Appendix D

Physical Monitoring and Management Plan

Draft Program Environmental Impact Statement/Report

Table of Contents

Dra	ft Pro	ogram l	Environmental Impact Statement/Report	1
1.0	Intr	oductio	Dn	1-1
2.0	Flov	w Moni	toring and Management Component Plan	
	2.1	Flow 1	Monitoring Activities	
	2.2	Potent	tial Flow Management Actions	
		2.2.1	Immediate Actions	
		2.2.2	Long-Term Actions	
3.0	Seej	page M	onitoring and Management Component Plan	
	3.1	Seepa	ge Monitoring Activities	
	3.2	Potent	tial Seepage Management Actions	3-11
		3.2.1	Immediate Actions	3-11
		3.2.2	Long-Term Actions	3-12
4.0	Channel Capacity Monitoring and Management Component Plan 4-1			
	4.1	Chanr	nel Capacity Monitoring Activities	
	4.2	Potent	tial Channel Capacity Management Actions	
		4.2.1	Immediate Actions	
		4.2.2	Long-Term Actions	
5.0	Nati	ive Veg	etation Monitoring and Management Component Plan	
	5.1	Native	e Vegetation Monitoring Activities	
	5.2	Potent	tial Native Vegetation Management Actions	
		5.2.1	Immediate Actions	
		5.2.2	Long-Term Actions	
6.0	Spa	wning	Gravel Monitoring and Management Component Plan	6-1
	6.1 Spawning Gravel Monitoring Activities			6-1
	6.2	Potent	tial Spawning Gravel Management Actions	6-1
		6.2.1	Immediate Actions	6-1
		6.2.2	Long-Term Actions	

7.0	Mon	nitoring Programs	
	7.1	Flow Monitoring	7-1
	7.2	Groundwater Level Monitoring	7-1
	7.3	Aerial and Topographic Surveys	7-1
	7.4	Vegetation Surveys	
		7.4.1 Seed Dispersal Surveys	
		7.4.2 Seedling and Sapling Establishment Surveys	
	7.5	Sediment Mobilization Monitoring	
	7.6	Spawning Gravel Surveys	
8.0	Refe	erences	8-1

Tables

Table 1-1. Component Plans of the Physical Monitoring and Management	
Plan	1-2
Table 3-1. Maximum Rooting Depth of Crops Commonly Found in the	
Restoration Area	3-10

Figures

Figure 3-1. Supplemental Buffer Zones of Groundwater and Levee Seepage Along Reach 1A of the San Joaquin River	
Figure 3-2. Supplemental Buffer Zones of Groundwater and Levee Seepage Along Reach 1B of the San Joaquin River	
Figure 3-3. Supplemental Buffer Zones of Groundwater and Levee Seepage Along Reach 2A and 2B of the San Joaquin River	
Figure 3-4. Supplemental Buffer Zones of Groundwater and Levee Seepage Along Reach 3 of the San Joaquin River	
Figure 3-5. Supplemental Buffer Zones of Groundwater and Levee Seepage Along Reach 4A of the San Joaquin River	
Figure 3-6. Supplemental Buffer Zones of Groundwater and Levee Seepage Along Reach 4B of the San Joaquin River	
Figure 3-7. Supplemental Buffer Zones of Groundwater and Levee Seepage Along Reach 5 of the San Joaquin River	
Figure 3-8. Potential Groundwater Seepage Threshold Zones	

Attachments

Draft Seepage Management Plan

List of Abbreviations and Acronyms

Act	San Joaquin River Restoration Settlement Act
ADCP	Acoustic Doppler Current Profiler
cfs	cubic feet per second
DWR	California Department of Water Resources
GPS	Global Positioning System
LIDAR	Light Detection and Ranging
Plan	Physical Monitoring and Management Plan
RA	Restoration Administrator
Reclamation	U.S. Department of the Interior, Bureau of Reclamation
RTK	Real Time Kinematic
Secretary	Secretary of the Interior
Settlement	Stipulation of Settlement in NRDC, et al., v. Kirk Rodgers, et al.
SJRRP	San Joaquin River Restoration Program

1 1.0 Introduction

2 The purpose of this Physical Monitoring and Management Plan (Plan) is to provide

3 guidelines during implementation of the Stipulation of Settlement in NRDC, et al., v. Kirk

4 *Rodgers, et al.* (Settlement) for observing and adjusting to changes in physical conditions

5 within the Restoration Area. This Plan consists of five component plans, addressing

6 interrelated physical conditions including flow, groundwater seepage, channel capacity,

7 propagation of native vegetation, and suitability of spawning gravel.

8 Each component plan identifies objectives for the physical conditions within the

9 Restoration Area, and provides guidelines for the monitoring and management of those

10 conditions, as shown in Table 1-1. The plans identify potential actions that could be taken

11 to further enhance the achievement of the objectives. The component plans include

12 immediate actions that could be taken, for which this Draft Program Environmental

13 Impact Statement/Environmental Impact Report (PEIS/R) provides project-level analysis.

14 The component plans also include long-term actions that are analyzed at a program level

15 of detail in this Draft PEIS/R. Finally, this Plan includes a description of monitoring

16 activities which apply to one or more of the component plans. Monitoring and

17 management guidelines related to biological conditions for fish are separately described

18 in the Fish Management Plan (Appendix F of this Draft PEIS/R).

19 This Plan is intended to guide potential implementation of immediate actions, and to

20 provide the basis for monitoring and management programs for long-term

21 implementation. U.S. Department of the Interior, Bureau of Reclamation (Reclamation),

22 in coordination with California Department of Water Resources (DWR), shall determine

23 the appropriate monitoring and management actions to implement and the timeline for

their implementation. The guidelines in this Plan would need ongoing refinement to

25 develop specific thresholds, and would incorporate input from supporting agencies, the

26 Settling Parties, and appropriate third-parties. More detailed monitoring and management

27 programs would be developed, as necessary, to identify specific methods for

28 implementation, including exact monitoring locations, standards for data collection, and

29 guidelines for implementation of long-term management actions. An example of a more

30 detailed plan is the attached *Draft Seepage Management Plan* developed to guide

31 monitoring and management of seepage during release of Interim or Restoration flows

32 (Draft Seepage Management Plan Attachment).

