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 24 
Abstract 25 

 26 

Spatially distributed historical meteorological forcings (temperature and precipitation) are 27 

commonly incorporated into modeling efforts for long-term natural resources planning.  For 28 

water management decisions, it is critical to understand the uncertainty associated with the 29 

different choices made in hydrologic impact assessments (e.g., choice of hydrologic model, 30 

choice of forcing dataset, calibration strategy, etc.).  This paper evaluates differences among four 31 

commonly used historical meteorological datasets and their impacts on streamflow simulations 32 

produced using the Variable Infiltration Capacity (VIC) model. The four meteorological datasets 33 

examined here have substantial differences, particularly in minimum and maximum temperatures 34 

in high elevation regions such as the Rocky Mountains.  The temperature differences among 35 

meteorological forcing datasets are generally larger than the differences between calibration and 36 

validation periods.  Of the four meteorological forcing datasets considered, there are substantial 37 

differences in calibrated model parameters and simulations of the water balance.  However, no 38 

single dataset is superior to the others with respect to VIC simulations of streamflow.  Also, 39 

optimal calibration parameter values vary across case study watersheds and select meteorological 40 

datasets, suggesting that there is enough flexibility in the calibration parameters to compensate 41 

for the effects of using select meteorological datasets. Evaluation of runoff sensitivity to changes 42 

in climate indicates that the choice of meteorological dataset may be as important in 43 

characterizing changes in runoff as climate change, supporting consideration of multiple sources 44 

of uncertainty in long-term planning studies. 45 

46 
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1.    Introduction 47 

Use of sophisticated physical process models informed by statistically or dynamically 48 

downscaled climate change scenarios is increasingly becoming an integral part of long term 49 

natural resources planning.  For example, the proposed listing of the North American Wolverine 50 

in 2013 as threatened under the Endangered Species Act (Federal Register, Vol. 78, No. 23) 51 

relied, in part, on work done by McKelvey et al. (2011) to evaluate the impacts of climate change 52 

on this distinct population, which depends heavily on contiguous snowpack.  In addition, Wenger 53 

et al. (2011) identified opportunities for mitigation efforts to revive populations of trout species 54 

in the interior western United States based on an analysis of future climate change impacts.  55 

Finally, Bentz et al. (2010) utilized population models driven by projected climate scenarios to 56 

identify regions in North America with a high potential for bark beetle outbreak.  For 57 

environmental management decisions highlighted by these studies, as well as water management 58 

decisions, understanding the uncertainty associated with various underlying modeling application 59 

choices is critical. 60 

In an assessment of climate change impacts on water resources, modeling application 61 

choices may include historical and projected future climate datasets, model structure, and model 62 

calibration metrics, objective function, and calibration scheme.  With respect to choice of 63 

historical meteorological forcings, studies have shown that the dataset choice may cause as much 64 

sensitivity in the resulting water balance as the choice of land surface model (Guo et al. 2006), if 65 

not more (Mo et al. 2012).  Hossain and Anagnostou (2005) and Maggioni et al (2012) 66 

investigated the relative impact of model and rainfall forcing errors in hydrologic simulations by 67 

land surface models and found that both together contribute a large amount of the uncertainty in 68 

soil moisture estimates.  Precipitation appears to cause the greatest sensitivity in runoff (Materia 69 
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et al. 2009; Nasonova et al. 2011) and that sensitivity is not consistent across watersheds (Xue et 70 

al. 1991).  Precipitation estimates are strongly dependent on the method used to interpolate the 71 

data, particularly in regions in the western United States where climate stations, upon which the 72 

datasets are based, are sparse (Mo et al. 2012).  Mizukami et al. (2013) compared model 73 

simulations forced by two meteorological datasets (developed using different methodologies) 74 

and found that differences in shortwave radiation estimates have a large impact on hydrologic 75 

states and fluxes, particularly at higher elevation, influencing snow melt and runoff timing as 76 

well as evapotranspiration. 77 

Other studies indicate that model structure may influence hydrologic model simulations.  78 

For example, Bohn et al (2013) found that the Thorton and Running (1999) approach for 79 

deriving meteorological forcings based on precipitation and temperature have inconsistent biases 80 

across large spatial domains.  Clark et al. (2008) found that model structure is just as important 81 

as the choice of model parameters.  Finally, Vano et al. (2012) found that hydrologic model 82 

structure significantly influences runoff sensitivities to changes in precipitation and temperature 83 

(i.e. imposed changes in climate). 84 

Further, other studies suggest that calibration method may also affect hydrologic 85 

modeling results.  Streamflow simulations may not be sensitive to calibration approach; however 86 

intermediate states such as potential evapotranspiration may differ substantially (Hay et al. 87 

2000).  Also, calibration parameters may not be stationary in time and simulation errors may 88 

increase with the time lag between calibration and simulation periods, as found by Merz et al. 89 

(2011) in their analysis of 273 catchments in Austria.  With respect to climate change studies, 90 

Wilby (2005) found that the uncertainty in changes in projected future streamflow due to the 91 

choice of calibration period is similar to the uncertainty due to future greenhouse gas emissions 92 
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scenarios.  Also, Vaze et al. (2010) found that results from a hydrologic model calibrated over an 93 

average or wet climatic period are suitable for climate change impact studies where the 94 

difference between historical and predicted future rainfall is within about 15%. 95 

Results from the previously mentioned studies suggest that hydrologic model calibration 96 

may be significantly impacted by choice of meteorological forcing dataset.  Numerous 97 

meteorological forcing datasets have been developed over parts of the United States and they 98 

commonly consist of daily precipitation, temperature (minimum and maximum), and wind speed, 99 

at a minimum.  Historical datasets are often developed based on interpolated data from National 100 

Weather Service daily cooperative observer (Co-op) stations (corrected for elevation) with 101 

specific needs in mind.  For example, historical datasets developed by Maurer et al. (2002) and 102 

Livneh et al. (2013) (spanning 1915-2000 and 1915-2011, respectively) encompass the 103 

continental United States (CONUS) and their methodology focuses on the accuracy of spatial 104 

patterns and variability.  The dataset developed by Wood and Lettenmaier (2006) (spanning 105 

1915-2005 over the CONUS) was used as the basis of a west-wide seasonal hydrologic forecast 106 

system, which relied on a stations with real-time observations.  Datasets by Hamlet and 107 

Lettenmaier (2005), Elsner et al. (2010), and Littell et al. (2011) (all spanning 1915-2006 and 108 

covering parts of the western United States) were developed with the objective of evaluating 109 

long-term climate trends and evaluating implications of climate change.  For hydrologic model 110 

applications such as the Variable Infiltration Capacity (VIC) Model (Liang et al. 1994; Liang et 111 

al. 1996), additional meteorological forcings (i.e. humidity and radiative fluxes) need to be 112 

estimated from the diurnal temperature range and precipitation (e.g. using the approach of 113 

Thornton and Running 1999) or taken from other sources such as reanalysis products. 114 
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There is an increasing number of historical datasets based on reanalysis products such as 115 

the National Centers for Environmental Prediction, North American Regional Reanalysis 116 

(NARR; Mesinger et al. 2006).  For example, the North American Land Data Assimilation 117 

System (NLDAS) Phase 2 (Xia et al. 2012) dataset is primarily derived from NARR data and 118 

this dataset is used by Mizukami et al. (2013) in their analysis of model sensitivities to 119 

meteorological forcings in mountainous terrain.  Abatzoglou (2011) developed a 4-km gridded 120 

historical climate dataset based on the NLDAS Phase 2 dataset and the monthly 800 meter 121 

PRISM product (Daly et al. 2008). 122 

Although there have been an increasing number of scientific studies exploring 123 

uncertainties associated with hydrologic model application choices, these uncertainties are still 124 

not well understood.  Further, natural resource managers are increasingly using datasets and 125 

modeling tools, like those previously described, in long-term planning.  Federal natural resource 126 

management and conservation agencies, including among others the Bureau of Reclamation 127 

(Reclamation), U.S. Geological Survey, U.S. Fish and Wildlife Service, U.S. Forest Service, 128 

National Oceanic and Atmospheric Association (NOAA), and Pacific Northwest National 129 

Laboratory, all have mandates for incorporating climate change into long-term planning.  130 

Climate projections originate from GCMs at coarse scale in space and time and are typically 131 

downscaled, either statistically or dynamically using a regional climate model, so that they may 132 

be useful for planning studies (e.g. Wood et al. 2004, Salathe et al. 2007, Christensen and 133 

Lettenmaier 2007, Maurer et al. 2007, among others).  Statistically downscaled climate 134 

projections, arguably the type of projections most commonly used in long term planning studies, 135 

rely on historical meteorological datasets as the basis for downscaling.  Numerous archives of 136 

statistically downscaled climate projections available for various domains within the western 137 
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United States utilize different historical datasets.  For example, archives of hydro-climate 138 

scenarios developed for the Pacific Northwest (Hamlet et al. 2013), as well as major western 139 

