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Executive Summary 
The physical pipe model, which included an emergency gate and air vent, provided valuable data 
from dynamic emergency gate closure tests to support further development of improved methods 
for air vent analyses. Primary conclusions include: 
  

• A relationship for predicting the speed of a moving hydraulic jump as a function of initial 
water discharge, diameter, and gate closure time was found. These parameters can be used 
to predict the speed of the hydraulic jump for pipe slopes up to 26 percent.  
 

• The relationship for hydraulic jump speed prediction assumes the air vent is adequately 
sized. Results showed that undersized vents produce negative pressures in the pipe which 
can influence jump speed, particularly in shallow slope pipes.  

 
• Test results suggest that, compared to a stationary hydraulic jump, air entrained through 

the jump is decreased when the jump is moving downstream. Further analysis of the 
existing data set is needed to relate rate of air entrainment with hydraulic jump speed.  

 

Three different numerical programs have been restored and updated. More detailed documentation 
including source code and user instructions specific to each program will be forthcoming.  

• Falling Water Surface (Penstocks with turbines) – The FORTRAN code from Engineering 
Monograph No. 41 has been restored, updated, and compiled for use in Windows 7 (64-
bit). It applies geometrical and hydraulic equations to a falling water surface in the pipe as 
the emergency gate closes. It is intended for hydropower penstocks with inputs for turbine 
characteristics. Results from the updated program compare well with those of previous 
versions which were compared to a field test at Morrow Point Dam. 
 

• Method of Characteristics (Low-level Outlets) – A FORTRAN code was originally 
developed by Frizell (1993) from field and lab tests of low-level outlets, but the surviving 
version of the code was missing the proper boundary conditions for the air valve and 
downstream control gates. This information was added to the program, which was then 
converted to VBA, and is now available in spreadsheet form. This program is geared 
toward low-level outlets with shallow slopes. Results compare well with physical data from 
the laboratory model, although some minor adjustments are necessary. 

 
•  Hybrid Program – This code was written in Mathematica and uses the method of 

characteristics until air begins to enter the pipe. At that point the method of characteristics 
ends and the change in water volume and air entrainment through the hydraulic jump 
account for the total air demand. Results from the physical model showed that this approach 
likely overestimates the total air demand as the rate of air entrainment is significantly 
reduced for a moving hydraulic jump. This program is currently functional in Mathematica 
but needs further refinements.  
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• Field Testing Recommendation – It is recommended that field testing of an emergency gate 
closure be performed for comparison to numerical modeling. Reservoir and tail water 
elevations, water discharge, gate position, penstock pressures (immediately downstream of 
emergency gate and upstream of control or wicket gates), and air vent velocity should be 
measured. Potential opportunities include Green Mountain and Paonia Dams as their outlet 
works are currently under modification which required air vent calculations. Testing should 
be coordinated with TSC’s Hydraulic and Mechanical Equipment groups. 
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Introduction 
Air vent systems are designed primarily to protect penstocks and low-level outlet pipes from 
excessively low pressures during emergency gate closures. An adequate air supply is necessary to 
allow smooth gate operation, prevent cavitation damage and prevent pipe collapse in some cases 
(Figures 1 and 2). As the emergency gate closes, at some point a hydraulic jump forms in the pipe, 
which then travels downstream, drawing air as it moves due to entrainment and the air volume 
change in the pipe. This complex and dynamic process makes it challenging to predict the required 
airflow (air demand) into the pipe and properly size the air vent. 

Over the last 60 years Reclamation has conducted research on air-water flows in large pipes and 
developed a number of numerical methods to help predict airflow for proper air vent sizing 
(Falvey, 1968, Falvey, 1980, Frizell, 1993, and Kubitschek, 2014). While these numerical tools 
have been useful in the past some of them have become obsolete, either being written in outdated 
code language or not documented for general use. Each also has its limitations and uncertainties 
that require additional physical data for further development. Therefore, the two main objectives 
of this study include: 

• Obtaining physical data to predict the movement of a hydraulic jump during an emergency 
gate closure.  

• Update numerical methods previously developed by Reclamation to be readily applicable 
to current and future air vent sizing applications.  

As infrastructure ages and operational requirements change, it becomes increasingly important to 
accurately predict air demand for adequate sizing of air vent systems. Improvements in predicting 
hydraulic jump movement are necessary to reduce the uncertainty of existing air demand 
prediction methods. 
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Figure 1  Example of a collapsed pipe due to negative pressure  
(Link to Figure 1 photo illustrating an example of a pipe that has collapsed due to negative pressures). 
 

