the boundaries of multiple instances of similar objects).

The DeepLab method applies filtering to different layers of the deep convolutional network, among
other contributions, in an attempt to achieve superior image segmentation (L.-C. Chen et al., 2018a).
This atrous convolution method continues to be pursued in successor models such as DeepLabv3+
(L.-C. Chen et al., 2018b). Developed in the medical field, the U-Net method applies the
convolutional neural network to biomedical image processing, where each pixel in the image must
be assigned a class. The method uses ‘a u-shaped architecture’ in which the original image is
processed into a data object with fewer pixels but many more channels per pixel, then re-processed
into an image of the same pixel-channel dimensions as the original image. This output is a pixel-by-
pixel classification in which each pixel’s value is defined by operations involving data from across
the image (Ronneberger et al., 2015). This method has been extended to probabilistic segmentation,
the generation of multiple equally probable segmentation hypotheses (Kohl et al., 2018). The SegNet
method uses non-linear upsampling to eliminate a learning step as pooled information from the
original image is decoded into feature classifications. It is designed with efficiency in mind, in terms

Seasonal Wetland Delineation with Remote Sensing

5

of memory, computational load, and number of trainable parameters. This method was inspired by
unsupervised learning methods but requires supervised learning to establish the classifications by
which the image is to be segmented (Badrinarayanan et al., 2016).

2.6 Unsupervised Learning
Due to the lack of reliable labeled wetland data, this analysis pursued an unsupervised approach.
Multiple unsupervised learning methods were considered. The ‘W-Net’ method is so named because
its basic architecture is akin to two applications of the U-Net method: Once to encode unsupervised
labels and again to apply them. This represents an attempt to apply the benefits of the U-Net
method to pixel classification in an unsupervised setting. This is one example of auto-encoding, an
aspect of unsupervised machine learning in which representations are algorithmically found so that
dimensionality can be reduced and relationships can be identified which may lead to classification
and labeling of pixels in the analyzed imagery (Xia and Kulis, 2017).

The Generative Adversarial Network (GAN) offers another take on deep learning. In its original
application it was used for image generation, but in later years it has been applied to unsupervised
learning and its structure has been adapted, including the coupling of multiple GANs. In the original
version of this paradigm, two neural networks, the Generator and the Discriminator, play a minimax
game; the Generator creates images from real and fake data, and the Discriminator attempts to
identify each image’s provenance. Ideally a Nash equilibrium is reached and, in the original
application, synthetic images with an appropriate relationship to the data are created (Bashmal et al.,
2018). A sub-class of this method known as MARTA GANs have been used for unsupervised
satellite image classification; the Generator learns to create synthetic training images similar to the
original data and the Discriminator learns features of the true data (Lin et al., 2017). An information-
theoretic extension to GAN called InfoGAN has been developed to maximize “the mutual
information between a small subset of the latent variables and the observation” (X. Chen et al.,
2016).

Joint Unsupervised Learning (JULE) uses CNNs in a ‘recurrent process’ paradigm, in which merging
and clustering operations constitute the forward pass and CNN-based representation learning
constitutes the backward pass. This was originally developed for classification of full images into
categories (Yang et al., 2016), but the method has been extended to segmentation of medical images
(in other words, labeling of each pixel as a member of one of many groups), including
accommodating three-dimensional images (Moriya et al., 2018). Further developments along these
lines in the image classification area exist, which report superior classifications on test datasets
(Tzoreff et al., 2018).

The aforementioned methods and the purposes for using them often overlap; for example, the
original application of JULE did not use K-means clustering to initialize clustering, but it specifies
that it could, and the JULE image segmentation method utilizes K-means clustering to reduce
dimensionality from the trained CNN to the final image. For this reason, it would be misleading to
draw hard lines between the different methods. To generalize, however, it may be fair to summarize
these methods as a progression of more and more intricate designs, all building on previous
methodologies. While classification of individual images is a portion of this project, ultimately the
goal is to string together multiple images into a time series and then cluster based on the estimated

Seasonal Wetland Delineation with Remote Sensing

6

presence or absence of water across time as well as space. Many different methods have been
applied across a variety of fields. Distance metrics and other generalized clustering concepts can be
adapted to this paradigm, and the selection of a metric and a method (e.g. hierarchical or
partitioning) continues to be dependent on the dataset to be analyzed (Aghabozorgi et al., 2015).

3. Methodology and Results

3.1 Image selection and pre-processing
Imagery from Planet was selected for use in this project for the following reasons: (1) the imagery
has a high resolution of ~4 meters, (2) Planet has a large constellation of satellites (~150 satellites
currently in orbit), allowing for short revisit times of ~1-2 days, and (3) at the time the project was
initiated, data were available to government researchers at no cost through the Open California
program. The Open California program was terminated in 2019, so if additional imagery is required,
it will need to be acquired at cost or from another source. Sentinel-2 (collected by the European
Space Agency and distributed by the United States Geological Survey (USGS)) was identified as a
potential no-cost alternative source for imagery, but it has lower spatial resolution (~10m) and a
slightly longer revisit time (2-3 days). Reclamation’s primary point of contact at Planet was Joseph
Mascaro.

Approximately 8 terabytes of data were downloaded, covering the domain of the Central Valley
Improvement Act (CVPIA) over a period of approximately 2.5 years. These data were stored on the
USGS Yeti supercomputer, through a partnership with the USGS. If Reclamation wishes to use
these data in the future, they will likely need to be transferred to a Reclamation location.

Two areas with known seasonal wetlands were selected for preliminary analysis: one near Redding,
CA, and one including a portion of the Cosumnes River. The former contains both Redding’s
downtown area and potential floodplain habitat in the Turtle Bay area, while the latter is a managed
floodplain area which has been studied and mapped by fisheries biologists (Ribeiro et al., 2004).
These two areas are referred to as the Redding area and Cosumnes area, respectively, throughout the
report.

3.1.1 Comparison of Top of Atmosphere and Surface Radiance Imagery Products
Planet provides three different imagery projects: Basic Scenes (Level 1B), Ortho Scenes (Level 3B),
and Ortho Tile products (Level 3A). Additionally, the Ortho Scene product is available as either of
Top of Atmosphere Radiance (at sensor) product or a Surface Reflectance image product (Planet
Labs, 2021). The Surface reflectance product is processed to top-of-atmosphere reflectance and then
atmospherically corrected to bottom of atmosphere reflectance, which ensures consistency across
localized atmospheric conditions and minimizes uncertainty in spectral response across time and
location. Standard atmospheric models are used along with MODIS water vapor, ozone, and aerosol
data (Planet Labs, 2018).

Seasonal Wetland Delineation with Remote Sensing

7

However, the surface reflectance product is only available worldwide since October 2017, and for
selected agricultural regions starting in 2016. For our areas of interest, surface reflectance products
were identified starting in November 2016 for the Consumes area and August 2016 for the Redding
area.

In order to determine whether the difference in consistency between radiance and reflectance
imagery is significant, a pair of images were analyzed from the Redding area that were collected
before and during the Carr Fire, which burned July 23 to August 30, 2018.

The selected images were from July 2 and August 14, 2018. As no rain was recorded during this time
period, the amount of ground surface change is expected to be minimal. No changes in the ground
surface were identified in a visual comparison of the two images. The smoke is clearly visible on the
image from August 14, and thus it is expected that the concentration of aerosols will be significantly
greater on this image. As the surface reflectance product is corrected for the effect of aerosols, it is
expected that the surface reflectance products for these two images will be more similar than the
top-of-atmosphere radiance images. Figure 1 shows the selected images in true color.

Figure 2 shows the Band 2 (green) image for top-of-atmosphere radiance product (left) and surface
reflectance product (right), for July 2 (top) and August 14 (middle), and the differences between the
two dates (bottom). Figure 3 shows the same set of images for Band 4 (near infrared). The green and
near-infrared bands are the primary bands of interest in this study.

Table 1 shows the correlation coefficients for the top-of-atmosphere radiance and surface
reflectance images. Correlation coefficients are scaled from 0 to 1, with higher numbers indicating
that the images are more similar to one another. The comparison shows that the surface reflectance
images have the same or slightly lower consistency compared to the top-of-atmosphere radiance
images.

Seasonal Wetland Delineation with Remote Sensing

8

Figure 1: True-color comparison between the top-of-atmosphere radiance and surface reflectance
products for the two selected dates (07/02/18 and 08/14/18). Note that for each date, the two products
are visually indistinguishable.

Table 1: Correlation coefficients for a comparison between the July 2 and August 14 images, for top-of-
atmosphere radiance and surface reflectance products.

Band Top-of-Atmosphere
Radiance

Surface Reflectance

1 0.812 0.808
2 0.865 0.863
3 0.927 0.925
4 0.959 0.959

Seasonal Wetland Delineation with Remote Sensing

9

Figure 2: Comparison of Band 2 (green) top-of-atmosphere radiance (left) and surface reflectance (right)
products for image taken on July 2, 2018 (top) and August 14, 2018 (middle). The top-of-atmosphere
radiance images for each date and surface reflectance for each date are displayed using the same color
scale, but the scales for the two sets of data differ as the units are different. The bottom panel shows the
absolute value of the difference between the above images. The differences are normalized by the mean
value of the 07/02/2018 image products and plotted on the same scale for easier comparison.

Seasonal Wetland Delineation with Remote Sensing

10

Figure 3: Same as Figure 2, but for Band 4 (near infrared).

Other effects for which the surface reflectance product is corrected include solar zenith angle and
water vapor data (Planet Labs, 2018). The vast majority of images for our two study areas were taken
within an hour of 12:00 p.m. local time, and for the images taken outside of that time, we were not
able to identify any for which a surface reflectance product was provided. Thus, we do not expect
there to be a significant effect from the correction for solar zenith angle, especially because the angle
is rounded to the nearest 10 degrees for purposes of correction. While the effect of water vapor data
may be more significant, it is difficult to separate the effects of water vapor corrections from the
ground surface changes that result from precipitation.

Seasonal Wetland Delineation with Remote Sensing

11

While this analysis is limited in scope, it shows that surface reflectance images are no more
consistent than top-of-atmosphere radiance images for a pair of images with the same ground
surface conditions but different atmospheric images, and thus the choice of which type of images to
use is not expected to make a significant difference in our analysis.

