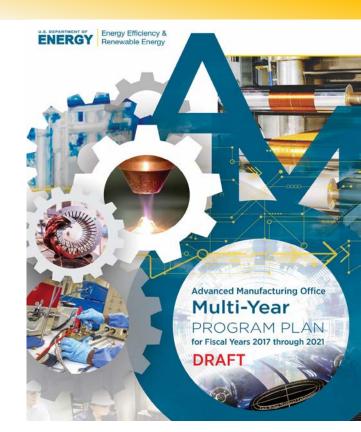
Office of Energy Efficiency & Renewable Energy Advanced Manufacturing Office

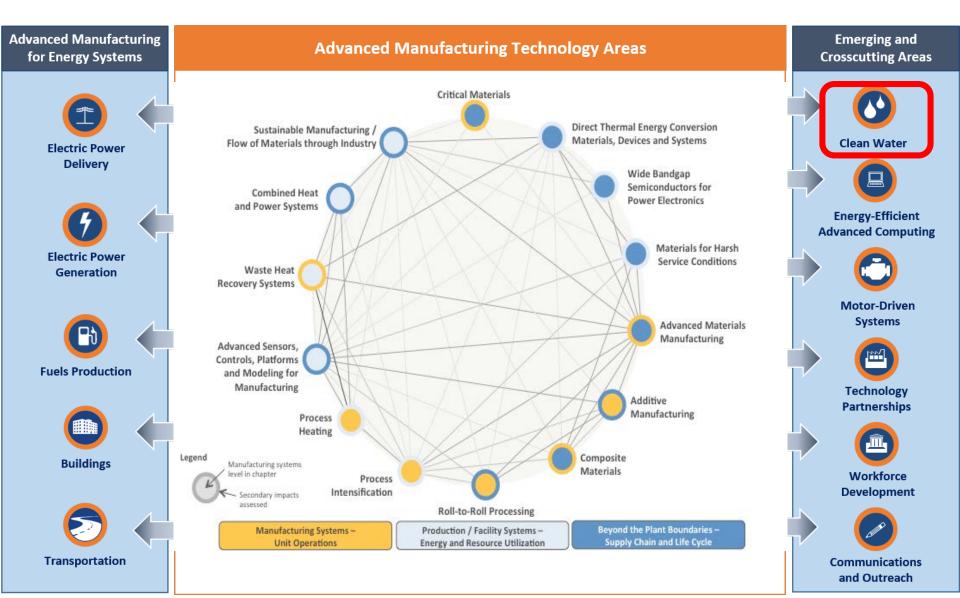

Energy Bandwidth Study of Desalination

Joe Cresko - Advanced Manufacturing Office, DOE

Brackish Groundwater National Desalination Research Facility New Orleans, LA September 19, 2018

AMO Strategic Goals

- Improve the productivity and energy efficiency of U.S. manufacturing.
- Reduce lifecycle energy and resource impacts of manufactured goods.
- Leverage diverse domestic energy resources in U.S. manufacturing, while strengthening environmental stewardship.
- Transition DOE supported innovative technologies and practices into U.S. manufacturing capabilities.
- Strengthen and advance the U.S. manufacturing workforce.


Multi-Year Program Plan

- Describes the Office mission, vision, and goals
- Identifies the technology, outreach, and crosscutting activities the Office plans to focus on over the next five years.

https://energy.gov/eere/amo/advancedmanufacturing-office

AMO Multi-Year Program Plan (MYPP) Framework and Clean Water

https://energy.gov/eere/amo/downloads/advanced-manufacturing-office-amo-multi-year-program-plan-fiscal-years-2017

Manufacturing Technology Assessments can be found here:

Issues with Water at Current State-of-the-Art

- Water Processing Impacts: The cost and energy associated with processing non-fresh water sources (brackish or seawater) is relatively high compared with fresh ground and surface waters.
- <u>Water Transport Impacts:</u> Cost and energy associated with water transport from a centralized facility is high (~\$0.05/m³ for 100 meter vertical lift or 100 kilometer of flat horizontal transport).
- <u>Underutilized Water Sources:</u> Regional non-fresh water sources are readily available and if utilized would reduce or eliminate the cost and energy demands of transporting clean water from one region to another
- <u>Suboptimal Energy Efficiency:</u> Current treatment centers and associated systems (whether centralized or distributed) are not as energy efficient with current technologies
- Lack of Applications for Water Reuse: Approx. 290 billion gallons of water a day is discharged back into the ocean or other surface water locations instead of being recycled back. Non-"reuse" volume represents near 95% of total.
- <u>Broader Systems Impacts</u>: All above impact energy demand, resiliency and robustness from watershed to water use.

https://www.sierracollege.edu/ejournals/jsnhb/v6n1/null.html

"... untapped water resources could be utilized if key technical challenges are addressed, including processing and purifying water in a low cost and energy-efficient manner."

Advanced Manufacturing Office Multi-Year Program Plan

Examples of DOE/AMO Energy-Water Activities

DOE Water-Energy Nexus report

MANA

Water-Energy

Nexus:

Better Plants Water and Wastewater Treatment Working Group

Better

SEP Water and Wastewater Treatment Pilot

Superior

Performance[®]

Energy

Desalination Data Study (Vol. 1)

Desalination Bandwidth Study (Vol. 2)

