Bureau of Reclamation Mid-Pacific Region

California Department of Water Resources

Upper San Joaquin River Basin Storage Investigation

Workshop 2

July 31, 2002

Agenda

- Meeting Overview -- Charles Gardiner
 - Agenda and Objectives
 - Participation Principles and Ground Rules
- Phase 1 Study Purpose Statement -- Jason Phillips & Bill Swanson
 - Problems and Opportunities
- Initial Study Approach -- Jason Phillips & Bill Swanson
 - Analysis Approach
 - Friant Expansion Concept
 - Initial Assumptions
- Storage Options -- Bill Swanson & _____
- Modeling Assumptions and Approach -- Yung-Hsin Sun & Walter Bourez

Workshop Objectives

- Review and Refine Phase 1 Study Purpose Statement
- Receive Input on Draft Problems and Opportunities
- Understand Initial Study Approach
- Discuss Initial Assumptions
- Introduce Storage Options
- Discuss Modeling Approach and Assumptions

Participation Principles

- Participate -- Attend the workshops
- Learn -- Learn about resources, people, roles, and process
- Represent -- Bring issues and interests forward from others whose interests you share
- Cooperate -- Work with others in the workshops to share information and consider options
- Educate -- Report back to others who share your interests

Workshop Ground Rules

- Commit to Being Fully Present
 - No cell phones, pagers, voicemail, etc.
 - Ask for what you need from the meeting process and participants
- Honor Our Time Limits
 - Keep comments and discussion concise
 - Stay focused on the topic Use the parking lot for other issues
- Respect Each Other
 - Listen carefully to other team members
 - Respond to ideas and issues, not individuals
- Support Constructive Discussion
 - Suggest improvements and solutions
 - Build on others' ideas Use "and" instead of "but"

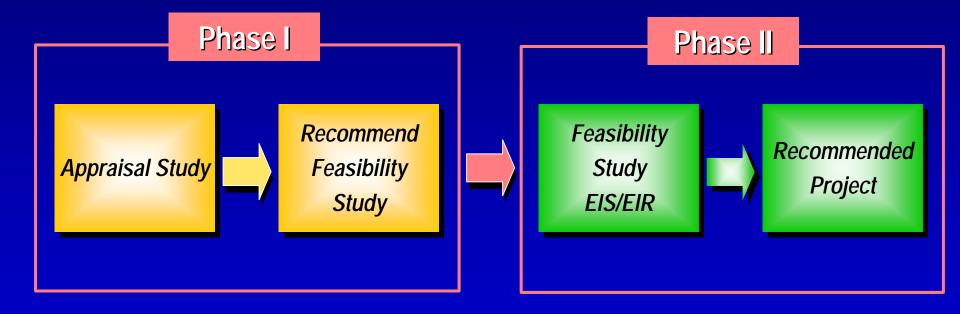
Study Approach

- Define Study Purpose
- Define Goals and Objectives
- Identify and Characterize Problems and Opportunities
- Develop Initial Analysis Approach and Assumptions
- Develop Initial Alternatives

CALFED Record of Decision

Water Storage Program in the San Joaquin River Region

 Enlargement of Friant Dam of 250 to 700 TAF or a functionally equivalent storage program


CALFED Goals for Upper San Joaquin River Basin Storage

- Contribute to restoration of San Joaquin River
- Improve water quality in San Joaquin River
- Improve water quality of urban deliveries
 - Facilitate conjunctive water management and water exchanges
- Assist in solving other regional problems
 - CALFED will join with local partners in the evaluation

Proposed Phase 1 Study Purpose Statement

 Determine if CALFED agencies should pursue a water storage feasibility study that could meet the CALFED goals for Upper San Joaquin River Basin Storage and assist in solving other regional problems

UPPER SAN JOAQUIN RIVER BASIN STORAGE INVESTIGATION – A Two-Phase Investigation Approach

Study Approach

- Define Study Purpose
- Define Goals and Objectives
- Identify and Characterize Problems and Opportunities
- Develop Initial Analysis Approach and Assumptions
- Develop Initial Alternatives

Identifying Problems and Opportunities

- Categorization of Problems and Opportunities
 - Problems are linked to goals
 - Opportunities are addressed in concert with the problems, but would not likely be addressed alone
- Characterization of Problems
- Addressing the Problem with New Storage
- Measures of Accomplishment (Metrics)

Problems and Opportunities

Problems

- San Joaquin River Ecosystem
- SJR Water Quality
- Water Supply Reliability
- Opportunities
 - Hydropower
 - Flood Control
 - Recreation
 - Delta Inflow

Water Resources Problems and Opportunities

- Is the list of Problems and Opportunities complete?
- Are the Problems and Opportunities characterized correctly?
- Is the Future Condition for each Problem accurately described?
- What reasonable and foreseeable actions will affect Future Conditions?
- Are there additional ways to identify and measure accomplishments?

