RECLANATION Managing Water in the West

Status Update

U.S. Department of the Interior Bureau of Reclamation

Overview of Selection Choices

• DHSVM

- Baseline completed (no more calibration runs)
- Adjustments to flow will be based on Dee and Tucker gages and populated basin wide
- Glacier component not checked with recent calibration
 - It will be evaluated. No additional effort to resolve issue. They will be documented for future work and considered in the analysis
- MODSIM
 - MODSIM regulated (with reservoirs) almost complete
 - MODSUN unregulated (without reservoirs) complete (needs review)
 - Demand summaries data from Water Needs report formatted for import to MODSIM
 - Scripting initiated

Overview of Selection Choices

• GW

- Some issues with irregularity in the steady state model (used as input to Transient) so working to address that now
- Will use P changes from selected climates to evaluate climate change independently of MODSIM effort (no GW changes will be built into the MODSIM model due to uncertainties in the GW model)

Climate Change

- Scripting underway to automate generation of climate change data input
- Data (T/P) for two future windows (2020s and 2040s) and five climates being generated now
 - Once decision is made by HRC, will move forward with model runs
- DHSVM and MODSIM models will be run with only one future window (either 2020s OR 2040s) and three climates (MW/W, MW/D, C, LW/W, LW/D) RECLAMATIC

RECLANATION Managing Water in the West

Basin Study Goals and Alternative Analysis

U.S. Department of the Interior Bureau of Reclamation

Basin Study Goals

- 1. Define current and future basin water supply and demands, with consideration of potential climate change impacts
 - Use Water Needs and Water Conservation reports
 - Conduct Existing Conditions MODSIM modeling to evaluate historical + 1 future window (e.g., 2020s) using 3 climates (MW/W, C, and LW/D)
 - This provides the necessary range of uncertainty for results (1 historical + 3 futures = 4 runs)
 - Compare results

Basin Study Goals

- 2. Determine the potential impacts of climate change on the performance of current water delivery systems (e.g., infrastructure and operations)
 - Complete this effort at the same time as above effort
 - Evaluate all or some of the following (as applicable):
 - Ability to deliver water (will perform)
 - Hydroelectric power generation facilities (will perform)
 - Recreation (N/A)
 - Fish and Wildlife habitat (will perform using instream water rights analysis)
 - ESA (will perform using instream water rights)
 - Water quality (N/A not enough information for Reclamation may be part of IFIM work??)
 - Flow and water dependent ecological resiliency (not sufficient information)

CLAMATIC

Flood control management (N/A)

Basin Study Goals

- 3. Develop options to maintain viable water delivery systems for adequate water supplies in the future
 - Identify structural and non-structural options
 - Structural changes include dam construction simulation and dam raise simulations
 - Non-structural changes include changes in demands (one alterative) and changes in conservation (another alterative)
 - Adaptive Management Strategies (no analysis, just discussion based on what we know at the end of the study)
 - Habitat Restoration Plans
 - Improved models or other DSS
 - Others identified by the County
 - 4. Conduct an analysis and modeling scenarios of the options developed, summarize findings and make recommendations on preferred options.

Alternatives for Evaluation

- Storage (one alternative, 3 facilities)
 - One storage facility in each irrigation district
 - EFID, MFID, FID
- Irrigation Demand
 - One change in future demand propose across the board increase in each demand summary based on future time period
- Conservation
 - Assuming conservation data provided in monthly summary form (as we demand data), then assume an across the board increase in conservation efforts.
- Any additional variations to these alternatives can be carried out by the County at a later date (the model will be set up already)

RECLAMATIC

RECLANATION Managing Water in the West

Selection of Climate Change Information and Decision Process

U.S. Department of the Interior Bureau of Reclamation

Overview of Selection Choices

- Overview of Process
- Source of Climate Change Data
 - Climate or Hydrology Data or Both
 - Hydrologic Model Selection
- Global Climate Models (GCMs) from Coupled Model Intercomparison Project (CMIP) Phase 3 or Phase 5 (or both)
 - Emission Scenarios (SRES)
 - Representative Concentration Pathways (RCPs)
- Period Composite (Change) or Transient
 - Bias Correction and Spatial Downscaling Method
 - Historical and Future Reporting Time Periods
 - Quantity of Projections (individual or ensemble)
 - Uncertainty Range

Overview of Process

 CMIP3 or CMIP5 => T and P generation => Hydrologic Model => Future flow generation => water resource model analyses => results reporting

CMIP3 vs. CMIP5

Source Selection

- Data from Reclamation's Archive (LLNL)
 - CMIP3
 - 19 of 23 GCMs available, 3 emission scenarios (A1, A1b, B1), total of 112 projections
 - Flow generated at 1/8th degree (~12KM)
 - Period of coverage is 1950-2099 at a monthly time step
 - CMIP5
 - 100+ GCMs, 4 representative concentration pathways, total of 234 projections
- Data from UW Climate Impacts Group
 - CMIP3
 - 19 of 23 GCMs, 3 emission scenarios, total of 57 projections

- Flow generated at 297 locations in CRB
- Others

Spatial Downscaling

Period Composite or Transient

- Period Composite (e.g., Delta or Hybrid Delta or HD)
 - 2 projections compared one future and one historical
 - Delta is a shift in T/P statistics; HD is a shift in the "distribution" of the T/P
 - Usually timeframes are 30yrs (e.g., 1970 1999 compared to some future 1930 – 1959)
 - Report change in the metric (e.g., metric can % change in flow, storage volume)
 - Distribution of wet/dry patterns representative of historical record
- Transient
 - 1 projection used; one pair of historical and future periods to define the change

CLAMATIC

- Timeframes are spans 150 years
- Distribution of patterns not related to historical patterns
- Great for threshold evaluation

Decision looks something like this...

• Source and Model Phase

 GCMs from CMIP3 from LLNL site (get Phase 3 GCM data, downscaled over the CRB at a 1/8th degree scale)

Technique

Hybrid-Delta ensemble method (compare 1970-1999 to 1930 to 1959) using more than one projection

Uncertainty Characterization

- 20%/50%/80%
- Climate Characterization
 - MW/W, C, and LW/D
- Hydrologic Model
 - Use VIC hydrologic model to evaluate T/P output from GCM

...and finally...

- Route flows to some determined number of locations
- Import into water supply model (e.g., ModSim)
- Determine metrics to analyze (end-of-month storage)
- Conduct comparisons and report