2014

2015

2016

2017

2018

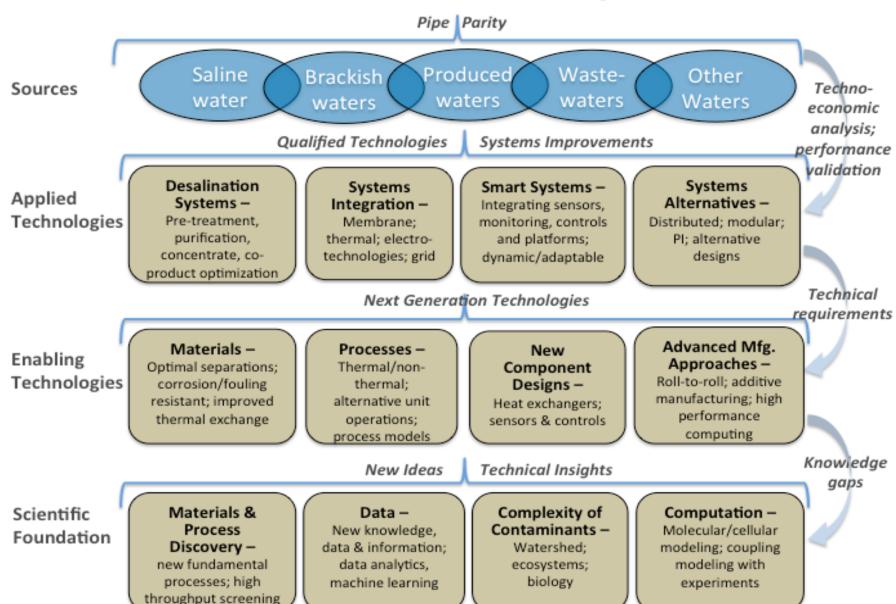
Water Savings Initiative

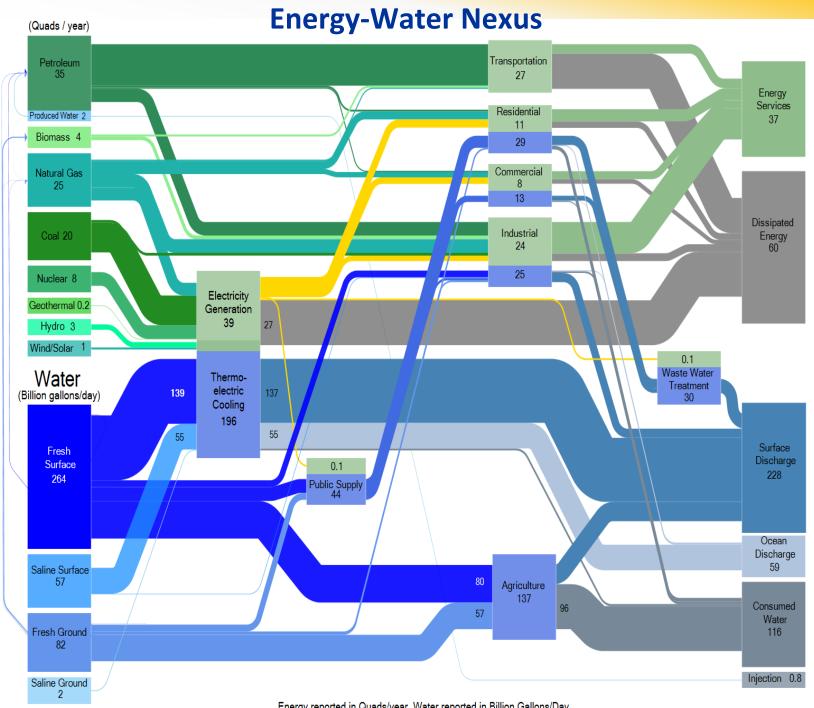
Optimized
Desalination
Technology
Development
Workshop

Wastewater
Infrastructure
Resiliency
Accelerator

Advanced Manufacturing Office Clean Water Processing Technologies

Workshop Series Summary Report

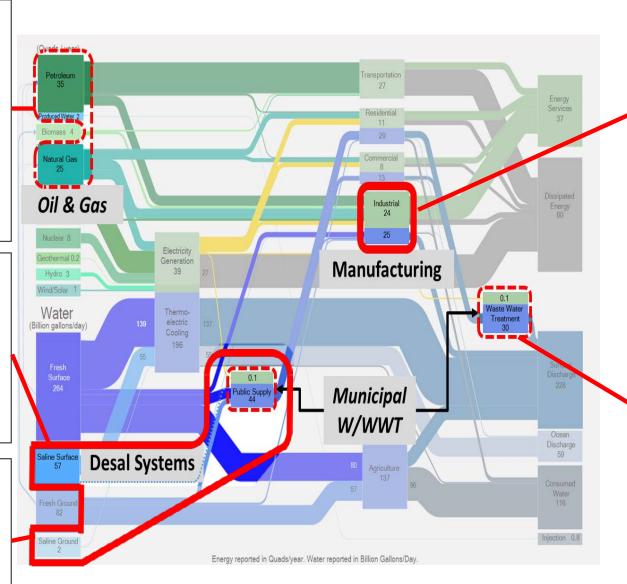

November 5-6, 2015 San Francisco, CA July 10-11, 2017 Daillas, TX August 23-24, 2017 Cleveland, OH


Plant Water Profiler Tool

AMO Clean Water Workshops (Dallas, Cleveland)

Technology maturity and manufacturing scale for clean water

Desalinated water, fit-for-use for a range of uses



What core technology improvements have targeted impacts, ...

High Salinity feed water with variable contaminant mix to produce industrial/ag grade water w/ FO, RO viable candidates

Seawater for municipal potable water w/ RO, MSF, and MED candidates in focus

Brackish water for potable water w/CDI, EDR, MF/NF, RO as candidates

Reduce energy & water in specific sectors w/ sectors chosen in context with watershed impact

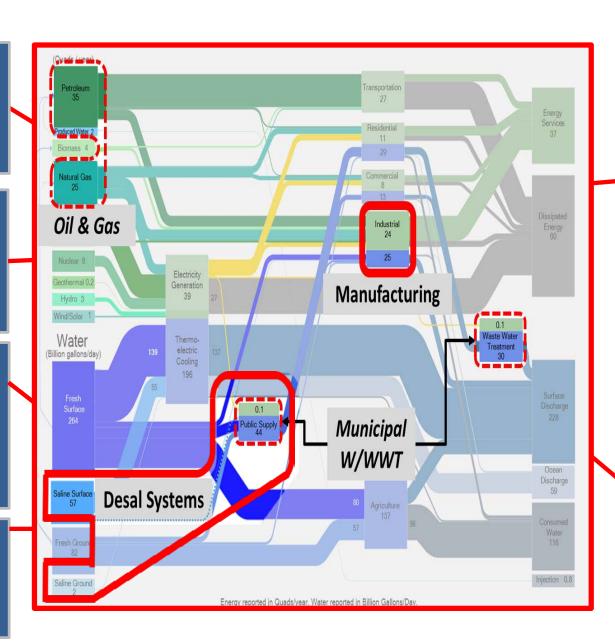
Reduce energy
consumption of
the water and
wastewater
sectors,
including
advanced
resource
recovery and
reuse possibilities

...and what cross-cutting technologies have pervasive impact?