L				Potential Actions	Actions	
	Component Plan	UDJective(s)	wontoring Parameter	Immediate	Long-Term	
1	Flow	To ensure compliance with the hydrograph releases in Exhibit B of the Settlement and any other applicable flow releases (e.g., Buffer Flows)	Surface water stage and flow rate	None identified	Release purchased water from willing sellers to meet flow targets	
Monito	Seepage	Reduce or avoid adverse or undesirable groundwater seepage impacts	Groundwater elevation, visual inspection/patrol, landowner contact, soil sampling, soil salinity surveys	Change releases, redirect flows through bypasses	Acquire easements, compensate for damage, pursue engineering solutions	
oring and M	Channel Capacity	Maintain flood conveyance capacity	Aerial/topographic surveys, water surface profile surveys, surface water stage and flow rate, vegetation surveys	Change releases, redirect flows through bypasses, monitor and remove obstructions/debris	Evaluate flow, removal of sediment and vegetation, and channel modifications	
anagement P	Native Vegetation	Establish and maintain native riparian habitat	Seed dispersal and seedling desiccation	Report findings, change releases	Coordinate with RA regarding future recruitment flow schedule, consider channel modifications	
lan for Physical (Spawning Gravel	Maintain gravels for spawning	Sediment transport rate, bed gradation, sand storage, bathymetry, meso-habitat mapping, micro-habitat evaluation	Report findings, change releases	Coordinate with RA regarding future flushing flow schedule, manually remove sediment, augment gravels, or pursue engineering solutions	
Conditi	Key: RA = Restoration Administrator	tor				

Table 1-1.

Draft 1-2 – April 2011

Flow Monitoring and Management Component Plan

The objective of the Flow Monitoring and Management Component Plan is to ensure compliance with the hydrograph releases in Exhibit B of the Settlement and any other applicable flow releases (e.g., Buffer Flows), without exceeding then-current channel capacity. Exhibit B of the Settlement sets flow targets at six locations: Friant Dam.

Gravelly Ford, below Chowchilla Bifurcation Structure, below Sack Dam, at the top of

8 Reach 4B, and at the Merced River confluence.

9 The flow objective is based on relevant sections of the Settlement, including paragraphs 10 13(f) and 13(g), and Exhibit B. Paragraph 13(f) of the Settlement requires identifying any 11 increased downstream surface or underground diversions and the causes of any seepage 12 losses above those assumed in Exhibit B. Paragraph 13(g) of the Settlement requires that 13 Restoration Flows are measured at not less than six locations (Friant Dam, Gravelly Ford, 14 below Chowchilla Bifurcation Structure, below Sack Dam, at the top of Reach 4B, and at 15 the Merced River confluence). Exhibit B of the Settlement identifies a schedule of flow 16 targets at the six locations, and assumes seepage losses in Reach 2, inflows from Mud 17 and Salt sloughs, and inflows from the Merced River at its confluence with the San

18 Joaquin River.

19 2.1 Flow Monitoring Activities

20 To assess achievement of the flow objective, flows would be monitored at the six

21 locations identified in the Settlement (Friant Dam, Gravelly Ford, below Chowchilla

- 22 Bifurcation Structure, below Sack Dam, at the top of Reach 4B, and at the Merced River
- 23 confluence). Flow monitoring, as detailed in Section 7.0 of this document, would be used
- 24 to assess achievement of the flow objective.

25 The flow objective would be met if the measured Restoration Flows meet or exceed

26 anticipated flow rates identified in the Settlement at each of the six identified monitoring

27 locations. The Settlement states that nothing in the Settlement shall be construed to limit,

affect, or interfere with flood control operations. In the event of flood control operations,

29 the objective is met if the flow targets are met or exceeded at each of the six identified

30 monitoring locations, as constrained by flood operations.

- 31 In accordance with Paragraph 15 of the Settlement, to the extent that any of the six gages
- 32 required in the Settlement are not available to measure flows, Interim and Restoration
- 33 flows would be measured by establishing temporary gaging locations or by conducting
- 34 manual flow measurements for the purposes of collecting relevant data.

- 1 The installation of new gaging stations and rehabilitation of existing gaging stations at
- 2 these locations is described in Installation and Rehabilitation of Stream Gages on the San
- 3 Joaquin River, Fresno, Madera, and Merced Counties, California Environmental
- 4 Assessment/Finding of No Significant Impact (Reclamation, 2008), and in Stream Gage
- 5 Installation and Operation and Maintenance Project Initial Study/Mitigated Negative
- 6 Declaration (DWR, 2009).
- 7 In addition to monitoring at gaging stations, additional engineering studies on surface and
- 8 groundwater flows within the Restoration Area, patrols to identify surface water
- 9 diversion locations and rates, and/or installation of additional surface water flow and

10 stage monitoring locations or groundwater monitoring wells could be performed to

- 11 identify locations of losses, if necessary to evaluate the need for management actions to
- 12 address achievement of the flow objective. In appropriate cases, the enforcement of
- 13 instream water rights for the Restoration Flows may be required.

14 **2.2 Potential Flow Management Actions**

15 The Settlement identifies several potential factors that could prevent achievement of the 16 flow objective, including higher-than-expected seepage losses and increases in surface 17 and underground diversions. The following sections identify potential immediate and

- 18 long-term actions to address higher-than-expected seepage losses and increased
- 19 diversions.

20 2.2.1 Immediate Actions

21 Paragraph 13(h) of the Settlement states that the Secretary shall, to the extent permitted 22 by applicable law, undertake all reasonable measures to manage Interim and Restoration 23 flows, including initiation of enforcement actions as necessary to prevent unlawful 24 diversions of or interference with Interim and Restoration flows. To accomplish this, 25 Reclamation would petition the SWRCB for its approval of water right changes pursuant 26 to applicable provisions of the California Water Code. The petition would include 27 dedication of flows to instream fish and wildlife purposes through the entire stretch of the 28 San Joaquin River from Friant Dam, through Delta Channels, to Jones and Banks 29 Pumping Plants. This dedication would also include flows routed through Reaches 2 and 30 3 of the Eastside Bypass, the entire Mariposa Bypass, and the reach of Bear Creek from 31 the confluence of the Eastside Bypass downstream to the confluence with the San 32 Joaquin River. The petition would also include additional points of rediversion for 33 Interim and Restoration flows, including Mendota Dam and associated canals, Sack Dam 34 and associated canal, the Sand Slough Control Structure, Jones and Banks Pumping 35 Plants, and San Luis Dam.

36 2.2.2 Long-Term Actions

37 Paragraph 13(c) of the Settlement provides for adjusting releases due to unexpected

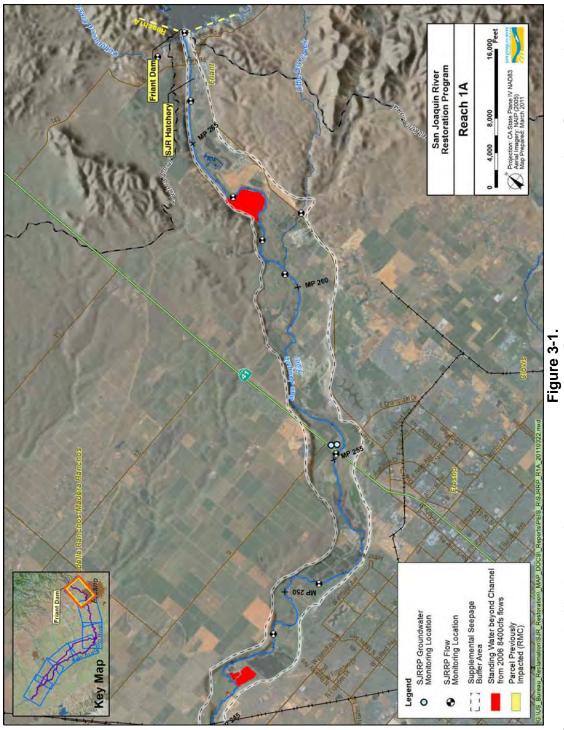
- 38 seepage losses. These actions could include but would not be limited to acquisition and
- 39 release of purchased water from willing sellers. The procedures for purchasing and
- 40 releasing additional water are under development and would be detailed in the

- 1 Restoration Flow Guidelines, a document which would be attached to the Friant
- 2 Operation Guidelines.
- 3

1

This page left blank intentionally.

