Appendix A Numerical Modeling in Support of Suisun Marsh PEIR/EIS— Technical Appendix, September 2009

NUMERICAL MODELING IN SUPPORT OF SUISUN MARSH PEIR/EIS

TECHNICAL APPENDIX, SEPTEMBER 2009

Prepared For: Jones and Stokes Associates 2841 Junction Ave, Suite 114 San Jose, CA 95134

> Contact: Kevin MacKay Project Manager 408-434-2244

Prepared By: Resource Management Associates 4171 Suisun Valley Road, Suite J Fairfield, CA 94534

> Contact: John DeGeorge 707-864-2950

Table of Contents

1. Exe	ecutive Summary	. 1
1.1.	Background	. 1
1.2.	Report Summary	. 1
1.3.	Summary of the Calibration	. 1
1.4.	Summary of the Modeling Results	. 2
2. RM	A Suisun Marsh Modeling	. 5
2.1.	Introduction	. 5
2.2.	Background	. 5
2.3.	General Description of Model Capabilities	. 8
3. Mo	del Set-up	. 8
3.1.	Model Geometry	. 9
3.2.	Network Refinement	9
3.3.	Boundary Conditions	12
3.3	1. Simulation periods	12
3.3	2. Tidal boundary	12
3.3	3. Flows, exports, precipitation, evaporation, DICU	12
3.3	4. Electrical Conductivity (EC)	14
3.3	5. Suisun Marsh Slough Salinity Control Gate operation	14
3.3	.6. Precipitation and evaporation by element type	14
4. Mo	del Calibration	29
4.1.	Hydrodynamics Calibration	29
4.1	1. Refining Suisun Marsh sloughs	30
4.1	2. Incorporating managed wetlands	31
4.1	3. Results of the hydrodynamic calibration	32
4.2.	Electrical Conductivity (EC) Calibration	47
4.2	1. Background	47
4.2	2. Results	47
4.2	3. Summary	48
4.3.	Summary of Unresolved Calibration Issues	62
5. Tid	al Restoration Scenario Simulations	62
5.1.	Boundary Conditions	62
5.2.	Simulation Period	63
5.3.	Mesh	63
5.3	1. Base	63
5.3	2. Set 2 and Zone 1	63
5.3	3. Set 1 and Zone 4	63
5.4.	Stage Results	67
5.4	1. Background	67
5.4	2. Results	67
5.5.	Tidal Prism Results	72
5.5	1. General observations	72
5.5	2. Central Marsh	72
5.5	3. North Interior Marsh	73

5.5.4.	Western Interior Marsh	73
5.5.5.	Comparison of flood flow for the scenarios	73
5. EC	Results	
5.6.1.	Martinez to Collinsville	
5.6.2.	Suisun Marsh	
5.6.3.	Delta	
. Ve	ocity Results – Scour Potential	109
5.7.1.	Background	109
5.7.2.	Scouring potential for the scenarios	109
5.7.3.	Summary	110
Discuss	ion/Summary/Conclusions	128
Referer	ices	
	5.5.4. 5.5.5. 5. EC 5.6.1. 5.6.2. 5.6.3. 7. Vel 5.7.1. 5.7.2. 5.7.3. Discuss Referen	 5.5.4. Western Interior Marsh

