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Abstract: The predictions from a numerical sediment transport model inevitably include uncertainty because of assumptions in the model’s
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models of two flume experiments: an erosional case and a depositional case. Overall, the results suggest that the sensitivities of the model
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Introduction

The use of numerical sediment transport models has dramatically
expanded over the past three decades. One-dimensional sediment
transport models in particular are widely used to determine pos-
sible impacts of watershed changes, evaluate water supply manage-
ment, and predict impacts of proposed water resource systems on
endangered species. Predictions from sediment transport models
always entail uncertainty. Sources of uncertainty include: (1) sim-
plifications in the model’s representation of physical processes,
(2) unknown initial and/or boundary conditions, (3) errors in the
observations that are used to calibrate the model parameters,
(4) errors in the values of model parameters, and (5) errors in model
forcing (Clyde and George 2004; Gourley and Vieux 2006;
Refsgaard et al. 2006; Murray 2007). For one-dimensional sedi-
ment transport models, this uncertainty can encompass orders of
magnitude in the computed sediment load and the amount of
material eroded or deposited at critical locations (Simons et al.
2000; Davies et al. 2002; Eidsvik 2004). Past research has focused
on uncertainty arising from sediment transport models or formulas

(Davies et al. 2002; Pinto et al. 2006) and the active erosional proc-
esses (Daebel and Gujer 2005; Harmel and King 2005; Jepsen
2006; Ziegler 2006) as well as methods to manage uncertainty
(Osidele et al. 2003). Less attention has been paid to uncertainty
throughout the entire parameter space, or global uncertainty (Chang
et al. 1993), and the implications of parameter uncertainty. Models
are typically calibrated by adjusting the parameters so that the
model outputs reproduce a set of available observations. The per-
formance of the model for the calibration period is usually reported,
but little consideration is given to the extent to which the calibration
data have constrained the values of the parameters and the behavior
of the model for the forecast scenario.

Bayesian methods offer a formal way to assess impacts of
parameter uncertainty (or other uncertainties) on model predictions
(Clyde and George 2004; Kuczera et al. 2006). Bayesian methods
require the modeler to specify a prior joint probability distribu-
tion for the uncertain parameters. The prior joint distribution is then
combined with observations of model outputs from the calibration
period to generate a posterior joint distribution for the parameters
(Beven 2000). The updating of the joint distribution is done on the
basis of a formal assessment of the likelihood of a set of parameter
values given the observed model outputs (Clyde and George 2004).
The posterior distribution of the parameter values is then used in the
model for the forecast scenario to determine the implied distribu-
tion of model outputs. The key advantage of Bayesian methods is
that they utilize well-defined theoretical foundations, including a
formal likelihood function for updating the joint probability distri-
bution (Clyde and George 2004; Kuczera et al. 2006). Key limita-
tions of Bayesian methods are that they can require inversion of
large matrices, which can be a computational burden, and they
often employ a variety of simplifying statistical assumptions in-
cluding normality, independence, and homoscedasticity (Stedinger
et al. 2008) that are often violated in sediment transport modeling
applications. For example, heteroscedasticity is well documented
for discharge hydrographs (Sorooshian and Dracup 1980) and is
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likely to occur in sediment transport applications involving un-
steady flow.

Generalized likelihood uncertainty estimation (GLUE) offers
an alternative method to assess parameter uncertainty (Beven
and Binley 1992). The GLUE methodology has been utilized
for a variety of modeling applications including rainfall-runoff
models (Freer et al. 1996; Blasone et al. 2008), groundwater mod-
els (Christensen 2003; Hassan et al. 2008), water quality models
(Shirmohammadi et al. 2006), and atmospheric models (Page et al.
2004), but it has received little attention in sediment transport mod-
eling. GLUE follows the Bayesian approach, but it utilizes an in-
formal function to estimate the likelihoods of parameter values
given a set of observations. The benefit of the informal likelihood
function is that it can be selected on the basis of the model purpose
(Mantovan and Todini 2006), and different likelihood functions are
known to produce different uncertainty estimates (Freer et al. 1996;
Beven 2000). However, Christensen (2003) and Stedinger et al.
(2008) have demonstrated that previously used likelihood functions
fail to reproduce the known posterior distributions of parameters for
simple cases (normally and independently distributed errors). For
such cases, these authors identify the appropriate likelihood func-
tion, but this function is not easily evaluated within the GLUE
framework (Stedinger et al. 2008).

Another challenge in the application of GLUE to sediment
transport modeling is the need to evaluate the model performance
with respect to multiple objectives or outputs such as sediment size,
sediment load, stream velocity, channel geometry, and bed profile.
Available methods of computing multiobjective likelihood func-
tions include the use of fuzzy set theory (Beven and Binley
1992; Yang et al. 2004), the successive combination of likelihoods
(through multiplication), and the weighted addition of likelihoods
(Beven 2000). Such approaches have been addressed elsewhere
(Yapo et al. 1998; Mo and Beven 2004; Chahinian and Moussa
2007). One problem in the application of a multiobjective approach
is the need to assign weights (or the equivalent) for each model
output. Such weights are often set ad hoc on the basis of the mod-
el’s purpose, but arbitrary weighting can lead to misleading results.
In particular, a selected model output may be independent of a par-
ticular parameter. Thus, it would be inappropriate to strongly
weight the performance with respect to that output variable when
evaluating different values of the parameter.

The objective of this paper is to explore the use of a GLUE-
based method to assess the implications of parameter uncertainty
on the outputs of a one-dimensional sediment transport model. This
method is intended to measure how well parameter values have
been constrained during model calibration and to determine how
the remaining uncertainty in the parameter values affects the model
outputs under forecast scenarios. As such, the method is intended to
aid model development rather than to provide a formal assessment
of uncertainty for project evaluation. The likelihood function used
in this paper is developed on the basis of the one described by
Christensen (2003) and Stedinger et al. (2008). Global sensitivity
analysis (GSA) is employed as a way to weight multiple model
outputs. GSA and GLUE have been coupled previously (Ratto et al.
2001), but not for the purpose of weighting multiple outputs.
The GSA-GLUE method is applied to Sedimentation and River
Hydraulics—One Dimension (SRH-1D) models of two physical
experiments (an erosional case and a depositional case) to identify
how well the parameters are constrained by the calibration and to
partially explore the implications of various assumptions included
in the GSA-GLUE methodology.

The outline of the paper is as follows. The next section,
Methodology, details how the GSA and GLUE methods are com-
bined to assess the implications of parameter uncertainty. Then, the

sediment transport model that is used with the GSA-GLUE method
(SRH-1D) is described. Next, the Experiments section summarizes
the physical experiments that are simulated with the model. The
Results section discusses the main results of the GSA-GLUE ap-
proach, and the Analysis section evaluates the main assumptions of
the method. Finally, the paper closes by summarizing the conclu-
sions and future directions for research.