 
Figure 2 Example of a collapsed pipe due to negative pressures  
(Link to Figure 2 photo illustrating an example of a pipe that has collapsed due to negative pressures). 
 

 

 

http://deereault.com/hydroelectric-services/bear-creek-hydroelectric-project.php
http://www.folsomtelegraph.com/photos/folsom-water-pipeline-damage
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Literature Review 
A literature review was conducted on the topics of air-water flows in pipes related to emergency 
gate closures. A summary of reviewed sources is shown in Appendix A. Extensive work has been 
done on air entrainment for stationary jumps in closed conduits including Kalinske & Robertson 
(1943), Sharma (1976), Falvey (1980), Escarameia (2007), and Mortensen et al (2011). For 
moving hydraulic jumps Parvaresh et al (2006) and Nasvi et al (2010) have conducted experiments 
in rectangular open channels. However, there is limited information in the literature addressing 
moving hydraulic jumps in closed conduits.  

A hydraulic jump moving down a pipe is a natural result of an emergency gate closure. For vent 
sizing estimates, it is important to predict both the speed and air entrainment of a moving hydraulic 
jump, which became the main focus of the physical modeling efforts. The total air demand with a 
moving hydraulic jump is the volumetric flowrate of air passing through the vent system required 
to prevent negative pressures in the conduit. The total air demand includes the air entrained through 
a hydraulic jump as well as the change in air volume created by the movement of the jump 
downstream (Figure 3).  

 

Figure 3  Equation for total air demand. 

 
Experimental Methods 
Physical Modeling 

 

The laboratory physical model is comprised of a 12-inch diameter pipe on 0.55- and 26.0-percent 
slopes as illustrated in Figures 4 and 5. The arrangement consists of a slide (emergency) gate at 
the upstream end, which is operated with a variable speed motor, followed by a 3-inch clear PVC 
air vent pipe immediately downstream. The main section is approximately 45 pipe diameters in 
length and made of clear PVC for flow visualization. Back-pressure in the pipe was provided by a 
butterfly valve located at the downstream end of the pipe.  
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Figure 4  Profile view of 0.55-percent slope model. Flow is from left to right.  

 
Figure 5  Profile view of 26-percent slope model. Flow is from left to right.  

 
Figure 6  Emergency gate and air vent on 0.55 percent physical lab model. Flow is from left to right.  
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Initial water flowrates, vent sizes, and gate closure rates were varied at each pipe slope. Flowrates 
were controlled with the lab’s pump control system. Initial laboratory tests produced maximum 
flowrates for the 26% slope arrangement that were limited as a result of the higher inlet elevation 
and increased head on the pump. The air vent size was varied by inserting a fitting with different 
orifice sizes (0.5, 0.75, 1.125, 1.5, and 3-inch diameter) at the top of the air vent pipe. Gate closure 
rates were controlled using the variable speed motor.  

Test Procedure 
Each test run began with a steady-state flowrate in the pipe before the emergency gate started to 
close. As the gate closed the air vent was manually opened to allow air flow into the pipe when 
the internal pressure downstream of the gate was sufficiently low to initiate venting. Attempts were 
made to hold the pressure upstream of the gate constant throughout the test by adjusting the 
variable frequency drive on the pump as the gate closed to represent a constant reservoir head. As 
the gate continued to close, a jump would form downstream of the gate and eventually move 
downstream and out of the pipe. Back pressure in the pipe was controlled by the downstream 
butterfly valve whose position was held constant throughout each test run. 

The instrumentation setup included an acoustic flowmeter (±2% accuracy) to measure water 
flowrate entering the laboratory setup, a string transducer (±0.25% accuracy) to measure gate 
position, an anemometer (±1.5% accuracy) to measure air velocity in the vent pipe, and absolute 
pressure transducers (±0.25% accuracy) to measure pipe pressures immediately upstream and 
downstream of the gate as well as at the downstream end of the pipe near the butterfly valve. All 
measurements were recorded at a sample rate of 500 samples per second. Local atmospheric 
pressure was obtained using a mercury barometer during each testing period. Average hydraulic 
jump speeds were estimated using an HD video camera (30 frames per second) and visible station 
markers located along the test pipe. 

