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Executive Summary 
Conservation areas managed by LCR MSCP are surrounded by landscapes which are often 
markedly different (e.g. agricultural land, raw desert) with respect to vegetation and terrain. 
Changes in soil moisture in these surrounding areas may impact LCR MSCP restored habitat but 
currently are not monitored by LCR MSCP. Imagery that overlaps both LCR MSCP and non-
LCR MSCP areas and which has been integrated with localized soil moisture data can provide a 
means whereby local and regional soil moisture variables can be related. This “data fusion” 
approach seeks to leverage the large spatial extent, data quality, and derived products associated 
with satellite and/or aerial imagery with the accuracy and high temporal resolution of ground-
based soil moisture monitoring equipment. The fusion of different datasets is further warranted 
when considering that the timing and resolution of imagery from satellites and aerial platforms is 
not always well suited to the system of interest, while the number of soil moisture loggers is 
limited due to cost and logistics. 

A literature review of concepts, software, workflows, and algorithms was conducted to 
understand the current state of the science. Software packages (both commercial and open 
source) were evaluated and tested. Subject matter experts from within the BOR and other Federal 
and local agencies, software vendors, and academia were consulted. 

The results identified work flows and algorithms which are most likely to produce a 
usable and robust soil moisture retrieval process for the LCR MSCP area of interest. The selected 
research uses free and publicly available imagery and data and utilizes well-established 
relationships between vegetation and temperature and is not directly dependent on ancillary data. 
Modifications are proposed to allow for the more realistic modelling of the areas of interest. 

The original model inputs and equation coefficients will need to be quantified for LCR 
MSCP conservation areas. Vegetation, soil type, and other physical characteristics of the areas of 
interest may need to be mapped in more detail than is currently available through existing 
datasets to achieve this. Significant testing of the finalized work flow will be required to ensure a 
functional output and modifications to the selected algorithms may be necessary. 
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Main Report 
Background 
The Lower Colorado Region Multi-Species Conservation Program (LCR MSCP) has developed 
a soil moisture monitoring network as part of its tasking to create and maintain habitat for 
covered species in designated conservation areas. This information is a component of 
management decisions directly related to (1) the surface soil moisture (SSM) needs for avian 
habitat requirements and (2) vegetation health requirements with respect to evapotranspiration 
(LCR MSCP). SSM is generally defined as the relative soil water content from 0 to 10 cm in 
depth. In addition to the efforts of LCR MSCP, the Bureau of Reclamation (BOR) employs soil 
moisture information to validate and monitor such environmental and operational parameters as 
water budgets, soil condition, and habitat condition as it pertains to management decisions 
regarding endangered species, invasive plants, and fire regime. Soil moisture is an input 
parameter used by the AgriMet network to monitor irrigation water management (BOR 
AgriMet). More generally, soil moisture indices are important components of hydrological 
modeling in forested (Hogg, Barr, and Black 2013), agricultural (Carrao et al. 2016), and arid 
landscapes (Halwatura et al. 2017). Soil moisture is broadly used in studying drought assessment 
and prediction (Zhang et al. 2016; Kathuria, Mohanty, and Katzfuss 2019).  

Conservation areas managed by LCR MSCP are surrounded by landscapes which are 
often markedly different (e.g. agricultural land, open desert) with respect to vegetation and 
terrain. Changes in soil moisture in these surrounding areas may impact LCR MSCP restored 
habitat but currently are not monitored by LCR MSCP. Imagery that overlaps both LCR MSCP 
and non-LCR MSCP areas and which has been integrated with localized soil moisture data can 
provide a means whereby local and regional soil moisture variables can be related. This “data 
fusion” approach seeks to leverage the large spatial extent, data quality, and derived products 
associated with satellite and/or aerial imagery with the accuracy and high temporal resolution of 
ground-based soil moisture monitoring equipment. The fusion of different datasets is further 
warranted when considering that the timing and resolution of imagery from satellites and aerial 
platforms is not always well suited to the system of interest, while the number of soil moisture 
loggers is limited due to cost and logistics. 