Methodology

The GSA-GLUE method developed in this paper includes three
main steps. The first step is the GSA. In this step, a sample of
parameter sets is generated from a jointly uniform distribution
within specified ranges. The model is then run for the calibration
period using each parameter set in the sample. On the basis of an
analysis of the model results, the sensitivity of each model output to
each parameter is estimated. To reduce the number of required sim-
ulations, the GSA is performed using the Fourier amplitude sensi-
tivity test (FAST), which generates the parameter sets in a specific
way (Cukier et al. 1973; Saltelli et al. 1999), although they are still
approximately uniformly distributed. The second step is the appli-
cation of the GLUE methodology to calculate the likelihood asso-
ciated with each parameter value, and from those likelihoods, to
determine updated likelihood distributions for each parameter.
Likelihoods are calculated on the basis of the model’s ability to
reproduce the observations for the calibration period when each
parameter set is used. Because sediment transport models typically
produce multiple model outputs of interest (e.g., sediment size,
channel profile), the sensitivities calculated in the first step are used
to weight the different outputs in the calculation of the likelihoods.
This procedure places greater importance on reproducing outputs
that are more sensitive to a particular parameter. The third step is to
use Latin hypercube sampling (LHS) with the cumulative likeli-
hood distributions of the parameters to generate a new sample
of parameter sets (Chang et al. 1993; Hall et al. 2005). The model
is run for the forecast period using these parameters sets, and histo-
grams are calculated for the model outputs. These histograms allow
an assessment of the implications of the remaining parameter un-
certainty on the forecasts of the model. The following subsections
describe each of the three steps (GSA, GLUE, and LHS) in greater
detail.

Global Sensitivity Analysis

Sensitivity analysis usually aims to quantify how much an output of
a model changes when a model parameter (or input) is varied
(Saltelli et al. 2008). Whereas local sensitivity analysis evaluates
these changes around a set of base values for the parameters,
GSA assesses these changes across specified ranges of parameter
values. Local analyses usually measure the sensitivity with an
index that is related to the partial derivative of the output with re-
spect to the parameter. Unfortunately, such measures are only well
defined if the output is linearly dependent on the parameter (Saltelli
et al. 2008). In contrast, the GSA described in this paper uses a
variance-based measure of sensitivity, which partially overcomes
the linearity assumption (Chan et al. 1997). Two measures of
sensitivity are calculated. One is the first-order index Sx, which
is defined as

Sx ¼
Var½EðY jXÞ�

VarðYÞ ð1Þ

where VarðYÞ = total variance of the model output Y when all
the parameters are varied within their specified ranges;
EðYjXÞ = expected value of output Y for a particular value of

624 / JOURNAL OF HYDRAULIC ENGINEERING © ASCE / JUNE 2011

Downloaded 16 Jun 2011 to 129.82.229.120. Redistribution subject to ASCE license or copyright. Visithttp://www.ascelibrary.org



parameter X; and Var½EðYjXÞ� = variance of EðYjXÞ when X is var-
ied over its allowed range. The numerator in Eq. (1) describes the
variation in the expected value of Y that occurs within the specified
range of X. It aims to characterize how much variation in Y is in-
duced by variations in X. The denominator describes the total varia-
tion in the output Y when all parameters are varied.

The second measure is the total-order index STx, which can be
written as

STx
¼ 1� Var½EðYj~XÞ�

VarðYÞ ð2Þ

where Var½EðYj~XÞ� = variance of the expected value of Y when all
inputs except X are held constant. The first-order index evaluates
the direct contribution that a parameter makes to the variability of
the output. If a model is strictly additive with respect to its param-
eters, then the first-order indices will sum to one (Saltelli et al.
2008). In more complex models, the effect of a parameter on
the model output may be modulated by the other parameter values.
The total-order index evaluates the total contribution of a parameter
to the output variability when all interactions between parameters
are included.

FAST offers an efficient way to estimate these variance-based
measures of sensitivity. FAST was initially developed to study
first-order effects (Cukier et al. 1973) and was later expanded to
include the total-order effects (Saltelli et al. 1999). The computa-
tional efficiency of FAST is achieved by varying all parameters of
interest simultaneously rather than one by one. The parameters are
varied at noninterfering frequencies (Cukier et al. 1973; Schaibly
and Shuler 1973) within the ranges that are specified by the mod-
eler. The generated sequence of parameter sets is used in the model
to generate an associated sequence of model responses. The model
response sequence is then decomposed using a Fourier transform,
which determines the variance that is associated with each fre-
quency. By considering certain groups of frequencies, the first-
order and total-order sensitivity indices can be calculated for each
parameter (Saltelli et al. 1999). The sample size, which is the total
number of simulations to be performed, must be specified. The sen-
sitivity estimates from FAST asymptotically converge to the defi-
nitions given in Eqs. (1) and (2) as the sample size becomes large.

In the present analysis, FAST is used to calculate the importance
of each parameter to variability in each model output. Use of FAST
also allows screening of parameters to remove those with little in-
fluence on model outputs. In particular, if the first- and total-order
sensitivities of all the outputs to a particular parameter are small,
then the parameter can be treated as a constant in the analysis to
reduce computation time. In addition, the sensitivity indices are
used in the likelihood function (described in the following section)
to weight the performance of the model in reproducing different
model outputs.

Generalized Likelihood Uncertainty Estimation

The GLUE method is used next to determine revised, or posterior,
distributions for the parameters. Running the model with each
parameter set and comparing its performance to the observed sys-
tem behavior will obtain information about the likelihood that the
parameter set is correct. In typical applications of GLUE, a
Monte Carlo sampling of a uniform distribution is used to deter-
mine the parameter values that are supplied to the model. However,
the samples produced by FASTare also approximately uniform and
can be used in GLUE (Ratto et al. 2001).

The likelihood of a parameter value is evaluated on the basis of
the model’s ability to reproduce observations when that parameter
value is used. Many previous papers have used the Nash-Sutcliffe

coefficient of efficiency (NSCE) as the basis of the likelihood func-
tion (Beldring et al. 2003; Arabi et al. 2007; Engeland et al. 2006;
Engeland and Gottschalk 2002; Uhlenbrook and Sieber 2005).
NSCE is calculated as

NSCE ¼ 1�
"P

ℓ
j¼1ðOj �MjÞ2P
ℓ
j¼1ðOj � �OÞ2

#
ð3Þ

where O = observed value and M = model’s value; �O = average of
the observed values; j = index of locations (or times); and ℓ = total
number of locations (or times) where observations are available
(Nash and Sutcliffe 1970; Legates and McCabe 1999). NSCE is
1 when the model perfectly reproduces the observations, and it de-
creases as the model performance deteriorates.

