

Impacts of Reused/ Reclaimed Water:

Organisms and Chemicals of Concern

Research and Development Office Science and Technology Program Final Report ST-2015-9782-01

Denise Hosler Jacque Keele Sherri Pucherelli

U.S. Department of the Interior Bureau of Reclamation Research and Development Office

Mission Statements

The U.S. Department of the Interior protects America's natural resources and heritage, honors our cultures and tribal communities, and supplies the energy to power our future.

The mission of the Bureau of Reclamation is to manage, develop, and protect water and related resources in an environmentally and economically sound manner in the interest of the American public.

	REPORT DC	CUMENTATION P	AGE		Form Approved OMB No. 0704-0188			
T1. REPORT DAT September 2015	E 1	2. REPORT TYPE	Research	T3.	2015			
T4. TITLE AND SUBTITLE Impacts of Reused/ Reclaimed Water: Organisms and			Chemicals of Conce		CONTRACT NUMBER RY1541AW201519782			
				5b.	GRANT NUMBER			
				5c.	PROGRAM ELEMENT NUMBER 1541 (S&T)			
	dhosler@usbr.gov,			5d.	PROJECT NUMBER 9782			
	<u>keele@usbr.gov,</u> 3 relli, <u>spucherelli@u</u>	03-445-2187 <u>Isbr.gov</u> , 303-445-20	015	5e.	TASK NUMBER			
					WORK UNIT NUMBER 86-68560			
		IAME(S) AND ADD Service Center, Hyc			PERFORMING ORGANIZATION PORT NUMBER			
Research and E U.S. Departmer	Development Office	reau of Reclamatior		AC R& BC	SPONSOR/MONITOR'S RONYM(S) D: Research and Development Office R/USBR: Bureau of Reclamation DI: Department of the Interior			
					SPONSOR/MONITOR'S REPORT JMBER(S) ST-2015-9782-01			
12. DISTRIBUTION Final report can		STATEMENT	ebsite: https://www.u	usbr.gov/rese	arch/			
13. SUPPLEMENT			·					
will become more Implementation of environmental he detection and treat other issues that r the issue of conce known detection	e common in the v of water reuse prace alth. Many of the atment methods. The may have potentia ern, its known imp and treatment me	Western United Sta ctices is difficult b potential hazards The goal of this lite al impacts on the re pact on animal, pla	ates in the presenc ecause of the man are poorly underst prature review is to ecipients of reused	e of drought y potential h ood and little compile a l and reclaim	or drinking and agricultural use and population increase. azards to human, plant and e is known about specific ist of organisms, chemicals, and ed water. The following tables list e dose or level of concern, and the			
	15. SUBJECT TERMS Water reuse, reclaimed water, human health impacts, environmental health impacts							
16. SECURITY CL	ASSIFICATION OI	- : U	17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	R 19a. NAME OF RESPONSIBLE PERSON Denise Hosler			
a. REPORT U	b. ABSTRACT U	c. THIS PAGE U	U	58	19b. TELEPHONE NUMBER 303-445-2195			

S Standard	Form	298	(Rev.	8/98

S Standard Form 298 (Rev. 8/98) P Prescribed by ANSI Std. 239-18

PEER REVIEW DOCUMENTATION

Project and Document Information

Project Name: Impacts of Reused/ Reclaimed Water

WOID: X9782

Document: Impacts of Reused/ Reclaimed Water: Organisms and Chemicals of Concern

Document Author(s): Denise Hosler, Jacque Keele, Sherri F. Pucherelli

Document Date: September, 2015

Peer Reviewer: Diane Mench

Review Certification

Peer Reviewer: I have reviewed the assigned items/sections(s) noted for the above document and believe them to be in accordance with the project requirements, standards of the profession, and Reclamation policy.

Juli Date reviewed 10/20/2015 Reviewer (Signature)

Acronyms and Abbreviations

AAS- atomic absorption spectrometry AES- atomic emission spectroscopy BAC-biological activated carbon BOD₅-biological oxygen demand CWAR- clean water act requirement DAPI (4', 6-diamidino-2-phenylindole) staining DBP- disinfection by-product DIC-differential interference contrast microscopy DPD column EAAS- electro thermal atomic absorption spectrometry EC- electron capture ECD- electron capture detector ELISA- enzyme linked immunosorbent assay FA- immunofluorescence assay FAAS- flame atomic absorption spectrometry FD- fluorescence detector FID- flame ionization detector FPD- flame photodiode detector GAC- granular activated carbon GC- gas chromatography HPLC- high performance liquid chromatography IC- ion chromatography ICP- inductively coupled plasma LC-liquid chromatography IMS- ion mobility spectrometry IMS- Immunomagnetic separation MF-membrane filtration MS- Mass spectroscopy NF- nanofiltration PAC- powdered activated carbon PCR- polymerase chain reaction PD- photoionization detector PT- purge and trap RO- reactive oxygen SOP- standard operating procedure SAT- soil aquifer treatment TDS- total dissolved solids UF- ultrafiltration UV- ultraviolet UV/H₂O₂- ultraviolet hydrogen peroxide UVPAD- ultraviolet photodiode array detector

Executive Summary

The use of recycled municipal wastewater for drinking and agricultural use will become more common in the Western United States in the presence of drought and population increase. Implementation of water reuse practices is difficult because of the many potential hazards to human, plant and environmental health. Many of the potential hazards are poorly understood and little is known about specific detection and treatment methods. The goal of this literature review is to compile a list of organisms, chemicals, and other issues that may have potential impacts on the recipients of reused and reclaimed water. The following tables list the issue of concern, its known impact on animal, plant, or environmental health, the dose or level of concern, and the known detection and treatment methods

Introduction

Use of recycled municipal wastewater can significantly increase the nation's available water resources, especially in the Western United States, where water supply challenges are occurring as a result of climate change, drought, and increasing population. While many treatment options are available, water reuse is limited in the United States because of safety, technical, and financial challenges. Reused water can contain concentrations of naturally occurring substances or any substance used or excreted by humans. The impacts of this concentrated water on humans and the environment are not completely understood. Treatments need to be redundant, reliable, robust and diverse to function as a barrier for multiple contaminants, and facilities need detection and monitoring plans and the ability to divert water that does not meet standards.

The risks associated with reused water depend on the waters end use. Reused water can be used for human or livestock consumption, agricultural and landscape irrigation, manufacturing, and aquatic ecosystems. Each end use application requires a diverse level of treatment and the impacts of each component on each recipient are different. Continuously recycled water, containing accumulated constituents can become difficult to treat. There are a wide variety of microorganisms, organic chemicals, inorganic chemicals, disinfectants, disinfectant byproducts, pharmaceuticals and other compounds that need to be considered when treating reused water. The challenge is determining what levels are harmful for each end use application and developing effective detection methods for each.

The goal of this literature review is to compile a list of organisms, chemicals, and parameters that may have potential impacts on the recipients of reused and reclaimed water. The following tables list the issue of concern, its known impact on animal, plant, or environmental health, the dose or level of concern, and the known detection and treatment methods. Pathogens and chemicals that are highlighted in blue are currently regulated by the Environmental Protection Agency (EPA). Categories that are not highlighted are either regulated by a state or are of emerging concern. There is an even longer list of chemicals and pathogens of emerging concern that the EPA is studying to determine the potential long-term and short-term impacts. The EPA's list of contaminants of emerging concern can be found at http://www2.epa.gov/ccl/draft-contaminant-candidate-list-4-ccl-4.

It is important to note that some of the pathogens listed in this table are not native to North America and thus do not present an immediate threat to our water supplies. The reason they are included in these tables is because travelers from the countries where the pathogens are endemic could come to the United States and inadvertently release one of these pathogens into the wastewater system. For example, the Ebola patients from the recent outbreak who received treatment in hospitals in the US could have caused a release of this virus into the water. The infectious dose of pathogens is not always known, but for many, exposure to a single organism can be enough to cause illness. There are a variety of pathogens that cause illness that have not yet been described or named. Indicator organisms are commonly used to detect pathogens because it is not efficient to test for every pathogen of concern due to the large number of pathogens in the environment.

There are a variety of chemicals that can cause human and environmental health issues, through either short term or chronic exposure. Often, the effect of long term exposure to many chemicals is unknown because long term animal studies are expensive and can be hard to analyze. The list compiled here is of chemicals of known concern. Finally, even though they might not cause human health issues there are chemicals and organisms that can change the taste, odor, and appearance of water. These are of concern because the consumer would not want to drink water that appears substandard. The following tables do not contain all potential issues of concern, and will need to be updated as new research becomes available.

The following references were used throughout the entire document [1][2][3][4] [5]–[22]

The EPA's standard methods for detection can be found at: http://water.epa.gov/scitech/drinkingwater/labcert/analyticalmethods.cfm

<u>Bacteria</u>

Example	Human Disease	Infectious Dose (# of organisms)	EPA Regulation	Specific Detection Methods
Acinetobacter	Nosocomial	Unknown, low	Heterotrophic plate count	
spp. [23]		virulence	(HPC): Total Coliforms (TC)	
Aeromonas spp. (aeromonads) [24]	Septicemia, gastrointestinal illness (unconfirmed)		HPC:TC	
Atypical	Respiratory illness:	Widespread in the	HPC:TC	
mycobacteria	hypersensitivity pneumonitis (do not cause TB or leprosy)	environment		
Bacillus spp.	<i>B. cereus</i> (food poisoning) <i>B. anthracis</i> (anthrax)		HPC:TC	
Burkholderia pseudomallei	melioidosis		HPC:TC	
Campylobacter	Campylobacteriosis, gastroenteritis,	10^3 - 10^4 (although	HPC:TC	PCR method [26]
jejuni [25]	reactive arthritis, Guillain-Barre	10-500 can be		
	syndrome,	enough to infect humans)		
Clostridium perfringens [27]	Gastroenteritis	1-10 ¹⁰	HPC:TC	PCR methods [28]
Enteropathogenic	Hemorrhagic diarrhea	10^{6} - 10^{10}	HPC:TC	EPA method: 1103.1, 1603, 1604
Escherichia coli	gastroenteritis and septicemia,		MCL: repeat any sample that is	PCR methods [29]–[32]
(not all strains of	hemolytic uremic syndrome		fecal coliform-positive or E.	
E. coli are	(HUS), from drinking water		coli-positive, positive repeats	
harmful)			violate MCL	
Helicobacter	Chronic gastritis, ulcers, gastric	10^{4}	HPC:TC	
pylori [33]	cancer, drinking water			
Legionella (L.	Legionellosis (Legionnaire's	Has not been	HPC:TC	Culture methods reference [38], [39]
pneumophila)	disease) Respiratory illness,	calculated, the	TT: No limit but should be	
[34]	pneumonia, Pontiac fever when	quantitative counts	removed with Giardia and	

Lantagnings	bacteria is aerosolized Leptospirosis	of Legionella do not correlate with incidence [35]–[37] Unknown	virus control	
Leptospires (Leptospira and Leptonoma)			HPC:TC	
Mycobacterium avium intracellular (MAC)	Chronic lung diseases, thoracic skeletal abnormalities, people with AIDS, or lymph reticular malignancies, and post transplantation immunosuppressive therapy most at risk Fevers, diarrhea, and malabsorption, drinking water	Unknown	HPC:TC	
Pseudomonas aeruginosa	Skin eye, ear infections		HPC:TC	
Salmonella typhii [40] Salmonella: 1700 serotypes	Salmonellosis, gastroenteritis reactive arthritis, typhoid fever, from drinking water	10 ⁴ -10 ⁷	Total Coliforms (TC): No more than 5.0% of samples total coliform-positive in a month. If a sample is positive must be analyzed for fecal coliforms or <i>E. coli</i>	EPA method: 1604, 1680, 1681, 1682 [41]
Shigella (4 spp.) (S. dysenteriae, S. flexneri, S.boydii, S. sonnei) [42]	Shigellosis (dysentery), from drinking water	180 (S. flexneri 2A) 10 (S. dysentariae)	HPC:TC	
Staphylococcus aureus	Skin, eye, ear infections, and septicemia		HPC:TC	

Vibrio cholera [43]	Gastroenteritis, wound infection cholera	10 ³ -10 ⁷	HPC:TC	EPA method: 600/R-10/139
Yersinia enterocolitica (naktin beavis 1999)	Yersiniosis, gastroenteritis, and septicemia	100-20,000 organisms	HPC:TC	

Bacteria are single cellular prokaryotes that lack organelles. An issue of emerging concern with bacteria is antibiotic resistance. The genes that code for antibiotic resistance can be transferred between bacteria.

