

# **END™** Field Testing

In partnership with BGNDRF and UTEP



## **The Water Crisis**



- Over 800 million people struggle daily without safe, clean drinking water.
- The United Nations (UN) General Assembly instituted seventeen Sustainable Development Goals (SDGs), the sixth of which calls for universal access to clean water for all people.
- Part of solving this challenge is reducing industrial water consumption to conserve water resources.







# **MI Systems' Vision**



We are dedicated to enabling solutions to the world's water crisis through technology innovation



- Passionate Team
- Solving the Toughest Problems
- Focused on the Mission

# **MI Systems' Near-Term Mission**



### Maximum Recovery. Minimum Energy.<sup>TM</sup>

- Removal of dissolved contaminants from water is energy intensive
- High water recovery is necessary to conserve water and drive economics



# Introducing END™ electro-desalination





END™ 5-25 gpm System

- Transformation of legacy electrodialysis reversal (EDR)
- Contemporary Ion-Selective Membranes
- Innovative Membrane Spacers
- Advanced Electrode Materials
- Modern Real-Time Digital Controls
- Low-Pressure Operation: 15-50 psig
- High Recovery: up to 98%
- Low Energy: as low as 0.1 kWh/m3/mS
- Up to 50% Lower OPEX
- Up to 30% Higher Water Recovery

# **END Applications**





### **Brine Recovery**

- Recycle Brine from existing RO/NF systems
- Increase recovery >90%
- Reduce Waste Volume & Disposal Cost
- Improve Sustainability
- <u>Key Drivers:</u> Water Scarcity, Water Cost, Energy Cost, Waste Disposal Limits / Cost, Sustainability
- Market / Application: Food & Beverage, Industrial,
   Municipal, Potable Water
- Geography: Any, Water Scarcity / Cost,

## **END™** Brine Treatment



### **Treatment Performance**

| PARAMETER   | CONVENTIONAL NF/RO | <b>END™ TREATMENT</b> | <b>END™ BENEFITS</b> |  |
|-------------|--------------------|-----------------------|----------------------|--|
| Clean Water | 50-70%             | 85-97%                | 30-70%               |  |
| Brine Waste | 30-50%             | 5-15%                 | <b>30-70</b> /8      |  |



### **TARGET NF/RO MARKETS**

- Industrial Process and Wastewater
- Desalting
- Food & Beverage Makeup / CIP Water

# **END Applications**





### **Hi Silica Brackish Water:**

- Hi Silica waters foul RO/NF systems
- Improve production, lower fouling, lower OPEX, Less chemicals
- Market / Application: Potable & Process Water
- Geography: CA, TX, FL, NM, AZ, CO, HI



### **Brackish Water Treatment:**

- Treatment of low salinity water (typ. Groundwater)
- Increased recovery and energy savings vs NF/RO
- Focus on Multiple Issue Sites (Arsenic +Fluoride +Ammonium + Nitrates, etc.)
- Market / Application: Food & Beverage, Industrial, Potable Water
- Geography: Any, Water Scarcity / Cost,

## **END™** Brackish Desalination



### **Treatment Performance**

| PARAMETER   | CONVENTIONAL NF/RO | END™   | <b>END™ BENEFIT</b> | ] |
|-------------|--------------------|--------|---------------------|---|
| Clean Water | 70-90%             | 85-98% | 10—25%              |   |
| Brine Waste | 10-30%             | 2-15%  |                     |   |





# **END Applications**





### **Hi Silica Brackish Water:**

- Hi Silica waters foul RO/NF systems
- Improve production, lower fouling, lower OPEX, Less chemicals
- Market / Application: Potable & Process Water
- Geography: CA, TX, FL, NM, AZ, CO, HI



### **Brackish Water Treatment:**

- Treatment of low salinity water (typ. Groundwater)
- Increased recovery and energy savings vs NF/RO
- Focus on Multiple Issue Sites (Arsenic +Fluoride +Ammonium + Nitrates, etc.)
- Market / Application: Food & Beverage, Industrial, Potable Water
- Geography: Any, Water Scarcity / Cost,