United States river basins (Littell et al. 2011) at 1/16th degree spatial resolution, rely on 140 

historical datasets developed by Elsner et al. (2010) and Littell et al. (2011) as the basis for 141 

downscaling.  In another example, Maurer et al (2007) developed an archive of statistically 142 

downscaled hydro-climate scenarios covering the CONUS plus contributing areas of Canada, 143 

which have served as a consistent dataset used by Reclamation in numerous basin studies 144 

pursuant to the SECURE Water Act of 2009 (Public Law 111-11), and rely on the historical 145 

dataset developed by Maurer et al. (2002) at 1/8th degree spatial resolution as its basis.   146 

Greater understanding of the implications associated with using a particular historical 147 

dataset is important not only for historical hydrologic studies, but also for characterizing the 148 

uncertainty associated with projected future hydrologic conditions.  In summary, this paper seeks 149 

to answer two questions:  150 

(1) Is there an optimal distributed meteorological forcing dataset to be used in simulating 151 

streamflow through the VIC hydrological model? 152 

(2) How does the choice of distributed meteorological data affect hydrologic model 153 

calibration and sensitivity analysis, particularly with respect to changes in climate? 154 

In the following section, we describe the study approach.  The study analysis is organized 155 

in two sections.  First, we compare four meteorological forcing datasets commonly used in 156 

natural resource studies.  Second, we discuss hydrologic model calibrations, using each of the 157 

four compared datasets, and resulting simulations.  We conclude with a discussion of key 158 

findings in the context of various uncertainties in long-term natural resources planning studies. 159 



8 

 

2.    Approach 160 

2.1 Historical Meteorological Forcing Datasets 161 

We compile and compare four spatially distributed meteorological datasets that differ in their use 162 

of station observations, handling of temporal inhomogeneities, spatial extent, spatial resolution, 163 

and temporal coverage.  The four historical gridded meteorological datasets were developed by: 164 

1) Maurer et al. (2002) – hereafter called the Maurer dataset; 2) Wood and Lettenmaier (2006) – 165 

hereafter called the Wood-Lettenmaier dataset; 3) Abatzoglou (2011) – hereafter called the 166 

Abatzoglou dataset; and 4) Elsner et al. (2010), expanded by Littell et al. (2011) – hereafter 167 

called the Elsner-Littell dataset (datasets are summarized in Table 1).  We compare precipitation 168 

and temperature (maximum, minimum, and diurnal range) from these datasets over a common 169 

time period (water years 1980-1999), spatial resolution (1/8 degree), and domain, generally the 170 

United States portions of four major western hydrologic regions, including the Pacific Northwest 171 

(Columbia River Basin plus coastal drainages in Oregon and Washington); California; the Great 172 

Basin; the Colorado River Basin; and, the Missouri River basin west of 93 degrees west 173 

longitude (Fig. 1).  The Maurer and Wood-Lettenmaier datasets have a native spatial resolution 174 

of 1/8 degree and use a common grid, consistent with the North American Land Data 175 

Assimilation System (NLDAS, Mitchell et al. 2004).  The Abatzoglou and Elsner-Littell datasets 176 

were aggregated from their native resolution (4-km and 1/16th degree, respectively) to the same 177 

common 1/8 degree grid, using a local area averaging approach.  Consequences of aggregating 178 

precipitation and temperature from these datasets are not explored in this study.  However, we 179 

may speculate reduced error in precipitation and temperature aggregated from finer scale to 1/8
 

180 

degree due to the fact that coarse station observations are the basis for development of both 181 

Abatzoglou and Elsner-Littell datasets.  In addition, Gangopadhyay et al. (2004) evaluated the 182 
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impacts of spatial aggregation on precipitation forecast skill in the context of statistically 183 

downscaled precipitation estimates.  They found that spatial averaging either had little effect or 184 

increased the skill of downscaled precipitation estimates.  Additional studies may be needed to 185 

evaluate the issue of scale of meteorological data for watersheds smaller than those considered in 186 

this study (the smallest of which is 1,792 square kilometers).  Distinguishing characteristics of 187 

the four datasets are summarized in Table 1.  We refer to their associated publications for details 188 

regarding the purpose and applications of each dataset, and the approaches taken in developing 189 

them. 190 

The Maurer, Wood-Lettenmaier, and Elsner-Littell gridded precipitation fields are 191 

primarily based on the Co-op Station Network (along with similar networks in Canada and 192 

Mexico), interpolated to a grid using the SYMAP algorithm (Shepard 1984).  The Maurer dataset 193 

only includes stations with more than 20 years of data from 1949-2000.  The Wood-Lettenmaier 194 

dataset only includes stations that have both long term records and report in real time (through 195 

2005).  These stations have at least 45 years of record and at least 80% coverage of the period 196 

between 1915 and 2005 (Wood 2008).  The Elsner-Littell dataset follows the approach of Hamlet 197 

and Lettenmaier (2005) and only includes stations with at least 5 years of data and at least one 198 

continuous year from 1915-2006.  The dataset is then corrected for temporal inhomogeneities by 199 

use of monthly Historical Climatology Network (HCN) data (and Canadian equivalent).  200 

Precipitation fields from all three of the above mentioned datasets incorporate a correction to 201 

monthly climatologies from the Parameter-elevation Regressions on Independent Slopes Model 202 

(PRISM) (Daly et al. 2008) albeit for slightly different time periods (1961-1990 for Maurer and 203 

Wood-Lettenmaier datasets and 1971-2000 for Elsner-Littell dataset).  The Abatzoglou 204 

precipitation fields are derived from NLDAS Phase 2 data (Xia et al. 2012), comprised of gage 205 
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data (Co-op stations included), radar, and reanalysis data (at 32-km spatial resolution).  The 206 

Abatzoglou dataset applies a secondary correction to the monthly 800 meter PRISM timeseries. 207 

Temperature (minimum and maximum) fields in the Maurer, Wood-Lettenmaier, and 208 

Elsner-Littell datasets are also obtained from Co-op stations (station mix as described for 209 

precipitation) and are lapsed (at -6.5 degrees Celsius [C] per km) to the mean grid cell elevation.  210 

The Elsner-Littell dataset, however, applies a secondary correction of average temperature to the 211 

PRISM climatologies (preserving the range between minimum and maximum temperature in Co-212 

op station data).  The Abatzoglou temperature fields are based on NLDAS Phase 2 and a 213 

secondary correction to monthly 800 meter PRISM timeseries. 214 

The Maurer, Wood-Lettenmaier, and Elsner-Littell datasets rely on wind speeds from 215 

NLDAS Phase 1, which are downscaled wind fields from the National Centers for 216 

Environmental Prediction – National Center for Atmospheric Research (NCEP-NCAR) 217 

reanalysis products (Kalanay et al. 1996).  The wind speeds in the Abatzoglou dataset are taken 218 

from the NLDAS Phase 2, which is based on the NCEP North American Regional Reanalysis 219 

(NARR).  Barsugli et al. (2012) found that, in Colorado, NARR windspeeds are substantially 220 

greater than NCEP-NCAR windspeeds at higher elevations and that NARR windspeeds more 221 

closely compare with available observations.  They also demonstrate that choice of windspeed 222 

data may impact resulting streamflow simulations.  However, we choose not to compare 223 

differences in wind speed in this study, in part because there is less confidence overall in gridded 224 

windspeed data, and the use of the Abatzoglou dataset with NARR windspeeds helps to 225 

demonstrate the sensitivity of simulated streamflow to changes in meteorological forcings. 226 
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2.2 Case Study Watersheds 227 

We investigate the implications of model calibration using each of these datasets on seven case 228 

study watersheds across the domain, namely: 1) Animas River at Durango, CO (USGS ID 229 

09361500, hereafter called ANIMS); 2) Dolores River near Cisco, UT (USGS ID 09180000, 230 

hereafter called DOLOR); 3) Green River at Green River, UT (USGS ID 09315000, hereafter 231 

called GREEN); 4) Missouri River at Toston, MT (USGS ID 06054500, hereafter called 232 

MISSO); 5) Sacramento River at Bend Bridge near Red Bluff, CA (USGS ID 11377200, 233 

hereafter called SACRB); 6) Salt River near Chrysotile, AZ (USGS ID 09497500, hereafter 234 

called SALTC); and, 7) Snake River near Heise, ID (USGS ID 13037500, hereafter called 235 