Infectious dose-the amount of pathogen (measured in number of microorganisms) required to cause an infection in the host

Water treatment methods for bacteria:

High efficiency: Reverse osmosis, chlorine, ozone, UV, UV/H₂O₂, soil aquifer treatment (SAT), riverbank filtration

Low efficiency: PAC/GAC (activated carbon), chloramine, BAC, direct inj. wetlands, reservoirs [35]-[37], [44]

General Detection Methods:

Total coliform samples (TC): No more than 5% of samples collected can be total coliform-positive in a month, heterotrophic plate count (HCP): an analytical method used to measure the presence of a variety of bacteria, polymerase chain reaction (molecular methods), direct immunofluorescence (antibody staining) Common microbial indicator organisms used to detect other bacteria include:

Escherichia coli, Clostridium perfringens, enteric bacteria (Campylobacter)

End Use Concerns:

People can easily get infected and sick from drinking infected water. Farm workers can get infected and sick from indirect water reuse via agricultural irrigation. Bacteria are able to get onto agricultural products via reused water and people can get infected and sick from consumption.

Immunocompromised individuals (children, pregnant women, the elderly, etc.) are more vulnerable populations than healthy individuals.

General references for bacteria table: [21], [35]–[37], [44]–[76]

Protozoa

Example	Human Disease	Infectious Dose	EPA Regulation	Specific Detection Methods
Balantidium coli [77]	Balantisiasis (dysentery)			
Cryptosporidium[78]	Cryptosporidiosis, diarrhea, fever	1-10 units	TT: 99% removal (filter systems), required control	Method 1632.1 [79][80] Filtration/IMS/FA
Cyclospora [81]	Cyclosporiasis (diarrhea, bloating, fever, stomach cramps, and muscle aches)	1-10 ² organisms		Microscopy [82]
<i>Entamoeba histolytica</i> most prevalent worldwide [83]	Amebiasis (amebic dysentery)	20 units		PCR, ELISA [84]–[89]
Giardia lamblia (also called: G. intestinalis, or G. duodenalis)[90]	Giardiasis (gastroenteritis)	<10 units	TT: 99.9% removal/ inactivation	Method 1632.1 [80] , Filtration/IMS/FA
Microsporidia (general term for a large group of primitive, obligate, intracellular protozoa, almost 1000 species identified [91]	Microsporidiosis, for AIDS patient's severe enteritis with chronic diarrhea, dehydration and weight loss.			PCR, microscopy [92]–[94]
Naegleria fowleri [95]	Brain eating amoeba, fatal, primary amoebic meningoencephalitis (PAM)			Molecular and immunological methods [92] [93]

Protozoa are their own kingdom of organisms. They are unicellular eukaryotes that have motility and can be predatory. The free living forms are able to form cysts to survive drying out. Some of them are parasites and can cause human disease that can be transmitted by water, food, or insects. Infectious dose-the amount of pathogen (measured in number of microorganisms) required to cause an infection in the host

Water treatment methods for protozoa:

High efficiency: MF/UF, NF/RO, UV, UV/H₂O₂, SAT, riverbank filtration

Low efficiency: PAC/GAC, Chloramine, BAC granular media, membrane filtration, may be resistant to disinfection, Wetlands, Reservoirs

Treated with either a "removal" or an "inactivation" process the occurrence of infectious cryptosporidium oocysts in raw, treated, and disinfected water, can be inactivated using UV disinfection [3]

Indicator Organisms

Giardia lamblia, Cryptosporidium parvum

General Detection methods: PCR, microscopy, immunological methods such as ELISA

End use concerns:

Direct reuse- people get infected and sick from drinking water. Indirect reuse- people get infected and sick from consuming plant products that were watered with reused water.

<u>General references for protozoa table: [35], [51], [67], [68], [71], [98]–[105]</u>

Helminthes

Example	Human Disease	Infectious Dose	Detection Methods
Ancylostoma duodenale	Ancylostomiasis (hookworm infection)		PCR [106]
Ancylostoma	Cutaneous larva migrams (hookworm infection)		
Ascaris lumbricoides	Ascariasis (roundworm infection)	1-10 units	
Dracunculus medinensis	Guinea worm, eradication program, now restricted to a central belt of countries in sub- Saharan Africa, ingested by many species of Cyclops which in turn are then swallowed in drinking water. Only pathogen solely transmitted through drinking water		
Echinococcus granulosis	Hydatidosis (tapeworm infection)		
Enterobius vermicularis	Enterobiasis (pinworm infection)		
Fasciola	Liver flukes		
Necator americanus	Necatoriasis (roundworm infection)		PCR [106]
Strongyloides stercoralis	Strongyloidiasis (threadworm infection)		
Taenia (spp.)	Taeniasis (tapeworm infection), neurocysticercosis		
Trichuris trichiura	Trichuriasis (whipworm infection)		

Helminthes are free living nematodes. In some cases, the motile larvae are pathogens such as hookworms and threadworms. Some are capable of moving themselves through sand filters and may be introduced into the drinking water distribution system as a result of fecal contamination [22]. The concentration of free living nematodes in raw water generally corresponds to the turbidity of the water. The higher the turbidity, the larger the concentration of free-living nematodes there will be [22]. Note: none of these organisms are currently regulated by the EPA. The infectious dose of these organisms is hard to find, it is possible that a single organism is enough to cause a parasitic infection.

Infectious dose-the amount of pathogen (measured in number of microorganisms) required to cause an infection in the host

Treatment methods:

Effective: Secondary treatment, supplemented by finishing ponds, filtration, disinfection Sedimentation, filtration, UV Some may be resistant to disinfection

General Detection Methods:

Visual identification using microscopy, molecular methods

End use concerns:

Drinking contaminated water and directly getting sick. Eating produce that was watered with reused water and then becoming sick. <u>General references for helminth table: [22], [35], [59], [71], [99], [107]–[114]</u>

19

Viruses

Example	Human Disease	Infectious Dose	EPA Regulation	Detection Methods
Adenovirus (47 types)	Conjunctivitis, gastroenteritis, respiratory disease, pharyngoconjunctival fever	1-10 units	TT: 99.99% removal/	EPA Method: 1615 [115], [116]
Astrovirus (5 types)	Gastroenteritis	1-10 units	inactivation	Tissue culture, PCR [117]
Caliciviruses (including Norovirus and Sapovirus)	Gastroenteritis	1-10 units		
Coronavirus (ex SARS)	Gastroenteritis	1-10 units		
Coxsackieviruses	Meningitis, pharyngitis, conjunctivitis, encephalitis	1-10 units		
Echoviruses	Gastroenteritis, encephalitis, meningitis	1-10 units		
Enteroviruses (72 types)(polio, echo, coxsackie, new enteroviruses, serotype 68 to 71)[118]	Gastroenteritis, heart anomalies, meningitis, respiratory illness, nervous disorder, others	1-10 units		EPA Method: 1615 [115]
Hepatitis A and E	Infectious hepatitis	1-10 units		
Norwalk agent	Diarrhea, vomiting, fever	1-10 units		
Parvovirus (3 types)	Gastroenteritis	1-10 units		PCR [119]
Reovirus (3 types)	Not clearly established	1-10 units		
Rotavirus (4 types) and Orthoreoviruses	Gastroenteritis	1-10 units		

Over 100 enteric viruses are excreted from humans that are capable of causing an infection or disease. This table contains families of viruses that cause disease. Few laboratories possess the expertise for proper analysis [120]

Treatment methods:

High efficiency: NF/RO, chlorine, ozone, UV/H₂O₂

Low efficiency: Filtration, PAC/GAC, MF/UF, chloramine, BAC, direct inj., wetlands, reservoirs

General Detection Methods:

Molecular methods such as polymerase chain reaction, cell and tissue culture methods

General references for virus table: [64], [69], [71], [98], [121]–[140]

<u>Critical Water Quality Parameters</u>

Parameter	Example	Source	Issue	Levels of Concern	Treatment Methods	Detection Methods
Salts	Salinity Calcium, magnesium chloride Sodium, chloride	Naturally occurring, & from laundry detergents	Affects crop water availability Infrastructure damage (scaling and corrosion) Can be toxic to plants and cause soil permeability issues	EC >0.7ds/m TDS>450 Na>70 mg/L Cl>100 mg/L	TDS effectively removed by NF/RO, distillation, electro dialysis, or dilution with less salty water. Treatment options for salinity are limited and costly	Electrical conductivity measurement, ion analysis
Nutrients	Nitrate Nitrite	Runoff from fertilizer use, leaching from septic tanks, sewage, erosion of natural deposits	Infants below 6 months could become seriously ill and may die if untreated (shortness of breath, and blue-baby syndrome)	MCL= 10 mg/L nitrate MCL= 1 mg/L	High efficiency for Nitrate: NF/RO, SAT, Riverbank filtration Low-no efficiency for Nitrate: Filtration, PAC/GAC, MF/UF, Chloramine, Chlorine, Ozone, UV, UV/H ₂ O ₂ ,	EPA Method: 352.1 EPA Method: 353.1
	Ammonia (NH ₃) Ammonia hydroxide (NH ₄ OH)	Metabolic, agricultural, and industrial processes [22]	Not of immediate health relevance, can compromise disinfection efficiency and cause failure of filters to remove manganese and cause taste/odor problems [22]	Natural level 0.2 mg/L No level of concern has been proposed [22]	Ozone, UV, UV/H ₂ O ₂ , BAC, Direct inj. [141][142]	EPA Method: 350.1 (ammonia nitrogen)
	Nitrogen and phosphorous	Human and animal waste products	Eutrophication (rapid growth of algae)-oxygen depletion, alteration of trophic state, biofilms [143]	Total-N >5 mg/L(irrigation)		EPA method (nitrogen): 351.1, 351.2 EPA method (phosphorus): 365.1, 365.3, 365.4
	Bicarbonate		Impacts susceptible crops	HCO ₃ >90 mg/L		
Suspended Solids	Measure of suspended material		Contaminants and heavy metals etc. can be adsorbed on particulates, shield microorganisms from disinfectants, sludge deposits and anaerobic conditions in aquatic			Grab samples, not continuous monitoring

			environment, clog irrigation systems			
Turbidity	Measure of water cloudiness	Soil runoff	Can indicate effectiveness of water quality and filtration, and if disease- causing organisms are present	TT: When conventional or direct filtration used, turbidity cannot be greater than 1 NTU (nephelometric turbidity units)		EPA Method 180.1
рН	Hydrogen ion concentratio n		Impacts disinfection efficacy, coagulation, metal solubility, and alkalinity. (Important at all stages of the treatment process to ensure water clarification and disinfection)	Normal Range 6.5-8.4		pH meter/ strip EPA Method 150.2
Dissolved Oxygen	Biochemical oxygen demand (BOD)		Elevated BOD leads to reduced oxygen levels inadequate to support aquatic organisms	Target BOD, 20 mg/L (indicator of sewage treatment plant effectiveness)	Ultrafiltration or nanofiltration	BOD ₅ measurement
Hardness	calcium carbonate and magnesium	Naturally occurring, dissolved in water [22]	Inverse relationship between hardness of water and cardiovascular disease [22], mineral balance			EPA method 130.1

The chemicals and properties in this table can also be related to water taste, odor, and smell and can impact the effectiveness of water treatment <u>General references for water quality table: [144]–[146]</u>

<u>Metals</u>

Example	Source	Issue	Long Term Use mg/L (irrigation)	Short Term Use mg/L (irrigation)	EPA Regulation/Suggestion (human)	Detection Methods
Aluminum	Most abundant metallic element, used in water treatment as a coagulant [22]	Non-productivity in acid soils Little indication that when ingested it is acutely toxic to humans [22]	5.0	20.0	50-200 ug/mL	EPA Method: 200.7
Arsenic	Runoff from orchards and glass and electronics waste	Variable plant toxicity, skin damage, circulatory issues, increased cancer risk (EPA), long term exposure dermal lesions after 5 years, cardiovascular effects in children after 7 years of consumption [22][147]	0.10	2.0	MCL:0.010 mg/L	EPA Method: 206.5, 200.7 ICP/MS; hydride generation AAS or FAAS
Beryllium	Discharge from metal refineries and coal burning factories, electrical, aerospace, and defense industries	Variable plant toxicity, intestinal lesions in humans	0.10	0.5	MCL:0.004 mg/L	EPA method: 200.7
Boron	Usually present in compounds, used as additive for fiberglass, fertilizers	Toxic to sensitive plants (citrus), compounds are toxic to arthropods and can be used as insecticides	0.75	2.0	600 ug/L	EPA method: 200.7
Cadmium	Corrosion of galvanized pipes, discharge from metal refineries, runoff from waste batteries and paints	Toxic to beans, beets, turnips, kidney damage in humans	0.01	0.05	MCL: 0.005 mg/L	EPA Method: 200.7 ICP/MS; FAAS [22] Coagulation or precipitation softening [22]
Chromium	Discharge from steel and pulp mills, chromium bioremediation of tannery effluent	Toxicity to plants unknown and humans at high doses, allergic dermatitis	0.1	1.0	MCL: 0.1 mg/L	EPA method: 200.7 (218.6 hexavalent chromium) AAS [22] [148]
Cobalt	Primary used in the preparation of magnetic, wear-resistant, and high strength alloys	Toxic to tomato plants	0.05	5.0	0.7 ug/L (AZ); 40 ug/L (WI)	EPA method: 200.7