3.1.2 Georeferencing
In order to improve the consistency in the geolocations of the Planet images, approximately 50
images were georeferenced to 2016 NAIP imagery, using ArcMap software.

The images were first projected from the original WGS geographic coordinate system to a projected
coordinate system, NAD83 UTM Zone 10N, with a pixel size of 4 meters. A 4 km by 4 km area of
interest was then selected for the Redding images, and another one for the Cosumnes images. The
images were then clipped to these areas of interest, with a 40-meter buffer on each side, in order to
ensure that images would still cover the entire area of interest after georeferencing. The areas of
interest were selected by calculating the area over which all the images for that location overlapped,
and then extending that area to cover more of the areas known to be subject to seasonal inundation,
and to reach the desired size. Images that did not cover the known seasonal inundation areas were
discarded. The Cosumnes area of interest fell on the border of two coverage areas, so adjacent
images were mosaicked prior to georeferencing as necessary.

Twenty-five control points were then selected for each set of images (Redding and Cosumnes).
These control points were selected to be adequately distributed throughout the image and to be
located at points that were expected to experience minimal change over time and to be identifiable
on all images, such as corners of buildings or intersections of roads. Prior to georeferencing, the
majority of location differences between the Planet data and the NAIP imagery were within the
nominal location accuracy of 10 meters, but some were greater, with one image differing from the
NAIP imagery by about 70 meters. Not all control points were used for each image, due to images
not covering the full area of interest, or to the control points not being identifiable because of cloud
cover or other reasons. Georeferencing was performed using a first-order polynomial (affine)
transformation.

For the Redding images, the number of control points used for each image ranged from 15-25, with
a mean of 23.6. The root-mean-square (RMS) error ranged from 1.70 m to 4.21 m, with a mean of
2.33 m, with only one image having a RMS error greater than the pixel size of 4 m.

For the Cosumnes images, 18 images used all 25 control points, while the other two used 24 control
points, for a mean of 24.9. The RMS error ranged from 2.08 m to 4.25 m, with a mean of 2.95 m.
Two images had a RMS error greater than 4 m.

The georeferencing control points for each site are shown in Figure 4 and Figure 5.

Seasonal Wetland Delineation with Remote Sensing

12

Figure 4. Redding georeferencing control points, along with an example image.

Seasonal Wetland Delineation with Remote Sensing

13

Figure 5. Cosumnes georeferencing control points, along with an example image.

3.1.3 Spectral Consistency
As the wetlands analysis is dependent on detecting spectral changes between images due to
flooding, it is important that the signal caused by flooding is much stronger than the differences
between images due to other causes. Two pairs of test images that were recorded by different
satellites on the same day, one pair in the wet season and one in the dry season, were analyzed to
quantify the cross-image differences.

Figure 6 show the Cosumnes images for Band 2 (green; left) and Band 4 (near infrared; right).
These are the primary bands of interest. The pair of test images are shown in the top and middle,
with the bottom image showing the absolute value of the difference between them plotted on the
same scale. The two images have correlation coefficients of 0.991 for band 2 and 0.993 for band
4, indicating a high degree of consistency between the images.

Seasonal Wetland Delineation with Remote Sensing

14

Figure 6: Comparison between Cosumnes images in a dry period. Both images were recorded on 31
August 2016. The top images show the green band (left) and near infrared band (right) for an image
recorded by satellite 0e26. The middle images show the green band (left) and near infrared band (right)
for an image recorded by satellite 0e03. The bottom images show the absolute value of the difference
between the green bands (left) and near infrared bands (right). All images are plotted using the same
color scale (bottom).

Seasonal Wetland Delineation with Remote Sensing

15

3.2 Image classification
In order to simplify the problem space, four-band data from Planet’s satellites (near infrared, red,
green, blue) are synthesized into two indices well established in the remote sensing analysis
community. The Normalized Difference Water Index (NDWI) is calculated by dividing green minus
near infrared values by the sum of green and near infrared, while the Normalized Difference
Vegetation Index (NDVI) is calculated by dividing the difference between near infrared and red
values by the sum of those two values. In short, NDWI = (G – NIR) / (G + NIR) and NDVI =
(NIR – R) / (NIR + R), where G, R, NIR, stand for green, red, and near infrared, respectively.
These indices are not perfect detectors of water and vegetation, but they provide a good start at
identifying water (Hussain et al., 2013). and have been applied to Planet data for that purpose
(Tetteh and Schönert, 2015; Cooley et al., 2017).

Mapping analyses of wetland data have used data sources including LiDAR (Vondrasek, 2015;
Serran and Creed, 2015) Landsat (Quinn and Epshtein, 2013; Quinn and Burns, 2015; Jones, 2015;
Pekel et al., 2016; Allen, 2015; Verpoorter et al., 2012; Pasquarella et al., 2016), Worldview (Lane et
al., 2014), Synthetic Aperture Radar (SAR) satellites (Martinez and Le Toan, 2007; Schmitt et al.,
2018), and of course Planet satellite data (Cooley et al., 2017), as well as combinations of Landsat
and Planet data (Gabrielsen, et al., 2016), Landsat and Unmanned Aerial Vehicle (UAV) (O’Brien,
2016), and multiple satellite datasets (Prigent et al., 2016). In general, water masks are formed
through analytical processes, often utilizing indices as described above; methods applied to the data
range from manual determination of index threshold values to deep learning approaches. These
studies offer guidance for our approach.

The JULE method explained above is implemented in Python. This code offers high-level
implementations of the complicated processes necessary in creating and using CNNs. A high-quality
dataset used in image analysis competitions exists depicting the German city of Potsdam. This
includes imagery of the River Havel as well as urban areas, offering a platform for assessment of the
method. After confirming a Python workflow that achieved segmentation and labeling of the
Potsdam image, the method was applied to the Central Valley imagery that had been obtained from
Planet.

The insights gained from working with and reading about the models and concepts above led to the
creation of a testbed successfully labeling ephemeral floodplain. The extreme wet season of 2016-
2017 offered ample opportunity for identifying images of these areas before and during large flood
events. After combining various analytical pathways from among those described above, a method
of dimensionality reduction using PCA followed by K-means clustering across pixels defined by the
difference between their NDVI and NDWI index values and the average across the images at both
time steps resulted in actionable outputs. This method successfully identified many pixels which
were dry in one picture and inundated in the next, despite changes in water color (after a major
flood event the water is sediment-laden and brown, while in pre-flood conditions it is bluer),
potential confounding effects due to some urban surfaces’ similar index values to bodies of water,
and the possibility of other differences in calibration between the satellite sensors which recorded
the images.

Unfortunately, this code contains very limited documentation, but the code is included as Appendix
A, to allow for its future use or extension.

Seasonal Wetland Delineation with Remote Sensing

16

4. Future Work
As described above, determination of a suitable distance metric must largely be guided by
performance on the target dataset. In order to upscale this effort to encompass larger portions of
the Sacramento Valley’s potential juvenile salmonid habitat or other areas of interest, the
performance of various distance metrics should be evaluated to determine which distance metric or
metrics are appropriate for the dataset. The UMAP method described above has promise as a
method of reducing dimensionality while maintaining as many of the features of the full dataset as
possible. As time series become longer and the number of images under analysis increase, this
capacity may be essential to reduce computational complexity.

Of the clustering methods previously mentioned, two partitioning and one hierarchical method are
particularly good candidates for future use. K-medoids and K-means are variants on the same
relatively simple idea of partitioning, while HDBSCAN is a more complex density-based hierarchical
method which may be required if the underlying data structure becomes too complex for the
relatively simple computations applied by the K-family of algorithms. If analysis progresses, various
clustering methods should be applied to the data to observe which methods best identify
spatiotemporal floodplain extent.

Dimensionality reduction can be used not only to reduce computational complexity but also to
create a meaningful image in two or three dimensions for visualization by end-users and
programmers. UMAP offers this capacity. It is possible that representations of complex multi-image
time series classifications generated by UMAP would contain information about the relationship
between one type of pixel and another, which in turn could aid the viewer in interpreting a classified
image with labeled pixels. This could assist in describing or deciphering the differences and
similarities between different types of floodplain, or pixels that are incorrectly classed as floodplain.

While Planet data offer imagery at high spatial and temporal resolution by comparison with other
satellite imagery datasets, data quality issues must be considered. Each image is not as well
geolocated as the smaller number of images generated by other data sources such as Landsat,
meaning that further processing is required before the combination of multiple images into a time
series (Cooley et al., 2017). Currently we have utilized manual geolocation corrections on several
representative sets of images to correct this issue. This method is scalable to a limited degree;
seasons and locations selected by subject matter experts could be addressed with limited turnaround
time. Automated methods of addressing this issue would be necessary to scale-up this application.

Seasonal Wetland Delineation with Remote Sensing

17

References
Aghabozorgi, S., Shirkhorshidi, A.S., and Wah, T.Y., 2015. Time-series clustering – A decade review.

Information Systems 53, 16-38.
Allen, Y., 2015. Landscape Scale Assessment of Floodplain Inundation Frequency Using Landsat

Imagery. River Research and Applications 32(7), 1609-1620.
Badrinarayanan, V., Kendall, A., and Cipolla, R., 2016. SegNet: A Deep Convolutional

Encoder-Decoder Architecture for Image Segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence 39(12), 2481-2495.

Bashmal, L., Bazi, Y., AlHichri, H., AlRahhal, M.M., Ammour, N., and Alajlan, N., 2018. Siamese-
GAN: Learning Invariant Representations for Aerial Vehicle Image Categorization. Remote
Sensing 10, 351, 19 pp.

Campello, R.J.G.B., Moulavi, D., Zimek, A., and Sander, J., 2015. Hierarchical density estimates for
data clustering, visualization, and outlier detection. ACM Transactions on Knowledge Discovery
from Data 10(1), 5:1-5:51.

Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., and Yuille, A.L., 2018a. DeepLab: Semantic
Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully
Connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence 40(4), 834-848.

Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., and Adam, H., 2018b. Encoder-Decoder with
Atrous Separable Convolution for Semantic Image Segmentation. ArXiv e-prints.
arXIV:1802.02611.

Chen, X., Duan, Y., Houthoft., R., Schulman, J., Sutskever, I., and Abbeel, P., 2016. InfoGAN:
Interpretable Representation Learning by Information Maximizing Generative Adversarial
Nets. ArXiv e-prints, arXiv:1606.03657.

