Bureau of Reclamation Mid-Pacific Region

California Department of Water Resources

Upper San Joaquin River Basin Storage Investigation

Workshop 5

April 30, 2003

Workshop Purpose and Objectives

- Review comments on Draft Phase 1 In-Progress Report
- Provide status of technical studies
- Discuss alternatives development and evaluation

Workshop 5

Agenda

Welcome and Introductions Investigation Overview Conjunctive Use & Groundwater Storage Surface Storage Options Screening Alternatives Formulation and Feasibility Study Workplan Next Steps

Participation Principles

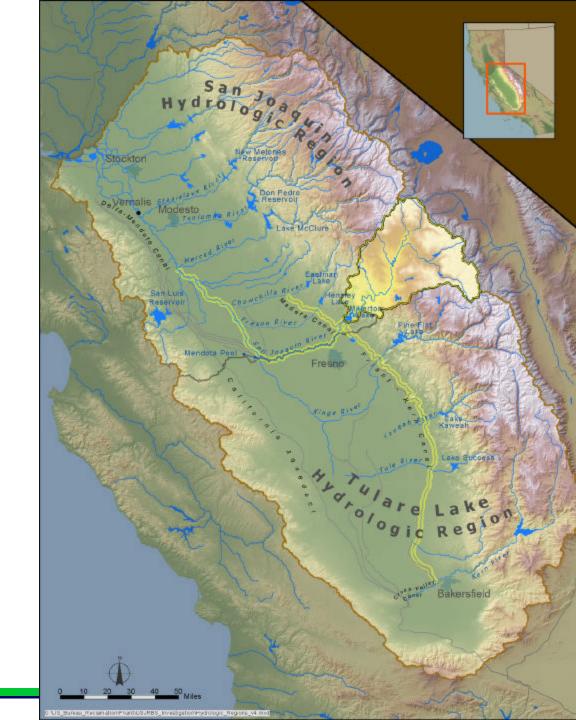
- Participate Attend the workshops
- Learn Learn about resources, people, roles, and process
- Represent Bring issues and interests forward from others whose interests you share
- Cooperate Work with others in the workshops to share information and consider options
- Educate Report back to others who share your interests

Workshop Ground Rules

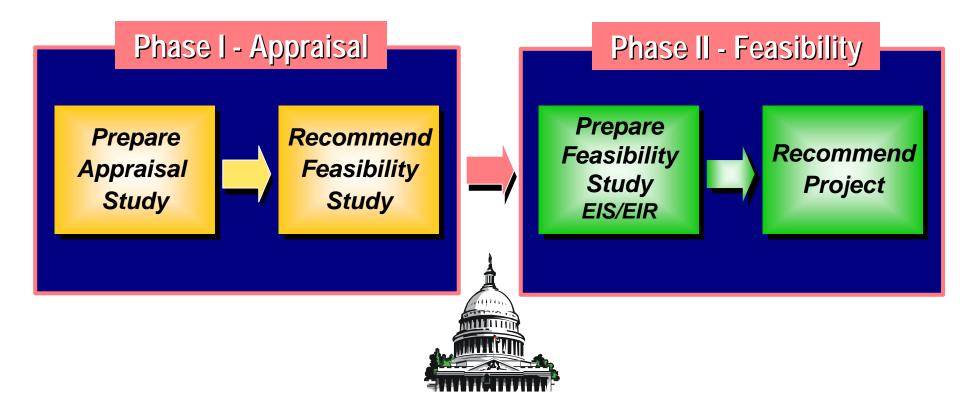
- Commit to being fully present
 - No cell phones, pagers, voicemail, etc.
 - Ask for what you need from the meeting process and participants
- Honor our time limits
 - Keep comments and discussion concise
 - Stay focused on the topic Use the parking lot for other issues
- Respect each other
 - Listen carefully to other participants
 - Respond to ideas and issues, not individuals
- Support constructive discussion
 - Suggest improvements and solutions
 - Build on others' ideas Use "and" instead of "but"

Workshop 5

Agenda


Welcome and Introductions Investigation Overview Conjunctive Use & Groundwater Storage Surface Storage Options Screening Alternatives Formulation and Feasibility Study Workplan Next Steps

Investigation Scope & Goals


- CALFED Goals for Upper San Joaquin River Basin Storage
 - Contribute to restoration of San Joaquin River
 - Improve water quality in San Joaquin River
 - Facilitate conjunctive water management and water exchanges
- CALFED Scope for Upper San Joaquin River Basin Storage
 - An additional 250 750 TAF of storage in the upper San Joaquin River watershed through enlargement of Millerton Lake at Friant Dam or a functionally equivalent storage program

STUDY AREA

- Upper San Joaquin River Basin
 - Headwaters to the Merced River
- Eastern San Joaquin Valley
 - CVP Friant Division
 - Groundwater basin

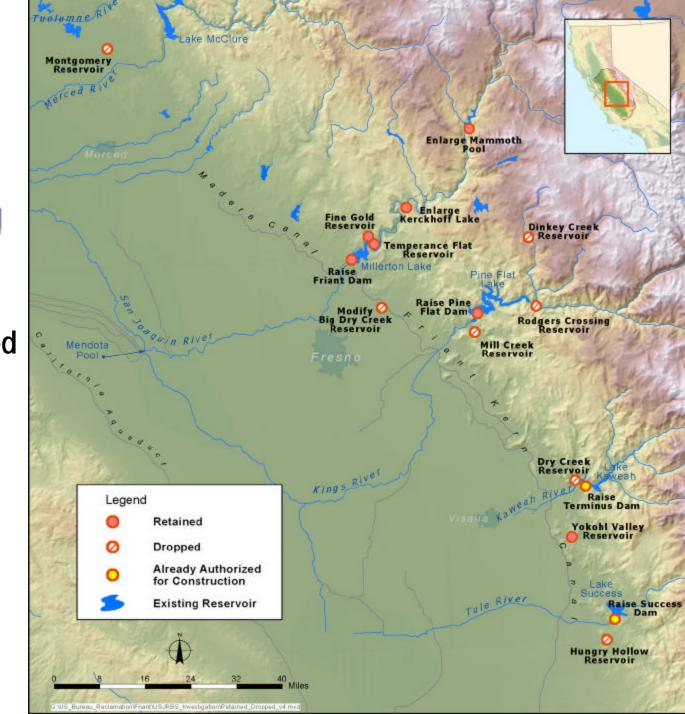
Traditional Plan Development Approach

Objectives for Phase 1 Appraisal Study

- Scope of investigation
 - Problems and opportunities
 - Planning approach
- Range of initial storage options
 - Screen options and estimate costs
 - Describe potential project accomplishments
 - Define project objectives
- Begin formulating alternatives
- Define scope of Feasibility Study

Water Resources Problems and Opportunities

Problems


- San Joaquin river ecosystem
- San Joaquin River water quality
- Groundwater overdraft
- Urban water quality
- Opportunities
 - Flood control
 - Hydropower
 - Recreation
 - Delta inflows

Planning Approach for Phase 1 Appraisal Study

Surface Storage Options Initial Screening Results

- 16 sites identified
- 2 sites already authorized for construction
- 7 sites dropped
- 7 sites retained

Review and Comment Process

Review Process

- Draft materials from team to participants
- Workshop discussion and document review at key milestones
 - Problems and Opportunities Workshop #2
 - Surface Storage Options Screening Workshop #3
 - In-Progress Phase 1 Report Workshop #4
 - Alternatives Development Currently
 - Draft Phase 1 Report -- Mid-2003
- Roles
 - Participants provide oral and written comments to team
 - Team incorporates comments or provides rationale for alternate approach, strategy, or conclusion

Phase 1 Information Available To Date

- Workshop Summaries & Handouts
- Surface Storage Technical Memoranda
- Draft In-Progress Phase 1 Report

All documents available on project website
 <u>www.mp.usbr.gov/sccao/storage/index.html</u>

Types of Comments on Phase 1 Report

Range of Phase 1 Issues

- Study process
- Conjunctive use
- Surface storage projects

Many Comments Related to a Feasibility Study

- Operational assumptions for baseline and alternatives
- Incremental alternative development
- Cost and benefit calculations
- Quantified objectives and evaluation criteria