Numerical Modeling 

Numerical modeling efforts involved restoring and updating air vent programs that have been 
developed in Reclamation’s Hydraulics Laboratory since the 1960s. These included the “Air 
Demand - Falling Water Surface” program specified in Engineering Monograph No. 41 for 
hydropower penstocks (Falvey H. T., 1980), a program utilizing the Method of Characteristics for 
low-level outlet works (Frizell, 1993), and a more recent hybrid approach using method of 
characteristics and hydraulic jump air entrainment (Kubitschek, 2014) for application to both 
penstocks and low-level outlets.  
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Results 
Physical Modeling 

Approximately 100 test runs each were performed for both the 0.55 and 26.0 percent slope model 
configurations. The size of the air vent significantly influenced airflow and confirmed that the 3-
inch vent was “oversized”. Figures 7 and 8 show an example of the internal pipe pressure and 
airflow for an undersized (3/4-inch) and oversized (3-inch) air vent. Verifying that the 3-inch vent 
was indeed oversized allowed the true total air demand to be determined without the influence of 
constricted air flow.  

For the 0.55 percent slope observations showed that for undersized vents, the hydraulic jump speed 
did not always correlate with air demand. For vent sizes less than 1.125-inch jump speed increased 
significantly. With this condition the jump would hold at a stationary point, usually near the 
upstream end of the pipe, until it finally released and rapidly moved downstream. Video 
documentation showed that the jump started to move when air previously accumulated 
downstream of the jump flowed back upstream forcing the jump to quickly move downstream. 
The delay of the jump and then its release and movement were caused by negative upstream 
pressures due to an undersized air vent. This process is shown in the time series photos in Figure 
9.  

Since air flow travelled back upstream, the incoming air flow through the vent decreased and the 
internal pipe pressure increased temporarily during the same gate position range for which jump 
movement occurred in the video (Figures 7 and 8). Jump movement was often erratic and unsteady 
both before and after the burst of downstream movement.  

This process was not observed in the 26.0 percent pipe model which produced steady jump speeds 
for all vent sizes even though air vent flow was reduced. Air flow and internal pipe pressure results 
appeared similar to the examples shown in Figures 7 and 8 when compared to gate position.  
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Figure 7  Comparison of internal pipe pressure vs. gate position of the 3-inch (red – vent ratio 3/12 = 0.25) 
and ¾-inch (blue - vent ratio 0.75/12 = 0.063) air vents. Pressure is standardized to local atmosphere 
indicating that pressure less than 1 atmosphere is negative. 
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Figure 8  Comparison of Air flow/Water flow vs. Gate Position of the 3-inch (red – vent ratio 3/12 = 0.25) 
and ¾-inch (blue - vent ratio 0.75/12 = 0.063) air vents. 
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(a) 

(b) 

(c) 
Figure 9  Time series photographs of jump motion with an undersized air vent: (a) Jump is released and 
begins movement (17% gate opening), (b) Jump moves downstream with air flowing back upstream 
(14.7% gate opening), and (c) Jump is halted again further downstream in the pipe (13.9% gate opening). 
Water flow and jump movement are from right to left. 

 

The ratio of maximum air flow to water flow vs. hydraulic jump speed is shown in Figure 10 for 
multiple gate closure times. The trend shows that air demand increases for slower gate closures, 
which suggests that air entrainment due to the hydraulic jump (Kalinske & Robertson, 1943) 
accounts for a significant portion of the total air demand. This occurs because air entrained through 
the hydraulic jump is likely greater for slower jump speeds, similar to a stationary jump, and 
decreases as jump speed increases. Additional efforts to find a functional relationship between air 
entrainment and hydraulic jump speed using dimensional analysis of the existing data set would 
be valuable.  

Beginning of jump movement 

Air Flow 

Jump movement 
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Figure 10  Ratio of maximum air flow to water flow vs. hydraulic jump speed for various gate closure rates 
(percent open per second).  

 

Scatter in the data is common for experiments involving air-water flows. First of all, the mixture 
of air and water in hydraulic jumps is very turbulent and erratic in nature. Including multiple 
variables (e.g. gate closure time and air vent size, Figure 10) in the experiment may also increase 
data scatter. Finally, limitations in the lab facility may account for some uncertainty as it was 
difficult to manually control the pump pressure upstream of the gate to provide a constant reservoir 
head throughout each test run.  
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Hydraulic Jump Speed 
Using dimensional analysis, hydraulic jump speed can be defined as a function of initial water 
discharge, pipe diameter, and gate closure time. This functional relationship in terms of non-
dimensional parameters is shown in Figure 11 which represents both pipe slopes for the 3-inch 
vent size data to ensure that the total air demand was not restricted by air vent size. Each data point 
represents the average of three repeated test runs of the same condition, resulting in a coefficient 
of determination R2 = 0.91. The relationship resulted in Equations 1 and 2 below to predict 
hydraulic jump speed based on parameters that are commonly known for application to an actual 
facility.  

