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Executive Summary 
Detailed precipitation inputs are needed for a variety of probabilistic flood hazard analyses. 
These precipitation inputs typically take the form of historical “storm templates” and a basin-
average precipitation-frequency relationship. Storm templates are developed using historical data 
(e.g., point observations and reanalysis data) to capture the best representation of major storm 
events that actually occurred within the basin of interest. Most studies utilize a small number of 
individual storm templates (typically less than 20) to simulate hundreds to tens of thousands of 
annual or seasonal maximum flow events. The basin-average precipitation-frequency 
relationships are always based on historical point observations within and surrounding the basin 
of interest. These analyses do not take advantage of any gridded precipitation datasets, even 
those gridded precipitation datasets that incorporate estimates of uncertainty. There is a clear 
need for developing alternative precipitation tools for application in flood hazard analyses that 
are technically sound and independent from existing methods. 
 
Reclamation partnered with faculty from the University of Wisconsin-Madison to address this 
need. The project was motivated by two main questions. First, can advanced gridded datasets and 
technologies be utilized to help develop precipitation inputs for flood hazard analyses? Second, 
can the application of those advanced gridded precipitation tools in conjunction with a gridded 
rainfall-runoff model be demonstrated within a basin of interest to Reclamation? 
 
In order to answer the first question, we expanded software capabilities of RainyDay, an open-
source Python-based Stochastic Storm Transposition (SST) implementation that uses 
probabilistic temporal resampling and spatial transposition of storm events drawn from a 
“catalog” of historical storms to effectively recreate the climatology of extreme rainfall 
frequency and intensity, to include a web-based version hosted by the University of Wisconsin-
Madison. The web-based RainyDay includes two versions, basic and advanced, and provides 
users access to three different historical gridded precipitation datasets. This advanced 
probabilistic tool was demonstrated in the Big Thompson watershed above Olympus Dam, in 
Colorado. We answered the second question by combining output from RainyDay with a 
process-based rainfall-runoff model, WRF-Hydro, and Monte Carlo sampling procedures to 
develop peak discharge and inflow volume frequency relationships at Olympus Dam. 
Collectively, these new technologies represent major advances for future applications in 
hydrologic hazard analyses performed at Reclamation and beyond.  
 





 

 

Main Report 

Problem Statement 

Reclamation’s Water Resources Engineering and Management Group, housed in the Technical 
Service Center, produces probabilistic estimates of hydrologic hazards to support risk-informed 
decision making. The probabilistic estimates are often developed using a variety of methods, 
including streamflow observations, statistical analyses, paleoflood records, numerical modeling, 
and combinations thereof. Statistical approaches typically include fitting a probability 
distribution function to historical annual maximum streamflow records from within or around the 
basin of interest. Paleoflood records, when available, can provide flow thresholds and associated 
non-exceedance probabilities, which are critical to providing confidence of flow estimates at 
very rare return periods. Numerically-based methods involve developing and calibrating a 
rainfall-runoff model to a watershed of interest. The group employs multiple methods in an effort 
to better understand a range of floods that is difficult to predict using traditional flood-frequency 
estimates given the general lack of observed streamflow events for such rare return periods. 
Some of the most complex studies completed by the group employ all these methods in an effort 
to increase confidence in rare flood estimates. 
 
The rainfall-runoff models employed by the group, which vary in complexity depending on the 
study needs, typically require detailed precipitation inputs in the form of storm templates and a 
site-specific (basin-average) precipitation-frequency relationship. For more detailed studies 
involving stochasticized rainfall-runoff simulations, together, the storm templates and 
precipitation-frequency analysis are used to force the rainfall-runoff model tens to hundreds of 
thousands of times to produce probabilistic magnitude-frequency estimates (Reclamation  
2020a, b), such as peak inflow frequency and reservoir inflow volume frequency relationships. 
Many of the previous studies performed by the group utilize between five and 20 storm 
templates (e.g., Reclamation (2012) and (2016)) that produced precipitation and flow in the basin 
of interest and assume that such a small pool of historical events is sufficient to encompass the 
wide range of extreme storms that are possible in a basin at very low annual exceedance 
probabilities. Some of the simpler flood modeling studies also include the assumption of “AEP 
neutrality”, whereby a precipitation event with a specified annual exceedance probability (AEP) 
can be converted to a runoff event of the same AEP. These studies do not typically utilize 
stochastic methods. The validity of these assumptions is questionable in many watersheds due to 
the complex space-time structure of extreme storms, the wide spectrum of possible soil moisture 
and snowpack conditions, and the joint role of these factors on flood wave propagation through 
river tributaries.  
 
The purpose of the current project was to develop advanced, web-based stochastic software 
capable of combining gridded precipitation ensemble datasets, stochastic storm transposition 
methods, and physically-based hydrologic models to estimate precipitation and flood frequency 
relationships for use in hydrologic hazard investigations without the assumption of AEP 
neutrality, though the methods are applicable to such studies. The tools and methods developed 



 

in this project will help identify strengths and weaknesses of watershed hydrologic methods and 
spatially distributed weather data, two priority areas in Reclamation’s long term water resources 
planning objectives. 

Research Activities and Results 

The research presented herein is characterized by two main components. The first component 
involves developing a web-based tool for stochastic storm transposition (SST) using gridded 
precipitation datasets, while the second component involves utilizing the SST tool in conjunction 
with a gridded rainfall-runoff model to develop flood-frequency estimates for a watershed of 
interest to Reclamation. Both components are demonstrated for the Big Thompson watershed, 
located in Colorado, but the general methodologies are transferable to other Reclamation studies 
watersheds. The main approach and findings from each component are detailed below. 
 
SST is a process that involves resampling and transposing (i.e., geographically moving in the 
zonal and meridional directions) storm events to generate hypothetical events from a collection 
of realistic events (Wright et al. 2020).  The method was originally conceived as probabilistic 
alternative to probable maximum precipitation (PMP). SST “lengthens” the rainfall record by 
probabilistic temporal resampling and spatial transposition of storm events drawn from a 
“catalog” of historical storms to effectively recreate the climatology of extreme rainfall 
frequency and intensity. A detailed explanation of the methodology can be found in Wright et al. 
(2013). Wright et al. (2014) showed that when coupled with rainfall remote sensing datasets, 
SST can provide unique multi-scale flood hazard estimation capabilities that represent a 
fundamental improvement over existing design storm approaches, since they allow for realistic 
“decoupling” of rainfall and flood annual exceedance probabilities (i.e. not requiring an 
assumption of "AEP neutrality") and explicit consideration of the complex range of rainfall 
space-time structures. Accurate estimation of rainfall intensity-duration-frequency curve (IDF) 
and flood frequencies were demonstrated for return periods as high as 1,000 years using only ten 
years of radar rainfall data.  
 
In this study, we expanded on previous research and software by developing a web-based version 
of RainyDay (https://her.cee.wisc.edu/rainyday-rainfall-for-modern-flood-hazard-assessment/). 
This web-based RainyDay collects user inputs (e.g., several parameters) from a web interface, 
runs the RainyDay software on High Performance Computers at the University of Wisconsin-
Madison, and automatically sends the results back to the user via a Google Drive downloadable 
link (see Appendix A for details). This web-based RainyDay has been updated to the latest 
version of the RainyDay software, including some recently developed functions, like stochastic 
rescaling transposition (Appendix B; Wright and Holman, 2019).  
 
The web-based version of RainyDay provides many benefits to Reclamation. First, the web 
version includes two different versions for variable user needs, basic and advanced. The 
advanced version allows the user to upload a shapefile of the basin of interest, producing 
watershed-specific precipitation-frequency results and a storm catalog. Another benefit of the 
web version is that it gives the user immediate access to three different gridded precipitation 
datasets with variable temporal coverage. The three gridded precipitation datasets allow the user 

https://her.cee.wisc.edu/rainyday-rainfall-for-modern-flood-hazard-assessment/


 

 

to produce three precipitation-frequency analyses that vary as a function of the underlying data 
source. Finally, and possibly most importantly, the web-based version of RainyDay represents an 
independent source of precipitation-frequency estimates that Reclamation users can use for 
comparisons in site-specific studies, including screening-level studies and more advanced 
hydrologic hazard analyses.  This represents an improvement over the National Weather 
Service’s (NWS’s) Hydrometeorological Design Studies Center’s (HDSC) NOAA Atlas  
14, which includes point precipitation-frequency estimates out to return periods of 1,000 years 
across parts of the United States.   
 
In many hydrologic analyses performed at Reclamation, precipitation-frequency estimates are 
combined with historical storm events within a rainfall-runoff model to produce magnitude-
frequency relationships (e.g., three-day average flow frequency relationship) for a reservoir of 
interest.  Current rainfall-runoff models in use at Reclamation include versions of the Hydrologic 
Engineering Center’s Hydrologic Modeling System (HEC-HMS; USACE 2016) and the 
Stochastic Event Flood Model (SEFM; MGS 2018).  SEFM and HEC-HMS are typically run 
using lumped or semi-distributed configurations (e.g., Reclamation (2019)).  Lumped rainfall-
runoff models treat catchments as a series of homogeneous subbasins and are typically well 
suited for small, relatively homogeneous watersheds. These models simulate streamflow at outlet 
points, not flows within a catchment (EPA 2017). Semi-distributed models are similar to lumped 
models, though they typically treat the watershed as a series of (lumped) subbasins, simulating 
streamflow at outlet points for each subbasin.  Gridded products can be used to develop inputs to 
lumped or semi-distributed models, though some resolution is typically lost in the transition.   
 
Unlike lumped or semi-distributed models, gridded rainfall-runoff models account for spatial 
heterogeneity in model parameters and input fields. Fully-distributed models compute the 
hydrologic response on each grid cell within a catchment and incorporate impacts from 
neighboring grid cells. In this study, we developed a model of the Big Thompson watershed 
above Olympus Dam in Colorado using WRF-Hydro.  WRF-Hydro is a large-scale hydrologic 
modeling system that combines a land surface model, Noah MP, with terrain routing, baseflow 
routing, and channel routing (Gochis et al. 2018). Both energy and water fluxes are simulated 
within the model. The model can be run offline as a hydrologic model or coupled with an 
atmospheric model, such as the Weather, Research, and Forecasting model (WRF).  
 
The WRF-Hydro modeling framework began with the calibration and validation of the watershed 
between 1979 and 2018 using forcing data from the North American Land Data Assimilation 
System (NLDAS). The physical states from this long-term simulation as simulated by WRF-
Hydro were saved and later used as initial conditions in the stochastic simulations. A storm 
catalog was developed for the basin using precipitation from NLDAS and SST technologies 
within RainyDay. Finally, 10 sets of 1,000 annual maximum streamflow events (for a total of 
10,000) were simulated by sampling the RainyDay storm catalog and initial conditions from the 
long-term WRF-Hydro simulation. The 10 sets of annual maximum flow events can be used to 
estimate median and uncertainty estimates at return periods less than 1,000 years or to estimate a 
single frequency curve (without uncertainty) out to the 10,000-year return period. Results from 
this portion of the study are available in Appendix D, which represents a manuscript that will be 
submitted to Water Resources Research. 
 



 

The gridded flood frequency analysis completed using WRF-Hydro represents an important 
advancement for Reclamation. This study and the associated technology transfer that took place 
on August 12, 2020 have provided employees with background, theoretical developments, and 
real applications of new technologies to a watershed of interest to Reclamation, the Big 
Thompson watershed above Olympus Dam. Furthermore, results from this modeling have been 
made available to members of the Water Resources Engineering and Management Group for 
further analysis. 

Conclusions and Future Plans  

Members of the TSC are tasked with producing probabilistic estimates of hydrologic hazards to 
support risk-informed decision making. The probabilistic estimates are often developed using a 
variety of methods, including streamflow observations, statistical analyses, paleoflood records, 
numerical modeling, and combinations thereof. The purpose of the current project was to 
develop advanced gridded tools that can be used to support probabilistic hydrologic hazard 
analyses within Reclamation.  The first objective of this project was to develop an advanced, 
web-based SST tool for probabilistic precipitation analyses, including storm catalogs and 
precipitation-frequency analyses.  The second objective was to combine SST technology with a 
physically-based rainfall-runoff model to develop flood frequency estimates at a basin of interest 
to Reclamation. These objectives have been successfully met through the development of the 
online version of RainyDay and through the development of a WRF-Hydro modeling system 
demonstrated for the Big Thompson watershed above Olympus Dam, in Colorado. Findings have 
been demonstrated through multiple peer reviewed papers and a webinar hosted on August 12, 
2020 that was attended by more than 20 people within and outside of Reclamation.  
 
Reclamation benefits from this project in a number of unique ways.  For example, RainyDay 
represents a modern version of an age-old technique, stochastic storm transposition, to support 
probabilistic flood studies.  RainyDay also provides users quick access to three, gridded 
precipitation datasets.  These datasets can be used individually or collectively to develop storm 
catalogs and precipitation-frequency estimates for use in hydrologic hazard analyses.  RainyDay 
also provides Reclamation with independent precipitation-frequency estimates across the western 
US.  This is in contrast to NOAA Atlas 14, which provides precipitation-frequency estimates out 
to the 1,000-year return period across portions of the western US.  Finally, with modifications to 
the underlying data, RainyDay can be used to understand impacts of climate variability and 
change on precipitation frequency estimates.  Beyond RainyDay, the technologies from WRF-
Hydro also represent a large step forward.  Members of the research team provided Reclamation 
with background, theoretical developments, and a demonstration of new, gridded technologies to 
support flood frequency analyses in a watershed of interest to Reclamation.     
 
Future applications of the RainyDay include canal safety projects, screening level studies (also 
referred to as comprehensive reviews), and larger, in-depth studies.  Future WRF-Hydro 
applications include diagnosing the physical mechanism of flooding among the 10,000 synthetic 
annual maximum flood events using an artificial neural network, specifically the Self-Organizing 
Maps algorithm, for the broader purpose of understanding the impacts of mixed populations on 
flood frequency estimates.  Additional ideas include utilizing RainyDay and WRF-Hydro to 



 

 

develop historical and future flood frequency estimates for Reclamation basins using output from 
global climate model simulations.  
 

References  

Environmental Protection Agency (EPA), 2017. An Overview of Rainfall-Runoff Model Types. 
EPA/600/R-14/152. Accessed 07/30/2020. 
 

Gochis, D., M. Barlage, A. Dugger, K. FitzGerald, L. Karsten, M. McAllister, J. McCreight, J. 
Mills, L. Pan, A. Rafieei-Nasab, L. Read, K. Sampson, D. Yates, W. Yu, and Y. Zhang, 
2018: The WRF-Hydro Modeling System Technical Description Version 5.0, 
UCAR/NCAR.  

 
MGS Software LLC (MGS), 2018: Stochastic Event Flood Model (SEFM) Technical Support 

Manual. 168 pp.  
 
Reclamation (Bureau of Reclamation), 2012. Altus Dam Hydrologic Hazard and Reservoir 

Routing for Corrective Action Study. W.C. Austin Project, OK. Great Plains Region.  
 
Reclamation (Bureau of Reclamation), 2016. Island Park Dam Meteorology for Application in 

Hydrologic Hazard Analysis. Minidoka Project, ID. Pacific Northwest Region.  
 
Reclamation (Bureau of Reclamation), 2019. Stochastic Flood Frequency Analysis at Folsom 

Dam: Rainfall-Runoff Modeling. Central Valley Project, California. Mid-Pacific Region. 
Technical Memorandum: ENV-2019-070.  

 
Wright, D.B., J.A. Smith, G. Villarini, and M.L. Baeck. 2013. Estimating the Frequency of 

Extreme Rainfall Using Weather Radar and Stochastic Storm Transposition. J. 
Hydrology. 488, 150-165. 

 
Wright, D.B., J.A. Smith, and M.L. Baeck. 2014. Flood Frequency Analysis Using Radar 

Rainfall Fields and Stochastic Storm Transposition. Water Resour. Res., 50, 1592-1615. 
doi:10.1002/2013WR014224. 

  



 

 
 
  



 

 

Appendix A – Research Products 

A Web-Based Rainfall Hazard Assessment Tool (RainyDay) 

RainyDay (Wright et al., 2017) is a framework for generating large numbers of realistic extreme 
rainfall scenarios based on remotely-sensed precipitation fields. It is founded on a statistical 
resampling concept known as stochastic storm transposition (SST). These rainfall scenarios can 
then be used to examine the extreme rainfall statistics for a user-specified region, or to drive a 
hazard model (usually a hydrologic model, but the method produces output that would also be 
useful for landslide models). 
 
This web-based version of RainyDay is intended to make the software more accessible to a wide 
range of potential users (https://her.cee.wisc.edu/rainyday-rainfall-for-modern-flood-hazard-
assessment/). This web tool allows users to type in the inputs on the website, runs the RainyDay 
simulation on the server, and sends the results back to users through an email with a 
downloadable Google Drive link (Figure 1). Users do not need to possess High Performance 
Computers, configure Python environment, download large amounts of input data, etc. We also 
created two tutorials on YouTube to facilitate potential users to understand how the SST method 
works and how to best use this web-based tool based on their specific application. 
(www.youtube.com/watch?v=H7v3RC1OqYg&list=PLmoYfOUvB7rUWkjxFkGQTSOT3lUUgzHe2) 
The user interface of the web-based RainyDay is shown in Figure 2. 
 
The common outputs that the web-based RainyDay send to user include four main types of 
outputs: 

• Storm Catalogs: A storm catalog is the collection of the most extreme storms within the 
user defined SST domain that will be used for subsequent resampling and transposition. 
The output is a NetCDF file. 
   

• Diagnostic plots: These plots show different aspects of the rainfall fields and the storm 
catalog.  A diagnostic plot of the storm catalog created for Big Thompson River 
watershed is shown in Figure 3. 
 

• FreqAnalysis file: This file provides the results from a rainfall frequency analysis for 
various return periods for an area and a rainfall duration, both of which are specified by 
the user.  The results in the .FreqAnalysis file are roughly equivalent to an Intensity-
Duration-Frequency (IDF) curve, which many civil engineers and hydrologists are 
familiar with (Figure 4).   
 

• Spacetime rainfall scenarios: These are scenarios that can serve as input to a hydrologic 
model.  In order to keep the size of these scenarios manageable, they do not consider the 
entire transposition domain but only the rainfall within a certain user-defined area 
(usually either a rectangular “box” or a watershed boundary).  

https://her.cee.wisc.edu/rainyday-rainfall-for-modern-flood-hazard-assessment/
https://her.cee.wisc.edu/rainyday-rainfall-for-modern-flood-hazard-assessment/
http://www.youtube.com/watch?v=H7v3RC1OqYg&list=PLmoYfOUvB7rUWkjxFkGQTSOT3lUUgzHe2


 

Figures 
 
 
 

Figure 1. The conceptual flowchart of the Web-RainyDay.  