Remote Sensing of Soil Moisture 

All things being equal, microwave emissivity has a nearly linear relationship to soil moisture 
(Mattikalli et al. 1998). Within the general category of Radiative Transfer Models (RTM) 
(Mohanty et al. 2017), the remote sensing of soil moisture information via satellite systems 
(Figure 1) measures the microwave radiance, or brightness temperature (Tb), primarily in the C, 
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Satellite Frequency Band Spatial resolution Temporal resolution Sensor type 

GHz d 

AMSR-2 GCOM-Wl 6.9-89 s,x 25-50km 2 passive 

AMSR-E Aqua 6.9-89 c,x 25-50 km 2 passive 

Aquarius Aquarius 1.26 L (active) 76-156km 7 active/passive 

1.41 L (passive) 

ASAR ENVISAT 5.33 C 30-1000 m 5 active 

ASCAT MetOp 5.25 C 25-50 km 2 active 

MIRAS SMOS 1.4 L 35-60km 3 passive 

NISAR NISAR LandS 0.I-50km 12-60 active 

PALSAR ALOS 1.27 L 10-I0Om 46 active 

RADARSAT-1 & -2 5.40 C !Om 24 active 

Tandem-L Tandem-L 1.2 L 3-20m 8 active 

Sentinel-IA & -18 C S-20m 6-12 active 

SMAP SMAP 1.41 L (passive) 40 km (passive) 2- 3 active/ passive 

1.26 L (active) 3 km (active) 2-3 

SSM/1 SSM/1 19.35 K 13-69 km o.s passive 

WindSAT Coriolis 6.8-37 C,X,andK 8-71 km 8 passive 

Fusion of In-Situ and Remotely Sensed Soil Moisture Data 

L, and S bands received at the platform’s radiometer.  The observed brightness temperature of 
the surface is determined by soil moisture, soil composition and surface roughness (Brubaker and 
Entekhabi 1996) and attenuated by vegetation canopy effects (Gillies and Carlson 1995). Due to 
the physical characteristics of a passive satellite system, the spatial resolution of soil moisture 
data is generally coarse, typically on the scale of tens of kilometers. This is often too large a 
resolution for analysis of many landscapes, including the study area herein where the mean area 
of sites is just under three square kilometers. Roy et al. (2016) demonstrated the importance of 
sub-pixel heterogeneity with respect to soil temperature and vegetation composition when 
estimating soil moisture content, with the subsequent implication for reducing pixel size. 

In order to increase the initial spatial resolution of soil moisture retrieval algorithms 
(downscaling), two general approaches are used: (1) visible and near infrared satellite 
observations and their associated data products to increase resolution and accuracy of SSM 
retrieval (Mallick, Bhattacharya, and Patel 2009). and (2) use of active sensors (e.g. radar) to 
estimate soil moisture at a finer scale (Dubois et al. 1995; Oh et al. 1992). The concept of 
downscaling is discussed in subsequent sections as it is a primary consideration for conducting 
this research. 

Figure 1. From Mohanty et al. 2017:  Remote sensing instruments and satellite platforms (past 
and current) for soil moisture retrieval. 

In addition to RTMs; the primary methods for estimating soil moisture via passive remote 
sensing can be grouped as: Universal Triangular Relationship Method, statistical analysis 
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technique (e.g. linear regression), and the application of neural networks (Ahmad, Zhang, and 
Nichols 2011). The Universal Triangular Relationship Method refers to the formalized regression 
between the parameters of soil moisture, Normalized Difference Vegetation Index (NDVI), and 
land surface temperature (LST) (Carlson 2007). Neural networks are artificial intelligence 
algorithms which incorporate a series of complex, complementary mathematical functions which 
direct the output towards a user -defined result. The back propagation neural network is a 
primary application in remote sensing for pattern recognition and time series data and in 
estimating soil moisture (Chai et al. 2008). 