SNAKE). 236 

Specifically, we explore whether calibration of a hydrologic model using one 237 

meteorological dataset yields significantly different calibration parameters than a model 238 

calibrated using a different meteorological dataset.  Further, we explore whether a hydrologic 239 

model calibrated to one meteorological dataset yields significantly different results when forced 240 

with a different meteorological dataset.  Lastly, we explore the sensitivity of runoff to changes in 241 

climate (as represented by differences between calibration and validation periods) using the four 242 

calibrated models.  Direct comparisons of the distributed meteorological datasets and evaluation 243 

of hydrologic model simulations over the case study watersheds allows us to better understand 244 

the implications of these datasets with respect to long-term planning studies. 245 

2.3 Modeling Scheme 246 

To represent physical hydrologic processes in the seven case study watersheds, we apply the VIC 247 

hydrologic model.  The VIC model has been widely used in large scale hydrologic studies across 248 

the globe and to explore the implications of climate change on water and other resources 249 
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including forests, agriculture, fish and wildlife (e.g. Christensen and Lettenmaier 2007, Elsner et 250 

al. 2010, Wenger et al. 2011).  It was employed in the same studies for which three of the four 251 

comparison datasets were developed, with the exception of the Abatzoglou dataset.  The VIC 252 

model was also used to validate the datasets developed as part of the NLDAS project (Mitchell et 253 

al. 2004, Xia et al. 2012).  The model configuration used here is consistent with that used in the 254 

Reclamation’s West-wide Climate Risk Assessment (Reclamation 2011). Namely, we apply VIC 255 

model version 4.0.7 (also used by Elsner et al. 2010 and Hamlet et al. 2013) to simulate surface 256 

runoff and baseflow per model grid cell.  We then apply the Lohmann et al. (1998) model to 257 

route surface runoff and baseflow to select locations, producing simulated natural streamflow.  258 

Natural flows are defined as streamflow that would exist in the absence of diversions and return 259 

flows resulting from human activities.  Hydrologic model simulations are performed in water 260 

balance mode using a daily time step water balance and 1-hour time step internal snow model. 261 

VIC model calibration is conducted using the multi-objective complex evolution 262 

approach developed by Yapo et al. (1998).  The user may define the calibration parameters, and 263 

the objectives (calibration metrics) on which to base the objective function.  Pareto sets are 264 

theoretically equal in terms of their objective functions.  As such, one set of parameters was 265 

generally chosen manually from the Pareto optimal set.  Bennett et al. (2012) showed that the 266 

choice of model parameter set within the Pareto optimal set had minimal impact on resulting 267 

hydrologic simulations in analyzed watersheds of British Columbia.  Calibrations are repeated up 268 

to seven times to ensure parameters were globally optimal and to account for lack of 269 

convergence in some calibrations.  Calibration metrics include three error statistics computed 270 

between simulated and reconstructed natural streamflow, which is considered the best estimate 271 

of observed natural conditions.  The objective function for calibration is computed based on 272 
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three metrics: the Nash-Sutcliffe Efficiency computed using monthly flows (NSEmon), the root 273 

mean squared error of monthly flows divided by the observed mean monthly flow (RMSEmon), 274 

and the normalized error in mean monthly flow volume (VolErrmon).  These metrics were chosen 275 

to reduce errors in seasonal timing and magnitude of flow (NSEmon and RMSEmon) as well as 276 

reduce error in annual flow volume (VolErrmon).  All three metrics generally have values between 277 

0 and 1; however, VolErrmon is generally quite low, effectively giving the NSEmon and RMSEmon 278 

metrics relatively greater weight.  The NSEmon function emphasizes the high–peak flow periods 279 

and therefore produces parameters that optimize hydrograph performance during the seasonal 280 

peak (Bennett et al. 2012, Clark et al. 2008).  The VolErrmon strictly emphasizes volume 281 

conservation over the calibration period and is not responsive to errors in streamflow timing or 282 

seasonality (Bennett et al. 2012). 283 

We evaluate the sensitivity of streamflow to variations in common VIC model calibration 284 

parameters over the seven case study watersheds in order to determine the most appropriate 285 

calibration parameter set.  Model parameters considered for calibration are summarized in Table 286 

2.  Sensitivity is evaluated based on perturbation experiments spanning the accepted range of 287 

each parameter.  The three calibration metrics described above are computed for each 288 

perturbation experiment and metrics are compared across case study watersheds.  Parameter 289 

sensitivity may be dependent on watershed, making it difficult to apply a stringent threshold for 290 

each calibration watershed.  Therefore, for a single parameter, if the majority (i.e. more than 291 

half) of the metrics for all calibration watersheds varies by less than 10 percent, that parameter is 292 

considered insensitive.  Based on this sensitivity analysis, the following parameters were chosen: 293 

Ds, Ws, Dsmax, D2, and D3.  Ds, Ws, and Dsmax are parameters that define the shape of the 294 

baseflow curve (Liang et al. 1994).  D2 and D3 consist of the depth of the middle and deepest of 295 
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three model soil layers.  Other parameters, including the parameter defining the shape of the 296 

variable infiltration capacity curve (bi), wind speed attenuation through the canopy, snow 297 

roughness, radiation attenuation in the canopy, and routing flow velocity, were found to 298 

minimally contribute to VIC model sensitivity and were not modified during calibration (Table 299 

2).  Choosing appropriate calibration parameters, while limiting the number, allows for 300 

successful and more computationally efficient model calibrations (Kampf and Burges 2007). 301 

2.4 Evaluation Methods 302 

Model simulations are performed over seven case study watersheds to evaluate the implications 303 

of using different meteorological datasets on simulated streamflow.  Case study watersheds 304 

represent each of the major western United States watersheds under Reclamation’s purview and 305 

vary in size, elevation, aspect, and climatic conditions.  The time period of model calibration and 306 

validation is dictated by the length of record of available observed reconstructed natural 307 

streamflow and meteorological data, but is also chosen to include a range of hydrologic 308 

conditions.  Table 3 summarizes the characteristics of each case study watershed and identifies 309 

their model calibration/validation periods. 310 

To evaluate the implications of VIC model calibration on simulated streamflow, we 311 

employ a procedure where the VIC model is calibrated for each of the case study watersheds and 312 

using one of the four select meteorological datasets.  Each calibrated model is then forced with 313 

the remaining three meteorological datasets.  Resulting simulated mean monthly hydrographs for 314 

each watershed are compared with reconstructed natural streamflow. 315 

The sensitivity of runoff to changes in climate is also explored using the calibrated 316 

simulations by partitioning the validation period for each case study watershed (generally a 10 317 

year period, but 5 years for MISSO and 7 years for ANIMS; see Table 3) into cool-wet and 318 
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warm-dry water years.  Cool-wet and warm-dry validation years were selected based on their 319 

computed difference (in percent and degrees C, respectively) from the median of annual 320 

precipitation and temperature over the simulation period, 1980-1999 water years.  Since the 321 

change in climate between calibration and validation periods for most case study watersheds 322 

(except MISSO) is as great as the change in climate between meteorological datasets, we choose 323 

these two converse year types to help demonstrate the greatest potential change in runoff 324 

sensitivity due to dataset choice and provide context for potential implications.  Unique groups 325 

of years were selected and averaged to generate mean annual precipitation, temperature, and 326 

runoff for each case study watershed and meteorological forcing dataset.  However, some years 327 

were commonly classified as cool-wet and warm-dry for most watersheds and meteorological 328 

forcing datasets (e.g. water year 1982 was a common cool-wet year, while 1981 was a common 329 

warm-dry year).  For each calibrated model, change in mean annual runoff between calibration 330 

period and each of the two validation year types (as a function of change in climate - mean 331 

annual precipitation and temperature) is computed to determine whether runoff sensitivity 332 

changes with change in climate or meteorological forcing dataset. 333 

3.    Comparison of Spatially Distributed Meteorological Data 334 

Four meteorological forcing datasets (Maurer, Wood – Lettenmaier, Abatzoglou, and Elsner – 335 

Littell) are compared across a common study domain (see purple dashed line in Fig. 1) and time 336 

period (1980-1999 water years).  The datasets are compared with respect to precipitation (Prcp) 337 

and temperature (minimum [Tmin], maximum [Tmax], and diurnal range [Tran]).  Across the 338 

common domain, datasets are compared based on their means, standard deviation, and 339 

correlations.  Similar analyses are performed over a longer period (1950-1999 water years), with 340 

the exception of the Abatzoglou dataset (which begins in 1979), and comparable results are 341 
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found and, therefore, not presented.  In addition to a comparison across the study domain, the 342 

datasets are compared over seven case study watersheds based on monthly values over 343 

calibration, validation, and simulation periods.  For both sets of comparisons, statistics are 344 

computed using monthly and annual totals for precipitation and daily averages over the month or 345 

year for temperature. 346 

3.1 Differences in Meteorological Forcings across Study Domain 347 

Figures 2 through 7 illustrate monthly and annual statistics for all four variables.  Values are 348 

presented as comparisons of the Abatzoglou (A), Elsner-Littell (EL), and Wood-Lettenmaier 349 