 

 

 

Figure 2.  The user interface of the web-based RainyDay (Basic Version). 



 

 

Figure 3.  Average storm rainfall and location of storm centers. The black outline is the watershed (Big 
Thompson River upstream of Olympus Dam) used in this example. 

 



 

 

 
 

Figure 4.  IDF Curve produced by RainyDay for the Big Thompson River watershed upstream of Olympus 
Dam, in northern Colorado. 
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Abstract 

Geospatial transposition of observed storms can be useful for examining potential rainfall and 
flood hazards, and several recent software packages help facilitate transposition of remote 
sensing-based rainfall observations from radar or satellites. Two unanswered questions persist, 
however, in regions that exhibit heterogeneity in extreme rainfall properties: is transposition 
reasonable, and if so, how should it be performed? This note posits that the answer to the first 
question depends on the degree of heterogeneity, and attempts to answer the second question via 
“rescaling” transposed rainfall according to the degree of heterogeneity between two locations. 
General considerations for this rescaling are discussed and two rescaling methods are introduced. 
Both methods are illustrated using gage-corrected radar rainfall data from three locations in the 
Front Range of the Rocky Mountains in Colorado that exhibit moderate heterogeneity in extreme 
rainfall hydroclimate. The second of these methods, termed stochastic distribution ratio 
rescaling, is presented here for the first time, and has the advantage of straightforward 
uncertainty estimation. 
 
1.  Introduction 
A challenging question in hydrologic engineering is how to best understand potential extreme 
rainfall and its impacts at a particular location using observations from nearby locations. For 
example, what lessons can be learned about possible rainfall extremes in Denver, Colorado based 
on rainfall observations from nearby areas during the “Great Colorado Flood” (see Friedrich et 
al., 2015; Gochis et al., 2014) of September 2013? Geospatial transposition of observed rainfalls 
is one approach to answer this question.  
 

 



 

The best-known application of storm transposition is in the estimation of probable maximum 
precipitation (PMP), in which observed rainfall isohyetal patterns are transposed over a given 
watershed and “rescaled” via maximization of atmospheric moisture content (Hansen et al., 
1982; Hansen, 1987; WMO, 2009). Storm transposition has also been increasingly used outside 
of PMP. Hayden et al. (2016), for example, transposed radar rainfall estimates to assess the 
efficacy of urban stormwater ordinances in Madison, Wisconsin. Both that study and PMP can 
be understood as “deterministic storm transposition,” in which a rainfall observation or storm is 
moved from one location directly to the study location.  
 
A second approach is stochastic storm transposition (SST), in which a sample of storms 
(henceforth referred to as a “storm catalog”) is resampled and transposed probabilistically to 
generate a much larger set of possible rainfall scenarios of varying magnitudes and 
spatiotemporal properties. First introduced in Alexander (1963), SST was further expanded in 
Fontaine and Potter (1989), Foufoula-Georgiou (1989), Franchini et al. (1996) Gupta (1972), 
Wright et al. (2014, 2013), England et al. (2014), and Nathan et al. (2016). SST can be used to 
estimate rainfall intensity-duration-frequency (IDF) relationships and, when combined with 
rainfall-runoff models, flood frequency. 
 
Both deterministic and stochastic storm transposition can benefit from rainfall remote sensing 
observations from ground-based radar or from satellites. These can provide detailed 
spatiotemporal depictions of severe storms that are generally not available from rain gages. Two 
recent software tools have been developed that facilitate the coupling of rainfall remote sensing 
and storm transposition. MetVue from the U.S. Army Corps of Engineers (HEC, 2017) supports 
editing and analysis of radar data, including transposition and adjustment of rainfall magnitudes 
(Benson, 2014). RainyDay is an open-source Python-based software and web-based platform 
aimed at facilitating rainfall and flood frequency analysis using SST and remote sensing data  
(Wright et al., 2017). 
 
An important question arises in storm transposition: is it reasonable to transpose rainfall from 
one location to another, and if so, how? If the rainfall hydroclimates in two locations are very 
similar, transposition between them is straightforward. If there are differences, however, the 
answer is less clear. Heterogeneity in the  precipitation hydroclimate can exist due to topographic 
features (e.g. Huff and Vogel, 1978; Javier et al., 2007; Kitchen and Blackall, 1992), land-water 
boundaries (e.g. Ntelekos et al., 2007; Smith et al., 2012), and urban impacts on rainfall (e.g. 
Shepherd, 2005). This note posits that transposition is reasonable if heterogeneity is not too 
great, but that it may be appropriate to “rescale” transposed rainfall magnitudes according to the 
degree of heterogeneity.  
 
This note describes the problem of rescaling transposed rainfall based on differences in rainfall 
hydroclimatology, and presents two rescaling approaches, one of which is introduced here for the 
first time. Some important considerations are left to future work, including how to evaluate 
“acceptable levels” of heterogeneity for which transposition is reasonable and how to use 
rescaling methods in applications such as rainfall or flood frequency analysis. Basic rescaling 
considerations are discussed in Section 2. Section 3 introduces the study area, data, and the two 
rescaling methods. Section 4 shows brief results based on these methods. Concluding remarks 
follow in Section 5. 



 

 

 

2. Rescaling Transposed Rainfall: General Considerations 

Several general statements can be made regarding rescaling of transposed precipitation: 

1. If the rainfall distributions at two locations i and j are identical, then no rescaling should be 
performed when rainfall is transposed from one location to the other. Rescaling should be 
modest if the rainfall distributions at two locations are similar, and more substantial when 
they are more different. Very dissimilar distributions, however, indicate that transposition 
among those two locations may not be appropriate. 

2. The most obvious strength of storm transposition is the ability to leverage observations of 
extreme storms from one location to better understand potential impacts at another location. 
Thus, extreme rainfall should remain extreme upon transposition and rescaling. This means 
that the method commonly referred to as quantile mapping or cumulative distribution 
function (CDF) matching is unsuitable for storm transposition. Quantile matching can be 
expressed mathematically as: 

𝑥 = 𝐹 𝐹 (𝑥 )                                                              (1) 

where 𝐹  denotes the CDF at location i, 𝑥  is the observed value at location i, and 𝑥  is the 
rescaled transposed rainfall. Equation 1 implies a unique mapping between 𝐹  and 𝐹 , and so 
transposition of 𝑥  will produce a 𝑥  which is already known (via 𝐹 ). In other words, quantile 
mapping negates storm transposition, since transposed rainstorms will never be more extreme 
than the corresponding observed or estimated quantile at location j. 

3. While rescaling could take on a variety of mathematical forms, a multiplicative “ratio” 
formulation is likely desirable, as shown in the two methods described Section 3. Other 
branches of precipitation science including for remote sensing error characterization (e.g. 
Tian et al., 2013) and hydrologic model calibration (e.g. Kavetski et al., 2006; Vrugt et al., 
2008) show preference for multiplicative over additive approaches. 

3. Methods 

3.1 Study Area and Rainfall Data  
Fig. 1a shows heterogeneity in topography and mean annual precipitation (MAP) across the state 
of Colorado in the central United States, highlighting three locations that are the focus of 
subsequent analysis. Heterogeneity in MAP results from influences of the Front Range of the 
Rocky Mountains on atmospheric circulation and storm tracks in addition to localized orographic 
effects (e.g. Javier et al., 2007).  
 
The 9-16 September 2013 storm resulted in severe rainfall and flooding throughout the Front 
Range, though Denver escaped the worst impacts. September 12-13 was the period of most 
intense rainfall both north of Denver in Boulder and to the south in Fort Carson (Fig.1b). Though 
Denver was “spared,” it is reasonable to surmise that there are lessons that can be learned there 
via transposition of nearby observations from the 2013 rainstorm or others.  
 



 

A storm catalog was created using the RainyDay software (Wright et al., 2017) and the Stage IV 
rainfall dataset (Lin and Mitchell, 2005), which merges ground-based weather radar and rain 
gages. This storm catalog is comprised of 350 24-hour accumulations over the 2002-2017 period 
of the Stage IV data record for the single radar pixels centered on the three study locations. It 
should be emphasized, however, that the methods presented in this note are general and could be 
applied with point-scale rain gage data or areal estimates of rainfall from Stage IV or other 
rainfall remote sensing datasets. 
 
CDFs derived from this storm catalog (Fig. 1c) highlight several things. First, the rainfall 
distributions for Denver and Boulder are virtually identical except for the extreme tail: the largest 
24-hour rainfall accumulation in Denver is of 59 mm on 30-31 August 2016, much smaller than 
the 179 mm accumulation for 12-13 September 2013 in Boulder. We can conclude that Denver 
and Boulder have essentially the same rainfall hydroclimates, and that the difference in the 
extreme tail is likely an artifact of the relatively short (16-year) record length. Thus, it is likely 
reasonable to transpose the 2013 event from Boulder to Denver. Fort Carson experienced even 
heavier 24-hour rainfall (309 mm). The CDF for Fort Carson reveals a somewhat wetter rainfall 
hydroclimate, which casts some doubt on the validity of transposing rainfall to Denver, at least 
without rescaling.  
 
3.2 Index Quantile Rescaling 
One approach to rescaling rainfall transposed from location i to location j involves selecting an 
“index quantile” (𝐼 ) and rescaling by its ratio: 

𝑥 = 𝑥 .                                                             (2) 

The quantile q could pertain to a given exceedance probability from a distribution of annual 
maxima (i.e. from the IDF curve) or to the “full” rainfall distribution. 𝐼 𝐼  depends on the 
choice of q and thus on the relative “shapes” of 𝐹  and 𝐹 . Furthermore, the ratio will be sensitive 
to errors in quantile estimates, which can be substantial. Nathan et al., (2016), for example, use 
the 50-year rainfall quantile, which they justify because of their focus on very rare events. It is 
well-known, however, that such quantile estimates are subject to substantial uncertainty, and it 
may be preferable to use less uncertain index quantiles such as the 2-year or 5-year rainfall. 
 
3.2 Stochastic Ratio Distribution Rescaling 
This section introduces an approach to stochastically rescale transposed rainfall, based on the 
concept of a ratio distribution, i.e. the distribution of 𝑅 = 𝑌/𝑋, where X and Y are random 
variables. Commonly-used ratio distributions include the F-distribution (the ratio of two scaled 
independent Chi-squared distributions) and the Cauchy distribution (the ratio of two independent 
standard normal distributions). Other ratio distributions have been derived for certain marginals, 
parameter values, and correlations (e.g. Lee et al., 1979; Nadarajah, 2010; Nadarajah and Kotz, 
2006). Few of these are suitable for describing rainfall, and parameter estimation can be 
challenging. An exception is if both X and Y are lognormally distributed (often a reasonable 
approximation for rainfall; e.g. Atlas et al., 1990; Shimizu, 1993; Zhang and Singh, 2007), in 
which case it is straightforward to derive the distribution of R for any parameter set and 
correlation. Let 𝑋 = 𝑋  and 𝑌 = 𝑋 , the lognormally-distributed rainfall at locations i and j with  



 

 
linear correlation 𝜌 , . Thus: 

𝑙𝑜𝑔𝑅 = 𝑙𝑜𝑔 = 𝑙𝑜𝑔𝑌 − 𝑙𝑜𝑔𝑋.                                         (3) 

By definition, 𝑙𝑜𝑔𝑋 and 𝑙𝑜𝑔𝑌 are normally distributed with parameters {𝜇 , 𝜎 } and {𝜇 , 𝜎 }. 
Via the additive properties of normal distributions, 𝑙𝑜𝑔𝑅 is normally distributed with parameters 
𝜇 = 𝜇 − 𝜇  and 𝜎 = 𝜎 + 𝜎 − 2𝜌 , 𝜎 𝜎 . Thus, 𝑅~𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝜇 , 𝜎 ), 𝐸[𝑅] =

exp (𝜇 + 𝜎 ), and 𝑉𝑎𝑟[𝑅] = exp(2𝜇 + 2𝜎 ) − exp (2𝜇 + 𝜎 ). This ratio can then be used 

for rescaling: 

𝑥 = 𝑅𝑥 .                                                             (4) 

If X and Y are identically distributed then 𝐸[𝑅] = 1, 𝑉𝑎𝑟[𝑅] = 0, and no rescaling is performed. 
If the distributions of X and Y are similar but not identical then 𝐸[𝑅] will be close to 1.0 and 
𝑉𝑎𝑟[𝑅] will be small. If the distributions are very different, then 𝐸[𝑅] may differ from 1.0 and 
𝑉𝑎𝑟[𝑅] may be relatively large. Second, unlike quantile mapping, rescaling “shifts” the 
distribution 𝑥  but leaves the extreme tail estimates intact, as shown in Section 4. 
 
The derivation above is included for completeness. In the context of storm transposition, it is not 
necessary to compute marginal distributions for X and Y, nor their correlation, since the empirical 
distribution 𝑅 can be estimated directly from their empirical distributions: 

𝑅 = , 𝑘 = 1. . 𝑛                                                            (4) 

where 𝑦  and 𝑥  are the k  ordered observations in the empirical CDF of Y and X, respectively. 
Any suitable continuous distribution can then be fitted to 𝑅. Though this study uses the 
lognormal distribution, other distributions including the normal distribution could also be 
appropriate.  

4. Rescaling Results 

Estimates of 𝑅 (Fig. 2) are computed from the CDFs shown in Fig. 1c. Results are illustrated 
only for single radar “pixels” centered on the three study locations, but the technique could be 
applied to larger geospatial storm patterns as well. Fig. 2 shows that 𝐸 𝑅  is very close to 1.0 for 
the ratio of Denver to Boulder rainfall, consistent with the close resemblance in the CDFs shown 
in Fig. 1c. 𝐸 𝑅  of the ratio of Denver to Fort Carson rainfall is 0.82, reflecting Fort Carson’s 
wetter hydroclimate than Denver and thus rainfall from Fort Carson should be “scaled down” 
prior to transposition to Denver under this framework. The 90% interquantile range for these two 
ratio distributions are similar since, despite Fort Carson being wetter than the other two locations 
(Fig. 1c), this “shift” is relatively consistent across the range of rainfall values. If the shift varied 
significantly with rainfall magnitude, 𝑉𝑎𝑟 𝑅  would be greater. The distributions of 𝑅 in Fig. 2 
provide a basis for rescaling under conditions of repeated transposition (i.e. SST) or for bounding 
the rescaling of transposed rainfall under deterministic transposition, as demonstrated below.  
 
Index quantile-based rescaling ratios calculated using estimates of the 50-year 24-hour rainfall 
from Atlas 14 (Bonnin et al., 2004) from the National Oceanic and Atmospheric Administration 
(NOAA) are also shown in Fig. 2. These ratios differ from those generated by the stochastic ratio 
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distributions: the index quantile method scales Boulder rainfall downward rather than upward 
(𝐼 𝐼 = 0.86, while 𝐸 𝑅 = 1.02). Differences are smaller for Fort Carson rainfall 

(𝐼 𝐼 .  = 0.90; 𝐸 𝑅 = 0.82). Whether these discrepancies are due to some 
shortcoming of one or both methods, or due simply to differences in their derivations, is not 
clear.  
 
NOAA Atlas 14 also publishes 90% confidence intervals (CIs) for IDF quantiles. If one assumes 
that these CIs are drawn from a normal distribution, it is possible to infer the distribution of 𝐼  
(note that the published CIs are not symmetric; this normality assumption is thus only 
approximate). If one further assumes that the quantile estimation uncertainties at locations i and j 
are independent, one can use parametric bootstrapping to estimate the distribution of 𝐼 𝐼 . 

These results are included in Fig. 2. Unlike the distributions of 𝑅, the distributions of 𝐼 𝐼  bear 
little resemblance to the data, with unrealistically high variance. This is likely the result of the 
independence assumption between the quantile uncertainties—correlation between errors in 𝐼  
and 𝐼  will reduce 𝑉𝑎𝑟 𝐼 𝐼 . Such correlation likely exists, since nearby locations will be 
subject to similar sampling errors and thus their estimation uncertainties will be correlated. When 
regionalization is used (as in Atlas 14), the independence assumption becomes even more 
suspect. A more complex bootstrap approach on the original observations would likely be needed 
to properly estimate uncertainty in 𝐼 𝐼 . 
 
The derived distributions of 𝑅 shown in Fig. 2 are used to generate rescaled 24-hour rainfall 
distributions (Fig. 3). Results from index quantile rescaling are also shown. Consistent with  
Fig. 1, the rainfall distributions for Denver and Boulder (upper panels) are relatively similar, 
while the curve for Denver is below that of Fort Carson (lower panels) for all probabilities. The 
shaded areas indicate the 95% interval of stochastic rescaling achieved through 1000 random 
samples from the corresponding distribution of 𝑅 applied to rescale the distribution of transposed 
rainfall. When used with the Boulder rainfall distribution (Fig. 3, top panels), index quantile 
rescaling appears to underestimate the Denver rainfall distribution for all but the highest 
quantiles, since 𝐼 𝐼  scales the distribution downward. CIs are omitted for the index 
quantile rescaling approach due to the difficulty in producing realistic estimates (see Fig. 2 and 
related discussion).  
 
Of particular interest is the tail behavior (i.e. above the 95th percentile), which has been 
emphasized in the right-hand panels of Fig. 3. The extreme tails of the transposed rainfall from 
both Boulder and Fort Carson differ substantially from that of Denver due to the 12-13 
September 2013 rainfall. Stochastic ratio rescaling produces a mean 24-hour rainfall estimate of 
183 mm for the 12-13 September rainfall transposed from Boulder to Denver, with the spread of 
the 1000 random draws ranging from 149-221 mm. The mean result is 254 mm for the 2013 
rainfall from Fort Carson transposed to Denver, with a range from 188-325 mm. Index quantile 
rescaling results in 154 mm (279 mm) for the transposed Boulder (Fort Carson) rainfall. For 
reference, the 100-year (1000-year) 24-hour rainfall depth for Denver provided by NOAA Atlas 
14 is 120 mm (175 mm), with a 90% CI of 90-155 mm (118-236 mm). 
  