Table of Figures

Figure 1-1 Regions flooded as tidal marsh in each of the scenarios, with the location of
breaches in levees indicated by stars
Figure 2-1 RMA Bay-Delta model finite element mesh7
Figure 3-1 Comparison between old and new grid details in the Suisun Marsh Area 10
Figure 3-2 Base case Suisun Marsh finite element network
Figure 3-3 Example of computed and observed stage at Martinez
Figure 3-4 Model grid showing inflow and export locations, and flow control structures.
Figure 3-5 Net Delta outflow and major boundary flows for the 2002-2003 EC
calibration/scenario simulation period
Figure 3-6 Minor boundary flows for the 2002-2003 EC calibration/scenario simulation period
Figure 3-7 Suisun Marsh local creek flows for the 2002-2003 EC calibration/scenario
simulation period
Figure 3-8 Historical exports and diversions used in the model for the 2002-2003 EC
calibration/scenario simulation period. Note that daily averaged SWP exports are plotted,
however the model uses 15-minute inputs
Figure 3-9 Major boundary flows for the 2004 hydrodynamic calibration period
Figure 3-10 Minor boundary flows for the 2004 hydrodynamic calibration period
Figure 3-11 Historical exports and diversions used in the model for the 2004
hydrodynamic calibration period. Note that daily averaged SWP exports are plotted,
however the model uses 15-minute inputs
Figure 3-12 Inflow/export locations in Suisun Marsh
Figure 3-13 Daily EC time series used as boundary conditions for the Sacramento River
and Yolo Bypass (upper) and for the San Joaquin River (lower) for the 2002-2003 EC
calibration/scenario simulation period
Figure 3-14 Aerial view of the Suisun Marsh Salinity Control Gates
Figure 3-15 Operational schedule for the SMSCG during the 2002-2003 EC
calibration/scenario simulation period
Figure 3-16 Operational schedule for the SMSCG during the 2004 hydrodynamic
calibration period
Figure 4-1 Locations of stations in Suisun Marsh used for flow and EC calibration. The
white boxed labels indicate special continuous monitoring stations implemented during
spring 2004
Figure 4-2 Suisun Marsh LiDAR data used in the model calibration – elevations shown in
the color scale are in feet (NGVD29)
Figure 4-3 Observed and computed flow and stage data in Boynton Slough with two
iterations of flow results showing how addition of tidal marsh affects computed flows. 36
Figure 4-4 Observed and computed tidally averaged flow in Boynton Slough (B01) and
Hill Slough (HS1), and observed stage at Hill Slough (S-4)
Figure 4-5 Observed and computed tidally averaged flow for Boynton Slough. The red
line is the flow for a modeled system with an adjacent managed wetland connected by
open culverts to Boynton Slough

Figure 4-6 Observed and computed flow for Boynton Slough. The red line is the flow for
a modeled system with an adjacent managed wetland connected by open culverts to
Boynton Slough
Figure 4-7 Observed tidally averaged flow for the east side Montezuma Slough stations
M04 and M03, and the Observed Stage at S71 and S72 40
Figure 4-8 Observed and computed stage at monitoring station S-4 in Hill Slough during
April – May 2004 (shorter time period shown in lower plot)
Figure 4-9 Observed and computed flow at Hill Slough, station HS1 during May 2004
(shorter time period shown in lower plot) 41
Figure $4-10$ Observed and computed stage at monitoring station S-49 at Beldon's
I anding on Montezuma Slough during April May 2004 (shorter time period shown in
Landing on Montezuma Slough during April – May 2004 (shorter time period shown in
Figure 4.11 Observed and a superstal stars at manifesting station S. (4 at National Starl and
Figure 4-11 Observed and computed stage at monitoring station S-64 at National Steel on
Montezuma Slough April – May 2004 (shorter time period shown in lower plot)
Figure 4-12 Observed and computed flow at the Nurse Slough monitoring station, NS1
May 2004 (shorter time period shown in lower plot)
Figure 4-13 Observed and computed flow at the Cutoff Slough monitoring station, CO2
during June 2004
Figure 4-14 Observed and computed flow in First Mallard Slough at station FM1 during
June 2004
Figure 4-15 Observed and computed flow in Montezuma Slough at station MO1 during
May 2004 (shorter time period in lower plot) – positive values indicate flow is eastward.
44
Figure 4-16 Observed and computed flow in Montezuma Slough at monitoring locations
MO2 and $MO3 - positive values indicate flow is eastward 45$
Figure 4-17 Observed and computed flow in Montezuma Slough at monitoring location
MO4 (shorter time period shown in lower plot) – positive values indicate flow is
eastward
Figure 4.18 Observed and computed flow at the mouth of Suisur Slough station SS1
(shorter time period shown in lower plot)
Eisure 4.10 Observed and computed flow through Hunter Cut at monitoring station HC1
Figure 4-19 Observed and computed flow through Hunter Cut at monitoring station HC1
(shorter time period shown in lower plot)
Figure 4-20 Locations of monitoring stations used in EC model calibration
Figure 4-21 Top/bottom EC and stage at Martinez (RSAC054), and Sacramento River
flow during a high outflow, neap tide period
Figure 4-22 Top/bottom EC and stage at Martinez (RSAC054), and Sacramento River
flow during a lower outflow period, neap tide period
Figure 4-23 Tidally averaged measured (average of top and bottom) and computed EC at
Martinez station (RSAC054)
Figure 4-24 Tidally averaged observed and computed EC at S-49, Montezuma Slough at
Beldon's Landing. Computed shown with and without duck club withdrawals and
evaporation
Figure 4-25 Tidally averaged observed and computed EC at station S-49. Beldon's
Landing 53
Figure 4-26 Tidally averaged observed and computed FC at station S-64 National Steel
in eastern Montezuma Slough 54
m custern montezunia biougn