Cooley, S.W., Smith, L.C., Stepan, L., and Mascaro, J., 2017. Tracking Dynamic Northern Surface
Water Changes with High-Frequency CubeSat Imagery. Remote Sensing 9, 1306, 21 pp.

Gabrielsen, C.G., Murphy, M.A., and Evans, J.S., 2016. Using a multiscale, probabilistic approach to
identify spatial-temporal wetland gradients. Remote Sensing of Environment 184, 522–538.

Jones, J.W., 2015. Efficient Wetland Surface Water Detection and Monitoring via Landsat:
Comparison with in situ Data from the Everglades Depth Estimation Network. Remote
Sensing 7, 12503-12538.

Kohl, S.A.A., Romera-Paredes, B., Meyer, C., De Fauw, J., Ledsam, J.R., Maier-Hein, K.H.,
Eslami, A.S.M., Rezende, D.J., and Ronneberger, O., 2018. A Probabilistic U-Net for
Segmentation of Ambiguous Images. ArXiv e-prints, arXiv:1806.05034v1.

Hussain, M., Chen, D., Cheng, A., Wei, H., and Stanley, D., 2013. Change detection from remotely
sensed images: From pixel-based to object-based approaches. ISPRS Journal of Photogrammetry
and Remote Sensing 80, 91-106.

Lane, C.R., Liu, H., Autrey, B.C., Anenkhonov, O.A., Chepinoga, V.V., and Wu, Q., 2014. Remote
Sensing 6, 12187-12216.

LeCun, Y., Bengio, Y., and Hinton, G., 2015. Deep learning. Nature 521, 436-444.
Lin, D., Fu, K., Wang, Y., Xu, Guangluan, X., and Sun, X., 2017. MARTA GANs: Unsupervised

Representation Learning for Remote Sensing Image Classification. ArXiv e-prints,
arXiv:1612.08879v3.

Kumar, V., Chhabra, J.K., and Kumar, D., 2014. Performance Evaluation of Distance Metrics in the

Seasonal Wetland Delineation with Remote Sensing

18

Clustering Algorithms. Infocomp 13(1), 38-51.
Martinez, J.-M. and Le Toan, T., 2006. Mapping of flood dynamics and spatial distribution of

vegetation in the Amazon floodplain using multitemporal SAR data. Remote Sensing of
Environment 103(3), 209-223.

McInnes, L., & Healy, J., 2017. Accelerated Hierarchical Density Clustering. 2017 IEEE ICDMW,
33-42.

McInnes, L., & Healy, J., 2018. UMAP: Uniform Manifold Approximation and Projection for
Dimension Reduction. ArXiv e-prints. arXiv:1802.03426v2.

Moriya, Y., Roth, H.R., Nakamura, S., Oda, H., Nagara, K., Oda, M., and Mori, K., 2018.
Unsupervised Segmentation of 3D Medical Images Based on Clustering and Deep
Representation Learning. ArXiv e-prints. arXIV:1804.03830v1.

Moyle, P.B., Israel, J.A., and Purdy, S.A., 2008. Salmon, Steelhead, and Trout in California: Status of
an Emblematic Fauna. Center for Watershed Sciences, University of California, Davis, 316
pp.

O’Brien, T., 2016. Small Unmanned Aerial Vehicles as Remote Sensors: An Effective Data
Gathering Tool for Wetland Mapping. Master of Landscape Architecture Thesis, The
University of Guelph.

Pasquarella, V.J., Holden, C.E., Kaufman, L., and Woodcock, C.E., 2016. From imagery to ecology:
leveraging time series of all available Landsat observations to map and monitor ecosystem
state and dynamics. Remote Sensing in Ecology and Conservation, 152-170.

Pekel, J.-F., Cottam, A., Gorelick, N., and Belward, A.S., 2016. High-resolution mapping of global
surface water and its long-term changes. Nature 540, 418-422.

Planet Labs, Inc., 2018. Planet Surface Reflectance Product.
<https://assets.planet.com/marketing/PDF/Planet_Surface_Reflectance_Technical_White
_Paper.pdf>. Accessed 10/18/2018.

Planet Labs, Inc., 2021. Planet Imagery Product Specifications.
 <Planet_Combined_Imagery_Product_Specs_letter_screen.pdf>. Accessed 02/23/2021.
Prigent, C., Lettenmaier, D.P., Aires, F., and Papa, F., 2016. Toward a High-Resolution Monitoring

of Continental Surface Water Extent and Dynamics, at Global Scale: from GIEMS (Global
Inundation Extent from Multi-Satellites) to SWOT (Surface Water Ocean Topography). Surv
Geophys. 37, 339-355.

Quinn, N.W.T. and Burns, J.R., 2015. Use of a hybrid optical remote sensing classification technique
for seasonal wetland habitat degradation assessment resulting from adoption of real-time
salinity management practices. Journal of Applied Remote Sensing 9, 096071-2 – 096071-25.

Quinn, N.W.T. and Epshtein, O., 2013. Seasonally-managed wetland footprint delineation using
Landsat ETM+ satellite imagery. Environmental Modelling & Software 52, 9-23.

Ribeiro, F., Crain, P.K., and Moyle, P.B., 2004. Variation in condition factor and growth in young-
of-year fishes in floodplain and riverine habitats of the Cosumnes River, California.
Hydrobiologia 527, 77-84.

Ronneberger, O., Fischer, P., and Brox, T., 2015. U-Net: Convolutional Networks for Biomedical
Image Segmentation. MICCAI 2015, 234-241.

Schmitt, M., Hughes, L.H., and Zhu, X.X., 2018. The SEN1-2 Dataset for Deep Learning in SAR-
Optical Data Fusion. ISPRS Technical Commission 1 Symposium, 6 pp.

Serran, J.N. and Creed, I.F., 2015. New mapping techniques to estimate the preferential loss of small
wetlands on prairie landscapes. Hydrological Processes 30(3), 396-409.

Tetteh, G.O. and Schönert, M., 2015. Automatic Generation of Water Masks from RapidEye
Images. Journal of Geoscience and Environment Protection 3, 17-23.

Tzoreff, E., Kogan, O., and Choukroun, Y., 2018. Deep Discrimanative Latent Space for Clustering.

Seasonal Wetland Delineation with Remote Sensing

19

NIPS 2017, 9 pp.
Wold, S., Esbensen, K., and Geladi, P., 1987. Principal Component Analysis. Chemometrics and

Intelligent Laboratory Systems 2, 37-52
van der Maaten, L. and Hinton, G., 2008. Visualizing Data Using t-SNE. Journal of Machine Learning

Research 9, 2579-2605.
Verpoorter, C., Kutser, T., and Tranvik, L., 2012. Automated mapping of water bodies using

Landsat multispectral data. Limnology and Oceanography: Methods 10, 1037-1050.
Vondrasek, C., 2015. Delineating forested river habitats and riparian floodplain hydrology with

LiDAR. M.S. Thesis, University of Washington.
Xia, X. and Kulis, B., 2017. W-Net: A Deep Model for Fully Unsupervised Image Segmentation.

ArXiv e-prints, arXiv:1711.08506v1
Xu, R., and Wunsch II, D., 2005. Survey of Clustering Algorithms. IEEE Transactions on Neural

Networks 16(3), 645-678.
Yang, J., Parikh, D., and Batra, D., 2016. Joint Unsupervised Learning of Deep Representations and

Image Clusters. ArXiv e-prints. arXiv:1604.03628v3
Zhang, L., Zhang, L., and Du, B., 2016. Deep Learning for Remote Sensing Data: A Technical

Tutorial on the State of the Art. IEEE Geosciences and Remote Sensing Magazine 4(2): 22-40, doi:
10.1109/MGRS.2016.2540798

Zhu, X.Z., Tuia, D., Mou, L., Xia, G.-S., Zhang, L., Xu, F., and Fraundorfer, F., 2017. Deep
Learning in Remote Sensing: A Comprehensive Review and List of Resources. IEEE
Geosciences and Remote Sensing Magazine 5(4), 8-36, doi: 10.1109/MGRS.2017.2762307.

Seasonal Wetland Delineation with Remote Sensing

20

Appendix A
The following text contains the Python 3 code written by Zackary Leady to implement the deep
learning algorithm. As previously mentioned, Zackary Leady left Reclamation prior to producing this
report, and no further documentation of this code is available.

-*- coding: utf-8 -*-
"""
Created on Fri May 31 15:22:13 2019

@author: zleady
"""

import os
import sys
import logging
import datetime
import argparse
import rasterio
import numpy as np
import pandas as pd
from scipy.stats import wasserstein_distance
from scipy.spatial import distance
from sklearn.preprocessing import MinMaxScaler, StandardScaler, RobustScaler
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
import umap
import hdbscan
from plotly.offline import plot
import plotly.graph_objs as go
import plotly.figure_factory as ff

def create_logger(log_file):
 """ Zack's Generic Logger function to create onscreen and file logger

 Parameters

 log_file: string
 `log_file` is the string of the absolute filepathname for writing the
 log file too which is a mirror of the onscreen display.

 Returns

Seasonal Wetland Delineation with Remote Sensing

21

 logger: logging object

 Notes

 This function is completely generic and can be used in any python code.
 The handler.setLevel can be adjusted from logging.INFO to any of the other
 options such as DEBUG, ERROR, WARNING in order to restrict what is logged.