 

 

 

5. Conclusions 

This note explores how extreme rainfall observations can be “rescaled” when transposed 
between two locations that have heterogeneous rainfall properties. The degree of heterogeneity 
between rainfall distributions should determine the degree of rescaling. Two rescaling 
approaches are introduced. Index Quantile Rescaling is feasible where rainfall IDF curves are 
available, but is subject to IDF estimation uncertainties and can be sensitive to the choice of 
index quantile. A new approach, based on ratio distributions, is introduced that considers 
differences in the means and variances of the rainfall at the two locations. This methodology 
assumes that there is a consistent “rescaling relationship” across a wide range of rainfall values, 
and that observed deviations from this assumption arise from limited samples sizes. Long rainfall 
records at both locations could allow one to test this assumption. While Section 4 presents results 
based on distributions of 350 rainfall values, it could also be performed on distributions of 
annual rainfall maxima. Unlike Index Quantile Rescaling, it is straightforward to produce 
uncertainty estimates under the ratio distribution approach. This feature is useful for stochastic 
applications of storm transposition. 
 
Both approaches could prove useful in conjunction with the MetVue software from the  
U.S. Army Corps of Engineers, which facilitates transposition of radar rainfall observations for 
hydrologic engineering purposes. The authors intend to implement the latter approach within the 
RainyDay stochastic storm transposition software (Wright et al., 2017) to enhance the software’s 
performance for rainfall and flood frequency analysis in heterogeneous regions.  
 
A more fundamental question with storm transposition is: “should transpose extreme rainfall 
observations?”. Rescaling transposed rainfall can be used to cope with some degree of 
heterogeneity, beyond which there is little credibility. It seems unreasonable, for example, to 
transpose rainfall from an arid region to a wet one or vice versa. It is likely that guidance on the 
degree of heterogeneity over which transposition and rescaling could be derived from the ratio 
distribution approach. This will be a topic of future investigation. Existing techniques for 
characterizing heterogeneity in rainfall extremes such as regionalized L-moments (e.g. Guttman, 
1993) could also be brought to bear on questions of where and how to transpose.  
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Figures 

 

 

Fig. 1: (a) Annual mean precipitation (shading) and elevation (contour lines) over Colorado. The three 
locations of interest are also shown. Precipitation and elevation data are taken from the PRISM dataset 
(Daly et al., 2008) between 1981-2010. (b) Rainfall for 12-13 September 2013 derived from Stage IV radar 
rainfall dataset with the three study locations circled. (c) CDFs of the 350 largest 24-hour precipitation 
accumulations from Stage IV for 2002-2017 for the three study locations. 



 

 

 

Fig. 2: Sample and theoretical PDFs for ratio distributions for Denver and Boulder (top) and locations 
Denver and Fort Carson (bottom). The ratios 𝐼 𝐼  calculated via index quantile rescaling based on the 
mean 50-year 24-hour rainfall estimates from NOAA’s Atlas 14 as well as the distributions of 𝐼 𝐼  
approximated via parametric bootstrapping are also shown. 
 



 

 

 

Fig. 3.  Upper panels—24-hour rainfall distributions for Denver and Boulder as well as stochastic ratio 
rescaling and index quantile rescaling (using the 50-year quantile) of the Boulder distribution transposed 
to Denver. Lower panels—same as upper panels, but for Denver and Fort Carson. Left panels show the full 
distribution; right panels highlight the upper tail above the 95th percentile. Note that these are 
distributions of nonzero rainfall, rather than of annual rainfall maxima.  
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Abstract 

Floods are the product of complex interactions among processes including precipitation, soil 
moisture, and watershed morphology. Conventional flood frequency analysis (FFA) methods 
such as design storms and discharge-based statistical methods offer few insights into these 
process interactions and how they “shape” the probability distributions of floods. Understanding 
and projecting flood frequency in conditions of nonstationary hydroclimate and land use requires 
deeper understanding of these processes, some or all of which may be changing in ways that will 
be undersampled in observational records. This study presents an alternative “process-based” 
FFA approach that uses stochastic storm transposition to generate large numbers of realistic 
rainstorm “scenarios” based on relatively short rainfall remote sensing records. Long-term 
continuous hydrologic model simulations are used to derive seasonally varying distributions of 
watershed antecedent conditions. We couple rainstorm scenarios with seasonally appropriate 
antecedent conditions to simulate flood frequency. The methodology is applied to the 4002 km2 
Turkey River watershed in the Midwestern United States, which is undergoing significant 
climatic and hydrologic change. We show that using only 15 years of rainfall records, our 
methodology can produce accurate estimates of “present-day” flood frequency. We found that 
shifts in the seasonality of soil moisture, snow, and extreme rainfall in Turkey River exert 



 

 

important controls on flood frequency. We also demonstrate that process-based techniques may 
be prone to errors due to inadequate representation of specific seasonal processes within 
hydrologic models. If such mistakes are avoided, however, process-based approaches can 
provide a useful pathway toward understanding current and future flood frequency in 
nonstationary conditions and thus be valuable for supplementing existing FFA practices. 

1.  Introduction 

Riverine floods, among the most common natural disasters worldwide, are the product of 
complex interactions between heavy rainfall, watershed and river channel morphology, and 
antecedent (i.e. initial) conditions including soil moisture and snowpack. Their impacts are 
projected to increase in the future due to hydrometeorological factors (e.g. Hyndman, 2014) and 
increased human development in flood prone areas (e.g. Ntelekos et al., 2010; Ceola et al., 2014; 
Prosdocimi et al., 2015). Estimating the relationships between flood likelihood and severity is 
central to flood risk management and infrastructure design; these relationships are typically 
represented by flood frequency distributions (or curves), while the broad family of procedures 
used to derive them is termed flood frequency analysis (FFA). Most existing FFA methods 
belong to one of three approaches: statistical analysis of streamflow observations, design storms, 
and continuous simulation or other so-called “derived” or “process-based” methods. Each has 
strengths and shortcomings, which are briefly summarized in  Sect. 2 (see Wright et al., 2014a 
for a distinct summary).   
 
FFA is challenging even in stationary (i.e. unchanging) watershed and hydroclimatic conditions 
due to the scarcity of observations of large floods and the associated factors that generate them 
(Stedinger and Griffis, 2011). The role of soil moisture in flood frequency, for example, is very 
important (Berghuijs et al., 2016), but poorly understood due to a lack of long-term observations. 
Furthermore, the individual and joint flood causative factors will evolve as a watershed 
undergoes changes in land use or hydroclimate (Machado et al., 2015). Leading causes of change 
(i.e. nonstationarity) include human intervention through land use change or reservoir 
construction (Konrad and Booth, 2002; Schilling and Libra, 2003; Villarini et al., 2009), natural 
climate variability (Enfield et al., 2001; Jain and Lall, 2000) and anthropogenic climate change 
driven by increasing greenhouse gas concentrations (Milly et al., 2008; Hirsch and Ryberg, 
2012). Combinations of these will lead to nonstationary flood frequency, a challenge for which 
the bulk of existing FFA methods are ill-suited (El Adlouni et al., 2007; Gilroy and McCuen, 
2012).  
 
In this study, we present an alternative FFA methodology that aims to “construct” the flood 
frequency curve through a combination of observations, stochastic methods, and hydrologic 
modeling that generates and combines the causative factors (i.e. processes) such as rainfall and 
soil moisture that produce floods. This concept is not new, and has traditionally be called 
“derived FFA” (e.g. Eagleson, 1972; Franchini et al., 2005; Haberlandt, 2008), though we prefer 
the more descriptive term “process-based FFA” (after Sivapalan and Samuel, 2009; see Clark et 
al., 2015a, 2015b and Lamb et al., 2016; who discuss somewhat similar techniques). Sivapalan 
and Samuel (2009) argue in favor of process-based approaches in the face of nonstationary 
conditions, though they do not actually lay out a specific FFA procedure. 
 



 

We present such a process-based procedure, and apply it to an agricultural watershed in the 
Midwestern United States that is undergoing substantial seasonal hydroclimatic and hydrologic 
changes that have led to nonstationary flood frequency. We show that this procedure is useful for 
deciphering the underlying physical processes that drive flooding, as well as  their changes in 
this watershed. Our methodology underscores the importance of seasonality in the joint 
contributions of rainfall, soil moisture, and snow to flood frequency. To our knowledge, this 
study is the first to explore the role that seasonal changes in hydroclimatic and hydrologic 
processes play in nonstationary flood frequency, though other studies have explored the 
importance of such processes in flood occurrence more generally (e.g. Berghuijs et al., 2016).  
 
The structure of the paper is as follows: Section 2 briefly reviews the three aforementioned FFA 
approaches. Section 3 introduces the study region, watershed, and hydrometeorological data. 
Section 4 outlines the process-based FFA methodology used in this study, including the 
hydrologic model, the stochastic storm transposition (SST) procedure used to derive the 
synthetic rainfall scenarios, and elements of both continuous and event-based rainfall-runoff 
simulation. The nonstationary hydroclimate of the study watershed and trends in relevant 
hydrometeorological variables are analyzed in Sect. 5.1. Model validation is presented in Sect. 
5.2. Process-based FFA results are presented and compared with “conventional” statistical 
estimates in Sect. 5.3. Simulated flood seasonality is explored in Sect. 5.4. The relationships 
between rainfall and simulated peak discharge quantiles are examined in Sect. 5.5. Section 6 
includes a summary and concluding remarks. 

2. Review of FFA Approaches 

2.1 Discharge-based Statistical Approaches 
Statistical FFA approaches involve fitting a statistical distribution to extreme discharge 
observations and extrapolating this distribution to estimate quantiles such as the 100-year or 500-
year discharge. While these approaches utilize direct observations of flooding (e.g. peak 
discharge or volume), long streamflow records at or near the given river cross section are needed 
for reliable quantile estimates. Such records are lacking in many locations, even in developed 
countries. Statistical approaches are limited by the available observations; thus, the estimation 
distribution may not represent the “true” (unknown) distribution of possible outcomes (Linsley, 
1986; Klemeš, 1986, 2000a, 2000b). In principle, regionalized  FFA methods are able to improve 
quantile estimates both at gaged and ungauged locations (Dawdy et al., 2012); they make 
assumptions, however, regarding the transferability of regional information to specific locations 
and in doing so may neglect key geophysical processes that dominate the spatiotemporal 
variability of floods (Ayalew and Krajewski, 2017).  
 
Though streamflow observations are the result of a range of complex factors including rainfall, 
soil moisture, and channel routing, without concurrent observations of these “upstream” 
variables, neither streamflow observations nor distributions fitted to them provide much insight 
into flood causes. Long-term records of such variables, particularly soil moisture, are virtually 
nonexistent. There have been numerous examples within the FFA literature pointing to situations 
in which discharge-based analyses can be inferior to those based on hydrologic modeling, 
including cases of basin storage “discontinuities” (Rogger et al., 2012), reservoirs (Ayalew et al., 
2013), and land use change (Cunha et al., 2011).  



 

 

 
Finally, most statistical FFA methods assume that the magnitude of extreme flood events and 
quantiles are stationary. This assumption conflicts with numerous examples in which 
hydrological records exhibit various types of nonstationarity (e.g. Potter, 1976; Villarini et al., 
2009; Douglas et al., 2000; Franks and Kuczera, 2002). Though nonstationary statistical FFA 
techniques do exist (e.g. Cheng et al., 2014; Gilleland and Katz, 2016; Serago and Vogel, 2018), 
they face severe limitations extrapolating to future conditions (Luke et al., 2017; Sivapalan and 
Samuel, 2009; Stedinger and Griffis, 2011) since they rarely consider the fundamental physical 
causes of change. 
 
2.2 Design Storm Approaches 
Design storm (DS) approaches use idealized rainfall scenarios of a given return period as inputs 
to a hydrologic model to simulate flood peaks. DS is widely used in practice due to its simplicity 
(Cudworth, 1989; Kjeldsen, 2007; Ball et al., 2016). To some extent, the flood-producing 
physical processes are captured via the hydrologic model, which also provides a complete 
simulated flood hydrograph, as opposed to only the peak discharge or volume provided by 
statistical approaches. However, DS approaches rely on at least three major assumptions: (1) 
point-based rainfall intensity-duration-frequency (IDF) estimates (which are subject to some of 
the same aforementioned statistical and data availability issues as flood discharges) can be 
converted into hyetographs using dimensionless temporal rainfall distributions and into basin-
averaged estimates using area reduction factors (e.g. Svensson and Jones, 2010); (2) IDF 
estimates, based on annual rainfall maxima, produce flood peaks which are quantiles of the 
distributions of flood annual maxima; and (3) there is a 1:1 equivalence between rainfall and 
simulated discharge quantiles (i.e. return periods or recurrence intervals), for example, a 100-
year idealized rainfall event will produce a reasonable estimate of the 100-year peak discharge. 
The last of these assumptions discounts the possibility that watershed initial conditions such as 
soil moisture and snowpack can modulate the transformation of rainfall quantiles into discharge 
quantiles.  
 
These assumptions are not without their shortcomings. Wright et al. (2014b), for example, 
showed significant disparities between observed point and basin-averaged rainfall extremes that 
cannot be captured using conventional ARF concepts. Using  design storm in conjunction with a 
derived distribution approach, Viglione and Blöschl (2009) and Vigligone et al. (2009) 
demonstrated that the ratio of rainfall return period to flood peak return period is controlled by 
storm duration, a runoff coefficient (which is related to antecedent conditions), and a runoff 
threshold effect. Antecedent conditions can vary substantially by season, meaning that high soil 
moisture may only infrequently coincide with extreme rainfall. Wright et al. (2014a) discusses 
additional design storm shortcomings in greater detail, including time of concentration concepts, 
while also pointing out that design storm approaches (like other hydrologic model-based FFA) 
can incorporate future projections in land use and rainfall more explicitly than can statistical 
discharge-based methods. 
  



 

 
2.3 Continuous Simulation and Process-Based FFA Approaches 
Continuous simulation (CS) and process-based approaches to FFA leverage the potential benefits 
of hydrologic models while minimizing the simplifying assumptions of DS methods. CS 
approaches typically use long series of historical or stochastically generated rainfall, 
temperature, and occasionally other meteorological variables as model inputs, to simulate long 
discharge time series. Peak flows can be extracted from these series and the flood frequency 
distribution can be obtained. Thus, event rainfall return period and duration and antecedent 
conditions do not need to be specified and the equality between rainfall and discharge return 
period is not assumed (Calver et al., 1999, 2009). In addition, projections of future flood 
frequency can be developed by incorporating general circulation model (GCM) rainfall and 
temperature projections into the input meteorological series (Gilroy and McCuen, 2012; Rashid 
et al., 2017). On the other hand, CS approaches are limited by the general lack of reliable long-
term time series of extreme rainfall and other meteorological data (Blazkova and Beven, 1997, 
2002, 2009) and, in the case of sophisticated distributed approaches, by potentially high 
computational demands (Li et al., 2014; Peleg et al., 2017). Stochastic rainfall generation 
techniques typically struggle to produce the extremes that are critical for flooding (e.g. Cameron 
et al., 2000; Furrer and Katz, 2008), and training such models for locations with rainfall 
nonstationarities and strong seasonal variations is nontrivial. Camici et al. (2011) and Li et al. 
(2014) present process-based FFA approaches that couple long CS simulation results with event-
based simulations.  
 
One argument in favor of CS and process-based approaches is that the complex joint 
relationships between flood drivers such as rainfall and soil moisture are resolved within the 
modeling framework and thus do not rely on users’ assumptions. We demonstrate that caution is 
needed in the representation of seasonality; to briefly summarize, it is critical that both 
seasonality in input variables as well as seasonally varying processes within the model be 
“correct.” Without verifying this, process-based approaches may produce seemingly correct 
results as a result of incorrect methods. 

3. Study Region and Data 
The study watershed of Turkey River is situated in northeastern Iowa (Fig. 1a, 1b). The portion 
upstream of the US Geological Survey (USGS) stream gage at Garber (gage number 05412500) 
has a drainage area of 4002 km2,  with elevations ranging from approximately 426 m above sea 
level (masl) in the west to 197 masl at the stream gage (Fig. 1c). Streams in the upper part of the 
catchment have relatively mild slopes, while the channels and hillslopes in the lower part are 
steeper. Soils are mainly loams and silts (IFC, 2014). According to USGS 2012 National Land 
Cover Dataset (NLCD), the Turkey River watershed is predominantly agricultural, with less than 
2% urban land cover (Fig. 1d). Comparisons of NLCD from 1992, 2001, 2006, and 2012 indicate 
that land uses have not evolved significantly over time (results not shown), though the 
hydrologic impacts of subsurface tile drainage, which has become ubiquitous throughout the 
region, are poorly understood and could exert meaningful influence on flooding (see, e.g. 
Schilling et al., 2014).  
 



 

 

We use daily discharge observations for 84 years (1933-2016) from the USGS streamgage at 
Garber to understand the hydroclimatology of flooding and to validate our FFA results. Daily 
discharge observations for 69 years (1948-2016), in conjunction with Global Historical Climate 
Network (GHCN) daily temperature and snow data are used to configure, calibrate, and validate 
the hydrologic model, as described in Sect. 4.1. CPC US Unified (CPC-Unified; Chen et al., 
2008) and Stage IV (Lin and Mitchell, 2005) precipitation data, available through the National 
Oceanic and Atmospheric Administration, are used for rainfall analyses. CPC-Unified provides 
daily, 0.25º rainfall estimates interpolated from rain gage observations, while Stage IV provides 
hourly, approximately 4 km  estimates by merging data from rain gages and the National 
Weather Service Next-Generation Radar network (NEXRAD; Crum and Alberty, 1993). 
Analyses based on Stage IV use data from 2002-2016, while long-term analyses based on CPC-
Unified use data from 1948-2016. 

4. Methodology 
The FFA approach presented in this study combines continuous simulation (CS), stochastic 
storm transposition (SST) using the RainyDay software, and event-based simulation. CS 
provides large samples of seasonally varying antecedent conditions, namely soil moisture and 
snowpack. SST produces large numbers of synthetic rainfall scenarios. Together, these drive 
event-based simulations to generate the synthetic flood peaks that are used to derive flood 
frequency distributions. The approach is illustrated schematically in Fig. 2 and summarized in 
the following subsections. 
 