Visible and Infrared 

Visible spectrum wavelengths (red, green and blue) as well as near-infrared (NIR) and thermal 
infrared (TIR) pixel values are integrated with vegetation indices such as NDVI (red and NIR 
wavelengths are its components), Enhanced Vegetation Index, and Vegetation Condition Index 
to estimate soil moisture (Esfahani et al. 2015). Similarly, Shafian and Maas (2015) have used 
raw image pixel digital count data in the red, NIR, and TIR spectral bands evaluated against 
LANDSAT ground cover data to create a soil moisture index. Haijun et al. (2017) produced 
hyperspectral images (400 - 1000 nm; 339 spectral channels) of soil samples and identified 256 
optimal wavelengths. Analysis of this data produced several model variables which showed 
highly significant and accurate responses to soil moisture variability. 

LiDAR 

LiDAR (Light Detection and Ranging) intensity responds to soil moisture variability most 
strongly for bare soil; soil moisture has greatly less influence on received pulse intensity where 
vegetation is present (Garroway, Hopkins, and Jamieson 2011). For vegetated land cover types, 
airborne LiDAR data can be used indirectly to measure soil moisture as an input in terrain 
analysis models (Hardy 2010) and in the creation of indices ancillary to soil moisture such as 
topographic wetness and canopy height (Southee, Treitz, and Neal 2012). 

Data Fusion 
Data fusion is defined in Chang and Bai (2018) as any process which creates an 

integrated dataset through the synergistic merging of numerous data sources that produces more 
information than any one of the inputs. Hall and Llinas (1997) expands on this in noting 
increased accuracy and greater ability to infer relationships and trends through data fusion. More 
specifically (and for the purposes of this project), image fusion involves the integration of two or 
more images from different sensors and is categorized by Pohl and Van Genderen (1998) into 
three levels depending on what stage the fusion is performed: pixel, feature, and decision (Figure 
2); Chang and Bai (2018) describe these as low level, intermediate level and advanced level, 
respectively. As the name implies, pixel level fusion is the blending of pixel information after 
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some mathematical operation is applied on each pixel and /or for each image. Image sharpening 
is an example of fusion at the pixel level. Feature level fusion begins with the extraction of 
features from each image based on classification and/or extraction algorithms with respect to 
geometry, radiometric value, etc. Land use/land cover maps are produced utilizing this type of 
fusion process. Decision level fusion follows similar procedures as feature level fusion with 
respect to feature extraction. Features are then identified and the data fused following external 
decision rules based on mathematical operators, including the use of Bayesian and “fuzzy logic 
“methods (Waltz 2001).  

Figure 2. From Pohl and Van Genderen (1998): Diagram of fusion levels. 

In-Situ Soil Moisture Data 
In-situ SSM data has been used to evaluate and validate satellite soil moisture retrieval products 
such as the NASA Soil Moisture Active Passive mission (SMAP) (Zhang, Kim, and Sharma 
2019; Velpuri, Senay, and Morisette 2016.) The SMAP mission was in itself a data fusion 
exercise in that a passive microwave radiometer was paired with an active radar sensor in order 
to downscale the microwave soil moisture data from 36 km to 3 km Due to the failure of the 
radar sensor soon after launch, available SMAP products range from 9 to 36km in resolution 
(NASA SMAP). Senanayake et al. (2019) incorporated in-situ SSM data in a regression tree 
model which accurately downscaled the SMAP Enhanced 9 km radiometric product to an output 
1km resolution. 
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Methods 
A literature review of concepts, software, workflows, and algorithms was conducted to 
understand the current state of the science. Software packages (both commercial and open 
source) were evaluated and tested, such as Geomatica (PCI Geomatics), eCognition (Trimble), 
and ENVI/IDL (L3 Harris Geospatial Solutions). Subject matter experts from within the BOR 
and other Federal and local agencies, software vendors, and academia were consulted. 

With the definitions and concepts regarding data fusion and the remote sensing of soil 
moisture taken into consideration, this research will determine the feasibility of estimating soil 
moisture by combining in-situ measurements with remotely sensed data such as aerial and 
satellite multi-spectral imagery. The priority for this scoping project has been to utilize open 
source software and publicly available imagery and data. The overall goal is to provide a 
foundation and framework from which soil moisture metrics and/or predictive model(s) for the 
areas of interest can be created as a next step. 