Recent papers (Mantovan and Todini 2006; Stedinger et al.
2008) have argued that arbitrary likelihood functions, such as
NSCE, can produce arbitrary results in the GLUE methodology.
Stedinger et al. (2008) demonstrated this argument by applying
GLUE with a likelihood function developed on the basis of
NSCE to a simple case where the appropriate likelihood function
is known from basic statistics. The case they considered is linear
regression with normal, independently distributed errors with con-
stant variance (Stedinger et al. 2008). In that case, they argued that
the appropriate way to calculate the likelihood L for a given param-
eter set is

L ¼ K exp

"
� ℓ
2
·

P
ℓ
j¼1ðOj �MjÞ2P

ℓ
j¼1ðOj �MMLE

j Þ2
#

ð4Þ

where M represents the model’s value when a particular parameter
set is used; MMLE = model’s value when the parameters are ob-
tained from the maximum likelihood estimator (MLE), and K =
normalization constant that ensures that all the likelihoods sum
to 1. This likelihood function has some similarities to NSCE,
but it includes two key differences. First, the denominator in
Eq. (4) implies that the likelihood is assessed by comparing the
performance of a given parameter set with that of the MLE param-
eter set (Stedinger et al. 2008). Second, the use of ℓ as a coefficient
accounts for the number of independent observations that are avail-
able to constrain the parameter values (Stedinger et al. 2008).
Including ℓ means that poor performance is penalized more when
many observations are available. In the present application, a like-
lihood function is utilized that is similar to the one in Eq. (4), with
two key differences. The first difference is that the errors are not
expected to be independent between observation locations, in con-
trast to the assumptions underlying Eq. (4). Thus, the coefficient ℓ
is replaced by an effective number of independent locations m. The
second difference is the need to account for multiple output vari-
ables or objectives in calculating the likelihoods. This issue is con-
fronted by using a weighted sum of likelihoods. In the case where
three output or response variables are of interest, the resulting like-
lihood function is

L ¼ K

(
w1 exp

"
�m

2
·

P
ℓ
j¼1ðO1;j �M1;jÞ2P

ℓ
j¼1ðO1;j �MMLE

1;j Þ2
#

þ w2 exp

"
�m

2
·

P
ℓ
j¼1ðO2;j �M2;jÞ2P

ℓ
j¼1ðO2;j �MMLE

2;j Þ2
#

þ w3 exp

"
�m

2
·

P
ℓ
j¼1ðO3;j �M3;jÞ2P

ℓ
j¼1ðO3;j �MMLE

3;j Þ2
#)

ð5Þ
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where the subscripts 1, 2, and 3 distinguish the three response var-
iables and the w’s are the individual weights. By using the same m
in all three terms in Eq. (5), it is implicitly assumed that the effec-
tive number of independent locations is the same for all three var-
iables. The weight for a given output is calculated as the first-order
sensitivity of that output to the parameter of interest divided by the
sum of the first-order sensitivities of all three outputs to that same
parameter. A different likelihood is calculated for each parameter
included in a parameter set because the weights depend on the
parameter being considered. The weights are calculated using
the first-order sensitivities from the GSA, but they could also be
calculated using the total-order sensitivities. First-order weights
are selected because they could eventually be estimated using
methods that are faster than FAST (Saltelli and Bolado 1998;
Gatelli et al. 2009), such as random balance designs (Tarantola et al.
2006). The impact of choosing the first-order sensitivity over the
total-order sensitivity is evaluated subsequently.

The performance of the MLE is also required to evaluate the
likelihood function in Eq. (5). The MLE is not generated as part
of the GLUE methodology. As an approximation, it is assumed that
the best performing parameter set in the sample is equivalent to the
MLE. This assumption is expected to be better when a large num-
ber of parameter sets are generated. To select the MLE, perfor-
mance is judged by finding the minimum of total error ε where

ε ¼ 1
σ2
O1

Xℓ
j¼1

ðO1;j �M1;jÞ2 þ
1
σ2
O2

Xℓ
j¼1

ðO2;j �M2;jÞ2

þ 1
σ2
O3

Xℓ
j¼1

ðO3;j �M3;jÞ2 ð6Þ

and

σ2
O1

¼ 1
ℓ� 1

Xℓ
j¼1

ðO1;j � �O1Þ2 ð7Þ

and

�O1 ¼
1
ℓ

Xℓ
j¼1

O1;j ð8Þ

The variances and averages for output variables 2 and 3 are cal-
culated using expressions similar to Eqs. (7) and (8).

The likelihood function in Eq. (5) also requires calculation of
the normalization constant, which is found from the constraint that
all the likelihoods for a parameter should sum to 1. In practical
terms, preliminary likelihoods are calculated by neglecting K in
Eq. (5). Then, the sum of these likelihoods is calculated, and
the preliminary likelihoods are divided by the sum to determine
the final likelihoods. The cumulative likelihood for a selected value
of a parameter is determined by summing all the likelihoods asso-
ciated with values that are smaller than or equal to the selected
value. The cumulative likelihoods can be used to generate a pos-
terior cumulative likelihood distribution for each parameter.

The limitations of the GLUE methodology should be empha-
sized. The likelihood function in Eq. (5) is assumed rather than
derived from a particular set of statistical assumptions. In addition,
calculation of separate cumulative likelihood distributions for each
parameter neglects correlation or dependence between the most
likely values of different parameters. Anecdotal results (not shown
in this paper) suggest that dependencies might occur, so future re-
search should consider methods to account for such dependencies.
These limitations disallow using this methodology to rigorously
assess quantitative uncertainty in model responses. However, the

methodology is still expected to be useful to roughly assess the
extent to which various parameters have been constrained by a cal-
ibration exercise and the related objectives given previously.

Latin Hypercube Sampling

The third and final step of the methodology is to use the posterior
cumulative distributions of the parameters in the model to simulate
the forecast period and to determine the associated distributions for
the model outputs. Latin hypercube sampling is used to sample the
marginal posterior distribution of each parameter (Chang et al.
1993; Hall et al. 2005). In contrast to Monte Carlo sampling, which
generates random values from the distribution, LHS explores the
parameter space using regularly spaced percentiles from the distri-
bution. LHS is used in this paper because previous research has
shown that smaller sample sizes can be used to characterize a dis-
tribution for LHS than can be used for for Monte Carlo simulations
(McKay et al. 1979). Even so, the required number of simulations
at this stage of the analysis can be rather large if numerous param-
eters are treated as uncertain. To reduce the number of simulations,
the parameters can be screened. Parameters that had little impact on
the model results in the calibration period (on the basis of the GSA)
can be assigned to the midpoint of the allowable range. The remain-
ing parameters are treated as uncertain and sampled using LHS. In
the LHS scheme, the posterior cumulative likelihood function for
each parameter is obtained from the GLUE methodology described
previously. The cumulative likelihood scale is divided into a se-
lected number of equally sized bins, and the midpoints of those
bins are determined. Then, the cumulative likelihood function is
used to find the parameter value associated with each midpoint.
Because the posterior distributions are typically nonuniform, the
parameter values will be irregularly spaced. The values for each
parameter are then combined with those for every other parameter
so that every combination is included in the sample. The generated
parameter sets are then used in the model for the forecast period to
determine the associated histograms of model responses.

SRH-1D

The GSA-GLUE methodology described in the previous section is
tested using the SRH-1D model, which is currently used by the
Bureau of Reclamation to simulate flows and sediment transport
in channels and river networks with or without movable boundaries
(Huang and Greimann 2007). The model can simulate steady or
unsteady flow and can treat cohesive and noncohesive sediment.
The model applications considered in this paper use only steady
flow and noncohesive sediment.