Comments on Study Process

- Consideration of water supply reliability
- Ecosystem restoration objectives

Other project objectives

Workshop 5

Agenda

Welcome and Introductions Investigation Overview Conjunctive Use & Groundwater Storage Surface Storage Options Screening Alternatives Formulation and Feasibility Study Workplan Next Steps

Comments Regarding Conjunctive Management and Groundwater Storage

- Overdraft conditions present an opportunity for groundwater storage
- Approach for integration of conjunctive management into Investigation is not clear
- Conjunctive management and groundwater storage should be considered for alternatives

Integration of Conjunctive Management to Upper San Joaquin River Basin Storage Investigation

- Identify opportunities and specific projects
 - Similar to CALFED ISI Conjunctive Management Program
- Screen specific projects
 - Similar to approach used to screen surface storage projects
- Include specific projects in Investigation

ISI Conjunctive Management Program

- Goals
 - Help local agencies improve regional water supply reliability by increasing the coordinated use of surface water and groundwater
- Principles for project development
 - Local planning and control
 - Voluntary implementation
 - Priority for in-basin water needs
 - Compensation for out-of-basin transfers
 - Basin-wide planning and monitoring

ISI Conjunctive Management Program

MOU Between DWR and Local Entity

> Phase I Basin Assessment

- Guided by local advisory panel
- Establish basin objectives

Phase II Project ID and Evaluation

- Project-specific feasibility study and environmental documentation
- Basin-wide modeling

Phase III Project Implementation

- Local approval of feasible projects
- Subject to funding availability

Storage Investigation Conjunctive Use Approach

Step 1 Theoretical Opportunities

- Not project specific
- Based on available water supply
- Shows potential range

Step 2 Identify Specific Projects

- Consistent with CALFED Principles
- Similar to Identification component of ISI Phase II

Step 3 Evaluate Specific Projects

- Screen for inclusion in alternatives
- Similar to Evaluation component of ISI Phase II

Step 1 Theoretical Opportunities

Step 2 Identify Specific Projects Step 3 Evaluate Specific Projects

- Identify available flood flows
 - Post-Process CALSIM output
- Determine range of recharge capacity
 - Apply series of "screens" that constrain opportunities
- Apply to Benchmark and alternatives
 - Indicate how additional surface storage could facilitate additional conjunctive use

CALFED Common Assumptions Inventory

- Grant applications for studies and projects
- Previous project studies
- WEF Survey

Coordination with stakeholders

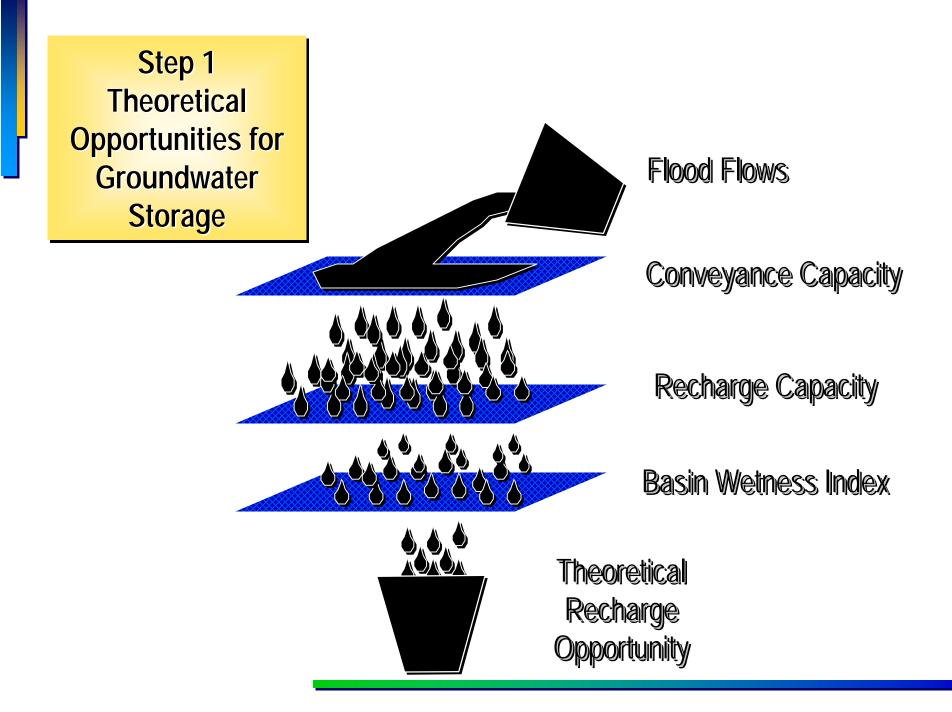
- FWUA and member water districts
- ISI Conjunctive Water Management Program

Step 2 Identify Specific Projects Step 3 Evaluate Specific Projects

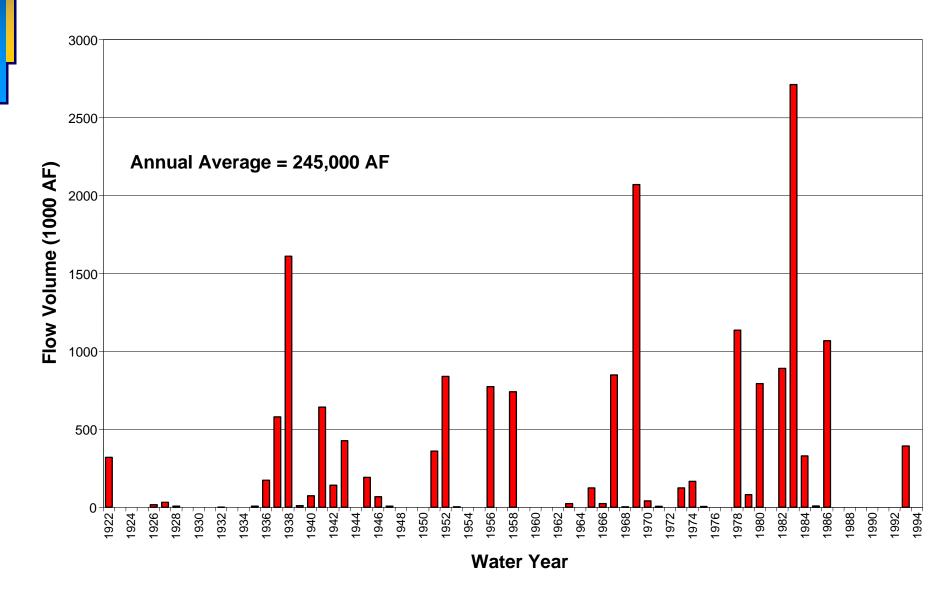
- Local project proponent
- Source and quantity of water
- Facilities and lands
- Operational assumptions and constraints
- Institutional and implementation issues
- Water developed at Friant Dam

Potential Findings from Project Evaluations

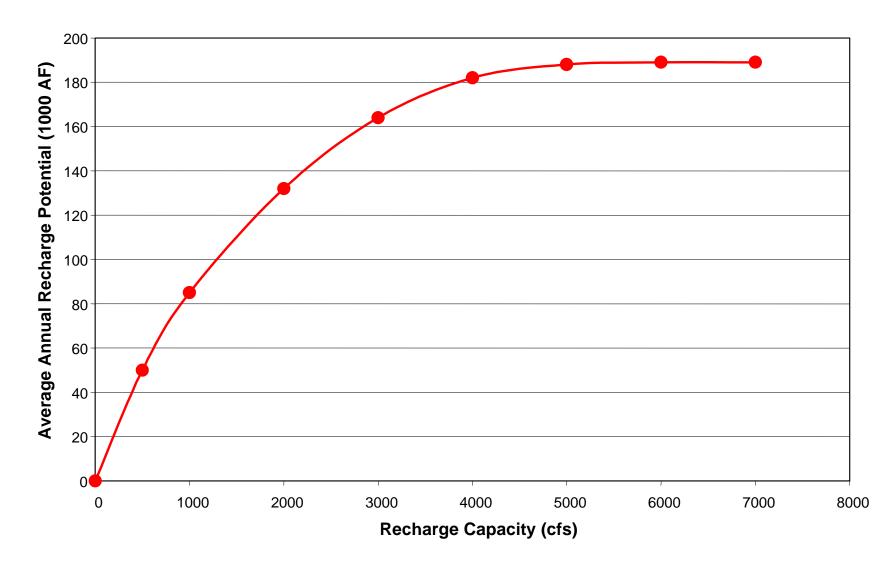
- Projects that are fully defined
 - Add to list of storage options
 - Add to Without-Project Condition
 - Do not include in Investigation