2 3

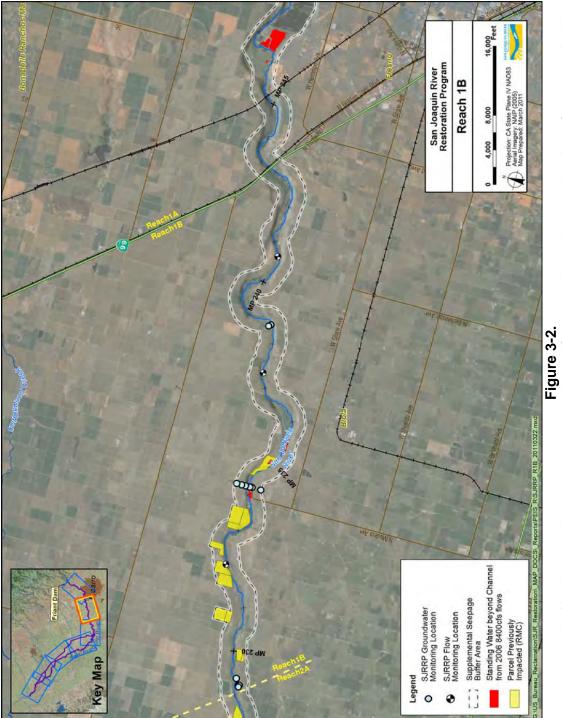

13.0Seepage Monitoring and2Management Component Plan

3 The objective of the Seepage Monitoring and Management Component Plan is to reduce 4 or avoid adverse groundwater seepage impacts to third parties due to Interim and 5 Restoration flows. Section 10004, paragraphs (d) and (h) of the Act describe requirements for a Seepage Monitoring and Management Component Plan for Interim 6 7 Flows. Paragraph (d) states that impacts associated with Settlement implementation and 8 measures to mitigate impacts on adjacent and downstream water users and landowners 9 must be identified. Paragraph (h) sets forth requirements for Interim Flows related to 10 seepage including:

- An analysis of potential for levee or groundwater seepage (Paragraph (h)(1)(A))
- A description of the associated seepage monitoring program (Paragraph (h)(1)(B))
- Address any material adverse impacts to third parties from groundwater seepage
 caused by Interim Flows (Paragraph (h)(3))

Portions of the Restoration Area have historically experienced groundwater seepage to 15 16 adjacent lands associated with flood flows. Groundwater seepage and associated rises in 17 the groundwater table have the potential to cause waterlogging of crops and salt 18 mobilization in the crop root zone. Similarly, some portions of the Restoration Area have 19 experienced levee instability resulting from underseepage and through-seepage during 20 periods of flood flows. The effects of underseepage, through-seepage, and associated levee stability issues are addressed through actions described in Chapter 2.0, "Description 21 22 of Alternatives" in the Draft PEIS/R. This plan is intended primarily to address 23 groundwater seepage, though it was developed in part on evidence of seepage potential 24 based on past levee seepage, and many actions under this plan address both groundwater 25 and levee seepage.

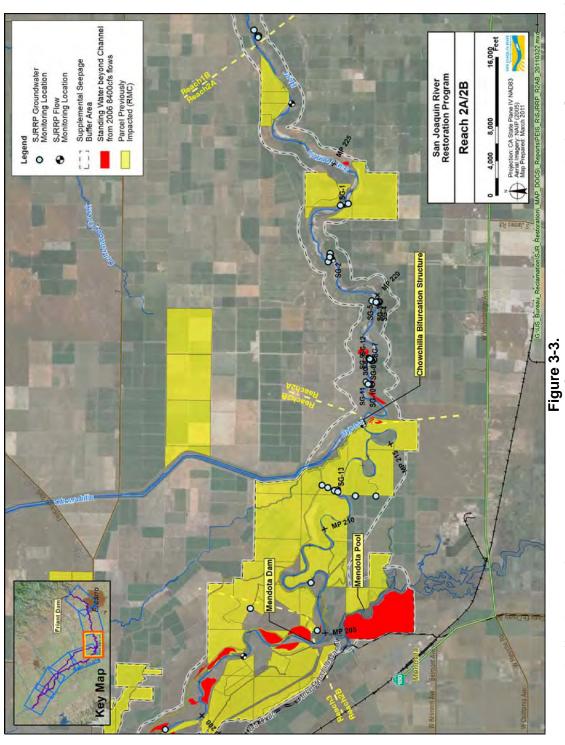
26 Lands with elevated potential for groundwater seepage effects based on past seepage 27 were used to define a supplemental seepage buffer, shown in Figures 3-1 through 3-8. 28 The supplemental seepage buffer was developed using parcel information identified by 29 the RMC during the public review period for the WY 2010 Interim Flows Project 30 Environmental Assessment/Initial Study, as having been previously affected by seepage 31 associated with San Joaquin River flows between 475 and 1,300 cfs; and by identifying 32 parcels affected by flooding in 2006 as identified in the 2006 Flood Video developed by 33 the Lower San Joaquin Levee District. The supplemental seepage buffer includes 89,216 34 acres, as shown in Figures 3-1 through 3-8.

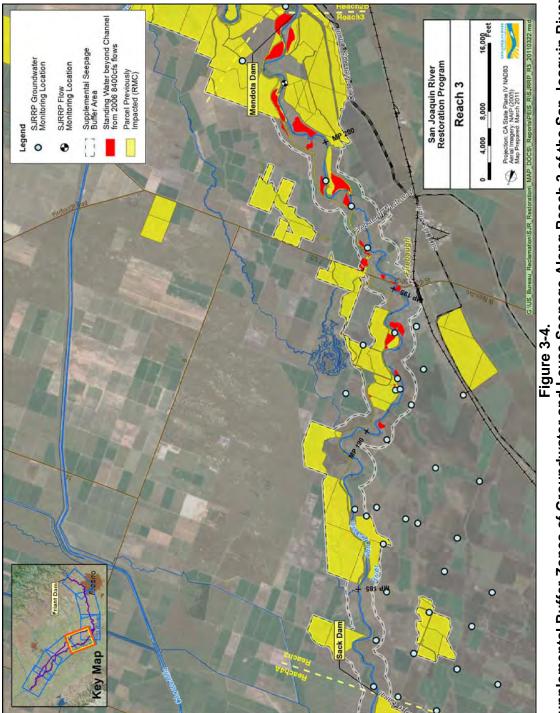


Supplemental Buffer Zones of Groundwater and Levee Seepage Along Reach 1A of the San Joaquin River