 """
 logger = logging.getLogger()
 logger.setLevel(logging.INFO)
create console handler and set level to info
 handler = logging.StreamHandler()
 handler.setLevel(logging.INFO)
 formatter = logging.Formatter("%(levelname)s - %(message)s")
 handler.setFormatter(formatter)
 logger.addHandler(handler)
create error file handler and set level to info
 handler = logging.FileHandler(log_file, "w", encoding=None, delay="true")
 handler.setLevel(logging.INFO)
 formatter = logging.Formatter("%(levelname)s - %(message)s")
 handler.setFormatter(formatter)
 logger.addHandler(handler)
 return logger

def tiffs_in_dir(image_directory):
 img_files = []
 logging.info('Searching for tiffs in: \n {}'.format(image_directory))
 for img_file in os.listdir(image_directory):
 if img_file.endswith(".tif"):
 img_files.append(os.path.join(image_directory, img_file))
 return img_files

def load_image_array(image_path):
 img_obj = rasterio.open(image_path)
 img_arr = img_obj.read()
 logging.info("Image {} has {} indices and {} shape"
 .format(image_path, img_obj.indexes, img_arr.shape))
 return img_arr

def gen_NDWI(image_path, write_path):
 with rasterio.open(image_path) as dataset:
 green_band2 = dataset.read(2)

Seasonal Wetland Delineation with Remote Sensing

22

 nir_band4 = dataset.read(4)
 np.seterr(divide='ignore', invalid='ignore')
 ndwi = ((green_band2.astype(float) - nir_band4.astype(float)) /
 (green_band2.astype(float) + nir_band4.astype(float)))
 kwargs = dataset.meta
 kwargs.update(dtype=rasterio.float32, count=1)
 if not os.path.exists(os.path.join(write_path, 'ndwi')):
 os.mkdir(os.path.join(write_path, 'ndwi'))
 output_path = os.path.join(write_path, r"ndwi\{}_ndwi.tif"
 .format(os.path.basename(image_path)
 .split(".")[0]))
 with rasterio.open(output_path, 'w', **kwargs) as dst:
 dst.write_band(1, ndwi.astype(rasterio.float32))

def gen_NDVI(image_path, write_path):
 with rasterio.open(image_path) as dataset:
 red_band3 = dataset.read(3)
 nir_band4 = dataset.read(4)
 np.seterr(divide='ignore', invalid='ignore')
 ndvi = ((nir_band4.astype(float) - red_band3.astype(float)) /
 (nir_band4.astype(float) + red_band3.astype(float)))
 kwargs = dataset.meta
 kwargs.update(dtype=rasterio.float32, count=1)
 if not os.path.exists(os.path.join(write_path, 'ndvi')):
 os.mkdir(os.path.join(write_path, 'ndvi'))
 output_path = os.path.join(write_path, r"ndvi\{}_ndvi.tif"
 .format(os.path.basename(image_path)
 .split(".")[0]))
 with rasterio.open(output_path, 'w', **kwargs) as dst:
 dst.write_band(1, ndvi.astype(rasterio.float32))

def create_auxillary_bands(image_files_lst, write_path):
 logging.info('Generating NDWI and NDVI for {} image files'
 .format(len(image_files_lst)))
 for image_path in image_files_lst:
 gen_NDWI(image_path, write_path)
 gen_NDVI(image_path, write_path)

def gen_class_label_dataset(class_labels_path):
 class_dict = {}
 class_labels_arr = load_image_array(class_labels_path)
 logging.info('Shape of class labels array: {}'
 .format(class_labels_arr.shape))

Seasonal Wetland Delineation with Remote Sensing

23

 unique_values, unique_counts = np.unique(class_labels_arr,
 return_counts=True)
 logging.info('Unique values of the class_labels_array: {}'
 .format(unique_values))
 logging.info('Unique counts for each unique value: {}'
 .format(unique_counts))
 # reshape class_labels_arr to 1D instead of 2D image array
 # class_labels_arr.shape = (1, 1000, 1000)
 class_labels_arr = class_labels_arr.reshape(class_labels_arr.shape[1] *
 class_labels_arr.shape[2])
 # new class_labels_arr.shape = (1,000,000;)
 logging.info('Shape of class labels array changed to 1D array: {}'
 .format(class_labels_arr.shape))
 for i, uv in enumerate(unique_values):
 # indices_unique_value is actually a list of arrays of len() 1 so [0]
 # indices_unique_value[0] is a 1D array of the indices that match uv
 indices_unique_value = np.where(class_labels_arr == uv)
 logging.info('Looping on index i: {} and unique_value uv: {}'
 .format(i, uv))
 logging.info("Length of indices_unique_value array:" +
 "{} should match unique_counts: {}"
 .format(len(indices_unique_value[0]), unique_counts[i]))
 assert len(indices_unique_value[0]) == unique_counts[i]
 class_dict[uv] = [indices_unique_value[0], unique_counts[i]]
 return class_labels_arr, class_dict

def gen_pixel_timeseries(image_files_lst, ndvi_files_lst, ndwi_files_lst):
 date_order = []
 final_array = np.empty((0, 6, 1000, 1000),dtype=np.float32)
 for img_file in image_files_lst:
 img_file_base = os.path.basename(img_file).split(".")[0]
 for ndvi_file in ndvi_files_lst:
 ndvi_file_base = os.path.basename(ndvi_file).split(".")[0]
 if img_file_base in ndvi_file_base:
 for ndwi_file in ndwi_files_lst:
 ndwi_file_base = os.path.basename(ndwi_file).split(".")[0]
 if img_file_base in ndwi_file_base:
 date_order.append(ndwi_file_base.split("_")[0]) # change from Z to V
naming
 logging.info('Found match img {} == ndvi {} == ndwi {}'
 .format(img_file_base, ndvi_file_base,
 ndwi_file_base))
 img_arr = load_image_array(img_file)
 ndvi_arr = load_image_array(ndvi_file)
 ndwi_arr = load_image_array(ndwi_file)

Seasonal Wetland Delineation with Remote Sensing

24

 logging.info("Shape of image: {}; Shape of ndvi: {};"
 "Shape of ndwi: {}".format(img_arr.shape,
 ndvi_arr.shape,
 ndwi_arr.shape)
)
 concat_arr = np.concatenate([img_arr, ndvi_arr,
 ndwi_arr])
 logging.info('Concat arr shape: {}'
 .format(concat_arr.shape))
 concat_arr = concat_arr[np.newaxis, :]
 logging.info('Concat arr new shape: {}'
 .format(concat_arr.shape))
 if(concat_arr.shape[2] == 1000 and
 concat_arr.shape[3] == 1000):
 logging.info('old final array growing shape: {}'
 .format(final_array.shape))
 final_array = np.concatenate([final_array,
 concat_arr],
 axis=0)
 logging.info('new final array growing shape: {}'
 .format(final_array.shape))
 logging.info('Final array end shape: {}'.format(final_array.shape))
 return final_array, date_order

def gen_main_datasets(image_files_lst, write_path, class_labels_path):
 ndvi_dir = os.path.join(write_path, 'ndvi')
 ndwi_dir = os.path.join(write_path, 'ndwi')
 logging.info('Looking for NDVI files in: \n {}'.format(ndvi_dir))
 logging.info('Looking for NDWI files in: \n {}'.format(ndwi_dir))
 ndvi_files_lst = tiffs_in_dir(ndvi_dir)
 logging.info('Found {} ndvi paths'.format(len(ndvi_files_lst)))
 ndwi_files_lst = tiffs_in_dir(ndwi_dir)
 logging.info('Found {} ndwi paths'.format(len(ndwi_files_lst)))
 assert len(image_files_lst) == len(ndvi_files_lst) == len(ndwi_files_lst)
 class_labels_arr, class_dict = gen_class_label_dataset(class_labels_path)
 pixel_timeseries_arr, date_order = gen_pixel_timeseries(image_files_lst,
 ndvi_files_lst,
 ndwi_files_lst)
 return class_labels_arr, class_dict, pixel_timeseries_arr, date_order

def create_class_pixel_timeseries_graphs(write_path, date_order,
 class_dict, pixel_timeseries_arr):
 # shape of pixel_timeseries_arr should be
 # (# of images, # of bands, x pixels, y pixels)

Seasonal Wetland Delineation with Remote Sensing

25

 pd_date = [pd.to_datetime(x) for x in date_order]
 plot_data = []
 plot_data_3d = []
 for ck in class_dict.keys():
 class_dict_obj = class_dict.get(ck)
 class_indices = np.random.choice(class_dict_obj[0], size=3)
 for indx in class_indices:
 reclaimed_2d_indx = np.unravel_index(indx,
 (pixel_timeseries_arr
 .shape[2],
 pixel_timeseries_arr
 .shape[3]))
 ndvi_pixel_graph_timeseries = pixel_timeseries_arr[:, 4,
 reclaimed_2d_indx[0],
 reclaimed_2d_indx[1]]
 ndwi_pixel_graph_timeseries = pixel_timeseries_arr[:, 5,
 reclaimed_2d_indx[0],
 reclaimed_2d_indx[1]]
 temp_trace_ndvi = go.Scatter(x=pd_date,
 y=ndvi_pixel_graph_timeseries,
 mode="lines",
 name='{}_{}_ndvi'.format(ck, indx),
 legendgroup='{}_ndwi'.format(ck))
 temp_trace_ndwi = go.Scatter(x=pd_date,
 y=ndwi_pixel_graph_timeseries,
 mode="lines",
 name='{}_{}_ndwi'.format(ck, indx),
 legendgroup='{}_ndvi'.format(ck))
 plot_data.append(temp_trace_ndvi)
 plot_data.append(temp_trace_ndwi)
 temp_trace_3d = go.Scatter3d(x=pd_date,
 y=ndvi_pixel_graph_timeseries,
 z=ndwi_pixel_graph_timeseries,
 name='{}_{}'.format(ck, indx))
 plot_data_3d.append(temp_trace_3d)
 # 2D
 layout = go.Layout()
 fig = go.Figure(data=plot_data, layout=layout)
 fname = os.path.join(write_path, 'class_pixel_timeseries_ndvi_ndwi.html')
 plot(fig, filename=fname, auto_open=False, show_link=False,
 config=dict(displaylogo=False))
 # 3D
 layout3d = go.Layout()
 fig3d = go.Figure(data=plot_data_3d, layout=layout3d)
 fname3d = os.path.join(write_path,
 'class pixel_timeseries_3d_ndvi_ndwi.html')