- Projects that are not fully defined
 - Continue to monitor project development
 - Coordinate with ISI Conjunctive Management Program
 - Reconsider for alternatives when better defined

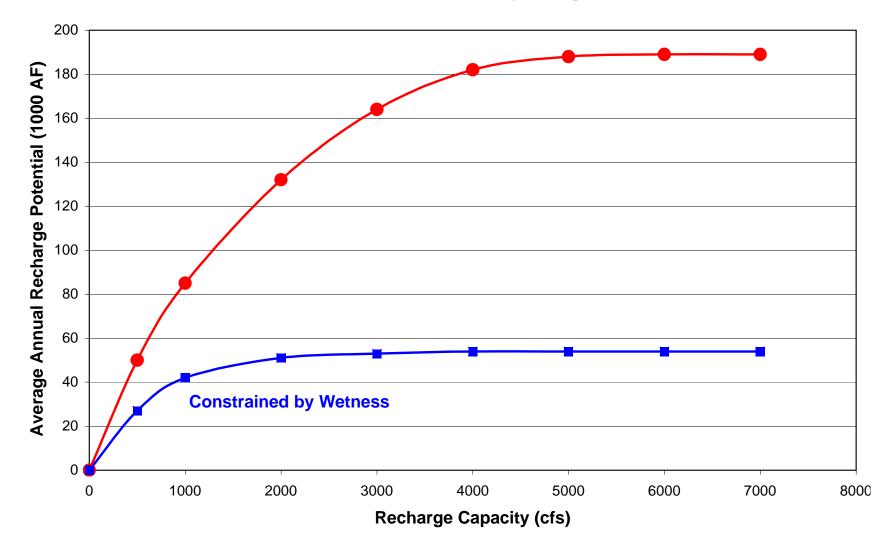
CALSIM Baseline Simulation Theoretical Groundwater Storage

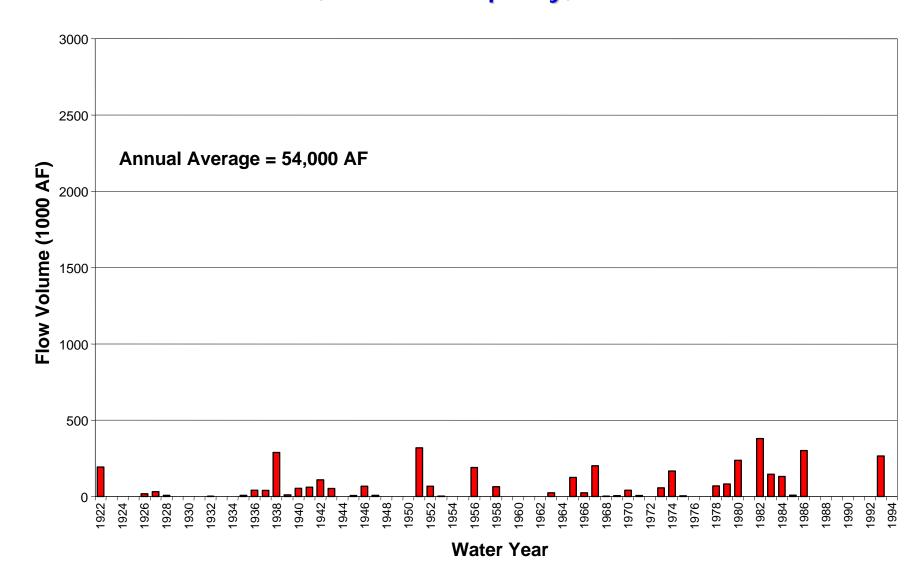

- Total flood flows available
- Range of groundwater recharge capacity
- Recharge reduction based on basin wetness
- Hypothetical reoperation to pre-deliver water
- Potential specific projects to recharge groundwater
- Potential recovery of stored water

Today Theoretical Groundwater Recharge Opportunity

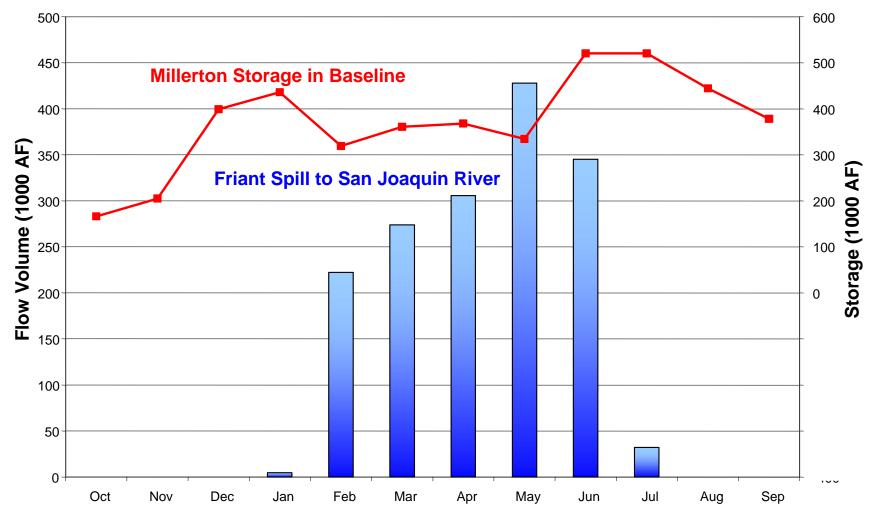

Future Groundwater Storage Options for Evaluation

Flood Flows Released from Friant Dam


Additional Groundwater Recharge Potential Based on Available Flow and Potential Available Recharge Capacity

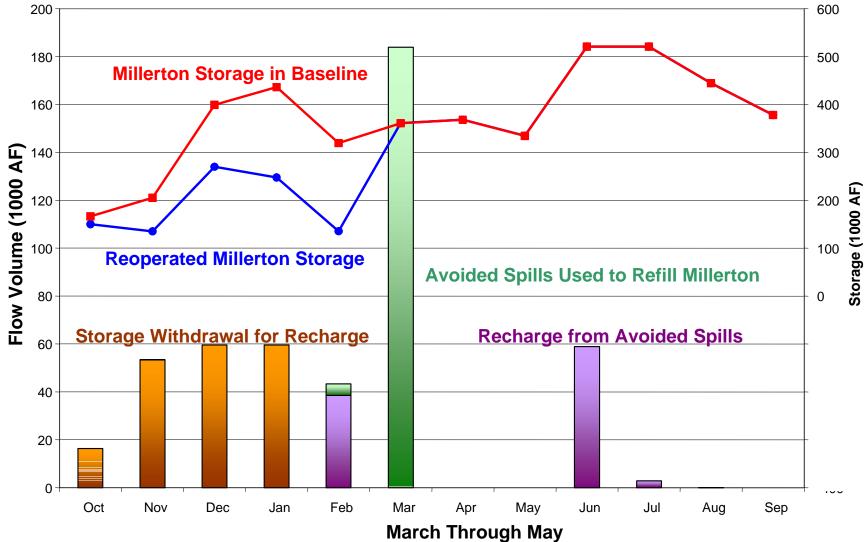

Wetness Index in CALSIM Baseline Simulation

- Friant-Kern Canal Class 2 delivery is reduced based on Tulare Basin wetness
 - Natural Flow of Tule River is used as wetness indicator
- 215 water (or Surplus Delivery) is not allocated when delivery is reduced due to basin wetness
- Assume ability to accept water for recharge would be limited based on wetness index


Additional Groundwater Recharge Potential Based on Available Flow and Available Capacity