Separations / treatment:

- Membranes
- Thermal

Fluids Pumping:


- Motor driven systems
- Materials

Heat transfer:

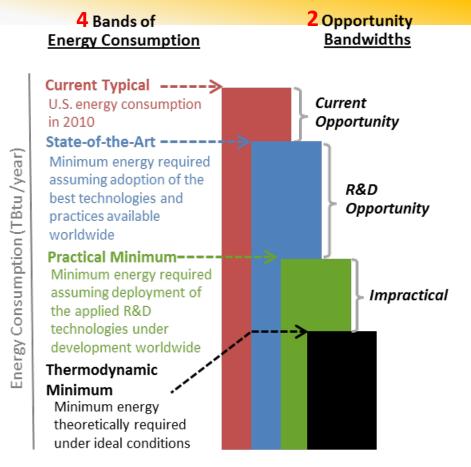
- Corrosion resistant materials
- Waste heat integration

Infrastructure:

- Piping
- Structural materials

System integration:

- Smart technologies
- Modular designs
- Processes
- Joint energy grid/water system management


Sustainability:

- RE integration
- Consumptive water use
- Chemicals (alternatives)
- Life cycle water use
- Fit-for-use, reuse
- ZLD

Energy Bandwidth Studies

Comparison of energy consumption for defined industrial process areas to determine bandwidths of energy savings opportunity

These bands of energy consumption and bandwidths of opportunity are useful for identifying areas of R&D technology focus.

Current Typical (CT)	State of the Art (SOA)	Practical Minimum (PM)	Thermodynamic Minimum (TM)
Literature review and stakeholder outreach, based on current typical processes in the U.S.	Literature review and stakeholder outreach, based on the most energy-efficient technologies and practices available worldwide	Calculated based on plausible energy savings from identified R&D technologies under development worldwide	Calculated analytically using Gibbs free energy assuming ideal conditions

Recent Bandwidth Studies

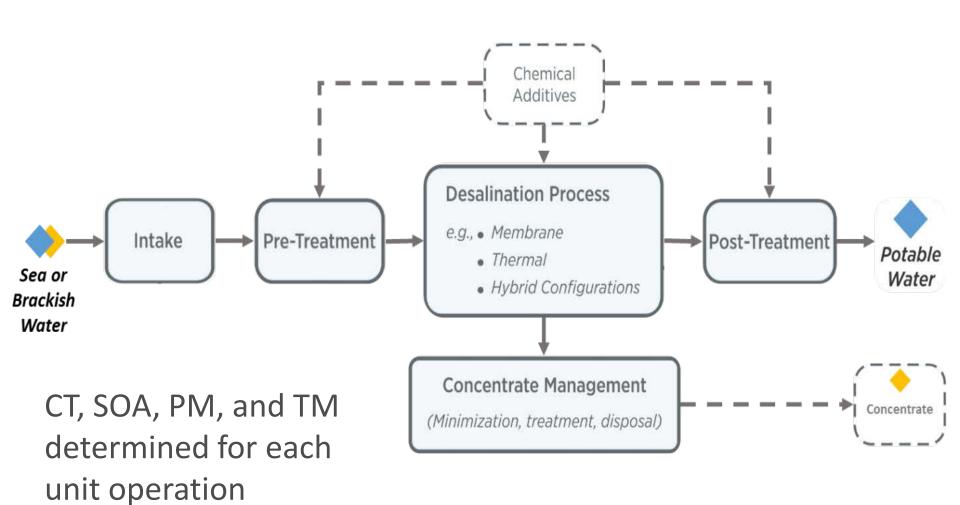
https://energy.gov/eere/amo/energy-analysis-sector

Published 2015:

- Chemicals
- Petroleum Refining
- Pulp and Paper
- Iron and Steel

Published 2016:

Draft lightweight structural materials series:


- Advanced High Strength Steel
- Aluminum
- Titanium
- Magnesium
- Carbon Fiber
- Glass Fiber

Published 2017:

- Cement
- Glass
- Plastics and Rubber Product
- Food and Beverage
- Seawater Desalination

Seawater Desalination Analysis

Desalination System Boundary

Many applications for water treatment through desalination

Alternate Water Sources

1 MGD - 250 MGD Intake Wastewater (Municipal) 0.5-0.6% TDS

NR Wastewater (Industrial) NR

<1 MGD - 40 MGD Low Salinity Brackish Water 0.05%-0.50% TDS

NR High Salinity Brackish Water 0.50%-3.5% TDS

100 MGD - 300 MGD Seawater 3.5% (Seawater) -

4.5% (Persian Gulf) TDS

0.002 MGD (per oil & gas well) High Salinity Water (i.e., brine or produced waters) >4.5% TDS

Pretreatment

Desalination

0.20%-7.5% TDS Q.1-180 MGD Recovery 35-50%

0.10%-1.25% TDS NR Recovery 80-85% <0.05% TDS 0.6%-7% TDS NR 0.002% TDS .1-90 MGD 0.1-90 MGD NR NR

<0.5% TDS <40 MGD ED/EDR Recovery 30-90% 3.2% TDS 0.05% TDS 4-28 MGD 12-36 MGD

Desalination Technology Options 0.2% TDS ~1 MGD Recovery 70% 0.67 TDS 0.01% TDS ~0.3 MGD ~0.7 MGD