SRH-1D uses one-dimensional flow calculations, including the
standard step energy method for steady gradually varied flow
(Huang and Greimann 2007). Between adjacent cross sections
(j and jþ 1), the energy equation is written as

zjþ1 þ αjþ1

v2jþ1

2g
� zjþ1 � αjþ1

v2jþ1

2g
� hf � hc ¼ 0 ð9Þ

where z represents the water surface elevation; α = kinetic energy
flux correction coefficient; v = average velocity at the cross section;
g = gravitational acceleration; hf represents friction loss; and hc
represents contraction or expansion losses. Evaluation of the fric-
tion loss in Eq. (9) ultimately requires use of Manning’s equation
and specification of Manning’s roughness coefficient n, which is
considered a model parameter.

SRH-1D simulates sediment transport using three main ele-
ments: sediment routing, bed material mixing, and cohesive sedi-
ment consolidation (if cohesive sediment is present). For sediment
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routing, SRH-1D can use either unsteady sediment routing or Exner
equation routing. Because steady flow is considered in this paper
and the bed changes are primarily driven by bed load, the Exner
equation is used, and mass conservation can be written as

∂Qs

∂x þ ε
∂Ad

∂t � qs ¼ 0 ð10Þ

where Qs = volumetric sediment discharge; ε = volume of sediment
per unit bed layer volume (related to porosity); Ad = volume of bed
sediment per unit length; and qs = lateral sediment inflow per unit
length. The Exner equation is integrated over control volumes as-
sociated with cross sections and applied separately for each sedi-
ment size fraction. Because the cross sections might be closely
spaced in some cases, SRH-1D does not assume that the sediment
discharge equals the transport capacity. Rather, it assumes the
capacity is reached over some length controlled by the total adap-
tation length. The total adaptation length Ltot is computed on the
basis of Greimann et al. (2008) as follows:

Ltot ¼ f sLb þ ð1� f sÞ
Q

ζWwf
ð11Þ

where Lb = adaptation length for bed load; ζ = suspended sediment
recovery factor; f s = fraction of suspended load relative to the total
load; Q = flow rate;W = channel width; and wf = fall velocity. The
value of Lb is determined as

Lb ¼ bLh ð12Þ
where bL = user-defined bed-load adaptation length parameter; and
h = average depth at the cross section. Separate values of ζ are used
for deposition and scour:

ζ ¼
�
ζd if deposition
ζs if erosion

ð13Þ

and both values (ζd and ζs) are considered model parameters. The
fraction of suspended load f s was previously found to be primarily
a function of the suspension characteristic Z. Greimann et al.
(2008) derived the following empirical function for f s:

f s ¼ minð1; 2:5e�ZÞ ð14Þ
where Z ≡ wf =ðκu�Þ, κ = von Kármán constant (0.4); and u� =
friction velocity.

The transport capacity expression used in this paper is Parker’s
(1990) gravel equation, which ultimately requires specification of a
reference or critical shear stress (θr) and a hiding factor (λ), which
account for the effect of hiding and sheltering of gravel mixtures.
The reference shear stress and hiding factor are treated as model
parameters for the purposes of this paper. In Parker’s original for-
mulation, θr ¼ 0:386, and λ ¼ 0:905. However, it is probable that
no unique set of values applies to all situations, and a wide range of
values have been suggested for gravel bed rivers (Buffington and
Montgomery 1997).

Bed material mixing is modeled by dividing the bed into an ac-
tive layer and a series of underlying inactive layers. Erosion and
deposition of sediment can only occur from the active layer. Each
layer is considered homogeneous within its depth. The active layer
thickness is determined as the product of the geometric mean of the
largest size class and the active layer thickness multiplier (nalt),
which is another model parameter. When erosion occurs, the active
layer shifts downward and material from the underlying layers be-
comes part of the active layer. When deposition occurs, the active
layer shifts up and material becomes classified as the top inactive

layer. As part of the bed material mixing, the user must specify the
weight of bed-load fractions (χ), which is a parameter that controls
the weighting of the bed-load grain-size distribution in the transfer
of material between the active layer and the underlying layer. If
χ ¼ 0, then the grain-size distribution of the sediment that is trans-
ferred to the sublayer is equal to the active layer grain-size distri-
bution. If χ ¼ 1, then the grain-size distribution of the sediment
that is transferred to the sublayer is equal to the bed-load grain-size
distribution.

In the end, eight parameters are treated as uncertain in this
analysis: Manning’s roughness coefficient (n), critical shear stress
(θr), hiding factor (λ), deposition recovery factor (ζd), scour recov-
ery factor (ζd), bed-load adaptation length (bLÞ, active layer thick-
ness multiplier (nalt), and the weight of bed-load fractions (χ). None
of these parameters is easily measurable in the field, and they can
vary significantly from case to case. Thus, they are typically cali-
brated. Table 1 shows the selected minimum and maximum values
of each of these parameters used in this analysis. These ranges were
chosen because they represent a reasonable range of possible
parameter values across various model applications.

SRH-1D produces a large number of outputs, which are avail-
able at multiple locations and times for a given simulation. For
this study, the model response variables of interest were selected
to be the length-averaged median grain size, flow velocity, and bed
profile elevation. The length-averaged median grain size �d50 is
defined as

�d50 ≡
P

ℓ
j¼1½ðd50j þ d50jþ1

Þ=2�ΔLj;jþ1

Ltotal
ð15Þ

where ΔLj;jþ1 = length between cross sections j and jþ 1; d50j =
median grain size at cross section j; and Ltotal = total length of the
reach (the sum of allΔLs). Similar expressions are used to calculate
the length-averaged flow velocity and bed elevation. In those ex-
pressions, the average flow velocity and average bed elevation at
each cross section is used in place of the median grain size in
Eq. (15). It is assumed that observations are available for these three
outputs for a so-called calibration period, and it is assumed that one
would want to make predictions for these (unobserved) outputs for
a forecast period.

Experiments

The model was applied to two flume experiments. One experiment
is an erosional case, and the other is a depositional case. These ex-
periments were chosen because volumetric flow rate, sediment sup-
ply, initial bed geometry, and initial bed material are known for
both experiments. Thus, there is little uncertainty about the system
configuration or the model inputs.

Table 1. Selected Bounds for the Uniform Distributions Describing the
Eight Parameters

Parameter Minimum value Maximum value

Critical shear stress (θr) 0.01 0.06

Hiding factor (λ) 0 1

Active layer thickness multiplier (nalt) 0.1 2

Deposition recovery factor (ζd) 0.05 1

Scour recovery factor (ζs) 0.05 1

Bed-load adaptation length (bL) 0 10

Weight of bed-load fractions (ξ) 0 1

Manning’s roughness coefficient (n) 0.015 0.065
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The Ashida and Michiue (1971) experiment was designed
to simulate riverbed degradation and scour downstream of a
dam. The flume was 0.8 m wide and 20 m long. The experiment
used in this paper was called Run 6 by the writers. In this case, the
initial bed slope was 0:01 m=m (1%), and a sand-to-gravel particle
size distribution was used for the bed material with sizes ranging
from 0.2 to 10 mm and an initial median diameter of 1.5 mm.
A clear-water discharge of 0:0314 m3=s was applied for the
10 h experiment.