(WL) datasets to the Maurer (M) dataset.  The Maurer dataset is commonly used in statistical 350 

downscaling efforts and is the baseline historical dataset used in Reclamation’s West Wide 351 

Climate Risk Assessment (Reclamation 2011).  It is therefore used as the basis for comparison of 352 

the remaining three datasets.  Figures 2 and 3 show percent differences in precipitation statistics 353 

between datasets (computed over 1980-1999 water years), while Figures 4 through 7 show 354 

absolute differences in temperature statistics in degrees C.  Boxplots in Figures 2 and 4 through 6 355 

compare annual values across VIC grid cells, where the boxes represent the 25th, 50th, and 75th 356 

percentile values, while the whiskers represent the 5th and 95th percentiles.  Monthly statistics 357 

were similarly analyzed, but the results are not presented here, as they are consistent with annual 358 

statistics overall.  However, notable differences between monthly and annual statistics are 359 

discussed.  Figures 3 and 7 illustrate how precipitation and temperature (Tmax, Tmin, and Tran) 360 

vary spatially in winter and summer, represented by January and July, respectively. 361 

Results show considerable differences in precipitation among datasets, both in terms of 362 

distribution of statistics (Fig 2) and spatial differences (Fig. 3).  In particular, note that over 50% 363 

of grid cells in Fig. 2 have differences in precipitation greater than 10%, as can be seen by the 364 
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difference between 25
th

 and 75
th

 percentile values.  Although there are considerable differences 365 

in some parts of the domain (Fig. 3), the medians of precipitation difference are close to zero (5 366 

percent or less). Monthly analysis shows greater a distribution of differences in July than other 367 

months, likely corresponding with a smaller magnitude of precipitation occurring in much of the 368 

western United States in summer.  In January, the Maurer dataset generally has more 369 

precipitation (median negative difference on the order of 5-10 percent) in the northern portion of 370 

the domain (defined as north of the California-Oregon border at 42 degrees N latitude) and less 371 

precipitation (median positive difference on the order of 0-5 percent) in the southern portion of 372 

the domain, compared with the alternate datasets (Fig. 3).  In July, the Maurer dataset generally 373 

has less precipitation than the compared datasets in all regions.  The exceptions include a median 374 

negative difference in California of about 38 percent comparing it with the Wood-Lettenmaier 375 

dataset, and of about 4 percent comparing it with the Elsner-Littell dataset.  To put these results 376 

in context, consider that many future climate projections suggest changes in precipitation within 377 

+/- 10% by the 2050s (Reclamation 2011).  The differences are notable, despite the expectation 378 

that the Wood-Lettenmaier dataset is more similar to the Maurer dataset with respect to 379 

precipitation, than either the Elsner-Littell or Abatzoglou datset, due to the use of the same 380 

PRISM dataset for secondary corrections, namely the 1961-1990 climatology.  PRISM 381 

climatologies cannot be directly compared and, by extension, cannot be attributed as the sole 382 

source of differences between datasets because their products incorporate data improvements and 383 

station networks and underlying data are not consistent between products. 384 

There are also considerable differences in temperature among datasets (Fig. 4 showing 385 

meand annual maximum temperature, Fig. 5 showing mean annual minimum temperature, Fig. 6 386 

showing mean annual diurnal temperature range, and Fig. 7 showing spatial differences for 387 
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January and July).  Specifically, the Elsner-Littell dataset shows differences in mean annual 388 

maximum temperature greater than 1 degree C for approximately 25% of grid cells (Fig.), while 389 

Elsner-Littell and Abatzoglou datasets show differences in mean annual minimum temperature 390 

greater than 1 degree C for approximately 25% of grid cells (Fig. 4), with the Abatzoglou dataset 391 

showing minimum temperature differences in the daily mean greater than 2 degrees C for 392 

approximately 25% of grid cells.  Monthly analysis shows the greatest distribution of differences 393 

occurs in the cool season (approximately September to March).  Temperature differences are 394 

most pronounced in high elevation areas, especially throughout the Rocky Mountains (Fig. 7).  395 

Additionally, the Abatzoglou dataset has a generally lower diurnal temperature range than the 396 

Maurer dataset, particularly during July.  As described in section 2.1, the datasets differ in their 397 

corrections of temperature by elevation.  Maurer and Wood-Lettenmaier datasets impose a 398 

constant lapse rate (-6.5 degrees C per km) in the gridding of temperature from station 399 

observations, while the Abatzoglou and Elsner-Littell datasets incorporate corrections to finer 400 

scale PRISM temperature climatologies (described in section 2.1), causing substantial 401 

differences in daily mean minimum and maximum temperatures, particularly at higher 402 

elevations.  A lapse rate of -6.5 degrees C per km appears to be too high for temperature based 403 

on recommended lapse rates in complex terrain (e.g. Blandford et al. 2008; Minder et al. 2010). 404 

Blandford et al. (2008) found that this lapse rate may be applicable to maximum temperature, but 405 

grossly overestimates actual lapse rates for daily minimum and mean temperature.  Mizukami et 406 

al. (2013) further discuss the significant implications of the use of a constant lapse rate on the 407 

diurnal temperature range and empirical estimates of shortwave radiation. 408 

In comparison of standard deviation between three datasets (Abatzoglou, Elsner-Littell, 409 

Wood-Lettenmaier) to the Maurer dataset, it is evident that the Wood-Lettenmaier dataset has 410 
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more similar variability than the other datasets for Prcp (Fig. 2).  However for temperature, 411 

(Tmin, Tmax, and Tran) the variability is generally comparable (see Figs. 4 through 6).  412 

Correlation between datasets across the entire study domain is highest between Abatzoglou and 413 

Maurer datasets for precipitation and temperature (Tmin, Tmax, and Tran) and generally lowest 414 

between Elsner-Littell and Maurer datasets, which is interesting provided Abatzoglou and 415 

Elsner-Littell datasets both apply temperature corrections based on PRISM climatologies.  It may 416 

be speculated that for the Elsner-Littell dataset, the use of monthly HCN (and Canadian 417 

equivalent) station data to correct for temporal inhomogeneities in precipitation and temperature, 418 

due to the use of relatively short station records (minimum of 5 years, with one year of 419 

continuous data), may alter daily precipitation values enough to cause the lower correlations 420 

between the Elsner-Littell and Maurer datasets for precipitation and temperature (and generally 421 

lower correlations between Elsner-Littell and other datasets as well, although results are not 422 

shown).  The Abatzoglou dataset, which is based on a combination of CPC daily gage data and 423 

National Weather Service Stage II radar, does not incorporate a similar monthly correction factor 424 

using HCN station data. 425 

3.2 Differences in Meteorological Forcings across Basins 426 

Figure 8 summarizes differences in mean annual precipitation and temperature (average [Tavg], 427 

Tmax, and Tmin) between Abatzoglou, Elsner-Littell, Wood-Lettenmaier and the reference 428 

Maurer dataset. These differences are shown for calibration, validation, and overall simulation 429 

periods, and over the seven case study watersheds, which span a range of geographic regions and 430 

elevations.  The figure informs analysis of hydrologic model calibration and simulations (section 431 

4).  Case study watersheds are presented in order of mean watershed elevation; the watershed 432 
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with the lowest mean elevation (SACRB) is on the far left of each figure panel, while the 433 

watershed with the highest mean elevation (ANIMS) is on the far right. 434 

Calibration and validation periods (as well as overall simulation period which includes 435 

both) for each case study watershed are generally similar in climate, with precipitation 436 

differences generally less than 10% and temperature differences less than 0.5 degrees C.  The 437 

MISSO watershed is the exception, where mean annual precipitation over the calibration and 438 

validation periods differ by 18-20%. 439 

Interestingly, substantial differences are evident between alternate meteorological forcing 440 

datasets and the Maurer reference dataset.  Figure 8 shows that for temperature, the differences 441 

among datasets are larger than the differences between calibration and validation periods, with 442 

differences up to 3 degrees C.  For precipitation, the differences among meteorological forcing 443 

datasets are comparable with differences between calibration and validation periods, with 444 

differences generally less than 10% with the exception of the MISSO basin (as previously 445 

described). 446 

Specifically, Abatzoglou and Elsner-Littell datasets have higher daily average 447 

temperature than Maurer and Wood-Lettenmaier datasets for all case study watersheds, with the 448 

differences in daily average temperature are primarily driven by differences in the daily 449 

minimum for the Abatzoglou dataset and daily maximum for the Elsner-Littell dataset.  Mean 450 

annual precipitation between the four meteorological forcing datasets is within +/- 10% in each 451 

of the case study watersheds.  Higher elevation watersheds (SNAKE and ANIMS watersheds) 452 

exhibit the greatest difference in temperature between these datasets for reasons described in 453 

section 3. 454 
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4.    Hydrologic Model Simulations for Case Study Watersheds 455 