3.0%-10% TDS 5-160 MGD Recovery 19-45% <100 MGD <100 MGD

3.0%-10%TDS 6-12 MGD MED (w/TVC) Recovery 35-45% 4.5% TDS <10 MGD <10 MGD

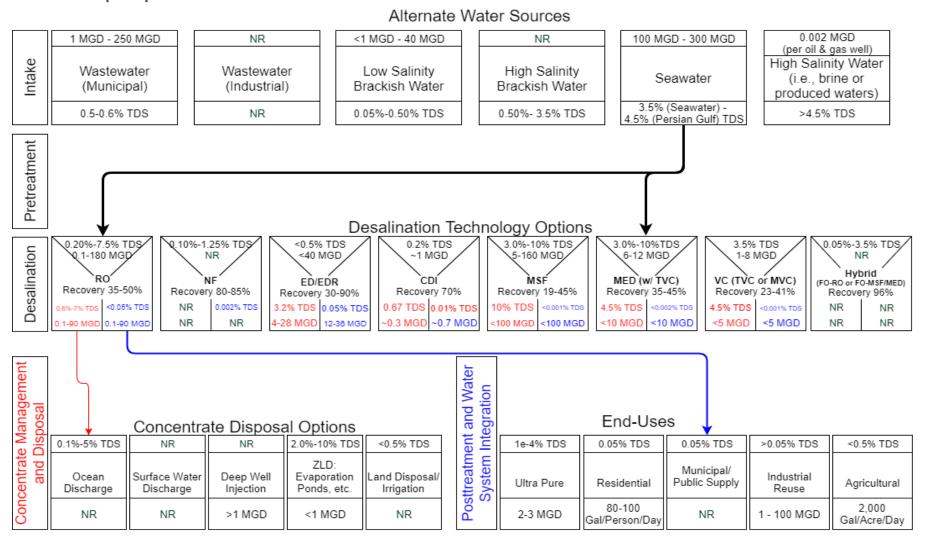
3.5% TDS 1-8 MGD VC (TVC or MVC) Recovery 23-41% 4.5% TDS <0.001% TDS <5 MGD <5 MGD

0.05%-3.5% TDS NR Hybrid (FO-RO or FO-MSF/MED) Recovery 96% NR NR NR NR

Concentrate Management and Disposal

Concentrate Disposal Options

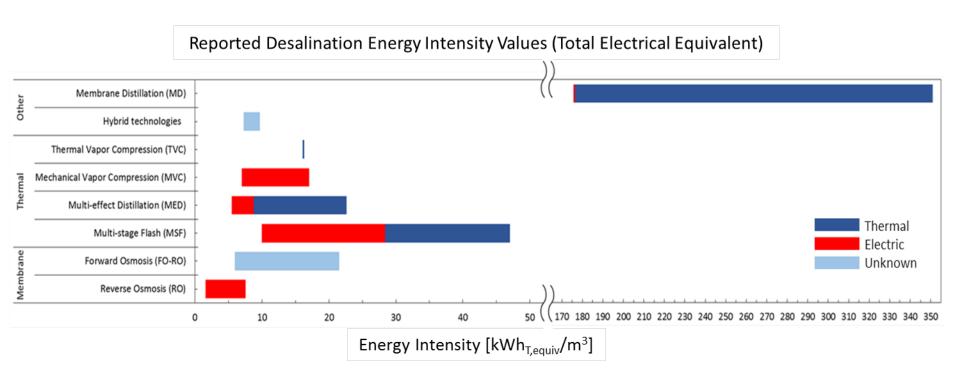
	Correctitiate Diopoedi Optione				
S	0.1%-5% TDS	NR	NR	2.0%-10% TDS	<0.5% TDS
and	Ocean Discharge	Surface Water Discharge	Deep Well Injection	ZLD: Evaporation Ponds, etc.	Land Disposal/ Irrigation
	NR	NR	>1 MGD	<1 MGD	NR


Posttreatment and Water System Integration

End-Uses

1e-4% TDS	0.05% TDS	0.05% TDS 0.05% TDS		<0.5% TDS	
Ultra Pure	Residential	Municipal/ Public Supply	Industrial Agricultural		
2-3 MGD	80-100 Gal/Person/Day	NR	1 - 100 MGD	2,000 Gal/Acre/Day	

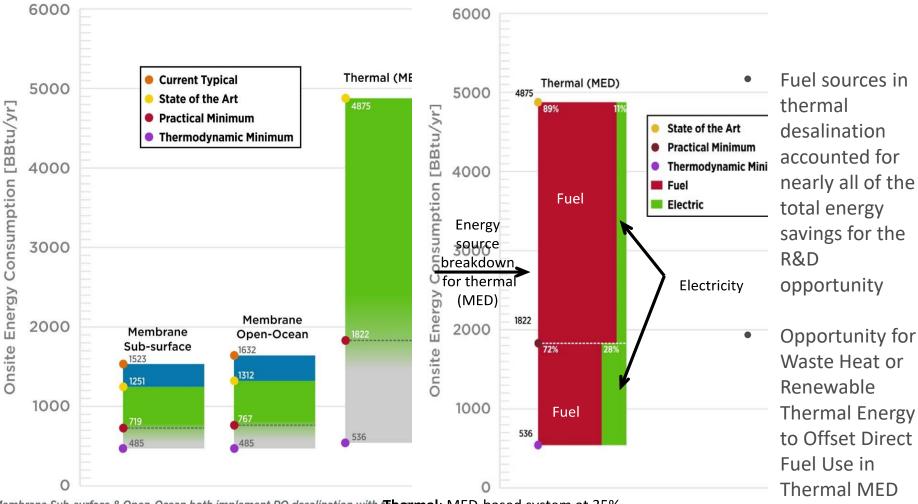
Seawater for Municipal Potable Water Pathways


Analysis for seawater looks at two pathways for desalinating seawater into municipal potable water

Desalination Technologies Reviewed For Seawater Application

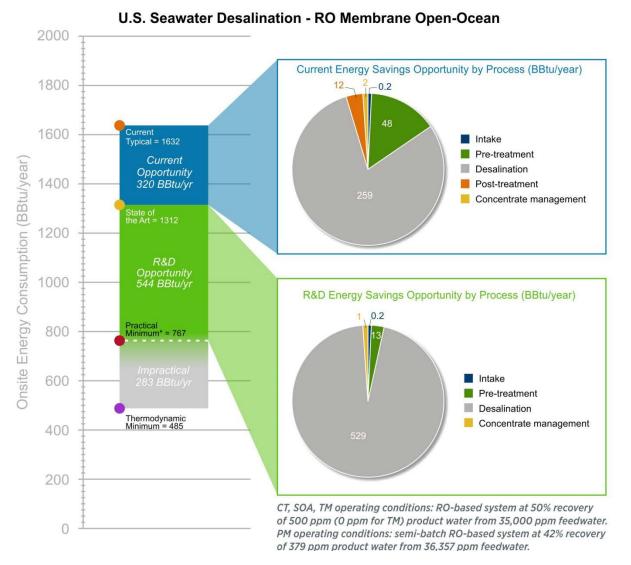
Intake	Pre-treatment	Desalination	Post- treatment	Concentrate
 Openocean intake Screened Subsurface intake Beach wells Offshore radial collector 	 Membrane filtration Microfiltration Ultrafiltration Media filtration Sand filtration Cartridge filtration Disc filtration Flocculation 	 Thermal vapor compression Mechanical vapor compression Multi-effect distillation Multi-stage flash distillation Reverse osmosis (RO) 	 Remineralization Disinfection Boron removal 	 Surface water discharge Zero liquid discharge Brine concentration Crystallization
wells		 Forward osmosis in combination with RO or a thermal technology 		