Copper	Corrosion of household plumbing	Toxic to many plants, gastrointestinal distress, liver or kidney damage	0.2	5.0	TT: 10% of samples exceed 1.3 mg/L	EPA method: 200.7 ICP/MS; ICP/optical emission spectroscopy, FAAS [22]
Fluoride	Water additive, discharge from fertilizer and aluminum factories	Bone disease, skeletal fluorosis	1.0	15.0	MCL: 4.0 mg/L	EPA method: 9214 IC; ion-selective electrodes; SPADNS colorimetric method [22]
Iron	Most widely used metal, usually smelted with other alloys to become harder	Contributes to soil acidification, loss of phosphorous and molybdenum	5.0	20.0	300 ug/L	EPA method: 200.7
Lead	Corrosion of household plumbing	Inhibits plant cell growth at high concentrations, delays physical or mental development in children, kidney problems and high blood pressure in adults	5.0	10.0	TT: More than 10% of samples exceed 0.015 mg/L	EPA method: 200.7 AAS [22]
Lithium compounds	Ceramics and glass, batteries, lubricating greases, a wide range of uses	Toxic to citrus at low doses	2.5	2.5	No standards	EPA method: 200.7
Manganese		Toxic to many crops in acid soils	0.2	10.0	50 ug/L	EPA method: 200.7 AAS, ICP/MS, ICP/optical emission spectroscopy, EAAS, FAAS [22]
Mercury	Discharged from refineries and factories, runoff from landfills and croplands	Toxic to humans and plants at high levels, kidney damage			MCL: 0.002 mg/L	EPA methods: 245.1, 245.2, 245.7, 200.7, 1631 Cold vapor AAS, ICP, FAAS [22]
Molybdenu m	High pressure and high temperature applications such as pigments, and used as catalysts	Nontoxic to plants at normal concentrations, toxic to livestock	0.01	0.05	40 ug/L	EPA method: 200.7 Graphite furnace AAS, ICP/AES [22]
Nickel	Nickel steels, nonferrous alloys and super alloys, electroplating, other uses	Toxic to many plants	0.2	2.0	100 ug/L	EPA method: 200.7 ICP-MS, FAAS, ICP-AES [22]
Selenium	Discharge from petroleum refineries; erosion of natural deposits; discharge from mines	Toxic to plants and livestock Hair or fingernail loss; numbness in finger or toes; circulatory problems	0.02	0.02	0.05 mg/L	EPA method: 200.7 AAS with hydride generation [22]

Vanadium	Mostly used as an alloy called ferrovanadium as an additive to improve steels	Toxic to many plants at low concentrations	0.1	1.0	7 ug/L (AZ), 49 ug/L (FL), 50 ug/L (MN), 30 ug./L (WI), 30 ug/L (CA)	EPA method: 3050B
Zinc	Galvanizing, alloys, brass and bronze, miscellaneous	Toxic to many plants, reduced at high pH and in fine-textured soils	2.0	10.0	Max level: 5 mg/L (CWAR), 5000 ug/L (EPA secondary MCL), 2000 ug/L (EPA Lifetime health advisory), 5000 ug/L (AZ), 2000 ug/L (MN)	EPA Method: 245.1, 245.1, 245.7, 289.2

Many metals are regulated by the clean water act requirement (CWAR)

General Treatment Methods:

High efficiency: NF/RO, SAT, riverbank filtration, direct inj., ASR, wetlands, reservoirs, electro-dialysis

Low efficiency: Chlorine, ozone, UV, UV/H₂O₂, filtration, PAC/GAC, MF/UF, chloramine, BAC

General Detection Methods: Mass spectrometry

End Use Concerns: Some metals are toxic to humans, but many pose a greater threat to agriculture, reused water with concentrated metals can cause damage to plants

General references for metals table: [149]–[151]

Example	Source	Issue	EPA Regulation/Suggestion (human)	Treatment	Detection Methods
Acrylamide	Sewage treatment, concentrations of a few micrograms per liter have been detected in drinking water [22]	Nervous system and blood issues, carcinogen	TT: 0.05% dosed at 1 mg/L	Residual monomer occurs in polyacrylamide coagulants used in water treatment [22]	EPA method: 8316, 8032A GC, HPLC, HPCL with UV detection [22]
Chloramines	Water additive used to control microbes	Eye/nose irritation, stomach discomfort	MRDL= 4.0	Limit use	HPCL/MS [152]
Chlorine	Water additive used to control microbes, used as an disinfectant and bleach	Eye/nose irritation, stomach discomfort Leaf tip burn, damaging to plants	MRDL= 4.0 Concentrations > 0.05 mg/L	Limit use	EP method: 334.0 HPLC, Calorimetry, ion chromatography [22]
Chlorine dioxide	Water additive used to control microbes	Anemia in young children, and nervous system effects	MRDL= 0.8	Limit use	EPA method: 327.0 DPD colorimetric test kits if the state approves
Chlorite	Byproduct of drinking water disinfection	Anemia in young children, and nervous system effects	MCL= 1.0 mg/L		EPA method: 300.1, 327.0

Water Treatment Chemicals (DBP: Disinfection Byproducts)

Haloacetic acids	Byproduct of	Increased cancer risk	MCL= 0.060 mg/L	Reduce organic	EPA method: 552.3
(HAA5)	drinking water			precursors will	GC with an ECD [22]
Dichloroacetonitri	disinfection,			reduce their	
le,	dichloroacetonitr			formation [22]	
dibromoacetonitril	ile is most				
е,	predominate				
bromochloroaceto					
nitrile,					
trichloroacetonitri					
le					
Total	Byproduct of	Liver, kidney, central	MCL= 0.080 mg/L	Concentrations	EPA method: 501.2
Trihalomethanes	drinking water	nervous system		can be reduced	Purge and trap and liquid-liquid
(TTHMs)	disinfection	problems, increased		by changes to	extraction and direct aqueous
		cancer risk		disinfection	injection in combination with a
				practice or air	chromatographic system, GC
				stripping [22]	with ECD, GC/MS [22]

General references for water treatment chemicals table: [153]-[155][156][157], [158]

Industrial and Production Chemicals

Example	Source	Issue	EPA Regulation/Suggestion (human)	Treatment	Detection Methods
Acrylamide	Sewage treatment	Nervous system and blood issues, carcinogen	TT: 0.05% dosed at 1 mg/L	Conventional treatment processes do not remove. Controlled by limiting either the acrylamide content of polyacrylamide flocculent or the dose used or both [22]	EPA method: 8316 HPLC, HPLC with UV detection [22]
Antimony	Petroleum refineries, fire retardants, ceramics, electronics, metal plumbing and fittings [22]	Increase in blood cholesterol, decrease in blood sugar	MCL: 0.006 mg/L	Conventional treatment methods do not remove, not a raw water contaminant [22]	EPA method: 7062 EEAS, ICP/MS, graphite furnace AAS, hydride generation AAS [22]
Barium	Discharge of drilling waste, from metal refineries, and erosion of natural deposits	Increased blood pressure	MCL: 2 mg/L	Ion exchange, reverse osmosis, lime softening, and electro dialysis	ICP/MS; AAS; ICP/optical emission spectroscopy [22]

Benzene	Discharge from factories, landfills, storage tanks, used in production of other organic chemicals, petrol, and vehicular emissions	Anemia, reduced blood platelets, cancer risk	MCL: 0.005 mg/L	0.01 mg/L should be achievable using GAC or air stripping [22]	EPA method: 8260B, 8021B, 8260, 524.2 GC with photoionization detection [22]
Benzo(a)pyrene (PHAs)	Leach from linings of water storage tanks and distribution lines	Anemia, reduced blood platelets, cancer risk	MCL: 0.0002 mg/L		EPA method 8310[159]
Carbon tetrachloride	Discharge from chemical plants and industrial activities	Liver problems, increased cancer risk hepatic tumors [22]	MCL: 0.005 mg/L	Air stripping [22]	GC with ECD or MS [22]
Chlorobenzene	Discharge from chemical and agricultural chemical factories	Liver or kidney problems	MCL: 0.1 mg/L		IMS [160]
Cyanide	Discharge from steel/metal, plastic, and fertilizer factories	Nerve damage or thyroid problems	MCL: 0.2 mg/L	Removed by high doses of chlorine [22]	EPA methods: 335.4, OIA1677 titrimetric and photometric techniques [22]
1,4 Dioxane	Industrial solvent	Probable carcinogen	3 ug/L (CA), 5 ug/L (FL), 0.3 ug/L (MA), 32 ug/L (ME), 3 ug/L (NH), no federal	Breaks through reverse osmosis membranes Not removed using conventional treatments; effectively removed by biological activated carbon treatment [22]	GC/MS [22]

o- Dichlorobenzene	Discharge from industrial chemical factories	Liver, kidney, or circulatory problems	MCL: 0.6 mg/L		
p- Dichlorobenzene	Discharge from industrial chemical factories	Anemia, liver, kidney or spleen damage, changes in blood	MCL: 0.075 mg/L		
1,2- Dichloroethane	Discharge from industrial chemical factories	Increased risk of cancer	MCL: 0.005 mg/L	GC/MS, GC with electrolytic conductivity detector, GC with FID, GC with photoionization detection [22]	0.0001 mg/L should be achievable using GAC [22]
1,1- Dichloroethylene	Discharge from industrial chemical factories	Liver problems	MCL: 0.007 mg/L		
cis-1,2- Dichloroethylene	Discharge from industrial chemical factories	Liver problems	MCL: 0.07 mg/L	GC with MS [22]	0.01 mg/L should be achievable using GAC or air stripping [22]
trans-1,2- Dichloroethylene	Discharge from industrial chemical factories	Liver problems	MCL: 0.01 mg/L	GC with MS [22]	0.01 mg/L should be achievable using GAC or air stripping [22]
Dichloromethane	Discharge from drug and chemical factories	Liver problems, increased cancer risk	MCL: 0.005 mg/L	Purge and trap GC with MS detection [22]	20 ug/L should be achievable using air stripping [22]
1,2- Dichloropropane	Discharge from industrial chemical	Increased risk of cancer	MCL: 0.005 mg/L	0.02 ug/L by a purge and trap GC method with	1 ug/L should be achievable using GAC [22]

	factories			an electrolytic conductivity detector, GC/MS [22]	
Di(2-ethylhexyl) adipate	Discharge from chemical factories, plasticizer for synthetic resins	Weight loss, liver problems (tumors), reproductive difficulties	MCL: 0.4 mg/L		
Di(2-ethylhexyl) phthalate	Discharge from rubber and chemical factories	Liver problems, reproductive difficulties, increased risk of cancer	MCL: 0.006 mg/L	GC/MS [22]	No data available [22]
Dioxin (2, 3, 7, 8- TCDD)	Emissions from waste incineration and other combustion	Reproductive difficulties, increased risk of cancer	MCL: 0.00000003 mg/L	Biodegradation of dioxin by a newly isolated <i>Rhodococcus sp.</i> [161]	
Epichlorohydrin	Discharge from industrial chemical factories, impurity of some water treatment chemicals	Increased cancer risk, stomach problems	TT: 0.01% dosed at 20 mg/L	Conventional treatments do not remove. Controlled by either limiting the epichlorohydrin content or polyamine flocculants or the dose used, or both [22]	GC with ECD, GC/MS, GC with FID [22]
Ethylbenzene	Discharge from petroleum refineries	Liver or kidney problems	MCL: 0.07 mg/L	Air stripping	GC with photoionization detector, GC/MS [22]
Ethylene dibromide	Discharge from petroleum refineries, fumigant for soils, grains, and fruits	Liver, stomach, kidney, reproductive system problems, increased cancer risk	MCL: 0.00005 mg/L	0.1 ug/L should be achievable using GAC [22]	GC/MS, purge and trap GC with halogen-specific detector, purge and trap capillary column GC with photoionization and electrolytic conductivity detectors in series [22]