Monitoring and Management Plans for Physical Conditions Appendix

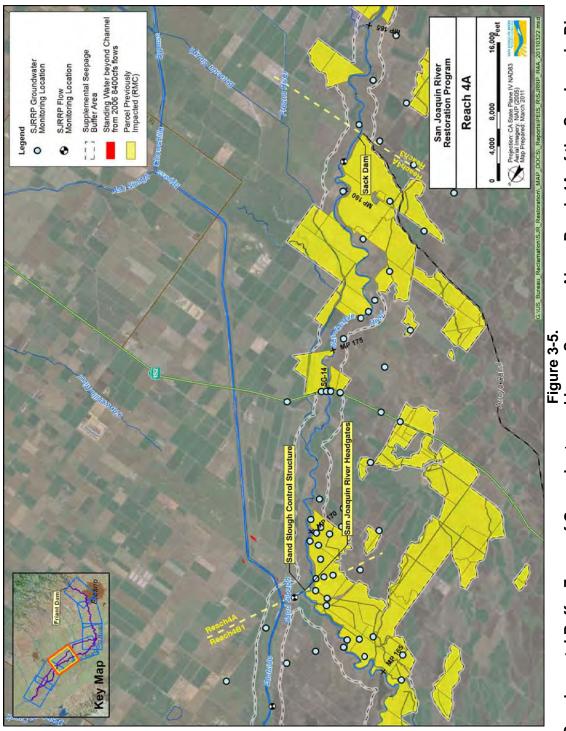
Draft 3-2 – April 2011

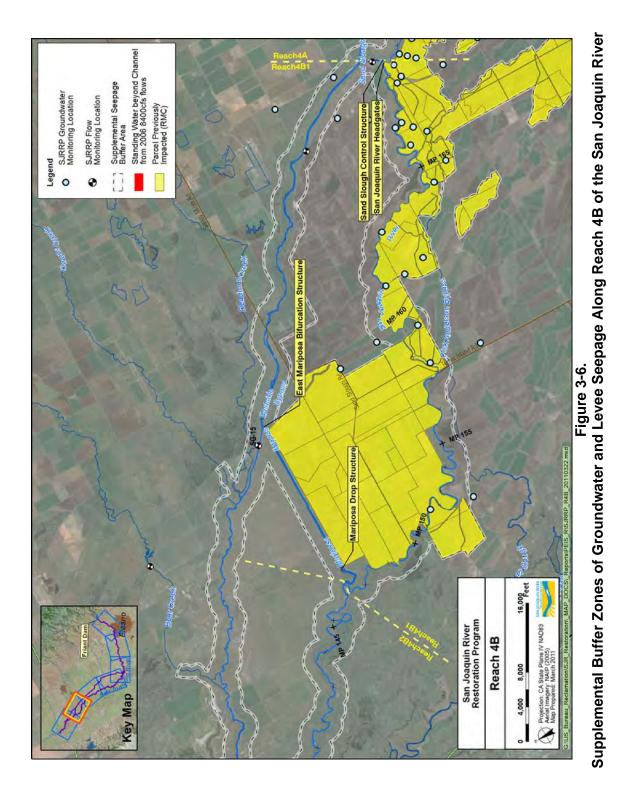

 -0∞


Supplemental Buffer Zones of Groundwater and Levee Seepage Along Reach 1B of the San Joaquin River

Monitoring and Management Plan for Physical Conditions Appendix

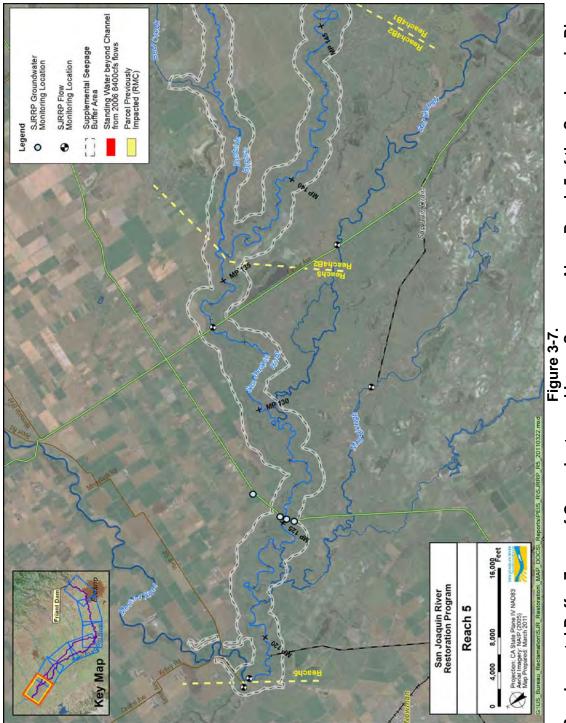
Draft 3-3 – April 2011 – ල ග





Monitoring and Management Plan for Physical Conditions Appendix

Draft 3-5 - April 2011 -0 0



Monitoring and Management Plan for Physical Conditions Appendix

Draft 3-7 – April 2011

3.1 Seepage Monitoring Activities

To monitor achievement of the groundwater seepage objective the following monitoring
activities, as discussed in Section 7.0, would be undertaken on an as-needed basis:

- 4 Flow monitoring
- 5 Groundwater level monitoring

During Interim and Restoration flows, the seepage management objective would be
achieved if adverse groundwater seepage impacts to third parties resulting from Interim
or Restoration flows are reduced or avoided by keeping groundwater levels below the
thresholds. Potential conditions that might trigger actions depend on site-specific
concerns, and include the following:

- Groundwater elevations indicating an impending rise of the water table into root zones
- Root zone indicating increased salinization due to rising groundwater elevations
 and capillary fringe
- Levee stability problems and lateral seepage, as evidenced by visual observation
 of boils or piping
- 17 Landowner communication of seepage problems

Implementation of these monitoring programs could involve identification of additional 18 19 monitoring locations and installation of groundwater monitoring wells. Coordination with 20 local landowners would provide information to improve the effectiveness of the 21 monitoring program. Reclamation and DWR would monitor groundwater levels in 22 installed wells. Observed groundwater levels would be used by the Secretary to 23 determine when to reduce flow releases from Friant Dam, as required by the Act. 24 Following installation of each monitoring well, groundwater elevation thresholds would 25 be developed in consideration of nearby land uses, known groundwater and subsurface 26 conditions, and other information available or provided by landowners. 27 In general, groundwater depth thresholds would be classified in three ranges, as

illustrated in Figure 7-1. These include an acceptable level at which groundwater levels
are not expected to affect agricultural production, a potential buffer zone indicating an
increased likelihood that groundwater seepage could affect agricultural production
without flow modification, and a threat zone representing groundwater levels that affect
agricultural production. The threat zone would be determined based in part on the rooting
depth associated with any crops located near the monitoring well. Maximum rooting
depths of crops commonly found in the Restoration Area are shown in Table 7-1.