Hydrologic model calibrations and simulations for seven case study watersheds are evaluated to 456 

improve our understanding of potential impacts of meteorological forcings on model calibration 457 

parameters. 458 

4.1 Differences in Calibrated Parameters and Model Performance 459 

Each of the seven case study watersheds is calibrated through implementation of an automated 460 

multiple objective approach using the VIC hydrologic model.  Table 4 summarizes the resulting 461 

optimal parameter values.  In general, there does not appear to be a relationship between optimal 462 

parameters and either watershed or meteorological dataset.  This suggests that different 463 

parameter combinations may result in similar objective function values for a given watershed 464 

and meteorological forcing dataset.  Alternatively, it may suggest that optimal parameter 465 

combinations may not coincide with the best representations of model physics, but instead are 466 

compensating for biases in forcing data and weaknesses in model structure. 467 

Model performance during calibration and validation periods does not depend on the 468 

choice of meteorological dataset (Table 5).  The NSEmon, which is used as a hydrologic metric to 469 

evaluate model simulations of seasonal flow volume and timing and the characteristic shape of 470 

the hydrograph, is above 0.70 for all but one model calibration (MISSO watershed calibrated 471 

using the Elsner-Littell dataset), indicating a good fit between simulated and reconstructed 472 

natural streamflow (NSEmon may vary between –∞ and 1, with 1 being perfect).  Calibration of 473 

SNAKE and SACRB watersheds result in the highest NSEmon (between 0.93 and 0.98 for 474 

SNAKE and between 0.92 and 0.95 for SACRB), consistently across models calibrated with 475 

each meteorological dataset. Calibration of DOLOR and MISSO result in the lowest NSEmon 476 
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values, but still close to or above 0.70 (between 0.76 and 0.78 for DOLOR and between 0.69 and 477 

0.80 for MISSO).  Similar results are evident for RMSEmon. There is not one meteorological 478 

dataset that results in model calibrations with more optimal (higher) NSEmon values, indicating 479 

that the quality of the datasets are comparable or there is enough flexibility in the model 480 

parameters to compensate for differences among forcing datasets. 481 

4.2 Assessment of Compensatory Errors 482 

We evaluate the forcing of calibrated models for the case study watersheds (to each of the four 483 

meteorological forcing datasets) with alternate forcing datasets (Fig. 9) to understand the 484 

influence of meteorological datasets on streamflow, as well as of the sensitivity of model 485 

simulations to calibration.  In Fig. 9, the meteorological dataset listed in the legend title for each 486 

panel is the “base” meteorological dataset used for model calibration.  The red solid line in each 487 

panel illustrates the resulting mean monthly hydrograph from “base” calibrated simulations, 488 

having corresponding dataset and calibration parameters.  The colored dashed lines illustrate 489 

mean monthly hydrographs from simulations using the calibrated parameters from the base 490 

simulation along with alternate meteorological datasets.  The solid black line in each panel 491 

illustrates the mean monthly reconstructed natural streamflow hydrograph. 492 

For the ANIMS watershed, simulated flow resulting from models calibrated with 493 

Abatzoglou and Wood-Lettenmaier datasets (second and fourth panels from left) are closer to 494 

reconstructed natural streamflow than flow resulting from models calibrated with the other 495 

datasets (see calibration statistics in Table 5).  Also, models calibrated with Elsner-Littell and 496 

Maurer datasets (first and third panels from left), when forced with the Abatzoglou dataset, 497 

perform better than the calibrated models themselves (e.g. NSEmon improved from 0.70 to 0.81 in 498 

the Elsner-Littell calibrated model and from 0.84 to 0.87 in the Maurer calibrated model).  499 
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However, in each of the simulations, model calibration and meteorological dataset combination 500 

do little to change the magnitude of flows during the low flow period (autumn and winter). 501 

For the DOLOR watershed, forcing calibrated models using alternate meteorological 502 

datasets does not improve existing errors in the calibrated models in flow magnitude during 503 

autumn and winter months.  The model calibrated using the Wood-Lettenmaier meteorological 504 

dataset (fourth panel from left) more closely captures the mean reconstructed natural streamflow 505 

seasonal peak magnitude and has the best calibration error statistics of the four calibrated 506 

DOLOR models. 507 

For the GREEN watershed, each of the calibrated models results in mean monthly 508 

hydrographs that closely correspond with reconstructed natural streamflow and the forcing of 509 

these models with alternate datasets does not significantly change the results.  It may be 510 

speculated that the relative insensitivity of simulated streamflow to forcing dataset or calibration 511 

parameters in the GREEN watershed is likely due the relatively large size of the GREEN 512 

watershed compared with other case study watersheds as well as its hydrologic characteristics.  513 

The GREEN watershed (approximately 116,000 square kilometers) is approximately three times 514 

larger than the next largest case study watershed, MISSO (approximately 40,000 square 515 

kilometers).  Compensatory errors have a greater tendency to negate each other in a larger 516 

watershed, resulting in simulations that closely correspond with reconstructed natural flow.  For 517 

example, errors in interpolated meteorological station data are more likely to impact a small 518 

watershed that may have few or no stations within it.  Also, GREEN is a snowmelt dominant 519 

watershed, which reduces the relative effects of other processes on the water balance (such as 520 

effects of subsurface flow). 521 



24 

 

For the MISSO watershed, each of the calibrated models results in mean monthly 522 

hydrographs that do not correspond well with reconstructed natural streamflow with respect to 523 

the seasonal peak.  It appears that over this watershed the Elsner-Littell and Abatzoglou datasets 524 

yield similar flows because, in the left most panel (model calibrated with Elsner-Littell dataset), 525 

the simulated flows from the Abatzoglou-forced model closely correspond with the Elsner-Littell 526 

optimal calibrated flows (red line).  Using an analogous comparison, it appears that the Maurer 527 

and Wood-Lettenmaier datasets yield similar flows, as seen in the panel third from left, where 528 

the flows resulting from the Abatzoglou-forced model closely correspond with the Maurer 529 

optimal calibrated flows. 530 

For the SACRB and SALTC watersheds, it appears that simulated flows using a model 531 

forced by the Elsner-Littell dataset differs noticeably from others.  In the top left panel, 532 

simulated flows using the Elsner-Littell calibrated model and forced with alternate datasets all 533 

show significantly lower mean seasonal peaks.  Similarly, results from each of the other 534 

calibrated models show the Elsner-Littell forced flows have significantly higher seasonal peaks. 535 

For the SNAKE watershed, it appears that simulated flows using a model forced by the 536 

Maurer dataset differs noticeably from others, similarly to the comparison described above for 537 

SACRB and SALTC.  Unique differences in mean monthly hydrographs for each basin suggest 538 

that there may be compounding effects of forcing dataset, model calibration, and physical 539 

representation of important watershed processes. 540 

4.3 Sensitivity of the Portrayal of Climate Impacts to Calibrated Parameters 541 

In a final analysis, we evaluate the sensitivity of runoff change to observed historical changes in 542 

precipitation and temperature (combined) using calibrated models forced with the four 543 

meteorological datasets in attempt to differentiate changes in sensitivity due to changes in 544 
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climate and to choice of dataset.  Figure 10 summarizes the results for each case study 545 

watershed, with panels ordered column wise by lowest mean elevation (SACRB) to highest mean 546 

elevation (ANIMS).  Each panel shows change in mean annual water year precipitation (percent) 547 

versus change in mean annual runoff (percent) between the calibration period and select years in 548 

the validation period.  The size of each plotted symbol represents the corresponding magnitude 549 

(absolute value) of change in annual temperature (degrees C).  The diamonds in each figure 550 

panel correspond with cool-wet validation years, while circles correspond with warm-dry 551 

validation years.  Individual points represent results for one calibrated model simulation 552 

corresponding with the forcing dataset used for calibration.  For all basins but MISSO and 553 

ANIMS, the computed change in precipitation between calibration years and cool-wet validation 554 

years is generally positive, while the change between calibration and warm-wet validation years 555 

is generally negative. 556 

Figure 10 illustrates that precipitation is the primary driver of runoff change, which is 557 

consistent with conclusions of Materia et al. (2009), Nasonova et al. (2011), and Xue et al. 558 

(1991).  Generally, increases in precipitation correspond with greater increases in runoff, similar 559 

to findings by Elsner et al. (2010) and Vano et al. (2012) which indicate about a 12-20% increase 560 

and a 20-30% increase in runoff for a 10% increase in precipitation for watersheds in 561 