Hexachlorobenze	Discharge from metal refineries and agricultural chemical factories	Liver, kidney, and reproductive problems, increased risk of cancer	MCL: 0.001 mg/L		
Hexachlorocyclop entadiene	Discharge from chemical factories	Kidney or stomach problems	MCL: 0.05 mg/L		
Methyl tertiary butyl ether	Gasoline additive	Inconclusive data on health effects	20-40 ug/L (EPA)		
Pentachloropheno 1	Discharge from wood preserving factories	Liver or kidney problems, increased cancer risk	MCL: 0.001 mg/L	0.4 ug/L should be achievable using GAC [22]	GC with ECD [22]
Perfluorooctanoic acid			0.3 ug/L (MN), 0.04 ug/L (NJ), no federal		
Polychlorinated biphenyls (PCBs)	Runoff from landfills, discharge of waste chemicals	Skin changes, thymus gland, immune, reproductive, nervous system problems, increased cancer risk	MCL: 0.0005 mg/L		
Sryrene	Discharge from rubber and plastic factories, landfills	Liver, kidney, circulatory problems	MCL: 0.1 mg/L		
Selenium	Discharge from petroleum and metal refineries, erosion of natural deposits, discharge from mines	Hair or fingernail loss, numbness in fingers or toes, circulatory problems	MCL: 0.05 mg/L	EPA method: 7742 AAS with hydride generation [22]	0.01 mg/L achievable using coagulation for selenium(IV) removal; selenium(V) is not removed by conventional treatment processes [22]
Tetrachloroethane 1,1,2,2,- tetrachloroethane	No longer used much do to concerns about toxicity	Chronic inhalation results in jaundice, enlarged liver, headaches, tremors, dizziness, numbness, and drowsiness, possible carcinogen	Subject to effluent limitations (Clean Water Act Requirement) [162]		
Tetrachloroethyle ne	Discharge from factories and dry	Liver problems, increased risk of	MCL: 0.005 mg/L		

	cleaners	cancer			
Thallium	Leaching from ore-processing sites, discharge from electronics, glass, and drug factories	Hair loss, changes in blood, kidney, intestine, or liver problems	MCL: 0.002 mg/L		
Toluene	Discharge from petroleum factories	Nervous system, kidney, or liver problems	MCL: 1 mg/L	GC with FID, GC/MS [22]	0.001 mg/L should be achievable using air stripping [22]
1,2,4- Trichlorobenzene	Discharge from textile finishing companies	Changes in adrenal glands	MCL: 0.07 mg/L		
1,1,1- Trichloroethane	Discharge from metal degreasing sites and factories	Liver, nervous system or circulatory problems	MCL: 0.2 mg/L		
1,1,2- Trichloroethane	Discharge from industrial chemical factories	Liver, kidney or immune system problems	MCL: 0.005 mg/L		
Trichloroethylene	Discharge from metal degreasing sites and factories	Liver problems, increased risk of cancer	MCL: 0.005 mg/L		
Vinyl chloride	Leaching from PVC pipes, discharge from plastic factories	Increased cancer risk	MCL: 0.002 mg/L	GC with ECD or FID with MS for confirmation [22]	0.001 mg should be achievable using air stripping
Xylenes	Discharge from petroleum and chemical factories	Nervous system damage	MCL: 10 mg/L	GC/MS, GC with FID [22]	0.005 mg/L should be achievable using GAC or air stripping [22]

The chemicals in this table are used in industrial and production settings. <u>General References for Table: [163]</u>

Pharmaceuticals and Metabolites

Example	Source	Issue	EPA Suggestion (human)	Treatment	Detection Methods
Acetaminophen (ibuprofen)	Analgesics		No federal or state standards	microbial [164]	
Atenol	Beta-blockers		No federal or state standards		
Azithromycin	Antibiotics		No federal or state standards		
Ethinyl estradiol, synthetic estrogen	Oral contraceptives	Fish feminization [165] [166]	No effect concentration 0.35 ng/L [167]		EPA method: 539
Natural estrogen	Animal hormones		No federal or state standards	Reverse osmosis removes more than 95%, free chlorine and ozone disinfection are effective	EPA method: 539
Phenytoin, carbamazepine	Antiepileptic		No federal or state standards		
Sulfamethoxazole	Antibacterial		No federal or state standards		
Antibiotics					[168][169]

Treatment methods:

High efficiency: Reverse osmosis, free chlorine and ozone disinfection Low efficiency:

General References for pharmaceutical and metabolites table: [170]–[173]

Personal Care Products

Example	Source	Issue	EPA Suggestion (human)	Treatment	Detection Methods
Fragrances		Bioaccumulation in fish [174]		Incompletely removed by conventional waste water treatment [175]	
4-Nonylphenol	Detergents	Potential endocrine disruptor and xenoestrogen	Should not exceed 6.6 ug/l in freshwater and 1.7 ug/l in saltwater		
Triclosan	Antimicrobials	Associated with a higher risk of food allergy. Can react with free chlorine in tap water produce other compounds that can convert to dioxins with exposure to UV light.	Must be indicated on labels. FDA issued a draft rule revoking the "generally regarded as safe" status as an ingredient in hand wash products citing the need for additional studies of its potential endocrine and developmental effects; impact on bacterial resistance, and carcinogenic potential. [176]		

General References for Personal Care Products Table: [170][172]

Food Additives

Example	Source	Issue	EPA Suggestion	Treatment	Detection Methods
Bisphenol A (BPA)		Estrogenic [177] [178]	350 ug/L (FL)	Rapid oxidation by chlorine and ozone disinfectants	
Dibutyl phthalate			34 mg/L (CWAR, ambient water), 154 mg/L (CWAR, aquatic organisms), 700 ug/l (ME, FL, MN), 800 ug/l (NH), 100 ug/l (WI)		EPA method: 8061B
Sucralose	Artificial sweetener		No federal or state standards	Difficult to remove through biological treatment, resistant to oxidation	

Example	Source	Issue	EPA Regulation	Treatment	Detection Methods
Alachlor	Herbicide used in row crops, degrades in the soil by volatilization, photodegration and biodegradation [22]	Eye, liver, kidney, spleen issues, anemia, cancer Metabolite, 2,6- diethylaniline shown to be mutagenic [22]	MCL: 0.002 mg/L	0.001 mg/L should be achievable using GAC [22]	Gas chromatography with electrolytic conductivity detection [22]
Atrazine	Herbicide used on soybean and corn crops	Cardiovascular or reproductive issues	MCL: 0.003 mg/L	0.1 ug/L should be achievable using GAC	GC/MS [22]
Carbofuran	Fumigant used on rice and alfalfa	Blood, nervous system, or reproductive issues	MCL: 0.04 mg/L	Granular activated carbon [22]	GC with a nitrogen- phosphorus detector, reverse phase HPCL with a fluorescence detector [22]
Chlordane	Residue of banned termiticide, broad spectrum insecticide	Liver or nervous system problems, increased risk of cancer	MCL: 0.002 mg/L	Granular activated carbon [22]	GC with an ECD [22]
2, 4-D	Herbicide used in row crops	Kidney, liver, or adrenal gland issues	MCL: 0.07 mg/L		
Dalapon	Herbicide	Minor kidney changes	MCL: 0.2 mg/L		
1,2- Dibromo-3-	Soil fumigant used	Reproductive	MCL: 0.0002		
chloropropane	on soybeans,	difficulties, increased	mg/L		
(DBCP)	cotton, pineapples, & orchards	cancer risk			
Dinoseb	Herbicide used on soybeans and vegetables	Reproductive difficulties	MCL: 0.007 mg/L		
Diquat	Herbicide	Cataracts Does not appear to be carcinogenic or genotoxic [22]	MCL: 0.02 mg/L	Rarely found in drinking water because it rapidly degrades [22]	
Diuron	Herbicide		10 ug/L (EPA)		
Endothall	Herbicide	Stomach, intestinal issues	MCL: 0.1 mg/L		

Pesticides, Biocides, and Herbicides

Endrin	Residue of banned	Liver problems	MCL: 0.002 mg/L	GAC [22]	GC with ECD [22]
	insecticide		Traces found in the drinking water		
			supplies of several		
			countries [22]		
Fipronil	Insecticide	One of the main	No federal or state		
i ipromi	Insectionae	chemicals blamed for	requirements for		
		colony collapse disorder	water		
		among bees. Possible			
		carcinogen			
Glyphosate	Herbicide	Kidney and reproductive	MCL: 0.7 mg/L		
		problems	Low toxicity [22]		
Heptachlor	Residue of banned	Liver damage, increased	MCL: 0.0004		
	termiticide, diet	risk of cancer	mg/L		
	main source of				
XX . 11	exposure [22]	T 1 1 1			
Heptachlor	Breakdown of	Liver damage, increased	MCL: 0.0002		
epoxide	heptachlor,	risk of cancer	mg/L		
	transformed product [22]				
Lindane	Insecticide used on	Liver or kidney	MCL: 0.0002	GC [22]	0.1 ug/l should be achievable
Linualie	cattle, lumber,	problems	mg/L	00 [22]	using GAC [22]
	gardens	problems	IIIg/L		using OAC [22]
Methoxychlor	Insecticide used on	Reproductive difficulties	MCL: 0.04 mg/L	GC [22]	0.1 ug/L should be achievable
	fruits, vegetables,		integrit one i mg g	00[]	using GAC [22]
	alfalfa, livestock				
Oxamyl	Insecticide used on	Nervous system effects	MCL: 0.2 mg/L		
•	apples, potatoes	-			
	and tomatoes				
Picloram	Herbicide	Liver problems	MCL: 0.5 mg/L		
Simazine	Herbicide	Blood problems	MCL: 0.004 mg/L	GC/MS, GC with	0.1 ug/L should be achievable
				flame thermionic	using GAC
				detection [22]	
Toxaphene	Insecticide used on	Kidney, liver, thyroid	MCL: 0.003 mg/L		
	cotton and cattle	problems, increased			
		cancer risk			
2,4,5-TP (Silvex)	Banned herbicide	Liver problems	MCL: 0.05 mg/L	Packed or capillary	No data found; 0,001 mg/l
				column GC with	should be achievable using
				ECD [22]	GAC

Additional information can be found at the National Pesticide Information Center (npic@ace.orst.edu)

Household Chemicals

Example	Source	Issue	EPA Regulation	Treatment	Detection Methods
Alkylphenol polyethoxylates (APEOs)	Cleaning products (surfactants)	Estrogenic potency of degradation products. Toxic to aquatic life, feminization of fish	6.6 μg/L EPA water quality criterion for freshwater aquatic life	Anaerobic biotransformation during denitrification	
Boron (metalloid) Boric acid or borax	Household detergents, used in the manufacture of glass, soaps, and detergents, flame retardants, found in edible plants [22]	Toxic to humans and ornamental plants at high concentrations	7mg/L: adults 3mg/L: children 0.5-1mg/L:plants	Not removed by conventional biological and advanced treatment, moderate removal by NF/RO	ICP/MS; ICP/AES [22]
Bromate	Bleach (oxyhalides), byproduct of drinking water disinfection	Increased risk of cancer	MCL: 0.010 mg/L	Removal by NF/RO, Oxidation and disinfection can create oxyhalides	Ion chromatography with suppressed conductivity, ion conductivity with UV/visible absorbance, ion chromatography with detection by ICP/MS [22][179]
Chlorate	Decomposed bleach	Inhibition of iodide uptake and decreased production of thyroid hormones	Not regulated by EPA, CA: notification level 800 µg/L	No viable option for removal, instead must prevent its addition from sodium hypochlorite) or formation (from chlorine dioxide)[22]	Ion chromatography with suppressed conductivity detection [22]
Perchlorate		Inhibition of iodide uptake and decreased production of thyroid	Not regulated by EPA, CA:MCL 6 µg/L, MA: 2 µg/L	Ozonation can cause bromate formation	

		hormones, accumulates in plants		
Perfluorooctanoic	Flame retardants		0.3 ug/L (MN),	
acid,			0.04 ug/L (NJ)	
perfluorooctane				
sulfonate				

General references for household chemicals table: [180]

Transformation Products

Example	Source	Issue	EPA Regulation	Treatment	Detection Methods
Nitrogenous, iodinated, and brominated products	Chlorination of nitrogen, iodine, and bromine	genotoxic		Granulated activated carbon	
Chloroform	Triclosan (antimicrobial) reacts with chlorine				
N- Nitrosodimethylamine (NDMA)	Chloramination of polymers, and unknown	carcinogen	EPA 1 in 1 million cancer risk at 0.7 ng/L	Not rejected by reverse osmosis membranes, removed by photolysis	Taguchi et al. 1994
Trihalomethanes	Bromodichlorom ethane		80 ug/l (EPA)		

Radionuclides

Example	Source	Issue	EPA Regulation	Treatment	Detection Methods
Alpha/ photon emitters	Erosion of natural deposits of certain minerals that are radioactive	Increased risk of cancer	15 picocuries (pCi)/ L		EPA methods: 900.0, 903.0
Beta photon emitters	Decay of natural and man-made deposits of certain minerals that are radioactive	Increased risk of cancer	4 millirems per year		EPA methods: 900.0
Radium 226 and 228 (combined)	Erosion of natural deposits	Increased risk of cancer	5 picocuries (pCi)/ L		EPA methods: 903.0 and 903.1
Uranium	Erosion of natural deposits	Increased risk of cancer, kidney toxicity	30μg/L WHO guideline: 0.015 mg/L [22]		

Radionuclides are the result of the natural decay of certain elements, and are used in medicine. <u>General References for radionuclides table: [181][182]</u>