Unfortunately, the observations that characterize the resulting
system behavior are rather limited. The resulting degradation
was measured at three locations (7, 10, and 13 m from the down-
stream end of the flume) at the beginning of the experiment and at
hours 1, 2, 4, and 10. Bed gradation was also measured at three
locations (1, 10, and 13 m from the downstream end of the flume)
at the beginning and end of the experiment. Because of the lack of
extensive data, output from a calibrated SRH-1D model was used in
place of physical observations when evaluating the parameter un-
certainty. This approach implies that any disagreement between
model simulations performed as part of the parameter uncertainty
analysis and the “observed” values is attributable to errors in the
parameter values. This approach also allows for variation in
the amount of observations supplied to the method to determine
the impact on the results. It is not intended to be the manner in
which the method is used in future applications. The model was
manually calibrated using comparisons with both the observed
bed profile and the observed bed grain-size distribution. The up-
stream boundary condition was set to zero sediment inflow, and
the downstream boundary condition specified the water surface
elevation and allowed sediment outflow. Actual observations of
the bed profile were used as the initial conditions. Cross-section
spacing was 0.5 m, resulting in 41 total cross sections, and grain
sizes were broken into nine classifications. Fig. 1(a) compares the
bed profile simulated by the calibrated model (using parameter val-
ues given in Table 2) with the observations. The calibrated model
compares well with the observations through hour 2. After hour 2,
the model overestimates the erosion rate. As erosion happens in this
experiment, some bedform development occurs, which implies a
temporal variation in Manning’s n that is not properly captured
by the model (the roughness coefficient is a parameter in SRH-
1D and is assumed to remain constant during the experiment).

For the analysis of parameter uncertainty, the Run 6 experiment
was divided into a calibration period from 0 to 2 h and a forecast
period from 2 to 10 h. The forecast period has identical conditions
to the calibration period aside from the initial condition. The initial
conditions for all forecast simulations in the analysis are the values
obtained from the calibrated model (i.e. the “observations”).

The Seal et al. (1997) experiment was designed to evaluate
downstream fining of poorly sorted sand and gravel in a narrow
channel and to simulate deposition and armoring processes. Their
experiments consisted of three separate laboratory flume setups
(Runs 1, 2, and 3). The flume used in all three experiments was
0.3 m wide and 45 m long with an initial slope of 0:002 m=m
(0.2%). A discharge of 0:049 m3=s was applied at the upstream
end of the flume. The durations of the individual setups were
16.83, 32.4, and 65 h, respectively. For each setup, a sand-to-gravel
particle-size distribution was used for the sediment feed with sizes
from 0.125 to 64 mm. Sediment feed rates for the three experiments
varied from 0.05 to 0:19 kg=s. The resulting profile was measured
at 18 locations every half hour, hour, and two hours for Runs 1, 2,
and 3, respectively. Sediment sizes of the surface were measured at
the end of each experiment using standard point counts of 100
grains for 8 to 10 samples over the length of the deposit along

the flume. Subsurface sampling was also conducted at the end
of each experiment.

For the Seal et al. (1997) experiment, Run 2 was used as the
calibration case. To be consistent with the erosional experiment,
a calibrated SRH-1D model was developed for Run 2 and used
as “observations.” The upstream boundary condition is the speci-
fied feed rate for sediment inflow, and the downstream boundary
conditions are the specified water surface elevation and allowed
sediment outflow. Actual observations were used as the initial
conditions for the calibration simulation. Cross-section spacing
was 1 m for a total of 56 cross sections (this total length is greater
than the actual length of the flume). Nine grain-size classifications
were used. The calibrated model was developed by comparing the
model results with the observed bed profile and sediment-size
distributions. Fig. 1(b) compares the bed profile simulated by

Fig. 1. Observed bed elevations (points) and the bed profiles produced
by the calibrated models (lines): (a) Ashida and Michiue (1971);
(b) Seal et al. (1997) experiments

Table 2. Parameter Values for the Two Calibrated Models That Are Used
to Generate the Output Values That Are Treated as Observations

Parameter

Ashida and
Michiue (1971)
experiment

Seal et al.
(1997)

experiment

Critical shear stress (θr) 0.0386 0.0386

Hiding factor (λ) 0.905 0.905

Active layer thickness multiplier (nalt) 1 1

Deposition recovery factor (ζd) 0.25 1

Scour recovery factor (ζs) 1 1

Bed-load adaptation length (bL) 5.0 0.10

Weight of bed-load fractions (ξ) 0 0

Manning’s roughness coefficient (n) 0.027 0.022
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the calibrated model (using parameter values in Table 2) with the
experimental observations. The calibrated model compares well
with the observations, with the largest discrepancies occurring near
the downstream end of the depositional wedge. Runs 1 and 3 were
both used as forecast cases for the analysis of parameter uncer-
tainty. For both forecast cases, the actual observations were used
as the initial conditions for the simulations. These runs have the
same volumetric flow rate (0:049 m3=s) as the calibration case
(Run 2). However, Runs 1 and 3 have sediment feed rates of
0.09 and 0:05 kg=s and durations of 16.8 and 65 h, respectively.

Results

Global Sensitivity Analysis

The FAST method, as previously described, was applied to the cal-
ibration cases of the two physical experiments. The eight param-
eters identified previously were varied, and the three model outputs
were evaluated. Both applications of FAST used sample sizes of
5,000 simulations. Sample sizes down to 968 were found to pro-
duce the same qualitative results (i.e., identify the same parameters
as being the most important in explaining the variance of each out-
put) in testing with the Ashida and Michiue (1971) experiment.
However, the numerical values for the sensitivities change some-
what as the sample size decreases within this range.

Fig. 2(a) plots the estimated contribution of each parameter to
the total variance of the three output variables for the Ashida and
Michiue (1971) experiment on the basis of the first-order sensitivity
indices (sample size 5,000). To produce the partitions shown in a
given column, the first-order indices were divided by the sum of the
first-order indices and plotted as a percentage. Fig. 2(b) shows the
results for a similar computation using the total-order indices. Both
Figs. 2(a) and 2(b) suggest that four parameters are primarily
responsible for producing variability in the length-averaged median

grain size, velocity, and bed profiles. These parameters are the criti-
cal shear stress (θr), hiding factor (λ), active layer thickness multi-
plier (nalt), and Manning’s n. Only these parameters individually
contribute more than 5% of the summed first-order sensitivities
for each output. For the d50 output, the hiding factor is the param-
eter that produces the greatest sensitivity by far. This result should
be expected, as hiding factor attempts to account for the differences
in the mobility of different size fractions. Thus, it should have a
clear impact on sediment-size distribution of the bed. For the veloc-
ity output, Manning’s n is the parameter that produces the greatest
sensitivity. This result reflects the relationship between Manning’s
n and velocity as stated in Manning’s equation. For the bed profile
output, critical shear stress is the parameter that produces the most
sensitivity. Critical shear stress impacts bed profile through its role
in determining the overall erodibility of the bed material. These
same relationships hold whether the first-order or the total-order
sensitivity is considered. In general, the contributions of the less
important parameters are magnified when the total-order indices
are considered. This behavior suggests that these parameters are
primarily important because they affect the contributions of the
more important parameters, such as critical shear stress, hiding fac-
tor, and Manning’s n.

