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Executive Summary 

To support salmonid research and management, we used national GIS coverages to 

develop two hierarchical landscape classifications of the 8,438 sixth-field hydrologic units 

(HUC6) in the Pacific Northwest, one based on natural features, and the other based on human 

disturbances. To develop the natural feature classification, we applied principal components 

analysis (PCA) and clustering techniques to scaled data for seven climate, land form, geology, and 

stream form variables. PCA showed a clear divide between Eastside and Westside landscapes. 

We then used a divisive clustering technique to divide the Eastside into a Mountains class and a 

Basins class. Thereafter, we used flexible beta clustering to develop landscape classes within each 

of these 3 top-level natural feature classes. The final natural feature landscape classification had 7 

Westside, 8 Eastside Basins, and 9 Eastside Mountains classes. To develop the human disturbance 

classification, we determined proportion covered by urban land use, agricultural land use, and 

impervious surface, and road density in each HUC6. A flexible beta clustering of these scaled 

disturbance measures produced a balanced dendrogram, with the top-level division distinguishing 

low disturbance from high disturbance HUC6s. The final human disturbance classification had 8 

classes that formed a continuum from essentially undisturbed to highly disturbed.  The first 

principal component scores of a PCA of the four disturbance variables accounted for 65% of 

variability in the data, and can be used as an overall HUC6 disturbance measure. We evaluated 

the associations between the natural feature variables and classes, and the human disturbance 

variables and classes. Finally, we evaluated how well the Intensively Monitored Watersheds, an 

informal network of 22 salmon research and restoration projects, are distributed across the natural 

feature and disturbance classes. 
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Introduction 

Populations of the six anadromous salmon species in the Pacific Northwest (PNW) have 
been declining for well over a century (Nehlsen et al. 1991; Williams et al 1999; McDonald et al. 
2007), due to a combination of over harvesting and widespread and often severe habitat 
degradation. The general habitat requirements for the various freshwater life stages (egg, larval, 
juvenile, returning adult) of each species are fairly well known. That knowledge has been used to 
develop and deploy a variety of in-stream and riparian habitat restoration actions, assumed to lead 
to increased salmon production, at least locally. To evaluate the effectiveness of restoration 
practices, a diverse set of fairly large scale projects has been established by various agencies, in 
which different actions (including no action) are studied in adjacent watersheds. Twenty-two of 
these projects across the PNW have been linked into an informal network called the Intensively 
Monitored Watersheds (IMW). 

Due to the highly diverse character of PNW landscapes and the large geographic 
freshwater ranges of Pacific salmon it is not clear whether restoration practices that resulted in 
increased salmon production in one IMW project will necessarily be effective in other places. A 
landscape classification based on natural features known to be associated (positively or 
negatively) with salmon production could define areas of similar natural potential. Such a 
geographic framework could indicate areas where particular restoration actions could be expected 
to have similar results, as well as areas dissimilar enough to indicate less certainty about the 
chances of success. This framework could also be useful for evaluating whether the IMW 
projects are well distributed among the natural feature landscape classes or whether any Asalmon 
landscapes@ are not currently included. 

There are multiple landscape classification systems based on various combinations of 
mapped natural features and human uses of the land that divide large geographic areas into 
hierarchies of ecological regions (ecoregions) (e.g., Omernik 1987; Bailey 1976). Each of these 
classifications was developed to support different intended applications (e.g., water quality 
assessment, conservation planning) often for different agencies or organizations (Loveland and 
Merchant 2004). Most of the widely used ecoregions systems were developed with qualitative 
methods to combine mapped landscape characteristics to delineate relatively homogenous regions 
(Omernik 2005; Loveland and Merchant 2005). In the last couple of decades, increased computing 
power and data storage, improved GIS software, matched with more detailed, consistently 
developed GIS coverages of ecological landscape data have lead to increased interest in using 
multivariate techniques to develop data-driven landscape classifications, assumed to be more 
objective (Hargrove and Hoffman 2005). 

Despite the diversity of available landscape classifications, we are not aware of any 
developed to support salmon recovery research. To address this, we used GIS derived data and 
multivariate techniques to develop a classification of PNW watersheds based on the natural 
landscape features associated with salmonid production that should define areas of similar natural 
potential with regard to anadromous salmon. The resulting classification should be useful for 
structuring fisheries management and restoration efforts.  Because humans are an integral part of 
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the landscape, and because the kinds and intensity of anthropogenic stress are not evenly or even 
randomly distributed across the landscape, we also used the same approach to develop a separate 
human disturbance classification of PNW watersheds. We evaluated the associations between the 
natural feature variables and classes, and the human disturbance variables and classes. Finally, we 
evaluated how well the IMW research and restoration projects were distributed across the natural 
feature and disturbance classes. 

Methods 

Operationally, we developed the natural feature classification before we began the human 
disturbance classification.  To avoid repetition in this section we combine descriptions of both 
sets of analyses. We also present a subset of results in this section because we used results from 
early analyses to select the methods for later analyses. 

Study Area & Geographic Data 

Our study covered all watersheds in the USA in the Pacific Northwest region (PNW), as 
defined by the USGS hydrologic unit codes (HUC) beginning with ”17": the entire Columbia 
River drainage within the USA, the Oregon and Washington coastal watersheds, and the Oregon 
interior draining watersheds. The study area included all of Washington and Idaho, most of 
Oregon, and portions of California, Nevada, Utah, Wyoming, and Montana. We made no attempt 
to delineate or remove areas inaccessible to anadromous fish, for either natural or anthropogenic 
reasons. The base geographic units for this study were the 8,438 sixth-field (12-digit) hydrologic 
units (HUC6) in the Pacific Northwest (Figure 1). In the USGS nomenclature HUC6s are 
subwatersheds; here we call them watersheds, recognizing that a large portion of USGS 
hydrologic units are not true watersheds (Omernik 2003). 

We used several criteria to select landscape variables upon which to base the 
classifications. The natural feature landscape variables needed to be related to the ecology of the 
anadromous salmon life cycle. The natural feature variables should represent a variety of climate, 
landform and stream characteristics, while being independent of human influence. For both 
classifications there needed to be complete GIS coverage of the landscape attributes for study area, 
and each attribute needed to be expressed as a single value to represent that feature for each 
watershed. 