4.1 Hydrologic Model, Calibration, and Continuous Simulation 
We used the lumped Hydrologiska Byråns Vattenavdelning (HBV) model (Bergström, 1992, 
1995; Lindström et al., 1997). HBV has been widely used to study hydrologic response in United 
States (Vis et al., 2015; Niemeyer et al., 2017) and other regions of the world (Harlin and Kung, 
1992; Osuch et al., 2015; Seibert, 2003; Chen et al., 2012). The “HBV-Light” version 
(henceforth referred to as HBV; Seibert and Vis, 2012) used in this study consists of four main 
routines: snowpack, soil moisture, catchment response, and runoff routine. HBV simulates daily 
discharges based on time series of precipitation and air temperature, as well as estimates of long-
term daily potential evapotranspiration. A list of model parameters is shown in Table 1. 
 
The process-based FFA methodology employed in this study could be coupled with other 
hydrologic models. A distributed model would allow for more realistic representation of 
important characteristics like changing land use, rainfall spatiotemporal structure, and flood 
wave attenuation in river channels, and could operate at higher (i.e. subdaily) temporal 
resolution. We selected HBV at the daily time step due to its simplicity, computational speed, 
and its ability to represent multiple watershed hydrological processes. 
 
We calibrated separate HBV models using both CPC and Stage IV rainfall. Most parameter 
values were the same for CPC- and Stage IV-based models except for three snow routine 
parameters (TT, CFMAX, SFCF) and three recession coefficients (K0, K1, K2), allowing for the 
variability of model parameters for different climate conditions.  For each model setup, we first 
calibrated the model with snowpack routine “turned off” (by setting TT parameter to a very low 



 

value) to obtain parameters that can simulate summer floods adequately. Then, keeping these 
optimized non-snow routine parameters unchanged, we calibrated the snow routine parameters.  
 
To determine the optimized model parameter sets in each procedures, we followed the Genetic 
Algorithm and Powell (GAP) optimization method as presented by Seibert (2000),  which is 
briefly summarized here. First, 5000 parameter sets are randomly generated from a uniform 
distribution of the values of each parameter (Table 1), which were then applied to the HBV 
model in order to maximize Kling Gupta Efficiency (Gupta et al., 2009) of simulated daily 
discharge. After the GAP has finished, the optimized parameter set were fine-tuned using 
Powell’s quadratic convergent method (Press, 1996) with 1000 additional runs. Lastly, the 
optimized parameter set was manually adjusted to improve the fits between observed and 
simulated annual peak flow (see Lamb, 1999). More elaborate calibration and uncertainty 
estimation procedures such as Generalized Likelihood Uncertainty Estimation (GLUE; Beven 
and Binley, 1992; Beven, 1993; Beven and Binley, 2014) could be used, but are outside the 
scope of our study.  
 
The two different HBV models were then used to perform CS with historical CPC and Stage IV 
rainfall and temperature data to derive long-term simulated soil moisture and snowpack values, 
which are usually difficult to obtain via measurement. We “pair” samples of these initial 
conditions with synthetic rainfall events to simulate hypothetical floods, as described in Sect. 4.2 
and Sect. 4.3.  
 
4.2 Stochastic Storm Transposition 
Stochastic storm transposition (SST) is a bootstrap method to generate realistic probabilistic 
rainfall scenarios through temporal resampling and spatial transposing of observed storms from 
the surrounding region. SST effectively “lengthens” the rainfall record via “space-for-time 
substitution.” Unlike rainfall IDF curves, SST can preserve observed rainfall space-time 
structure, and, unlike design storm methods, obviates the need to equate rainfall duration to 
catchment response time (Wright et al., 2013, 2014a, 2014b). Alexander (1963), Foufoula-
Georgiou (1989), and Fontaine and Potter (1989) provide general descriptions of SST. Wilson 
and Foufoula-Georgiou (1990) apply the method for regional rainfall frequency analysis while 
Gupta (1972), Franchini et al. (1996), England et al. (2014) and Nathan et al. (2016) use it for 
FFA.  
 
Wright et al. (2013) used SST with a 10-year high-resolution radar rainfall dataset to estimate 
spatial IDF relationships. Wright et al. (2014a) used this approach with a physics-based 
distributed hydrologic model for FFA in a heavily urbanized watershed, demonstrating its 
usefulness in evaluating multi-scale flood response.  
 
RainyDay is an open-source, Python-based SST software that couples SST methods with rainfall 
remote sensing data. A more detailed description can be found in Wright et al. (2017); not all of 
its features are used in this study. The following steps describe how RainyDay is used here: 
We define a 6-degree (longitude) by 4-degree (latitude) geographic transposition domain (40° to 
44° N, 90° to 96° W; blue dash line of Fig. 1 inset) which encompasses the Turkey River 
watershed. This same domain was used in Wright et al. (2017) and, importantly for the SST 
approach, extreme rainfall properties are roughly homogeneous within it. 



 

 

 
The RainyDay software creates a “storm catalog” from 15 years of Stage IV (69 years of CPC) 
precipitation data that consists of the 450 (2070) most intense precipitation event within the 
transposition domain. These intense storms are in terms of 96-hour rainfall accumulation and 
have the same size, shape, and orientation of the Turkey River watershed, which is oriented 
roughly northwest-southeast and with an area of 4002 km2. In order to avoid overlapping storms, 
these selected events must be separated by at least 24 hours. Storms that exhibit “radar artifacts” 
such as major bright band contamination or beam blockage are excluded from subsequent steps. 
The RainyDay software generates a Poisson-distributed integer k that represents a “number of 
storms per year.” The rate parameter » of this Poisson distribution is calculated by dividing the 
total number of rainfall events in the storm catalog by the number of years in the historical 
rainfall record (𝑒𝑒.𝑙𝑙. 𝜆𝜆 = 450/15 = 30.0 storms per year).  
 
RainyDay randomly selects k storms from the storm catalog and transposes the associated 
rainfall fields within the transposition domain by an east-west distance ∆𝑥𝑥 and a north-south 
distance ∆𝑦𝑦, where ∆𝑥𝑥 and ∆𝑦𝑦 are drawn from a two-dimensional Gaussian kernel density 
estimate based on the locations of the original storms in the storm catalog. For each of the k 
transposed storms, the time series of rainfall over the Turkey River watershed is computed. It 
must be noted that some of the k transposed storms may not “hit” Turkey River watershed, and 
thus their calculated watershed rainfall are zero. Steps 3 and 4 can be understood as temporal 
resampling of observed rainfall events to “synthesize” a hypothetical year of rainfall events over 
the transposition domain and, by extension, over the watershed. Although the rainfall events for 
the “synthetic” year do not form a continuous series, the dates associated with each observed 
storm event are recorded, thus facilitating seasonally-consistent flood simulations.  
 
All k events within a synthetic year are assigned a new, randomly selected year from 1948-2016 
(2002-2016) for CPC (Stage IV) rainfall data which used to select antecedent conditions. This 
ensures that the k rainfall events are all “embedded” within a single realistic annual 
representation of watershed conditions. This ensures that “wet” and “dry” years in terms of 
snowpack and soil moisture can potentially produce wet or dry years of flood response. 
Antecedent conditions are randomly selected from within seven days of the updated storm date 
to ensure realistic seasonality of storms and watershed conditions. A storm that occurred on 15 
July, 2016, for example, could be paired with initial conditions selected from a date ranging 
between 8-22 July from a randomly selected year, while the remaining k-1 events would be 
paired with seasonally appropriate initial conditions from the same selected year. 
 
RainyDay repeats Steps 3-5 500 times to create one realization of 500 synthetic years of rainfall 
events for Turkey River. Twenty such realizations of 500 synthetic years each are generated. 
Unlike in the existing version of RainyDay, all rainfall events within a synthetic year are retained 
for subsequent event-based flood simulations, since the modulating effects of antecedent 
conditions mean that the largest rainfall event in a given year does not necessarily produce that 
year’s largest flood peak (this is explored in Sect. 5.4). 
 
4.3 Event-Based Flood Simulation  
Using the seasonally-consistent “paired” watershed initial conditions derived from CS (Sect. 4.1) 
and SST-based rainfall events (Sect. 4.2), HBV simulates the “event peak” (the maxima daily 



 

discharge). The largest peak among the k events that comprise a synthetic year represents the 
simulated annual maximum daily streamflow. As mentioned in Step 5 of the SST procedure 
(Section 4.2), each synthetic rainfall event is randomly paired with seasonally-appropriate initial 
conditions (soil moisture, snowpack) and air temperature drawn from the continuous simulation 
(15 years in the case of Stage IV; 69 years for CPC). This creates combinations of initial 
conditions and forcing that in principle reflect the true variability of these processes. This 
procedure is repeated for all 500 synthetic years within each realization, resulting in 500 annual 
maximum streamflow values, which are then ranked in descending magnitude. The annual 
exceedance probability 𝑝𝑝𝑒𝑒 (i.e. the probability in a given year that an event of equal or greater 
magnitude will occur) of each maximum streamflow are calculated by dividing its rank by 500 
(the total number of simulated annual maximum daily streamflow). The twenty realizations 
provide estimates of variability for each flood quantile. 

5. Results 

5.1 Hydroclimatology and Nonstationarity 
Four distinct time periods (Fig. 3a) are considered for analyzing the changing hydroclimatology 
in Turkey River: the USGS daily mean streamflow period of record (1933-2016), a more recent 
period of apparent elevated flood activity (1990-2016), the period of the Stage IV rainfall record 
(2002-2016), and the period of the CPC rainfall record (1948-2016). Results here and in 
subsequent subsections “align” with one or more of these time periods.  
 
The hydroclimate of Turkey River is changing, as shown using the Mann-Kendall (MK) test for 
monotonic trends (Mann, 1945), a nonparametric method used to determine trend direction and 
significance (Table 2). Since 1948, annual precipitation and discharge show significant increases 
(p<0.05) and their variability has also increased, while annual maximum daily discharge has 
decreased, though not significantly. It is important to note, however, that there are two 
counteracting seasonal trends (see also Fig. 3a): annual daily discharge maxima have decreased 
significantly in March-April, but  have increased somewhat in May-September. Thus, the lack of 
statistically significant change in annual maximum daily discharge in Turkey River masks 
changes in the seasonality of flooding. 
 
We examine this flood seasonality, both in observations and in our continuous HBV simulations 
(Fig. 3b). The seasonal distribution of flood occurrence for 1948-2016 shows a March-April 
maximum, with elevated flood activity continuing through May and June. This is distinct from, 
though overlaps somewhat with the seasonality of both the four-day annual maxima of rainfall, 
which occur most frequently in the June-September period, and simulated daily annual maxima 
soil moisture, which only tend to occur in March-April. These results highlight that flood activity 
is the product of seasonal variations in both soil moisture and rainfall. (Four-day rainfall shown 
in Fig. 3b since it is used in SST; seasonality in one-day rainfall is similar; results not shown). 
 
The March-April peak of flood occurrence corresponds with relatively high soil moisture 
associated with snowmelt, rain on or frozen soil, and frequent spring rains. The secondary peak 
of flood occurrence in May-June is associated with larger flood magnitudes (including the flood 
of record, in 2004) due to organized thunderstorm systems. Widespread flooding in Iowa in June 
2008 showed that such thunderstorm systems make critical contributions to the upper tail of 



 

 

flood peak distributions in the region (Smith et al., 2013). Although the frequent August-
September heavy rainfall events evident in Fig. 3b have not triggered any recorded annual flood 
peaks in Turkey River, our process-based FFA demonstrates that they may still relevant to 
current and future flood frequency, as shown in Sect. 5.4.  
 
The largest annual maxima (over 800 m3 s-1) occur in May-July (Fig. 3c), consistent with the 
broader climatology of flooding in Iowa (Smith et al., 2013; Villarini et al., 2011). Furthermore, 
both the seasonality and magnitude of flood peaks have shifted since approximately 1990 (Fig. 
3a, 3c), with March-April (May-September) floods decreasing (increasing) in magnitude, leading 
to a shift in the seasonality of the overall distribution of annual maxima daily streamflow from a 
high in March prior to 1990 to a prolonged high from April to June post-1990. Although the 
small sample size of the annual maxima daily discharge during this elevated 1990-2016 late-
spring and summertime flood period may affect the reliability of the derived distribution of flood 
occurrence, Park and Markus (2014) also reported a significant shift toward summertime 
flooding in the nearby Pecatonica River. Statistically based FFA (including nonstationary 
methods) based on annual maxima discharges may fail to capture the impact of this shifting 
seasonality on flood frequency. 
 
5.2 Model Validation 
We validated the performance of continuous HBV simulations with respect to flood seasonality, 
frequency of annual daily discharge maxima, and normalized peak flow (i.e. the simulated or 
observed daily discharge divided by the 2-year flood), using both Stage IV and CPC as 
precipitation inputs (Fig. 4). We also validated two model structures: one with and the other 
without the HBV snowpack module. The purpose for this latter validation effort is to highlight 
the importance of proper process representation (and subsequent validation) in process-based 
FFA. 
 
Simulated flood seasonality varies substantially during the CPC period of record (1948-2016) 
depending on the inclusion of the snowpack routine (Fig. 4a). Differences are less for the Stage 
IV period of record (2002-2016), due to the decreasing role of snowpack in deriving the floods in 
recent years (Fig. 4b). In both cases, the seasonality of flooding simulated using HBV is 
improved with the inclusion of the snowpack module, with a higher (lower) frequency of 
springtime (summertime) floods which more closely resembles observations. Empirical (i.e. 
plotting position-based) distributions for the simulated annual daily discharge maxima are mostly 
within the 90% confidence interval (obtained by nonparametric bootstrap) of the observations 
(Fig. 4c, 4d). CPC-based simulation results differ considerably depending on the inclusion of the 
snowpack module for more common events, but differences in simulated maxima vanish as flood 
magnitude increases (e.g. AEP<0.1). This is because the most extreme flood events occur later in 
the season and are thus independent of snowpack or snowmelt processes. Differences are 
generally negligible between Stage IV-based simulations with and without snowpack, since 
floods in this more recent period are generally driven by summertime thunderstorms. These 
findings are consistent with the general understanding of the regional seasonality of flooding in 
the region, as discussed in Sect. 5.1. 
 
We compared all simulated and observed flood peaks that can be associated with a USGS 
observed daily streamflow value that is at least three times the mean annual daily discharge  



 

(Fig. 4e, 4f). When associating simulated and observed flood peaks, we look within a 2-day 
window to allow for modest errors in simulated flood peak timing. All peaks in Figs. 4e and 4f 
are normalized by the median annual (i.e. 2-year) flood, which, as a rule of thumb, can be 
considered as the “within bank” threshold. Again, HBV with the snowpack routine outperforms 
the model without it, especially for the small to modest flood events in CPC-based simulations. 
The model without snowpack underestimates small to modest flood events in two cases due to 
the neglect of potential snowmelt contributions. While modest scatter exists in the Stage IV-
based simulated peaks, there is no obvious systematic bias with event magnitude when the 
snowmelt routine is included. The good performance of the Stage IV simulations suggests that, 
when focusing on the recent period of elevated flood activity, Stage IV may be a more suitable 
rainfall input than CPC-Unified. In addition, CPC rainfall is known to contain errors in the 
extreme tail, due to gage “undercatch”, insufficient gage density to properly sample convective 
rain cells, and spatial averaging of such cells over large areas, which effectively reduces peak 
rainfall depths. 
 
We also validate HBV’s snowpack routine using observed GHCN daily snow depth for two 
simulation periods (Fig. 5a, 5b) and using USGS daily streamflow observations for Stage IV-
based period (Fig. 5c). Because of their differing spatial resolutions and physical representations, 
point-scale GHCN daily snow depths cannot be directly compared to the watershed-scale snow 
water equivalent simulated by HBV. Instead, we validate snowpack simulations in terms of the 
snowpack occurrence, defined as the number of nonzero snowpack on a particular date divided 
by the total number of years in the historical or simulated record. For example, there are 50 days 
in the GHCN observations when snowpack is present on January 1st in the 69-year period from 
1948-2016, thus the occurrence rate is 0.72 (50 divided by 69). The HBV model with the 
snowpack routine captures the central tendency of observed snowpack dynamics, showing that 
snowpack frequently exists from early November to mid-February, with frequency of snow 
decreasing from late February until disappearing in early April.     
 
Model hydrograph validation is provided in Fig. 5c for the Stage IV period (2002-2016), when 
major flooding occurred throughout Iowa. Model performance shows no obvious evidence of 
systematic bias in the streamflow simulations (see also Fig. 4f). Although flood seasonality 
derived from Stage IV-based simulation differs slightly from observations (see also Fig. 4a), 
these mismatches are associated with flood events smaller than the median annual flood (blue 
dash line in Fig. 5c). Stage IV-based simulations do not show bias flood magnitude in late 
summer. In other words, remaining biases in terms of flood seasonality generally correspond 
with frequent, small-magnitude events that are typically of less interest in FFA. We therefore 
conclude that the HBV model with snowpack is generally suitable for subsequent process-based 
FFA.       
 
5.3 Flood Frequency Analyses  
RainyDay-based flood frequency distributions for Turkey River at Garber using both Stage IV 
and CPC precipitation are compared with the distribution based on statistical analyses of 
discharge observations using 1933-2016 USGS annual maxima daily streamflows (Fig. 6). The 
latter is estimated using the HEC-SSP software (Bartles et al., 2016), which implements methods 
from Bulletin 17B (Interagency Advisory Committee on Water Data, 1982) using “station skew” 
to fit the log-Pearson Type III distribution. Observed annual daily streamflow maxima from  



 

 

1933 to 2016 are also shown, where plotting position (𝑝𝑝𝑒𝑒) is estimated using the Cunnane 
plotting position (Cunnane, 1978). As mentioned above, different HBV parameters are used for 
the Stage IV and CPC-based simulations; this is necessary due to the differing time periods and 
error properties of these two precipitation datasets.  
 
The Stage IV-based flood frequency curve agrees reasonably well with the Bulletin 17B results 
for 𝑝𝑝𝑒𝑒 > 0.3 (left panel of Fig. 6), but yields higher estimates for rarer events. The CPC-based 
curve, on the other hand, matches closely with Bulletin 17B. The Stage IV analyses use shorter 
but more recent (2002-2016) meteorological and hydrological records than the other frequency 
curves. When streamflow observations are divided into two groups (1933-1989 and 1990-2016), 
it becomes clear that the recent peak flood observations align well with the Stage IV-based SST 
results (right panel of Fig. 6). This, along with the increasing trend of annual mean precipitation 
and discharge shown in the previous subsection, suggests that, despite the relatively short  
(15-year) rainfall record used, Stage IV- driven process-based FFA adequately reflects flood 
frequency in the wetter recent climate (a similar result is shown in Wright et al., 2017), while the 
CPC-based and Bulletin 17B methods, both based on much longer data records fail to do so.  
 