Figs. 2(c) and 2(d) show the equivalent results for the Seal et al.
(1997) experiment. When considering the first-order sensitivities
[Fig. 2(c)], four parameters again have contributions larger than
5%: critical shear stress, hiding factor, weight of bed-load fractions,
and Manning’s n. This list is the same as the erosion case, except
that the weight of bed-load fractions (χ) replaces the active layer
thickness multiplier. For the d50 output, the hiding factor plays a
smaller role for the depositional case than it did for the erosional
case, but it is still the parameter that produces the most variance.
For the velocity output, Manning’s n plays an even larger role for
the depositional case than it did for the erosional case. For the bed
profile, Manning’s n now overtakes the critical shear stress as the

Fig. 2. First-order and total-order sensitivities for the SRH-1D models of the Ashida and Michiue (1971) and Seal et al. (1997) experiments. Each
column refers to one of the three length-averaged output variables and each division in the columns refers to one of the eight model parameters. In the
columns, the sensitivities to the parameters are stacked in the same order that the parameters appear in the legend
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parameter that produces the most variance. The increased impor-
tance of Manning’s n to the bed profile is expected because the
flow velocity plays an important role in deposition.

The total-order sensitivities in Fig. 2(d) show more complex
behavior than suggested by the first-order indices. Similar to the
results for the erosional case, the less important parameters have
a bigger role in the total-order indices than they do in the first-order
indices. For the total-order sensitivity, a 5% threshold would iden-
tify the same four parameters as most important for the d50 output.
However, for the velocity and bed profile outputs, this threshold
would identify all parameters as being important. Increasing the
threshold to 10% for the velocity and bed profile outputs would
identify the same four parameters included in the first-order sensi-
tivity, plus a scour recovery factor for the bed profile output. Com-
paring the total-order indices from the erosional and deposition
cases [i.e., Figs. 2(b) and 2(d)] suggest that the depositional experi-
ment is much more complex than the erosional experiment. For
example, most of the bed profile variance comes from the critical
shear stress in the erosional case, but for the depositional case,
nearly all parameters have roughly comparable influences on the
bed profile.

Generalized Likelihood Uncertainty Estimation

After the sensitivity analysis was completed, the GLUE method
was used to calculate the posterior likelihood distributions for each
parameter as described in the Methodology section. Recall that the
likelihood function uses weights determined on the basis of the
first-order sensitivity indices. The likelihood function also requires
a value for m, the effective number of independent locations. It is
assumed that m ¼ 1, which is the most conservative value for this
variable because it produces the largest estimate of the parameter
uncertainty. The effect that m has on the results is evaluated sub-
sequently. The solid lines in Fig. 3 show the posterior cumulative
likelihood distributions of critical shear stress, hiding factor, active
layer thickness multiplier, and Manning’s n for the Ashida and
Michiue (1971) experiment. Recall that the GSA identified these
parameters as producing the most variance in the model outputs.
The dashed lines show the uniform distributions that were assumed
prior to simulation of the calibration period and application of the
likelihood function. The steep sections in the posterior distributions
indicate ranges with higher concentrations of likelihood. Such sec-

tions are seen in the distributions for critical shear stress, hiding
factor, and Manning’s n. In contrast, the distribution for active layer
thickness multiplier does not exhibit such a steep section. This re-
sult suggests that the active layer thickness multiplier is more
poorly constrained by the available observations than the other
parameters, likely because no output is highly sensitive to active
layer thickness multiplier (Fig. 2). The vertical lines in the figure
indicate the true values for each parameter (i.e., the values used in
the calibrated model that is used to generate the “observations”).
For hiding factor and Manning’s n, the true values fall within
the region with the highest concentration of likelihood. For critical
shear stress, the true parameter value falls in a range that is deemed
unlikely by the analysis.

Fig. 4 shows the posterior cumulative likelihood distributions of
critical shear stress, hiding factor, weight of bed-load fractions, and
Manning’s n for the Seal et al. (1997) experiment. These are the
parameters found to produce the most variance in the model outputs
for this experiment. Once again, steep sections are observed in the
cumulative distributions of hiding factor and Manning’s n, indicat-
ing that the most likely values of these parameters fall within rel-
atively well-defined ranges. The true values for these parameters
also fall within the ranges that are considered likely. Critical shear
stress and weight of bed-load fractions do not exhibit such large
steep sections, suggesting that these parameters are more poorly
constrained by the available observations.

Latin Hypercube Sampling

After the posterior distributions were calculated, LHS was used to
develop samples from them. For both physical experiments, the
sample size was 1,296 parameter sets. Six values were generated
for the four parameters that produced the greatest sensitivity in the
outputs, whereas a single midpoint value was used for the remain-
ing parameters [similar results were obtained for the Ashida and
Michiue (1971) experiment when the number of values was as
low as five for the four most important parameters]. Selecting only
one value for the parameters that produced relatively little sensitiv-
ity in the outputs effectively neglects the uncertainty in the outputs
produced by uncertainty in these parameter values. Screening out
these parameters ultimately allows a much smaller number of
simulations to be conducted for the forecasting period, which re-
duces computation time.

Fig. 3. Posterior cumulative likelihood distributions for: (a) critical shear stress; (b) hiding factor; (c) active layer thickness multiplier; (d) Manning’s
n for the Ashida and Michiue (1971) experiment. Dashed lines indicate the uniform distribution for each parameter that was assumed prior to simula-
tion of the calibration period; vertical lines indicate the parameter values used in the calibrated model (i.e., the true values)
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For the Ashida and Michiue (1971) experiment, six values were
generated from the posterior distributions of critical shear stress,
hiding factor, active layer thickness multiplier, and Manning’s n.
Fig. 5 plots the histograms for the length-averaged d50, velocity,
and bed profile when the parameter sets generated from LHS
are used to simulate the forecast period (shown as solid lines).
For comparison, the figure also shows the histograms of these out-
put variables for the calibration period (shown as dashed lines),

where the parameters were generated from a uniform distribution
via FAST. The vertical lines represent the true values for these out-
puts on the basis of application of the calibrated model to the fore-
cast period. The histograms of the outputs have changed between
the calibration and forecast periods in part because of differences in
the initial conditions and elapsed simulation time. In particular, the
duration of simulation was only 2 h for the calibration period
whereas it was 8 h for the forecast period. Typically, one expects
a wider range of output values for a longer simulation (i.e., the fore-
cast period). However, the output histograms also reflect the nar-
rower distributions for the parameters used for the forecast period.
The most likely values of d50 range from 3 to 6 mm for the forecast
period, and the true value (from the calibrated model) was 4.2 mm.
The most likely values for velocity range from 0.35 to 0:54 m=s for
the forecast period, and the true value was 0:47 m=s. The most
common values of the bed profile range from �0:080 to
�0:005 m, and the true value was�0:020 m. Thus, all of the histo-
grams include the true value for the forecast period. In the case of
velocity, the actual value is very near the value judged to be most
likely from the histogram. Among the three output variables plot-
ted, velocity is particularly interesting because it is not expected to
vary between the calibration and forecast periods. Thus, the nar-
rowing of the histogram between the calibration and forecast peri-
ods likely reflects the degree to which the parameters were
constrained by the observations available for the calibration period.