Preliminary Energy Data (Seawater)


Reported energy data needed further refinement before being used:

- <u>Values need to be reported with operational characteristics</u>, e.g. intake and product water flow rate, recovery and plant size, salinity, and temps (for thermal processes), desalination unit operation, use of energy recovery or waste heat.
- Addition of electrical and thermal must account for generation losses associated with converting thermal energy to work.

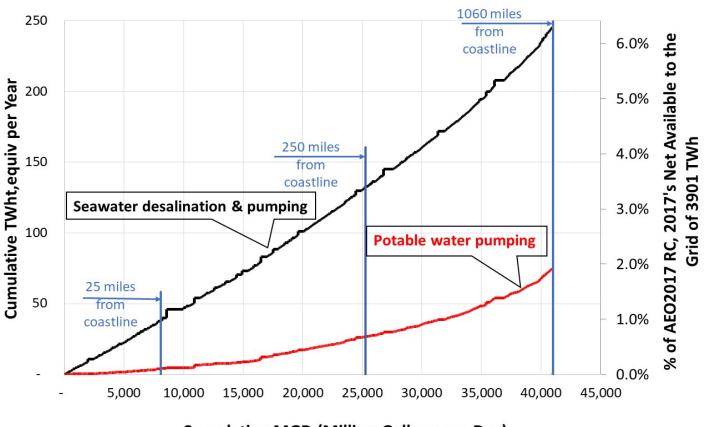
Opportunities to reduce energy consumption for each unit operation


Unit Operation	Membrane Systems	Thermal Systems	
Intake	Opportunities largely driven by improving pump and motor operating efficiency; site specific opportunities related to reducing total dynamic head may exist		
Pretreatment	Significantly impacted by intake design with subsurface lower than open ocean	On par with subsurface intake membrane systems	
Desalination	Newer plants implementing SOA for membrane, and semi-batch RO identified as PM	MED-TVC identified as SOA, with designs that can reduce steam pressure requirements identified as PM	
Post-treatment	Not a significant factor	Not a significant factor, though higher than membrane system	
Concentrate Management	roving pump and motor operating		

Desalination looked at membrane and thermal systems

Membrane Sub-surface & Open-Ocean both implement RO desalination with filtermal: MED-based system at 35% post-treatment and concentrate management, but utilize different intake and recoverys of sold with the product water from Sub-surface system involves sub-surface intake and Open-Ocean system uses open product water from Membrane Sub-surface & Open-Ocean CT, SOA, TM operating conditions: RO-based to product water from 35,000 ppm for TM) product

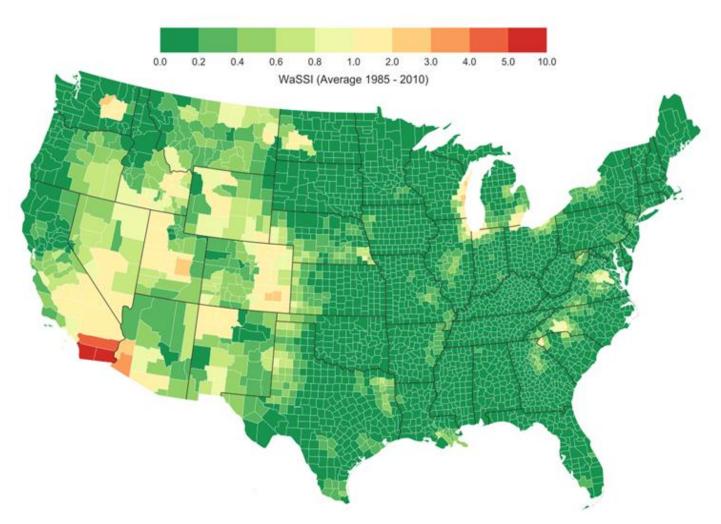
Energy Savings Opportunity for RO system w/Open Ocean Intake



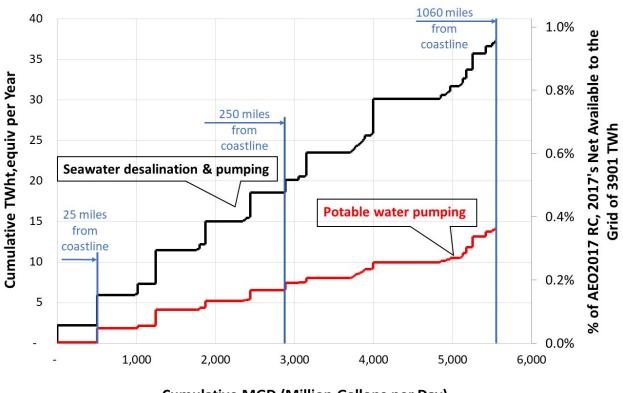
- 91% of the energy saving opportunity is in the desalination operation
- Pretreatment offers the next largest opportunity (7%)
- Much of U.S. production already operating at SOA conditions

Scenarios: Potential Impact Under Greater Adoption

- Saline water (sea and brackish water) is a very small source of municipal water in the U.S. on the order of 0.1% → Hence, the impact on U.S. energy consumption is small at current uptake levels
- Potential impact of greater uptake:
 - 1) <u>Scenario 1:</u> supply all continental U.S. county's public water demand with desalinated water from U.S. coastal areas, and
 - Scenario 2: supply all water stressed regions of the continental US with desalinated water from U.S. coastal areas
- Evaluated using open ocean intake RO system operating at SOA conditions with water demand equivalent to 2010 public water demand (from USGS)


Scenario 1: Supplying All Municipal Water

Cumulative MGD (Million Gallons per Day)


Though impractical, sourcing all U.S. municipal water from seawater would represent ~6% of projected 2017 electricity production.