For the natural feature classification, we evaluated numerous potential measures based on 
the criteria listed above. We evaluated the data distribution and geographic distribution 
characteristics of those variables, and relationships among the variables. Based on those analyses 
and our knowledge of issues with the underlying data, we kept seven variables, three climate, two 
land form, one geology, and one stream form, described below and summarized in Table 1. 
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Figure 1. Map of the 8,438 sixth-field hydrologic units (HUC6) in the Pacific Northwest. 
 
 

 
Table 1. Characteristics of the PNW 6th- field HUCs used in this study.  Values are 
medians, interquartile ranges (IQR) and minimums and maximums.  Watershed 
size was not used as an input variable in the classification process. 
  
 
 

Median IQR Range 
  

HUC6 surface area (km2) 
 

73 
 

53 - 102 2 - 870 
 

 Elevation (m) 
 

1310 
 

808 - 1681 3 - 3112 
 

Annual temperature  35 31 - 37 16 - 45 
        range  (oC) 

   
Growing degree-days 
 

1393 
 

974 - 1817 19 - 3491 
 

Erodible geology 12 0.2 - 43.6 0 - 100 
       (% surface area) 
   
Annual precipitation (cm)  
 

66 
 

39 - 114 17 - 486 
 

Watershed slope (deg) 
 

10.3 
 

4.9 - 17.4 0 - 32.4 
 

Low gradient stream density 0.0007 0.00002 - 0.02 0 - 25.8 
         (see  text)  
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Annual temperature range, annual precipitation, and growing degree day were based on 
30-year mean values derived from 2 km grid PRISM data (http://www.ocs.orst.edu/prism/ for 
temperature range and precipitation; http://www.climatesource.com/products.html for growing 
degree day).  Elevation and watershed slope were derived from the USGS 30 m raster digital 
elevation model.  These five variables were each then resampled to 200 m using bilinear 
interpolation. The median pixel values were used to characterize the sixth-field watersheds. 
Erodible geology was derived from statewide bedrock and surficial geology maps.  Geologic 
formations were classified into groups describing rock resistance to erosion. The surficial 
proportion of easily eroded material in each watershed was used as the erodibility metric. The 
low-gradient stream density was based on the 1:100,000 National Hydrology Dataset Plus and was 
calculated by squaring the length of channel with gradient < 4% and then dividing by the 
watershed area. 

For the human disturbance classification, we used the National Land Cover Database 
(NCLD) GIS coverages to calculate the proportion of land in each land cover type for each HUC6. 
We combined the appropriate specific NLCD land use class proportions to create the total 
proportion urban and the total proportion agricultural land uses. The NLCD has a separate 
impervious surface coverage which we used to develop the proportion of impervious surface in 
each watershed. We used the Census TIGER roads file to develop a road density measure for 
each watershed. We recognize that these are fairly broad human disturbance measures, and that 
other stressors (e.g., dams, grazing, clear cutting) likely have a more direct effect on salmon 
production. However, data related to each of these other stressors had problems, such as lack of 
consistent region-wide GIS coverages (e.g., grazing and forest practices), and unknown upstream 
and downstream effects (e.g., dams) that precluded their use. 

To achieve approximately normal data distributions for the natural feature variables, 
annual precipitation values were natural log transformed, and watershed slope and low-gradient 
stream density values were cube root transformed. Growing degree day, annual temperature range, 
elevation and erodibility had approximately normal distributions and were not transformed. For 
the human disturbance variables, we log10 (x +1) transformed each measure. Despite the 
transformations, the high values ends of proportion urban, proportion impervious, and road density 
data distributions were highly skewed, such that the upper 1st percentile accounted for between 
23% and 42% of the range of the transformed values. To partially reduce the effects of these high 
values we truncated the transformed values to the 99th percentile value for these three variables. 
All values (transformed, truncated and transformed, or untransformed as appropriate) were then 
scaled to a common 0 to 1 scale. These scaled values were used in all multivariate analyses. 

Data Analysis 

To elucidate multivariate gradients in the data, we ran separate principal components 
analyses (PCA) of the seven scaled natural feature landscape variables, and for the four scaled 
human disturbance variables, for all HUC6s. We plotted 1st and 2nd principal component scores 
(PC1 and PC2), and examined the amount of variability accounted for by PC1 and PC2, and the 
relative loadings of the input variables on those components. We examined the correlation matrix 
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to assess potential redundancy among the input variables. The plot of PC1 and PC2 for the 
natural feature variables showed two distinct clouds, which generally corresponded with the west 
side and east side of the Cascades (Figure 2). This geographic division is commonly used in 
aquatic ecosystem research and management in the PNW and we eventually chose to use the sets 
of HUC6s as shown by the PCA, as the top level division in the natural feature classification 
(below). The human disturbance PCA did not show this pattern. 

Classification 

Issues and Criteria - Classification of multivariate data is usually accomplished by applying 
clustering methods. However, there are many clustering methods, and variations within those 
methods to choose among, as well as other choices, such as the appropriate number of classes 
(clusters) to be produced (Handl et al. 2005). Without clear objectives or tests, one runs the risk of 
selecting a classification that meets one’s preconceptions. The correctness of a classification may 
be evaluated by assessing how well the behavior of a response variable is accounted for, or by how 
well novel (test) data fit into the classification.  While salmon production would be an obvious 
response variable to test alterative classifications, those data are not available for sufficient 
numbers of watersheds. Likewise we do not have Aextra@ watersheds to test the classification(s). 

Lacking objective data-driven criteria, we established the following criteria to evaluate our 
choices of methods and resulting sets of classes: 1) The classification should be hierarchical. 
2) The method should not produce multiple very small classes, especially at the top (coarsest) 
levels. Instead, the cluster tree should be at least moderately balanced. 3) Clusters should have 
fairly good geographic cohesion, especially at the top levels. That is, single or small groups of 
watersheds in one cluster should generally not be surrounded by another cluster. We assessed this 
by examining cluster maps for a geographic checkerboard effect, at the top levels. 4) Results 
should not be greatly at odds with the established understanding of freshwater ecosystem 
processes and salmon ecology. For example, a clustering that produced a top-level class that had 
watersheds at the coast and along the crest of the Cascades with the other top-level class including 
most watersheds in-between would be rejected. Initially, we set a minimum class size to be 
greater than about 50 to 70 watersheds. Smaller classes are not likely to be useful for 
management purposes, at this scale. 

