NUMERICAL MODELING IN SUPPORT OF SUISUN MARSH PEIR/EIS

TECHNICAL APPENDIX, SEPTEMBER 2009

Prepared For:
Jones and Stokes Associates
2841 Junction Ave, Suite 114
San Jose, CA 95134

Contact:
Kevin MacKay
Project Manager
408-434-2244

Prepared By:
Resource Management Associates
4171 Suisun Valley Road, Suite J
Fairfield, CA 94534

Contact:
John DeGeorge
707-864-2950
Table of Contents

1. Executive Summary .. 1
 1.1. Background .. 1
 1.2. Report Summary .. 1
 1.3. Summary of the Calibration ... 1
 1.4. Summary of the Modeling Results ... 2
2. RMA Suisun Marsh Modeling ... 5
 2.1. Introduction .. 5
 2.2. Background .. 5
 2.3. General Description of Model Capabilities .. 8
3. Model Set-up .. 8
 3.1. Model Geometry ... 9
 3.2. Network Refinement .. 9
 3.3. Boundary Conditions .. 12
 3.3.1. Simulation periods .. 12
 3.3.2. Tidal boundary ... 12
 3.3.3. Flows, exports, precipitation, evaporation, DICU 12
 3.3.4. Electrical Conductivity (EC) ... 14
 3.3.5. Suisun Marsh Slough Salinity Control Gate operation 14
 3.3.6. Precipitation and evaporation by element type .. 14
4. Model Calibration ... 29
 4.1. Hydrodynamics Calibration ... 29
 4.1.1. Refining Suisun Marsh sloughs .. 30
 4.1.2. Incorporating managed wetlands .. 31
 4.1.3. Results of the hydrodynamic calibration .. 32
 4.2. Electrical Conductivity (EC) Calibration .. 47
 4.2.1. Background ... 47
 4.2.2. Results ... 47
 4.2.3. Summary ... 48
 4.3. Summary of Unresolved Calibration Issues ... 62
5. Tidal Restoration Scenario Simulations ... 62
 5.1. Boundary Conditions ... 62
 5.2. Simulation Period .. 63
 5.3. Mesh ... 63
 5.3.1. Base .. 63
 5.3.2. Set 2 and Zone 1 ... 63
 5.3.3. Set 1 and Zone 4 ... 63
 5.4. Stage Results .. 67
 5.4.1. Background ... 67
 5.4.2. Results ... 67
 5.5. Tidal Prism Results .. 72
 5.5.1. General observations ... 72
 5.5.2. Central Marsh ... 72
 5.5.3. North Interior Marsh .. 73
Table of Figures

Figure 1-1 Regions flooded as tidal marsh in each of the scenarios, with the location of breaches in levees indicated by stars. .. 4
Figure 2-1 RMA Bay-Delta model finite element mesh ... 7
Figure 3-1 Comparison between old and new grid details in the Suisun Marsh Area..... 10
Figure 3-2 Base case Suisun Marsh finite element network .. 11
Figure 3-3 Example of computed and observed stage at Martinez............................ 15
Figure 3-4 Model grid showing inflow and export locations, and flow control structures. ... 16
Figure 3-5 Net Delta outflow and major boundary flows for the 2002-2003 EC calibration/scenario simulation period ... 17
Figure 3-6 Minor boundary flows for the 2002-2003 EC calibration/scenario simulation period .. 18
Figure 3-7 Suisun Marsh local creek flows for the 2002-2003 EC calibration/scenario simulation period ... 19
Figure 3-8 Historical exports and diversions used in the model for the 2002-2003 EC calibration/scenario simulation period. Note that daily averaged SWP exports are plotted, however the model uses 15-minute inputs ... 20
Figure 3-9 Major boundary flows for the 2004 hydrodynamic calibration period 20
Figure 3-10 Minor boundary flows for the 2004 hydrodynamic calibration period 21
Figure 3-11 Historical exports and diversions used in the model for the 2004 hydrodynamic calibration period. Note that daily averaged SWP exports are plotted, however the model uses 15-minute inputs ... 22
Figure 3-12 Inflow/export locations in Suisun Marsh .. 24
Figure 3-13 Daily EC time series used as boundary conditions for the Sacramento River and Yolo Bypass (upper) and for the San Joaquin River (lower) for the 2002-2003 EC calibration/scenario simulation period ... 27
Figure 3-14 Aerial view of the Suisun Marsh Salinity Control Gates 28
Figure 3-15 Operational schedule for the SMSCG during the 2002-2003 EC calibration/scenario simulation period ... 28
Figure 3-16 Operational schedule for the SMSCG during the 2004 hydrodynamic calibration period ... 29
Figure 4-1 Locations of stations in Suisun Marsh used for flow and EC calibration. The white boxed labels indicate special continuous monitoring stations implemented during spring 2004 .. 34
Figure 4-2 Suisun Marsh LiDAR data used in the model calibration – elevations shown in the color scale are in feet (NGVD29). .. 35
Figure 4-3 Observed and computed flow and stage data in Boynton Slough with two iterations of flow results showing how addition of tidal marsh affects computed flows. 36
Figure 4-4 Observed and computed tidally averaged flow in Boynton Slough (B01) and Hill Slough (HS1), and observed stage at Hill Slough (S-4) .. 37
Figure 4-5 Observed and computed tidally averaged flow for Boynton Slough. The red line is the flow for a modeled system with an adjacent managed wetland connected by open culverts to Boynton Slough. .. 38
Figure 4-6 Observed and computed flow for Boynton Slough. The red line is the flow for a modeled system with an adjacent managed wetland connected by open culverts to Boynton Slough ... 39