Figure 4-27 Tidally averaged observed and computed EC at station S-71 Roaring River	r in
eastern Montezuma Slough	54
Figure 4-28 Tidally averaged observed and computed EC at station S-54, Hunter Cut	55
Figure 4-29 Tidally averaged observed and computed EC at Collinsville (RSAC081)	56
Figure 4-30 Observed and computed EC at Collinsville (RSAC081) during a period of	
SMSCG operation.	56
Figure 4-31 Tidally averaged observed and computed EC at station S-4, Hill Slough	. 57
Figure 4-32 Tidally averaged observed and computed EC at station S-4, Hill Slough ir	1
December, 2002. Computed results shown with and without local creek flow addition.	57
Figure 4-33 Tidally averaged observed and computed EC at station S-42, Volanti	58
Figure 4-34 Tidally averaged observed and computed EC at station S-42, Volanti in	
December, 2002. Computed results shown with and without local creek flow addition.	58
Figure 4-35 Tidally averaged observed and computed EC at station S-97, in Cordelia	
Slough at Ibis	. 59
Figure 4-36 Tidally averaged observed and computed EC at station S-97, in Cordelia	
Slough at Ibis December, 2002. Computed results shown with and without local creek	
flow addition	. 59
Figure 4-37 Tidally averaged observed and computed EC at station A-96 on Goodyear	
Slough at Fleet	60
Figure 4-38 Tidally averaged observed and computed EC at station S-37 in Suisun	
Slough at Godfather	60
Figure 4-39 Tidally averaged observed and computed EC at station S-35 at Morrow	
Island	61
Figure 4-40 Intertidal observed and computed EC at station S-35 at Morrow Island	61
Figure 5-1 Base case grid in Suisun Marsh.	64
Figure 5-2 Bottom elevation for the Base case grid.	. 64
Figure 5-3 Set 2 grid in Suisun Marsh.	. 65
Figure 5-4 Bottom elevation for the Set 2 grid.	. 65
Figure 5-5 Set 1 grid in Suisun Marsh	. 66
Figure 5-6 Bottom elevation for the Set 1 grid.	66
Figure 5-7 Stage time series showing stage shifts at Collinsville monitoring station C-2	2
and National Steel monitoring location S-64 for Base and Set 1 Scenarios	. 68
Figure 5-8 Stage time series at monitoring station S-49 at Beldon's Landing when Duc	K
Clubs in the Suisun Marsh region are filling in the fall.	68
Figure 5-9 Color contour plots of Base case (upper) and Set 1 (lower) MHHW elevation	ons
Figure 5 10 Color contour plate of Page 2003.	. 69
Figure 5-10 Color contour plots of Base case (upper) and Set 1 (lower) MLLW elevation	ons
Figure 5, 11 Color contour plots of Dess cose (upper) and Set 2 (lower) MILLIW (left) of	. /0
Figure 5-11 Color contour piots of Base case (upper) and Set 2 (lower) MHHW (left) a MLI W (right) aloyations for April 2003 (note seels differences for MHHW and MLI V	und M
WILL W (fight) elevations for April 2005 (note scale differences for WITHW and MILL)	ν). 71
Figure 5.12 Locations where tidal flow was calculated (Pass asso grid)	71
Figure 5-12 Locations where the flow in the larger sloughs in control Suigure Marsh	75
Figure 5-15 Average modeled tidal flow in the smaller sloughs in the porthern interior.	13
region of Suisun Marsh	76
region of Sulsun matsh	70