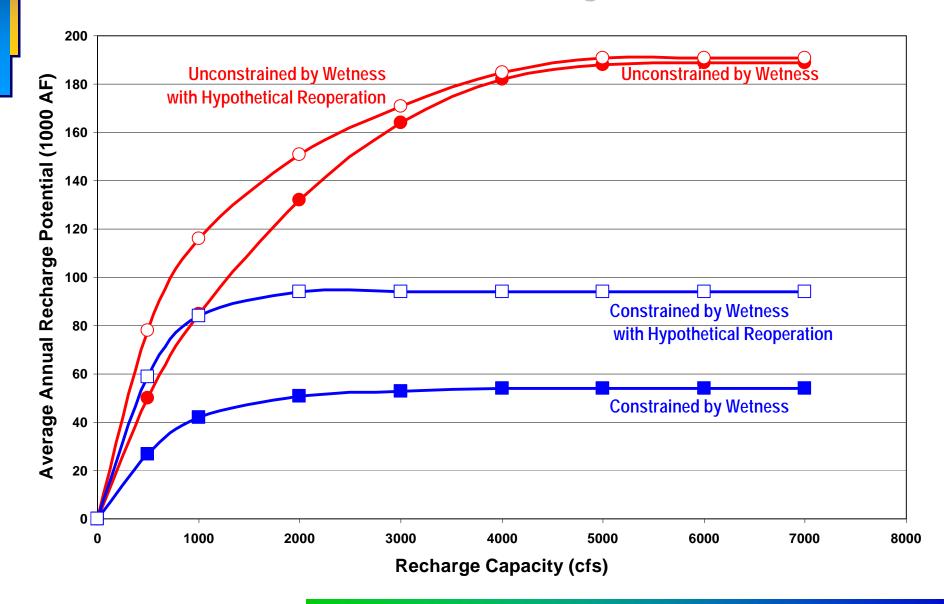
Annual Water Available for Recharge Based on Available Flow, Available Capacity, and Wetness Index

Monthly Operation of Millerton Reservoir Example for (Wet) Water Year 1938


CALSIM Baseline Simulation Adjustment Based on Hypothetical Reoperation

- Draw down reservoir at the end of the year
 - Pre-deliver water to recharge basins October through January
- Refill reservoir with winter flows
 - Reduces flood spills
 - Wetness index limits recharge in this period

Use excess water that would have spilled in the spring


Recharge when wetness allows

Example of Hypothetical Reoperation for (Wet) Water Year 1938

March Through May Wetness Index Limits Recharge

Theoretical Groundwater Recharge Potential

Theoretical Recharge Analysis Findings

- Theoretical recharge capacity is not significantly limited by canal conveyance capacity
 - Canal capacity would limit recharge only at very high recharge rates
 - Results would be similar at any recharge location
- Specific project details are needed for additional evaluation
 - Each project will have additional operational criteria and constraints

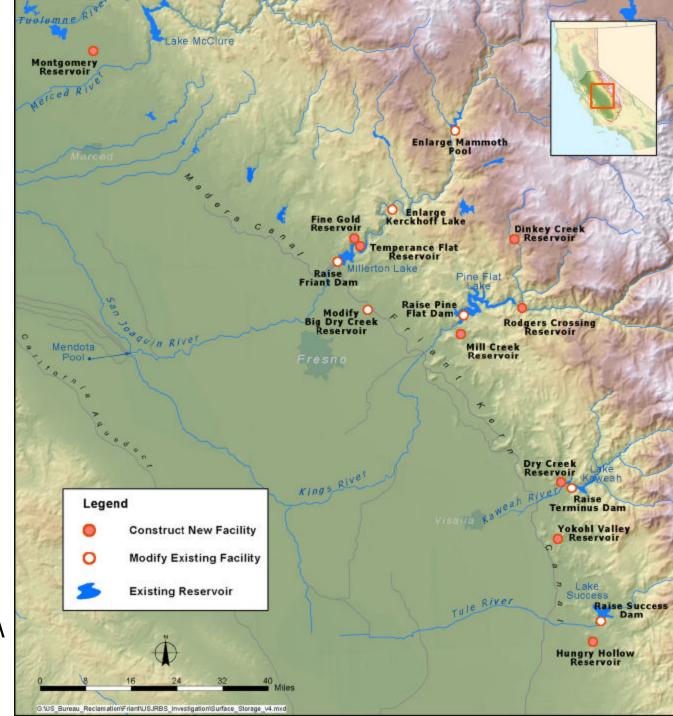
Workshop 5

Agenda

Welcome and Introductions Investigation Overview Conjunctive Use & Groundwater Storage Surface Storage Options Screening Alternatives Formulation and Feasibility Study Workplan Next Steps

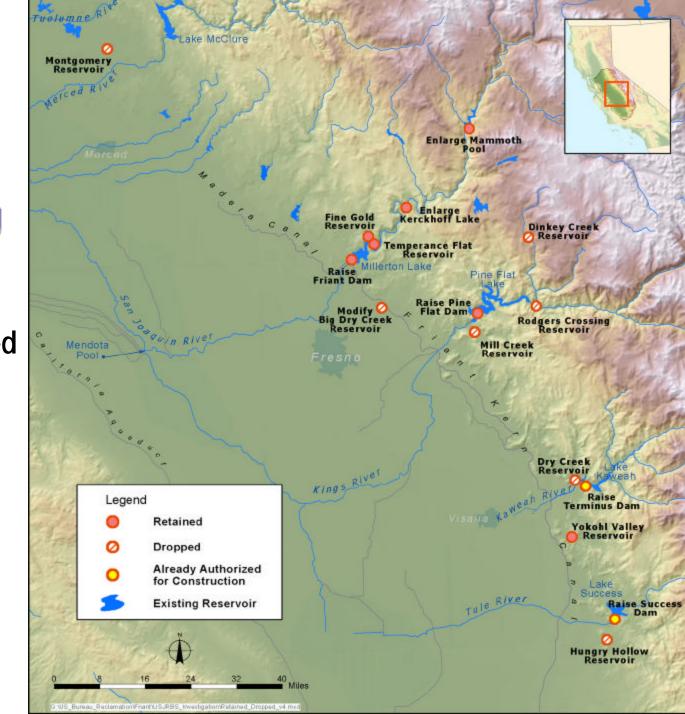
Types of Surface Storage Options

San Joaquin River Upstream of Friant Dam


- Similar to expansion of Millerton Lake
- Includes pump-back storage above Millerton Lake

• Exchange with Millerton Lake Water

- Pre-deliver water from Millerton Lake
- Storage in another watershed to replace Millerton deliveries
- Off-Canal Storage
 - Gravity or pumped storage from Friant -Kern Canal


Surface Storage Options Initial Sites Considered

- Reviewed previous studies
 - USBR
 - DWR
 - Local
 Agencies
 - NRDC/FWUA

Surface Storage Options Initial Screening Results

- 16 sites identified
- 2 sites already authorized for construction
- 7 sites dropped
- 7 sites retained

Status of Surface Storage Site Screening

SAN JOAQUIN RIVER

- Enlarge Friant
- Fine Gold
- Temperance Flat
- Enlarge Kerckhoff
- Enlarge Mammoth Pool

EXCHANGE

Enlarge Pine Flat

OFF-CANAL

Yokohl

Retained Retained Retained - multiple dam sites Include with Temperance Flat Monitor progress by FWUA/SCE

Dropped

Retained

Surface Storage Options Estimated First Costs

- Costs include
 - Listed items
 - Unlisted items (10%)
 - Contingencies (25%)
 - Mitigation (5%)
 - Investigations, design, construction mgt. (15%)
- Lands and easements costs not yet estimated
 - Exception: Yokohl