The results shown in Fig. 6 suggest that the recent shift from spring to summer flood activity is 
accompanied by a substantial shift in the flood frequency distribution. The close agreement 
between process-based results using CPC and the statistically-based analysis using Bulletin 17B 
suggests that even in stationary situations with long records, statistical methods do not 
necessarily produce superior results to process-based approaches. Process-based FFA using CPC 
precipitation from 2002- 2016 closely resembles the Stage IV-based FFA (results not shown), 
suggesting that rainfall process nonstationarity, rather than differences between different input 
datasets, are the primary drivers of the differences in the CPC-based and Stage IV-based results 
in the left panel of Fig. 6.  
 
5.4 Simulated Flood Seasonality 
As shown in Sect. 5.1, the recent climatology of flooding in Turkey River watershed shows a 
peak in flood occurrence during March-April, with elevated activity (including high-magnitude 
events) continuing through July, reflective of the regional flood “mixture distribution” (e.g. 
Smith et al., 2011). March-April flooding is associated with springtime rains, high soil moisture, 
and potentially snowmelt processes, while May-July flooding results from warm-season 
organized thunderstorm systems. It is important that any process-based FFA approach capture 
the influence of this mixture on the flood frequency curve. 
 
The seasonal distribution of simulated flood occurrence and magnitude using Stage IV- and 
CPC-based results show that most simulated floods in our process-based approach occur between 
March and June (Fig. 7), in accordance with observed annual maxima daily discharge (Fig. 3c). 
The peak of occurrence using Stage IV is shifted several weeks later than the CPC-based results, 
which agrees with the recent shift in seasonality of flood observations shown in the Fig. 3c. 
Although many simulated events still occur in April, our results show the largest peaks occur 
later, in May-September. This is consistent with Villarini et al. (2011), who showed that warm 
season organized convective systems are responsible for some of the largest peaks in Iowa.  
 



 

Our process-based results show that August-September storms have the potential to cause severe 
flooding (Fig. 7), despite the lack of large floods during this time of year in the stream gage 
record. Stage IV- and CPC-based storm catalogs generated by RainyDay include major storms 
from the surrounding region, including several large late-summer events capable of producing 
substantial flood response, and which indeed to induce large floods within our process-based 
analysis. This suggests that the general lack of major late-summer floods in the watershed’s 
observational record may not be a feature of the “true” (unknown) distribution of flooding in the 
watershed, but rather due to limited size of the observational record. This result is supported by 
regional analysis of floods (Villarini et al. 2011) and points to the potential for SST to improve  
understanding of flood frequency seasonality relative to discharge-based approaches alone. 
 
To demonstrate that the discrepancies between the process-based FFA results generated using 
CPC and using Stage IV-  are driven by changes in physical processes, rather than by differences 
in model structure (i.e. parameter values), we compared FFA results generated using CPC-based 
for 1948-2016 and 2002-2016, in terms of event rainfall, initial soil moisture, flood type and 
peak magnitude (Fig. 8). Compared with the 1948-2016 period (Figure. 8a), there are fewer flood 
events driven by snowmelt or rain-on-snow during 2002-2016 (Fig. 8b) but more driven by 
rainfall. This is particular true for flood events (larger than 1000 m3 s-1). In addition, some of 
the rainfall-driven floods from 2002-2016 were caused by relatively low rainfall but high initial 
soil moisture, in accordance with the significant increasing trend of annual precipitation and 
discharge (Table 2). 
 
5.5 Comparison of rainfall and peak discharge quantiles 
We examined the relationships between the return periods of 96-hour basin-averaged rainfall 
accumulations and simulated peak discharge for Turkey River at Garber using Stage IV-based 
results (Fig. 9; CPC-based results show similar patterns and thus are not shown here). 
Antecedent soil moisture for each simulated event is also shown. Similar to Wright et al. 
(2014a), Fig. 9 shows that simulated peak discharge quantiles can differ substantially from the 
rainfall quantiles of the rainfall that produce them. For instance, 500-year (𝑝𝑝𝑒𝑒 = 0.002) rainfall 
events can cause simulated peak discharges ranging from 11-year (𝑝𝑝𝑒𝑒 = 0.091) to 500-year 
(𝑝𝑝𝑒𝑒 = 0.002), corresponding to a range in peak discharge of 1072 to 2743 m3 s-1. Peak 
discharge quantiles are always larger (in terms of return period) than the quantiles of rainfall that 
produced them in wet antecedent soil moisture conditions, while the reverse is true in for dry 
conditions. These results also demonstrate that the DS assumption of 1:1 equivalency between 
rainfall and peak discharge quantiles does not hold in Turkey River. Rainfall spatial variability 
and drainage network structure, which are ignored in this study due to the lumped (i.e. non-
distributed) nature of HBV, further complicate the relationship between rainfall and discharge 
quantiles. 
 
We further examine the relationship between annual rainfall and annual flood peak maxima. In 
Sect. 2.2, we pointed out that DS methods utilize IDF curves, which are usually estimated using 
annual maxima from rain gage records and which depict quantiles from the distribution of annual 
rainfall maxima. DS methods use quantiles from this distribution to generate flood estimates, 
implicitly assuming that annual rainfall maxima produce annual discharge maxima. In our 
process-based FFA approach, we do not assume that annual discharge maxima are the result of 



 

 

the largest rainfall event of the year. Rather, lower-magnitude rainfall events, combined with 
high soil moisture, could produce the highest discharge.  
 
Table 3 shows the percentage of annual peak flow driven by annual maximum gains with 
increasing return period for both CPC-based and Stage IV-based results. For simulated peak flow 
with 𝑝𝑝𝑒𝑒 > 0.01, a large portion of simulated annual peak flow is not caused by the annual 
maximum rainfall. For rarer peak flows (𝑝𝑝𝑒𝑒 ≤ 0.01), over 90% of these flood events are driven 
by the annual maximum rainfall, pointing to the fact that the tail of flood peaks is driven by 
extreme rainfall, with antecedent conditions playing a modulating role. 

6. Summary and Conclusions 
Interactions between rainfall, land cover, river channel morphology, and watershed antecedent 
conditions are important drivers of flood response. Standard approaches to estimate extreme 
flood quantiles (termed flood frequency analysis; FFA), however, often take a superficial view of 
these interactions, as argued in Sect. 2. This study presents an alternative FFA framework that 
combines elements of observational analysis, stochastic rainfall generation, and continuous and 
event-scale hydrologic simulation. We apply the framework to Turkey River, an agricultural 
watershed in the Midwestern United States that is undergoing significant hydroclimatologic and 
hydrologic change which is increasing the magnitude of the largest flood events and shifting 
their occurrence from the spring to summer.  
 
We use Stochastic Storm Transposition (SST) to create and resample from “storm catalogs” 
developed from both 15 years of high-resolution bias-corrected radar rainfall and from 69 years 
of gridded rain gage observations to produce large numbers of rainfall scenarios for Turkey 
River. These scenarios, when coupled with seasonally realistic watershed conditions, can help to 
reconstruct the seasonal and secular variations in meteorological and hydrological processes and 
their interactions, providing an alternative FFA approach which is well-suited to nonstationary 
environments (see also Sivapalan and Samuel, 2009). While statistical approaches can in 
principle be applied to investigate the impacts of seasonality on FFA (e.g. Ouarda et al., 2006), 
such methods still do not directly provide process-level understanding of the factors that “shape” 
flood frequency. Unlike design storm approaches to FFA, the synthetic rainfall scenarios derived 
by the SST-based procedure do not require any assumptions regarding the spatial and temporal 
structure of rainfall, since they are driven by the structure and variability of historical observed 
storms.  
 
Our analyses show that using the most recent 15 years of rainfall can produce realistic “present-
day” flood quantile estimates that reflect the nonstationarities in rainfall and watershed 
conditions. The use of longer records, both within our procedure and conventional statistical 
FFA methods, leads to underestimates of current flood frequency due to their inability to 
represent recent shifts in flood activity in Turkey River. Our results challenge some common 
FFA assumptions, including the design storm presumption that rainfall annual maxima produce 
discharge annual maxima and the assumption of 1:1 equivalence in rainfall and flood quantiles. 
We paint a more complex picture in Turkey River, in which the shifting seasonality in rainfall 
and watershed conditions combine to shape the flood frequency. Spatial variability in rainfall 
structure, soil moisture, land use and watershed morphology, which are ignored in this study due 



 

to the use of a lumped hydrologic model, add further complexity to the flood-generating 
processes. The proposed framework can be employed with more sophisticated distributed 
hydrologic models, thus facilitating the examination of rainfall spatial variability and its 
interactions with other factors (e.g. heterogeneous watershed characteristics and river network 
processes; Zhu et al., 2018; Viglione et al., 2010b, 2010a). This coupling may prove particularly 
useful for FFA in large watersheds in which there is a practically infinite number of different 
combinations of such spatially and temporally varying processes that could produce floods—a 
population that is almost certain to be undersampled in stream gage records and poorly served by 
design storm assumptions.  
 
A number of issues remain that make broader usage of our process-based framework 
challenging. Perhaps the biggest limitation of process-based approaches is the necessity of 
discharge observations, which are central to both identifying hydrologic changes and to calibrate 
and validate the hydrologic model. Thus, usage of the approach in ungaged basins may not 
produce satisfactory results. This issue is fundamental to other FFA techniques as well. 
Statistically-based discharge analyses, for example, similarly rely on streamflow observations, 
while design storm approaches also require hydrologic model calibration.  
 
We also note that caution is needed when attempting to employ process-based FFA. We were 
able to produce very similar flood frequency distributions using our approach, regardless of 
whether or not the HBV hydrologic model’s snowpack routine was “turned on” or off (results 
omitted for brevity), despite very different simulated seasonality of flooding. This highlights that 
process-based frequency analyses can be influenced by poor model process representation that 
can lead to seemingly “correct” results for the wrong reasons. This implies that the modeler must 
have sufficient data and experience to recognize such issues. It also illustrates a key issue in FFA 
using both statistical approaches and process-based methods: flood quantiles, though the product 
of interactions between physical processes, reveal relatively little about those underlying 
processes that produce them. This is particularly problematic in changing hydroclimatic or 
watershed conditions, because nonstationary behavior is likely the result of seasonal shifts in one 
or more processes that may affect flooding in ways that are not well-reflected in observational 
records. Our results showing that major floods could occur in Turkey River in the late summer 
under current hydroclimatic conditions, despite their absence in the instrumental record, is one 
example of this. Failure to recognize and model such shifts could lead to results for past or 
present flood conditions that appear to be correct, but that may lead to incorrect inferences about 
future conditions.   
 
In summary, our framework and results highlight the opportunity and challenge with process-
based FFA approaches; namely, that progress on understanding and estimating flood frequency 
and how it is evolving in an era of unprecedented changes in land use and climate requires better 
understanding of how the underlying physical processes, and the interactions between them, are 
changing. Poor model representation of key hydrological processes, however, can lead to 
incorrect conclusions about present or future flood frequency. Despite the challenge, we share 
the view of Sivapalan and Samuel (2009) that process-based approaches hold great potential for 
advances in FFA research and practice, particularly in projecting future flood hazards in 
conjunction with data and modeling advances in the climate science community. We do not 
propose that process-based approaches should necessarily supplant more conventional discharge-



 

 

based analyses, and acknowledge that discharge observations are essential in such studies. 
Rather, we anticipate a gradual “merging” of statistical and process-based stochastic simulation 
techniques as well as of the associated observations and synthetic data. 
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Tables 

Table 1. Overview of HBV model parameters and upper and lower parameter limits used for calibration 

Parameter Description Units Min value Max value 

Snow Routine 

TT Threshold temperature for liquid and solid precipitation °C -3 3 

CFMAX Degree-day factor mm d−1°C−1 0.5 4 

SFCF Snowfall correction factor - 0.5 1.2 

CFR Refreezing coefficient - 0.01 0.1 

CWH Water holding capacity of the snow storage - 0.1 0.3 

Soil Moisture Routine 

FC Maximum soil moisture storage (field capacity) mm 100 550 

LP Relative soil water storage below which AET is reduced linearly - 0.3 1 

BETA Exponential factor for runoff generation - 1 5 

Response Routine 

PERC Maximum percolation from upper to lower groundwater box mm d−1 0 10 

UZL Threshold of upper groundwater box mm 0 50 

K0 Recession coefficient 0 d−1 0.5 0.9 

K1 Recession coefficient 1 d−1 0.15 0.5 

K2 Recession coefficient 2 d−1 0.01 0.15 

Routing Routine 

MAXBAS Length of triangular weighting function d 1 2.5 

 

 

Table 2. Mann-Kendall trend test (two sided) for hydrological variables. p-values are given in parentheses; 
bolded values are significant at the 5% level. Analyses of trends in variances examine changes in the 
absolute values of residuals obtained from a linear regression using the Thiel-Sen estimator (Sen, 1968) 

Data Time Range Trend 

Annual Discharge 1933-2016 ‘  (0.001) 
Annual Max. Daily Discharge 1933-2016 “ (0.447) 
Variance of Annual Max. Daily Discharge 1933-2016 ‘  (0.056) 
Annual Max. Daily Discharge in March-April  1933-2016 “ (0.002) 
Annual Max. Daily Discharge in May-September 1933-2016 ‘  (0.089) 
Annual Precipitation 1948-2016 ‘  (0.003) 
Annual Max. Daily Precipitation 1948-2016 ‘  (0.362) 
Annual Max. 4-day Precipitation 1948-2016 ‘  (0.419) 
Annual Mean Temperature 1948-2016 “ (0.462) 
March-May Mean Temperature 1948-2016 ‘  (0.443) 

 
 



 

 

Table 3. Percentages of simulated annual maxima daily flows driven by 96-hour rainfall annual maximum 

Return Period 

Driven  by Annual Maximum Rainfall 

CPC-based results 
Stage IV-based 

results 

1-2 24% 37% 
2-5 32% 45% 
5-10 39% 67% 
10-20 48% 77% 
20-50 60% 80% 
50-100 72% 84% 
100-200 77% 85% 
200-500 93% 95% 

 
  



 

Figures 

 

 

Figure 2. Study region. (a) Contiguous United States with the state of Iowa highlighted in grey. (b) 
Zoomed-in map showing Iowa (black outline) and the Turkey River watershed (red) and the extent of the 
stochastic storm transposition region (blue dash line). (c, d) Turkey River watershed showing land surface 
elevation (based on the USGS National Elevation Dataset) and land use (based on the USGS 2012 NLCD), 
respectively. 



 

 

 

Figure 3.  Flow chart showing the process-based FFA approach. Dotted outlines delineate components 
associated with subsections 4.1, 4.2 and 4.3. 



 

Figure 4. (a) Linear trends for two groups of annual maxima daily discharge: March-April floods (blue) and 
May-September floods (red) using the nonparametric Thiel-Sen estimator (Sen, 1968). The October-
February maxima daily discharge are in black dots and its trend line is not calculated because only nine 
annual maxima occur during this period. The four critical time ranges are shown in black lines.  
(b) Occurrence densities of the date during the year for the observed annual daily maxima discharge, 
observed annual 4-day maxima precipitation, and simulated annual daily maxima soil moisture in Turkey 
River watershed from 1948 to 2016. (c) The magnitude and date during the year for annual flood peaks 
(black dots)and sample probability density functions (PDFs) for flood in different periods (1933-1989, 
1990-2016). In this study, all probability densities for occurrence date are estimated using Gaussian kernel 
smoothing. 



 

 

 

Figure 5. HBV model validation for flood seasonality (a, b), frequency of annual max. daily discharge (c, d) 
and normalized peak flow (e, f) for CPC and Stage IV-based continuous simulations. Model validation is 
performed for HBV simulations with and without using CPC for 1948-2016 (panels a, c, e) and Stage IV for 
2002-2016 (panels, b, d, f).  The 90% confidence intervals for the empirical distributions of observed 
maximum daily discharges (c, d) are derived using nonparametric bootstrapping. Flood peak discharge in 
(e) and (f) is defined as a data point with USGS observed value that is at least three times the average 
observations. Peak discharges are normalized by the median of annual daily discharge maxima (i.e. the 2-
year flood). Straight solid black lines indicate 1:1 correspondence, while dashed lines denote an envelope 
within which the modeled values are within 50% of observed. 



 

 

Figure 6. Percentage of days with nonzero snowpack present in observations and simulations (a, b) and 
hydrograph validation for Stage IV-based simulation (c). For each day within a year, the percent with 
nonzero snowpack is calculated as the ratio of the number of years in which snowpack is present on that 
day to the total years (69 years for CPC and 15 years for Stage IV). Observed and simulated hydrographs 
are normalized by the median annual flood, which is indicated by the dashed blue line.  

 



 

 

Figure 8. Peak discharge analyses for Turkey River at Garber, IA. (a) RainyDay with Stage IV (2002-2016) 
and CPC-(1948-2016) rainfall and USGS frequency analyses using Bulletin 17B methods. All observed 
USGS annual maxima daily streamflow from 1933 to 2016 are also shown. Shaded areas denote the 
ensemble spread (RainyDay-based results) and the 90% confidence intervals (Bulletin 17B-based analysis), 
respectively. (b) Same as (a), but with the USGS observations divided into pre-1990 and post-1990 groups, 
and replotted to highlight recent changes in flood frequency. 

Figure 7. Time of occurrence during 
the year for simulated peak discharge 
in Turkey River at Garber using (a) CPC 
and (b) Stage IV.  

 



 

 

Figure 9.  The simulated flood magnitude using CPC rainfall during 1948-2016 (a) and 2002-2016 (b) 
periods, and corresponding antecedent conditions. The blue triangles denote the snow related flood 
events (e.g. snowmelt was nonzero in the simulation) and grey dots represent the non-snow related flood 
events (e.g. rainfall driven). The size of the triangles or dots indicate the antecedent soil moisture with 
higher value in larger shape. The black dash line indicates the 1000 m3 s-1 flood magnitudes.   