𝑉𝑉ℎ𝑗𝑗 = 35.465[𝑇𝑇𝑟𝑟]−0.704𝑄𝑄𝑖𝑖
𝐷𝐷𝑝𝑝2

         Eq. (1) 

𝑇𝑇𝑟𝑟 = 𝑇𝑇𝑐𝑐𝑄𝑄𝑖𝑖
𝐷𝐷𝑝𝑝3

           Eq. (2) 

Where: 

Vhj = hydraulic jump speed (ft/s) 
Qi = steady state water discharge when gate begins to close (ft3/s) 
Dp = inside diameter of the penstock (ft) 
Tc = time to close the gate from fully open to fully closed (s) 
 

y = 35.465x-0.704

R² = 0.9094
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Figure 11 Plot of dimensionless parameters to predict hydraulic jump speed for an emergency gate 
closure.  
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Numerical Modeling 

Falling Water Surface – Penstocks with turbines 
The only available data (source code and output files) for this program were in hard copies of 
Engineering Monograph No. 41 and other data files archived by the Hydraulics Laboratory group. 
These data were scanned to pdf and recompiled electronically using text recognition and 
significant debugging with a modern FORTRAN compiler. After restoring the program to its 
original functionality, improvements were made such as removing hard coded parameters of 
specific test runs, setting up variable input files for more efficient use, etc. This source code is now 
fully functional and has been compiled for use in Windows 7 (64-bit).  The program can be run 
with different sets of input data without recompiling the source code. Future improvements could 
include converting the sources code to VBA or other language for useful application.  
 
The source code and output data from various versions of this program had to be organized and 
were compared to the updated version of the program. Figure 12 compares output from the updated 
program to a version used for air vent sizing of Morrow Point Powerplant in the mid 1960’s 
(Falvey H. , 1968). The updated version has better agreement with a more recent version  (Figure 
13) that was used around 1969 and was compared to results from an emergency gate closure test 
at Morrow Point  (Dexter, 1973) in Figure 14. Differences in results may be explained by different 
gate closure times used in the numerical model and field test.  
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Figure 12  Comparison of current code (blue) to the version published in HYD-584 (red - about 1968). 
Results are of the air vent velocity for Morrow Point Dam.  
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Figure 13 Comparison of current code (blue) to an updated version of the program (red - about 1969). 
Results are of the air vent velocity for Morrow Point Dam. 

 
Figure 14  Comparison of the numerical program to a field test at Morrow Point (about 1973). Differences 
in results are due to different gate closure times used in the numerical program.  
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Figure 15 compares the updated program to results of a test run documented in Appendix III of 
Engineering Monograph No. 41. Unfortunately, only the first 40 seconds of data were saved in the 
monograph and no comparison can be made for the interesting part of the test run when air 
velocities reach their peak.  
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Figure 15  Comparison of the current code (blue) to version listed in the 1980 Engineering Monograph No. 
41 (red).   

 

Method of Characteristics – Low-level Outlets 
This program was originally developed by Wylie and Streeter (1983) and was applied to several 
low-level outlets in Reclamation by Frizell (1993). It applies the Method of Characteristics to 
estimate pressures and flows at representative nodes within the outlet pipe. Boundary conditions 
include an upstream reservoir, a guard/emergency gate, an air vent/valve, and a downstream 
control gate. Air flow through the vent system is determined using the ideal gas law. As before, 
source code data for this program had to be reconstructed and debugged with a modern FORTRAN 
compiler. Portions of this code related to the air valve boundary condition were missing and had 
to be re-written. The FORTRAN code was then converted to VBA language and is now fully 
functional in a spreadsheet application. More detailed information about this program and its 
previous applications to Reclamation’s facilities can be found in Frizell (1993). 

The updated spreadsheet program was compared to a test run of the shallow slope physical model 
(Figure 16). Results compared reasonably well with very few adjustments of parameters in the 
numerical model. Further adjustments to the discharge coefficients of the air vent system and 
downstream control valve (if known) would likely improve the comparison.  
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Figure 16  Comparison of total air demand results from the updated program to the 0.55% physical pipe 
model.  
 