Surface Storage Options

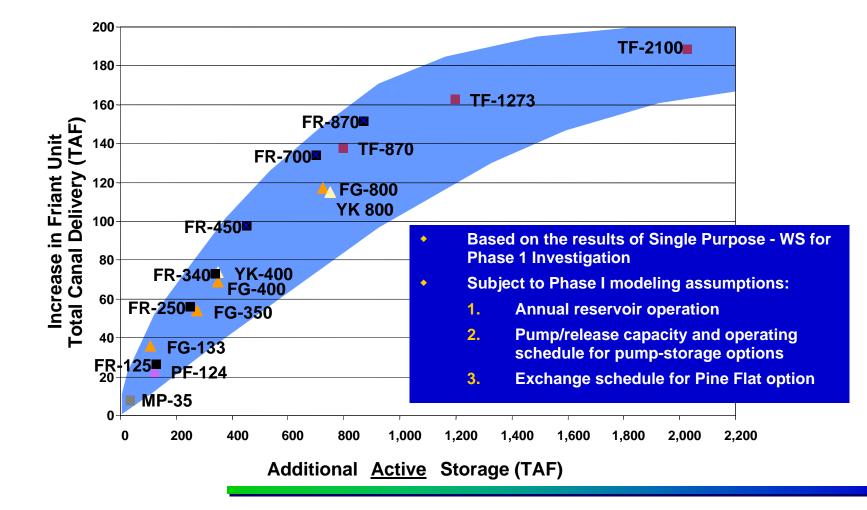
Estimated First Costs

Site	Storage Option	Max Surface Elevation (ft, msl)	New Storage (TAF)	Est. First Cost (\$M)
	Raise 25 Ft	603	132	\$113
Friant	Raise 60 Ft	638	340	\$266
	Raise 140 Ft	718	870	\$662
Temperance Flat	New Reservoir (RCC Dam)	900	451	\$435
(RM279)	New Reservoir (RCC Dam)	1100	1,273	\$771
Mammoth Pool	Enlarge Reservoir	3355	30	
Eine Cold	New Reservoir (RCC Dam)	900	133	\$161
Fine Gold	New Reservoir (RCC Dam)	1100	780	\$428
Yokohl Valley	New Reservoir (F-K Canal source	791	450	\$294

Modeling Summary From Workshop #4

Developed Benchmark

- Friant operations logic in CALSIM II model
- Logic developed from review of historical operations
- Appropriate as Benchmark for comparison
- Single-purpose analyses for surface storage options
 - San Joaquin River restoration
 - San Joaquin River water quality
 - Water supply reliability


Single Purpose Analyses Assumptions

- Annual reservoir operation
- Existing flood space rules
- New supply used for one purpose only
- Benchmark average deliveries for each year type maintained in restoration and water quality analyses

Summary of Single Purpose Analysis Results

Size	Additional Single-Purpose Release from Friant Dam			
	WS	RF	WQ	
700	134	140	134	
450	98			
340	73	Expected long	g-term average	Long-term average of W
250	56	-		RF, and WQ are similar
125	27			
35	8			
1,273	163	171	181	
2,100	189	210	222	
800	117	124	124	
400	69	E		
350	54			
133	36			
800	115	127	121	
400	74	76	69	
124	23	-	-	
	700 450 340 250 125 35 1,273 2,100 800 400 350 133 800 400	Size fr 700 134 450 98 340 73 250 56 125 27 35 8 1,273 163 2,100 189 800 117 400 69 350 54 133 36 800 115 400 74	Size from Friant Date WS RF 700 134 140 450 98 Expected Ion 340 73 Expected Ion 250 56 simila 125 27 35 8 1,273 163 171 2,100 189 210 800 117 124 400 69 Expected Ion simila 133 36 800 115 127 400 74 76 124 23 Expected Ion	Size from Friant Dam WS RF WQ 700 134 140 134 450 98

Single Purpose Analysis Results

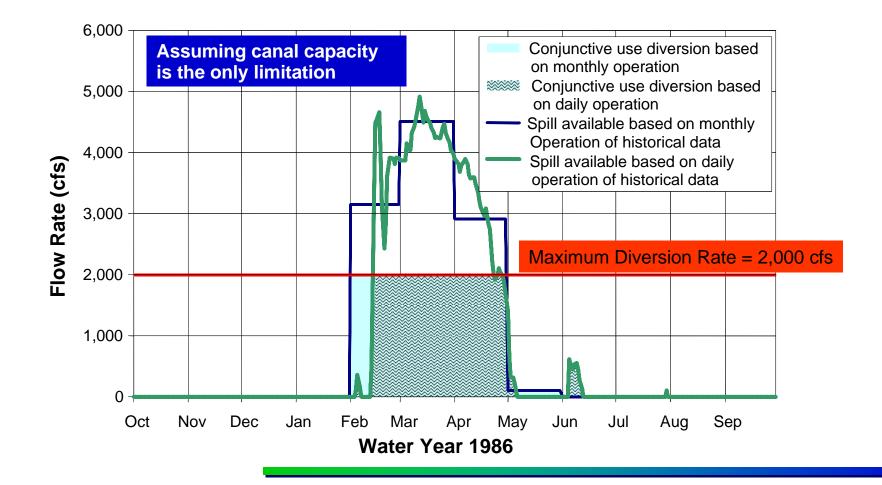
Single Purpose Analyses Findings

- Additional storage increases Class 2 water allocation and reduces available temporary flood water
- Additional water supply at Friant Dam is similar in all three single purpose evaluations
- Difficult to support new river demands in critical years
- Potential system impacts
 - Flood damage reduction
 - Same delivery to Mendota Pool, but different source mix

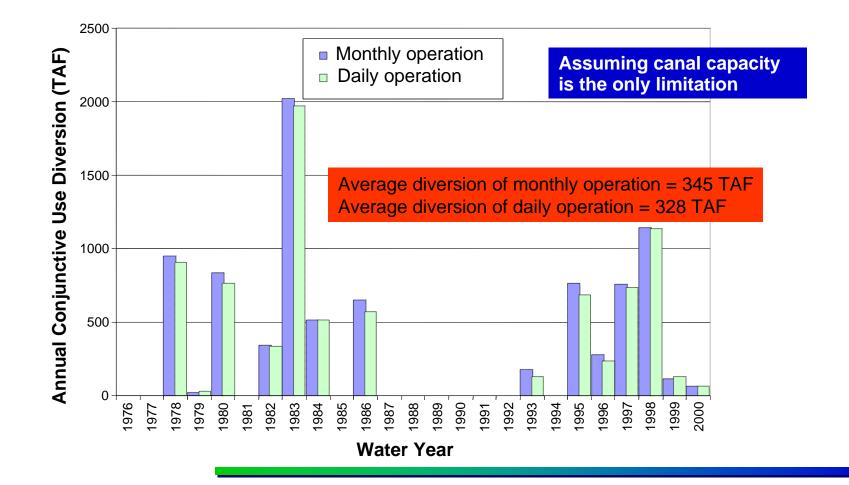
Sensitivity Analyses Suggested at Workshop #4

On Benchmark

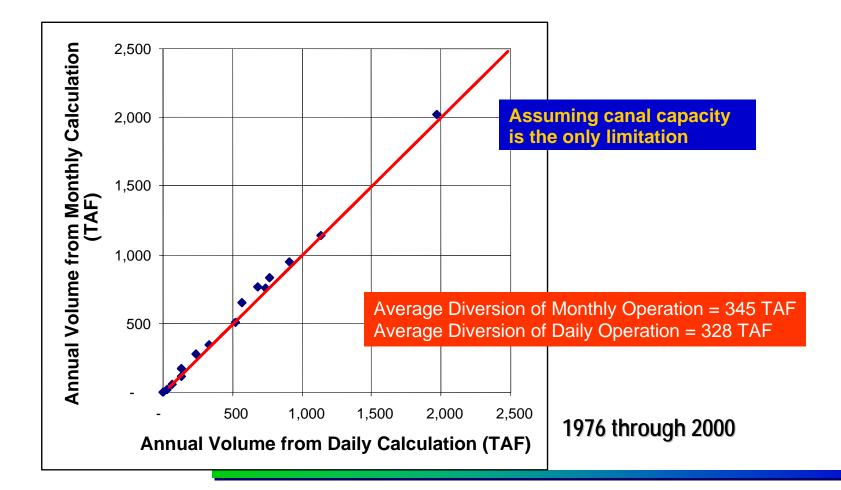
- Modeling time step (monthly vs. daily)