To select among clustering methods, we ran the full seven natural feature variables through 
several methods available in SAS and PC-ORD. We examined dendrogram structure (for 
hierarchical methods), compared top-level cluster membership among methods, examined 
boxplots of the seven input variables for each cluster, and mapped top-level clusters. For a subset 
of the clustering methods we repeated the above evaluation in a series of leave one out clusters 
with reduced variable lists. Based on these exploratory analyses, we chose to use a flexible beta 
method as our primary clustering method. Flexible beta is a generalized form of most other 
agglomerative hierarchical methods and is widely used in ecology. It takes advantage of a 
flexibility in the combinatorial equation that calculates cluster dissimilarity. Flexible beta allows 
the user to control the linkage’s space-distorting properties. As beta approaches 1, it is 
increasingly space contracting, with chaining approaching 100%. As beta approaches zero and 
then becomes negative, the method ceases to be space contracting and becomes increasingly 

7 




 

 

  
Figure 2. Plot of PCA axis 1 (PC-1) versus axis 2 (PC-2) scores for the 8,438 HUC6 in the Pacific 
Northwest. HUCs are color coded as either draining west or east of the Cascade Mountains crest. 
Box and whisker plots show scaled 0-1 scores for the natural feature variables in the PCA. 
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space expanding and the elements are more intensely grouped. The default beta value (-0.25), 
which we used, tends to produce well-balanced dendrograms.   

Establishing Top-Level Natural feature Classes - We initially assumed that the west side versus 
east side divide seen in the PCA plot (Figure 2) would be in close agreement with the top-level 
classes of most clusterings of the data. However, none of the multiple varieties of clustering we 
tried produced anything close to this. Among the methods that produced fairly balanced 
dendrograms, the top clusters produced a mountainous class of watersheds and a low-gradient 
class of watersheds, in which, for example, the Willamette Valley and Puget Lowlands watersheds 
were in the same top cluster as the Oregon High Desert and Columbia Plateau watersheds. We 
attributed this result to the complexity of this large data set, in which there are multiple data 
structures. The clustering algorithms apparently keyed in on the land form (steep versus flat) and 
the erodibility structure in the data, while most fisheries ecologists would emphasize the climatic 
structure at the scale of the whole PNW. 

Thus, we chose to use the two ordination-space clouds from the natural feature PCA as the 
initial (top-level) landscape classes (Figure 2). These data-derived classes met all of our criteria 
(above) and were distinguished primarily by precipitation, temperature range, and elevation. This 
step parsed the data structure complexity to the extent that flexible beta clustering of the westside 
class (n=1,578) yielded results that met our acceptance criteria. 

However, there remained a challenging level of data structure complexity in the larger 
(n=6,860) eastside class. Here, the top-level flexible beta clusters produced an undesirable amount 
of geographic checkerboarding (i.e., there were numerous single watersheds and small groups 
surrounded by the other cluster). In addition, it appeared that erodibility was the key variable 
distinguishing the top two clusters, while to most aquatic ecologists, land form (steeper versus 
flatter landscapes) and climate factors should define the top-level eastside classes. A PCA of the 
eastside data did not produce any distinct groups of watersheds. We then applied the SAS 
FastClus procedure, a non-hierarchical divisive algorithm (set for two clusters) to the eastside data. 
This method uses an iterative nearest centroid sorting algorithm for minimizing the sum of squared 
distances from cluster means, beginning with random cluster seeds and at each iteration, replacing 
seeds with the new cluster means until no further changes occur. FastClus produced two fairly 
geographically cohesive clusters that divided the eastside into a mountainous (and hilly) class 
(4,880 watersheds) and a relatively flat landscapes (mostly deserts and basins) class (1,980 
watersheds) (Figure 3). These classes showed a fairly good match with landform, when plotted 
over a shaded topographic-relief map (not shown). There was some degree of geographic 
checkerboarding at this level that reflected the distribution of basins and ranges in the northern 
Great Basin and occurrence of large broad valleys in some mountainous areas. These two classes 
were primarily distinguished by precipitation, growing season, watershed slope and erodibility, 
and to a lesser extent by elevation and stream gradient. 

Final classification - Based on this work and additional clustering trials, we chose to develop 
natural feature classifications of watersheds within the three top-level classes described above 
(Westside, Eastside Mountains, Eastside Basins), by applying flexible beta clustering (beta = 
-0.25) to each class separately. We examined dendrogram structure and boxplots of the seven input 
variables, and mapped the member watersheds for the clusters at every dendrogram branching for 
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2 through ~ 15 clusters. Where the flexible beta distance (BD) (a measure of dissimilarity) 
between dendrogram branch points (off the same branch) was less than about 1, we treated the set 
of branches as a unit. We initially chose to prune the dendrogram above branches that produced 
clusters with less than about 70 watersheds, rather than using a set beta distance throughout. 

To develop the human disturbance classification, we used flexible beta clustering, 
evaluated by mapping HUC6 locations and examining boxplots of input variables for each 
dendrogram branch pair for the entire PNW. 
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Figure 3. Map showing the location of the HUC6 among the three top level natural feature classes 
(Westside, Eastside Basins, and Eastside Mountains). 



 

 
 

 
  

 
 

 

 
 

 

 

 
 

 
 

 

 
 
 
  

Assessing the number of final classes- In cluster analysis, there is no clear-cut empirical method to 
determine the best number of clusters for a classification (Handl et al. 2005). We used 
professional judgment, based on maps of HUC6s for each dendrogram branch pair and 
comparisons of the boxplots of the landscape variables, to decide at what level we ceased gaining 
useful distinctions for new classes. There are a variety of analyses that can be used to evaluate 
those decisions. For each of the natural feature classifications we calculated mean within-cluster 
similarities (Euclidean distance) for 2 through 50 clusters generated by three widely used 
hierarchical agglomerative clustering methods: flexible beta, Ward’s method, and k-means 
clustering. Then, using the flexible beta clusters, we plotted three other statistical measures to 
evaluate cluster strength for 2 to 50 clusters. First, we calculated a pseudo F statistic which is the 
ratio of the mean sum of squares between groups to the mean sum of squares within groups. 
Large values of the pseudo F indicate better clusters.  Second, we calculated the Anosim R which 
compares the within cluster dissimilarities (distance) to the between cluster dissimilarities based 
on ranks rather than values. Third, we calculated the KGS K statistic at each level of the tree as the 
mean dissimilarity across all clusters. After normalizing, the number of clusters times alpha is 
added. The minimum of this function over all levels (numbers of clusters) corresponds to the 
suggested pruning size. 