SAN JOAQUIN RIVER ECOSYSTEM RESTORATION

- Currently, there is not adequate water supply to support potential restoration goals
- Ecosystem From Friant Dam to Merced River Subject to Many Challenges
 - Natural water supply has been diverted
 - Gravely Ford to MP often Dry
 - MP to Sack Dam Delta water
 - Sack Dam to Merced return flows
- There is no currently defined restoration goal

SAN JOAQUIN RIVER ECOSYSTEM RESTORATION

- Litigation and settlement process are ongoing
 - Requirement for restoration has not yet been determined
 - Restoration objective has not been established
- Future without-project assumptions
 - No additional demand for the San Joaquin River is assumed for this planning study
 - Any future requirements could be included in the study

SAN JOAQUIN RIVER ECOSYSTEM RESTORATION

- Study will consider how additional storage could provide water for a range of potential restoration needs
- Potential Incremental Ecosystem Water Demands
 - Wetland and Riparian
 - Resident Fishery
 - Hatchery-produced anadromous fishery
 - Naturally-producing anadromous fishery
- Measurement of Accomplishment
 - Ability to meet demand

SAN JOAQUIN RIVER WATER QUALITY

- San Joaquin River Water Quality Challenges
 - Elevated salinity, boron, and other constituents
- Total Daily Maximum Loading (TMDL) Requirements
 - Objectives based on concentration at Vernalis
 - Future objectives may be set at upstream locations

SAN JOAQUIN RIVER WATER QUALITY

- Releases from Friant Dam Could Improve San Joaquin Water Quality By
 - Improving water quality at Mendota Pool which would improve agricultural return
 - Providing water directly to river for dilution may need to bypass Mendota Pool
- Measure of Accomplishment
 - Change in water quality along San Joaquin River
 - Change in meeting water quality objectives at Vernalis

WATER SUPPLY RELIABILITY

- Eastern San Joaquin Groundwater Basin
 - Overdraft estimated at 1 MAF annually
- New storage could facilitate
 - Conjunctive use
 - Opportunities for water exchanges with urban areas
 - Increased reliability of CVP Friant deliveries
- Measures of Accomplishment
 - Ability to meet demand
 - Change in overdraft amount

Other Potential Water Supply Effects

- South of Delta Water Supply
 - Friant deliveries to Mendota Pool could increase delivery of Delta supplies to other water users
- San Joaquin River Tributaries Water Supply
 - Improved water quality could improve New Melones water supply reliability and reduce VAMP contributions

Study Approach

- Define Goals and Objectives
- Identify and Characterize Problems and Opportunities
- Develop Initial Analysis Approach and Assumptions
 - Friant Concept
 - Identifying Range of Potential Benefits
 - Initial Assumptions
- Develop Initial Alternatives

Friant Enlargement Concept

- Evaluation Scenario Only Not an Alternative
- Increase Millerton Lake by 700 TAF in CALSIM 2 Model
- Simulate operations with additional storage
- Identify how problems and opportunities could be addressed
- Use to guide definition of "Functional Equivalence"

Initial Analysis Approach

- How much water could enlarged Friant provide for each problem?
- Begin with single purpose scenario for each problem
 - Operate to address needs of problem
 - Identify range of potential accomplishments for problem
 - Identify potential accomplishments for other problems and opportunities
- Will ultimately use results to help define objectives

Initial Analysis Example

- Use new storage for water quality
- Identify how Friant Enlargement concept could help solve water quality problems
- Identify how other problems and opportunities could be affected
 - River Restoration
 - Water Supply Reliability
 - Flood Control
 - Hydropower
 - Delta Inflow

Initial Analysis Assumptions on Water Use

Operation Assumptions

- Honor current laws, rules, and regulations
 - San Joaquin River riparian rights
 - Existing Contract Amounts
 - Flood control space
 - Classification of Section 215 water
- Modeling Constraints
 - Maintain long-term annual average surface water deliveries

Measuring Potential Water Supply Related Impacts

- Related to Increased River Demands
 - Reduced 215 deliveries compared to No-action
 - Impacts on groundwater compared to No-action

Measuring Potential Water Supply Related Impacts

- Related to Increased Deliveries via Friant-Kern Canal or Madera Canal
 - Reduced flood releases in San Joaquin River compared to No-action
 - Impacts to South of Delta water supply reliability
 - Impacts to San Joaquin River water quality
 - Impacts to San Joaquin River ecosystem

Study Approach

- Define Goals and Objectives
- Identify and Characterize Problems and Opportunities
- Develop Initial Analysis Approach and Assumptions
 - Friant Concept
 - Identifying Range of Potential Benefits
 - Initial Assumptions
- Develop Initial Alternatives
 - Storage Options

Preliminary Description of Surface Storage Options

- Is the list of Storage Options complete?
- Are the Storage Options characterized correctly?

Next Steps

- Finalize Problem and Opportunity Statements
- Refine Initial Analysis Assumptions
- Perform Initial Single Purpose Evaluation
- Prepare Initial Assessment of Storage Options
- Continue to Refine Goals and Develop Objectives