Seasonal Wetland Delineation with Remote Sensing

26

 plot(fig3d, filename=fname3d, auto_open=False, show_link=False,
 config=dict(displaylogo=False))
 return

def create_class_banded_graphs(write_path, date_order,
 class_dict, pixel_timeseries_arr):
 ndvi_plot_data = []
 ndwi_plot_data = []
 for ck in class_dict.keys():
 class_dict_obj = class_dict.get(ck)
 x_2d_indx_lst = []
 y_2d_indx_lst = []
 for indx in class_dict_obj[0]:
 reclaimed_2d_indx = np.unravel_index(indx,
 (pixel_timeseries_arr
 .shape[2],
 pixel_timeseries_arr
 .shape[3]))
 x_2d_indx_lst.append(reclaimed_2d_indx[0])
 y_2d_indx_lst.append(reclaimed_2d_indx[1])
 ck_data = pixel_timeseries_arr[:, :, x_2d_indx_lst,
 y_2d_indx_lst]
 for b in [4, 5]:
 max_lst = []
 min_lst = []
 for t in range(pixel_timeseries_arr.shape[0]):
 print(pixel_timeseries_arr.shape)
 print(ck_data.shape)
 max_vec = np.max(ck_data[t, b, :])
 min_vec = np.min(ck_data[t, b, :])
 max_lst.append(max_vec)
 min_lst.append(min_vec)
 if b == 4:
 ndvi_plot_data.append([ck, max_lst, min_lst])
 elif b == 5:
 ndwi_plot_data.append([ck, max_lst, min_lst])
 for aux_band in [['ndvi', ndvi_plot_data], ['ndwi', ndwi_plot_data]]:
 plot_data = []
 for obj in aux_band[1]:
 x = date_order
 x_rev = date_order[::-1]
 y1_upper = obj[1]
 y1_lower = obj[2]
 trace_temp = go.Scatter(x=x+x_rev, y=y1_upper+y1_lower,
 fill='tozerox',

Seasonal Wetland Delineation with Remote Sensing

27

 showlegend=True,
 name='{}'.format(obj[0]))
 plot_data.append(trace_temp)
 layout = go.Layout()
 fig = go.Figure(data=plot_data, layout=layout)
 fname = os.path.join(write_path, '{}_class_banded.html'
 .format(aux_band[0]))
 plot(fig, filename=fname, auto_open=False, show_link=False,
 config=dict(displaylogo=False))
 return

def create_class_2d_density_graphs(write_path, date_order,
 class_dict, pixel_timeseries_arr):
 pd_date = [pd.to_datetime(x) for x in date_order]
 assert len(pd_date) == len(range(pixel_timeseries_arr.shape[0]))
 for t, dt in zip(range(pixel_timeseries_arr.shape[0]), pd_date):
 ndvi = pixel_timeseries_arr[t, 4, :, :]
 ndwi = pixel_timeseries_arr[t, 5, :, :]
 ndvi_plot = ndvi.reshape(ndvi.shape[0]*ndvi.shape[1])
 ndwi_plot = ndwi.reshape(ndwi.shape[0]*ndwi.shape[1])
 print(ndvi.shape, ndwi.shape)
 plot_data = []

 for ck in class_dict.keys():
 if not ck == 0:
 class_dict_obj = class_dict.get(ck)
 x_2d_indx_lst = []
 y_2d_indx_lst = []
 for indx in class_dict_obj[0]:
 reclaimed_2d_indx = np.unravel_index(indx,
 (pixel_timeseries_arr
 .shape[2],
 pixel_timeseries_arr
 .shape[3]))
 x_2d_indx_lst.append(reclaimed_2d_indx[0])
 y_2d_indx_lst.append(reclaimed_2d_indx[1])
 x0 = [x for x in ndvi[x_2d_indx_lst, y_2d_indx_lst]]
 y0 = [x for x in ndwi[x_2d_indx_lst, y_2d_indx_lst]]
 print(len(x0), x0[0], len(y0), y0[0])
 trace0 = go.Scattergl(x=x0, y=y0, mode='markers',
 name='c{}'.format(ck),
 marker=dict(size=2, opacity=1.0),
 showlegend=True)
 plot_data.append(trace0)
 trace1 = go.Scattergl(x=ndvi_plot, y=ndwi_plot, mode='markers', name='points',

Seasonal Wetland Delineation with Remote Sensing

28

 marker=dict(color='rgb(0,0,100)',
 size=1, opacity=0.4),
 showlegend=False)
 plot_data.append(trace1)
 trace2 = go.Histogram2dContour(x=ndvi_plot, y=ndwi_plot, name='density',
 ncontours=20, colorscale='Hot',
 reversescale=True, showscale=False,
 showlegend=False)
 plot_data.append(trace2)
 trace3 = go.Histogram(x=ndvi_plot, name='x density',
 marker=dict(color='rgb(102,0,0)'),
 showlegend=False,
 yaxis='y2')
 plot_data.append(trace3)
 trace4 = go.Histogram(y=ndwi_plot, name='y density',
 marker=dict(color='rgb(102,0,0)'),
 showlegend=False,
 xaxis='x2')
 plot_data.append(trace4)
 layout = go.Layout(showlegend=True, autosize=False,
 width=800, height=750,
 xaxis=dict(domain=[0, 0.85], showgrid=False,
 zeroline=False),
 yaxis=dict(domain=[0, 0.85], showgrid=False,
 zeroline=False),
 margin=dict(t=50),
 hovermode='closest',
 bargap=0,
 xaxis2=dict(domain=[0.85, 1], showgrid=False,
 zeroline=False),
 yaxis2=dict(domain=[0.85, 1], showgrid=False,
 zeroline=False))
 fig = go.Figure(data=plot_data, layout=layout)
 fname = os.path.join(write_path,
 'dt{}_t{}_class_density2d.html'
 .format(dt.date(), t))
 plot(fig, filename=fname, auto_open=False, show_link=False,
 config=dict(displaylogo=False))
 return

def create_class_distance_heatmaps(write_path, class_dict,
 pixel_timeseries_arr):
 print(pixel_timeseries_arr.shape)
 reshaped_pixel_arr = pixel_timeseries_arr.reshape([pixel_timeseries_arr
 .shape[0],

Seasonal Wetland Delineation with Remote Sensing

29

 pixel_timeseries_arr
 .shape[1],
 pixel_timeseries_arr
 .shape[2] *
 pixel_timeseries_arr
 .shape[3]])
 input_dist_ck_arr_lst = []
 input_dist_arr_lst = []
 for ck in sorted(class_dict.keys()):
 if not ck == 0:
 class_indices = class_dict.get(ck)
 class_data = reshaped_pixel_arr[:, :, class_indices[0]]
 print(ck, class_data.shape)
 class_vector_data = class_data.reshape([class_data.shape[2],
 class_data.shape[0] *
 class_data.shape[1]])
 print(class_vector_data[0:10, :])
 print(class_vector_data.shape)
 input_dist_ck_arr_lst.append([ck, class_vector_data])
 input_dist_arr_lst.append(class_vector_data)
 import itertools
 iter_class_combinations = list(itertools
 .combinations([x[0] for x in
 input_dist_ck_arr_lst], 2))
 print(iter_class_combinations)
 distance_metric_lst = ['euclidean', 'correlation', 'cosine', 'mahalanobis',
 'wasserstein']
 for dist in distance_metric_lst:
 if dist == 'wasserstein':
 pass
for combo in iter_class_combinations:
u_indx = combo[0]-1
v_indx = combo[1]-1
print(combo, u_indx, v_indx)
u = input_dist_ck_arr_lst[u_indx][1]
v = input_dist_ck_arr_lst[v_indx][1]
calculated_dist = wasserstein_distance(u, v)
print(calculated_dist)
 else:
 X_arr = np.vstack(input_dist_arr_lst)
 print(dist, X_arr.shape)
 calculated_dist = distance.pdist(X_arr, metric=dist)
 print(dist, calculated_dist.shape)
 square_dist = distance.squareform(calculated_dist)
 print(dist, square_dist.shape)
 data = []

Seasonal Wetland Delineation with Remote Sensing

30

 trace1 = go.Heatmap(z=square_dist)
 data.append(trace1)
 layout = go.Layout()
 fig = go.Figure(data=data, layout=layout)
 fname = os.path.join(write_path,
 '{}_class_distance_heatmap.html'.format(dist))
 plot(fig, filename=fname, auto_open=False, show_link=False,
 config=dict(displaylogo=False))
 return

def create_direct_comparison_class_distance_heatmaps(write_path, class_dict,
 pixel_timeseries_arr):
 distance_metric_lst = ['euclidean', 'correlation', 'cosine', 'mahalanobis',
 'wasserstein']
 import itertools
 iter_class_combinations = list(itertools
 .combinations([x for x in
 sorted(class_dict.keys())
 if not x == 0],
 2))
 print(iter_class_combinations)
 reshaped_pixel_arr = pixel_timeseries_arr.reshape([pixel_timeseries_arr
 .shape[2] *
 pixel_timeseries_arr
 .shape[3],
 pixel_timeseries_arr
 .shape[0] *
 pixel_timeseries_arr
 .shape[1]])
 print(reshaped_pixel_arr.shape)
 print(reshaped_pixel_arr[0:10, :])
 for class_combo in iter_class_combinations:
 print(class_combo)
 class0_data_dict = class_dict.get(class_combo[0])
 class1_data_dict = class_dict.get(class_combo[1])
 class0_indices = class0_data_dict[0]
 class1_indices = class1_data_dict[0]
 class0_data_arr = reshaped_pixel_arr[class0_indices, :]
 class1_data_arr = reshaped_pixel_arr[class1_indices, :]
 logging.info('class0: {} = {} = {}'
 .format(class_combo[0], class0_data_dict[1],
 class0_data_arr.shape))
 logging.info('class1: {} = {} = {}'
 .format(class_combo[1], class1_data_dict[1],
 class1_data_arr.shape))

Seasonal Wetland Delineation with Remote Sensing

31

 for dist in distance_metric_lst:
 if dist == 'wasserstein':
 calculated_dist = distance.cdist(class0_data_arr,
 class1_data_arr,
 metric=lambda u, v: wasserstein_distance(u, v))
 else:
 calculated_dist = distance.cdist(class0_data_arr,
 class1_data_arr, metric=dist)
 logging.info('{}, {}'.format(dist, calculated_dist.shape))
 data = []
 trace1 = go.Heatmap(z=calculated_dist)
 data.append(trace1)
 layout = go.Layout()
 fig = go.Figure(data=data, layout=layout)
 fname = os.path.join(write_path,
 '{}_{}_{}_class_compare_dist_heatmap.html'
 .format(dist, class_combo[0],
 class_combo[1]))
 plot(fig, filename=fname, auto_open=False, show_link=False,
 config=dict(displaylogo=False))
 return

def create_class_distance_distplots(write_path, class_dict,
 pixel_timeseries_arr):
 distance_metric_lst = ['chebyshev','cityblock','correlation', 'euclidean', 'seuclidean',
'cosine', 'mahalanobis', # 'correlation',
 'wasserstein']
 import itertools
 iter_class_combinations = list(itertools
 .combinations([x for x in
 sorted(class_dict.keys())
 if not x == 0],
 2))
 print(iter_class_combinations)
 print(pixel_timeseries_arr.shape)
pixel_timeseries_arr = pixel_timeseries_arr[:,4:6,:,:]
print(pixel_timeseries_arr.shape)
print(pixel_timeseries_arr[0,:,0:3,0:3])
print(pixel_timeseries_arr.max())
print(pixel_timeseries_arr.min())
 reshaped_pixel_arr = pixel_timeseries_arr.reshape([pixel_timeseries_arr
 .shape[2] *
 pixel_timeseries_arr
 .shape[3],
 pixel_timeseries_arr