Associations between Natural feature and human disturbance 

We examined the associations between the set of natural feature input variables and 
classes, and the set of human disturbance input variables and classes, for each of the three top-level 
natural feature classes. We produced contingency tables of natural feature classes and 
disturbance classes at the finest classification resolution, and plotted the percent of HUC6s in each 
cell. We ran correlations of the natural feature variables and disturbance variables, as well as the 
disturbance PC1 for each of the three top-level natural feature classes. Because we expected 
human disturbance to be negatively associated with elevation, we made box plots of watershed 
elevations for each disturbance class, separately for the west side and the east side. 

IMW assessment 

We selected 22 projects that participate in the network of Intensively Monitored 
Watersheds. In GIS we joined the IMW location data with the HUC6s to match the natural feature 
classes and disturbance classes with those IMW projects. We summarized and mapped the 
distribution of natural feature classes in the IMW projects, and plotted the distribution of 
disturbance PC1 scores for the IMW HUC6s for each top-level natural feature class. We also 
plotted the IMW HUC6s on the natural feature PC1 by PC2 plot to show their distributions in 
natural feature ordination space. 
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Results 

Geographic characteristics 

While our study watersheds are generally of similar size (Table 1), they are quite diverse 
with regard to other physical and climate characteristics. For example, mean elevations range 
from 3 to over 3100 m, mean watershed slopes range from essentially flat to over 32 degrees, and 
annual precipitation ranges from 17 to over 480 cm (Table 1). Five natural feature variable pairs 
were moderately well correlated with each other (|r| between 0.57 and 0.73) (Table 2). Proportion 
of highly erodible land was the least correlated with any of the other variables (|r|<0.39). The 
distributions of the raw values for the four human disturbance measures were highly skewed 
(Table 3). A high portion of watersheds had zero urban land use (40%) or agricultural land use 
(45%), while nearly all watersheds had some roads (96%) and impervious surface (95%). The 
transformed, truncated and scaled disturbance measures were all positively correlated (Table 4). 

Table 2. Pearson correlation coefficients among the scaled natural feature 
variables for the 8,438 6th-field HUCs in the PNW. Precip = annual precipitation; 
Grow = growing degree day; Temp = annual temperature range; Elev = elevation; 
Slope = watershed slope; Erode = proportion of watershed in highly edrodible 
geology; Low-Grad. = low gradient stream density. 

 
 

 Precip Grow Temp  Elev Slope Erode 
   

Grow -0.42      
    

 Temp 
 

-0.73 
 

-0.02 
 

    
 

Elev -0.15 -0.69 0.59    
    
Slope 
 

0.59 
 

-0.50 
 

-0.24 0.26   
 

Erode -0.23 0.17 0.13 -0.09 -0.38  
    
Low-Grad. -0.34 0.36 0.13 -0.20 -0.57 0.29 
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Table 3 Raw data distribution characteristics of landscape-scale human 
disturbance measures. 
  
 % HUCs with 99th percentile  maximum  

variable = 0 value value 
  
% Urban  40 23.5% 80.9% 
  
% Agricultural 45 88.2% 97.2% 
  
% Impervious 4 8.5% 47.6% 
Surface  
  
Road Density 5 36.6 109 

 
 
 
 
Table 4 Correlations (Pearson=s r) among the transformed, truncated 
and scaled disturbance measures. 
  
 Urban Agricultural Impervious  

Surface 
  
Agricultural 0.59   
  
Impervious 0.81 0.37  
surface 
  
Road density 0.55 0.30 0.54 

 
 
 

 
 

 

 

 
 

Multivariate Gradients 

In the PCA of the natural feature landscape variables, the first two principal components 
accounted for 69% of variability (Table 5). Watershed slope, precipitation, growing season 
(growing degree day) and low-gradient streams loaded onto PC1, and elevation and temperature 
range loaded onto PC2. The watersheds formed two fairly distinct clouds of points when plotted 
on PC1 and PC2 (Figure 2 top). The watersheds in the two clouds generally comprised the west 
side and east side of the Cascades (Figure 2 middle).  This is widely recognized as the most 
important freshwater ecosystem divide in the PNW. These watersheds were distinguished 
primarily by annual precipitation, annual temperature range and elevation (Figure 2 bottom). This 
was not strictly a drainage split, approximately 30 eastward-draining watersheds were in the west 
side ordination space and approximately 50 westward-draining watersheds were in the east side 
ordination space (mostly in the south). 
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The PC1 of a PCA of the disturbance measures accounted for 65.3% of variability in the 
data. The four disturbance measures loaded onto PC1 fairly evenly, with eigenvectors ranging 
from 0.42 (agricultural land use) to 0.58 (urban land use). We judged that PC1 scores could be 
used as an overall landscape human disturbance measure for the watersheds. 

Natural feature Classification 

As described in Methods (above) our top-level natural feature classification of HUC6s 
divided the PNW watersheds into a west side class (n=1,578), an east side basins class (n=1,980) 
and an eastside mountains class (n=4,880). Here, we present the west side classification results in 
some detail, and the two east side classes in less detail. 

West side clusters - The flexible beta clustering met our acceptance criteria for up to between 7 and 
13 clusters; the dendrogram was reasonably well balanced, the clusters exhibited fairly good 
geographic cohesion (although some geographic checkerboarding occurred at the 13 clusters level, 
(see below). The mapped clusters matched the established understanding of landscape structure 
such that we could name the clusters, at least to the seven cluster level. 