On Single Purpose Analyses

- Off-stream storage pumping / release capacity
- Demand pattern for river restoration
- Carryover storage operation to provide water for river releases in critical years


Sensitivity Analyses on Time Step Monthly vs. Daily Operation

- Issues
 - Flood operation requires daily or hourly simulation
 - Representation of flood release as monthly volume
 - Options subject to results of flood operation may be sensitive to the modeling time-step
 - Examples include conjunctive use and off-stream storage along the Friant-Kern Canal
- Approach in Sensitivity Analysis
 - Historical monthly vs. daily
 - CALSIM results vs. historical monthly


Sensitivity Analyses on Time Step Example - Potential water supply for conjunctive use

Sensitivity Analyses on Time Step Example - Potential water supply for conjunctive use

Sensitivity Analyses on Time Step Example - Potential water supply for conjunctive use

Findings from Time Step Sensitivity Analysis

- Use of monthly volume may overestimate available supply for canal diversions
 - Conjunctive use opportunities
 - Off-canal storage
- Difference is not significant for appraisal-level study
- Feasibility Study modeling needs
 - Shorter time steps for flood control and hydropower
 - Refine operational assumptions

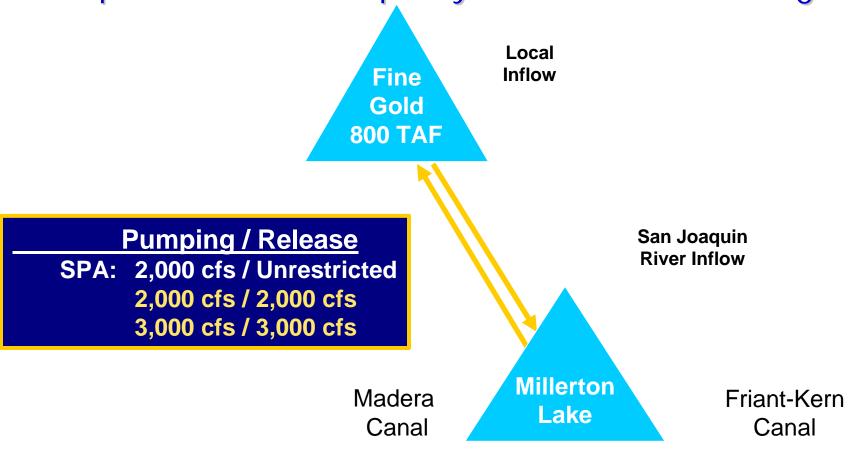
Sensitivity Analyses Suggested at Workshop #4

On Benchmark

- Modeling time step (monthly vs. daily)

On Single Purpose Analyses

- Off-stream storage pumping / release capacity
- Demand pattern for river restoration
- Carryover storage operation to provide water for river releases in critical years


Sensitivity Analyses on SPA Evaluations Summary of Simulated Options

Storage Options	Size	
Friant Enlargement	700	e
	450	
	340	
	250	
	125	
Mammoth Pool	35	
Temperance Flat	1,273	
	2,100	
Fine Gold	800	🤐 😫 🕘
	400	
	350	
	133	
Yokohl Creek	800	
	400	
Pine Flat	124	

Sensitivity Analysis

- Pump / release capacity for off-stream storage
- River restoration demand pattern
- Carry over storage for new river demand

Sensitivity Analysis Pump and Release Capacity for Off-Stream Storage

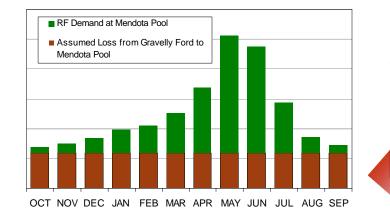
Pump and Release Capacity Sensitivity Analysis Findings from Fine Gold 800 TAF Simulations

- Results for all three single purpose analyses are similar
- Sensitivity to changes in pump / release capacity is small
- Similar results expected for off-canal storage (Yokohl)

	Pumping / Release Capacity (cfs)			
	2,000 /			
FG-800	Unrestricted	2,000 / 2,000	3,000 / 3,000	
WS	117	117	125	
WQ	124	124	137	
RF	124	124	133	

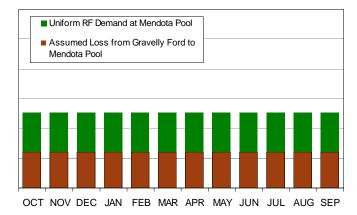
Annual Average Release at Friant Dam for SPA (TAF)

Sensitivity Analyses Suggested at Workshop #4


On Benchmark

- Modeling time step (monthly vs. daily)

On Single Purpose Analyses


- Off-stream storage pumping / release capacity
- Demand pattern for river restoration
- Carryover storage operation to provide water for river releases in critical years

Sensitivity Analysis Restoration Pattern

Single Purpose Analysis: SJR unimpaired flow distribution

Uniform distribution

Assumed constant loss rate (6 TAF per month) for all year types

Year-type varying demand

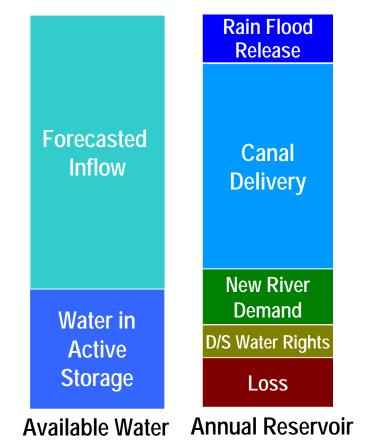
Restoration Pattern Sensitivity Analysis Findings from Three Simulations

 Single Purpose Analysis results are not sensitive to changes in monthly restoration flow distribution

Annual Average Restoration Release at Friant Dam (TAF)

	Restoration Flow Pattern		
	SJR Unimpaired	Uniform	
Options	Flow Distribution	Distribution	
FR-700	142	141	
TF-1273	171	173	
FG-800	124	120	

Sensitivity Analyses Suggested at Workshop #4


On Benchmark

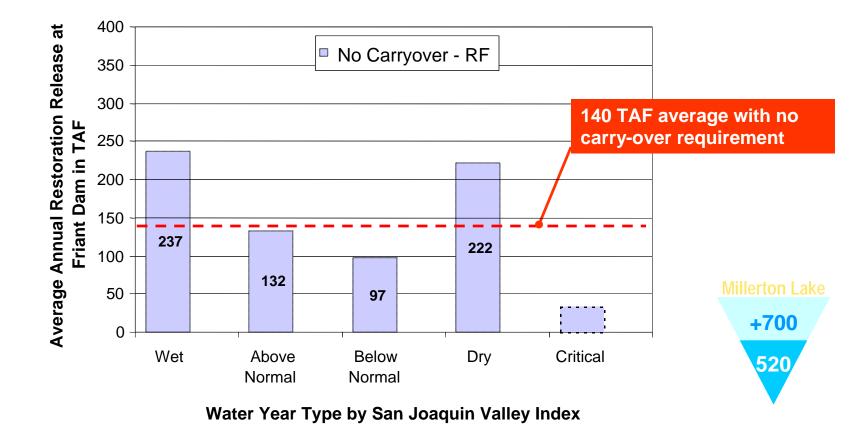
- Modeling time step (monthly vs. daily)

On Single Purpose Analyses

- Off-stream storage pumping / release capacity
- Demand pattern for river restoration
- Carryover storage operation to provide water for river releases in critical years

