Pulsed-Power Electromagnetic Effects on Crystallization During Desalination

Xiaoyun Lu¹, Jeff Harvey¹, Hengyi Ju¹, Todd Murray¹, Katie Guerra², and John Pellegrino¹

¹University of Colorado at Boulder, Boulder, USA ²Bureau of Reclamation, Denver, USA

> NAMS 2012, New Orleans, LA June 11, 2012

Overview

Background

- Reverse osmosis (RO) Desalination and Scaling
- Electromagnetic Field Effects on Electrolyte Crystallization
- Electromagnetic field generator

Initial Study Results

- Pilot-scale plant
- Bench-scale cross-flow system

Crystallization Characterization

Acoustic Spectroscopy

Significance and Future Work

Background

- Reverse osmosis (RO) membrane desalination is a wellknown pressure-driven water purification process.
- Scaling due to crystallization of sparingly soluble salts on the membrane surface causes flux decline, low water recovery rate, and short membrane lifetime.
- > Strategies for scaling mitigation:
- Chemical methods: antiscalant, pH adjustment, ion exchange: solution chemistry, expensive
- Non-chemical methods
- Mechanical cleaning: down time, membrane lifetime
- Electronic or magnetic pretreatment

Electromagnetic(EM) Mechanism

With Magnetic Field

Without Magnetic Field

- EM affects crystallization kinetics and morphology of various electrolytes.
- > EM field treatment prevents or eliminates chemical scale.
- Incorporation of an EM field in a RO desalination system could be an feasible approach to prevent membrane scaling.

Golriz et.al. Journal of Crystal Growth, 303 (2007) 381-386 Liburkin et.al. Glass and Ceramics, 43 (1986) 116-119

University of Colorado Boulder

Electromagnetic Field Benefit

EM Field Generator

Dolphin System – Clearwater System Corporation

http://www.clearwater-dolphin.com/operating_principles.htm

Dolphin System

> Dolphin system removes the static electric charge on the small suspended particle surface.

The suspended particles act as seeds for precipitation of sparingly soluble salts.

The aggregation occur s in bulk solution instead of scaling on the membrane surface.

Dolphin System Application

- Significant cleaning of the plate-and-frame heat exchanger
- Consistently low bacteria levels
- Less corrosion results
- > Eliminate of nearly all chemical treatment

Dolphin Water Treatment Study Report prepared by BWI Solutions Inc. 2004 http://www.clearwater-dolphin.com/cooling_towers.htm

Initial Study - Pilot Scale

Full scale pilot plant in Northport, Florida by Carollo Engineering

Initial Study - Pilot Scale

Full scale pilot plant in Northport, Florida by Carollo Engineering

- The membrane is not fouled from sparingly soluble salts
- Pressure difference was caused by the back pressure created by concentrate blockage
- Concentrate blockage initiates at the intersections of spacer fibers

Initial Study - semi-pilot scale

2.5" element pilot scale plant in Bureau of Reclamation, Denver

K: Conductivity meter
P: Pressure transducer
Flow: Flow meter
T: Thermal couple

Species	Composition
H ₂ O	1 kg
NaOH	0.4 mg
NaHCO ₃	100 mg
CaCl ₂	0.475 g
Mg SO ₄	0.12 mg
KCI	1.0 g
FeCl ₂	0.38 mg
NaCl	20.6 g

Concentration: ~11000 ppm

Initial Study - semi-pilot Scale

2.5" element pilot scale plant in Bureau of Reclamation, Denver

Productivity (m ³ /m ²)	With Dolphin	Without Dolphin
1 st – 4 th cycle	575	676
5 th -7 th cycle	421	360

Interpretation:

With Dolphin: smaller colloidal crystals may be formed that do not settle easily in the feed tank, instead, they precipitated on the membrane surface.

Without Dolphin: larger sized crystals may be formed that could act as seeds for precipitating salt in the feed tank.

Bench-scale RO setup

University of Colorado Boulder

Experimental design

Controlled Parameters

- Concentration: 1.85 gL⁻¹ CaSO₄
- Temperature: 23°C

> Experimental Variable:

- Pressure: 50 300 psi
- Cross-flow velocity: 10 21 cm/s
- Control experiments: without PP-EM field

Real-Time Response Variables

- Permeate flow-rate
- Conductivity
- Membrane salt rejection

Post-Mortem Characterization

- Gravimetric measurements
- Light microscopy image: surface area coverage
- Scanning electronic microscope (SEM)