Results 
A review of what are known as spatio-temporal fusion models revealed half a dozen or so 
different versions (e.g. STAARCH, SPSTFM, STDF, etc.); each has its specific applications and 
limitations. Spatio-temporal fusion compares pairs of different datasets at the same location and 
time in order to quantify the correlation of physical characteristics of each. There are three 
general categories of this type of data fusion: weighted function based, unmixing based, and 
dictionary-pair learning based (Zhu et al. 2016). The workflow and approach found in Xu et al. 
(2018) have been determined here to be the most likely to produce a usable and robust soil 
moisture retrieval process for the LCR MSCP area of interest. It uses free and publicly available 
imagery and data and utilizes well-established relationships between vegetation and temperature 
and is not directly dependent on ancillary data. This research fused MODIS and LANDSAT data 
(Figure 3) to create a non-linear model for SSM values using NDVI and LST. 

The imagery fusion model was implemented via the Spatial and Temporal Adaptive 
Reflectance Fusion Model (STARFM) developed by Gao et al. (2006). This pixel-level 
algorithm fuses spatial information from LANDSAT with temporal information from MODIS by 
comparing one or more pairs of LANDSAT and MODIS images; each pair taken from the same 
date.  The Universal Triangle relationship between LST and NDVI is incorporated with the 
downscaled imagery to produce SSM data at 120m resolution (Figure 4). 
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Band 1, 620 run to 670 nm, 
is primarily used for land, cloud, 
and aerosols boundaries. 

Band 2, 841 run to 876 nm, is 
primarily used for land, cloud , and 
aerosols properties. 

Band 32, 11.77 um to 12.27 um, is 
primarily used for s urface and 
cloud temperature. 

Band 4 

Band 5 

TIR2 

Landsat 8 

Band 4, 636 nm to 673 nm, is a red band. 

Band 5, 8511m1 to 879 nm, is a near 
infrared band. 

TIR2, 11.50 um to 12.51 um, is a thermal 
infrared band. 

Fusion of In-Situ and Remotely Sensed Soil Moisture Data 

Figure 3. From Xu et al. 2018: MODIS (1000 m) and LANDSAT 8 (30 m) corresponding bands. 

The single channel method of Jimenez-Munoz et al. (2009) derives LST from the fused thermal 
infrared data. SSM values are produced using the regression equation (Equation1): 

𝑖𝑖=𝑛𝑛 𝑖𝑖=𝑛𝑛 

SSM = � � 𝑎𝑎𝑖𝑖𝑖𝑖 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁∗(𝑖𝑖)𝑇𝑇∗(𝑖𝑖) 

𝑖𝑖=0 𝑖𝑖=0 

(1) 

where NDVI* and T* are scaled values of NVDI and LST. The regression coefficients aij are 
quantified from the in-situ soil moisture data. 

A modification to the above workflow is considered herein where the STARFM fusion 
model for each band is replaced with the Enhanced Spatial and Temporal Adaptive Reflectance 
Fusion Model (ESTARFM). Developed by Zhu et al. (2010), ESTARFM analyzes at least two 
pairs of pre-processed (geometric and radiometric) images, from one fine resolution (in this case 
LANDSAT) and one coarse resolution (MODIS) sensor, each image pair taken at the same date 
(or as close as possible) (Figure 5). Utilizing spectral unmixing of the coarse resolution data, the 
difference in time between the two image pairs establishes an observed reflectance trend between 
sensors, essentially as training data, which then is applied to a third pair of images to produce the 
final result (Chang and Bai 2018). The motivation for choosing ESTARFM is that STARFM 
does not accurately quantify surface reflectance for heterogenous landscapes (Chang et al. 2016), 
whereas ESTARFM was developed for that particular application (Zhu et al. 2010) and has 
improved performance compared to STARFM (Emelyanova et al. 2013). 
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Figure 4. From Xu et al. (2018): Flow chart for fusion of MODIS and LANDSAT 8 measurements for
SSM retrieval. 