Hybrid Program 
This program was developed by Kubitschek (2014) and written using Mathematica software. It 
uses the Method of Characterizes until the pressure downstream of the emergency gate drops 
sufficiently for air to flow through the vent system. At that point air flow is estimated by the change 
in water volume based on a flow difference between the emergency gate and downstream control 
valve. In addition, Froude number is determined at each time step based on the emergency gate 
position to estimate air entrainment (Kalinske & Robertson, 1943) and account for the total air 
demand. Results from recent physical model testing will help refine air entrainment predictions 
for moving hydraulic jumps which can be added to the code. Further development and comparisons 
of this program to physical model results were not completed due to scheduling and funding 
limitations.  

 

 



 

26 

Conclusions & Recommendations 
The physical pipe model, which included an emergency gate and air vent, provided valuable data 
from dynamic emergency gate closure tests to support further development of improved methods 
for air vent analyses. Primary conclusions include: 
  

• A relationship for predicting the speed of a moving hydraulic jump as a function of initial 
water discharge, diameter, and gate closure time was found. These parameters can be used 
to predict the speed of the hydraulic jump for pipe slopes up to 26 percent.  
 

• The relationship for hydraulic jump speed prediction assumes the air vent is adequately 
sized. Results showed that undersized vents produce negative pressures in the pipe which 
can influence jump speed, particularly in shallow slope pipes.  

 
• Test results suggest that, compared to a stationary hydraulic jump, air entrained through 

the jump is decreased when the jump is moving downstream. Further analysis is needed to 
relate rate of air entrainment with hydraulic jump speed.  

 

Three different numerical programs have been restored and updated. More detailed documentation 
including the source code and user instructions specific to each program will be forthcoming.  

• Falling Water Surface (Penstocks with turbines) – The FORTRAN code from Engineering 
Monograph No. 41 has been restored and updated and compiled for use in Windows 7 (64-
bit). It applies geometrical and physical equations to a falling water surface in the pipe as 
the emergency gate closes. It is intended for hydropower penstocks with inputs for turbine 
characteristics. Results from the updated program compare well with those of previous 
versions which were compared to a field test at Morrow Point Dam. 
 

• Method of Characteristics (Low-level Outlets) – A FORTRAN code was originally 
developed by Frizell (1993) from field and lab tests of low-level outlets, but the surviving 
version of the code was missing the proper boundary conditions for the air valve and 
downstream control gates. This information was added to the program, which was then 
converted to VBA, and is now available in spreadsheet form. This program is geared 
toward low-level outlets with shallow slopes. Results compare well with physical data from 
the laboratory model, although some minor adjustments are necessary. 

 
•  Hybrid Program – This code was written in Mathematica and uses the method of 

characteristics until air begins to enter the pipe. At that point the method of characteristics 
ends and the change in water volume and air entrainment through the hydraulic jump 
account for the total air demand. Results from the physical model showed that this approach 
likely overestimates the total air demand as the rate of air entrainment is significantly 
reduced for a moving hydraulic jump. This program is currently functional in Mathematica 
but needs further refinements.  
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• Field Testing Recommendation – It is recommended that field testing of an emergency gate 
closure be performed for comparison to numerical modeling. Reservoir and tail water 
elevations, water discharge, gate position, penstock pressures (immediately downstream of 
emergency gate and upstream of control or wicket gates), and air vent velocity should be 
measured. Potential opportunities include Green Mountain and Paonia Dams as their outlet 
works are currently under modification which required air vent calculations. Testing should 
be coordinated with TSC’s Hydraulic and Mechanical Equipment groups. 
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Literature Review  

REFERENCE NOTES 
Reclamation’s Experience with Air Vent Sizing 
(Falvey H. , 1968) Documentation of a mathematical code written in Fortran code 

to size air vents for penstock gate chambers. It predicts 
pressures downstream of an emergency gate and air vent 
velocities for penstock emergency gate closures. The code 
assumes energy and momentum equations for water flow 
through the emergency gate and chamber as applies an iterative 
change in volume over time to estimate airflow through the 
vent and gate chamber. The code does not assume any air 
entrainment from a hydraulic jump. The code in this report was 
applied to a penstock at Morrow Point Dam.  
 

(Falvey H. T., 1980) Engineering Monograph No. 41 on Air-Water flows in 
hydraulic structures. Discusses research findings and 
applications to both open-channel and closed-conduit flows. 
Appendix 3 includes an updated version of the Fortran code 
applied to Morrow Point.  
  