Washington and the Colorado River basin, respectively. 562 

The figure also shows that precipitation change and corresponding changes in runoff can 563 

be substantially different between datasets, on the order of, or greater than, projected changes in 564 

precipitation by the 2050s.  The expectation would be that changes in precipitation and runoff 565 

from different calibrated models (and correspondingly different meteorological forcings) would 566 

cluster in two distinct groups corresponding to warm-dry and cool-wet regimes.  Such clustering 567 
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is evident for the SACRB, for example.  However, some watersheds have substantial differences 568 

(SALTC, for example), indicating that the choice of meteorological dataset may be as important 569 

in characterizing changes in runoff as is climate change. 570 

Anomalies to the above generalizations regarding changes between calibration years and 571 

select validation years exist for the MISSO and ANIMS watersheds.  In the MISSO watershed, 572 

the computed change in precipitation is positive between calibration years and both sets of 573 

validation years.  For this watershed, as noted previously in the comparison of forcing datasets, 574 

all validation years were wetter than the calibration years, hence showing positive change 575 

precipitation, even in so-called warm-dry years (see also Fig. 8).  For the ANIMS watershed, no 576 

validation years were classified as cool-wet for the Abatzoglou or Maurer datasets, so changes 577 

could not be computed.  Plotted changes in precipitation and temperature for cool-wet validation 578 

years for the Elsner-Littell and Wood-Lettemnaier datasets show slightly less precipitation (by 579 

approximately 3 percent), despite the cool-wet classification, along with negative and positive 580 

changes in runoff (respectively).  We speculate that the increased runoff with reduced 581 

precipitation, computed for the simulations using the Wood-Lettenmaier dataset, is an anomalous 582 

result of averaging mean annual values across select validation years. 583 

5.    Discussion 584 

By comparing four spatially distributed meteorological forcing datasets and conducting 585 

experiments based on combinations of forcings and calibrated VIC hydrologic models, we seek 586 

to determine whether there is an optimal forcing dataset to be used by hydrologic models to 587 

simulate streamflow, and whether the choice of dataset affects VIC model calibration and 588 

portrayal of climate sensitivity. 589 
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The meteorological datasets considered (Abatzoglou, Elsner-Littell, Maurer, Wood-590 

Lettenmaier) have substantial differences, particularly in minimum and maximum temperatures 591 

in higher elevation regions, which are primarily attributed to the approach taken to adjust 592 

temperature by elevation when interpolating station data to a grid.  Temperature influences 593 

derived forcings within the VIC hydrologic model, such as radiation, and, consequently, the 594 

accumulation and ablation of the mountain snowpack.  Therefore differences in minimum and 595 

maximum temperature may significantly affect the simulated water balance. 596 

The temperature differences among meteorological forcing datasets are generally larger 597 

than the differences between calibration and validation periods.  For precipitation, the differences 598 

among datasets are comparable with differences between calibration and validation periods, with 599 

the exception of the MISSO basin where the calibration and validation periods differ by 18-20%. 600 

Although there are substantial differences among these datasets, no single dataset is 601 

superior to the others with respect to VIC simulations of streamflow.  Also, there is no apparent 602 

relationship between optimal calibration parameter values and meteorological dataset or 603 

watershed, suggesting that the quality of the datasets is comparable or there is enough flexibility 604 

in the model parameters to compensate for differences among forcing datasets and potential 605 

biases in process representation. 606 

The model calibration analysis shows that choice of forcing dataset influences VIC model 607 

calibration with respect to calibration parameters and resulting streamflow, in particular seasonal 608 

streamflow peaks.  For example, in the ANIMS watershed, the Abatzoglou dataset results in 609 

better model performance according to the chosen calibration metrics, even when the model was 610 

calibrated to another dataset.  In the SACRB watershed, the Elsner-Littell dataset results in 611 

significantly different mean monthly hydrographs than models using other datasets. 612 
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Finally, regarding exploration of runoff sensitivity to portrayal of climate impacts, we 613 

find that precipitation change and corresponding changes in runoff can be substantially different 614 

between datasets, on the order of, or greater than, projected climate change by the 2050s.  This 615 

indicates that the choice of meteorological dataset may be as important in characterizing changes 616 

in runoff as climate change.  Further, choice of meteorological forcing dataset will influence 617 

statistical downscaling of projected climate scenarios from coarser scale (in space and time) 618 

GCMs, thereby influencing the uncertainty associated with downscaled climate projections. 619 

This work supports previous findings, suggesting that there are significant differences in 620 

meteorological forcing datasets, downscaling of global climate projections, hydrologic model 621 

constructs, and model calibration schemes, all of which may impact the portrayal of climate 622 

change impacts in long term natural resources planning studies.  This work, along with other 623 

mentioned studies, supports the argument that consideration of uncertainties in modeling 624 

frameworks is as important as consideration of an ensemble of future climate projections in long-625 

term planning studies.  Further studies exploring the sensitivity of other hydrologic variables 626 

beyond streamflow (i.e. snowpack, evapotranspiration, etc.) to choice of meteorological forcing 627 

dataset, changes in runoff sensitivity due to hydrologic model calibration, as well as studies 628 

using ensembles of approaches and techniques (including additional hydrologic models), will 629 

enhance understanding of uncertainties and are critical for identifying best practices for 630 

applications. 631 
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Tables 789 

TABLE 1. Summary of differences in development of spatially distributed meteorological 790 

datasets. Notes: HCN is Historical Climatology Network; AHCCD is Adjusted Historical 791 

Canadian Climate Database; Prcp is precipitation; Tmax is maximum temperature; Tmin is 792 

minimum temperature; CONUS is continental United States; PRISM is Parameter-elevation 793 

Regressions on Independent Slopes Model. 794 

Name References Spatial Extent Native 

Spatial 

Resolution 

Temporal 

Coverage 

Distinguishing 

Characteristics 

Maurer (M) Maurer et al. 

2002 

CONUS plus 

Canadian 

portions of 

Columbia and 

Missouri basins 

1/8 degree 1949-2000 Gridded Co-op station data 

(w/ more than 20 years 

data); Prcp scaled to PRISM 

climatology (1961-1990); 

Temp lapsed to grid cell 

elevation (-6.5degrees C per 

km);  

Wood-

Lettenmaier 

(WL) 

Wood and 

Lettenmaier 

2006; Wood 

(2008) 

Major Western 

US watersheds, 

including 

Canadian 

portions 

1/8 degree 1915-2005 Gridded Co-op station data 

(w/ more than 45 years data 

and 80% coverage); Index 

Station Method applied to 

data post 2004; Prcp scaled 

to PRISM climatology 

(1961-1990); Temp lapsed to 

grid cell elevation (-

6.5degrees C per km);  

Abatzolou 

(A) 

Abatzoglou 

2011 

CONUS 4-km 1979-2010 NLDAS Phase 2 – Prcp, 

Tmin, Tmax interpolated & 

scaled to PRISM monthly 

timeseries 

Elsner-

Littell (EL) 

Elsner et al. 

2010; Littell 

et al. 2011 

Major Western 

US watersheds, 

including 

Canadian 

portions 

1/16 degree 1915-2006 Gridded Co-op station data 

(w/ more than 5 years data); 

HCN and AHCCD station 

data used to correct temporal 

inhomogeneities; Temp 

lapsed to grid cell elevation 

(-6.5degrees C per km); Prcp 

& Tavg scaled to PRISM 

climatology (1971-2000). 
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TABLE 2. Summary of VIC model parameters considered for calibration.  Parameters were 795 

evaluated using perturbation experiments and those chosen for calibration are noted by “X”. 796 

Considered Model 

Calibration Parameters 

Parameter 

Units 
Description 

Parameter 

Range 
Sensitive 

bi NA 
Variable infiltration 

curve parameter 
0 - 0.4  

Ds fraction 

Fraction of Dsmax 

where nonlinear 

baseflow occurs 

0.00001 - 1 X 

Dsmax mm/day 
Maximum velocity 

of baseflow 
0.1 - 30 X 

Ws fraction 

Fraction of max. soil 

moisture were 

nonlinear baseflow 

occurs 

0.05 - 1 X 

D2 mm Middle soil depth 0.1 - 1.0 X 

D3 mm Lowest soil depth 0.5 - 2.5 X 

wind_atten fraction 

Defines windspeed 

profile through 

canopy 

0 - 1  

snow_rough m 
Surface roughness 

of snowpack 
0 - 1  

rad_atten fraction 

Defines shortwave 

radiation through 

canopy 

0.1 - 0.6  

Velocity m/s 
streamflow routing 

velocity 
0.5 - 2.5  

 797 
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TABLE 3. Summary of case study watersheds. 798 

Name 

(ID) 
Description 

Size, 

sqkm 

(No. 