Water Supply Stress Index

WaSSI estimated using *WaSSI Ecosystems Services Model* by NC State, USDA, and US Forest Service

Scenario 2: Supplying Water Stressed Counties

Cumulative MGD (Million Gallons per Day)

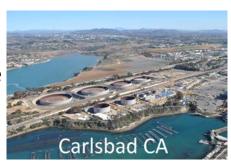
Supplying public water for counties with WaSSI > 1 and 250 miles from a coastline would require **0.5% of projected 2017 electricity production**

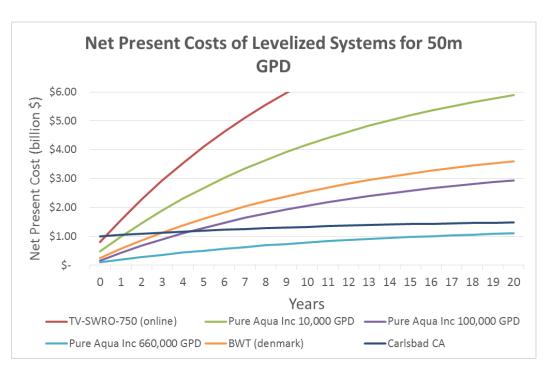
More likely that these counties would diversify water sources and some could meet a portion of their public water demand from seawater.

Distributed Water Systems: Desalination

Small distributed systems:

- Eg. Pure Aqua (American) or BWT (Denmark)
- 1000 660,000 gallons per day
- Local production
- Low maintenance/operation costs

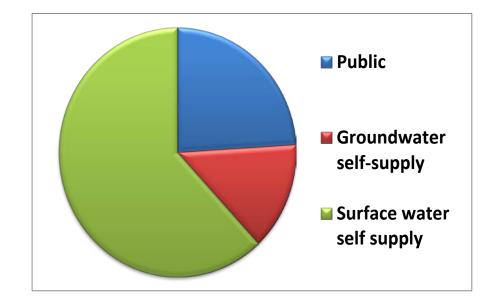




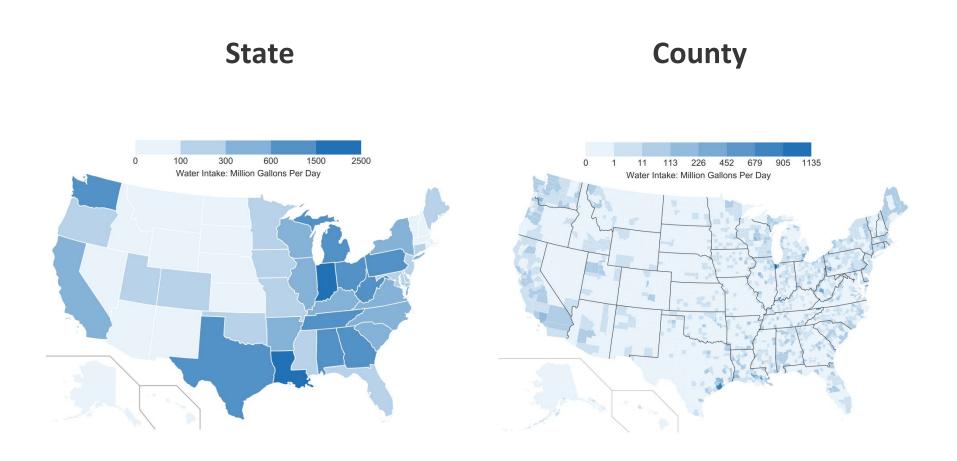
Large Central System:

- Eg. Carlsbad CA
- 50m Gallons per day
- Large capital cost; high operations and maintenance costs
- Long pumping distances

Manufacturing Water Use Analysis


Industrial water use in 2010

75% (~16,000 MGD) is estimated to be self supplied (e.g. onsite surface or ground)


- Mostly freshwater; only 6% saline
- Down 12% from 2005
- Down 38% from 1985

25% (~5,000 MGD) is estimated to be supplied from public supply

- USGS stopped estimating public supply by end use sector after 1995
- Assumed, based on 1995
 estimates, that 12% of public
 supply is for industry

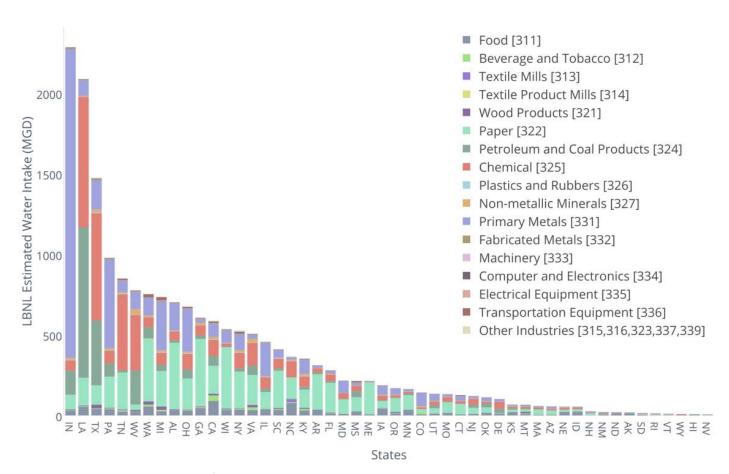
Geographic Spread of U.S. Manufacturing Water Withdrawal (Estimated)

Issues with U.S. Manufacturing Water Data Availability

- Water use conservation driven by risk mitigation within the manufacturing sector
- Little to no data on U.S. manufacturing water use and related characteristics
 - Limited to USGS 5-year estimates
 - Some data at individual state level or by sector
- Water use issues and risk are a local phenomena requiring data at the watershed level
 - Research based on broad national data may not target atrisk industries

How to handle gaps in the U.S. data ...