Figure 4-7 Observed tidally averaged flow for the east side Montezuma Slough stations M04 and M03, and the Observed Stage at S71 and S72 ... 40

Figure 4-8 Observed and computed stage at monitoring station S-4 in Hill Slough during April – May 2004 (shorter time period shown in lower plot). ... 41

Figure 4-9 Observed and computed flow at Hill Slough, station HS1 during May 2004 (shorter time period shown in lower plot) ... 41

Figure 4-10 Observed and computed stage at monitoring station S-49 at Beldon’s Landing on Montezuma Slough during April – May 2004 (shorter time period shown in lower plot) .. 42

Figure 4-11 Observed and computed stage at monitoring station S-64 at National Steel on Montezuma Slough April – May 2004 (shorter time period shown in lower plot) 42

Figure 4-12 Observed and computed flow at the Nurse Slough monitoring station, NS1, May 2004 (shorter time period shown in lower plot) ... 43

Figure 4-13 Observed and computed flow at the Cutoff Slough monitoring station, CO2 during June 2004 .. 43

Figure 4-14 Observed and computed flow in First Mallard Slough at station FM1 during June 2004 .. 44

Figure 4-15 Observed and computed flow in Montezuma Slough at station MO1 during May 2004 (shorter time period in lower plot) – positive values indicate flow is eastward. .. 44

Figure 4-16 Observed and computed flow in Montezuma Slough at monitoring locations MO2 and MO3 – positive values indicate flow is eastward .. 45

Figure 4-17 Observed and computed flow in Montezuma Slough at monitoring location MO4 (shorter time period shown in lower plot) – positive values indicate flow is eastward .. 45

Figure 4-18 Observed and computed flow at the mouth of Suisun Slough, station SS1 (shorter time period shown in lower plot) .. 46

Figure 4-19 Observed and computed flow through Hunter Cut at monitoring station HC1 (shorter time period shown in lower plot) ... 46

Figure 4-20 Locations of monitoring stations used in EC model calibration .. 49

Figure 4-21 Top/bottom EC and stage at Martinez (RSAC054), and Sacramento River flow during a high outflow, neap tide period .. 50

Figure 4-22 Top/bottom EC and stage at Martinez (RSAC054), and Sacramento River flow during a lower outflow period, neap tide period .. 50

Figure 4-23 Tidally averaged measured (average of top and bottom) and computed EC at Martinez station (RSAC054) ... 51

Figure 4-24 Tidally averaged observed and computed EC at S-49, Montezuma Slough at Beldon’s Landing. Computed shown with and without duck club withdrawals and evaporation .. 52

Figure 4-25 Tidally averaged observed and computed EC at station S-49, Beldon’s Landing .. 53