The top branch point (BD=38) (Figure 4) divided the watersheds into an uplands/steep 
class (n=1,322) versus a lowlands/flat class (n=256). Elevation, watershed slope, erodibility and 
low gradient stream density were markedly different between these classes (Figure 5). The second 
branch point (BD=18) divided the uplands/steep class into a mountains class (n=1,041) versus a 
foothills fringe class (n=281) that included portions of the Rouge Valley, and numerous 
watersheds adjacent to the coast. Again, elevation, watershed slope, erodibility and low gradient 
stream density distinguished these classes. The third branch point (BD=12) divided the 
mountains watersheds into a high Cascades/Olympics class (n=362) versus a Coast Range and low 
Cascades class (n=679) that differed primarily in elevation, growing season and low gradient 
stream density. The input variables (except for erodibility), exhibited less variability in high 
Cascades and Olympics class than in the Coast Range and low Cascades class. 

The fourth west side branch point (BD=8) divided the Coast Range and low Cascades 
watersheds into a low Cascades and (generally) southern Coast Range class (n=495) versus a 
northern Coast Range class (n=184) that also included about 20 southern Coast Range watersheds 
near the ocean. These classes were distinguished primarily by precipitation, growing season, and 
temperature range. Two separate branches divided at BD=6. The lowlands class divided into a 
Willamette Valley and Puget Lowlands class (n=161) versus a low coastal and Chehalis Valley 
class (n=95) that included about 15 Puget Lowlands watersheds. These classes differed in 
precipitation, growing season, temperature range and watershed slope. We chose not divide these 
classes further. The other branch point at this level divided the foothills fringe class into a Puget 
foothills and low coastal watersheds class (n=137) versus an Oregon foothills class (n=148) that 
comprised the Willamette foothills, the Rouge Valley and Roseburg Valley. These classes were 
distinguished primarily by precipitation, growing season, and temperature range, and to a lesser 
extent by watershed slope. We chose not to divide these classes further. 

The three mountainous westside branches divided into two, three and four clusters at BD of 
about 4. Although we examined these smaller classes, we chose to stop at the 7-cluster 
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classification (Figure 4 & 5; Table 6) for the west side watersheds described above: two 
low-elevation relatively flat classes, and two foothills classes and three mountains classes, with 
between 95 and 495 watersheds. 

This choice was supported by plots of mean within-cluster similarities for 2 through 50 
clusters generated by flexible beta, Ward’s method, and k-means clustering (Figure 6 top). For all 
methods, mean within-cluster similarity increased fairly quickly until about six or seven clusters, 
with little difference among the three methods. For the first 50 flexible beta clusters (Figure 6 
bottom) the pseudo F statistic began leveling off at around 10 cluster, the Anosim R values began 
leveling off at around 7 clusters, and the KGS values reached a minimum in the 5 to 7 clusters 
range. 

Table 5. Principal components analysis of seven natural feature variables for the 8,438 6th -
field HUCs in the Pacific Northwest. Eigenvalues and proportions of variability accounted 
for by the first two principal components are shown, as are the PC1 and PC2 eigenvectors 
(loading) for each variable. Precipitation was natural log transformed, watershed slope and 
low-gradient stream density were cube root transformed. All variables were then scaled to a 
range of 0 to 1. 
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Eigenvalue Proportion 

PC1 2.82 0.40 

PC2 2.03 0.29 

Loading 

    
 

  
 
 

 

 
 

 

 
 

 

 
   

 
 

 
 

 
 

 

 
  

 
 

 
 

 
   

 
 

 

 

PC1 PC2 

Climate 

Annual precipitation -0.46 -0.34 

Annual temperature range 0.23 0.60 

Growing degree day 0.42 -0.34 

Land form 

Elevation -0.18 0.64 

Watershed Slope -0.51 0.03 

Geology 

% Watershed as highly erodible 0.30 0.01 

Stream form 

Low-gradient stream density 0.41 -0.08 



 

 

 

 

 

Figure 4. Natural feature cluster dendrogram for the Westside HUC6. 
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Figure 5. Geographic location and characteristics of the Westside natural feature classes. Box 
and whisker plots show scaled scores for the natural feature variables each class.  Box colors 
match classes to map locations. 
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Table 6. Westside natural feature classes, the number of Intensively 
Monitored Watersheds (IMW) and the total number of HUC6 in the PNW in 

 each class. 
 
 

 Natural feature Class 
 IMW 

basins 
 PNW 
 HUCs 

 
I. 
 
 
 
 
 
II. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

	

Lowlands 
 
A. Willamette Valley & Puget Lowlands 	
 

 B. Low Coastal & Chehalis Valley	 

Mountains & Uplands 
 

 A. Foothills, Rouge Valley & Roseburg Valley	 
  
 1.Puget Foothills & Coastal 
  
 2.Willamette Foothills, Rouge Valley 
 
B. Mountains 	
  
 1. High Cascades & High Olympics 	
  
 2. Coast Range, Southern/Low Cascades 
   
  a. Southern Coast Ranges & low Cascades 
   
   b. Washington & NW Oregon Coast Range 

3 


2 

1 


29 

1 

--

1 

28 

--

28 

17 

11 


256 


161 


95 

1,322 

281 


137 


148 


1,041 

362 


679 


495 


184 
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Figure 6. Changes in the statistical attributes of the Westside natural feature clustering with 
increasing number of clusters. 
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East side clusters - It was more difficult to find convenient names for most east side classes (both 
Basins and Mountains), than it was for the west side.  Potential class names tended to contain 
multiple descriptions of key variables that were relative to the parent class (e.g., wetter, cooler). 
With regard to the final number of classes (clusters), for both top level east side classes, mean 
within-cluster similarity increased fairly quickly until about seven to ten clusters (see below). 

Eastside Basins - The top branch divided the watersheds into a hot dry basins class 
(n=1,003) primarily in the Columbia Plateau and Snake River Plain ecoregions versus a more 
temperate basins class (n=977) primarily in the Rocky Mountains and the Idaho Batholith. 