Figure 5-15 Average modeled tidal flow in the sloughs west and north of the Zone 1 at	rea.
	. 77
Figure 5-16 Average modeled tidal flow in Goodyear Slough	. 78
Figure 5-17 Red arrows illustrate flow magnitude (cfs) near peak flood tide (July 11,	
2003 22:00) for Base case in comparison with Set 2. Color Scale is water surface	
elevation	. 79
Figure 5-18 Red arrows illustrate flow magnitude (cfs) near peak flood tide (July 11, 2003 22:00) for Base case in comparison with Set 1. Color Scale is water surface	
alovation	80
Elevation.	. 00
Figure 5-19 Tidally averaged computed EC at Martinez	. 04 01
Figure 5-20 Fidally averaged observed and computed EC at Collingville	. 04 05
Figure 5-21 Fidally averaged observed and computed EC at Commsvine.	. 83
Figure 5-22 Fidally averaged computed EC at Beldon's Landing at monitoring station	3-
F = 5.22 T + 11 I = 1	. 85
Figure 5-25 Fidally averaged computed EC at station S-40 on Boynton Slough	. 80
Figure 5-24 Theally averaged computed EC at station S-97 on folls Slough.	. 00
Figure 5-25 Fidally averaged computed EC at station S-21 in Sunrise Slougn.	. 8/
Figure 5-26 Tidally averaged computed EC at station S-35 at Morrow Island.	. 8/
Figure 5-27 Tidally averaged computed EC at station S-42 on Volanti Slough.	. 88
Figure 5-28 Tidally averaged observed and computed EC at station S-37 on Godfathe	r
Slough.	. 88
Figure 5-29 Tidally averaged observed and computed EC at station S-33 on Cygnus	00
Slough.	. 89
Figure 5-30 Tidally averaged observed and computed EC at station S-54 on Hunter C	ut.
Γ_{1}^{\prime}	. 89
Figure 5-31 Tidally averaged observed and computed EC at station 5-4 on Hill Slough	n.
Eigune 5.22 Tidelly avanced charged and computed EC at station NS 1 or Nume	. 90
Figure 5-52 Theatry averaged observed and computed EC at station NS-1 on Nurse	00
Slough.	. 90
Steel on Montegume Slough	01
Figure 5.24. Tidelly averaged computed EC at the S.71 monitoring location at Decription	. 91 ~
Pigure 5-54 Theatry averaged computed EC at the 5-71 monitoring location at Roaring	5 01
Figure 5.25 Tidelly everyged computed EC time series at largey Doint	. 91
5. 26 Tidally averaged computed EC time series at Old Diver at Deak Slough	.92
5-50 Fluarly averaged computed EC time series at Old Kivel at Kock Slough	.92
Joseftion for Los Vagueros	03
Figure 5.28 Tidelly everyged computed EC time series at the CVP expert location	. 93
Figure 5-38 Tidally averaged computed EC time series at the CVF export location	. 93
Figure 5-39 Fidally averaged computed EC time series at the SwF export location	. 94 . ht)
at the same timing on a flood tide (upper) and abb tide (lower)	,III.) 05
Figure 5 41 Set 2 EC % abange from Page asse August 1, 2002	. 95
Figure 5-41 Set 2 EC % change from Dase case – August 1, 2002.	. 90
Figure 5-42 Set 2 EC % change from Dase case – September 1, 2002.	. 77
Figure 5-43 Set 2 EC % change from Base case – October 1, 2002	. 70
Figure 5-45 Set 2 EC % change from Base case – October 1, 2003.	100
11guit J = +J Jot 2 EC 70 Change 110111 Dase Case = OCIUDEI 1, 200J	100