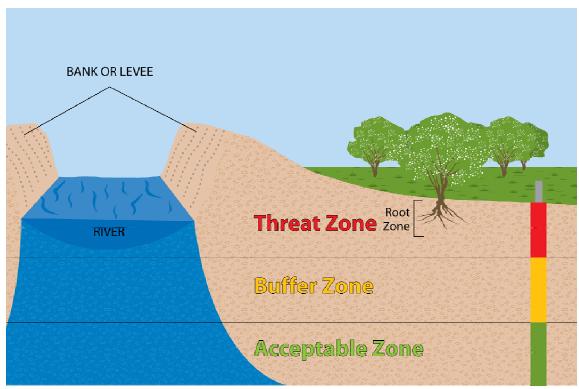


Figure 3-8. Potential Groundwater Seepage Threshold Zones

 Table 3-1.

 Maximum Rooting Depth of Crops Commonly Found in the Restoration Area

Сгор	Maximum Root Depth (feet)
Alfalfa ¹	6
Almonds ¹	6-9
Cotton ¹	5-6
Grape ²	3-6
Melon ¹	5-6
Pistachio ²	3-5
Tomato ¹	5-6

Notes:

¹ Westlands Water District, 2009.

² Allen, R.G., et al.

7 Additional monitoring actions could include levee patrols, landowner contact, soil

8 sampling, and soil salinity surveys. Levee patrols would be conducted in coordination

9 with the Lower San Joaquin Levee District to assist with identifying seepage. These

10 patrols could identify the formation of boils, piping, and other indicators of potential or

4 5 6

- 1 real damages to the levees or associated facilities. Landowners would be able to report
- 2 observed conditions through the SJRRP Web site or through a phone number. Soil
- 3 sampling and soil salinity surveys could be conducted in response to landowner reports of
- 4 seepage impacts.
- 5 An evaluation would be made whenever a condition is identified that could potentially
- 6 require action. The evaluation would be performed to determine the appropriate actions
- 7 to meet the groundwater seepage objective of the need for immediate or long-term
- 8 actions management actions, and criteria would include a determination of the following:
- 9 Type of system response identified
- Immediacy of the system response
- Need for collection of more information, potentially including site visits

12 3.2 Potential Seepage Management Actions

- 13 The need for action may result from either third-party seepage impacts or indications of
- 14 likely third-party seepage impacts. Potential immediate and long-term actions are
- 15 described below.

16 **3.2.1 Immediate Actions**

- Potential immediate responses to the detection or anticipation of adverse groundwaterseepage impacts would be based, in part, on monitoring of groundwater thresholds, as
- 19 previously described, and include the following:

• Reductions of Interim or Restoration Flow Releases at Friant Dam –

- Reductions in the release rate from Friant Dam to limit the potential for seepage
 impacts to occur downstream. Planned thresholds for reductions at Friant would
 need to consider travel time and associated response delays.
- Redirection of Interim or Restoration Flows at Chowchilla Bypass
 Bifurcation Structure Directing flow into the bypass system at the Chowchilla
 Bypass Bifurcation Structure would reduce flow in Reach 2B and downstream
- 27 reaches.
- Delivery of Interim or Restoration Flows at Mendota Pool Delivery of water
 to Mendota Pool would reduce flows in Reach 3 and downstream reaches.
- Delivery of Interim or Restoration Flows at Arroyo Canal When San Luis
 Canal Company is not diverting at the full capacity of Arroyo Canal, additional
 water diversions to the canal would reduce flows in Reach 4A and downstream
 reaches.

Redirection of Interim or Restoration Flows at Sand Slough Control
 Structure – During the first year of Interim Flows, water would not be directed
 into Reach 4B. In subsequent years, diverting flows into the bypass system at
 Sand Slough Control Structure would reduce flows in Reach 4B.

5 3.2.2 Long-Term Actions

6 The need for additional long-term actions may result from the inability to meet the 7 objectives of the other component plans, such as the flow objective, due to immediate actions taken to achieve the groundwater seepage objective. Additional action would 8 9 require a determination of need, identification for funding additional action, and site-10 specific environmental compliance documentation. Potential actions could include but would not be limited to the following: purchasing easements and/or compensation for 11 12 seepage effects, construction of slurry walls to reduce seepage flows, construction of 13 seepage berms to protect against levee failure, construction of drainage interceptor 14 ditches to protect affected lands, or installation of tile drains on affected lands. If 15 property or crop losses occur attributable to Interim and Restoration flow seepage, 16 Reclamation would work in good faith with landowners to negotiate fair and reasonable 17 easements and/or compensation for seepage effects.

4.0 Channel Capacity Monitoring and 2 Management Component Plan

The objective of the Channel Capacity Monitoring and Management Component Plan is
to maintain channel capacity within the Restoration Area. Section 10004, Paragraph (h)
of the Act sets forth requirements for Interim Flows related to channel capacity including:

- Prepare an analysis of channel conveyance capacities (Paragraph (h)(1)(A))
- Release Interim Flows to the extent that such flows would not exceed existing downstream channel capacities (Paragraph (h)(2)(B))

9 The need for action may result from channel capacity restrictions that are identified 10 during the release of Interim and Restoration flows. For example, increased flows or 11 altered flow timing under the Settlement could result in increased growth of riparian 12 vegetation or the accumulation of sediment within low flow channels of downstream 13 reaches. These changes could lead to an increase in water surface elevation during flood 14 events and overtopping of levees or areas that show a degradation of salmonid migration 15 habitat.

16 4.1 Channel Capacity Monitoring Activities

To determine if the objectives are met, the following types of actions, as described inSection 7.0, would be undertaken on an as-needed basis:

- 19 Flow monitoring
- Aerial and topographic surveys
- Water surface profile surveys
- Vegetation surveys
- Sediment mobilization monitoring

24 Additional monitoring actions useful in implementation of the plan could include 25 suspended sediment monitoring, and bedload sediment/gravel monitoring. Field visits 26 and inspections of vegetation density would be triggered by those areas that show a 27 substantial increase in vegetation (based on aerial photographs). Once areas of potential 28 reduced channel capacity are confirmed on the ground, they would be addressed by 29 actions to the extent feasible. Evaluations of bank erosion and deposition would be 30 completed each time aerial photography is collected by the Implementing Agencies and 31 topographic surveys would be completed as necessary, to record potential changes in 32 channel capacity.

4.2 Potential Channel Capacity Management Actions

2 The following sections identify potential immediate and long-term actions to address
3 decreases in channel capacity due to Settlement implementation.