Other Concerns

Parameter	Example	Source	Issue	Levels of Concern	Treatment Methods	Detection Methods
Asbestos, Fibers	Asbestos	Decay of asbestos cement in water mains, erosion of natural deposits	Increased risk of benign intestinal polyps, no consistent evidence that ingested is a hazard to health	7 million fibers per L (MFL), (Fibers >10 micrometers)		
Algae, Cyanobacte ria	Blue-green algae	Naturally occurring, especially in nutrient-rich waters (recycled water sources)	Block irrigation, can produce toxins harmful to animals if contacted, ingested or inhaled	Blooms Toxin levels of concern depend on species	[183]	Microscopy, molecular methods
Engineered nanomateri als	Have one or more dimensions ranging from 1 to 100 nm. Nanofilms (one dimension), nanotubes (two dimensions) and nanoparticles (three dimensions)	Manufactured	Nano-sorbents, nanocatalysts, bioactive nanoparticles, nanostructured catalytic membranes, and nanoparticle-enhanced filtration are categories that could change water treatment and monitoring. Questions about their fate and potential environmental and health effects. Studies have had inconsistent results [3]	To date, no link has been made between trace levels and adverse human health impact [184]ranking initial environmental and human health risk resulting from environmentally relevant nanomaterials) -potential ecotoxicological risk		
Geosmin and 2- methylisob orneol (MIB), Borneol	Organic chemical	Produced by algae and used in wine making	Not toxic, but cause unpleasant smell			
Prions	Chronic wasting disease, scrapie		Unknown in water sources		Unknown	[185]
Antibiotic	tetracycline,	Bactria that have	Transport of these antibiotic	Spread of antibiotic		Polymerase

resistance genes	sulfonamide genes	these genes	resistance genes can move the resistance to additional bacteria	resistance	chain reaction [186]–[190]
Endotoxins	Toxic inflammatory agents	Present inside bacteria cells			[191]

References

- [1] O. US EPA, "Drinking Water Analytical Methods."
- [2] "Water Reuse: Potential for Expanding the Nation's Water Supply Through Reuse of Municipal Wastewater | The National Academies Press." [Online]. Available: http://www.nap.edu/catalog/13303/water-reuse-potential-for-expanding-thenations-water-supply-through. [Accessed: 10-Sep-2015].
- [3] U S Environmental Protection Agency, "Guidelines for Water Reuse," *Development*, vol. 26, no. September. p. 252, 2004.
- [4] "WHO | Guidelines for drinking-water quality Volume 1: Recommendations."
- [5] J. Crook, "National Research Council report on potable reuse," *Schriftenr Ver Wasser Boden Lufthyg*, vol. 105, pp. 221–226, 2000.
- [6] M. Salgot, C. Campos, B. Galofre, and J. C. Tapias, "Biological control tools for wastewater reclamation and reuse. A critical review," *Water Sci Technol*, vol. 43, no. 10, pp. 195–201, 2001.
- S. A. Fane, N. J. Ashbolt, and S. B. White, "Decentralised urban water reuse: the implications of system scale for cost and pathogen risk," *Water Sci Technol*, vol. 46, no. 6–7, pp. 281–288, 2002.
- [8] W. Reimann, "Treatment of agricultural wastewater and reuse," Water Sci Technol, vol. 46, no. 11–12, pp. 177–182, 2002.
- [9] G. E. Alexiou and D. D. Mara, "Anaerobic waste stabilization ponds: a low-cost contribution to a sustainable wastewater reuse cycle," *Appl Biochem Biotechnol*, vol. 109, no. 1–3, pp. 241–252, 2003.
- [10] A. Tiehm, N. Schmidt, P. Lipp, C. Zawadsky, A. Marei, N. Seder, M. Ghanem, S. Paris, M. Zemann, and L. Wolf, "Consideration of emerging pollutants in groundwater-based reuse concepts," *Water Sci Technol*, vol. 66, no. 6, pp. 1270–1276.
- [11] H. J. Ongerth and J. E. Ongerth, "Health consequences of wastewater reuse," Annu Rev Public Heal., vol. 3, pp. 419–444, 1982.
- [12] P. P. Legnani, E. Leoni, M. Baraldi, G. Pinelli, and P. Bisbini, "Evaluation of disinfection treatment systems for municipal wastewater reclamation and reuse," *Zentralbl Hyg Umweltmed*, vol. 198, no. 6, pp. 552–566, 1996.
- [13] T. Dewettinck, E. Van Houtte, D. Geenens, K. Van Hege, and W. Verstraete, "HACCP (Hazard Analysis and Critical Control Points) to guarantee safe water reuse and drinking water production--a case study," *Water Sci Technol*, vol. 43, no. 12, pp. 31–38, 2001.
- [14] T. Westrell, C. Schonning, T. A. Stenstrom, and N. J. Ashbolt, "QMRA (quantitative microbial risk assessment) and HACCP (hazard analysis and critical control points) for management of pathogens in wastewater and sewage sludge treatment and reuse," *Water Sci Technol*, vol. 50, no. 2, pp. 23–30, 2004.
- [15] J. B. Rose, "Water reclamation, reuse and public health," *Water Sci Technol*, vol. 55, no. 1–2, pp. 275–282, 2007.
- [16] M. Gomila, J. J. Solis, Z. David, C. Ramon, and J. Lalucat, "Comparative reductions of bacterial indicators, bacteriophage-infecting enteric bacteria and enteroviruses in wastewater tertiary treatments by lagooning and UV-radiation," *Water Sci Technol*, vol. 58, no. 11, pp. 2223–2233, 2008.

- [17] R. Birks and S. Hills, "Characterisation of indicator organisms and pathogens in domestic greywater for recycling," *Env. Monit Assess*, vol. 129, no. 1–3, pp. 61– 69, 2007.
- [18] S. J. Khan, T. Wintgens, P. Sherman, J. Zaricky, and A. I. Schafer, "Removal of hormones and pharmaceuticals in the Advanced Water Recycling Demonstration Plant in Queensland, Australia," *Water Sci Technol*, vol. 50, no. 5, pp. 15–22, 2004.
- [19] R. A. Patterson, "Wastewater quality relationships with reuse options," *Water Sci Technol*, vol. 43, no. 10, pp. 147–154, 2001.
- [20] R. R. Frerichs, "Epidemiologic monitoring of possible health reactions of wastewater reuse," *Sci Total Env.*, vol. 32, no. 3, pp. 353–363, 1984.
- [21] U. S. E. P. Agency, M. S. Division, S. Division, and N. Risk, "Guidelines for Water Reuse Office of Water," *Development*, p. 450, 2004.
- [22] F. Edition, "Guidelines for Drinking-water Quality," *World Health*, vol. 1, no. 3, pp. 104–8, 2011.
- [23] A. L. Lima, P. R. Oliveira, and A. P. Paula, "Acinetobacter infection.," *The New England journal of medicine*, vol. 358, no. 26. p. 2846; author reply 2846–2847, 2008.
- [24] J. M. Janda and S. L. Abbott, "The genus Aeromonas: Taxonomy, pathogenicity, and infection," *Clinical Microbiology Reviews*, vol. 23, no. 1. pp. 35–73, 2010.
- [25] K. T. Young, L. M. Davis, and V. J. Dirita, "Campylobacter jejuni: molecular biology and pathogenesis.," *Nat. Rev. Microbiol.*, vol. 5, no. 9, pp. 665–679, 2007.
- [26] S. H. Park, I. Hanning, R. Jarquin, P. Moore, D. J. Donoghue, A. M. Donoghue, and S. C. Ricke, "Multiplex PCR assay for the detection and quantification of Campylobacter spp., Escherichia coli O157:H7, and Salmonella serotypes in water samples.," *FEMS Microbiol. Lett.*, vol. 316, no. 1, pp. 7–15, 2011.
- [27] J. I. Rood and S. T. Cole, "Molecular genetics and pathogenesis of Clostridium perfringens.," *Microbiol. Rev.*, vol. 55, no. 4, pp. 621–648, 1991.
- [28] A. Sachdeva, S. L. H. Defibaugh-Chávez, J. B. Day, D. Zink, and S. K. Sharma, "Detection and confirmation of clostridium botulinum in water used for cooling at a plant producing low-acid canned foods," *Appl. Environ. Microbiol.*, vol. 76, no. 22, pp. 7653–7657, 2010.
- [29] T. Schwartz, W. Kohnen, B. Jansen, and U. Obst, "Detection of antibiotic-resistant bacteria and their resistance genes in wastewater, surface water, and drinking water biofilms," *FEMS Microbiol. Ecol.*, vol. 43, no. 3, pp. 325–335, 2003.
- [30] S. Chowdhury, "Heterotrophic bacteria in drinking water distribution system: A review," *Environmental Monitoring and Assessment*, vol. 184, no. 10. pp. 6087–6137, 2012.
- [31] Y. Liu, A. Gilchrist, J. Zhang, and X. F. Li, "Detection of viable but nonculturable Escherichia coli O157:H7 bacteria in drinking water and river water," *Appl. Environ. Microbiol.*, vol. 74, no. 5, pp. 1502–1507, 2008.
- [32] A. K. Bej, R. J. Steffan, J. DiCesare, L. Haff, and R. M. Atlas, "Detection of coliform bacteria in water by polymerase chain reaction and gene probes," *Appl. Environ. Microbiol.*, vol. 56, no. 2, pp. 307–314, 1990.
- [33] J. G. Kusters, J. G. Kusters, A. H. M. van Vliet, A. H. M. van Vliet, E. J. Kuipers, and E. J. Kuipers, "Pathogenesis of Helicobacter pylori infection.," *Clin. Microbiol. Rev.*, vol. 19, no. 3, pp. 449–90, 2006.

- [34] B. M. W. Diederen, "Legionella spp. and Legionnaires' disease," *Journal of Infection*, vol. 56, no. 1. pp. 1–12, 2008.
- [35] R. de Lima Isaac, L. U. Dos Santos, M. S. Tosetto, R. M. Franco, and J. R. Guimaraes, "Urban water reuse: microbial pathogens control by direct filtration and ultraviolet disinfection," J Water Heal., vol. 12, no. 3, pp. 465–473.
- [36] A. Tajima, K. Sakurai, and M. Minamiyama, "Behavior of pathogenic microbes in a treated wastewater reuse system and examination of new standards for the reuse of treated wastewater," *Env. Monit Assess*, vol. 129, no. 1–3, pp. 43–51, 2007.
- [37] K. Zhang and K. Farahbakhsh, "Removal of native coliphages and coliform bacteria from municipal wastewater by various wastewater treatment processes: implications to water reuse," *Water Res*, vol. 41, no. 12, pp. 2816–2824, 2007.
- [38] C. J. Palmer, G. F. Bonilla, B. Roll, C. Paszko-Kolva, L. R. Sangermano, and R. S. Fujioka, "Detection of Legionella species in reclaimed water and air with the EnviroAmp Legionella PCR kit and direct fluorescent antibody staining," *Appl. Environ. Microbiol.*, vol. 61, no. 2, pp. 407–412, 1995.
- [39] E. Leoni, G. De Luca, P. P. Legnani, R. Sacchetti, S. Stampi, and F. Zanetti,
 "Legionella waterline colonization: Detection of Legionella species in domestic, hotel and hospital hot water systems," *J. Appl. Microbiol.*, vol. 98, no. 2, pp. 373– 379, 2005.
- [40] H. L. Andrews-Polymenis, A. J. Bäumler, B. A. McCormick, and F. C. Fang, "Taming the elephant: Salmonella biology, pathogenesis, and prevention," *Infection and Immunity*, vol. 78, no. 6. pp. 2356–2369, 2010.
- [41] USEPA, "Method 1682 : Salmonella in Sewage Sludge (Biosolids) by Modified Semisolid Rappaport-Vassiliadis (MSRV) Medium," 2006.
- [42] S. L. Percival, M. V. Yates, D. W. Williams, R. M. Chalmers, and N. F. Gray, "Shigella," in *Microbiology of Waterborne Diseases*, 2014, pp. 223–236.
- [43] J. Reidl and K. E. Klose, "Vibrio cholerae and cholera: Out of the water and into the host," *FEMS Microbiology Reviews*, vol. 26, no. 2. pp. 125–139, 2002.
- [44] M. N. Rojas-Valencia, M. T. Orta-de-Velasquez, M. Vaca-Mier, and V. Franco, "Ozonation by-products issued from the destruction of microorganisms present in wastewaters treated for reuse," *Water Sci Technol*, vol. 50, no. 2, pp. 187–193, 2004.
- [45] M. Benami, O. Gillor, and A. Gross, "The question of pathogen quantification in disinfected graywater," *Sci Total Env.*, vol. 506–507, pp. 496–504.
- [46] M. Benami, A. Gross, M. Herzberg, E. Orlofsky, A. Vonshak, and O. Gillor,
 "Assessment of pathogenic bacteria in treated graywater and irrigated soils," *Sci Total Env.*, vol. 458–460, pp. 298–302.
- [47] P. D. Bevilacqua, R. K. Bastos, and D. D. Mara, "An evaluation of microbial health risks to livestock fed with wastewater-irrigated forage crops," *Zoonoses Public Heal.*, vol. 61, no. 4, pp. 242–249.
- [48] E. Friedler and Y. Gilboa, "Performance of UV disinfection and the microbial quality of greywater effluent along a reuse system for toilet flushing," *Sci Total Env.*, vol. 408, no. 9, pp. 2109–2117.
- [49] D. Haaken, T. Dittmar, V. Schmalz, and E. Worch, "Disinfection of biologically treated wastewater and prevention of biofouling by UV/electrolysis hybrid technology: influence factors and limits for domestic wastewater reuse," Water Res, vol. 52, pp. 20–28.