Carryover Storage Sensitivity Analysis Water Allocation for Annual Reservoir

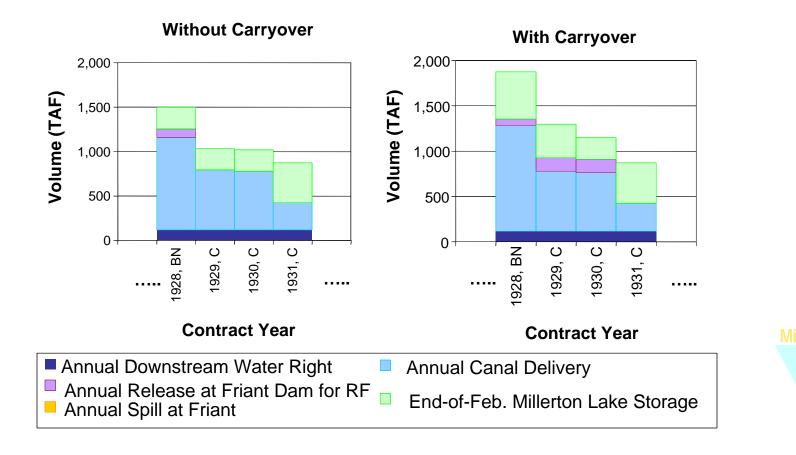
- Dynamic allocation
- Based on hydrologic conditions and reservoir storage


- Prescribed for water quality or restoration flow purpose
- Based on a year-type-varying demand patterns

Carryover Storage Sensitivity Analysis Water Allocation with Carryover Requirement

	Rain Flood Release	J
Forecasted Inflow	Canal Delivery Carryover	 Dynamic allocation Based on hydrologic conditions and reservoir storage
		 Dynamic allocation Based on hydrologic conditions and other considerations
Water in Active Storage (including carryover)	Requirement New River Demand D/S Water Rights Loss	 Prescribed for water quality or restoration flow purpose Based on a year-type-varying demand patterns
Available Water C	Reservoir with arryover Stora	

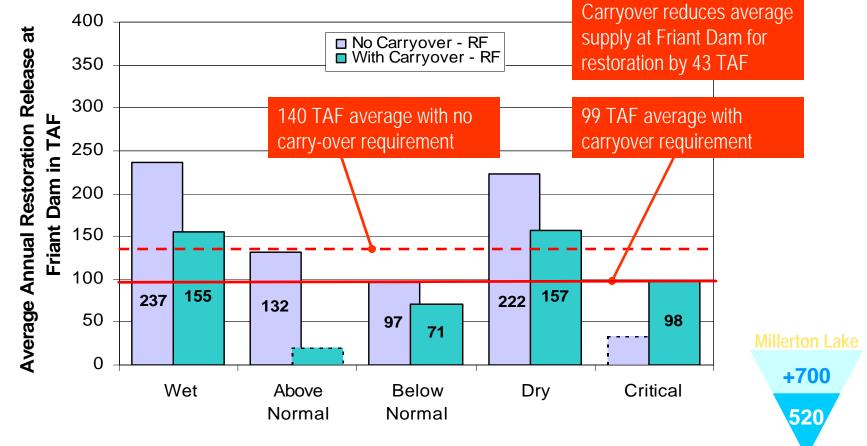
Carryover Storage Sensitivity Analysis Criteria for Carryover Objective


• Results show difficulty in supplying river demand in critical years

Carryover Storage Sensitivity Analysis Criteria for Carryover Objective

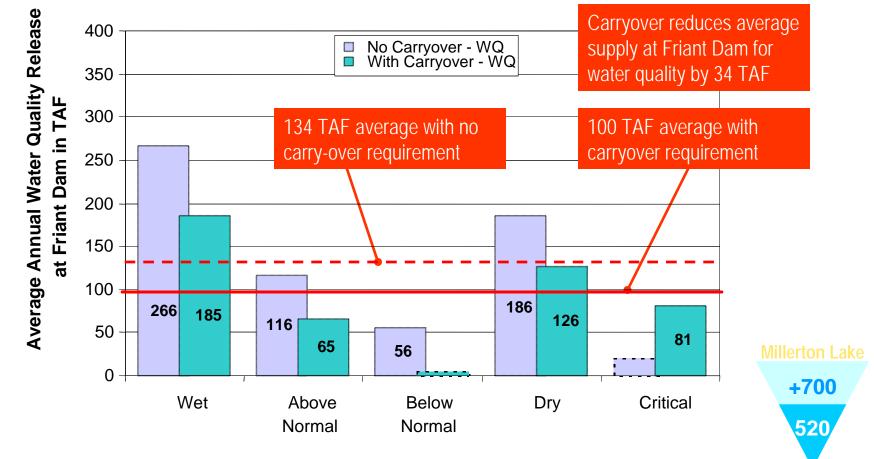
Water Year	Year Type by San Joaquin Valley Index	Carryover Amount Units	Carryover Amount (TAF)	One-year carryover objective set at 140 TAF
	-	-	:	
1927	Above Normal	2	280	2 carryover units target
1928	Below Normal	2	280	
1929	Critical	1	140	Beginning of drought, 1 carryover unit
1930	Critical	0	0	Into drought, no carryover
1931	Critical	0	0	finto drought, no carryover
1932	Above Normal	1	140	} Out of drought, 1 carryover unit
1933	Dry	0	0	
1934	Critical	0	0	Into drought, no carryover
1935	Above Normal	1	140	} Out of drought, 1 carryover unit
1936	Above Normal	2	280	
1937	Wet	2	280	2 carryover units target
	:	:	:	

Carryover Storage Sensitivity Analysis Example Carryover Operation


+700

520

Carryover Storage Sensitivity Analysis Findings


- Total water available for river demand is decreased
 - Long-term annual average amount reduced about 30%
- Ability to make river releases is shifted by year type
 - Objective of carryover was to provide water in critical years
 - Problem shifted to above normal or below normal years

Carryover Storage Sensitivity Analysis Findings Effect on Restoration Releases

Water Year Type by San Joaquin Valley Index

Carryover Storage Sensitivity Analysis Findings Effect on Water Quality Releases

Water Year Type by San Joaquin Valley Index

Sensitivity Analyses Conclusions

Sensitivity Analysis Findings

- Time step minor, limited to specific analyses
- Off-stream pump / release rates minimal
- Restoration pattern insignificant
- Carry-over operations very significant
- Operational Assumptions will be Important in Alternatives
 - Preservation of Benchmark deliveries
 - Basis for carry-over requirements risk-based analysis
 - Flood control rules

Workshop 5

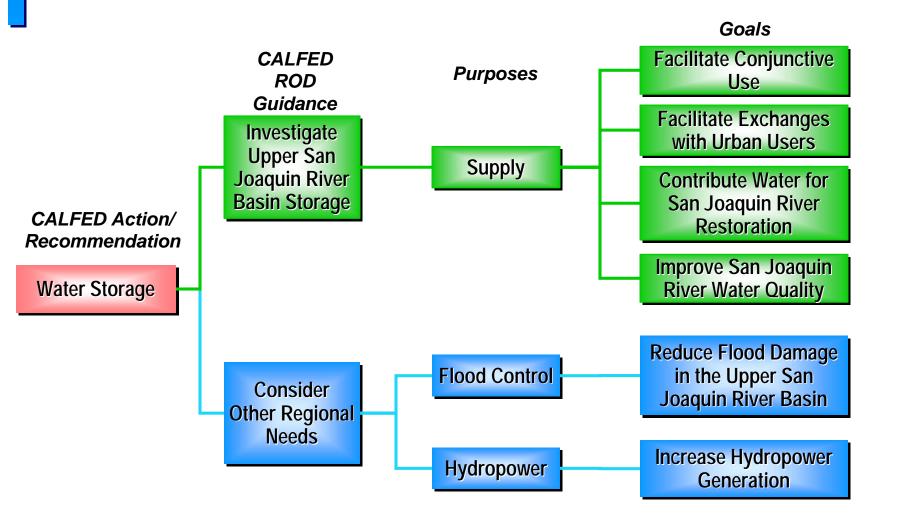
Agenda

Welcome and Introductions Investigation Overview Conjunctive Use & Groundwater Storage Surface Storage Options Screening Alternatives Formulation and Feasibility Study Workplan Next Steps

Range of Comments on Options and Alternatives

- Alternatives formulation
 - Functional equivalence
 - Baseline assumptions
- Environmental impacts
- Economics
 - Project cost
 - Incremental analysis
 - Beneficiaries pay

What does "Functional Equivalence" mean?