Leverage existing data sets to:

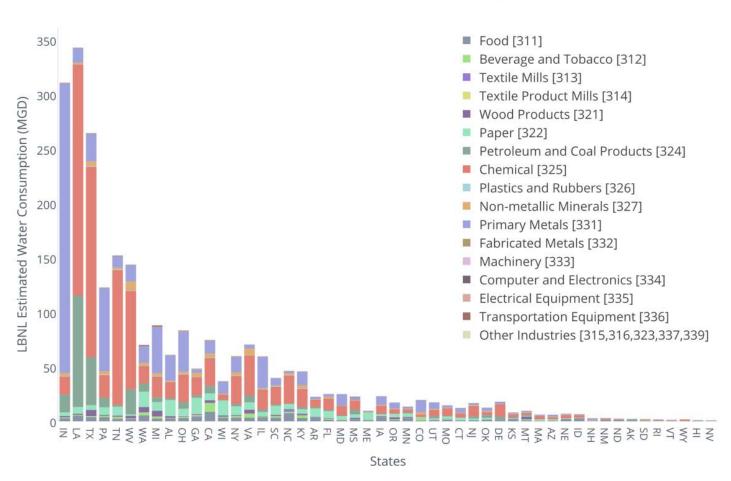

Quantify manufacturing water withdrawals and consumption at the national, state, and county-levels broken down by sector using Canadian water and economic data, USGS data, and U.S. Economic Census data

Identify sectors at-risk, defined as those sectors with large footprints in areas with long-term over-usage of locally available water supplies

Use the results from to identify sectors for subsequent studies and other manufacturing water use-related research

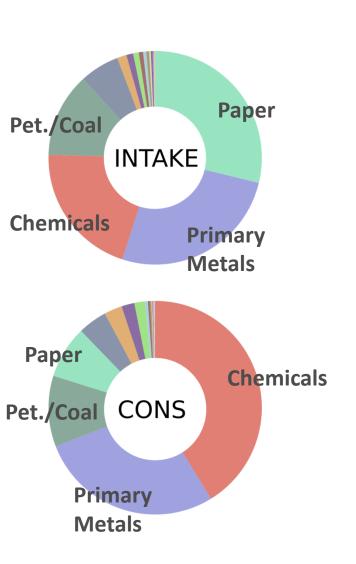
U.S. Manufacturing Water Withdrawals by Sector and State

US Water Intake by State and Sector (MGD, Largest to Smallest)



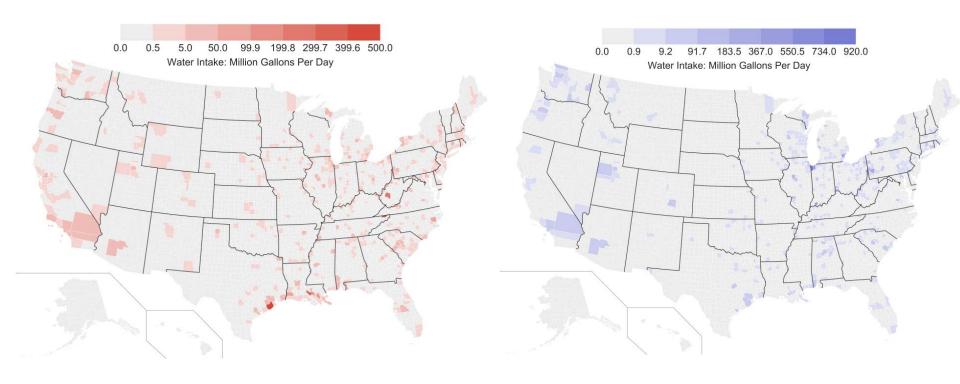
Allows for better understanding of water use distribution:

- IN and LA estimated to have the largest annual withdrawals
- Withdrawals in some states dominated by single industry (i.e., primary metals in IN, paper & pulp in ME)
- Other states have more diversity in their water withdrawals (e.g., MI, TX, NC)


U.S. Manufacturing Water Consumption by Sector and State

- Consumptive use will have greater impact on operational risk than withdrawals
- LA has highest amount of consumptive use
- Two of the top ten states in terms of consumption are drought prone (CA and TX)

U.S. Manufacturing Water Withdrawals and Consumption

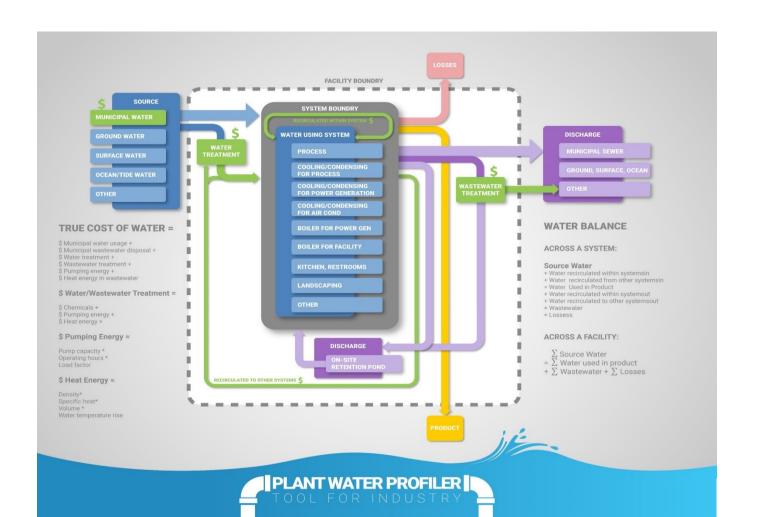

311
312
313
314
321
322
324
325
326
327
331
332
333
334
335
336
Other

311	Food manufacturing	
312	Beverage and tobacco product	
	manufacturing	
313	Textile mills	
314	Textile product mills	
321	Wood product manufacturing	
322	Paper manufacturing	
324	Petroleum and coal product manufacturing	
325	Chemical manufacturing	
326	Plastics and rubber products manufacturing	
Non-metallic mineral product		
	manufacturing	
331	Primary metal manufacturing	
332	Fabricated metal product manufacturing	
333	Machinery manufacturing	
334	Computer and electronic product	
	manufacturing	
Electrical equipment, appliance and		
	component manufacturing	
336	Transportation equipment manufacturing	
Other	Other Industries	

Water Withdrawals by Sector and County

325 - Chemicals

331 – Primary Metals


Evaluation of Sector Water Use "At-Risk"