  

Figure 9. Relationships between 
rainfall and simulated peak 
discharge return periods 
estimated via our process-based 
method using Stage IV rainfall 
data. Spearman rank correlation 𝜌𝜌𝐶𝐶 
is given. Color indicates the 
normalized modeled antecedent 
soil moisture value calculated as 
𝐶𝐶𝐵𝐵𝑖𝑖𝐵𝐵 𝑚𝑚𝐵𝐵𝑖𝑖𝐶𝐶𝐵𝐵𝐹𝐹𝑒𝑒𝑒𝑒−𝑚𝑚𝑖𝑖𝑒𝑒.𝐶𝐶𝐵𝐵𝑖𝑖𝐵𝐵 𝑚𝑚𝐵𝐵𝑖𝑖𝐶𝐶𝐹𝐹𝐵𝐵𝑒𝑒𝑒𝑒
𝑓𝑓𝑖𝑖𝑒𝑒𝐵𝐵𝐵𝐵 𝑐𝑐𝐶𝐶𝑐𝑐𝐶𝐶𝑐𝑐𝑖𝑖𝐹𝐹𝑦𝑦−𝑚𝑚𝑖𝑖𝑒𝑒.𝐶𝐶𝐵𝐵𝑖𝑖𝐵𝐵 𝑚𝑚𝐵𝐵𝑖𝑖𝐶𝐶𝐹𝐹𝐵𝐵𝑒𝑒𝑒𝑒

∗ 100%. 
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Abstract 

Understanding and deriving the frequency distributions for flood peaks and volumes in a 
mountainous watershed is extreme difficult due to complexities in topography, orographic 
precipitation, and flood regimes. Conventional flood frequency analysis (FFA) methods typical 
neglect these difficulties and thus offer few insights into complex interactions of physical flood 
drivers. Understanding flood drivers and how they “shape” the flood frequency distributions is as 
important as generating the distribution curves. This study presents an alternative “process-
based” FFA approach that couples stochastic storm transposition, physics-based hydrological 
model, and long-term continuous simulations simulate frequency distributions for flood peaks 
and volumes. We apply these approaches with 36-year NLDAS-2 forcings to derive and examine 
frequency distributions for flood peaks and volumes up to at least the 1,000-year recurrence 
interval in a mountainous watershed in the Colorado Front Range, United States. We found that 
watershed antecedent conditions and snowmelt drive the frequent flood peaks and long-term 
flood volumes while the upper tail of the flood quantiles are determined by the heavy rainfall or 
rain on snow events. Findings highlight both the potential and limitations of SST and physics-
based hydrological model to help understand the relationships between different flood drivers 
and their corresponding flood peaks and volumes. 

1. Introduction

The September 2013 Colorado floods, which delivered 7-day (9-15 September 2013) total 
rainfall that exceeded 300 mm over a broad region across the Colorado Front Range, destroyed at 
least 1,882 structures and caused total property damage more than $2 billion (Gochis et al., 2015; 
NWS, 2013, 2014). Gochis et al. (2015) provided a detailed review of the factors that caused 



widespread heavy rainfall and resulting catastrophic floods through climatological, 
meteorological, and hydrological analyses. The probability or likelihood of a flood/rainfall event 
is expressed as annual exceedance probability (AEP; the probability in a given year that an event 
of equal or greater magnitude will occur), or as its inverse, the average recurrence interval. 
According to NOAA Hydrometeorological Design Studies Center, several locations in the Front 
Range, including the city of Denver and Boulder, received 7-day (9-15 September 2013) rainfall 
accumulations equivalent to, at least, the 1,000-year event. Though numerous streamgages were 
destroyed during the event, the peak flows at several river networks were indirectly estimated by 
US Geological Survey (USGS) and their respective AEPs range from 50 to 500 years.   

The procedures used to estimate AEPs corresponding to the magnitude of flood peak discharges 
or discharge volumes are referred to as flood frequency analysis (FFA). Given the full range of 
AEPs (from higher to lower), the notional classes of floods (e.g., ANCOLD, 2000; USBR, 1999) 
can be characterized into frequent (AEP ≥ 0.5), rare (AEP ≥ 0.01), very rare (AEP ≥ 0.001), 
extreme (AEP < 0.001), and until the absolute upper limit of flood magnitude, Probable 
Maximum Flood (PMF), whose AEP cannot be readily assigned. (Frequency indicators inside 
parenthesis are intended as a guide; each situation is different and should be assessed 
individually.) PMF, a widely-used deterministic design approach, provides a single, limiting 
value of flood that could conceivably occur but is not well suited to risk-based analysis; thus it is 
beyond the scope of this study. On the other hand, the estimation of extreme floods, despite its 
difficulty, is central to many aspects of hydrologic engineering, including floodplain 
management, safety design, and maintenance and operation of dams. For instance, United States 
Bureau of Reclamation (USBR), the nation’s largest wholesale water supplier and owner of over 
350 storage dams in the western U.S., is committed to providing decision makers with risk-based 
information (i.e., FFA) for public safety practices (USBR, 2011a, 2011b).  

Very rare to extreme floods (AEP between 10-2 and 10-7) lie in the range of creditable limit of 
extrapolation (i.e., justifiable estimates that are beyond the range of observations), which is 
dependent upon available data at the site of interest and FFA approaches (ANCOLD, 2000; 
USBR, 1999). For example, if a site has 50 years of streamflow records, then its typical 
creditable limit of extrapolation might be an AEP of 1 in 100. The ways to credibly extend the 
limit of extrapolation can be interpreted within the context of Bayes’ Theorem (i.e., improve the 
belief by incorporating additional information): using paleoflood data, regional precipitation and 
flood data, and hydrological simulation to improve estimates for very rare and extreme (i.e., low 
AEP) flood frequency.  

Existing approaches (tools) that incorporate these additional information (e.g., paleoflood and 
regional flood data) into estimates of extreme floods with AEPs include the Mixed-Population 
Graphical Approach (England et al., 2001), Expected Moments Algorithms (i.e., Bulletin 17C; 
see England et al.( 2019) for a review), FLDFRQ3 (O’Connell, 1999; O’Connell et al., 2002), 
GRADEX (Naghettini et al., 1996), and Australian Rainfall-Runoff method (ARR; Nathan and 
Weinmann, 2000; James et al., 2019). In Australia, the ARR method, which couples extreme 
rainfall frequency analysis with rainfall-runoff modelling, is used to estimate flood frequency 
curves for very rare to extreme events (AEP<0.001). In the U.S., USBR provides seven methods, 
including all the aforementioned ones, to develop flood frequency curves and recommends 
utilizing a combination of them to reduce uncertainties in estimating FFA for the site of interest 



(USBR, 2004, 2006). For instance, USBR utilized paleoflood data and several corresponding 
methods to conduct a hydrologic hazard analysis for dam safety evaluations for Los Banos Dam 
in California (Weghorst and Klinger, 2002) and Fresno Dam in Montana (Wickenberg, 1985).  

Since the estimation of flood frequency with very low AEP (≤ 10 ) is still a challenging area, 
innovative science, engineering and tools in extreme flood hydrology are always encouraged. 
England et al. (2014) estimated flood frequency up to 105-year recurrence intervals for the 
Arkansas River watershed (12,000 km2) above Pueblo Dam, Colorado in the western U.S. using 
stochastic storm transposition (SST) technique and a distributed physics-based rainfall-runoff 
model. SST, a bootstrap resampling technique, can be used with relatively short (i.e., 10 to 20 
years) gridded precipitation records to generate a large number of synthetic rainfall scenarios; 
when SST is combined with a hydrologic model, they can be used to perform a FFA out to at 
least 500-year recurrence intervals (e.g., England et al., 2014; Wright et al., 2014, 2017; Yu et 
al., 2019). England et al. (2014) also compared SST-based results with statistical FFA using at-
site flood peak observations, estimates of several historical floods, and paleoflood data, 
highlighting the usage of multiple sources of probabilistic flood estimates to increase credibility 
in the results.  

This study follows the direction of “integration of collaborative work in hydrometeorology, flood 
hydrology, and paleoflood hydrology” in England et al. (2014) for examining FFA with very low 
AEP. We focus on a small (357 km2), mountainous watershed in the Colorado Front Range, in 
which snowmelt- and rainfall-driven floods coexist. We also attempt to extend England et al. 
(2014) by incorporating an improved SST model, implementing a more sophisticated hydrologic 
model, and utilizing stochastic watershed antecedent conditions in driving the event-based flood 
simulation. It is worth noting that this study also addresses two priority areas (PA) in USBR’s 
strategic goals for long-term water resources planning and management (Brekke, 2011): PA 4.01 
focuses on determining strengths and weaknesses of watershed hydrologic methods to support 
scoping decisions; PA 4.04 focuses on identifying strengths and weaknesses of spatially 
distributed weather data for hydrologic model development.  

The central objectives of this study are: (1) develop, calibrate and validate a physics-based 
hydrologic model that can represent the long-term watershed runoff generating mechanisms and 
flooding behavior in the high-elevation basin of interest; (2) create SST-based storm catalogs 
from regional precipitation that provide extreme rainfall scenarios; (3) couple SST with a 
physics-based hydrologic model to derive process-based FFA (and flood volume analysis) up to 
104-year recurrence intervals and compare results with statistical FFA using paleoflood data.

2. Study region and data

The study watershed of the Big Thompson River above Lake Estes  (henceforth referred to as 
Big Thompson River watershed) is situated in northcentral Colorado (Figure 10a). An 
approximate 15,500 km2, stochastic storm transposition (SST; Section 3.3) domain (red dashed 
line of Figure 10a), which encompasses the Big Thompson River watershed, stretches along the 
Colorado Front Range. The portion upstream of the US Geological Survey (USGS) stream gage 
above Lake Estes  (gage number 06733000; watershed outlet) has a drainage area of 357 km2, 
with elevations ranging from approximately 4300 m above the sea level (masl) in the west to 
2300 masl near the Lake (Figure 10b). Mountainous area in the west of this watershed (above 



3000 masl) can be characterized as intermittent snow-cover zones with peak snowpack 
accumulation during March and April; the area on the east part (below 3000 masl) seldom 
develops snowpack. According to the USGS 2016 National Land Cover Dataset, the land use in 
the watershed is 53% forest, 23% shrub, 14% pasture, and 10% other types including developed, 
barren land, open water and wetlands (Figure 10c).  

The historical North American Land Data Assimilation System version 2 (NLDAS-2; Mitchell, 
2004) hourly meteorological forcings from 1979 to 2018 are used for both long-term continuous 
and event-based hydrological simulation. Eight NLDAS-2 forcings are used, including 
precipitation, specific humidity, air temperature, atmospheric pressure, incoming shortwave and 
longwave radiation, and horizontal wind speed (zonal and meridional directions). These forcings 
are downscaled for the study watershed except precipitation, which are extracted for the entire 
SST domain. The measured Snow Telemetry (SNOTEL) snow water equivalent (SWE) at two 
stations as well as simulated basin-averaged SWE from Noah Land Surface Model (LSM) driven 
by NLDAS-2 (referred to here as NLDAS-Noah; Chen et al., 1996; Ek et al., 2003) is used for 
understanding snow processes. We also use hourly discharge observations for the USGS stream 
gage above Lake Estes  (i.e., outlet) and annual peak flows for the outlet and  two inner USGS 
stream gages (USGS 06732500 and 402114105350101; 103 and 102 km2) to calibrate and 
validate the hydrologic model (Figure 10b).  

3. Methodology

The process-based FFA framework presented in this study was also applied in Yu et al. (2019), 
except a more sophisticated, physics-based hydrologic model is used here (Section 3.1). This 
framework comprises continuous and event-based hydrological simulation combined with 
stochastic storm transposition (SST) using the RainyDay software. The framework is illustrated 
schematically in Figure 11 and briefly summarized in the following subsections.   

3.1 Hydrologic model, calibration and continuous simulation 
The Weather Research and Forecasting Hydrological modeling system (WRF-Hydro; Gochis et 
al., 2018), a physics-based, distributed hydrologic model, is used in this study. WRF-Hydro 
couples a land surface model (i.e., Noah-MP; Niu et al., 2011), with terrain routing (e.g., 
overland and subsurface flow) and channel routing (i.e., Muskingum-Cunge; Cunge, 1969) 
modules, and has been widely used in operational hydrological practices (e.g., Senatore et al., 
2015; Yucel et al., 2015; Lin et al., 2018). WRF-Hydro was calibrated using a combination of 
manual and automated (i.e., DDS; Tolson and Shoemaker, 2007) approaches, targeted on 
capturing multiple aspects (e.g., long-term water balance, snowpack processes, runoff generation 
and routing dynamics) of hydrological processes (See Section 4.2).  

Calibration and validation of WRF-Hydro aims to improve the overall performance with respect 
to multiple aspects of the dominant hydrological processes rather than to merely fit hydrographs 
of any particular events. The calibrated (and validated) WRF-Hydro model was run with 
NLDAS-2 forcings as inputs to a historical continuous simulation for the period from 1979 to 
2018. The first 4 years were treated as “warm up” and the simulated results from 1983 to 2018 
(36 years) were preserved at a daily time step and were subsequently used as watershed 
antecedent conditions for the event-based flood simulations.  



3.2 Stochastic Storm Transposition 
SST, a bootstrap resampling technique, was used to generate a large number of realistic 
precipitation scenarios for the study watershed via temporal resampling and spatial transposition 
of observed precipitation from the surrounding region (see Figure 10a for comparing the size 
between watershed and SST domain). Two main advantages of coupling SST into a process-
based FFA framework are: (1) the spatiotemporal structures of observed precipitation are 
preserved, which is critical to flood simulation; (2) it enables the stochastic use of a hydrologic 
model that produces equally likely model output, accommodating sensitivity or uncertainty 
analyses. Wright et al. (2020) reviewed the development and various applications of SST since 
its origin.  

In this study, we couple RainyDay (Wright et al., 2017), an open-source SST software, with  
36 years (1983-2018) of NLDAS-2 precipitation to derive hypothetical but realistic precipitation 
events. The following steps describe how RainyDay is implemented in this study:  

1. The SST domain (Figure 10a) refers to a homogeneous region over which the observed
precipitation behaves statistically similarly. The SST domain in this study was initially
sketched by the identifying a cluster of Global Historical Climatology Network (GHCN)
stations characterized by similar values of L-kurtosis, L-skewness, the ratio of L-kurtosis
to L-skewness, and discordancy (Hosking and Wallis, 1993, 1997). Then an SST domain
encompassing these selected GHCN stations was delineated by extending the domain north
and south of the Big Thompson River watershed along the Front Range of the Rockies,
thus avoiding transposing storms from substantially different elevations.

2. RainyDay used 36 years of NLDAS-2, April-October (i.e., flood season) precipitation
record to create a “storm catalog” that consists of the 360 most intense, 72-h precipitation
events within the SST domain. These intense 72-h storms are in terms of rainfall
accumulation over an area that has the similar size and shape of the Big Thompson River
watershed.

3. RainyDay randomly selected k storms from the catalog to represent a synthetic year. The
number of storm “arrivals”, k, was calculated by RainyDay using the Poisson distribution
with the rate parameter 𝜆, defined as the ratio of total number of events in the storm catalog
to the number of years in the record (i.e.,  𝜆 = 360/36 = 10  storms yr-1).

4. RainyDay uniformly transposed the selected k storms within the SST domain and
computed the precipitation field over the Big Thompson River watershed, comprising a
synthetic year of precipitation scenarios for the study watershed. If some of the k-
transposed storms do not “hit” the watershed, their calculated rainfall is zero.

5. RainyDay can repeat steps 3-4 n times to create a single realization of n synthetic years of
precipitation. These precipitation scenarios can be used directly to derive RFA or coupled
with a hydrologic model to derive FFA. In this study, we created 10 realizations of 1000
synthetic year, 72-h rainfall scenarios.



3.3 Event-Based Flood Simulation 
We selected five sets of watershed antecedent conditions drawn from the CS outputs to pair with 
the largest five out of the k transposed storms for each synthetic year to constitute event-based 
flood simulations. To ensure both realistic seasonality of floods and interannual variability in 
watershed conditions (i.e., dry or wet year), two criteria are required: (1) all five sets of 
watershed states were randomly selected from the same year from the CS; (2) their day of year 
are within ± 14 days of the corresponding date time of the precipitation events. Each paired event 
was run for 15 days with 72-h precipitation occur in the first 3 days and the largest peak and n-
day volumes among five events represent the simulated annual flood peak and n-day maximum 
volumes. Thus, the event causes (instantaneous) flood peak can be different from the one results 
in 15-day peak volumes, obviating the “nested (or concurrent)” requirement.   

We repeated this procedure for all 1000 synthetic years for each RainyDay-based precipitation 
realization to produce 1000 annual peak flows and n-day peak volumes. Their associated annual 
exceedance probabilities (AEPs) are calculated using the Weibull plotting position (Weibull, 
1939). Ten realizations of simulated 1,000 annual peak flows can provide estimates of variability 
in FFA with recurrence intervals up to 1,000-year, or be treated as a single realization of 10,000 
simulated annual peak flows to produce FFA with recurrence intervals up to 104-year. It also has 
to be noted that the former does not represent the “whole” population of flood outcomes while 
the later does not account for the uncertainties in the flood generating mechanisms associated 
with these flood magnitudes.   

4. Results
4.1  The seasonality and magnitudes of regional extreme precipitation   
The RainyDay selected 360 most extreme 72-h precipitation events are partitioned into rainfall 
and snowfall based on their corresponding air temperature (i.e., if the 72-h mean air temperature 
is below 273 K, this event is defined as snowfall). The seasonality (Figure 12a) and spatial 
distribution (Figure 12b) of these regional extreme precipitation events are shown. Temporally, 
the occurrence of these extreme precipitation events is, relatively, uniformly distributed between 
April and October, with two peaks clustering in late April (rainfall and snowfall) and early 
August (rainfall), respectively (Figure 12a). Spatially, the intensity and locations of these 
extreme precipitation events are also, relatively, uniformly distributed within the SST domain, 
revealing no relationship between precipitation and elevation within the SST domain (Figure 
12b).    

The total precipitation accumulation of most events range from 25 mm to 75 mm, with a median 
value of 40 mm (Figure 12a). These magnitudes are relatively small compared to the 72-h events 
from lower elevation in the eastern foothills (results not shown), consistent with Jarret and Costa 
(1988) that more moisture available at the lower than higher elevation can feed the convective 
storms. However, it also has to be noted that the most extreme rainfall event (i.e., the September 
2013 event) occurred in the late summer (i.e., low occurrence density) resulted in an intensity 
(213 mm) 5 times as large as the median value.  