VIC 

cells) 

Calibration 

Period 

(water 

years) 

Validation 

Period 

(water 

years) 

Mean 

Annual 

P (mm) 

Mean 

Annual 

T (deg 

C) 

Mean 

Annual 

Flow 

(cms) 

ANIMS 

(1) 

Animas River 

at Durango, 

CO 

(USGS ID 

09361500) 

1792 

(21) 1993-1999 1986-1992 

900 - 

978 0.7 - 2.3 24 

DOLOR 

(2) 

Dolores River 

near Cisco, UT 

(USGS ID 

09180000) 

11,862 

(103) 1990-1999 1980-1989 

552 - 

591 6.0 - 6.9 38 

GREEN 

(3) 

Green River at 

Green River, 

UT 

(USGS ID 

09315000) 

116,162 

(816) 1990-1999 1980-1989 

423 - 

450 4.0 - 5.1 226 

MISSO 

(4) 

Missouri River 

at Toston, MT 

(USGS ID 

06054500) 

39,993 

(346) 1985-1989 1980-1984 

589 - 

644 2.5 - 3.4 189 

SACRB 

(5) 

Sacramento 

River at Bend 

Bridge near 

Red Bluff, CA 

(USGS ID 

11377200) 

23,051 

(230) 1990-1999 1980-1989 

888 - 

958 8.6 - 9.8 351 

SALTC 

(6) 

Salt River near 

Chrysotile, AZ 

(USGS ID 

09497500) 

7,379 

(72) 1990-1999 1980-1989 

603 - 

643 9.7 - 9.8 23 

SNAKE 

(7) 

Snake River 

near Heise, ID 

(USGS ID 

13037500) 

14,898 

(144) 1990-1999 1980-1989 

825 - 

897 0.4 - 2.1 208 

 799 
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TABLE 4. Summary of optimal VIC model calibration parameters according to meteorological 800 

dataset. 801 

  Name Abatzoglou Elsner-Littell Maurer Wood-Lettenmaier 

D
s 

(f
ra

ct
io

n
) 

ANIMS 0.00378 0.08373 0.99968 0.04988 
DOLOR 0.00283 0.01581 0.15324 0.00072 
GREEN 0.00961 0.01700 0.04588 0.02679 
MISSO 0.00922 0.01157 0.04193 0.02575 
SACRB 0.36768 0.32754 0.35505 0.39765 
SALTC 0.00295 0.00010 0.05496 0.07888 
SNAKE 0.02216 0.04806 0.50982 0.05335 

  Name Abatzoglou Elsner-Littell Maurer Wood-Lettenmaier 

W
s 

(f
ra

c
ti

o
n

) ANIMS 0.16129 0.36299 0.71606 0.12935 
DOLOR 0.53094 0.43526 0.51216 0.41465 
GREEN 0.51271 0.63571 0.78918 0.64319 
MISSO 0.15003 0.21649 0.38934 0.36493 
SACRB 0.93204 0.99933 0.99326 0.14904 
SALTC 0.60128 0.44716 0.50946 0.71447 
SNAKE 0.14693 0.25227 0.79960 0.48482 

  Name Abatzoglou Elsner-Littell Maurer Wood-Lettenmaier 

D
sm

a
x

 (
m

m
/d

) ANIMS 4.896 7.014 6.061 29.738 
DOLOR 14.710 5.539 3.511 27.741 
GREEN 4.367 4.624 1.658 2.264 
MISSO 25.537 24.344 6.713 7.378 
SACRB 3.073 3.244 2.630 0.603 
SALTC 17.930 0.878 29.179 1.240 
SNAKE 29.982 29.831 2.940 29.546 

  Name Abatzoglou Elsner-Littell Maurer Wood-Lettenmaier 

D
2
 (

m
m

) 

ANIMS 0.9955 0.9944 0.8166 0.9727 
DOLOR 0.9899 0.9998 0.9165 0.4979 
GREEN 0.9744 0.7994 0.8084 0.9682 
MISSO 0.9835 0.9988 0.9965 0.9963 
SACRB 0.3642 0.9633 0.2295 0.6505 
SALTC 0.5753 0.1748 0.9997 0.2929 
SNAKE 0.3403 0.4892 0.1002 0.2622 

  Name Abatzoglou Elsner-Littell Maurer Wood-Lettenmaier 

D
3
 (

m
m

) 

ANIMS 0.7107 1.1179 0.6296 1.4930 
DOLOR 1.3021 0.9797 0.5711 2.4071 
GREEN 1.1892 1.7170 2.1575 1.1475 
MISSO 2.4738 2.4913 1.7045 2.0047 
SACRB 1.5519 2.0709 1.7005 0.9533 
SALTC 0.7808 0.9315 0.5011 0.6348 
SNAKE 1.5616 1.2289 1.3075 1.1267 

802 
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TABLE 5. Summary of VIC model calibration (validation) statistics according to calibration 803 

parameter, watershed, and meteorological dataset. 804 

  Name Abatzoglou Elsner-Littell Maurer Wood-Lettenmaier 

N
S

E
m

o
n
 

ANIMS 0.87 (0.78) 0.70 (0.75) 0.82 (0.73) 0.87 (0.80) 
DOLOR 0.78 (0.74) 0.76 (0.70) 0.76 (0.75) 0.78 (0.79) 
GREEN 0.95 (0.93) 0.89 (0.88) 0.94 (0.92) 0.93 (0.91) 
MISSO 0.74 (0.87) 0.69 (0.84) 0.80 (0.91) 0.80 (0.91) 
SACRB 0.95 (0.94) 0.92 (0.86) 0.92 (0.91) 0.94 (0.93) 
SALTC 0.85 (0.56) 0.84 (0.71) 0.77 (0.65) 0.83 (0.65) 
SNAKE 0.98 (0.91) 0.93 (0.86) 0.93 (0.87) 0.96 (0.95) 

  Name Abatzoglou Elsner-Littell Maurer Wood-Lettenmaier 

R
M

S
E

m
o

n
 

ANIMS 0.41 (0.48) 0.61 (0.51) 0.47 (0.56) 0.40 (0.46) 
DOLOR 0.62 (0.68) 0.65 (0.72) 0.65 (0.66) 0.63 (0.60) 
GREEN 0.25 (0.29) 0.35 (0.37) 0.27 (0.30) 0.28 (0.31) 
MISSO 0.33 (0.27) 0.36 (0.30) 0.29 (0.23) 0.29 (0.22) 
SACRB 0.24 (0.24) 0.29 (0.37) 0.29 (0.29) 0.25 (0.26) 
SALTC 0.58 (0.77) 0.60 (0.63) 0.72 (0.69) 0.62 (0.69) 
SNAKE 0.16 (0.28) 0.27 (0.34) 0.28 (0.33) 0.20 (0.20) 

  Name Abatzoglou Elsner-Littell Maurer Wood-Lettenmaier 

V
o
lE

rr
m

o
n
 

ANIMS 0.00 (0.01) 0.00 (0.02) 0.00 (0.26) 0.00 (0.01) 
DOLOR 0.21 (0.22) 0.00 (0.11) 0.21 (0.35) 0.03 (0.18) 
GREEN 0.00 (0.01) 0.01 (0.07) 0.00 (0.00) 0.00 (0.09) 
MISSO 0.00 (0.05) 0.00 (0.12) 0.00 (0.05) 0.00 (0.00) 
SACRB 0.00 (0.00) 0.00 (0.10) 0.00 (0.10) 0.05 (0.07) 
SALTC 0.01 (0.06) 0.00 (0.20) 0.00 (0.17) 0.01 (0.12) 
SNAKE 0.00 (0.02) 0.00 (0.03) 0.00 (0.13) 0.01 (0.04) 

 805 

806 
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 List of Figures 807 

FIG 1. Overview map of study domain (2-digit HUC scale) and case study watersheds.  Case 808 

study watersheds include: 1) Animas River at Durango, CO (USGS ID 09361500); 2) Dolores 809 

River near Cisco, UT (USGS ID 09180000); 3) Green River at Green River, UT (USGS ID 810 

09315000); 4) Missouri River at Toston, MT (USGS ID 06054500); 5) Sacramento River at 811 

Bend Bridge near Red Bluff, CA (USGS ID 11377200); 6) Salt River near Chrysotile, AZ 812 

(USGS ID 09497500); and, 7) Snake River near Heise, ID (USGS ID 13037500).  The purple 813 

dashed line indicates the common domain used for meteorological dataset comparison. 814 

 815 

FIG 2.  Percent differences of (A) annual means, (B) standard deviations, and (C) correlation 816 

coefficients between each of the three precipitation (Prcp) datasets (A = Abatzoglou; 817 

EL=Elsner-¬‐Littell; WL=Wood-¬‐Lettenmaier) and the reference dataset, i.e., Maurer et al. 818 

(2002). The boxes represent the 25th, 50th, 75th percentiles, while the whiskers represent the 5th 819 

and 95th percentiles.  Light dashed lines represent change of +/-10 percent. 820 

 821 

FIG 3a-b. Spatial comparison of percent difference in monthly mean precipitation (Prcp) - 822 