4 **4.2.1** Immediate Actions

- 5 Potential immediate actions to address a reduction in channel capacity include removal of
- 6 vegetation and debris. Vegetation removal would be conducted by mechanical or
- 7 chemical means. Nonnative plant removal would receive priority over removal of native
- 8 species. Immediate actions are described at a project-level in the PEIS/R. Any significant
- 9 or potentially significant impacts of vegetation removal would be appropriately mitigated
- 10 as described in the PEIS/R.
- 11 Potential responses to a reduction in channel capacity include removal of vegetation and
- 12 debris and/or restrictions on Restoration flows that would exceed channel capacity.
- 13 Vegetation removal would be conducted by mechanical or chemical means. Nonnative
- 14 plant removal would receive priority over removal of native species. Any environmental
- 15 impacts of vegetation removal would be appropriately mitigated.

16 4.2.2 Long-Term Actions

- 17 Potential long-term actions could include but would not be limited to the following:
- 18 providing a larger floodplain between levees through the acquisition of land and
- 19 construction of setback levees, regrading of land between levees, construction of
- 20 sediment traps, construction of grade control structures, or channel grading. Long-term
- 21 actions would require a determination of need, identification for funding, and site-
- 22 specific environmental compliance documentation.

15.0Native Vegetation Monitoring and2Management Component Plan

3 The objective of the Native Vegetation Monitoring and Management Component Plan is 4 to establish and maintain native riparian habitat. Establishment of native vegetation 5 would be subject to the attainment of channel capacity objectives, as previously described. The Settlement sets forth requirements for Riparian Recruitment Flows related 6 7 to native vegetation. In Wet Years, Restoration Flows should be gradually ramped down 8 over a 60-90 day period to promote the establishment of riparian vegetation at 9 appropriate elevations in the channel. The precise timing and magnitude of riparian 10 recruitment releases shall be based on monitoring of meteorological conditions, channel 11 conveyance capacity, salmonid distribution, and other physical/ecological factors with 12 the primary goal to establish native riparian vegetation (Exhibit B Paragraph 6).

According to Scott et al. (2000), successful establishment and long-term survival of
 riparian trees in Reach 2 and the downstream portion of Reach 1 could be prevented by
 four potential causes:

- 16 • Seedlings fail to survive because flows at the end of the growing season are 17 insufficient to sustain shallow alluvial groundwater tables, and seedlings die of 18 desiccation (Hypothesis 1) 19 • Seedlings fail to establish in sufficient numbers because peak flows occur outside 20 the peak seed dispersal period (Hypothesis 2) 21 • Seedlings fail to survive beyond a few years because they are killed or removed 22 by reoccurring high flows (Hypothesis 3) 23 • Seedlings fail to survive the early summer because the declining limbs of flow 24 peaks during the seed dispersal period are too rapid and seedlings established near 25 high stage elevations die of desiccation (Hypothesis 4) 26 Experimental flow releases and associated monitoring were conducted in 1999, 2000, and 2001 (i.e., during the "pilot projects") and showed that each of these factors plays a role 27 (FWUA and NRDC 2000, Jones & Stokes and MEI 2002, SAIC 2002, 2003). It appears 28 29 that ultimately most seedlings that were established by Riparian Recruitment Flows
- 30 largely died because of insufficient flows during the summer (Hypothesis 1).

Native Vegetation Monitoring Activities 5.1 1

2 To monitor achievement of the native vegetation objective, the following monitoring programs would be undertaken on an as-needed basis and are described in further detail 3 in Section 7.0: 4

- 5 • Flow monitoring
- 6 • Groundwater level monitoring
- 7 • Vegetation surveys

8 The vegetation surveys include monitoring seed dispersal, and seedling and sapling 9 establishment. Seed dispersal monitoring would address hypothesis 2. Hypotheses 1, 3, 10 and 4 would be addressed by seedling and sapling establishment monitoring. The data 11 collected would focus on understanding the causes of seedling mortality, and are crucial 12 for the effective management of Riparian Recruitment Flow release schedules. Flow 13 monitoring and vegetation surveys would be used to determine success of the Riparian 14 Recruitment Flow releases, and to determine the need for implementing immediate or 15 long-term management actions.

16 Seed that is deposited at a low stage, too close to the base-flow channel, would likely be

17 scoured away in subsequent winters. Flows at the end of the growing season would be

18 monitored along with groundwater levels to determine if the shallow alluvial

19 groundwater table is sustained.

Potential Native Vegetation Management Actions 5.2 20

21 The need for actions may result from a lack of native vegetation establishment during the 22 release of Interim and Restoration flows.

23 5.2.1 **Immediate Actions**

24 Potential immediate actions to enhance achievement of the native vegetation objective 25 include modifications to Restoration Flow Guidelines to improve the success of Riparian 26 Recruitment Flows. Riparian Recruitment Flows could be adjusted for the purposes of 27 target species recruitment based on seed dispersal reports and/or seedling establishment 28 and mortality responses. Peak recruitment releases (i.e., the releases that determine at 29 what elevation in the floodplain the seedlings would establish) should ideally coincide 30 with the peak dispersal time of either of the two target species, Fremont cottonwood or 31 Goodding's black willow. Fremont cottonwood is more difficult to establish and maintain 32 in regulated rivers and if possible, accounting for other constraints, peak recruitment releases should be made when this species shows peak dispersal. If early releases are 33 34 infeasible, then the Riparian Recruitment Flows should be timed to coincide with the 35 peak dispersal of Goodding's black willow. Whether Fremont cottonwood or Goodding's

- 1 recession rates of flows, because Fremont cottonwood appears to require slower recession
- 2 rates than Goodding's black willow (Stella et al. 2007).

3 **5.2.2 Long-Term Actions**

- 4 A lack of native vegetation establishment during the release of Interim and Restoration
- 5 flows would result in the need for additional long-term actions. Potential additional
- 6 actions could include, but would not be limited to, active plantings and irrigation of
- 7 desired native plants. Additional actions would require a determination of need,
- 8 identification for funding additional action, and site-specific environmental compliance
- 9 documentation.

1

2

This page left blank intentionally.

16.0Spawning Gravel Monitoring and2Management Component Plan

3 The objective of the Spawning Gravel Monitoring and Management Component Plan is 4 to maintain gravel beds in suitable condition for Chinook salmon spawning. Paragraph 5 5 in Exhibit B of the Settlement states that flows in Normal-Wet and Wet years would 6 include Flushing Flows from April 16-30. Flushing Flows would perform several 7 functions, including but not limited to geomorphic functions such as flushing fine 8 sediment from spawning gravels. Exhibit B states that the Flushing Flows shall include a 9 peak release as close to 8,000 cfs as possible for several hours and then recede at an 10 appropriate rate. The precise timing and magnitude of the Flushing Flows have the 11 primary goal to mobilize spawning gravels, maintain their looseness, and flush fine 12 sediments.

13 6.1 Spawning Gravel Monitoring Activities

14 The spawning gravel management objective would be met if gravel beds of sufficient

- 15 quality and quantity are available for Chinook salmon spawning.
- Monitoring information needed to assess the success of this plan is detailed in Section 7.0and includes the following:
- 18 Flow monitoring
- 19 Sediment mobilization monitoring

20 Additionally, information on bed gradation, bathymetry, sand storage, meso-habitat

21 mapping, and micro-habitat evaluations would help determine if the objective is met.