Precipitation and growing season were the major differences between these classes (Figure 
7). The second branch divided the hot, dry basins class into a lower, hotter, erodible class (n=421) 
mostly in the Columbia Plateau and Snake River Plain versus a higher, less hot, drier class (n=582) 
that included the Northern Basin and Range ecoregion and foothill areas around the other class. 
Growing season, elevation, erodibility and precipitation distinguished these classes. The third 
branch divided the temperate basins watersheds into three classes: a cooler, higher class (n=321), a 
southern warmer, lower class (n=266) and a northern warmer, lower class (n=390). There was a 
mix of differences in all seven input variables among these three classes. Subsequent divisions of 
these five classes of Basins watersheds were into more erodible and less erodible classes of 
watersheds. 

The hot, high basins class divided into a higher, less hot, more erodible class (n=253) and a 
hotter, lower, less erodible class (n=329). The hot, low, dry, erodible basin class (Columbia 
Plateau and western Snake River Plain) divided into a very erodible class (n=254) and a 
moderately erodible class (n=167). The southern warm/lower class (from the temperate basins 
class) divided into a low gradient streams class with highly variable erodibility (n=105) and a 
highly erodible class (n=161), with fewer low gradient streams. Stopping at this point produced 8 
classes (Figure 8; Table 7). 

The results of the assessments aimed at determining an appropriate number of classes, for 
the east side Basins watersheds, were similar to those on the west side. The mean within-cluster 
similarity plot began to level off at around 6 to 10 clusters, the pseudo F at around 8 to 10 clusters, 
and the Anosim R at 10 clusters. The KGS K-statistic reached a minimum at 6 to 8 clusters. 
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Figure 7. Characteristics of each level of the Eastside Basins natural feature classification.  Box 
and whisker plots show the scaled 0-1 scores for each natural feature class. See Table 2 for 
variable definitions 
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  Figure 8. Location of the lowest level Eastside Basins natural feature classes. See Table 7 for 
class names and abbreviations. 
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Table 7. Eastside Basins natural feature classes, the number of Intensively 
Monitored Watersheds (IMW) and the total number of HUC6 in the PNW in each 
class. 

  IMW  PNW 
 Landscape Class basins  HUCs 

 
I. Hot and Dry Basins 
  

1 1,003 

 A. Hot, Low, Erodible Basins -- 421 
   
  1. Very Erodible 
   

-- 254 

  2. Moderately Erodible  
  

-- 167 

 B. Mid-Elevation, very warm, Dry, mod. Erodible Basins 
   

1 582 

  1. Dry, very Warm, mod. High, mod. Erodible 
   

1 205 

  2. Fairly Hot, mod. Low, less Erodible 
 

-- 124 

 II. Temperate Basins 
  

14 977 

 A. Cool, High Basins 
  

-- 321 

 B. Southern, Warm, mid-Elevation, Low Slope Basins 
   

1 266 

  1. Higher Gradient Streams, Very Erodible 
   

1 161 

   2. Lower Gradient Streams, variable Erodibility 
  

-- 105 

 C. Northern, Warm, Lower Basins 13 238 
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Eastside Mountains - This class includes 58% of watersheds in study area. The top branch 
divided the Eastside mountains watersheds into a wet, cool, higher elevation class (n=2,348) with 
variable erodibility, versus a drier, cooler, lower elevation, non-erodible class (n=2,532) (Figure 9). 
Geographically, the wetter, cooler mountains class tended to be at the western and eastern edges of 
the eastside region, with drier, warmer mountains class more centrally located.  The second branch 
divided the cool, wet class into a relatively cooler, wetter class (n=1,385) that had steep, less 
erodible watersheds, versus a relatively drier, warmer class (n=963) that was less steep and more 
erodible. The third branch divided the warmer, drier, lower, non-erodible mountains class into a 
generally southern, dry, less steep, higher class (n=791) with large temperature ranges, versus a 
northern, wetter, lower, steeper class (n=1,741) with smaller temperature ranges. The fourth 
branch carved off a small (n=111) class that was very cool, high, steep and erodible, from the 
moderately cool, wet and erodible mountains class. This small class was mostly in the Idaho 
Batholith and the eastern edge of the study area. The remaining larger class (n=852) was very 
similar to its parent class. 

The fifth branch divided the (northern) warm, steep, moderately dry mountains into a 
higher, cooler, steeper class (n=1,136) versus a lower, warmer, less steep class (n=605) much of 
which forms the outer edge of the Columbia Plateau ecoregion. The next branch divided the wet, 
very cool mountains into a fairly small (n=296) high and erodible class that was concentrated in the 
Idaho Batholith and southern portion of the Middle Rockies ecoregions. The other class (n=1,089) 
was very similar to its parent class, and was next divided into a drier, higher, greater temperature 
range, Middle Rockies class (n=445) versus a wetter, somewhat lower, Cascades, Blue Mountains, 
and Northern Rockies class (n=644). The moderately cool, wet and erodible mountains class 
divided into a wetter and lower class (n=395) and a drier, higher class (n=457) with greater 
temperature ranges. Geographically, these two classes generally separated into southern and 
northern areas, except along the Oregon Cascades. Stopping at this level produced 9 Eastside 
Mountains classes, with between 111 and 1,136 watersheds (Figure 10; Table 8). 

The results for three of the four assessments aimed at determining an appropriate number of 
classes, for the Eastside Mountains watersheds, were similar to other two top level classes. The 
mean within-cluster similarity plot began to level off at around 8 to 10 clusters, and the Anosim R at 
9 clusters. The KGS K-statistic reached a minimum at 6 to 8 clusters. The Eastside Mountains data 
set was apparently too large to run the pseudo-F assessment with our software. 
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Figure 9. Characteristics of each level of the Eastside Mountains natural feature classification. 
Box and whisker plots show the scaled 0-1 scores for each natural feature class (see Table 2 for 
variable definitions). 
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Figure 10. Location of the lowest level Eastside Mountains natural feature classes. See Table 8 
for class names and abbreviations. 
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Table 8. Eastside Mountains natural feature classes, and the number of Intensively 
Monitored Watersheds (IMW) and the total number of HUC6 in the PNW in each class. 