Figure 5. From Zhu et al. (2010): ESTARFM algorithm flowchart. 
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Fusion of In-Situ and Remotely Sensed Soil Moisture Data 

Preliminary testing of ESTARFM of LANDSAT and MODIS images used ENVI 5.5.2 tools 
(e.g. Image Registration) to pre-process the data. The ESTARFM algorithm was run in IDL 
8.7.2. 

a. b. 

Figure 6. Original MODIS image (a) and ESTARFM output (b). 
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Conclusions 
If the proposed workflow leads to accurate, detailed, and frequently updated soil moisture 
information over large areas, then all activities using such data will be enhanced. Producing soil 
moisture data products that are coherent across different scales will allow for analyses to be 
conducted at different scales as well. Any Reclamation entity which uses field data could 
conceivably adopt data fusion methodology for its particular needs. Data products derived in 
such a way could greatly increase the accuracy and utility of existing models and analysis tools. 
This in turn would guide and improve adaptive management decision making processes. 

Next Steps 

With respect to the workflow shown in Figure 4, Xu et al. (2018) note the importance of scaling 
NDVI and LST inputs to a particular landscape. Vegetation, soil type, and other physical 
characteristics of the areas of interest may need to be mapped at a higher resolution than is 
currently available through existing datasets to achieve this. Additionally, the coefficients in 
Equation 1 will need to be quantified from the in-situ soil moisture data. Zhu et al. (2018) 
describe the moving search window which is an essential part of the correlation of pixel 
information between coarse and fine imagery pairs in the ESTARFM algorithm. The size of the 
search window is dependent on landscape heterogeneity and this parameter may similarly need 
to be categorized by conservation area. 

Currently, LCR MSCP acquires multispectral aerial imagery (15cm resolution) as well as 
LiDAR data and products nearly annually. These datasets may be used to establish additional 
fusion processes with the possibility of increased downscaling of data. The ESTARFM program 
can be modified to incorporate aerial imagery into its workflow (Dr. Xiaolin Zhu, personal 
communication; August 7, 2019). Alternatively, aerial imagery can be used as one of two 
required datasets (with LANDSAT/MODIS processed through ESTARFM as the second) in the 
Flexible Spatiotemporal Data Fusion (FSDAF) method (ibid.). FSDAF is similar in approach to 
ESTARFM; it adds spatial interpolation techniques to allow for abrupt landscape changes (Zhu 
et al. 2016). Considering that some LCR MSCP conservation areas experience seasonal flooding 
in certain sections, FSDAF may also be considered as a substitute fusion model in the workflow 
shown in Figure 4 in those instances. 

In the expectation that BOR will increase the use and availability of Unmanned Aerial 
Systems (UAS), the temporal resolution of high resolution multispectral, hyperspectral, and 
LiDAR imagery can be matched to that of satellite systems, at least over short time periods. UAS 
data can be fused either on its own (Sankey et al. 2018) or as a more detailed level of 
downscaling as part of the workflow suggested here. The capability and cost-effectiveness of 
UAS data is also expected to increase, as evidenced by development of drones with integrated 
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LiDAR and visible sensor payloads (Analityk). Finally, Larson et al. (2008) demonstrated the 
significant and accurate response of GPS signals to soil moisture and proposed the use of GPS 
base stations as proxy soil moisture monitors, therefore providing a potential source of additional 
in-situ SSM data. 



 

 

 

 
  
   

 
   

 

 
 

 
 

  
 

  
   

 
 

  
 

  
   

  
 

 
 

  
 

   
 

 
 

  
 

 

  
 

 
    

  
  

 

ST-2019-19136 

References 
Ahmad, Amer, Yun Zhang, and Sue Nichols. (2011).  Review and evaluation of remote sensing 
methods for soil-moisture estimation. SPIE Reviews 2(1). 

Analityk. Retrieved from https://analytik.co.uk/fusing-lidar-with-hyperspectral-imaging/. 