22 Monitoring of the fine material in the bed is the most direct method to determine if the

23 increase in flow is effective in reducing the fraction of fine bed material.

24 6.2 Potential Spawning Gravel Management Actions

The need for action may result from a lack of success in maintaining gravels of sufficientquality and quantity for Chinook salmon spawning.

27 6.2.1 Immediate Actions

- 28 The immediate response to meet the spawning gravel management objective is to modify
- 29 releases from Friant Dam to adjust flows for the purposes of gravel flushing or
- 30 mobilization based on the monitoring reports of spawning gravel conditions including

- 1 potential modifications to Restoration Flow Guidelines to improve the success of
- 2 Flushing Flows.

3 6.2.2 Long-Term Actions

- 4 A lack of success in maintaining gravels of sufficient quality and quantity for Chinook
- 5 salmon spawning would result in the need for additional long-term actions. Additional
- 6 actions would require a determination of need, identification for funding additional
- 7 action, and site-specific environmental compliance documentation. Potential actions to
- 8 enhance spawning gravel could include, but would not be limited to: gravel augmentation
- 9 and/or conditioning at existing riffles, establishment of new riffles, engineered channel
- 10 modifications, construction of sediment traps on the San Joaquin River or tributaries with
- 11 high sediment loads, or construction of grade control structures.

7.0 Monitoring Programs

2 This section describes the monitoring pertaining to objectives for flow, seepage, channel

3 capacity, native vegetation, and spawning gravel. The monitoring required for

4 assessments of each management objective may include flow monitoring, groundwater

5 level monitoring, aerial and topographic surveys, vegetation surveys, sediment

6 mobilization monitoring, and spawning gravel surveys, as described below. The

7 monitoring methods described below could be modified and updated as needed.

8 7.1 Flow Monitoring

9 The purpose of the flow monitoring program would be to obtain information about 10 streamflow and water surface elevation. Paragraph 13 and Exhibit B of the Settlement 11 specify measurement of Interim and Restoration flows on the San Joaquin River at the 12 first six locations listed below. In addition to the six gages identified by the Settlement, a 13 seventh gage is scheduled for installation to monitor Interim and Restoration flows to the 14 Eastside Bypass. Additional flow measurements would be collected at multiple locations 15 during flow events, but would not be part of the long-term flow monitoring network 16 described above. Periodic monitoring the cross sections would be performed at each gage 17 to maintain the accuracy of flow measurements made at those gages.

18 7.2 Groundwater Level Monitoring

19 The purpose of the groundwater level monitoring program would be to obtain 20 groundwater level information. Currently, over 125 wells are included in the groundwater 21 monitoring well network established for the SJRRP. This groundwater monitoring well 22 network includes wells installed on both public and private lands as well as previously 23 existing wells. Additional wells on private property could be installed, pending access 24 agreements currently under negotiation with landowners and environmental clearance. 25 Access limitations and information from monitoring, analysis, and trouble spots 26 identified by local landowners would determine the final location of additional 27 groundwater transects and wells developed with the specific intent of monitoring 28 potential groundwater seepage. Information collected as part of the initial phases of 29 monitoring may require changing locations or adding or decommissioning wells in the 30 future.

31 7.3 Aerial and Topographic Surveys

32 The purpose of the aerial and topographic surveys is to obtain information about the river

33 stage, hydraulic roughness, river width, and bed elevation. Surveys of the San Joaquin

34 River between Friant Dam and the Merced River confluence would be conducted to assist

35 with engineering and scientific studies of the Restoration Area during and as a result of

- 1 Interim and Restoration flow releases. These surveys would include aerial photography
- 2 and topographic surveys.
- 3 True color aerial photographs would be inspected and compared to previous aerial
- 4 photographs to identify areas of increased vegetation cover, sediment mobilization, bar
- 5 formation, or bank erosion. After these areas have been initially identified using aerial
- 6 photography, they would be visited and inspected. If inspections indicate that a
- 7 management issue exists, management actions would be taken to address the issue.
- 8 Topographic surveys of waterways could be conducted from a boat with an attached
- 9 Acoustic Doppler Current Profiler (ADCP) or depth sounder linked to a Real Time
- 10 Kinematic (RTK) Global Positioning System (GPS). The dry reaches could be surveyed
- 11 on foot or with an all-terrain-vehicle.
- 12 A complete above-and-below water terrain surface could be developed using
- 13 Photogrammetry or Light Detection and Ranging (LIDAR). Photogrammetry has been
- 14 used in the past to collect the terrain information. However, LIDAR is becoming more
- 15 common and may be more cost effective in the future. Traditional LIDAR surveys can be
- 16 used to obtain the topographic information above water. Bathymetric LIDAR may be
- 17 able to obtain the bathymetry information (below-water areas). Bathymetric LIDAR uses
- 18 different laser frequencies to penetrate beneath the water surface. It can be used in
- 19 locations where the water is relatively clear and the depths are not too large. If
- Bathymetric LIDAR cannot be used or does not sufficiently describe the channel bottom,
 a boat survey can be used to obtain the bathymetry in below water areas. The boat should
- be equipped with a depth sounder and RTK GPS to link the bathymetric data to the
- 22 topographic data. Periodic LIDAR surveys could provide information about aggradation
- 24 and degradation trends in the channel and confirm changes in topographic surveys used
- 25 to identify channel sediment deposition. Before the terrain is developed, the control
- 26 network should be updated to account for subsidence that may continue in the region.
- 27 Reaches 2B, 3, 4A, and the Chowchilla and Eastside Bypasses, in particular, may be
- affected by subsidence.

29 **7.4 Vegetation Surveys**

- 30 The purpose of the vegetation surveys is to obtain information on the establishment and 31 recruitment of vegetation. Vegetation surveys would be conducted for both seed
- 32 dispersal, and seedling and sapling establishment, as described below.

33 7.4.1 Seed Dispersal Surveys

- 34 Target tree species would be monitored using monitoring methods similar to those
- described by Stillwater Sciences in 2002 (Stillwater Sciences 2003). Monitoring the
- 36 period of seed dispersal and timing of peak dispersal of target species, likely Fremont
- 37 cottonwood and/or Goodding's black willow, would help determine the optimal release
- 38 dates of Riparian Recruitment Flows. Recruitment flows would be effective if they
- 39 coincide with seed dispersal of the two target species. The period of seed dispersal and
- 40 timing of peak dispersal differs among species (McBain and Trush 2002) and also may

- 1 differ between years by several weeks, depending on weather conditions. Fremont
- 2 cottonwood seed release typically peaks during the first two weeks of May, while
- 3 Goodding's black willow typically peaks in late May or early June. Actual peak release
- 4 dates for both species are typically earlier in the year with warmer weather and later in
- 5 the year with cooler weather.