- [50] R. Kumaraswamy, Y. M. Amha, M. Z. Anwar, A. Henschel, J. Rodriguez, and F. Ahmad, "Molecular analysis for screening human bacterial pathogens in municipal wastewater treatment and reuse," *Env. Sci Technol*, vol. 48, no. 19, pp. 11610–11619.
- [51] C. Levantesi, R. La Mantia, C. Masciopinto, U. Bockelmann, M. N. Ayuso-Gabella, M. Salgot, V. Tandoi, E. Van Houtte, T. Wintgens, and E. Grohmann, "Quantification of pathogenic microorganisms and microbial indicators in three wastewater reclamation and managed aquifer recharge facilities in Europe," *Sci Total Env.*, vol. 408, no. 21, pp. 4923–4930.
- [52] J. M. Poyatos, M. C. Almecija, J. J. Garcia-Mesa, M. M. Munio, E. Hontoria, J. C. Torres, and F. Osorio, "Advanced methods for the elimination of microorganisms in industrial treatments: potential applicability to wastewater reuse," *Water Env. Res*, vol. 83, no. 3, pp. 233–246.
- [53] R. V Ribeiro, E. M. Reis, C. M. Reis, A. C. Freitas-Almeida, and D. P. Rodrigues, "Incidence and antimicrobial resistance of enteropathogens isolated from an integrated aquaculture system," *Lett Appl Microbiol*, vol. 51, no. 6, pp. 611–618.
- [54] R. E. Rosenberg Goldstein, S. A. Micallef, S. G. Gibbs, A. George, E. Claye, A. Sapkota, S. W. Joseph, and A. R. Sapkota, "Detection of vancomycin-resistant enterococci (VRE) at four U.S. wastewater treatment plants that provide effluent for reuse," *Sci Total Env.*, vol. 466–467, pp. 404–411.
- [55] Y. Takabe, I. Kameda, R. Suzuki, F. Nishimura, and S. Itoh, "Changes of microbial substrate metabolic patterns through a wastewater reuse process, including WWTP and SAT concerning depth," *Water Res*, vol. 60, pp. 105–117.
- [56] P. Thayanukul, F. Kurisu, I. Kasuga, and H. Furumai, "Characterization of bacterial isolates from water reclamation systems on the basis of substrate utilization patterns and regrowth potential in reclaimed water," *Water Sci Technol*, vol. 68, no. 7, pp. 1556–1565.
- [57] A. R. Varela and C. M. Manaia, "Human health implications of clinically relevant bacteria in wastewater habitats," *Env. Sci Pollut Res Int*, vol. 20, no. 6, pp. 3550– 3569.
- [58] A. Bourrouet, J. Garcia, R. Mujeriego, and G. Penuelas, "Faecal bacteria and bacteriophage inactivation in a full-scale UV disinfection system used for wastewater reclamation," *Water Sci Technol*, vol. 43, no. 10, pp. 187–194, 2001.
- [59] R. Keawvichit, K. Wongworapat, P. Putsyainant, A. Silprasert, and S. Karnchanawong, "Parasitic and bacterial contamination in collards using effluent from treated domestic wastewater in Chiang Mai, Thailand," *Southeast Asian J Trop Med Public Heal.*, vol. 32 Suppl 2, pp. 240–244, 2001.
- [60] L. Gillerman, A. Bick, N. Buriakovsky, and G. Oron, "Secondary wastewater polishing with ultrafiltration membranes for unrestricted reuse: fouling and flushing modeling," *Env. Sci Technol*, vol. 40, no. 21, pp. 6830–6836, 2006.
- [61] J. A. Redman, S. B. Grant, T. M. Olson, and M. K. Estes, "Pathogen filtration, heterogeneity, and the potable reuse of wastewater," *Env. Sci Technol*, vol. 35, no. 9, pp. 1798–1805, 2001.
- [62] G. Sakamoto, D. Schwartzel, and D. Tomowich, "UV disinfection for reuse applications in North America," *Water Sci Technol*, vol. 43, no. 10, pp. 173–178, 2001.
- [63] K. Van Hege, T. Dewettinck, T. Claeys, G. De Smedt, and W. Verstraete, "Reclamation of treated domestic wastewater using biological membrane

assisted carbon filtration (BioMAC)," *Env. Technol*, vol. 23, no. 9, pp. 971–980, 2002.

- [64] B. Selas, A. Lakel, Y. Andres, and P. Le Cloirec, "Wastewater reuse in on-site wastewater treatment: bacteria and virus movement in unsaturated flow through sand filter," *Water Sci Technol*, vol. 47, no. 1, pp. 59–64, 2003.
- [65] A. Bahri and F. Brissaud, "Setting up microbiological water reuse guidelines for the Mediterranean," *Water Sci Technol*, vol. 50, no. 2, pp. 39–46, 2004.
- [66] R. Keller, R. F. Passamani-Franca, F. Passamani, L. Vaz, S. T. Cassini, N. Sherrer, K. Rubim, T. D. Sant'Ana, and R. F. Goncalves, "Pathogen removal efficiency from UASB + BF effluent using conventional and UV post-treatment systems," *Water Sci Technol*, vol. 50, no. 1, pp. 1–6, 2004.
- [67] O. Landa-Cansigno, J. C. Duran-Alvarez, and B. Jimenez-Cisneros, "Retention of Escherichia coli, Giardia lamblia cysts and Ascaris lumbricoides eggs in agricultural soils irrigated by untreated wastewater," J Env. Manag., vol. 128, pp. 22–29.
- [68] U. J. Blumenthal, E. Cifuentes, S. Bennett, M. Quigley, and G. Ruiz-Palacios, "The risk of enteric infections associated with wastewater reuse: the effect of season and degree of storage of wastewater," *Trans R Soc Trop Med Hyg*, vol. 95, no. 2, pp. 131–137, 2001.
- [69] D. Gerrity, S. Gamage, J. C. Holady, D. B. Mawhinney, O. Quinones, R. A. Trenholm, and S. A. Snyder, "Pilot-scale evaluation of ozone and biological activated carbon for trace organic contaminant mitigation and disinfection," *Water Res*, vol. 45, no. 5, pp. 2155–2165.
- [70] T. Karpova, P. Pekonen, R. Gramstad, U. Ojstedt, S. Laborda, H. Heinonen-Tanski,
 A. Chavez, and B. Jimenez, "Performic acid for advanced wastewater disinfection," *Water Sci Technol*, vol. 68, no. 9, pp. 2090–2096.
- [71] D. Page, P. Dillon, S. Toze, and J. P. Sidhu, "Characterising aquifer treatment for pathogens in managed aquifer recharge," *Water Sci Technol*, vol. 62, no. 9, pp. 2009–2015.
- [72] A. M. Comerton, R. C. Andrews, and D. M. Bagley, "Evaluation of an MBR-RO system to produce high quality reuse water: microbial control, DBP formation and nitrate," *Water Res*, vol. 39, no. 16, pp. 3982–3990, 2005.
- [73] N. Esiobu, "Use of peptide nucleic acid probes for rapid detection and enumeration of viable bacteria in recreational waters and beach sand," *Methods Mol Biol*, vol. 345, pp. 131–140, 2006.
- [74] A. M. Nasser, H. Paulman, O. Sela, T. Ktaitzer, H. Cikurel, I. Zuckerman, A. Meir, A. Aharoni, and A. Adin, "UV disinfection of wastewater effluents for unrestricted irrigation," *Water Sci Technol*, vol. 54, no. 3, pp. 83–88, 2006.
- [75] A. Rompré, P. Servais, J. Baudart, M. R. De-Roubin, and P. Laurent, "Detection and enumeration of coliforms in drinking water: Current methods and emerging approaches," J. Microbiol. Methods, vol. 49, no. 1, pp. 31–54, 2002.
- [76] S. Toze, "PCR and the detection of microbial pathogens in water and wastewater," *Water Res.*, vol. 33, no. 17, pp. 3545–3556, 1999.
- [77] R. M. Chalmers, "Balantidium coli," in *Microbiology of Waterborne Diseases: Microbiological Aspects and Risks: Second Edition*, 2013, pp. 277–286.
- [78] O. Sunnotel, C. J. Lowery, J. E. Moore, J. S. G. Dooley, L. Xiao, B. C. Millar, P. J. Rooney, and W. J. Snelling, "Cryptosporidium," *Letters in Applied Microbiology*, vol. 43, no. 1. pp. 7–16, 2006.

- [79] U. States, "Method 1622 : Cryptosporidium in Water by Filtration / IMS / FA," *Environ. Prot.*, no. April, 2001.
- [80] "Method 1623: 'Cryptosporidium' and 'Giardia' in Water by Filtration/IMS/FA (April 2001)," *Environmental Protection*, no. April. p. 62p, 2001.
- [81] R. M. Chalmers, "Cyclospora cayetanensis," in *Microbiology of Waterborne Diseases: Microbiological Aspects and Risks: Second Edition*, 2013, pp. 327–353.
- [82] G. D. Sturbaum, Y. R. Ortega, R. H. Gilman, C. R. Sterling, L. Cabrera, and D. A. Klein, "Detection of Cyclospora cayetanensis in wastewater," *Appl. Environ. Microbiol.*, vol. 64, no. 6, pp. 2284–2286, 1998.
- [83] W. Stauffer and J. I. Ravdin, "Entamoeba histolytica: an update.," *Curr. Opin. Infect. Dis.*, vol. 16, no. 5, pp. 479–485, 2003.
- [84] Z. Hamzah, S. Petmitr, M. Mungthin, S. Leelayoova, and P. Chavalitshewinkoon-Petmitr, "Differential detection of Entamoeba histolytica, Entamoeba dispar, and Entamoeba moshkovskii by a single-round PCR assay," J. Clin. Microbiol., vol. 44, no. 9, pp. 3196–3200, 2006.
- [85] R. Haque, L. M. Neville, P. Hahn, and W. A. Petri, "Rapid diagnosis of Entamoeba infection by using Entamoeba and Entamoeba histolytica stool antigen detection kits," J. Clin. Microbiol., vol. 33, no. 10, pp. 2558–2561, 1995.
- [86] L. A. Brewer, M. C. Denver, M. Whitney, and D. J. Eichinger, "Analysis of commercial Entamoeba histolytica ELISA kits for the detection of Entamoeba invadens in reptiles.," *J. Zoo Wildl. Med.*, vol. 39, no. 3, pp. 493–495, 2008.
- [87] R. Fotedar, D. Stark, N. Beebe, D. Marriott, J. Ellis, and J. Harkness, "PCR detection of Entamoeba histolytica, Entamoeba dispar, and Entamoeba moshkovskii in stool samples from Sydney, Australia," J. Clin. Microbiol., vol. 45, no. 3, pp. 1035–1037, 2007.
- [88] R. Fotedar, D. Stark, N. Beebe, D. Marriott, J. Ellis, and J. Harkness, "Laboratory diagnostic techniques for Entamoeba species," *Clinical Microbiology Reviews*, vol. 20, no. 3. pp. 511–532, 2007.
- [89] M. G. Paglia and P. Visca, "An improved PCR-based method for detection and differentiation of Entamoeba histolytica and Entamoeba dispar in formalin-fixed stools," Acta Trop., vol. 92, no. 3, pp. 273–277, 2004.
- [90] R. D. Adam, "Biology of Giardia lamblia," *Clinical Microbiology Reviews*, vol. 14, no. 3. pp. 447–475, 2001.
- [91] P. J. Keeling and N. M. Fast, "Microsporidia: biology and evolution of highly reduced intracellular parasites.," Annu. Rev. Microbiol., vol. 56, pp. 93–116, 2002.
- [92] C. Franzen and A. Müller, "Molecular techniques for detection, species differentiation, and phylogenetic analysis of microsporidia," *Clinical Microbiology Reviews*, vol. 12, no. 2. pp. 243–285, 1999.
- [93] R. M. Hoffman, D. M. Wolk, S. K. Spencer, and M. A. Borchardt, "Development of a method for the detection of waterborne microsporidia," J. Microbiol. Methods, vol. 70, no. 2, pp. 312–318, 2007.
- [94] F. Izquierdo, J. A. Castro Hermida, S. Fenoy, M. Mezo, M. González-Warleta, and C. del Aguila, "Detection of microsporidia in drinking water, wastewater and recreational rivers," *Water Res.*, vol. 45, no. 16, pp. 4837–4843, 2011.
- [95] S. Percival, R. Chalmers, M. Embrey, P. Hunter, J. Sellwood, and P. Wyn-Jones, "Naegleria fowleri," in *Microbiology of Waterborne Diseases*, 2004, pp. 319–324.