Figure 5-46 Set 2 EC % change from Base case – November 1, 2003 101
Figure 5-47 Zone 1 EC % change from Base case – September 1, 2002 102
Figure 5-48 Set 1 EC % change from Base case – August 1, 2002
Figure 5-49 Set 1 EC % change from Base case – September 1, 2002 104
Figure 5-50 Set 1 EC % change from Base case – October 1, 2002 105
Figure 5-51 Set 1 EC % change from Base case – September 1, 2003 106
Figure 5-52 Set 1 EC % change from Base case – October 1, 2003 107
Figure 5-53 Set 1 EC % change from Base case – November 1, 2003 108
Figure 5-54 Location names for the areas examined for scouring potential
Figure 5-55 Velocity distributions for the five scenarios at Beldon's Landing, July 2002.
Figure 5-56 Color contour plots of velocity for Base case and Zone 1 at Hunter Cut in
July 2002. Points analyzed: Point 1 on bank Point 2 mid-channel 114
Figure 5-57 Hunter Cut velocity at Point 1 for Sets 1 and 2 in comparison with the Base
case
Figure 5-58 Velocity distributions for points 1 (bank) and 2 (mid-channel) at Hunter Cut.
Figure 5-59 Color contour plots of velocity for Base case and Zone 1 near Morrow Island
on July 12, 2002 14:00. Points analyzed: channel (Point 1) and bank (Point 2) 117
Figure 5-60 Morrow Island velocity at Point 1 for Sets 1 and 2 in comparison with the
Base case
Figure 5-61 Velocity distributions for points analyzed near Morrow Island: point 1
(channel) and point 2 (bank) 119
Figure 5-62 Color contour plots of velocity for Base case and Zone 4 near Meins Landing
on July 17, 2002 1915. Points analyzed: points 1 and 3 (bank) and point 2 (mid-channel).
Figure 5-63 Meins Landing velocity at Point 2 for Set 1 and Zone 4 in comparison with
the Base case
Figure 5-64 Meins Landing velocity at Point 2 for Set 2 and Zone 1 in comparison with
the Base case
Figure 5-65 Velocity distributions for Point 3 (bank) analyzed near Meins Landing 122
Figure 5-66 (Above) Color contour plot of Set 2 velocity near Cross Slough on July 19,
2002 23:15. (Below) Velocity distributions in Cross Slough. Points analyzed: points 1
and 2 mid-channel. 123 $\Sigma^2 = 5.67 \text{ G}$
Figure 5-67 Cross Slough velocity at Point 1 for Set 1 and Set 2 in comparison with the
Base case
Figure 5-68 Color contour plots of velocity for the Base case and set 1 scenario on July
11, 2002 04:45 (note scale differences on contour plots). Points analyzed near the Duck
Club location are indicated
Figure 5-69 velocity distributions for points analyzed near the Duck Club location.
Edwer prot shows verocity distributions for points A D analyzed near the Duck Club leastion
Figure 5-70 velocity time series for points A - D analyzed near the Duck Club location.
Figure 5-71 Velocity time series for points E and E analyzed near the Duck Club location
1 igure 5-71 verocity time series for points L and 1° analyzed near the Duck Club location 127

List of Tables

Table 3-1 Summary of monthly DICU flows (ft ³ sec ⁻¹) for the calibration and scenario	
simulation periods. Negative values indicate Delta withdrawal	23
Table 3-2 EC boundary conditions for the EC calibration, Base case and scenarios	
simulations.	26
Table 5-1 Flow magnitude (cfs) at four locations near peak flood tide (July 11, 2003	
22:00).	73

1. Executive Summary

1.1. Background

Resource Management Associates, Inc. (RMA) has developed a numerical model of the Suisun Marsh area to simulate the current hydrodynamics and salinity of the marsh as well as the changes to this regime under a set of four marsh restoration scenarios. RMA refined the representation of the Suisun Marsh area in their current numerical model of the San Francisco Bay and Sacramento-San Joaquin Delta system (Bay-Delta model). The computer programs used in the Bay-Delta model, RMA2 (King 1990) and RMA11 (King 1998), utilize a finite element formulation to simulate the one- and two-dimensional flow and water quality transport¹, respectively, in streams and estuaries. The Bay-Delta model, which uses electrical conductivity² (EC) as a surrogate for salinity, has been successively updated, refined and recalibrated in numerous studies over the past 11 years, for example, to evaluate the water quality responses of treated wastewater discharges, and the potential effects of various Suisun Marsh levee breach scenarios.