Seasonal Wetland Delineation with Remote Sensing

32

 .shape[0] *
 pixel_timeseries_arr
 .shape[1]])
 print(reshaped_pixel_arr.shape)
 print(reshaped_pixel_arr[0:10, :])
 for dist in distance_metric_lst:
 hist_data = []
 group_labels = []
 for class_combo in iter_class_combinations:
 print(class_combo)
 class0_data_dict = class_dict.get(class_combo[0])
 class1_data_dict = class_dict.get(class_combo[1])
 class0_indices = class0_data_dict[0]
 class1_indices = class1_data_dict[0]
 class0_data_arr = reshaped_pixel_arr[class0_indices, :]
 class1_data_arr = reshaped_pixel_arr[class1_indices, :]
 logging.info('class0: {} = {} = {}'
 .format(class_combo[0], class0_data_dict[1],
 class0_data_arr.shape))
 logging.info('class1: {} = {} = {}'
 .format(class_combo[1], class1_data_dict[1],
 class1_data_arr.shape))
 if dist == 'wasserstein':
 calculated_dist = distance.cdist(class0_data_arr,
 class1_data_arr,
 metric=lambda u, v:
 wasserstein_distance(u,v))
 else:
 calculated_dist = distance.cdist(class0_data_arr,
 class1_data_arr, metric=dist)
 logging.info('{}, {}'.format(dist, calculated_dist.shape))
 hist_dist = calculated_dist.flatten()
 logging.info('calculated dist shape: {} \n flattened shape: {}'
 .format(calculated_dist.shape, hist_dist.shape))
 hist_dist_lst = [x for x in hist_dist]
 hist_data.append(hist_dist_lst)
 group_labels.append('c{}_c{}'.format(class_combo[0], class_combo[1]))
 fig = ff.create_distplot(hist_data, group_labels, show_hist=False, show_rug=False)
 fname = os.path.join(write_path,
 '{}_class_compare_dist_distplot.html'.format(dist))
 plot(fig, filename=fname, auto_open=False, show_link=False,
 config=dict(displaylogo=False))
 return

def exploratory_graph_analysis(class_labels_arr, class_dict,

Seasonal Wetland Delineation with Remote Sensing

33

 pixel_timeseries_arr, date_order, write_path):
create_class_pixel_timeseries_graphs(write_path, date_order,
class_dict, pixel_timeseries_arr)
create_class_2d_density_graphs(write_path, date_order,
class_dict, pixel_timeseries_arr)
create_class_distance_heatmaps(write_path, class_dict,
pixel_timeseries_arr)
create_direct_comparison_class_distance_heatmaps(write_path, class_dict,
pixel_timeseries_arr)
create_class_distance_distplots(write_path, class_dict,
pixel_timeseries_arr)
 create_class_banded_graphs(write_path, date_order,
 class_dict, pixel_timeseries_arr)
 return

def gen_generic_embedding3_graph(embedding_arr, labels, title, file_name):
 print(embedding_arr.shape)
 print(labels.shape)
 x_arr = embedding_arr[:, 0]
 y_arr = embedding_arr[:, 1]
 z_arr = embedding_arr[:, 2]
 print(x_arr.shape, y_arr.shape, z_arr.shape)
 embed_trace0 = go.Scatter3d(x=x_arr,
 y=y_arr,
 z=z_arr,
 mode='markers',
 marker=dict(size=2, color=labels,
 colorscale='Viridis',
 opacity=0.8),
 text=labels, hoverinfo='text')
 plot_data = [embed_trace0]
 layout = go.Layout(title=title)
 fig = go.Figure(data=plot_data, layout=layout)
 plot(fig, filename=file_name, auto_open=False, show_link=False,
 config=dict(displaylogo=False))
 return

def gen_generic_embedding2_graph(embedding_arr, labels, title, file_name):
 x_arr = embedding_arr[:, 0]
 y_arr = embedding_arr[:, 1]
 plot_data = []
 for u in np.unique(labels):
 print(u)
 indx_u = np.where(labels == u)

Seasonal Wetland Delineation with Remote Sensing

34

print(indx_u[0])
 print(indx_u[0].shape)
 x_u_arr = x_arr[indx_u[0]]
 print(x_u_arr.shape)
 y_u_arr = y_arr[indx_u[0]]
 print(y_u_arr.shape)
 if not u == 0:
 embed_trace = go.Scattergl(x=x_u_arr,
 y=y_u_arr,
 mode='markers',
 marker=dict(size=5,
 opacity=1.0),
 name='c{}'.format(u))
 else:
 embed_trace = go.Scattergl(x=x_u_arr,
 y=y_u_arr,
 mode='markers',
 marker=dict(size=2,
 opacity=0.6),
 name='c{}'.format(u))
 plot_data.append(embed_trace)
plot_data = [embed_trace0]
 layout = go.Layout(title=title)
 fig = go.Figure(data=plot_data, layout=layout)
 plot(fig, filename=file_name, auto_open=False, show_link=False,
 config=dict(displaylogo=False))
 return

def create_raw_data_embedding_pca(pixel_timeseries_arr, class_labels_arr,
 class_dict, write_path, dim=3,
 include_labels=True):
 print(pixel_timeseries_arr.shape)
 X = pixel_timeseries_arr.reshape([pixel_timeseries_arr.shape[2] *
 pixel_timeseries_arr.shape[3],
 pixel_timeseries_arr.shape[0] *
 pixel_timeseries_arr.shape[1]])
 print(X.shape)
 pca = PCA(n_components=dim)
 solved_pca = pca.fit(X)
 pca_arr = solved_pca.transform(X)
 print(pca_arr)
 print(pca_arr.shape)
 print(solved_pca.explained_variance_ratio_)
print(solved_pca.singular_values_)
print(solved_pca.components_)
 if include_labels is True:

Seasonal Wetland Delineation with Remote Sensing

35

 labels = class_labels_arr.reshape([class_labels_arr.shape[0]])
 else:
 labels = np.zeros([X.shape[0]])
 pca_title = 'Raw PCA Embedding with Dim {}'.format(dim)
 pca_filename = os.path.join(write_path,
 'raw_data_pca_embedding_dim{}.html'
 .format(dim))
 gen_generic_embedding2_graph(pca_arr, labels, pca_title, pca_filename)
 return

def create_raw_data_embedding_tsne(pixel_timeseries_arr, class_labels_arr,
 class_dict, write_path, dim=3,
 include_labels=True):
 print(pixel_timeseries_arr.shape)
 X = pixel_timeseries_arr.reshape([pixel_timeseries_arr.shape[2] *
 pixel_timeseries_arr.shape[3],
 pixel_timeseries_arr.shape[0] *
 pixel_timeseries_arr.shape[1]])
 print(X.shape)
 tsne = TSNE(n_components=dim)
 solved_tsne = tsne.fit(X)
 print(solved_tsne.kl_divergence_)
 print(solved_tsne.n_iter_)
 tsne_arr = solved_tsne.transform(X)
 print(tsne_arr)
 print(tsne_arr.shape)
 if include_labels is True:
 labels = class_labels_arr.reshape([class_labels_arr.shape[0], 1])
 else:
 labels = np.zeros([X.shape[0], 1])
 tsne_title = 'Raw TSNE Embedding with Dim={}'.format(dim)
 tsne_filename = os.path.join(write_path,
 'raw_data_tsne_embedding_dim{}.html'
 .format(dim))
 gen_generic_embedding3_graph(tsne_arr, labels, tsne_title, tsne_filename)
 return

def create_raw_data_embedding_umap(pixel_timeseries_arr, class_labels_arr,
 class_dict, write_path, dim=3,
 include_labels=True):
 print(pixel_timeseries_arr.shape)
 X = pixel_timeseries_arr.reshape([pixel_timeseries_arr.shape[2] *
 pixel_timeseries_arr.shape[3],
 pixel_timeseries_arr.shape[0] *

Seasonal Wetland Delineation with Remote Sensing

36

 pixel_timeseries_arr.shape[1]])
 print(X.shape)
 reducer = umap.UMAP(n_components=dim)
 solved_umap = reducer.fit(X)
 umap_arr = solved_umap.transform(X)
 print(umap_arr)
 print(umap_arr.shape)
 if include_labels is True:
 labels = class_labels_arr.reshape([class_labels_arr.shape[0]])
 else:
 labels = np.zeros([X.shape[0]])
 umap_title = 'Raw UMAP Embedding with Dim={}'.format(dim)
 umap_filename = os.path.join(write_path,
 'raw_data_umap_embedding_dim{}.html'
 .format(dim))
 gen_generic_embedding2_graph(umap_arr, labels, umap_title, umap_filename)
 return

def create_analysis_embeddings(pixel_timeseries_arr, class_labels_arr,
 class_dict, write_path, dim=3,
 include_labels=True, metric=None):
 if metric == 'wasserstein':
 reducer = umap.UMAP(n_components=dim,
 metric=lambda u, v: wasserstein_distance(u, v))
 pca = PCA(n_components=2,
 metric=lambda u, v: wasserstein_distance(u, v))
 else:
 reducer = umap.UMAP(n_components=dim, metric=metric)
 pca = PCA(n_components=2, metric=metric)
 X = pixel_timeseries_arr.reshape([pixel_timeseries_arr.shape[2] *
 pixel_timeseries_arr.shape[3],
 pixel_timeseries_arr.shape[0] *
 pixel_timeseries_arr.shape[1]])
 if include_labels is True:
 labels = class_labels_arr.reshape([class_labels_arr.shape[0], 1])
 else:
 labels = np.zeros([X.shape[0], 1])
 solved_umap = reducer.fit(X)
 umap_arr = solved_umap.transform(X)
 print(umap_arr)
 print(umap_arr.shape)
 umap_title = 'Analysis UMAP Embedding with Dim={}'.format(dim)
 umap_filename = os.path.join(write_path,
 'analysis_umap_embedding_dim{}'.format(dim))
 gen_generic_embedding3_graph(umap_arr, labels, umap_title, umap_filename)

