

Purpose

- The Habitat Workgroup was charged with estimating survival benefits associated with proposed tributary habitat restoration actions.
- The task was to be completed within a very short time-frame (three months) with readily available information.
- To the extent possible, the approach needed to improve upon the Appendix E Approach used in the 2004 BiOp .

Potential Tools

- Fish-Habitat Models (e.g., EDT, HQI, PHABSIM, RIPPLE, Shiraz, Greene and Beechie model, McHugh et al. model, Bioenergetic models, etc.).
- Professional Judgment (Delphi) Approach (similar to the Appendix E approach).

Limitations

- Very short time period to complete the work for salmon and steelhead populations throughout the Columbia Basin.
- Must use existing information that is readily available.
- Cannot accurately estimate the effects of tributary habitat actions on survival at all life stages.

Survival benefits will only be estimated for egg-smolt and pre-spawn life stages.

Chain of Causation

Logic Path

Habitat Action \longrightarrow Limiting Habitat Factors \longrightarrow Local Habitat Conditions \longrightarrow Overall Habitat Quality \longrightarrow Freshwater Survival

Assumptions

- Limiting habitat factors are known for each population.
- Habitat actions directly affect habitat variables that limit the population.
- Habitat variables can be combined to describe local habitat conditions.
- Local habitat conditions can be combined to describe overall habitat quality for the entire population.
- Changes in overall habitat quality are directly linked to changes in freshwater survival.

Process

- Requires Local Biologist Input

- Identify limiting habitat factors for each assessment unit or population.
- Estimate the "current" status or condition of each limiting habitat factor.
- Identify habitat actions that would address the limiting habitat factors.
- Estimate the "potential" status or condition of limiting habitat factors if the habitat action is implemented.
- Requires Remand Habitat Workgroup Input
- Combine limiting habitat factor scores into a single local habitat condition score.
- Combine local habitat condition scores into a single overall habitat quality score for the population.
- Translate habitat quality change into survival change.

Identification of Limiting Habitat Factors

- Identify site-specific limiting habitat factors.
- From Recovery Plans, Draft Recovery Plans, Subbasin Plans, and Limiting Factors Analysis Reports.

Estimate "Current" Status of

Limiting Habitat Factors

- Estimate the "current" status of limiting habitat factors as a percent of optimal condition (0 100\%).
- Optimal condition was based on properly functioning condition (PFC) (NMFS 1996).
- Weight the importance of each limiting habitat factor (scaled from 0.00-1.00 with sum $=1.00$).
- Lethal factors or factors $<20 \%$ of optimum were automatically given a weight of 1.00 .
- Assign weights to each assessment unit (scaled from 0.00-1.00 with sum = 1.00).
- Weights were based on proportion of the total population area that each AU made up.

Identify Tributary Habitat Actions

- Identify specific habitat actions that will address the limiting habitat factor.
- The habitat action must directly or indirectly address the limiting factor and/or threat.

Estimate "Potential" Status of Limiting Habitat Factors

- Estimate the "potential" status of limiting habitat factors as a percent of optimal condition ($0-$ 100\%).
- Condition that should result if the habitat action is implemented.
- Estimate the potential status of each limiting habitat factor in 10 and 25 years.
- If necessary, re-weight the importance of each limiting habitat factor (scaled from 0.00-1.00 with sum = 1.00).

Derivation of Current and Potential

Local Habitat Conditions

- Step 1: Calculate the weighted status of each limiting habitat factor. This equals the status of the habitat factor (as a \% of optimal condition) times its associated weight (relative weight of the factor on fish survival).
- Step 2: Combine the weighted status scores into a composite local habitat condition score for each assessment unit. Calculated by adding together the weighted habitat status scores.

Derivation of Current and Potential

Overall Habitat Quality

- Step 3: Multiply the local habitat condition scores for each assessment unit by their respective assessment unit weights.
- Step 4: Add together the products (weighted habitat condition scores) to estimate the overall habitat quality score for the population.

Derivation of Survival Benefits

Fish-Habitat Relationships

Important Habitat Metrics for Chinook

Non-Woody Vegetation (3.1\%)

Artificial Fish Cover (2.8\%) Habitat Metrics

Derivation of Survival Benefits

- There are published relationships between habitat variables and survival.

$$
\begin{aligned}
& p_{1,2}= \begin{cases}0.95 & \text { if } f<0.268 \\
-3.32 f+1.81 & \text { if } 0.268 \leq f<0.544 \\
0.06 & \text { if } f \geq 0.544\end{cases} \\
& P_{2,1}= \begin{cases}0.273 T_{\max }-0.342 & \text { if } 13 \leq T_{\max }<4.7 \\
0.94 & \text { if } 4.7 \leq T_{\text {ic }}<14.3 \\
-0.245 T_{\max }+4.44 & \text { if } 14.3 \leq T_{\operatorname{mc}}<18.1 \\
0.01 & \text { if } T_{\max } \geq 18.1\end{cases} \\
& P_{2,2}= \begin{cases}0.58-0.844 Q^{*} & \text { if } Q^{*}<0.675 \\
0.01 & \text { if } Q^{*} \geq 0.675\end{cases}
\end{aligned}
$$

Functional Relationships between Habitat Quality and Survival Index

Functional Relationships

Chinook egg-smolt survival $=0.0018(\mathrm{HQI})$

Steelhead egg-smolt survival $=0.0004$ (HQI)

Chum egg-fry survival $=0.0035(\mathrm{HQI})$

Adult pre-spawn survival $=1.00(\mathrm{HQI})$

Assumptions

- Egg-smolt survival is the lowest when habitat quality is the lowest and survival is the highest when habitat quality is the highest.
- Egg-smolt survival is directly proportional to habitat quality.
- Mortality is density independent.
- Hatcheries have no effect on survival of naturally produced fish.

Estimation of Benefits

Habitat Change $=\left.H\right|_{\text {potential }} / H Q I_{\text {current }}$
Survival Change $=S_{\text {potential }} / S_{\text {current }}$

Considerations

- Use empirical data to the extent possible.
- Remember the River Continuum Concept (RCC).
- Assess habitat quality upstream from fish barriers.
- Consider the timing of restoration effects.
- Consider life-stage habitat requirements and the limiting factors associated with each life stage.

Spawning
Habitat