4.2  WRF-Hydro Validation 
In this study, WRF-Hydro is calibrated for a10-year period (2007-2016) and validated for the 
entire simulation period from 1983 to 2018. Long-term water balance derived from observations 



(i.e., NLDAS-2 precipitation and USGS streamflows) shows that 40% of annual precipitation 
contributes to streamflow in average, which is well captured by the WRF-Hydro long-term CS 
(Figure 13a). The WRF-Hydro simulated annual mean evapotranspiration (ET; including 
sublimation) is 477 mm (i.e., 60% of precipitation contributes to ET), consistent with the 
estimated ratio of ET to precipitation from a nearby region in the Colorado Front Range (Sanford 
and Selnick, 2013; Sexstone et al., 2018). In addition, the inter-annual variabilities in 
precipitation (i.e., “gain”) resembles the simulated variabilities in the sum of annual streamflows 
and ET (i.e., “loss”; error bars in Figure 13a).  

Seasonality of snow water equivalent (SWE), represented by the watershed-averaged daily mean 
value from 1983 to 2018, are compared between WRF-Hydro and NLDAS-Noah simulations 
(Figure 13b). Though WRF-Hydro produces higher SWE than the NLDAS-Noah simulation in 
March and April, two model results show a consistent intra-annual variation, with the peak SWE 
in early April and a dominant snowmelt season in May and June. We also compared WRF-Hydro 
simulated SWE at two LSM grid cells (1km) against corresponding gage-based SNOTEL 
observations; WRF-Hydro simulated SWE for two grid cells were evaluated based on annual 
percent bias and long-term seasonality. The results for 2011-2015 period are consistent with 
simulated SWE in Sexstone et al. (2018), who used a process-based snow model with eddy 
covariance measurements.  

WRF-Hydro simulated daily streamflows for Big Thompson River above Lake Estes adequately 
resemble the USGS daily observation (Figure 13c), obtaining a Kling-Gupta Efficiency (Gupta et 
al., 2009) of 0.87. WRF-Hydro simulated annual peak flows at three locations are compared with 
corresponding USGS observations for their available recording period (36 years for USGS 
06733300, 9 years for USGS 06732500, and 21 years for USGS 402114105350101); no obvious 
bias in simulated annual peak flows is detected despite a slight underestimation for USGS gage 
06732500 (Figure 13d). WRF-Hydro simulated 1-day flood volumes for Big Thompson River 
above Estes Park (the other two inner gages do not have long-term daily streamflow 
observations) also resemble USGS observed values (Figure 13e). Comparison for 3-, 5-, 7-, and 
15-day flood volumes for the same gage (i.e., watershed outlet) between the WRF-Hydro 
simulation and USGS observations also shows consistent model performance (results are not 
shown). This “process-oriented” validation demonstrates the model credibility in capturing 
multiple aspects of the watershed hydrological processes and thus can be used for deriving the 
subsequent FFA.

4.3   Process-based understanding of historical annual peaks  
A long-term (i.e., 36 years) CS using a physics-based hydrologic model and observed forcings 
can provide several hydrological variables (e.g., soil moisture, snowpack and ground 
temperature) that are always difficult to be measured on a watershed scale. (Even if 
measurements exist, they often do not represent model state variables.) These variables can be 
used as additional information other than precipitation and streamflows for understanding the 
flood regimes of historical events. To examine flood seasonality, we used observed USGS 
annual peak flows for Big Thompson River above Lake Estes, NLDAS-2 basin-averaged daily 
maximum precipitation, and simulated, basin-averaged, daily mean SWE and soil moisture  
(0-40 cm) for the 1983-2018 period. These historical flood events have been partitioned into 
snowmelt- and rainfall-driven events based on their simulated snowmelt accumulation during the 



event. If the snowmelt is larger than 5 mm, this flood event is deemed to be snowmelt-driven; 
this criteria is applied through the study.    

The maximum daily precipitation is roughly uniformly distributed along the year (Figure 14), 
consistent with the characteristics of the regional extreme precipitation (Figure 12). The 
dominant flood season is between May and June, coinciding with the high soil moisture period 
due to snowmelt (Figure 14). Flood events in this period are a mixture of snowmelt and rain-on-
snow events (also referred to as snowmelt in this study); their resulting flood peaks cluster in a 
range between 15 and 50 m3 s-1 (Figure 14). However, the record flood (i.e., September 2013 
event) at this watershed, surprisingly, occurred in a dry soil moisture period with no snowpack 
existing; a prolonged heavy rainfall resulted in a flood peak of 84 m3 s-1, which is roughly three 
times as large as the annual mean flood magnitude (i.e., 29 m3 s-1) and approximately 1.6 times 
as large as the previous record peak (i.e., 54 m3 s-1).  

One snowmelt- and one rainfall-driven (i.e., the record flood) flood event are diagnosed, 
respectively, using detailed observations and the WRF-Hydro simulation (Figure 15). This 
snowmelt-driven flood event has a prononced diurnal cycle, stemming from the snowmelt 
dynamics as snowpack melts during the day time (i.e., higher temperature) and refreezes during 
the night (Figure 15a). This diurnal cycle, along with the snowmelt dynamics, implies that the 
magnitude of the corresponding flood peak is mainly determined by the snowmelt rate in a single 
day (i.e., energy limited). Furthermore, sparse rainfall, a small fraction (~20%) of snowcover and 
relative high antecedent soil mositure, exacerbate the river streamflows, increasing both the peak 
and volume. This snowmelt event is representative of all other snomelt-driven flood peaks (blue 
circles in Figure 14), thus reflecting WRF-Hydro well captures the snowmelt dynamics and the 
coressponding runoff generation.   

The September 2013, rainfall-driven event occurred in a relative dry period with low antecednt 
soil moisutre but resulted in a dramatic increases in streamflows from around 2 to over 80 m3 s-1 

within two days (Figure 15b) due to the intense, persistent, and widespread nature of the 
precipitation. The simulated top-layer soil moisture shows a consistent increase with the rainfall, 
reflecting high infiltration into the soil layer at the beginning of this event (Figure 15b). This is 
consistent with the runoff generation processes in this region, where the saturation excess 
(“Dunne”) flows dominate (e.g., Miller et al., 2014, 2016; Rumsey et al., 2015). These unusual 
features, including dry soil moisture, extreme rainfall, and no snowmelt, set the September 2013 
event apart from all other historical flood peaks, implying the existence of two different 
populations of floods in this watershed (also see Section 5).  

We also noticed that WRF-Hydro underestimate both flood peak and volume for the September 
2013 event, which is mainly due to the low bias in the NLDAS-2 precipitation. The 7-day 
watershed rainfall accumulation is 157 mm using NLDAS-2, which lies in the 50-year recurrence 
interval estimated by NOAA atlas 14. However, NOAA Hydrometeorological Design Studies 
Center estimated most parts of this watershed received 7-day rainfall accumulation equivalent to, 
at least, 100-year event, and 1,000-year for the lower watershed. In addition, Colorado Climate 
Center and National Weather Service estimated the 7-day rainfall accumulation between 203 and 
254 mm for this watershed. In the meantime, this underestimation shows that our process-based 
calibration approach does not force the model to obtain a “correct answer” (i.e., similar 



hydrograph) for the “wrong reasons” (i.e., compensating model parameters for the low biases in 
precipitation).  

4.4   Flood frequency analysis 
Process-based estimates of flood frequency distribution for Big Thompson River above  
Lake Estes using NLDAS-2 forcings from 1983 to 2018 are compared with the log-Pearson  
Type 3 (LP3) distribution fitted to 1983-2018 USGS observed annual peak flows (Figure 16). 
The LP3 estimated flood frequency curve is shown with 90% confidence interval. The process-
based flood frequency curve is shown in different ways. Up to the 1,000-year recurrence interval, 
we show a range of flood frequency distributions based on 10 realizations representing 
uncertainty. Between the two- and 10,000-year recurrence intervals, we also show a single flood 
frequency distribution based on LP3 curve fit to historical observations. Finally, USGS observed 
annual peak flows from 1983 to 2018 are plotted in using the Cunnane plotting position 
(Cunnane, 1978).  

Both process- and LP3-based flood frequency curves agree adequately well with USGS observed 
peak flows for 𝐴𝐸𝑃 ≥ 0.05, despite a slight underestimation in process-based estimates for 
𝐴𝐸𝑃 ≥ 0.33. The process- and statistical-based estimates of flood frequency distribution 
relatively resemble each other until 𝐴𝐸𝑃 = 0.03, beyond which the process-based FFA yields 
higher estimates. Though both process- and statistical-based approaches slightly underestimate 
the record flood, the process-based estimates tend to be closer to its magnitude. The recurrence 
interval for the record flood is estimated around 250-years using process-based approach while 
2500-years using the statistical approach. It is important to note that the record flood was the 
result of persistent moisture transport to the north and west supported by a blocking ridge over 
the Canadian Rockies and a cutoff cyclonic circulation to the west of that, which lasted for days 
(Gochis et al., 2015). This mixture population challenges the validity of the statistical FFA 
approaches, which assume that the sampled data are representative of the same population 
(Cudworth, 1989; will be further discussed in Section 5)   

The discrepancy between process- and statistical-based FFA for AEP ≤ 0.01(i.e. upper tail; 
Figure 16) can be attributed to the fact that the different flood generating mechanisms are 
shaping the lower (i.e., common floods) and upper part of the flood frequency distributions. In 
Big Thompson River above Lake Estes, the FFA with lower AEP (i.e., frequent events) is 
dominant by snowmelt or rain on snow events while the upper tail of the FFA is controlled by 
extreme rainfall-driven events. However, the statistical FFA approach assume the sampled 
observations belong to the same population, thus neglecting the disparity in flood regime. In this 
watershed, the largest natural flow is estimated between 85 to 140 m3/s during the last 8,000 to 
10,000 year (Jarret and Costa, 1988; Jarrett, 1989), due to glacial melting during the post-glacial 
times. Understanding the flood regime (i.e., glacial melt) of this paleoflood partly explains why 
its nonexceedance bound lies within the 90% confidence interval of LP3 estimated FFA (Figure 
16): it may represent the upper bound of snowmelt- or energy-driven flood events.  

We also examined the range of rainfall- and snowmelt (rain on snow)-driven floods, 
respectively, by applying four deterministic flood simulations: two rainfall events and each 
paired with two different (i.e., wet and dry) watershed antecedent conditions. These four flood 
events are: (1-2) the transposed September 2013 rainfall event (212 mm) paired with summer 



time high (low) soil moisture condition in early July (late September) generates flood magnitude 
of 273 (68) m3 s-1 (green error bar in Figure 16);  (3-4) the transposed June 1987 rainfall event 
(41 mm) paired with late spring high (low) SWE in early June generates flood magnitude of 147 
(53) m3 s-1 (blue error bar in Figure 16). The deterministic flood simulation reflects that the 
rainfall-driven event has a higher potential in governing the upper tail of the FFA than does rain 
on snow event and watershed antecedent condition plays a critical role in modulating flood 
peaks.

The upper bound of the deterministic rainfall-driven floods is almost twice larger than the 
maximum flood in stochastic simulation (i.e., flood frequency curve) due to an “unconfined 
criteria” for pairing rainfall with initial condition is applied. In stochastic simulation, the 
September 2013 rainfall event is paired with a watershed initial condition within a 28-day 
window while in deterministic simulation an approximate 90-day window (July-September) is 
used. The long “pairing” window enables this severe thunderstorm to fall in a relative high soil 
moisture in early July (i.e., right after the snowmelt season), reflecting the earlier a thunderstorm 
occurs in summer the larger impact it could result in.      

To understand the flood regimes of observed and simulated flood peaks, the relationships 
between peak discharge and each physical drivers (i.e., precipitation, snowmelt and antecedent 
soil moisture) are investigated, respectively (Figure 17). For these historical flood peaks, their 
flood magnitude is from USGS observation and physical drivers are simulated via long-term CS 
(Section 4.3). In general, snowmelt plays a dominant role in driving most observed and 
simulated (i.e., synthetic) annual flood peaks (Figure 17c) and their derived flood magnitudes are 
higher than the rainfall-driven floods due to “wet” watershed antecedent condition. However, 
extreme rainfall, in terms of both 72-h accumulation and maximum hourly intensity, determines 
the magnitudes of severe floods (> 100 m3 s-1; Figure 17a and b). Furthermore, watershed 
antecedent soil moisture modulates both rainfall- and snowmelt-driven floods except for some 
extreme rainfall events which can cause large flood magnitudes even in the relative dry soil 
moisture condition (Figure 17d). The relationships between peak flows and the underlying 
drivers derived by the process-based simulation are generally consistent with the results based on 
observation, albeit with a far larger sample (34 events vs. 10,000 simulations; Figure 17) 

4.5   Flood volume analysis 
In addition to flood peaks, flood volumes of different durations are also the necessary aspects of 
FFA, which can be used for sizing the reservoir storage or evaluating the spillway adequacy for 
attenuating the inflows. The empirical flood frequency for n-day (i.e., 1-, 3-, 5-, 7-, and 15-day) 
flood volumes are derived, respectively, using USGS observed daily discharge from 1949 to 
2018 and Cunnane plotting position (Cunnane, 1978; Figure 18). Six events with the largest 1-
day flood volumes were examined for determining whether they possess the coincidence 
relationship or “equal severity” (Beard and Fredrich, 1975). A coincidence flood refers to an 
event that has the same recurrence interval for its 1-day and n-day flood volumes (Balocki and 
Burges, 1994). For example, if 100-year 1-, 3-, 5-, 7-, and 15-day flood volumes are resulted 
from the same event, this event has the coincidence of frequency. (The reason for examining the 
six largest floods was to include the September 2013 event.) 



The six largest 1-day flood volumes occurred in June-1965, June-1995, June-1957, June-1949, 
June-2010 and September-2013, respectively; none of them shows the coincidence relationship 
between recurrence interval and n-day flood volumes (Figure 18a). For example, the 1949 flood 
event increases from the 4th largest 1-day flood volume to the largest 15-day flood volume. 
Conversely, four events out of six show a (roughly) consistent drop in recurrence intervals from 
1- to 15-day flood volumes. The recurrence intervals of the 2013 event, which is the record flood
with respect to peak flows, drops from over 10-year for 1-day to 2-year for 15-day volumes.
Recall from Section 4.3 and Figure 15b that we found the 2013 flood event occurred in a relative
dry period and no additional snowmelt for contributing the flood volume. In this watershed, the
lack of coincidence relationship challenge the conventional design flood hydrograph that
assumes 1:1 equivalence of recurrence intervals among n-day flood volumes.

The process-based flood frequency analysis for 1-, 3-, 5-, 7-, and 15-day flood volumes are 
derived, respectively (Figure 18b). The sources of these derived flood volumes include 360-h 
precipitation and watershed antecedent conditions (mainly the SWE). The process-based 
estimates of flood volume frequency distributions resemble the observations (i.e., empirical 
distribution) for all durations except a slight underestimation for the 15-d volume for the small 
return periods (Figure 18b). The process-based estimates for n-day flood volumes resemble the 
observation-based results because our approach accounts for snowmelt, which is the non-
negligible contributors to long-term flood volumes. In the meantime, the process-based flood 
volume analysis also obviates the procedures for obtaining long-term flood hydrograph, which is 
an inevitable steps in design flood approach to temporally distribute flood volumes of a given 
recurrence interval.  

5. Discussion

The September 2013 flood event, or the record flood, in the Big Thompson River watershed 
above Lake Estes demonstrated how the flood generating mechanisms of the extreme events are 
different from the common ones. However, how much information can be extracted from this 
record flood in terms of FFA, to some extent, depends on the methods applied. Statistical FFA 
approaches simply treat this event as one additional sample, neglecting the fact that this record 
flood belongs to a different population of flood agents (severe rainfall-driven) compared to all 
other observed events (snowmelt-driven). Consequently, their derived flood frequency 
distribution, especially for the upper tail, are substantially affected by the common snowmelt-
driven floods, which is hydrologically inconsistent (Klemes, 1986). In addition, mixing different 
populations of flood agents violates the underlying assumption of statistical FFA approaches that 
require the sampled data represent the same population. It also has to be noted that the unusual 
characteristics of the record floods and their markedly influence on flood frequency distribution 
actually occurred in a variety of watersheds in the United States (Smith et al., 2018).   

On the contrary, process-based FFA approaches utilize the “upstream” information of historical 
floods (i.e., physical drivers), and attempt to restructure the full spectrum of hydrologic 
responses, from which the flood frequency distribution is derived. Therefore, the upper tail of the 
process-based FFA is reliant on the physical process and watershed states that control floods. 
According to the 10,000 derived synthetic annual peak flows (Figure 16 and 7), the upper tail of 
flood peaks (i.e., AEP ≤ 0.01) can be reached by two different combinations: (1) extreme 
summertime rainfall (somewhat) regardless of antecedent soil moisture; (2) late spring rainfall 



with high hourly intensity combined with wet soil moisture or snowmelt condition. The former is 
the similar process driving the record flood in Big Thompson River watershed while the latter is 
nonexistent in observed flood peaks, probably stemming from limited sample size (34 events).  

The September 2013 flood event also seems to be an exception of Jareet’s 2,300 m-hypothesis 
(Jareet, 1988), which argued that 2,300 m is the upper limit of the occurrence of extreme 
orographic rainfall-driven flood events. (The elevation of the Lake Estes, the outlet of our study 
watershed, is approximate 2,300 m.) This remarkable exception also provides insights into one 
particular aspect of nonstationary flood frequency-the changing flood generating mechanisms. 
Though future studies are needed to evaluate changes in extreme flood agents, we believe this 
event should not be simply treated as an “outlier”.  

6. Summary and Conclusions

In this study, we used regional precipitation, stochastic storm transposition (SST), and a physics-
based hydrological model to provide an alternative approach for analyzing frequency 
distributions of flood peaks and volumes. We applied this process-based FFA framework to Big 
Thompson River, a small mountainous watershed in the Colorado Front Range that is exposing 
two different flood regimes in shaping the flood frequency distributions. Key findings include: 

1. Though the Big Thompson River watershed is located in the complex mountainous
terrain, we delineated an SST domain encompassing the watershed which can be
interpreted as a meteorologically homogeneous region. This delineated SST domain is
roughly 45 times larger than the watershed in size but has a relative narrow elevational
bands ranging from 1,500 m to 4,000 m. We detected no obvious elevation-precipitation
relationship using annual maximum 72-h precipitation for all NLDAS-2 grids within the
domain; the L-moments-based discordancy and heterogeneity tests further improves the
credibility in transposing precipitation within this SST domain. Validating the regional
homogeneity is an indispensable step for applying SST or other regional rainfall analysis
tools into a mountainous region.