Experimental results

University of Colorado Boulder

Experimental results

Tests (PP-FM on/off)	Test 1/Test 2	Test 3/Test 4	Test 5/Test 6	Test 7/Test 8
Pump Speed	327 rpm	89 rpm	327 rpm	89 rpm
Pressure	300 psi	110 psi	50 psi	300 psi
Test Period	1.5 HR	3 HR	4.5 HR	11 HR
Flow Velocity	32 cm/s	10 cm/s	32 cm/s	10 cm/s
Permeate Flow-rate	21 - 8 ml/min	9 - 6 ml/min	5 - 4 ml/min	17 - ~0 ml/min
Post-mortem	Test 1: 12.8%	Test 3: 5.7%	Test 5: 7.7%	Test 7: 13.8%
Gravimetric	Test 2: 13.5%	Test 4: 9.4%	Test 6: ~0%	Test 8: 16.7%
Visual	Test 1:	Test 3:	Test 5:	Test 7:
Observation	trace amount of	Clear precipitation	small amount of	trace amount of
	precipitation	in bulk solution	precipitation	precipitation
	Test 2:	Test 4:	Test 6:	Test 8:
	small amount of	small amount of	trace amount of	trace amount of
	precipitation	precipitation	precipitation	precipitation

Experimental results

- The bulk solutions treated with PP-EM field showed significant more precipitation than the one without utilizing PP-EM field.
- > More scaling on the membrane surface when not utilizing PP-EM.

Feed solution modification

As a sparingly soluble salt, utilizing CaSO₄ directly may cause nucleation easily

Tests (PP-EM on/off)	Test 9/Test 10	Test 3/Test 4
Pump Speed	89 rpm	89 rpm
Pressure	110 psi	110 psi
Test Period	3 h	3 h
Flow Velocity	10 cm/s	10 cm/s
Permeate Flow-rate	9 – 8 (11%) ml/min	9 – 6 (33%) ml/min
Post-mortem Gravimetric	Test 9: 0.4%	Test 3: 5.7%
	Test 10: /	Test 4: 9.4%
Visual	Test 9:	Test 3:
Observation	trace amount of	clear precipitation in bulk
	precipitation	solution
	Test 10:	Test 4:
	trace amount of	small amount of
	precipitation	precipitation

 $CaCl_2 + Na_2SO_4 ----> 2 NaCl + CaSO_4$

Acoustic spectroscopy

 $X_0(\omega) = \exp \left[-\alpha 0(\omega) d\right]$

Acoustic spectroscopy has been applied as a non-destructive method in characterization of particle size distribution in aqueous suspensions by measurement of the ultrasonic signal attenuation coefficient as a function of frequency.

Challis et.al., IEEE transactions on ultrasonic, ferroelectrics, and frequency control, 52 (10), 1754-1768, 2005 Cocker, et.al., Journal of acoustical society of America, 90 (2), 730-740, 1991 Goetz, et.al., Langmuir, 16, 7597-7604, 2000

Iniversity of Colorado Boulder

Acoustic system setup

- The two transducers are held with kinematic mounts so their tilting angle can be adjusted.
- The distance between two transducers is measured precisely under an optical microscope.
- A short pulse is generated by the pulser/receiver, and the acoustic signal is recorded by the oscilloscope.

University of Colorado Boulder

Theoretical function

 $S(\omega) = H(\omega) X(\omega)$

S (ω) : detected acoustic signal in the frequency domain

 $H(\omega)$: the system transfer function

 $X(\omega)$: frequency response of the test liquid

> Calibration of the system to obtain $H(\omega)$: liquid with known acoustic properties

 $X_0(\omega) = \exp[-\alpha 0(\omega) d]$

 $\alpha 0$ (ω) : attenuation coefficient of aqueous solution

d: distance between two transducers surfaces

 $H(\omega) = S_0(\omega)/X_0(\omega)$

> Measurement of attenuation spectrum to obtain $X(\omega)$

Acoustic Study Results

Acoustic study results

$CaCl_2 + Na_2CO_3 ----> 2 NaCl + CaCO_3$

The solubility of CaCO₃ in DI water at ambient temperature: 0.0147 g L⁻¹

Acoustic study results

$CaCl_2 + Na_2CO_3 ----> 2 NaCl + CaCO_3$

Time (min)	рН	Conductivity (μs/cm)
0	9.2	2290
5	8.4	1900
10	8.2	1900
20	8.2	1900
30	8.2	1870
120	7.9	1840
1200	7.9	1840

The solubility of CaCO₃ in DI water at ambient temperature: 0.0147 g L⁻¹

<u>Significance</u>

- Initial study in both pilot and bench scale RO desalination system utilizing PP-EM field verified possible effects of electromagnetic field on precipitation of scarcely soluble salts crystallization in bulk solution.
- Initial study indicated possibility to mitigate scaling during RO process by utilizing PP-EM field.
- A possible real-time crystallization characterization methodology, acoustic spectroscopy, has been developed.

Future Work

- Replicates of the current tests
- More systematic tests with the bench-scale cross-flow RO system with variable testing conditions and complex feed solutions
- Install acoustic spectroscopy system into the RO flow system for real-time solution property monitoring

Acknowledgements

The authors gratefully acknowledge support of this work by the Bureau of Reclamation and Clearwater System LLC.

Clearwater Systems LLC