Seasonal Wetland Delineation with Remote Sensing

37

 solved_pca = pca.fit(X)
 pca_arr = solved_pca.transform(X)
 print(pca_arr)
 print(pca_arr.shape)
 print(solved_pca.explained_variance_ratio_)
 pca_title = 'Analysis PCA Embedding with Dim={}'.format(2)
 pca_filename = os.path.join(write_path,
 'analysis_pca_embedding_dim{}'.format(2))
 gen_generic_embedding3_graph(pca_arr, labels, pca_title, pca_filename)
 return pca_arr, umap_arr

def kmeans_analysis(X, raw_E, class_labels_arr, class_dict,
 write_path, k_lst=[],
 include_labels=True, dim=3, metric=None):
 if include_labels is True:
 labels = class_labels_arr.reshape([class_labels_arr.shape[0], 1])
 else:
 labels = np.zeros([X.shape[0], 1])
 for k in k_lst:
 kmeans = KMeans(n_clusters=k).fit(X)
 klabels = kmeans.labels_
 logging.info('Finished kmeans for k={} and metric={}: and shape={}'
 .format(k, metric, klabels.shape))
 plot_data = []
 cluster_trace = go.Scatter3d(x=raw_E[:, 0],
 y=raw_E[:, 1],
 z=raw_E[:, 2],
 mode='markers',
 marker=dict(size=2, color=klabels,
 colorscale='Viridis',
 colorbar=dict(
 title='Cluster'),
 opacity=0.8),
 text=klabels, hoverinfo='text')
 if include_labels is True:
 for ck in sorted(class_dict.keys()):
 if not ck == 0:
 class_indices = class_dict.get(ck)[0]
 temp_class_arr = raw_E[class_indices, :]
 clabels = labels[class_indices, :]
 temp_class_trace = go.Scatter3d(x=temp_class_arr[:, 0],
 y=temp_class_arr[:, 1],
 z=temp_class_arr[:, 2],
 mode='markers',
 marker=dict(size=2,

Seasonal Wetland Delineation with Remote Sensing

38

 opacity=1.0),
 text=clabels,
 hoverinfo='text')
 plot_data.append(temp_class_trace)
 plot_data.append(cluster_trace)
 cluster_title = ("Cluster Kmeans Embedding from Raw" +
 "Embedding of K={} Metric={}".format(k, metric))
 layout = go.Layout(title=cluster_title)
 fig = go.Figure(data=plot_data, layout=layout)
 fname = os.path.join(write_path,
 "kmeans_embedding_{}as3_k{}_{}.html"
 .format(dim, k, metric))
 plot(fig, filename=fname, auto_open=False, show_link=False,
 config=dict(displaylogo=False))
 wklabels = klabels.reshape(1000, 1000)
 logging.info('wklabels write out shape: {}'.format(wklabels.shape))
 with rasterio.open(write_path, 'ZRedImages',
 'T20161011_223732_3_1_0c54.tif') as img_data:
 img_data.read()
 print(img_data.indexes)
 kwargs = img_data.meta
 kwargs.update(dtype=rasterio.float32, count=1)
 with rasterio.open(os.path.join(write_path,
 "klabels_d{}_k{}_{}"
 .format(dim, k,
 metric))) as kdst:
 kdst.write_band(1, wklabels.astype(rasterio.float32))
 kdst.close()
 img_data.close()
 return klabels

def hdbscan_analysis(X, raw_E, class_labels_arr, write_path,
 class_dict,
 min_cluster_size_lst=[],
 min_samples_lst=[],
 include_labels=True, dim=3, metric=None):
 if include_labels is True:
 labels = class_labels_arr.reshape([class_labels_arr.shape[0], 1])
 else:
 labels = np.zeros([X.shape[0], 1])
 for mc in min_cluster_size_lst:
 for ms in min_samples_lst:
 # cluster_selection_method='leaf'
 clusterer = hdbscan.HDBSCAN(min_cluster_size=mc,
 min_samples=ms,

Seasonal Wetland Delineation with Remote Sensing

39

 metric='euclidean').fit(X)
 logging.info("""Clustering for min_cluster={},
 min_samples={}, and metric={} has label shape: {}"""
 .format(ms, mc, metric, clusterer.labels_.shape))
 hlabels = clusterer.labels_
 n_c = clusterer.labels_.max()
 logging.info("Number of clusters (add 1) : {}".format(n_c))
 plot_data = []
 cluster_trace = go.Scatter3d(x=raw_E[:, 0],
 y=raw_E[:, 1],
 z=raw_E[:, 2],
 mode='markers',
 marker=dict(size=2, color=hlabels,
 colorscale='Viridis',
 colorbar=dict(
 title='Cluster'),
 opacity=0.8),
 text=hlabels, hoverinfo='text')
 if include_labels is True:
 for ck in sorted(class_dict.keys()):
 if not ck == 0:
 class_indices = class_dict.get(ck)[0]
 temp_class_arr = raw_E[class_indices, :]
 clabels = labels[class_indices, :]
 temp_class_trace = go.Scatter3d(x=temp_class_arr[:, 0],
 y=temp_class_arr[:, 1],
 z=temp_class_arr[:, 2],
 mode='markers',
 marker=dict(size=2,
 opacity=1.0),
 text=clabels,
 hoverinfo='text')
 plot_data.append(temp_class_trace)
 plot_data.append(cluster_trace)
 cluster_title = ("Cluster HDBSCAN Embedding from Raw" +
 "Embedding of MC-MS={}-{} Metric={}"
 .format(mc, ms, metric))
 layout = go.Layout(title=cluster_title)
 fig = go.Figure(data=plot_data, layout=layout)
 fname = os.path.join(write_path,
 "hdbscan_embedding_{}as3_mc{}_ms{}_{}.html"
 .format(dim, mc, ms, metric))
 plot(fig, filename=fname, auto_open=False, show_link=False,
 config=dict(displaylogo=False))
 whlabels = hlabels.reshape(1000, 1000)
 logging.info('whlabels write out shape: {}'.format(whlabels.shape))

Seasonal Wetland Delineation with Remote Sensing

40

 with rasterio.open(write_path, 'ZRedImages',
 'T20161011_223732_3_1_0c54.tif') as img_data:
 img_data.read()
 print(img_data.indexes)
 kwargs = img_data.meta
 kwargs.update(dtype=rasterio.float32, count=1)
 with rasterio.open(os.path.join(write_path,
 "hlabels_d{}_mc{}_ms{}_{}"
 .format(dim, mc, ms,
 metric))) as kdst:
 kdst.write_band(1, whlabels.astype(rasterio.float32))
 kdst.close()
 img_data.close()
 return hlabels

def exploratory_embedding_analysis(class_labels_arr, class_dict,
 pixel_timeseries_arr, date_order,
 write_path):
 raw_pca = create_raw_data_embedding_pca(pixel_timeseries_arr,
 class_labels_arr,
 class_dict, write_path, dim=2,
 include_labels=True)
sys.exit(0)
create_raw_data_embedding_tsne(pixel_timeseries_arr, class_labels_arr,
class_dict, write_path, dim=3,
include_labels=True)
 raw_umap = create_raw_data_embedding_umap(pixel_timeseries_arr,
 class_labels_arr,
 class_dict, write_path, dim=2,
 include_labels=True)
 sys.exit(0)
 k_lst = [5, 7, 10, 15, 20]
 m_lst = ['chebyshev', 'cityblock', 'correlation', 'euclidean',
 'seuclidean', 'cosine', 'mahalanobis',
 'wasserstein']
 # 'correlation',
 for d in [30]:
 for m in m_lst:
 pca_arr, umap_arr = create_analysis_embeddings(pixel_timeseries_arr,
 class_labels_arr,
 class_dict,
 write_path, dim=d,
 include_labels=True,
 metric=m)
 for X in [['pca', pca_arr, raw_pca], ['umap', umap_arr, raw_umap]]:

Seasonal Wetland Delineation with Remote Sensing

41

 print(X[0])
 # all clusterings in euclidean based on pca/umap reduction
 kmeans_arr = kmeans_analysis(X[1], X[2], class_labels_arr,
 class_dict,
 write_path, k_lst=k_lst,
 metric=m,
 include_labels=True, dim=d)
 # rkmeans_arr = recombinator_kmeans_analysis(X[1])
 # kmedoids_arr = kmedoids_analysis(X[1], k=[])
 hdbscan_arr = hdbscan_analysis(X[1],
 min_cluster_size=[],
 min_samples=[])
 return

def standardize_data(X_arr, write_path, scaler_type='minmax'):
 logging.warning('Note: scalers work on np.array columns not rows')
 reshaped_scaler_arr = X_arr.reshape([X_arr.shape[2] *
 X_arr.shape[3],
 X_arr.shape[0] *
 X_arr.shape[1]])
 print(X_arr.shape)
 print(reshaped_scaler_arr.shape)
 df_stats = pd.DataFrame.from_records(reshaped_scaler_arr)
 print(df_stats.shape)
 df_describe = df_stats.describe()
 print(df_describe.shape)
 pre_fname = os.path.join(write_path,
 'FeatureStats_{}.csv'.format(scaler_type))
 df_describe.to_csv(pre_fname, sep=",")
 if scaler_type == 'minmax':
 scaler = MinMaxScaler(feature_range=(0, 1))
 elif scaler_type == 'robust':
 scaler = RobustScaler()
 elif scaler_type == 'standard':
 scaler = StandardScaler()
 scaler_obj = scaler.fit(reshaped_scaler_arr)
 scaled_data_arr = scaler_obj.transform(reshaped_scaler_arr)
 df_scaled_stats = pd.DataFrame.from_records(scaled_data_arr)
 df_scaled_describe = df_scaled_stats.describe()
 post_fname = os.path.join(write_path,
 'FeatureScaledStats_{}.csv'.format(scaler_type))
 df_scaled_describe.to_csv(post_fname, sep=",")
 print(scaled_data_arr.shape)
 scaled_data_arr = np.nan_to_num(scaled_data_arr)
 reshaped_output_arr = scaled_data_arr.reshape([X_arr.shape[0],