Brubaker, K. L. and D. Entekhabi. (1996). Analysis of feedback mechanisms in land-atmosphere 
interaction. Water Resources Research 32(5): 1343–1357. 

BOR AgriMet. Retrieved from https://www.usbr.gov/pn/agrimet. 

LCR MSCP. Retrieved from https://www.lcrmscp.gov/workplans. 

Carlson, T. (2007). An overview of the “triangle method” for estimating surface 
evapotranspiration and soil moisture from satellite imagery. Sensors 7(8): 1612–1629. 

Carrao, Hugo, Simone Russo, Guadalupe Sepulcre-Cantoa, Paulo Barbosa. (2016). An empirical 
standardized soil moisture index for agricultural drought assessment from remotely sensed data. 
International Journal of Applied Earth Observation and Geoinformation 48: 74–84. 

Chai, Soo-See, Bert Veenendaal, Geoff West , and Jeffrey Philip Walker. (2008). 
Backpropagation Neural Network for Soil Moisture Retrieval Using Nafe’05 Data: A 
Comparison Of Different Training Algorithms. The International Archives of the 
Photogrammetry, Remote Sensing and Spatial Information Sciences 37: 1345-1350. 

Chang, N.B., Bai, K.X., Imen, S., Chen, C.F., and Gao,W. (2016). Multi-sensor satellite image 
fusion, networking, and cloud removal for all-weather environmental monitoring. IEEE Systems 
Journal: 1-17. 

Chang, Ni-Bin and Kaixu Bai. Multisensor Data Fusion and Machine Learning for 
Environmental Remote Sensing. CRC Press, Boca Raton, 2018. 

Das, N. N., D. Entekhabi, and E. G. Njoku. (2011). An algorithm for merging SMAP radiometer 
and radar data for high-resolution soil-moisture retrieval.  IEEE Transactions on Geoscience and 
Remote Sensing 49(5):1504–1512. 

Dubois, P. C., J. van Zyl, and T. Engman. (1995). Measuring soil moisture with imaging radars.  
IEEE Transactions on Geoscience and Remote Sensing 33(4): 915–926. 

Emelyanova, I. V., McVicar, T. R., Van Niel, T. G., Li, L. T., & van Dijk, A. I. J. M. (2013). 
Assessing the accuracy of blending Landsat–MODIS surface reflectances in two landscapes 
with contrasting spatial and temporal dynamics: A framework for algorithm selection. Remote 
Sensing of Environment 133: 193–209. 

19 

https://www.lcrmscp.gov/workplans
https://www.usbr.gov/pn/agrimet
https://analytik.co.uk/fusing-lidar-with-hyperspectral-imaging


 

 

 
  

   
 

  
 

   
 

 
 

  
 

  

  
 

  
  

 
 

  
  

 
 
 

  
 

  
  

 

 
   

 
 

   
 

 
 

 
 

  
   

    
 

Fusion of In-Situ and Remotely Sensed Soil Moisture Data 

Hassan-Esfahani, Leila, Alfonso Torres-Rua, Austin Jensen, and Mac McKee. (2015). 
Assessment of Surface Soil Moisture Using High-Resolution Multi-Spectral Imagery and 
Artificial Neural Networks. Remote Sensing 7: 2627-2646. 

Feng Gao, Masek, J., Schwaller, M., & Hall, F. (2006). On the blending of the Landsat and 
MODIS surface reflectance: predicting daily Landsat surface reflectance. IEEE Transactions on 
Geoscience and Remote Sensing 44(8): 2207-2218. 

Garroway, Kevin, Christopher Hopkinson, and Rob Jamieson.(2011). Surface moisture and 
vegetation influences on lidar intensity data in an agricultural watershed. Canadian Journal of 
Remote Sensing 37(3). 

Gillies, R. R.  and T. N. Carlson. (1995). Thermal remote sensing of surface soil water content 
with partial vegetation cover for incorporation into climate models. Journal of Applied 
Meteorology 34(4): 745–756. 