## **How END™ Works**



### **Operating Principles**



#### **Water Introduction**

- Low pressure
- Fills voids between sheets

#### **Charge Applied**

- Attracts / repels ions thru membrane
- Salts concentrated between layers

#### **Charge Reversal**

- "Cleans" electrodes and membranes
- Reduces scale buildup

#### **Concentrated Brine**

- Extracted from brine channel
- High concentration

#### Clean Water

- Extracted from stack
- Ready for conditioning or use

#### **Periodic Cleaning**

Per application requirements

# **MIS-BGNDRF Collaboration**



- Demonstrate END™ performance on real water
- 2. Develop reliability around process under real-world conditions
- 3. Benchmark performance against existing technologies
- 4. Develop strategies around desalinating for high hydraulic recovery





# **BGNDRF Pilot-Background**



- Installed and commissioned 5/7/18
- 1 GPM installed capacity
- Operated for >2300 hrs on Well-1
- Pilot Features:
  - Continuous/Batch operation
  - High degree of autonomous control
    - Automated CIP
  - Remote connectivity
  - Accepts multiple cell sizes
  - Small Footprint
  - Mobility
  - Quiet operation





## **BGNDRF Pilot-UTEP Collaboration**



- Collaborated with Dr. Shane Walker,
   Dr. Malynda Cappelle and Shahrouz Ghadimi
- Benchmark Study
  - 1 week study on BGNDRF Well-1
  - 90% Hydraulic Recovery
  - 60-70% conductivity removal
    - Inlet: 1700-1800 μS/cm
    - Outlet: <800 μS/cm
- Results
  - Normalized SEC: 0.2-0.23 kWh/m³/mS/cm









# **BGNDRF Pilot-UTEP Study Comparison to GE EDR**



"The END system was able to achieve a higher recovery and greater average conductivity reduction than the GE system. The Total SEC values are in a similar range for both systems, including when the conductivity removal is used to normalize the SEC values."

|                                                         | END™                                             | Kirimi et al. <sup>1</sup>                       |
|---------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|
| Conductivity Reduction                                  | 68-70%                                           | 55-60%                                           |
| Hydraulic Recovery                                      | 91-95%                                           | 87-92%                                           |
| Total Normalized SEC (Pump+Desal)  Normalized Desal SEC | 0.20-0.23 kWh/m³/mS/cm<br>0.14-0.16 kWh/m³/mS/cm | 0.30-0.43 kWh/m³/mS/cm<br>0.13-0.20 kWh/m³/mS/cm |

<sup>&</sup>lt;sup>1</sup>-L. Kirimi, L. Abkar, M. Aghajani, A. Ghassemi, Technical feasibility comparison of off-grid PV-EDR and PV-RO desalination systems via their energy consumption, Seperation and Purification Technolgo 151 (2015) 92-94.



# **BGNDRF Pilot-High Recovery Testing**



- High recovery testing
  - Demonstrated continuous operation >90% hydraulic recovery

|                    | Hydraulic Recovery | SEC<br>(kWh/m³/mS/cm) | Time<br>(hrs) |
|--------------------|--------------------|-----------------------|---------------|
| Set point 1 (6/5)  | 90%                | .24                   | 24            |
| Set point 2 (7/16) | 93%                | .26                   | 109           |
| Set point 3 (8/15) | 94%                | .28                   | 107           |
| Pilot Composite    | 91%                |                       | 2350          |



# **BGNDRF Pilot-Scale Control**



- Anti-scalant Strategies
  - Primary scalants: CaSO<sub>4</sub> and CaCO<sub>3</sub>
  - Off-the-shelf vs. Commercial Anti-scalant
  - pH control
  - Reversal Time
  - Brine Batch Size







## **BGNDRF Pilot-Future Work**



- Deploy next generation of END<sup>TM</sup> core technology
- Demonstrate high recovery on different source water (Well 3 and 4)
- Demonstrate RO concentrate recovery