  
  IMW  PNW 

 Landscape Classes basins  HUCs 
  
I. Dry, Warm, moderately Low Mountains 
  

34 2,532 
 

 A. Steep, moderately Dry Mountains 
   

32 1,741 
 

  1. Warm, Low, mod. Dry, mod. Steep 
   

8 605 
 

  2. Cooler, Wetter, Higher, Steep, Non-erodible 
  

24 1,136 
 

 B. Dry, mid-Elevation, mod. low Gradient Mountains 
 

2 791 
 

II. Wet, Cool, High Mountains 
  

74 2,348 
 

 A. Moderately Wet, mod. Cool, Erodible Mountains 
   

23 963 
 

  1. Moderately Cool, Mid-Elevation, Mod. Steep,  
    

18 852 
 

   a. Wetter, Lower 1 395 
     
   b. Drier, Higher 
   

17 457 
 

  2. Very Cool, High, Very Steep, Very Erodible 
  

5 111 
 

 B. Wet, Very Cool, Steep, mod. Erodible Mountains 
   

51 1,385 
 

  1. Very Wet, Cool, Mid-Elevation, Low Erodibility 
    

45 1,089 
 

   a. Cascades, Blue Mountains, Northern Rockies 11 644 
     
   b. Middle Rockies 34 445 
    
  2. High, Wet, very Cool, mod. Erodible 6 296 
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Human Disturbance Classification 

The flexible beta cluster analysis of the four scaled disturbance measures produced a 
balanced dendrogram that divided (BD ~105) the PNW watersheds into a generally 
low-disturbance class (n=4,794) and a generally high-disturbance class (n=3,644) (Figure 11). In 
the low-disturbance class urban, agriculture and impervious surface were quite low, but the median 
(scaled) value for road density was ~0.5 (out of 1). The map of the low disturbance watersheds is 
similar to a map of public lands in the PNW (Figure 12). All disturbance measures were distinctly 
higher in high-disturbance class. 

The low-disturbance class divided (BD ~45) into an essentially undisturbed class 
(n=1,021) and a larger (n=3,773) generally low-disturbance class with distribution of disturbance 
measures similar to its parent class. The undisturbed class had very low values for urban, 
agriculture and impervious, as well as the lowest values for roads of any of the final classes. This 
was a fairly distinct class at this level of the dendrogram, in that it did not divide again until 
BD~10. The second level low-disturbance class divided at BD~24 into a very low disturbance but 
roaded class (n=2,736) and a moderately low disturbance class (n=1,037). The very low 
disturbance class had urban, agriculture and impervious values very similar to those in the 
undisturbed class, but had a median value for roads ~0.55. This class next divided at BD~20 into 
clusters differentiated only by road density. Most of the watersheds in lower road density cluster 
at this division were outside the area of anadromy, thus we chose not to use this division in the final 
set of human disturbance classes. 

The top-level high-disturbance class divided, at BD~55, into a mostly westside class 
(n=1,790) and mostly eastside class (n=1,854). The westside disturbed class had distinctly higher 
levels of urban, roads, and impervious surface. The eastside disturbed class tended to have 
somewhat higher levels agricultural land use. At BD~30 the eastside disturbed class divided into a 
highly agricultural class (n=682) with relatively high urban land use, and a somewhat less 
disturbed mixed land use class (n=1,172) with partially overlapping agricultural and urban land 
use coverage. Road density and impervious surface were not different between these two classes. 

The westside disturbed class divided at BD~42 into a mostly western low mountains class 
(n=997) and a mostly large valleys class (n=793). The large valleys class had distinctly higher 
urban, agriculture and impervious surface values. The western low mountains disturbed class had 
higher values for urban than for agricultural land use, while those two measures were similar to 
each other in the big valleys disturbed class. Road densities were not different between these 
classes. The big valleys class divided at BD~25 into a highly disturbed class (n=183) and a 
somewhat less disturbed mixed urban and agricultural class (n=610).  The highly disturbed class 
HUC6s were located in and around urban centers with very high values for urban, roads and 
impervious surface, and highly variable agricultural land use. The mixed urban / agriculture big 
valleys disturbance class generally had higher agricultural land use than did the more urban highly 
disturbed class. 

The eight final human disturbance classes could be subjectively ordered from 
least-disturbed to most-disturbed (Figure 13 top). Boxplots of disturbance PC1 scores for each 
disturbance class generally support this ordering. Two pairs of disturbance classes had very 
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similar ranges of PC1 scores (Figure 13 bottom), which suggests that while two classes can differ 
in the key sources of disturbance, they may have similar overall levels of disturbance. 

Figure 11. Cluster dendrogram of the 6th field HUCs based on four human disturbance variables. 
Box and whisker plots show scaled disturbance scores for the high and low disturbance class. 
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Figure 12. Map showing location of high and low human disturbance classes (top) and land 
ownership (bottom). 
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Figure 13. Scaled human disturbance scores (0-1) for each of the lowest level human disturbance 
classes in the Pacific Northwest (top). Gradient in overall disturbance PCA axis 1 (PC1) score for 
each of the disturbance classes (bottom). 
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Associations between natural features and human disturbance 

As expected, less disturbed watersheds were at higher elevations than more disturbed 
watersheds (Figure 14). Likewise, the watersheds in each natural feature landscape class were 
not evenly distributed among the disturbance classes (Figure 15). In the westside natural feature 
class, nearly all of the watersheds in the two lowlands and the two foothills classes were in the two 
most-disturbed human disturbance classes, while very few of the watersheds in the three 
mountains classes were in those disturbance classes.  Interestingly, most westside mountains 
watersheds were in the intermediate disturbance classes and very few were in the least disturbed 
class. In contrast, a large majority of the eastside mountains watersheds were in two least 
disturbed classes. Most of the few eastside mountains watersheds in more disturbed classes were 
in the lower, drier natural feature classes. The eastside basins watersheds tended to be mostly in 
the intermediate disturbance classes with very few at the extremes. The eastside basins 
watersheds were less concentrated in particular disturbance classes than were watersheds in the 
other two top-level natural feature classes. 

Correlations between the seven natural features input variables and the four human 
disturbance variables were strongest in the westside and weakest in the eastside basins (Table 9). 
Annual temperature range was only weakly correlated (r<|0.30|) with any of the disturbance 
measures in all three top-level natural feature classes, as were annual precipitation, watershed 
erodibility and low gradient stream density in the two eastside classes. Among the other natural 
features, elevation was most strongly and consistently correlated with disturbance measures in all 
three natural feature classes. Unexpectedly, agricultural land use was negatively correlated with 
annual precipitation in all three natural feature classes. 