For the Seal et al. (1997) experiment, six values were generated
from the posterior distributions of critical shear stress, hiding factor,
weight of bed-load fractions, and Manning’s n using the LHS
method. All other parameters were fixed at the median value from
their respective posterior likelihood distributions. Fig. 6 plots the
histograms for the length-averaged d50, velocity, and bed profile
for the two Seal et al. (1997) cases that are considered as forecast
scenarios (shown as solid lines). The figure also shows the histo-
grams of these output variables for the calibration period (shown as
dashed lines), where the parameters were generated from a uniform
distribution via FAST. The vertical lines represent the true values
for these outputs. Overall, the true values for the forecast cases typ-
ically fall within the histograms, although not always at the most
likely value. The histograms also indicate a substantial range

Fig. 4. Posterior cumulative likelihood distributions for: (a) critical shear stress; (b) hiding factor; (c) weight of bed-load fractions; (d) Manning’s n for
the Seal et al. (1997) experiment. Dashed lines indicate the uniform distribution for each parameter that was assumed prior to simulation of the
calibration period; vertical lines indicate the parameter values used in the calibrated model (i.e., the true values). The true value for the weight of bed-
load fractions is 0

Fig. 5. Histograms of: (a) d50; (b) velocity; (c) bed profile for the ca-
libration and forecast periods for the Ashida and Michiue (1971) ex-
periment. Vertical lines indicate the output values produced by the
calibrated model
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of plausible values for all three outputs under the forecast
scenarios.

Analysis

The results described in the previous section rely on several deci-
sions made in the application of the GSA-GLUE methodology.
These decisions include: (1) the use of the first-order sensitivities
rather than the total-order sensitivities to calculate the weights in
the likelihood function, (2) the assumed effective number of

independent observations m, (3) the mathematical form of the like-
lihood function, and (4) inclusion of observations of d50, velocity,
and bed profile to constrain the parameters. The impact of each of
these decisions is examined subsequently using the Ashida and
Michiue (1971) experiment.

The impact of using the first-order sensitivities to determine the
weights in the likelihood function in Eq. (5) is examined first. Fig. 7
shows the posterior cumulative likelihood distributions for critical
shear stress, hiding factor, active layer thickness multiplier, and
Manning’s n, using both the first-order and total-order sensiti-
vities to determine the weights. The resulting posterior distributions
are very similar; the cumulative likelihood distributions for critical
shear stress are visually indistinguishable. The same analysis was
performed for the Seal et al. (1997) experiment, which produ-
ced posterior cumulative likelihood distributions for critical shear
stress, hiding factor, weight of bed-load fractions, and Manning’s n.
Among these parameters, only the cumulative distribution for hid-
ing factor showed a visible difference depending on the weight-
ing used.

Another key assumption is the effective number of independent
observations m. Previously, m was assumed to be 1 because of the
expected dependence of the errors at different cross sections in a
simulation. At this point, the practical effect of m on the results of
the analysis is examined. Using the Ashida and Michiue (1971)
experiment, posterior cumulative likelihood distributions for criti-
cal shear stress and hiding factor were generated using values of m
varying from 1 to 20 in Figs. 8(a) and 8(b). As can be seen in these
figures, an increase in m creates a posterior distribution with a more
erratic shape, in which a very small number of parameter values
begin to dominate the distribution. Overall, a larger value of m in-
creases the likelihoods of the parameter values that produce results
that are very similar to the observations and penalizes the parameter
sets that produce more dissimilar results. The true values of critical
shear stress and hiding factor from the calibrated model were
0.0386 and 0.905, respectively (Table 2). Whereas the true value
for the hiding factor is located at a jump in the cumulative distri-
bution [Fig. 8(b)], the true value for critical shear stress is located
at a relatively flat portion of the distribution, or a region with a
lower concentration of likelihood. The hazard of a large value

Fig. 6. Histograms of: (a) d50; (b) velocity; (c) bed profile for calibra-
tion and forecast cases for Seal et al. (1997) experiment. Vertical lines
indicate the output values produced by the calibrated model

Fig. 7. Comparison of posterior cumulative likelihood distributions for: (a) critical shear stress; (b) hiding factor; (c) active layer thickness multiplier;
(d) Manning’s n when the likelihood function uses the first-order or total-order sensitivity. Dashed lines indicate the uniform distribution that was
assumed for each parameter before the model was applied to the calibration period; vertical lines indicate the parameter values used in the calibrated
model. All results are for the Ashida and Michiue (1971) experiment
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of m is that the method might overpenalize small disagreements
with the observations and miss plausible values of the parameter.

The form of the likelihood function was also assumed in gen-
erating the results in the previous section, on the basis of a
conceptual extension of the likelihood function presented by

Stedinger et al. (2008). Alternative likelihood functions could be
devised. For example, one might instead calculate the likelihood
by normalizing each output variable and then including it in the
function presented by Stedinger et al. (2008). A likelihood function
developed on the basis of this approach would be

L ¼ exp
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where the indices 1, 2, and 3 are the different system outputs; and
σ2
O1
, σ2

O2
, and σ2

O3
are the variances of the observations for each

output. The MLE values in this likelihood function are calculated
in the manner described previously.

Figs. 8(c) and 8(d) show the posterior cumulative likelihood dis-
tributions for critical shear stress and hiding factor when likeli-
hoods are calculated using Eqs. (5) and (16). In both cases,
m ¼ 1. The likelihood function in Eq. (16) assigns nearly all of

Fig. 8. Impact of the value ofm, the effective number of independent observations, on the posterior cumulative likelihood distributions for: (a) critical
shear stress; (b) hiding factor, and the impact of the mathematical form of the likelihood function on the posterior cumulative likelihood distributions
for: (c) critical shear stress; (d) hiding factor. Dashed diagonal lines indicate the assumed initial uniform distribution for each parameter; vertical lines
indicate the parameter values used in the calibrated model. All results are for the Ashida and Michiue (1971) experiment

Fig. 9. Comparison of posterior cumulative likelihood distributions for: (a) critical shear stress; (b) hiding factor; (c) active layer thickness multiplier;
(d) Manning’s n when d50 is observed or unobserved. Dashed lines indicate the uniform distribution that was assumed for each parameter before the
model was applied to the calibration period; vertical lines indicate the parameter values used in the calibrated model. All results are for the Ashida and
Michiue (1971) experiment
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the likelihood to a single parameter value, creating a stair-step
cumulative distribution. The parameter set selected by this function
is the MLE parameter set. Part of the reason for this result is that the
observations used in this analysis are actually model results, so the
MLE parameter set is capable of reproducing the results with very
little error. Thus, it is judged to have a very high likelihood. How-
ever, the parameter values associated with the MLE are not neces-
sarily the true values used to generate the “observations.” In
particular, notice that the critical shear stress that is identified in
Fig. 8(c) is not the true value of the critical shear stress. Overall,
these results demonstrate that the form of the likelihood function
can have major impact on the results of a GLUE analysis because it
contains hidden assumptions about the measurement error and the
importance assigned to exactly matching the observations.

