

Groundwater Storage Assessments for the Yakima Basin

Overview

Draft EIS:

- Surface recharge in alluvium
- Municipal ASR in clastic formations
- Final EIS
 - Surface recharge in alluvium
 - Municipal ASR in clastic formations
 - Large scale ASR in Basalts

Aquifer Systems and Recharge Options

Infiltration and Return Flow Target Areas

Objective : Passive return flow to streams

Alluvial Return Flow Profiles

Diversion

Jul

Month

Return Flow

Aug

Jun

Oct

Sep

Nov

Dec

2,000

0

ssociates

Jan Feb

Mar

Apr May

Surface Infiltration Evaluation

- SDF methodology return flow timing and volume
 - ◆10,000 AF application (when "available")
 - Typical alluvial characteristics
- Review land cover area available
- Highest volume of passive return flow to streams
- Limited dry year return flow
- Large land requirements & operational issues

Municipal ASR Target Areas

Objective : Direct municipal supply

© Copyright 2007 Golder Associates Inc., All Rights Reserved

Yakima ASR

Contrasting Recovery Approaches

Annual Recovery

 Recovery efficiency is high and most of the previous years water can be recovered (92%)

Minor increases in Yakima River flows

Deferred Recovery

- Total recoverable amount of water is larger (good drought management tool), but at decreasing efficiency over time
- Accumulated and "in-year" increases in Yakima River flows are higher (good stream mgmt tool)
- 7-10 years to get to asymptotic portion of stream enhancement curve

Municipal ASR

→Banking:

- Approximately 2X storage volume
- →Increases flow augmentation (>10K cfs/10y)
- Total recoverable amount of water is larger (good drought management tool), but at decreasing efficiency over time
- 7-10 years to get to asymptotic portion of stream enhancement curve

Annual Cycling:

- →Flow augmentation around (4 cfs/10y)
- Recovery efficiency is high and most of the previous years water can be recovered (92%)

Regional ASR Target Areas

Objective : Direct agricultural supply

Regional ASR Issues

- Geologic Structure
- Well Capacity
- Aquifer Properties
- Wellfield Design and Interference
- Conveyance
- Treatment requirements
- Water Availability
- Water Quality

Yakima Basalt Geologic Structure

Basalt Water-Levels

Well Capacity and Buildup

- Used USGS aquifer property measurements.
- Well capacity based on reported short term specific capacity tests on 36 wells.
- Predicted build-up using 2,500 gpm injection rate:
 - →Maximum : >1,000 ft
 - →Average : 473 ft
 - →Median : 171 ft
 - →Minimum : <20 ft</p>

Conceptual Wellfield Design

Wellfield

Over a range of aquifer parameters, a wellfield should see appx. 200 to 400 feet of buildup. 400 to 600 available at Roza.

Conceptual Wellfield Design

Over a range of aquifer parameters, a wellfield should see appx. 200 to 400 feet of buildup. 400 to 600 available at Roza.

Option Summary

Surface Infiltration → 10,000 AF/Yr
Limited dry year return flow Large land requirements & operational issues Municipal ASR → 6,000 AF/Yr Indirect return flow & avoided diversions Annual vs delayed use & WTP constraints Regional/Irrigation ASR → >60,000 AF/yr per well field Replace/enhance agricultural diversions Complex/costly infrastructure and operations

Conclusions

EIS Level Information is sufficient – a good foundation for further investigation

- More detailed feasibility testing is necessary for all alternatives
- Additional modeling of ASR alternatives may be beneficial

Approach

 Identify one or more objectives, develop demonstration projects to address prioritized objectives:

- Aquifers
- Sources
- →Benefits

Alternative Objectives

Optimizing Aquifers Alluvial aquifer: direct return flow Clastic aquifer: indirect leakage → Basalt aquifer: boundaries & porosity Optimizing Sources Surface diversions: availability & conveyance ♦ ASR capacity: WTP capacity, wellfields Climate Change: hydrologic timing & magnitude Optimizing Benefits In-stream → Out-of-stream agriculture Out-of-stream municipal

Thank You