Haijun, Qi, Jin Xiu, Zhao Liu, DEDO Irene Maxime, Li Shaowen. (2017). 
Predicting sandy soil moisture content with hyperspectral imaging. Int J Agric & Biol Eng, 
10(6): 175–183. 

Hall, D.L. and Llinas, J. (1997). An Introduction to multisensory data fusion. Proceedings of the 
IEEE 85: 6-23. 

Halwatura, Devanmini, Neil McIntyre, Alex M. Lechner, Sven Arnold. (2017). Capability of 
meteorological drought indices for detecting soil moisture droughts. Journal of Hydrology: 
Regional Studies 12: 396-412, 

Hardy, Andrew J. (2010). Mapping soil moisture as an indicator of transport corridor 
slope instability using remotely sensed data. Journal of Maps Student Edition: 1-11. 

Hogg, E.H., A.G. Barr, T.A. Black. (2013). A simple soil moisture index for representing multi-
year drought impacts on aspen productivity in the western Canadian interior. Agricultural and 
Forest Meteorology 178–179: 173–182. 

Kathuria, D., Mohanty, B. P., and Katzfuss, M. (2019). A nonstationary geostatistical framework 
for soil moisture prediction in the presence of surface heterogeneity. Water Resources Research 
55: 729–753. 

L3 Harris Geospatial Solutions. Retrieved from https://www.harrisgeospatial.com/Software-
Technology/ENVI. 

Larson, Kristine M., Eric E. Small, Ethan D. Gutmann, Andria L. Bilich, 
John J. Braun, and Valery U. Zavorotny. (2008). Use of GPS receivers as a soil moisture 
network for water cycle studies. Geophysical Research Letters 35: L24405. 

https://www.harrisgeospatial.com/Software


 

 

 

 
 

   
 

 
   

  
 

 
   

 
   

   
   

 
 

   
  

 
  

 

  
 

 
 

 
 

 
  

 
  

 
    

   
 

   
 

  
  

 

ST-2019-19136 

Mallick, K., B. K. Bhattacharya, and N. K. Patel. (2009).  Estimating volumetric surface 
moisture content for cropped soils using a soil wetness index based on surface temperature and 
NDVI. Agricultural and Forest Meteorology 149(8): 1327–1342. 

Mattikalli, N.M., E. T. Engman, L. R. Ahuja, and T. J. Jackson. (1998). 
Microwave remote sensing of soil moisture for estimation of profile soil property. International 
Journal of Remote Sensing 19(9): 1751–1767. 

Mohanty, B. P., M. H. Cosh, V. Lakshmi, and C. Montzka. (2017). Soil Moisture Remote 
Sensing: State-of-the-Science. Vadose Zone Journal 16. 

Jiménez-Muñoz, J.C.; Cristóbal, J.A.; Sòria, G.; Ninyerola, M.; Pons, X. (2009). Revision of the 
single-channel algorithm for land surface temperature retrieval from Landsat thermal-infrared 
data. IEEE Transactions on Geoscience and Remote Sensing 47: 339–349. 

Oh, Y., K. Sarabandi, and F. T. Ulaby. (1992). An empirical model and an inversion technique 
for radar scattering from bare soil surfaces. IEEE Transactions on Geoscience and Remote 
Sensing 30(2): 370–381. 

PCI Geomatics. Retrieved from https://www.pcigeomatics.com/. 

Pohl, C., and Van Genderen, J. L. (1998). Multisensor image fusion in remote sensing: Concepts, 
methods and applications. International Journal of Remote Sensing 19(5): 823-854. 

Roy, Swapan Kumar, Tracy L. Rowlandson, Aaron A. Berg, Catherine Champagne, Justin R. 
Adams. (2016). Impact of sub-pixel heterogeneity on modelled brightness temperature for an 
agricultural region. International Journal of Applied Earth Observation and Geoinformation: 
226-242. 

I.P. Senanayake, I.-Y. Yeo, N. Tangdamrongsub, G.R. Willgoose, G.R. Hancock, T. Wells, 
B. Fang, V. Lakshmi, J.P. Walker. (2019). An in-situ data based model to downscale radiometric 
satellite soil moisture products in the Upper Hunter Region of NSW, Australia. Journal of 
Hydrology 572: 820–838. 