2. We utilized a “process-oriented” approach to calibrate the WRF-Hydro model using
10-year continuous simulation and cross validate it over the entire 1983-2018 (36-year)
period. The calibrated and validated WRF-Hydro adequately captures long-term water
balances, and the seasonality of SWE; the model simulated long-term hydrographs,
annual peak flows and flood volumes for different durations well matches the results
based on USGS observations. The well-performed WRF-Hydro enables the generation of
historical watershed states (e.g., soil moisture, SWE, streamflow and ponding water
depth), which are usually difficult to be field measured, via long-term continuous
simulation using observed NLDAS-2 forcings. These hydrological variables can provide
model antecedent conditions for performing event-based flood simulation and deriving
FFA.

3. We also demonstrated that these long-term continuous simulated watershed states can
help to better understand the flood generating mechanisms associated with historical
annual peaks. Conventionally, the time of year is taken as an expedient method to
qualitatively understand the dominant flood drivers of historical events (e.g., Cudworth,



1989). Our “process-based” diagnoses can explicitly show how snow dynamics and its 
diurnal cycle affecting the snowmelt-driven floods and how extreme convective storm 
shaping the rainfall-driven floods regardless the dry watershed antecedent conditions. 
The WRF-Hydro model is able to reconstruct historical annual peaks with respect to their 
climatological, meteorological, and hydrological processes. 

4. Coupling SST-based rainfall scenarios, with a physics-based hydrological model and
derived watershed antecedent conditions can perform process-based frequency analysis
of flood peaks and volumes. The derived frequency distributions for flood peaks and
volumes can reach the AEP as low as 10-4. In addition, process-based frequency
distributions for both flood peaks and volumes resemble the empirical distribution using
USGS observations and Cunnane plotting position. The upper tail of process-based flood
quantiles (i.e., 104-year) is higher than largest natural flood flow during the last 10,000
years using paleoflood data due to different flood regimes.

5. Process-based FFA provides an opportunity to understand the generating mechanisms of
the flood quantiles, especially for the upper tail, which conventional FFA fails to do. In
this watershed, the simulated upper tail flood quantiles can be caused by extreme rainfall
regardless of initial soil moisture or snowpack (similar to record flood), or by
intermediate rainfall combined with snowmelt and high soil moisture (never happened in
the past). Process-based FVA obviates the coincidence of floods occur when the flood
peaks, 1-day and n-day flood volumes have the same recurrence intervals, which is
always assumed by design floods. The flood characteristics of the study watershed violate
this assumption since the snowmelt-driven floods control the flood volume with a long
duration while the extreme rainfall-driven floods govern the short-term flood volume and
flood peaks.



References 

Australian National Committee on Large Dams (ANCOLD): Guidelines on Selection of 
Acceptable Flood Capacity for Dams. [online] Available from:  
https://www.ancold.org.au/?product=guidelines-on-selection-of-acceptable-flood-capacity-for-
dams-2000 (Accessed 12 May 2020), 2000. 

Balocki, J. B. and Burges, S. J.: Relationships between n ‐Day Flood Volumes for Infrequent 
Large Floods, J. Water Resour. Plan. Manag., 120(6), 794–818, doi:10.1061/(ASCE)0733-
9496(1994)120:6(794), 1994. 

Beard, L. R. and Fredrich, A. J.: Hydrologic Engineering Methods For Water Resources 
Development, U.S. Army Corps of Engineers. Institute of Water Resources. Hydrologic 
Engineering Center, Davis, CA. [online] Available from: 
https://www.hec.usace.army.mil/publications/IHDVolumes/IHD-3.pdf, 1975. 

Brekke, L. D.: Addressing Climate Change in Long-Term Water Resources Planning and 
Management: User Needs for Improving Tools and Information Title, Technical Report, U.S. 
Army Corps of Engineers Bureau of Reclamation, U.S. Department of the Interior., 2011. 

Chen, F., Mitchell, K., Schaake, J., Xue, Y., Pan, H.-L., Koren, V., Duan, Q. Y., Ek, M. and 
Betts, A.: Modeling of land surface evaporation by four schemes and comparison with FIFE 
observations, J. Geophys. Res. Atmospheres, 101(D3), 7251–7268, doi:10.1029/95JD02165, 
1996. 

Cudworth, A. G.: Flood Hydrology Manual, U.S. Department of the Interior, Bureau of 
Reclamation, Denver Office., 1989. 

Cunge, J. A.: On The Subject Of A Flood Propagation Computation Method (Musklngum 
Method), J. Hydraul. Res., 7(2), 205–230, doi:10.1080/00221686909500264, 1969. 

Cunnane, C.: Unbiased plotting positions — A review, J. Hydrol., 37(3–4), 205–222, 
doi:10.1016/0022-1694(78)90017-3, 1978. 

Ek, M. B., Mitchell, K. E., Lin, Y., Rogers, E., Grunmann, P., Koren, V., Gayno, G. and Tarpley, 
J. D.: Implementation of Noah land surface model advances in the National Centers for
Environmental Prediction operational mesoscale Eta model, J. Geophys. Res. Atmospheres,
108(D22), 2002JD003296, doi:10.1029/2002JD003296, 2003.

England, J. F., Klinger, R. E., Camrud, M. and Klawon, J. E.: Guidelines for preparing 
preliminary flood frequency analysis reports for comprehensive facility reviews, Bureau of 
Reclamation, Denver, Colorado., 2001. 

England, J. F., Julien, P. Y. and Velleux, M. L.: Physically-based extreme flood frequency with 
stochastic storm transposition and paleoflood data on large watersheds, J. Hydrol., 510, 228–245, 
doi:10.1016/j.jhydrol.2013.12.021, 2014. 

England, J. F., Cohn, T. A., Faber, B. A., Stedinger, J. R., Thomas Jr., W. O., Veilleux, A. G., 
Kiang, J. E. and Mason, Jr., R. R.: Guidelines for determining flood flow frequency—Bulletin 
17C, USGS Numbered Series, U.S. Geological Survey, Reston, VA., 2019. 



Gochis, D., Schumacher, R., Friedrich, K., Doesken, N., Kelsch, M., Sun, J., Ikeda, K., Lindsey, 
D., Wood, A., Dolan, B., Matrosov, S., Newman, A., Mahoney, K., Rutledge, S., Johnson, R., 
Kucera, P., Kennedy, P., Sempere-Torres, D., Steiner, M., Roberts, R., Wilson, J., Yu, W., 
Chandrasekar, V., Rasmussen, R., Anderson, A. and Brown, B.: The Great Colorado Flood of 
September 2013, Bull. Am. Meteorol. Soc., 96(9), 1461–1487, doi:10.1175/BAMS-D-13-
00241.1, 2015. 

Gochis, D., Barlage, M., Dugger, A., FitzGerald, K., Karsten, L., McAllister, M., McCreight, J., 
Mills, J., Pan, L., RafieeiNasab, A., Read, L., Sampson, K., Yates, D., Yu, W. and Zhang, Y.: 
The WRF-Hydro modeling system technical description, (Version 5.0), UCAR/NCAR., 2018. 

Gupta, H. V., Kling, H., Yilmaz, K. K. and Martinez, G. F.: Decomposition of the mean squared 
error and NSE performance criteria: Implications for improving hydrological modelling, J. 
Hydrol., 377(1–2), 80–91, doi:10.1016/j.jhydrol.2009.08.003, 2009. 

Hosking, J. R. M. and Wallis, J. R.: Some statistics useful in regional frequency analysis, Water 
Resour. Res., 29(2), 271–281, doi:10.1029/92WR01980, 1993. 

Hosking, J. R. M. and Wallis, J. R.: Regional Frequency Analysis: An Approach Based on L-
Moments, Cambridge University Press, Cambridge., 1997. 

James, B., Mark, B., Rory, N., William, W., Erwin, W., Monique, R. and Isabelle, T., Eds.: 
Australian Rainfall and Runoff: A Guide to Flood Estimation., 2019. 

Jarret, R. D. and Costa, J. E.: Evaluation of the flood hydrology in the Colorado Front Range 
using precipitation, streamflow, and paleoflood data for the Big Thompson River basin., 1988. 

Jarrett, R. D.: Hydrology and paleohydrology used to improve the understanding of flood 
hydrometeorology in Colorado, Des. Hydraul. Struct., 89, 9–16, 1989. 

Lin, P., Hopper, L. J., Yang, Z.-L., Lenz, M. and Zeitler, J. W.: Insights into 
Hydrometeorological Factors Constraining Flood Prediction Skill during the May and October 
2015 Texas Hill Country Flood Events, J. Hydrometeorol., 19(8), 1339–1361, doi:10.1175/JHM-
D-18-0038.1, 2018. 

Miller, M. P., Susong, D. D., Shope, C. L., Heilweil, V. M. and Stolp, B. J.: Continuous 
estimation of baseflow in snowmelt-dominated streams and rivers in the Upper Colorado River 
Basin: A chemical hydrograph separation approach, Water Resour. Res., 50(8), 6986–6999, 
doi:10.1002/2013WR014939, 2014. 

Miller, M. P., Buto, S. G., Susong, D. D. and Rumsey, C. A.: The importance of base flow in 
sustaining surface water flow in the Upper Colorado River Basin: UCRB BASE FLOW 
DISCHARGE TO STREAMS, Water Resour. Res., 52(5), 3547–3562, 
doi:10.1002/2015WR017963, 2016. 

Mitchell, K. E.: The multi-institution North American Land Data Assimilation System 
(NLDAS): Utilizing multiple GCIP products and partners in a continental distributed 
hydrological modeling system, J. Geophys. Res., 109(D7), D07S90, doi:10.1029/2003JD003823, 
2004. 

Naghettini, M., Potter, K. W. and Illangasekare, T.: Estimating the upper tail of flood-peak 
frequency distributions using hydrometeorological information, Water Resour. Res., 32(6), 
1729–1740, doi:10.1029/96WR00200, 1996. 



Nathan, R. and Weinmann, E.: Book VI:Estimation of large and extreme floods, In Australian 
Rainfall and Runoff: A Guide to Flood Estimation, Engineers Australia, Canberra., 2000. 

National Weather Service (NWS): Exceedance Probability Analysis for the Colorado Flood 
Event, 9 - 16 September 2013, Hydrometeorological Design Studies Center, Silver Spring, 
Maryland. [online] Available from: 
https://www.nws.noaa.gov/oh/hdsc/aep_storm_analysis/8_Colorado_2013.pdf, 2013. 

National Weather Service (NWS): The Record Front Range and Eastern Colorado Floods of 
September 11–17, 2013, National Oceanic and Atmospheric Administration, National Weather 
Service, Silver Spring, Maryland., 2014. 

Niu, G.-Y., Yang, Z.-L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., Kumar, A., Manning, 
K., Niyogi, D., Rosero, E., Tewari, M. and Xia, Y.: The community Noah land surface model 
with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-
scale measurements, J. Geophys. Res., 116(D12), D12109, doi:10.1029/2010JD015139, 2011. 

O’Connell, D. R. H.: FLDFRQ3: Three-parameter maximum likelihood flood-frequency 
estimation with optional probability regions using parameter grid integration, Denver, Colorado., 
1999. 

O’Connell, D. R. H., Ostenaa, D. A., Levish, D. R. and Klinger, R. E.: Bayesian flood frequency 
analysis with paleohydrologic bound data: BAYESIAN FLOOD FREQUENCY, Water Resour. 
Res., 38(5), 16-1-16–13, doi:10.1029/2000WR000028, 2002. 

Rumsey, C. A., Miller, M. P., Susong, D. D., Tillman, F. D. and Anning, D. W.: Regional scale 
estimates of baseflow and factors influencing baseflow in the Upper Colorado River Basin, J. 
Hydrol. Reg. Stud., 4, 91–107, doi:10.1016/j.ejrh.2015.04.008, 2015. 

Sanford, W. E. and Selnick, D. L.: Estimation of Evapotranspiration Across the Conterminous 
United States Using a Regression With Climate and Land-Cover Data 1: Estimation of 
Evapotranspiration Across the Conterminous United States Using a Regression with Climate and 
Land-Cover Data, JAWRA J. Am. Water Resour. Assoc., 49(1), 217–230, 
doi:10.1111/jawr.12010, 2013. 

Senatore, A., Mendicino, G., Gochis, D. J., Yu, W., Yates, D. N. and Kunstmann, H.: Fully 
coupled atmosphere-hydrology simulations for the central Mediterranean: Impact of enhanced 
hydrological parameterization for short and long time scales: FULLY COUPLED 
ATMOSPHERE-HYDROLOGY MODEL, J. Adv. Model. Earth Syst., 7(4), 1693–1715, 
doi:10.1002/2015MS000510, 2015. 

Sexstone, G. A., Clow, D. W., Fassnacht, S. R., Liston, G. E., Hiemstra, C. A., Knowles, J. F. 
and Penn, C. A.: Snow Sublimation in Mountain Environments and Its Sensitivity to Forest 
Disturbance and Climate Warming, Water Resour. Res., 54(2), 1191–1211, 
doi:10.1002/2017WR021172, 2018. 

Tolson, B. A. and Shoemaker, C. A.: Dynamically dimensioned search algorithm for 
computationally efficient watershed model calibration: DYNAMICALLY DIMENSIONED 
SEARCH ALGORITHM, Water Resour. Res., 43(1), doi:10.1029/2005WR004723, 2007. 

U.S. Bureau of Reclamation (USBR): A framework for developing extreme flood inputs for dam 
safety risk assessments, Draft., 1999. 



U.S. Bureau of Reclamation (USBR): Hydrologic Hazard Curve Estimating Procedures., 2004. 

U.S. Bureau of Reclamation (USBR): Guidelines for Evaluating Hydrologic Hazards., 2006. 

U.S. Bureau of Reclamation (USBR): Dam Safety Public Protection Guidelines, Denver, 
Colorado., 2011a. 

U.S. Bureau of Reclamation (USBR): Dam Safety Public Protection Guidelines – Examples of 
Use, Denver, Colorado., 2011b. 

Weghorst, K. M. and Klinger, R. E.: Preliminary Hydrologic Loadings for Los Banos and Little 
Panoche Dams, California, Flood Hydrology Group, Bureau of Reclamation, Denver, Colorado., 
2002. 

Weibull, W.: A statistical theory of strength of materials, IVB-Handl, (151), 1–45, 1939. 

Wickenberg, D. F.: Fresno Dam Probable Maximum Flood, Bureau of Reclamation, Great Plains 
Regional Office, Billings, Montana., 1985. 

Wright, D. B., Smith, J. A. and Baeck, M. L.: Flood frequency analysis using radar rainfall fields 
and stochastic storm transposition, Water Resour. Res., 50(2), 1592–1615, 
doi:10.1002/2013WR014224, 2014. 

Wright, D. B., Mantilla, R. and Peters-Lidard, C. D.: A remote sensing-based tool for assessing 
rainfall-driven hazards, Environ. Model. Softw., 90, 34–54, doi:10.1016/j.envsoft.2016.12.006, 
2017. 

Wright, D. B., Yu, G. and England, J. F.: Six decades of rainfall and flood frequency analysis 
using stochastic storm transposition: Review, progress, and prospects, J. Hydrol., 585, 124816, 
doi:10.1016/j.jhydrol.2020.124816, 2020. 

Yu, G., Wright, D. B., Zhu, Z., Smith, C. and Holman, K. D.: Process-based flood frequency 
analysis in an agricultural watershed exhibiting nonstationary flood seasonality, Hydrol. Earth 
Syst. Sci., 23(5), 2225–2243, doi:10.5194/hess-23-2225-2019, 2019. 

Yucel, I., Onen, A., Yilmaz, K. K. and Gochis, D. J.: Calibration and evaluation of a flood 
forecasting system: Utility of numerical weather prediction model, data assimilation and 
satellite-based rainfall, J. Hydrol., 523, 49–66, doi:10.1016/j.jhydrol.2015.01.042, 2015. 



Figures 

Figure 10.  (a) Study region showing Colorado, the Big Thompson River watershed, and the extent of the 
stochastic storm transposition domain. The inset in (a) shows conterminous United States with the state of 
Colorado highlighted in grey. The Big Thompson River watershed showing land surface elevation and river 
channels (b), and NLCD 2016 land use (c).  



 

 

 

Figure 12.  The seasonality (a) and spatial distribution (b) of the extreme precipitation in the SST derived 
storm catalog. Black dots in (b) are the locations of the centers of 360 storms and their size represent the 
number of occurrence. 

 

Figure 11.  Flowcharts of the process-based flood frequency and volume analysis approach. 

 



 

Figure 13.  WRF-Hydro model validation in terms of long-term (36 year) water balance (a), SWE 
climatology (b), daily hydrograph (c), annual peak flows (d) and maximum 1-day flood volume (e). The 
validation period is from water year 1983 to 2018, which overlaps calibration period, 2007-2016. The 1-
day flood volume in d is represented as daily mean discharge. 

Figure 14.  The seasonality of annual flood peaks and the climatology of maximum daily precipitation, 
mean daily snowmelt rate and mean daily soil moisture.  



 

 

 

Figure 15.  Assessment of two historical peak floods using observed (USGS) streamflow and (NLDAS-2) 
precipitation and simulated basin-averaged snowmelt, SWE, snowcover fraction, ground temperature, 
streamflow, soil moisture, and streamflows at the watershed outlet. The 1999 flood event (a) was driven by 
snowmelt while the 2013 flood event was extreme rainfall-driven. 

 

 



 

 

Figure 16.  Flood frequency analyses for Big Thompson River above Lake Estes using statistical and 
process-based approaches. The process-based FFA are shown in two ways: 1,000 year recurrence interval 
with 10 realizations (blue solid line and shaded areas); 10,000 year recurrence interval with single 
realization (blued dashed line). Gray dashed lines represent 90% confidence intervals for LP3-based flood 
frequency curves. Paleoflood nonexceedance bound data is shown as filled gray rectangles. Blue (green) 
error bar represents the one snowmelt (rainfall)-driven flood range using the deterministic approach.  



 

 

 

Figure 17.  The relationships between peak discharge and 72-h precipitation (a), maximum hourly 
precipitation rate (b), 72-h snowmelt (c) and antecedent top-layer soil moisture (d). Both observed and 
simulated annual peak discharge are shown here and grouped into rainfall- and snowmelt-driven events.  

 

 



 

 
Figure 18.  Empirical ploting position for 1-, 3-, 5-, 7-, and 15-day flood volumes are compired with 
coincidence relationship of flood volumes (a) and process-based FFA (b). The conincidence relationship 
examined in (a) are for the six largest 1-day flood volumes.  
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