

YEARS in 2010

Groundwater Infiltration Assessment Yakima River Basin Study

Infiltration Concept (2009)

- Focused on return flows directly to the Yakima River
- Objective was to "re-time" return flows from an infiltration basin to environmental and irrigation benefit.
- The results indicated re-timing was possible, the distance between any infiltration area and the river was a critical (and potentially limiting) constraint.

- Infiltration is focused prior to storage control in uplands
- Withdrawal and use is focused after storage control in-lieu of reservoir releases
- Benefits are measured thru modified reservoir operations, especially carry-over storage and higher outmigration flows

- Re-timing is focused on the reservoirs and not the Yakima River.
- Management model is more complex
 - Water balance/RiverWare
 - "Bucket" concepts

- Kittitas Reclamation District (KRD)
 - Potential Thorp Pump Station concept, which would deliver piped water to the uppermost canals of the KRD North Branch, continuing through Badger Pocket and toward Wymer Reservoir.
 - Sub-basin is "enclosed" (like a bucket) from a groundwater perspective such that all groundwater infiltration would (eventually) discharge to the Yakima River at Umptanum.
- The Wapato Irrigation District (WIP)
 - Magnitude of allowable water deliveries to the WIP system (130,000 AF) and laterals that likely affect shallow groundwater flows
 - Sub-basin is open and groundwater spreads toward Toppenish and Yakima Rivers . Irrigation system has shifted the groundwater hydrograph regime from its natural condition. Potential to restore more natural groundwater hydrograph

- 1. How much can be infiltrated?
- 2. Where does the water go?
- 3. How much can be withdrawn and how?
- 4. What happens to TWSA?

Concept for Reservoir Response

Kachess Reservoir - Baseline

Storage Profile with 50KAF GW Infiltration

Outflow With 50KAF GW Infiltration

Natural Flow Matching

Where does the water go?	
Storage and Flowpaths	Methods & Data

- 2. Storage
 - A. Groundwater flow
 - B. Aquifer Storage

- Hydrogeologic maps
- Geologic cross-sections
- Professional judgment
- Topographic maps
- Ecology Well logs
- USGS, 2009

Kittitas Groundwater Map (USGS, 2009)

KRD Groundwater Flowpaths

KRD Well Logs

WIP Groundwater Map (USGS, 2009)

WIP Groundwater Flowpaths

WIP Groundwater Flowpaths

WIP Groundwater Flowpaths

Where and How Much to Withdraw?

- 3. Mound Withdrawal
 - A. Active (wells)
 - B. Passive (canals)
 - c. Downstream capture

- Management model is complex
 - Water balance and RiverWare
 - "Bucket" concepts

Groundwater Mounding – "Head on"

Groundwater mounding – versus time

Flow lines.....

Groundwater mounding – along flowpath

- KRD Gravels
 - Geologic and hydraulic testing of gravels
 - Testing of existing wells
 - Installation of new wells
 - Field test of infiltration & mounding
 - 2 sites of at least 1 acre each (land agreements)
 - Naneum creek, Badger pocket
- Modeling (USGS model and analytical flowpath)
 - Mound build-up/decay & flow paths (multi-year)
 - Extraction scenarios
- Develop and test management model

- KRD Basalt interbeds
 - Geologic characteristics and hydraulics
 - Field mapping and testing of existing wells
- Flowpath characterization
 - Basalt Gravel connections
 - Regional basalt flowpaths (to lower basin areas)
- Benefits assessment
 - TWSA
 - Regional flow

Pilot Test Issues

WIP

- Geologic and hydraulic testing
 - Testing of existing wells
 - Installation of new wells
- Field test of infiltration & mounding
 - 2 sites of at least 1 acre each (land agreements)
 - "hourglass" area
- Modeling (USGS model and analytical flowpath)
 - Mound build-up/decay & flow paths (multi-year)
 - Extraction scenarios
- Develop and test management model

- Draft Tech Memo (including costs)
- RiverWare Simulations
- Pilot Test Plan
- Cost Analysis