Sectors in red are those that have the highest share of their water use in locations with WaSSI > 1 (i.e., locations where total water use exceeds local supplies)

Manufacturing Sector	Estimated % Water Intakewithin each WaSSI Bin					
Manufacturing Sector	[0.0,0.2)	[0.2,0.4)	[0.4,0.8)	[0.8,1.0)	[1.0,inf)	
Food	72	11	7	3	7	
Beverage and Tobacco Product	71	9	11	2	6	
Textile Mills	80	9	4	6	2	
Textile Product Mills	88	5	2	2	3	
Wood Product	84	6	3	6	2	
Paper	79	8	5	1	6	
Petroleum and Coal Product	52	29	9	1	9	
Chemical	66	25	5	1	3	
Plastics and Rubber Products	71	13	5	3	9	
Non-metallic Mineral Product	68	11	6	7	8	
Primary Metal	52	8	5	1	35	
Fabricated Metal Product	68	14	6	3	10	
Machinery	70	15	6	2	8	
Computer and Electronic Product	68	13	8	5	7	
Electrical Equipment	76	12	5	3	5	
Transportation Equipment	72	9	6	2	10	
Other Industries [315,316,323,337,339]	74	10	3	4.	8	

Plant Water Profiler (PWP) Tool for Industry

- Identify how water is being procured and consumed at facilities,
- Quantify true cost of water used in different systems,
- Quantify potential water savings and cost savings,
- Feed information back to inform R&D

Thank you.

joe.cresko@ee.doe.gov

ANL – Diane Graziano, Matt Riddle, Sarang Supekar

LBNL – Arman Shehabi, William Morrow, Sarah Smith, Prakash Rao

NREL – Alberta Carpenter, Maggie Mann, Rebecca Hanes, Samantha Reese, Kelsey Horowitz, Timothy Remo

ORNL – Sujit Das, Sachin Nimbalkar, Pablo Cassorla, Kristina Johnson

Energetics – Sabine Brueske, Heather Liddell, Caroline Dollinger, Hani Hawa

Energy Water Bandwidth Study of Seawater Desalination: 2 Volumes

Volume	Contents
Volume 1: Survey of Available Information in Support of the Energy- Water Bandwidth Study of Desalination Systems	 Boundary Analysis Framework Energy Intensities for Five Unit Operations of Desalination Framework for Desalination Uptake Scenarios
	 Energy Consumption and CO₂ Emissions for Several Sea-to-Potable Water Uptake Scenarios Evaluated at:
Volume 2: Bandwidth	Current Typical (CT)
Study of Energy Use and	 State-of-the-Art (SOA)
Potential Energy Savings	 Practical Minimum (PM) Intensity
Opportunities in	 Thermodynamic Minimum (TM)
Seawater Desalination	 Energy Consumption and CO₂ Emissions for Brackish
Systems	 Water to Potable Water at CT Energy and CO₂ Intensity Current and R&D Energy Savings Opportunity

2016 Uptake for Seawater Desalination in the U.S.

```
Energy Consumption (Billion Btu/yr) =
    Energy Intensity (kWh<sub>total electrical equivalent</sub>/m³) x Current Uptake (m³/yr) x
    C (Billion Btu/kWh)
```

- In the U.S., annual municipal potable water production capacity from seawater desalination was 128,000,000 m³ for 2016
- Since largely dominated by Carlsbad facility and other RO systems, broad assumption that this is at 50% recovery
 - $-255,000,000 \text{ m}^3$ for intake annually
- Assuming 16.5:1 concentrate dilution ratio for discharge, based on calculation
 - 2,231,000,000 m³ pumped annually for discharge
- For reference: energy consumption to source all currently desalinated seawater in the U.S. from fresh and ground water sources (excludes distribution): 127 Billion Btu
 - Assumes national average energy intensity for providing municipal water from freshwater of 0.29 kWh/m³
 - Higher in some regions: Southern California: 1,136 Billion Btu

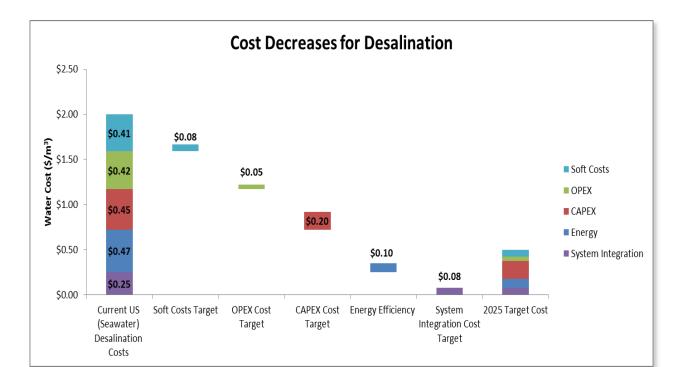
What is 'Pipe Parity' for Water?

Potable Water Target => 200 - 600 mg/L (500 mg/L is realistic limit)

Agriculture Water Target => 200 – 2,000 mg/L (varies on crop)

Industrial Water Target => 50 – 20,000 (targets need further defining)

Proposed Energy Intensity Targets for 500 mg/L TDS:


- Fresh Water => less than 0.5 kWh/m3
- Brackish Water => less than 1.5 kWh/m3
- Seawater => less than 2.5 kWh/m3

Range of Inputs for "desalination":

Source	Quality (TDS)	Application	Quality (TDS)		
[manh		Drinking Water	≤500 mg/L		
Fresh	≤1000 mg/L	Agriculture	≤750 -2000 mg/L		
Water		Industrial	≤500 mg/L		
Brackish		Drinking Water	≤500 mg/L		
	~10,000 – 30,000 mg/L	Agriculture	≤750-2000 mg/L		
Water		Industrial	Application specific		
Seawater		Drinking Water	≤500 mg/L		
	35,000 – 47,000 mg/L	Agriculture	N/A		
		Industrial	Cooling (primarily)		
Produced		Drinking Water	≤500 mg/L		
Water (from	Up to ~100,000-200,000	Agriculture	≤750-2000 mg/L		
oil/gas)	m/L	Industrial	Application specific		

Cost Target?:

Approximate \$0.50/m³