6 7.4.2 Seedling and Sapling Establishment Surveys

7 Native riparian vegetation establishment monitoring would be based on the methods

8 developed by Scott et al. (2000), and implemented in the pilot projects performed by the

9 San Joaquin River Riparian Habitat Restoration Program in 1999 through 2003. By using

- 10 sampling locations and methods used in the pilot projects, the data collected during
- 11 monitoring can be interpreted based on relationships between vegetation and hydrology
- 12 established during the pilot projects.
- 13 Vegetation monitoring would record the size and number of plants presents (riparian tree
- 14 seedlings as well as all other native and exotic herbaceous and woody plants) at
- 15 designated sites. This information would be used to estimate vegetative cover. Vegetative
- 16 cover is an important measure of the suitability of sites for establishment of willow and
- 17 cottonwood seedlings, since these species grow best in full sun and without competition
- 18 from other plants.

19 7.5 Sediment Mobilization Monitoring

20 The purpose of the Sediment Mobilization Monitoring Plan is to obtain information on

- 21 sediment mobilization, bar formation, and bank erosion. Aerial photography and/or
- 22 ground surveys would provide information on sediment mobilization, bar formation, and
- bank erosion. Comparison of aerial photographs or ground surveys would be used to
- 24 determine changes in bank line indicating potential erosion.
- 25 Previous information documents sediment and geomorphology within the system.
- 26 Information developed by Reclamation includes preliminary analyses conducted to
- 27 identify locations susceptible to potential erosion through comparison of present day
- channel positions (2004) and historical channel positions (1937, 1938). Reclamation
- 29 identified areas that may be susceptible to future erosion using the following criteria:
- Areas of channel change between 1937 and 2004 or between 1983 and 2004
 where channel has shown lateral erosion along an outer bend or where it has the
 potential to reoccupy an old channel position and laterally erode banks along an
 outer bend, and that also have low topography (for instance, several outer bends
 in Reach 1A are located adjacent to high bluffs, which would be considered an
 area of slower erosion and are thus not identified)
- 36 2. Meander necks where channel sinuosity is high and could create a cutoff
- 37
 3. Areas along outer bends where excavated gravel pits are located close to the
 38
 39. active channel, regardless of whether any historical channel change has occurred

4. Areas along outer bends that are located adjacent to developed areas (such as at
 Firebaugh)

3 Areas with the potential for future erosion identified through this process were prioritized 4 for monitoring based on potential impacts to infrastructure. The highest priorities were 5 those with residential developments, buildings, and bridges. Other high priority areas included those containing levees, irrigation canals, and roads with an apparent high 6 7 potential to experience some lateral migration or bank erosion. Sediment mobilization 8 monitoring would focus on areas identified through this process, and would evaluate 9 current and estimate potential future erosion at the sites. Channel bed deposition could be 10 evaluated by analyzing changes identified in topographic survey data and LIDAR 11 surveys.

12 7.6 Spawning Gravel Surveys

13 The purpose of the spawning gravel surveys is to obtain information on gravel distribution. Pebble count sampling would focus on riffles, and may not be required 14 15 outside of Reach 1. Pebble counts should be conducted in the wet portion of the channel 16 at low flow. Several cross sections in each riffle would be sampled. Photographic 17 sampling of the river bed may possibly supplement or replace the pebble count methods. 18 Pebble count methods are labor intensive and new photographic techniques that 19 determine grain size distributions are emerging. Photographs taken of the bed at the same 20 locations as the pebble counts would allow evaluation of the photographic techniques. 21 Spawning gravel quantity and quality would also be evaluated through meso-habitat 22 mapping and micro-habitat evaluations. Meso-habitat mapping is intended to document

the longitudinal distribution of habitat units. The time period for mapping would be

24 dependent on the flow regime. Potential spawning habitats (riffles) in Reach 1 would be

25 evaluated as part of the micro-habitat measurements taken in coordination with pebble

26 counts to determine gravel size and distribution.

1 8.0 References

2	Allen, R.G., L.S. Pereira, D. Raes, and M. Smith. 1998. Crop evapotranspiration –
3	Guidelines for computing crop water requirements. FAO Irrig. And Drain. Paper
4	56, Food and Agric. Organ. United Nations, Rome, Italy.
5	California Department of Water Resources. 2009. Stream Gage Installation and
6	Operation and Maintenance Project Initial Study/Mitigated Negative Declaration.
7	March.
8 9 10	Friant Water Users Authority and Natural Resources Defense Council (FWUA and NRDC). 2000. 1999 San Joaquin River Riparian Flow Release Pilot Project. Unpublished.
11 12	FWUA and NRDC. See Friant Water Users Authority and Natural Resources Defense Council.
13	Jones & Stokes and Mussetter Engineering, Inc. 2002. San Joaquin River Pilot Project
14	2000, baseline vegetation and physical variable data collection summary. Final.
15	January 2002. (J&S 00-218.) Sacramento, California. Prepared for Friant Water
16	Users Authority, Lindsay, California.
17	McBain and Trush. 2002. San Joaquin River Restoration Study Background Report.
18	Edited by McBain and Trush. Prepared for Friant Water Users Authority and
19	Natural Resources Defense Council. Chapter 8.Vegetation. Arcata, California.
20	SAIC. See Science Applications International Corporation.
21 22 23 24	 Science Applications International Corporation (SAIC). 2002. San Joaquin River Pilot Project 2001. Preliminary Final. Vegetation and Hydrologic Monitoring Report. Prepared for Friant Water Users Authority. Prepared by Science Applications International Corporation. Santa Barbara, California.
25	———. 2003. Draft 2002 San Joaquin River Vegetation and Hydrologic Monitoring
26	Report. Prepared for Friant Water Users Authority. Prepared by Science
27	Applications International Corporation. Santa Barbara, California.
28	Scott, M. L., G. T. Auble, and P. B. Shafroth. 2000. Evaluating effectiveness of flow
29	releases for restoration of riparian vegetation on the San Joaquin River. U.S.
30	Geological Survey. Fort Collins, Colorado.
31	Stella, J. C., J. J. Battles, J. R. McBride, and B. K. Orr. 2007. Physiological adaptations
32	increase survival for riparian tree seedlings subject to river stage decline.
33	Presentation to the Ecological Society of America, Annual Meeting. August 5-10,
34	2007.

Stillwater Sciences. 2003. March. Restoration Objectives for the San Joaquin River. 1 2 Final. Berkeley, California. Appendix D. San Joaquin River 2002 riparian tree 3 seed release timing. 4 U.S. Department of the Interior, Bureau of Reclamation (Reclamation). 2008. Installation 5 and Rehabilitation of Stream Gages on the San Joaquin River, Fresno, Madera, and Merced Counties, California Environmental Assessment. December. 6 7 -. 2009. San Joaquin River Restoration Program Seepage Well Installation on 8 Public Lands Categorical Exclusion Checklist. March. 9 Westlands Water District. 2009. Crop Characteristics. Available at 10 http://www.westlandswater.org/wtrcon/handbook/crops/crops.htm. Accessed 11 August 7, 2009.