(Dexter, 1973) Reports the results of a field test of an emergency gate closure 
at Morrow Point Dam. Among other parameters, air vent 
velocity and pipe pressures were recorded and compared to 
predictions from the mathematical model. Absolute values of 
air velocity and pressure drop compared reasonably well.  
 

(Frizell, 1993) Documents a different mathematical code for application to 
low-level outlet works, which typically have shallow slopes 
(EM 41 code cannot apply to shallow slopes). This code 
utilizes the Method of Characteristics, generally applied to 
hydraulic transients, with boundary conditions that applies the 
ideal gas law to estimate airflow through a vent downstream of 
the emergency gate.  
 
The report compares results from the mathematical model to a 
physical model of Cedar Bluff dam as well as field test results 
from Silver Jack and Tieton dams. Results compared very well 
to those from the physical model but significantly 
overestimated airflow compared to the Silver Jack field results 
(like due to a clogged air vent). Field testing did not produce 
actual airflow results for comparison.   
  

(Kubitschek, 2014) Another mathematical code was written to predict pressure 
drop and air flow for an emergency gate closure of the Helena 
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REFERENCE NOTES 
Valley Power/Pumping plant. This code utilizes the Method of 
Characteristics while the pressure downstream of the gate is 
positive. As soon as the pressure drops to atmospheric or 
lower, the code estimates airflow by entrainment through a 
hydraulic jump in the downstream pip assuming the Kalinske 
& Robertson equation. The code does not account for the 
change in volume as the hydraulic jump moves down the pipe. 
To date there are no field data for comparison.  
 

 Moving Hydraulic Jump 
(Aydin, 2002) A physical model study of a penstock emergency gate closure 

at a hydropower plant. Compares physical model study results 
to a mathematical model that uses energy and continuity 
equations. Only maximum airflows and pressure drops are 
given relative to a dimensionless closure rate of the emergency 
gate. Generally, the mathematical model slightly under predicts 
the actual airflow.  
 
Their use of dimensionless terms such as the gate closure rate 
were useful and applicable to the current study.  

(Nasvi, Asmeer, Mowsoom, 
& Pathirana, 2010) 

Study that investigated the influence of specific energy and 
momentum on the movement of a hydraulic jump in a 
rectangular flume.  
 
Other than application of the momentum equation, physical 
results are not applicable to the current study due to differences 
in geometry and slope.  
 

(Parvaresh Rizi, 
Kouchakzadeh, & Omid, 
2006) 

Study that investigated moving hydraulic jumps in a 
rectangular flume. Compared results to energy and momentum 
equations.  
 
Again, physical results are not applicable to the current study 
due to differences in geometry and slope.  
 

Air Demand of Stationary Hydraulic Jumps in Closed-Conduits 
(Kalinske & Robertson, 
1943) 

Classic research paper on air entrainment through hydraulic 
jumps that go from open channel to closed-conduit 
(pressurized flow) in pipes. Developed a relationship of the air 
demand (airflow/waterflow) to the Froude number immediately 
upstream of the jump.  
 

(Escarameia, 2007) Study that compared hydraulic jump air demand results to 
previous studies. Showed differences that were likely due to 
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REFERENCE NOTES 
the geometry of the conduit as well as downstream flow 
conditions.  
 

(Sharma., 1976) Compared hydraulic jump air demand data from the lab to 
prototype field tests. Showed that lab predictions 
underestimated actual field results, maybe due other forms of 
air entrainment other than through the hydraulic jump itself.  
 

(Mortensen, Barfuss, & 
Johnson, 2011) 

Compared hydraulic jump air demand data of four different 
pipe sizes in the lab (3, 7, 12, and 24 inch diameter). Found 
that air demand was not dependent on pipe size due to the 
downstream control in the pressurized conduit.  
 

(Mortensen, Barfuss, & 
Tullis, 2012) 

Compared air demand data for hydraulic jumps set at varying 
distances from the outlet of the pipe. Found that the air demand 
was very dependent on location which influenced the 
downstream exit condition for air escape.  
 

 

 

Data Sets that Support the Final Report 

If there are any data sets with your research, please note: 

• U:\Active Files\Research\Active Projects\Air Entrainment 
• Josh Mortensen, jmortensen@usbr.gov, 303-445-2156: 
• DasyLab Test run files, spreadsheets, word doc report 
• Keywords: Air entrainment, air demand, emergency gate closure 
• Approximate total size of all files:  3.1 GB 

 
 
 
 
 
 
 
 
 
 
 

mailto:jmortensen@usbr.gov
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