- Anything that provides water?
 - Other CALFED Programs address non-storage actions
- Storage options only?
 - Surface Storage
 - Groundwater Storage
- Similar accomplishments to a specific project?
 - Friant Enlargement 250 700 TAF
 - Increase additional supply at Friant Dam

Functional Equivalents

Storage options that provide additional water supply at Friant Dam to support CALFED objectives for Upper San Joaquin Storage **Functional Equivalence Framework** Performance Measures for Phase 1 Evaluation

- Derived from CALFED objectives for Upper San Joaquin Storage
- Method to organize results of operational studies
- Compare options and develop alternatives

Functional Equivalence Framework

Alternatives Formulation Approach

Identify increments for storage options

- Enlarge Friant 125 to 870 TAF - Fine Gold 125 to 800 TAF 425 to 2,100 TAF - Temperance Flat Yokohl 400 to 800 TAF
- Conjunctive use projects

As defined

Calculate cost and yield for each increment

Some options will require additional cost information

Alternatives Formulation Approach

Initial alternatives based on major options

- Surface storage options
- Conjunctive use projects

Incremental analysis

- Add reasonable project increments
- Identify economic breakpoints

Workshop 5

Agenda

Welcome and Introductions Investigation Overview Conjunctive Use & Groundwater Storage Surface Storage Options Screening Alternatives Formulation and Feasibility Study Workplan Next Steps

Next Steps

- Temperance flat options review
- Hydropower evaluation
- Conjunctive use project identification
- Draft phase 1 report
- Feasibility Study Work Plan

Temperance Flat Options

- Options addressed in In-Progress Report
 - 274, 279, 280 Sites described
 - 279 Site representative considered construction issues
 - 280 Site dropped similar to but less effective than 279
- Additional options to be considered in Phase 1
 - 274 and 286 Sites
 - Construction, environmental, hydropower issues

Hydropower Evaluation

- Impacts to existing power facilities
 - Generation loss
 - Potential mitigation actions
- Potential use and generation for new facilities
 - Power plant opportunities
 - Estimated pumping for off-stream storage sites
 - Estimated generation at all sites

Conjunctive Use Project Identification

- Review CALFED Common Assumptions Inventory
- Stakeholder coordination
 - Clarify project details
- Identify operations assumptions
- Determine whether project should be included
 - Without Project Condition
 - Alternatives

Phase 1 Report Summary

- Problems and opportunities
- Identify and screen storage options
 - Surface storage sites
 - Conjunctive use approach
- Costs and initial benefits of retained options
- Describe initial alternatives
- Provide focus for Feasibility Study

Feasibility Study Work Plan

- Describe initial range of alternatives
- Technical studies
 - Model development and application
 - Field activities
- Methodologies to identify costs and benefits
 - Water supply
 - Ecosystem
 - Water quality
 - Flood control
 - Hydropower

Feasibility Study Activities

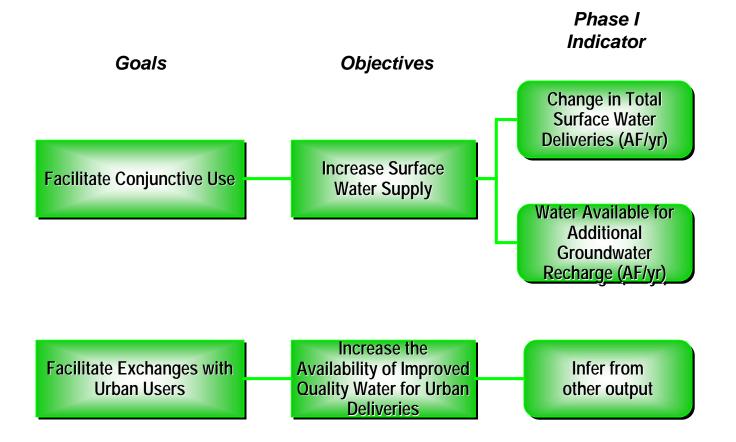
Issue NOI/NOP

- Formulate and evaluate alternatives
- Identify recommended plan
- Draft FS Report and EIS/EIR
- Final FS Report and EIS/EIR

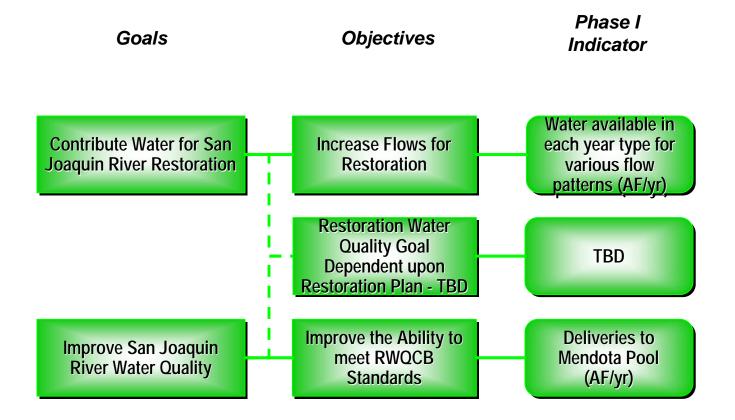
Bureau of Reclamation Mid-Pacific Region

California Department of Water Resources

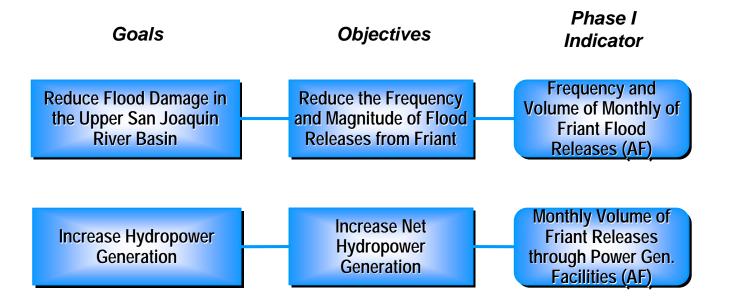
Upper San Joaquin River Basin Storage Investigation


Workshop 5

April 30, 2003


ISI Conjunctive Management Program

- MOU Between DWR and Local Entity
- Phase I Basin Assessment
 - Local advisory panel
 - Establish basin objectives
- Phase II Project Identification and Evaluation
 - Basin-wide modeling
 - Feasibility studies and environmental documentation
- Phase III Project Implementation
 - Local approval of feasible projects
 - Subject to funding availability


Measuring Functional Equivalence

Measuring Functional Equivalence (continued)

Measuring Functional Equivalence (continued)

Carryover Storage Sensitivity Analysis Findings Total water available for river demand is decreased

Annual Average Release at Friant Dam in SPA (TAF)

Options	No Carryover WQ	With Carryover WQ	No Carryover RF	With Carryover RF
FR-700	134	100	142	99
TF-1273	181	153	171	154
FG-800	124	93	124	98

Average End-of-September Friant Unit Total Storage (TAF)

Options	No Carryover WQ	With Carryover WQ	No Carryover RF	With Carryover RF
FR-700	398	547	464	626
TF-1273	589	790	672	848
FG-800	464	611	532	664

Carryover Storage Sensitivity Analysis Findings Ability to make river releases is shifted by year type

Percentage of Time with Release at Friant Dam in SPA

	San Joaquin Valley Index	No Carryover WQ	With Carryover WQ	No Carryover RF	With Carryover RF
	Wet	100%	90%	100%	90%
	Above Normal	100%	86%	100%	0%
FR-700	Below Normal	100%	0%	100%	92%
	Dry	100%	100%	100%	100%
	Critical	0%	67%	0%	67%
	San Joaquin	No Carryover	With Carryover	No Carryover	With Carryover
	Valley Index	WQ	WQ	RF	RF
	Wet	100%	90%	100%	90%
TF-1273	Above Normal	100%	86%	100%	86%
	Below Normal	100%	92%	100%	92%
	Dry	100%	100%	100%	100%
	Critical	100%	67%	100%	67%
	San Joaquin	No Carryover	With Carryover	No Carryover	With Carryover
	Valley Index	WQ	WQ	RF	RF
	Wet	100%	90%	100%	90%
	Above Normal	100%	86%	100%	0%
FG-800	Below Normal	100%	92%	100%	92%
10-000	Dry	100%	100%	100%	100%
	Critical	0%	67%	0%	67%