January, top [A]; July, bottom [B]-  comparing Wood-Lettenmaier, Elsner-Littell, and 823 

Abatzoglou datasets with respect to the Maurer dataset.  Positive difference indicates higher 824 

monthly precipitation, while negative median difference indicates lower monthly precipitation. 825 

 826 

FIG 4.  Percent differences of (A) annual means, (B) standard deviations, and (C) correlation 827 

coefficients between each of the three maximum temperature (Tmax) datasets (A = Abatzoglou; 828 

EL=Elsner-¬‐Littell; WL=Wood-¬‐Lettenmaier) and the reference dataset, i.e., Maurer et al. 829 
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(2002). The boxes represent the 25th, 50th, 75th percentiles, while the whiskers represent the 5th 830 

and 95th percentiles. 831 

 832 

FIG 5.  Percent differences of (A) annual means, (B) standard deviations, and (C) correlation 833 

coefficients between each of the three minimum temperature (Tmin) datasets (A = Abatzoglou; 834 

EL=Elsner-¬‐Littell; WL=Wood-¬‐Lettenmaier) and the reference dataset, i.e., Maurer et al. 835 

(2002). The boxes represent the 25th, 50th, 75th percentiles, while the whiskers represent the 5th 836 

and 95th percentiles. 837 

 838 

FIG 6.  Percent differences of (A) annual means, (B) standard deviations, and (C) correlation 839 

coefficients between each of the three diurnal temperature range (Tran) datasets (A = 840 

Abatzoglou; EL=Elsner-¬‐Littell; WL=Wood-¬‐Lettenmaier) and the reference dataset, i.e., 841 

Maurer et al. (2002). The boxes represent the 25th, 50th, 75th percentiles, while the whiskers 842 

represent the 5th and 95th percentiles. 843 

 844 

FIG 7a-b. Spatial comparison of difference (in degrees C) in monthly mean temperature 845 

(maximum [Tmax], minimum [Tmin], and diurnal range [Tran]) – January, top [A]; July, bottom 846 

[B] – comparing Wood-Lettenmaier, Elsner-Littell, and Abatzoglou datasets with respect to the 847 

Maurer dataset.  Positive difference indicates high monthly temperature, while negative 848 

difference indicates lower monthly temperature. 849 

 850 

FIG 8. Summary of differences in mean annual precipitation and temperature (Tavg, Tmax, and 851 

Tmin) between Abatzoglou, Elsner-Littell, Wood-Lettenmaier and the reference Maurer dataset.  852 
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Differences are shown over the seven case study watersheds and over 3 simulation periods: full 853 

simulation – 1980-1999 water years, calibration period, and validation period. 854 

 855 

FIG 9. Summary of simulated flows based on calibrated models for seven case study watersheds 856 

(to each of the four meteorological forcing datasets) forced with alternate forcing datasets.  In 857 

each figure panel, EL, A, M, and WL in the legend title (i.e. top row of legend above the line) 858 

indicate the base meteorological dataset used for model calibration.  The black line represents 859 

mean monthly reconstructed natural streamflow at the watershed outlet.  The red line represents 860 

resulting mean monthly streamflow from “base” calibrated simulations, having corresponding 861 

dataset and calibration parameters.  The colored dashed lines represent mean monthly 862 

streamflow from simulations using calibrated parameters from the base simulation along with 863 

alternate meteorological datasets. 864 

 865 

FIG 10. Change in mean annual precipitation (Prcp) vs. change in mean annual runoff (RO), 866 

computed between the calibration period and selected warm-dry years (circles) and cool-wet 867 

years (diamonds) in the validation period.  Size of shapes represents the relative magnitude 868 

(absolute value) of corresponding change in mean annual temperature. 869 

870 
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Figures 871 

FIG 1. Overview map of study domain (2-digit HUC scale) and case study watersheds.  Case 872 

study watersheds include: 1) Animas River at Durango, CO (USGS ID 09361500); 2) Dolores 873 

River near Cisco, UT (USGS ID 09180000); 3) Green River at Green River, UT (USGS ID 874 

09315000); 4) Missouri River at Toston, MT (USGS ID 06054500); 5) Sacramento River at 875 

Bend Bridge near Red Bluff, CA (USGS ID 11377200); 6) Salt River near Chrysotile, AZ 876 

(USGS ID 09497500); and, 7) Snake River near Heise, ID (USGS ID 13037500).  The purple 877 

dashed line indicates the common domain used for meteorological dataset comparison. 878 

879 
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 880 

FIG 2.  Percent differences of (A) annual means, (B) standard deviations, and (C) correlation 881 

coefficients between each of the three precipitation (Prcp) datasets (A = Abatzoglou; 882 

EL=Elsner-¬‐Littell; WL=Wood-¬‐Lettenmaier) and the reference dataset, i.e., Maurer et al. 883 

(2002). The boxes represent the 25th, 50th, 75th percentiles, while the whiskers represent the 5th 884 

and 95th percentiles.  Light dashed lines represent change of +/-10 percent. 885 

886 
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FIG 3a-b. Spatial comparison of percent difference in monthly mean precipitation (Prcp) - 887 

January, top [A]; July, bottom [B]-  comparing Wood-Lettenmaier, Elsner-Littell, and 888 

Abatzoglou datasets with respect to the Maurer dataset.  Positive difference indicates higher 889 

monthly precipitation, while negative median difference indicates lower monthly precipitation. 890 

 891 

 892 
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FIG 4.  Percent differences of (A) annual means, (B) standard deviations, and (C) correlation 893 

coefficients between each of the three maximum temperature (Tmax) datasets (A = Abatzoglou; 894 

EL=Elsner-¬‐Littell; WL=Wood-¬‐Lettenmaier) and the reference dataset, i.e., Maurer et al. 895 

(2002). The boxes represent the 25th, 50th, 75th percentiles, while the whiskers represent the 5th 896 

and 95th percentiles. 897 

 898 

899 
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FIG 5.  Percent differences of (A) annual means, (B) standard deviations, and (C) correlation 900 

coefficients between each of the three minimum temperature (Tmin) datasets (A = Abatzoglou; 901 

EL=Elsner-¬‐Littell; WL=Wood-¬‐Lettenmaier) and the reference dataset, i.e., Maurer et al. 902 

(2002). The boxes represent the 25th, 50th, 75th percentiles, while the whiskers represent the 5th 903 

and 95th percentiles. 904 

 905 
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FIG 6.  Percent differences of (A) annual means, (B) standard deviations, and (C) correlation 907 

coefficients between each of the three diurnal temperature range (Tran) datasets (A = 908 

Abatzoglou; EL=Elsner-¬‐Littell; WL=Wood-¬‐Lettenmaier) and the reference dataset, i.e., 909 

Maurer et al. (2002). The boxes represent the 25th, 50th, 75th percentiles, while the whiskers 910 

represent the 5th and 95th percentiles. 911 
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FIG 7a-b. Spatial comparison of difference (in degrees C) in monthly mean temperature 914 

(maximum [Tmax], minimum [Tmin], and diurnal range [Tran]) – January, top [A]; July, bottom 915 

[B] – comparing Wood-Lettenmaier, Elsner-Littell, and Abatzoglou datasets with respect to the 916 

Maurer dataset.  Positive difference indicates high monthly temperature, while negative 917 

difference indicates lower monthly temperature. 918 

 919 
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FIG 8. Summary of differences in mean annual precipitation and temperature (Tavg, 

Tmax, and Tmin) between Abatzoglou, Elsner-Littell, Wood-Lettenmaier and the 

reference Maurer dataset.  Differences are shown over the seven case study watersheds 

and over 3 simulation periods: full simulation – 1980-1999 water years, calibration 

period, and validation period. 
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FIG 9. Summary of simulated flows based on calibrated models for seven case study 

watersheds (to each of the four meteorological forcing datasets) forced with alternate 

forcing datasets.  In each figure panel, EL, A, M, and WL in the legend title (i.e. top row 

of legend above the line) indicate the base meteorological dataset used for model 

calibration.  The black line represents mean monthly reconstructed natural streamflow at 

the watershed outlet.  The red line represents resulting mean monthly streamflow from 

“base” calibrated simulations, having corresponding dataset and calibration parameters.  

The colored dashed lines represent mean monthly streamflow from simulations using 

calibrated parameters from the base simulation along with alternate meteorological 

datasets. 
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FIG 10. Change in mean annual precipitation (Prcp) vs. change in mean annual runoff 

(RO), computed between the calibration period and selected warm-dry years (circles) and 

cool-wet years (diamonds) in the validation period.  Size of shapes represents the relative 

magnitude (absolute value) of corresponding change in mean annual temperature. 

 