Shafian, Sanaz and Stephan J. Maas. (2015). Index of Soil Moisture Using Raw Landsat Image 
Digital Count Data in Texas High Plains. Remote Sensing 7: 2352-2372. 

NASA SMAP Soil Moisture Active Passive. Retrieved from https://smap.jpl.nasa.gov/. 

Sankey, Temuulen T., Jason McVay, Tyson L. Swetnam, Mitchel P. McClaran, Philip Heilman 
& Mary Nichols. (2018). UAV hyperspectral and lidar data and their fusion for arid 
and semi-arid land vegetation monitoring. Remote Sensing in Ecology and Conservation 4(1): 
20–33. 

21 

https://smap.jpl.nasa.gov/
http:https://www.pcigeomatics.com


 

 

  
    
 

 
 

 
 

  
 

  
 

  
 

   
 

 
  

  
 

 
  

   
 

 
 

  
 

 
 

  
 

 
   

 

Fusion of In-Situ and Remotely Sensed Soil Moisture Data 

Southee, Florence Margaret; Treitz, Paul M.; Scott, Neal A. (2012). Application of Lidar Terrain 
Surfaces for Soil Moisture Modeling. Photogrammetric Engineering & Remote Sensing 12(11): 
1241-1251. 

Trimble. Retrieved from http://www.ecognition.com/suite/ecognition-developer. 

Ushada M., H. Murase, and H. Fukuda. (2007). Non-destructive sensing and its inverse model 
for canopy parameters using texture analysis and artificial neural network. Computers and 
Electronics in Agriculture 57: 149–165. 

Velpuri, Naga Manohar, Gabriel B. Senay, and Jeffrey T. Morisette. (2016). Evaluating New 
SMAP Soil Moisture for Drought Monitoring in the Rangelands of the US High Plains. 
Rangelands 38(4):183-190. 

Waltz, E. (2001). The principals and practice of image and spatial data fusion. In; Hall, D.L., 
Llinas, J. (Eds.), Multisensor Data Fusion. CRC Press, Boca Raton, FL: 50-63. 

Xu, Chenyang, John J. Qu, Xianjun Hao, Michael H. Cosh, John H. Prueger, 
Zhiliang Zhu, and Laurel Gutenberg. (2018). Downscaling of Surface Soil Moisture Retrieval by 
Combining MODIS/Landsat and In Situ Measurements. Remote Sensing 10(2). 

Zhang, Runze, Seokhyeon Kim, and Ashish Sharma. (2019). A comprehensive validation of the 
SMAP Enhanced Level-3 Soil Moisture product using ground measurements over varied 
climates and landscapes. Remote Sensing of Environment 223: 82–94. 

Zhang, Xiang, Nengcheng Chena, Jizhen Lia, Zhihong Chena, Dev Niyogib. (2016). Multi-
sensor integrated Framework and Index for Agricultural Drought Monitoring.  Remote Sensing of 
Environment 188: 141-163. 

Zhu, Xiaolin, Jin Chen, Feng Gao, Xuehong Chen, Jeffrey G. Masek. (2010). An enhanced 
spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. 
Remote Sensing of Environment 114: 2610–2623. 

Zhu, Xiaolin, Eileen H. Helmer, Feng Gao, Desheng Liu, Jin Chene, and Michael A. Lefsky. 
(2016). A flexible spatiotemporal method for fusing satellite images with different resolutions. 
Remote Sensing of Environment 172:  165–177. 

http://www.ecognition.com/suite/ecognition-developer


 

 

 

  


	Fusion of In-Situ and Remotely Sensed Soil Moisture Data
	Acknowledgements
	James Knowles (LCR MSCP), David Salas (TSC), and Troy Wirth and Michael Baker (BCOO) are thanked for their guidance and support.
	Cover page image: Millennium Engineering and Integration Company
	Acronyms and Abbreviations
	Main Report
	References