To test the impact of the available observations on the results, it
is assumed now that no observations were available for d50. In such
a case, the likelihood function includes only two outputs rather than
three. Fig. 9 compares the posterior cumulative likelihood distribu-
tions for critical shear stress, hiding factor, active layer thickness
multiplier, and Manning’s n, developed using observations for d50,
velocity, and bed profile, and developed using only velocity and
bed profile. The posterior distributions for critical shear stress
and Manning’s n [Figs. 9(a) and 9(d)] do not change noticeably.
In this model, d50 is not sensitive to critical shear stress or Mann-
ing’s n, so observations of d50 have little impact on the likelihood
distributions for these parameters. The posterior distribution for
hiding factor [Fig. 9(b)], however, shows a dramatic change when
d50 observations are unavailable, moving closer to a uniform dis-
tribution. Because hiding factor is assumed to be uniformly distrib-
uted in advance of simulating the calibration period, this implies
that the observations from the calibration period are not effective
at constraining the value of this parameter. Similarly, the posterior
distribution for active layer thickness multiplier [Fig. 9(c)] moves

closer to a uniform distribution, implying that the velocity and bed
profile observations are of limited effectiveness in constraining this
parameter.

The resulting histograms for the simulated d50, velocity, and
bed profile outputs for the calibration and forecast periods are
shown in Fig. 10. When only velocity and bed profile are observed
in the calibration period, the histogram for d50 in the forecast
period resembles the histogram from the calibration period, with
a most likely value of 5.2 mm. This similarity occurs because hid-
ing factor, which is most important in controlling d50 (see Fig. 3),
was poorly constrained by the calibration observations. Active
layer thickness multiplier, also known to impact the d50 output,
is similarly unconstrained. The histograms of velocity and bed pro-
file after the forecast period are similar irrespective of whether d50
was observed. Because velocity and bed profile observations were
available for the calibration period, the most important parameters
that impact velocity (Manning’s n) and bed profile (critical shear
stress) were about equally constrained irrespective of whether d50
was observed. This analysis suggests that it is beneficial during the
calibration period to observe any output variable for which fore-
casts will be required. Such observations help constrain the param-
eters that impact the same output variable. In the circumstance
where direct observations of the desired output are not possible,
the GSA provides a tool to determine whether other more measur-
able outputs depend on the same parameters.

Conclusions

In this paper, a new method was developed to assess the degree to
which parameter values are constrained by calibration data and the
impact of remaining parameter uncertainty on sediment transport
model forecasts. The method begins by assuming the parameters
are uniformly distributed within specified bounds and then updates
these distributions by comparing the results of simulations run on
the basis of these parameter values against observations for a cal-
ibration period. The distributions are then updated using a likeli-
hood function that extends the one proposed by Stedinger et al.
(2008) to include multiple output variables. In the likelihood func-
tion, the output variables are weighted using first-order global sen-
sitivities, which are calculated using FAST. The updated
distributions of the parameters are then sampled using LHS to pro-
duce histograms of model outputs for the forecast period. The main
conclusions from the application of this method are as follows:
1. The sensitivities of length-averaged median grain size, flow

velocity, and bed profile to the model parameters can be quite
different for erosion and deposition cases. In the erosional ex-
periment by Ashida and Michiue (1971), median grain size is
most dependent on hiding factor, velocity is most dependent on
Manning’s n, and bed profile is most dependent on critical
shear stress. For the depositional experiment by Seal et al.
(1997), median grain size is most dependent on hiding factor
and weight of bed-load fractions, velocity is most dependent
on Manning’s n, and bed profile is most dependent on critical
shear stress and Manning’s n. Also, the outputs for the deposi-
tional case tend to be sensitive to more parameters than the
outputs for the erosional case. For example, for the erosion
case considered in this paper, median grain size is most sensi-
tive to hiding factor and relatively insensitive to the other para-
meters. For the depositional case considered, median grain size
is sensitive to critical shear stress, hiding factor, weight of bed-
load fractions, and Manning’s n.

2. The analysis of global sensitivities suggests the importance
of calibrating against observations of variables that will be

Fig. 10. Histograms of length-averaged (a) d50; (b) velocity; (c) bed
profile for the calibration and forecast periods for the Ashida and Mi-
chiue (1971) experiment, when d50 is either observed or unobserved
during the calibration period. Vertical lines indicate the true values of
the output for the forecast period from the calibrated model
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included in the forecast. For example, if the forecast includes
median grain size, then the model should be calibrated using
observations of median grain size. This approach assists the
calibration method in constraining the parameters most impor-
tant to the variables included in the forecast. If the variables
included in the forecast cannot be observed directly during
the calibration period, then the global sensitivities can be used
to identify alternate output variables that depend strongly on
the same parameters. These alternate variables could then be
used to constrain these parameters, reducing the uncertainty
in the forecast.

3. On the basis of the evaluation of the impact of parameter un-
certainty presented, weighting the different output variables on
the basis of the first-order sensitivity in the likelihood function
appears to be an adequate substitute for use of the total-order
sensitivity. This approximation is potentially beneficial be-
cause faster methods are available to estimate the first-order
sensitivity than the total-order sensitivity. Further testing is
needed to identify model structures and applications where
the total-order sensitivity might produce substantially different
results.

4. By using two mathematical forms of the likelihood function, it
was observed that the choice of the likelihood function can
produce widely differing estimates of the parameter uncer-
tainty remaining after calibration, and thus the uncertainty
in the model forecasts attributable to parameter uncertainty.
Similarly, the choice of the variable m, the effective number
of independent observations, has a significant impact on the
results. These issues are related to implicit assumptions about
measurement and other errors in the analysis. Further research
is needed to determine the applicability of the likelihood func-
tion. It is recommended that this research begins by applying
the methodology to cases where the error and model structures
are simple and the likelihood function is known from basic
statistics and then transitions toward more complex but inter-
esting sediment transport cases.
Overall, the research described in this paper should be expanded

to consider other cases to establish the generality of the results.
Additional cases might include more flume-scale experiments, such
as deposition in wide and sandy channels (Toro-Escobar et al.
2000) and erosion in alluvial channels. They should also include
river-scale models, where a sufficient set of field observations ex-
ists. Testing could also consider additional output variables such as
channel width, flow depth, d16, d84, and sediment load. Other sedi-
ment transport equations such as Meyer-Peter Muller (1948),
Laursen (1958), and Ackers-White (1973) could be examined to
see how the relationships between model parameters and outputs
change.
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