- [96] L. Maďarová, K. Trnková, S. Feiková, C. Klement, and M. Obernauerová, "A realtime PCR diagnostic method for detection of Naegleria fowleri," *Exp. Parasitol.*, vol. 126, no. 1, pp. 37–41, 2010.
- [97] R. C. Maclean, D. J. Richardson, R. LePardo, and F. Marciano-Cabral, "The identification of Naegleria fowleri from water and soil samples by nested PCR.," *Parasitol. Res.*, vol. 93, no. 3, pp. 211–217, 2004.
- [98] E. M. Hachich, A. T. Galvani, J. A. Padula, N. C. Stoppe, S. C. Garcia, V. M. Bonanno, M. R. Barbosa, and M. I. Sato, "Pathogenic parasites and enteroviruses in wastewater: support for a regulation on water reuse," *Water Sci Technol*, vol. 67, no. 7, pp. 1512–1518.
- [99] K. Bouhoum and O. Amahmid, "Health effect of wastewater reuse in agriculture," *Schriftenr Ver Wasser Boden Lufthyg*, vol. 105, pp. 241–247, 2000.
- [100] S. Araki, S. Martin-Gomez, E. Becares, E. De Luis-Calabuig, and F. Rojo-Vazquez, "Effect of high-rate algal ponds on viability of Cryptosporidium parvum oocysts," *Appl Env. Microbiol*, vol. 67, no. 7, pp. 3322–3324, 2001.
- [101] O. Amahmid, S. Asmama, and K. Bouhoum, "The effect of waste water reuse in irrigation on the contamination level of food crops by Giardia cysts and Ascaris eggs," *Int J Food Microbiol*, vol. 49, no. 1–2, pp. 19–26, 1999.
- [102] A. Keegan, D. Daminato, C. P. Saint, and P. T. Monis, "Effect of water treatment processes on Cryptosporidium infectivity," *Water Res*, vol. 42, no. 6–7, pp. 1805– 1811, 2008.
- [103] L. Bonadonna and R. Briancesco, "Zootechnical wastewater reuse: constructed wetland as a challenge for protozoan parasite removal," *Int J Env. Heal. Res*, vol. 21, no. 5, pp. 331–340.
- [104] S. M. Fletcher, D. Stark, J. Harkness, and J. Ellis, "Enteric protozoa in the developed world: a public health perspective," *Clin Microbiol Rev*, vol. 25, no. 3, pp. 420–449.
- [105] G. J. Medema and J. F. Schijven, "Modelling the sewage discharge and dispersion of Cryptosporidium and Giardia in surface water," *Water Res*, vol. 35, no. 18, pp. 4307–4316, 2001.
- [106] J. J. Verweij, E. A. T. Brienen, J. Ziem, L. Yelifari, A. M. Polderman, and L. Van Lieshout, "Simultaneous detection and quantification of Ancylostoma duodenale, Necator americanus, and Oesophagostomum bifurcum in fecal samples using multiplex real-time PCR," Am. J. Trop. Med. Hyg., vol. 77, no. 4, pp. 685–690, 2007.
- [107] J. R. Gumbo, E. M. Malaka, J. O. Odiyo, and L. Nare, "The health implications of wastewater reuse in vegetable irrigation: a case study from Malamulele, South Africa," Int J Env. Heal. Res, vol. 20, no. 3, pp. 201–211.
- [108] C. Maya, M. Ortiz, and B. Jimenez, "Viability of Ascaris and other helminth genera non larval eggs in different conditions of temperature, lime (pH) and humidity," *Water Sci Technol*, vol. 62, no. 11, pp. 2616–2624.
- [109] I. Navarro and B. Jimenez, "Evaluation of the WHO helminth eggs criteria using a QMRA approach for the safe reuse of wastewater and sludge in developing countries," Water Sci Technol, vol. 63, no. 7, pp. 1499–1505.
- [110] H. I. Shuval, "Effects of wastewater irrigation of pastures on the health of farm animals and humans," *Rev Sci Tech*, vol. 10, no. 3, pp. 847–866, 1991.

- [111] A. S. Bolbol, "Risk of contamination of human and agricultural environment with parasites through reuse of treated municipal wastewater in Riyadh, Saudi Arabia," *J Hyg Epidemiol Microbiol Immunol*, vol. 36, no. 4, pp. 330–337, 1992.
- [112] P. Gaspard and J. Schwartzbrod, "Irrigation with waste water: parasitological analysis of soil," *Zentralbl Hyg Umweltmed*, vol. 193, no. 6, pp. 513–520, 1993.
- [113] D. Kone, O. Cofie, C. Zurbrugg, K. Gallizzi, D. Moser, S. Drescher, and M. Strauss, "Helminth eggs inactivation efficiency by faecal sludge dewatering and cocomposting in tropical climates," *Water Res*, vol. 41, no. 19, pp. 4397–4402, 2007.
- [114] S. Quinzanos, C. Dahl, R. Strube, and R. Mujeriego, "Helminth eggs removal by microscreening for water reclamation and reuse," *Water Sci Technol*, vol. 57, no. 5, pp. 715–720, 2008.
- [115] J. L. Cashdollar, N. E. Brinkman, S. M. Griffin, B. R. Mcminn, E. R. Rhodes, E. A. Varughese, A. C. Grimm, S. U. Parshionikar, L. Wymer, and G. Shay Fout, "Development and evaluation of EPA method 1615 for detection of enterovirus and norovirus in water," *Appl. Environ. Microbiol.*, vol. 79, no. 1, pp. 215–223, 2013.
- [116] P. Liu, O. Herzegh, M. Fernandez, S. Hooper, W. Shu, J. Sobolik, R. Porter, N. Spivey, and C. Moe, "Assessment of human adenovirus removal by qPCR in an advanced water reclamation plant in Georgia, USA," J. Appl. Microbiol., vol. 115, no. 1, pp. 310–318, 2013.
- [117] F. X. Abad, R. M. Pintó, C. Villena, R. Gajardo, and A. Bosch, "Astrovirus survival in drinking water," *Appl. Environ. Microbiol.*, vol. 63, no. 8, pp. 3119–3122, 1997.
- [118] a Bosch and a Bosch, "Human enteric viruses in the water environment: a minireview.," *Int. Microbiol.*, vol. 1, no. 3, pp. 191–6, 1998.
- [119] S. Wilhelm, P. Zimmermann, H. J. Selbitz, and U. Truyen, "Real-time PCR protocol for the detection of porcine parvovirus in field samples," J. Virol. Methods, vol. 134, no. 1–2, pp. 257–260, 2006.
- [120] "Drinking Water Through Recycling | Australian Academy of Technological Sciences and Engineering (ATSE)." [Online]. Available: http://www.atse.org.au/content/publications/reports/naturalresources/drinking-water-through-recycling.aspx. [Accessed: 10-Sep-2015].
- [121] H. Amdiouni, A. Faouzi, N. Fariat, M. Hassar, A. Soukri, and J. Nourlil, "Detection and molecular identification of human adenoviruses and enteroviruses in wastewater from Morocco," *Lett Appl Microbiol*, vol. 54, no. 4, pp. 359–366.
- [122] G. De Luca, R. Sacchetti, E. Leoni, and F. Zanetti, "Removal of indicator bacteriophages from municipal wastewater by a full-scale membrane bioreactor and a conventional activated sludge process: implications to water reuse," *Bioresour Technol*, vol. 129, pp. 526–531.
- [123] S. F. Barker, "Risk of norovirus gastroenteritis from consumption of vegetables irrigated with highly treated municipal wastewater--evaluation of methods to estimate sewage quality," *Risk Anal*, vol. 34, no. 5, pp. 803–817.
- [124] W. Q. Betancourt, M. Kitajima, A. D. Wing, J. Regnery, J. E. Drewes, I. L. Pepper, and C. P. Gerba, "Assessment of virus removal by managed aquifer recharge at three full-scale operations," *J Env. Sci Heal. A Tox Hazard Subst Env. Eng*, vol. 49, no. 14, pp. 1685–1692.

- [125] R. M. Chaudhry, K. L. Nelson, and J. E. Drewes, "Mechanisms of pathogenic virus removal in a full-scale membrane bioreactor," *Env. Sci Technol*, vol. 49, no. 5, pp. 2815–2822.
- [126] Z. Ji, X. C. Wang, L. Xu, C. Zhang, N. Funamizu, S. Okabe, and D. Sano, "Estimation of contamination sources of human enteroviruses in a wastewater treatment and reclamation system by PCR-DGGE," *Food Env. Virol*, vol. 6, no. 2, pp. 99–109.
- [127] P. Liu, O. Herzegh, M. Fernandez, S. Hooper, W. Shu, J. Sobolik, R. Porter, N. Spivey, and C. Moe, "Assessment of human adenovirus removal by qPCR in an advanced water reclamation plant in Georgia, USA," *J Appl Microbiol*, vol. 115, no. 1, pp. 310–318.
- [128] H. F. Mok, S. F. Barker, and A. J. Hamilton, "A probabilistic quantitative microbial risk assessment model of norovirus disease burden from wastewater irrigation of vegetables in Shepparton, Australia," *Water Res*, vol. 54, pp. 347–362.
- [129] H. F. Mok and A. J. Hamilton, "Exposure factors for wastewater-irrigated Asian vegetables and a probabilistic rotavirus disease burden model for their consumption," *Risk Anal*, vol. 34, no. 4, pp. 602–613.
- [130] S. Purnell, J. Ebdon, A. Buck, M. Tupper, and H. Taylor, "Bacteriophage removal in a full-scale membrane bioreactor (MBR) - Implications for wastewater reuse," *Water Res*, vol. 73, pp. 109–117.
- [131] A. I. Silverman, M. O. Akrong, P. Amoah, P. Drechsel, and K. L. Nelson, "Quantification of human norovirus GII, human adenovirus, and fecal indicator organisms in wastewater used for irrigation in Accra, Ghana," J Water Heal., vol. 11, no. 3, pp. 473–488.
- [132] E. M. Symonds, M. E. Verbyla, J. O. Lukasik, R. C. Kafle, M. Breitbart, and J. R. Mihelcic, "A case study of enteric virus removal and insights into the associated risk of water reuse for two wastewater treatment pond systems in Bolivia," *Water Res*, vol. 65, pp. 257–270.
- [133] M. E. Verbyla and J. R. Mihelcic, "A review of virus removal in wastewater treatment pond systems," *Water Res*, vol. 71C, pp. 107–124.
- [134] J. L. Riggs and D. P. Spath, "Virusues in Water and Reclaimed Wastewater," vol. EPA-600/S1. Berkeley, CA, pp. 1–4, 1984.
- [135] S. W. Dee and J. C. Fogleman, "Rates of inactivation of waterborne coliphages by monochloramine," *Appl Env. Microbiol*, vol. 58, no. 9, pp. 3136–3141, 1992.
- [136] M. A. Ali, W. M. El-Senousy, and S. E. El-Hawaary, "Enteroviruses in sewage: comparison of different technologies for wastewater treatment and reuse," J Egypt Public Heal. Assoc, vol. 72, no. 5–6, pp. 441–456, 1997.
- [137] S. R. Petterson and N. J. Ashbolt, "Viral risks associated with wastewater reuse: modeling virus persistence on wastewater irrigated salad crops," *Water Sci Technol*, vol. 43, no. 12, pp. 23–26, 2001.
- [138] A. Carducci, P. Morici, F. Pizzi, R. Battistini, E. Rovini, and M. Verani, "Study of the viral removal efficiency in a urban wastewater treatment plant," *Water Sci Technol*, vol. 58, no. 4, pp. 893–897, 2008.
- [139] H. N. Chinivasagam, E. A. Gardner, J. Sands, and P. J. Blackall, "The use of Fspecific coliphages to assess effluent treatment and reuse schemes," *Env. Technol*, vol. 29, no. 5, pp. 515–524, 2008.
- [140] C. M. Davies, V. G. Mitchell, S. M. Petterson, G. D. Taylor, J. Lewis, C. Kaucner, and N. J. Ashbolt, "Microbial challenge-testing of treatment processes for

quantifying stormwater recycling risks and management," *Water Sci Technol*, vol. 57, no. 6, pp. 843–847, 2008.