Figure 4-26 Tidally averaged observed and computed EC at station S-64, National Steel in eastern Montezuma Slough .. 54
Figure 4-27 Tidally averaged observed and computed EC at station S-71 Roaring River in eastern Montezuma Slough. ... 54
Figure 4-28 Tidally averaged observed and computed EC at station S-54, Hunter Cut... 55
Figure 4-29 Tidally averaged observed and computed EC at Collinsville (RSAC081). .. 56
Figure 4-30 Observed and computed EC at Collinsville (RSAC081) during a period of SMSCG operation ... 56
Figure 4-31 Tidally averaged observed and computed EC at station S-4, Hill Slough... 57
Figure 4-32 Tidally averaged observed and computed EC at station S-4, Hill Slough in December, 2002. Computed results shown with and without local creek flow addition. 57
Figure 4-33 Tidally averaged observed and computed EC at station S-42, Volanti.... 58
Figure 4-34 Tidally averaged observed and computed EC at station S-42, Volanti in December, 2002. Computed results shown with and without local creek flow addition. 58
Figure 4-35 Tidally averaged observed and computed EC at station S-97, in Cordelia Slough at Ibis. .. 59
Figure 4-36 Tidally averaged observed and computed EC at station S-97, in Cordelia Slough at Ibis December, 2002. Computed results shown with and without local creek flow addition. .. 59
Figure 4-37 Tidally averaged observed and computed EC at station A-96 on Goodyear Slough at Fleet. .. 60
Figure 4-38 Tidally averaged observed and computed EC at station S-37 in Suisun Slough at Godfather. .. 60
Figure 4-39 Tidally averaged observed and computed EC at station S-35 at Morrow Island. .. 61
Figure 4-40 Intertidal observed and computed EC at station S-35 at Morrow Island. 61
Figure 5-1 Base case grid in Suisun Marsh. .. 64
Figure 5-2 Bottom elevation for the Base case grid. ... 64
Figure 5-3 Set 2 grid in Suisun Marsh. ... 65
Figure 5-4 Bottom elevation for the Set 2 grid. ... 65
Figure 5-5 Set 1 grid in Suisun Marsh .. 66
Figure 5-6 Bottom elevation for the Set 1 grid. ... 66
Figure 5-7 Stage time series showing stage shifts at Collinsville monitoring station C-2 and National Steel monitoring location S-64 for Base and Set 1 Scenarios. 68
Figure 5-8 Stage time series at monitoring station S-49 at Beldon’s Landing when Duck Clubs in the Suisun Marsh region are filling in the fall. 68
Figure 5-9 Color contour plots of Base case (upper) and Set 1 (lower) MHHW elevations for April (left) and October (right) 2003. 69
Figure 5-10 Color contour plots of Base case (upper) and Set 1 (lower) MLLW elevations for April (left) and October (right) 2003 .. 70
Figure 5-11 Color contour plots of Base case (upper) and Set 2 (lower) MHHW (left) and MLLW (right) elevations for April 2003 (note scale differences for MHHW and MLLW). .. 71
Figure 5-12 Locations where tidal flow was calculated (Base case grid) 74
Figure 5-13 Average modeled tidal flow in the larger sloughs in central Suisun Marsh. 75
Figure 5-14 Average modeled tidal flow in the smaller sloughs in the northern interior region of Suisun Marsh ... 76
Figure 5-15 Average modeled tidal flow in the sloughs west and north of the Zone 1 area.

Figure 5-16 Average modeled tidal flow in Goodyear Slough.

Figure 5-17 Red arrows illustrate flow magnitude (cfs) near peak flood tide (July 11, 2003 22:00) for Base case in comparison with Set 2. Color Scale is water surface elevation.

Figure 5-18 Red arrows illustrate flow magnitude (cfs) near peak flood tide (July 11, 2003 22:00) for Base case in comparison with Set 1. Color Scale is water surface elevation.

Figure 5-19 Tidally averaged computed EC at Martinez.

Figure 5-20 Tidally averaged computed EC at Chipps.

Figure 5-21 Tidally averaged observed and computed EC at Collinsville.

Figure 5-22 Tidally averaged computed EC at Beldon’s Landing at monitoring station S-49 in Montezuma Slough.

Figure 5-23 Tidally averaged computed EC at station S-40 on Boynton Slough.

Figure 5-24 Tidally averaged computed EC at station S-97 on Ibis Slough.

Figure 5-25 Tidally averaged computed EC at station S-21 in Sunrise Slough.

Figure 5-26 Tidally averaged computed EC at station S-35 at Morrow Island.

Figure 5-27 Tidally averaged computed EC at station S-42 on Volanti Slough.

Figure 5-28 Tidally averaged observed and computed EC at station S-37 on Godfather Slough.

Figure 5-29 Tidally averaged observed and computed EC at station S-33 on Cygnus Slough.

Figure 5-30 Tidally averaged observed and computed EC at station S-54 on Hunter Cut.

Figure 5-31 Tidally averaged observed and computed EC at station S-4 on Hill Slough.

Figure 5-32 Tidally averaged observed and computed EC at station NS-1 on Nurse Slough.

Figure 5-33 Tidally averaged computed EC at the S-64 monitoring location near National Steel on Montezuma Slough.

Figure 5-34 Tidally averaged computed EC at the S-71 monitoring location at Roaring River on Montezuma Slough.

Figure 5-35 Tidally averaged computed EC time series at Jersey Point.

5-36 Tidally averaged computed EC time series at Old River at Rock Slough.

5-37 Tidally averaged computed EC time series at the CCWD Victoria Canal export location for Los Vaqueros.

Figure 5-38 Tidally averaged computed EC time series at the CVP export location.

Figure 5-39 Tidally averaged computed EC time series at the SWP export location.

Figure 5-40 Color contour plots of EC for the Base case (left) and Zone 4 scenario (right) at the same timing on a flood tide (upper) and ebb tide (lower).

Figure 5-41 Set 2 EC % change from Base case – August 1, 2002.

Figure 5-42 Set 2 EC % change from Base case – September 1, 2002.

Figure 5-43 Set 2 EC % change from Base case – October 1, 2002.

Figure 5-44 Set 2 EC % change from Base case – September 1, 2003.

Figure 5-45 Set 2 EC % change from Base case – October 1, 2003.
List of Tables

Table 3-1 Summary of monthly DICU flows (ft3 sec$^{-1}$) for the calibration and scenario simulation periods. Negative values indicate Delta withdrawal .. 23
Table 3-2 EC boundary conditions for the EC calibration, Base case and scenarios simulations .. 26
Table 5-1 Flow magnitude (cfs) at four locations near peak flood tide (July 11, 2003 22:00) ... 73