Figure 14. Box and whisker plot of scaled (0-1) elevation for each disturbance class. 
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Natural Feature Classes vs. Disturbance 
Relative Proportion of Sites 

Westside 

COAST RANGE • & LOW CASCADES { • • • • HIGH CASCADES • • • • 
FOOTHILLS { 

• 

• 
LOWLANDS { 

• 

Eastside Mountains 
HIGH, WET, VERY COOL • • 

WET, COOL, MID-ELEV. { • • 
& LOW ERODIBILITY • • 

VERY COOL, STEEP, HIGH 

MOD. COOL, MOD. STEEP { • • 
&MOD. WET • 

DRY, MID-ELEVATION I • • 

STEEP, MOD. DRY { • • 
• • • 

Eastside Basins 

NORTHERN, WARM, LOW ELEV. • • • 
SOUTHERN, WARM, MID-ELEV. { • 

& LOW SLOPE 

COOL, HIGH • • • 
MID-ELEV. VERY WARM, DRY { • • • 

& MOD. ERODIBLE • • 
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II.B. 2.a II .B.2.b 

Figure 15. Cross tabulation showing relative proportion of 6th field HUCs between natural 
feature classes (y-axis) and disturbance classes (x-axis).  Disturbance classes are ordered by level 
of disturbance (see Fig. 13). Diameter of the circle is proportional to number of HUCs in that cell. 
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Table 9. Associations between disturbance measures and natural features for the primary natural 
feature classes: Westside, Eastside Mountains and Eastside Basins. PC-1 is the 1st principal 
component of a PNW-wide PCA of the 4 disturbance measures used in disturbance clustering 
and could be considered as an overall landscape disturbance measure. Correlations >|0.50| are 
in bold, correlations <|0.30| are not shown, ns=not significant 

PC-1 Urban Agric Roads Imperv 

Westside 

Annual Precipitation -0.48 -0.31 -0.56 -0.37 -0.42 

Degree Days 0.45 0.35 0.50 0.41 0.32 

Ann. Temp. Range 

Elevation -0.70 -0.67 -0.53 -0.60 -0.56 

Watershed Slope -0.77 -0.61 -0.70 -0.51 -0.73 

Watershed Erodibility 0.59 0.48 0.49 0.63 

Low Gradient Streams 0.49 0.43 0.46 0.46 

Eastside Mountains 

Annual Precipitation 

Degree Days 0.41 0.30 0.33 0.37 

Ann. Temp. Range 

Elevation -0.53 -0.40 -0.30 -0.50 -0.37 

Watershed Slope -0.33 -0.34 

Watershed Erodibility ns ns 

Low Gradient Streams 

Eastside Basins 

Annual Precipitation ns ns 

Degree Days 0.30 0.42 

Ann. Temp. Range 

Elevation -0.49 -0.46 -0.54 -0.38 

Watershed Slope 

Watershed Erodibility ns 

Low Gradient Streams ns 
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Intensively Monitored Watersheds 

A majority of Westside (91%) and Eastside Mountains (86%) IMW HUC6s had natural 
feature PC1 scores <0, compared with 55% of all PNW HUC6s (Figure 16). Only 13% of Eastside 
Basins IMW HUC6s had natural feature PC1 scores <0.  The Eastside Mountains IMWs HUC6s 
appeared to be well distributed along the Eastside portion of the natural feature PC2, while 14 of 
the 15 Eastside Basins IMW HUC6s had PC2 scores >1. The distributions of the human 
disturbance PC1 scores (Figure 17) for the Eastside Mountains and Basins IMW HUC6s matched 
those of all HUC6s for their respective areas, while on the range of Westside IMW HUC6 
disturbance PC1 scores was compressed around the regional median (i.e., few low or high scores). 

The thirteen west side IMW projects (Table 4) were located in 32 Westside HUC6s, in five 
of the seven Westside landscape classes. The 88% of western IMW watersheds that were in the 
Coast Range and Southern/Low Cascades split fairly evenly between the Southern Coast 
Range/Low Cascades, and the Washington and NW Oregon Coast Ranges classes. There were no 
IMW watersheds in the High Cascades/High Olympics or the Willamette Foothills/Rouge Valley 
classes. Four of the western IWM projects spanned two landscape classes. 

The nine Eastside IMW projects were located in 108 Eastside Mountains HUC6s and 15 
Eastside Basins HUC6s (all part of the Lemhi Project). . All but 2 of 15 Eastside Basins IMW 
watersheds were in the Northern, Warmer, Lower Temperate Basins class (Table 5). The 108 
Eastside Mountains IMW watersheds occurred in all 9 Mountains classes (Tables 6) and were 
primarily in the top level class of Wet, Cool High Mountains (n=74). Of these, about 2/3 were in 
the second-level class of Wet, Very Cool, less Erodible Mountains, primarily in the Very Wet, 
Mid-Elevation, Low Erodibility third-level class (Table 6). In the Dry, Warm, Moderately Low 
Mountains top-level class, about 70% of IMW watersheds were in the landscape class of more 
moderate conditions (i.e., Cooler, Less Dry, less Steep, non-Erodible watersheds). 

All Eastside IMW projects included between two and four landscape classes. Five of these 
projects had watersheds belonging to both of the top level Mountains classes. This diversity of 
landscape classes within projects implies that was a tendency to place the projects in transitional 
areas. This also suggests that caution may be needed in order to extend IMW project results to 
other areas, particularly to areas more centrally located within Eastside landscape classes (i.e., 
non-transitional areas). 
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Figure 16. Natural feature variable PCA axis 2 (PC-2) versus axis 1 (PC-1) score plot (same plot 
as figure 2) showing the location of intensively monitored watersheds (IMW) as colored dots. 
PC-1 explained 40% of the variance and PC-2 explained 29% of the variance. Numbers in 
parentheses after the variable names indicate variable loadings on the PCA axes. 
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 Figure 17. Box and whisker plot comparing disturbance variable PCA Axis 1 (PC-1) scores for 
intensively monitored watersheds (IMW) versus all 6th-field HUCs by top level natural feature 
class. 
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