Seasonal Wetland Delineation with Remote Sensing

42

 X_arr.shape[1],
 X_arr.shape[2],
 X_arr.shape[3]])
 print(reshaped_output_arr.shape)
 return reshaped_output_arr

if __name__ == "__main__":
 # begin runtime clock
 start = datetime.datetime.now()
 # determine the absolute file pathname of this *.py file
 abspath = os.path.abspath(__file__)
 # from the absolute file pathname determined above,
 # extract the directory path
 dir_name = os.path.dirname(abspath)
 # initiate logger
 log_file = os.path.join(dir_name, 'ST1867_analyzer9000_{}.log'
 .format(start.date()))
 create_logger(log_file)
 # create the command line parser object from argparse
 parser = argparse.ArgumentParser()
 # set the command line arguments available to user's
 parser.add_argument("--image_directory", "-imdr", type=str,
 help="Provide the absolute folder name containing PS\
 images")
 parser.add_argument("--class_labels_tif", "-cltif", type=str,
 help="Provide the absolute file path to the class\
 labels tiff")
 parser.add_argument("--write", "-w", type=str,
 help="Provide the absolute folder name for writing\
 outputs, i.e. project directory")
 parser.add_argument("--standardize", "-s", default=False,
 action='store_true',
 help="Provide True or False for standardizing\
 the pixel data")
 # create an object of the command line inputs
 args = parser.parse_args()
 # read the command line inputs into a Python dictionary
 ini_dict = vars(args)
 img_files_lst = tiffs_in_dir(ini_dict.get("image_directory"))
 logging.info('Found total of {} images for processing'
 .format(len(img_files_lst)))
 create_auxillary_bands(img_files_lst, ini_dict.get("write"))
 (class_labels_arr, class_dict, pixel_timeseries_arr,
 date_order) = gen_main_datasets(img_files_lst, ini_dict.get("write"),
 ini_dict.get("class_labels_tif"))

Seasonal Wetland Delineation with Remote Sensing

43

 if ini_dict.get("standardize") is True:
for st in ['minmax', 'robust', 'standard']:
 pixel_timeseries_arr = standardize_data(pixel_timeseries_arr,
 ini_dict.get("write"),
 scaler_type='robust')
sys.exit(0)
 else:
 logging.warning('You are proceeding with UNSTANDARIZED DATA')
 ans = input("Are you sure you want to proceed?[Y/N]")
 if 'N' in ans or 'n' in ans:
 sys.exit(0)
exploratory_graph_analysis(class_labels_arr, class_dict,
pixel_timeseries_arr, date_order,
ini_dict.get("write"))
 exploratory_embedding_analysis(class_labels_arr, class_dict,
 pixel_timeseries_arr, date_order,
 ini_dict.get("write"))
 elapsed_time = datetime.datetime.now() - start
 logging.info('Runtime: {}'.format(elapsed_time))

Seasonal Wetland Delineation with Remote Sensing

44

Appendix B

The following pages contain slides from a presentation that was given by Zackary Leady to a group
of Reclamation Science and Technology researchers on March 30, 2020.

Seasonal Wetland Delineation with Remote Sensing

S&T 1867: Temporary Floodplain
Delineation using High Resolution Satellite
Imagery and Machine Learning
Preliminary Results – Making the Impossible, Possible
By: Zackary Leady
03/30/2020

Roadmap

Context

Problem

Project

Here be
Dragons

Seasonal Wetland Delineation with Remote Sensing

Contextual Prelude

• Central Valley Improvement Act (CVPIA)
• Mandate to double salmon population

• Development of DSM models for Salmonids
• Need for habitat delineation values (acres)

• Temporary Floodplain is an excellent habitat for faster growth
• Consumnes River study

Jeffres, C. A., Opperman, J. J., & Moyle, P. B. (2008). Ephemeral floodplain habitats provide best
growth conditions for juvenile Chinook salmon in a California river. Environmental Biology of
Fishes, 83(4), 449-458. (54 days)

The Effect of Temporary Floodplain Habitat

Seasonal Wetland Delineation with Remote Sensing

A Problem: How to Delineate?

• Traditional method
• Survey crew – millions of dollars (Trinity River)

• Remote Sensing Traditional method
• Normalized Difference Water Index (NDWI)

• Remote Sensing with Machine Learning
• Unsupervised or Supervised

S&T 1867: Temporary Floodplain Delineation using
High Resolution Remote Sensing and Machine Learning

A Project

• Requirements:
• High Temporal and Spatial Resolution Data
• Automated geospatial toolkit
• Automated delineation toolkit
• Open Source / User Friendly

Seasonal Wetland Delineation with Remote Sensing

A Problem Revisited: How to Delineate?
• High Temporal and Spatial Resolution
• Planet data, Sentinel-2

• Automated Delineation
• Machine/Deep learning (computer vision)

• Open Source / User Friendly
• Python

What is Machine Learning?
• Machine Learning is a branch of AI
• Focuses on allowing computer to

learn patterns without being
explicitly programmed

• Unsupervised vs. Supervised
• Unsupervised – no labels
• Supervised – labels

Seasonal Wetland Delineation with Remote Sensing

Map of the
Machine Learning

World

Example Machine Learning Workflow

Seasonal Wetland Delineation with Remote Sensing

What is Deep Learning?
• Deep learning is the use of

multi-layered artificial neural
networks

• An artificial neural network is a
form of Machine Learning
• Learns by training on many input-

output pairs

• Universal function approximator

Deep Learning

Seasonal Wetland Delineation with Remote Sensing

Conceptual Options for Delineation
• What if, given sufficient temporal and spatial resolution, satellite

imagery were a time-series?

• Pixel or Object?

• Unsupervised or Supervised?

• Image, Numeric Time-Series, or Feature?

Satellite Imagery as a Time-Series (SITS)
Redding from 10/11/2016 - Planet Redding from 02/28/2017 - Planet

Seasonal Wetland Delineation with Remote Sensing

Classical Approach: Thresholding
• Image is converted to greyscale or greyscale-like
• Histogram of pixel values segmented at a threshold point
• Binary (0-1) segmentation of higher or lower than threshold point

Traditional NDWI Thresholding

Seasonal Wetland Delineation with Remote Sensing

Enhanced NDWI Thresholding
• Over many images in an SITS

NDWI stack detection error is
additive.
• Buildings
• Roads
• Bare Soil

• An enhanced NDWI thresholding
method using local maxima and
watershed segmentation
algorithm reduces this error.

Enhanced NDWI Thresholding Result

Seasonal Wetland Delineation with Remote Sensing

Thresholding Issues

• Each image in time must be looked at by a trained professional

• Two threshold values must be chosen

• Assumes bimodal distribution (land and water pixels)

Unsupervised Approach: Clustering

Seasonal Wetland Delineation with Remote Sensing

Experimental Clustering Approach

Time Input Data

Derived Bands

Clustering

Clustering Issues
• Each cluster output image must be viewed to determine which

“cluster” is temporary floodplain

• Clustering algorithm and hyperparameter choice

• Requires geospatial and machine learning professional

• Difficult to access cluster-quality

Seasonal Wetland Delineation with Remote Sensing

• Convolutional Neural Networks (CNNs) are a type of neural net
• CNNs are SOTA for image-based deep learning

Supervised Approach: Deep Learning

Deep Semantic Segmentation

Seasonal Wetland Delineation with Remote Sensing

Originally built for biomedical images and now being applied to
satellite imagery

Deep Semantic Segmentation: U-net

U-net Building Detection

Training Input and Label Pair

Seasonal Wetland Delineation with Remote Sensing

U-net Building Detection Prelim Results

Training Phase 1

Training Phase 2

Why buildings when we want Temporary
Floodplain?

• Temporary Floodplain labels are
very difficult to come by

• Enhanced NDWI Thresholding
can be used to create a set of
“noisy labels”

• Unfortunately those “noisy
labels” really like buildings,
roads, and bare soil

• Using U-nets for buildings and
roads we can mask out “noisy
labels”, improving the temporary
floodplain labels

• The temporary floodplain U-net
is the same as the other U-nets
and form a U-net Ensemble

Seasonal Wetland Delineation with Remote Sensing

U-net Workflow in Progress

Input Data

Building & Road
U‐nets

Enhanced
NDWI

Thresholding

Temporary
Floodplain Labels

Temporary
Floodplain U‐net

Next Steps: U-net Iteration

• Development of more robust training and test datasets

• Ensemble U-net

• Sentinel-2, SAR data fusion

Seasonal Wetland Delineation with Remote Sensing

Current Concerns
• Bare soil field confusion with flooded field

• AROSICS (open-source, python) co-registering accuracy

• Lack of Planet data moving forward, conversion to Sentinel-2

• Processing of 8 TB of data

Future Projects
• Hydrologic Models
• Entity-Aware LSTMs

• Crop Classification (ET)
• Input to ET models (water demand)

• Concrete crack detection

• Forecasting

Seasonal Wetland Delineation with Remote Sensing

Please contact for additional questions:
Zackary Leady
zleady@usbr.gov
916-978-5088

	ST-2020-1867-01.pdf
	0BMission Statements
	1BDisclaimer
	2BAcknowledgements
	Peer Review
	Acronyms and Abbreviations
	Executive Summary
	1. Introduction
	1.1 Author’s Note
	1.2 Background and Research Goals

	2. Literature Review
	2.1 Machine Learning
	2.2 Distance Metrics
	2.3 Dimensionality Reduction
	2.4 Clustering
	2.5 Supervised Learning
	2.6 Unsupervised Learning

	3. Methodology and Results
	3.1 Image selection and pre-processing
	3.1.1 Comparison of Top of Atmosphere and Surface Radiance Imagery Products
	3.1.2 Georeferencing
	3.1.3 Spectral Consistency

	3.2 Image classification

	4. Future Work
	References
	Appendix A
	Appendix B

	RSWG_PPT_1867_20200327_handouts.pdf

		2021-03-12T07:25:09-0800
	VANESSA KING

		2021-03-12T09:03:55-0800
	MICHAEL WRIGHT