- [141] S. Ebrahimi and D. J. Roberts, "Sustainable nitrate-contaminated water treatment using multi cycle ion-exchange/bioregeneration of nitrate selective resin," J Hazard Mater, vol. 262, pp. 539–544.
- [142] J. Fan, B. Zhang, J. Zhang, H. H. Ngo, W. Guo, F. Liu, Y. Guo, and H. Wu,
 "Intermittent aeration strategy to enhance organics and nitrogen removal in subsurface flow constructed wetlands," *Bioresour Technol*, vol. 141, pp. 117–122.
- [143] P. Muhid, T. W. Davis, S. E. Bunn, and M. A. Burford, "Effects of inorganic nutrients in recycled water on freshwater phytoplankton biomass and composition," *Water Res*, vol. 47, no. 1, pp. 384–394.
- [144] B. Lesjean, R. Gnirss, C. Adam, M. Kraume, and F. Luck, "Enhanced biological phosphorus removal process implemented in membrane bioreactors to improve phosphorous recovery and recycling," *Water Sci Technol*, vol. 48, no. 1, pp. 87– 94, 2003.
- [145] P. Balmer, "Phosphorus recovery--an overview of potentials and possibilities," Water Sci Technol, vol. 49, no. 10, pp. 185–190, 2004.
- [146] E. M. van Voorthuizen, A. Zwijnenburg, and M. Wessling, "Nutrient removal by NF and RO membranes in a decentralized sanitation system," *Water Res*, vol. 39, no. 15, pp. 3657–3667, 2005.
- [147] US EPA Integrated Risk Information System, "Arsenic, inorganic (CASRN 7440-38-2) | IRIS | US EPA," *Integrated Risk Information System*, 2012. [Online]. Available: http://www.epa.gov/iris/subst/0278.htm.
- [148] USEPA, "EPA METHOD 7196A for Chromium Hexavalent (colorimetric)," in EPA METHODS, no. July, 1992, pp. 1–6.
- [149] N. Akhtar, J. Iqbal, and M. Iqbal, "Microalgal-luffa sponge immobilized disc: a new efficient biosorbent for the removal of Ni(II) from aqueous solution," *Lett Appl Microbiol*, vol. 37, no. 2, pp. 149–153, 2003.
- [150] J. Kostal, A. Mulchandani, K. E. Gropp, and W. Chen, "A temperature responsive biopolymer for mercury remediation," *Env. Sci Technol*, vol. 37, no. 19, pp. 4457– 4462, 2003.
- [151] G. Al-Enezi, M. F. Hamoda, and N. Fawzi, "Ion exchange extraction of heavy metals from wastewater sludges," J Env. Sci Heal. A Tox Hazard Subst Env. Eng, vol. 39, no. 2, pp. 455–464, 2004.
- [152] S. Kinani, B. Richard, Y. Souissi, and S. Bouchonnet, "Analysis of inorganic chloramines in water," *TrAC - Trends in Analytical Chemistry*, vol. 33. pp. 55–67, 2012.
- [153] H. Huang, Q. Y. Wu, X. Tang, R. Jiang, and H. Y. Hu, "Formation of haloacetonitriles and haloacetamides during chlorination of pure culture bacteria," *Chemosphere*, vol. 92, no. 4, pp. 375–381.
- [154] W. Chu, D. Li, N. Gao, M. R. Templeton, C. Tan, and Y. Gao, "The control of emerging haloacetamide DBP precursors with UV/persulfate treatment," Water Res.
- [155] K. K. Clark and A. A. Keller, "Adsorption of perchlorate and other oxyanions onto magnetic permanently confined micelle arrays (Mag-PCMAs)," Water Res, vol. 46, no. 3, pp. 635–644.
- [156] S. D. Richardson, J. A. D. Thruston, T. V. Caughran, P. H. Chen, T. W. Collette, K. M. Schenck, J. B. W. Lykins, C. Rav-Acha, and V. Glezer, "Identification of new

drinking water disinfection by- products from ozone, chlorine dioxide, chloramine, and chlorine," *Water. Air. Soil Pollut.*, vol. 123, pp. 95–102, 2000.

- [157] M. M. Huber, S. Korhonen, T. A. Ternes, and U. Von Gunten, "Oxidation of pharmaceuticals during water treatment with chlorine dioxide," *Water Res.*, vol. 39, no. 15, pp. 3607–3617, 2005.
- [158] B. Barbeau, R. Desjardins, C. Mysore, and M. Prévost, "Impacts of water quality on chlorine and chlorine dioxide efficacy in natural waters," *Water Res.*, vol. 39, no. 10, pp. 2024–2033, 2005.
- [159] EPA, "Method 8310: Polynuclear aromatic hydrocarbons," 1986.
- [160] H. Borsdorf, A. Rämmler, D. Schulze, K. O. Boadu, B. Feist, and H. Weiß, "Rapid on-site determination of chlorobenzene in water samples using ion mobility spectrometry," *Anal. Chim. Acta*, vol. 440, no. 1, pp. 63–70, 2001.
- [161] P. Peng, H. Yang, R. Jia, and L. Li, "Biodegradation of dioxin by a newly isolated Rhodococcus sp. with the involvement of self-transmissible plasmids.," *Appl. Microbiol. Biotechnol.*, vol. 97, no. 12, pp. 5585–95, Jun. 2013.
- [162] O. O. O. R. US EPA, "Summary of the Clean Water Act." .
- [163] R. W. Holloway, J. Regnery, L. D. Nghiem, and T. Y. Cath, "Removal of trace organic chemicals and performance of a novel hybrid ultrafiltration-osmotic membrane bioreactor," *Env. Sci Technol*, vol. 48, no. 18, pp. 10859–10868.
- [164] A. Langenhoff, N. Inderfurth, T. Veuskens, G. Schraa, M. Blokland, K. Kujawa-Roeleveld, and H. Rijnaarts, "Microbial removal of the pharmaceutical compounds Ibuprofen and diclofenac from wastewater," *Biomed Res Int*, vol. 2013, p. 325806.
- [165] C. E. Purdom, P. A. Hardiman, V. V. J. Bye, N. C. Eno, C. R. Tyler, and J. P. Sumpter, "Estrogenic Effects of Effluents from Sewage Treatment Works," *Chem. Ecol.*, vol. 8, no. 4, pp. 275–285, Jan. 1994.
- [166] D. Schlenk, "Are steroids really the cause for fish feminization? A mini-review of in vitro and in vivo guided TIEs," *Mar. Pollut. Bull.*, vol. 57, no. 6–12, pp. 250–254, 2008.
- [167] D. J. Caldwell, F. Mastrocco, T. H. Hutchinson, R. Länge, D. Heijerick, C. Janssen, P. D. Anderson, and J. P. Sumpter, "Derivation of an Aquatic Predicted No-Effect Concentration for the Synthetic Hormone, 17α-Ethinyl Estradiol," *Environ. Sci. Technol.*, vol. 42, no. 19, pp. 7046–7054, Oct. 2008.
- [168] L. Rizzo, C. Manaia, C. Merlin, T. Schwartz, C. Dagot, M. C. Ploy, I. Michael, and D. Fatta-Kassinos, "Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review," *Sci Total Env.*, vol. 447, pp. 345–360.
- [169] B. Ricken, O. Fellmann, H. P. Kohler, A. Schaffer, P. F. Corvini, and B. A. Kolvenbach, "Degradation of sulfonamide antibiotics by Microbacterium sp. strain BR1 - elucidating the downstream pathway," N Biotechnol.
- [170] K. M. Onesios-Barry, D. Berry, J. B. Proescher, I. K. Sivakumar, and E. J. Bouwer, "Removal of pharmaceuticals and personal care products during water recycling: microbial community structure and effects of substrate concentration," *Appl Env. Microbiol*, vol. 80, no. 8, pp. 2440–2450.
- [171] J. E. Drewes, T. Heberer, and K. Reddersen, "Fate of pharmaceuticals during indirect potable reuse," *Water Sci Technol*, vol. 46, no. 3, pp. 73–80, 2002.

- [172] X. Wu, F. Ernst, J. L. Conkle, and J. Gan, "Comparative uptake and translocation of pharmaceutical and personal care products (PPCPs) by common vegetables," *Env. Int*, vol. 60, pp. 15–22.
- [173] I. Ferrer, J. A. Zweigenbaum, and E. M. Thurman, "Analysis of 70 Environmental Protection Agency priority pharmaceuticals in water by EPA Method 1694," J. Chromatogr. A, vol. 1217, no. 36, pp. 5674–5686, 2010.
- [174] A. J. Ramirez, R. A. Brain, S. Usenko, M. A. Mottaleb, J. G. O'Donnell, L. L. Stahl, J. B. Wathen, B. D. Snyder, J. L. Pitt, P. Perez-Hurtado, L. L. Dobbins, B. W. Brooks, and C. K. Chambliss, "Occurrence of pharmaceuticals and personal care products in fish: results of a national pilot study in the United States.," *Environ. Toxicol. Chem.*, vol. 28, no. 12, pp. 2587–97, Dec. 2009.
- [175] T. Heberer, "Occurrence, Fate, and Assessment of Polycyclic Musk Residues in the Aquatic Environment of Urban Areas — A Review," Acta Hydrochim. Hydrobiol., vol. 30, no. 56, pp. 227–243, Dec. 2002.
- [176] O. of the Commissioner, "Consumer Updates Triclosan: What Consumers Should Know." Office of the Commissioner.
- [177] W. Dekant and W. Völkel, "Human exposure to bisphenol A by biomonitoring: Methods, results and assessment of environmental exposures," *Toxicology and Applied Pharmacology*, vol. 228, no. 1. pp. 114–134, 2008.
- [178] M. Durando, L. Kass, J. Piva, C. Sonnenschein, A. M. Soto, E. H. Luque, and M. Muñoz-de-Toro, "Prenatal bisphenol A exposure induces preneoplastic lesions in the mammary gland in Wistar rats.," *Environ. Health Perspect.*, vol. 115, no. 1, pp. 80–6, Jan. 2007.
- [179] H. P. Wagner, B. V. Pepich, D. P. Hautman, and D. J. Munch, "Performance evaluation of a method for the determination of bromate in drinking water by ion chromatography (EPA Method 317.0) and validation of EPA Method 324.0," in *Journal of Chromatography A*, 2000, vol. 884, no. 1–2, pp. 201–210.
- [180] R. M. Ramirez Zamora, A. Duran Pilotzi, R. Dominguez Mora, and A. Duran Moreno, "Removal of detergents by activated petroleum coke from a clarified wastewater treated for reuse," *Water Sci Technol*, vol. 50, no. 2, pp. 91–98, 2004.
- [181] E. Fonollosa, A. Nieto, A. Penalver, C. Aguilar, and F. Borrull, "Presence of radionuclides in sludge from conventional drinking water treatment plants. A review," J Env. Radioact, vol. 141, pp. 24–31.
- [182] F. Busetti, K. L. Linge, C. Rodriguez, and A. Heitz, "Occurrence of iodinated X-ray contrast media in indirect potable reuse systems," J Env. Sci Heal. A Tox Hazard Subst Env. Eng, vol. 45, no. 5, pp. 542–548.
- [183] M. R. Granados, F. G. Acien, C. Gomez, J. M. Fernandez-Sevilla, and E. Molina Grima, "Evaluation of flocculants for the recovery of freshwater microalgae," *Bioresour Technol*, vol. 118, pp. 102–110.
- [184] N. O'Brien and E. Cummins, "Ranking initial environmental and human health risk resulting from environmentally relevant nanomaterials.," J. Environ. Sci. Health. A. Tox. Hazard. Subst. Environ. Eng., vol. 45, no. 8, pp. 992–1007, Jan. 2010.
- [185] T. A. Nichols, B. Pulford, A. C. Wyckoff, C. Meyerett, B. Michel, K. Gertig, E. A. Hoover, J. E. Jewell, G. C. Telling, and M. D. Zabel, "Detection of proteaseresistant cervid prion protein in water from a CWD-endemic area.," *Prion*, vol. 3, no. 3, pp. 171–83, Jan. .
- [186] J. Du, H. Ren, J. Geng, Y. Zhang, K. Xu, and L. Ding, "Occurrence and abundance of tetracycline, sulfonamide resistance genes, and class 1 integron in five

wastewater treatment plants," *Env. Sci Pollut Res Int*, vol. 21, no. 12, pp. 7276–7284.

- [187] N. Fahrenfeld, Y. Ma, M. O'Brien, and A. Pruden, "Reclaimed water as a reservoir of antibiotic resistance genes: distribution system and irrigation implications," *Front Microbiol*, vol. 4, p. 130.
- [188] X. H. Fu, L. Wang, Y. Q. Le, and J. J. Hu, "Persistence and renaturation efficiency of thermally treated waste recombinant DNA in defined aquatic microcosms," J Env. Sci Heal. A Tox Hazard Subst Env. Eng, vol. 47, no. 13, pp. 1975–1983.
- [189] M. T. Guo, Q. B. Yuan, and J. Yang, "Ultraviolet reduction of erythromycin and tetracycline resistant heterotrophic bacteria and their resistance genes in municipal wastewater," *Chemosphere*, vol. 93, no. 11, pp. 2864–2868.
- [190] A. Pruden, "Balancing water sustainability and public health goals in the face of growing concerns about antibiotic resistance," *Env. Sci Technol*, vol. 48, no. 1, pp. 5–14.
- [191] H. Huang, Q. Y. Wu, Y. Yang, and H. Y. Hu, "Effect of chlorination on endotoxin activities in secondary sewage effluent and typical Gram-negative bacteria," *Water Res*, vol. 45, no. 16, pp. 4751–4757.

Share Drive folder name and path where data are stored:

ENVRES (H:)/EnvRes Share/Mussel Samples/Water Reuse Literature Review 2015/ Final Product

Reference library created in Mendeley

Point of Contact name, email and phone:

Denise Hosler: <u>dhosler@usbr.gov</u> (303-445-2195)