1.2. Report Summary

This Technical Summary of the Suisun Marsh Modeling Project describes:

- the refined Bay-Delta model;
- the calibration of this representation;
- the further development of the model to represent four representative marsh restoration scenarios; and
- analysis of the modeling results of these scenarios to evaluate their effects on tidal range, scour velocities, and tidal prism in Suisun Marsh, and on salinity in Suisun Marsh and the Delta in comparison with simulated Base case conditions.

1.3. Summary of the Calibration

RMA's Bay-Delta model was refined in the Suisun Marsh area, with increased detail to represent off-channel storage in overbank/fringe marsh regions, a better representation of precipitation and evaporation, estimation of local creek flows, inflows and withdrawals within the Suisun Marsh, plus an overall refinement of the mesh. These additions generally improved the representation of tidal dynamics and EC in Suisun Marsh. A recent Delta calibration effort (RMA, 2005) was used as the starting point for the current effort. There was no recalibration in the Delta, as the focus was on improving the representation of Suisun Marsh.

Hydrodynamic calibration of the refined model took place in the period April – July, 2004 to take advantage of new LiDAR elevation data and data from new flow and stage measurement stations in the Suisun Marsh area (DWR 2007). Stage calibration was generally good in Suisun Marsh. The results of the flow calibration were mixed. Flows in

¹ RMA11 can also be used to simulate three-dimensional transport in conjunction with other RMA model formulations, for both conservative and non-conservative constituents.

² EC measurements give an estimate of the amount of total dissolved solids in the water; units are typically given in μ mhos cm⁻¹ or, equivalently, μ S cm⁻¹

the smaller sloughs were greatly improved by the increased detail and refinement of the grid, the addition of off-channel storage, withdrawals for managed wetlands, and representation of evaporation in the tidal marsh areas. Flow through Montezuma Slough was low in comparison with measured data, and low flows through Hunter Cut were compensated by higher flows through Suisun Slough. These results have the potential of biasing modeled EC in the marsh restoration scenarios.

EC calibration results were also mixed, with some areas showing good correspondence with measured data, while other areas suffered from approximations intrinsic to the model or from the lack of sufficient data. In particular, density stratification is not explicitly represented in the 2-dimensional depth-averaged formulation used in the Bay-Delta model, leading to variations in the representation of EC. In the current model, diffusion coefficients are used to approximate effects due to density stratification. Using this method to improve the representation of EC during high flow periods tends to bias modeled EC when outflow is low. As a consequence, modeled EC at Martinez is low winter through spring and high summer through fall. This bias in modeled EC at Martinez propagates through western Suisun Marsh. In general, EC was low everywhere in the marsh in winter 2003. EC was low year-round in the eastern end of Montezuma Slough.

1.4. Summary of the Modeling Results

Four scenarios (Figure 1-1) for representative tidal marsh restoration in Suisun Marsh were modeled and compared to a Base case. The scenarios present a range of locations and acreages for restoration projects. Locations where levees were breached are indicated on Figure 1-1. As expected, each of the scenarios increased the tidal prism, i.e., the volume of water exchanged in the Suisun Marsh area, but muted the tidal range and shifted stage timing throughout the marsh in comparison with the Base case. Average tidal flow generally increased in the larger sloughs and decreased in smaller sloughs in the interior regions of Suisun Marsh. The peak velocity increased in sloughs near the breaches of the flooded areas, with the largest velocity changes localized at and near the mouths of the breached levees.

Electrical conductivity (μ mhos cm⁻¹ or μ Siemens cm⁻¹), or EC, was modeled as a surrogate for salinity. One part per thousand EC is equivalent to about 1.5 μ mhos cm⁻¹ of EC. EC in the Delta was similar to the Base case in each scenario January – June, but changed July – December in several of the scenarios. Delta EC decreased during the latter period for the Zone 4 and Set 1 scenarios where the breached areas were located in channels further from Suisun, Grizzly and Honker Bays. The Set 2 scenario resulted in EC increase in the Delta due to tidal trapping³ in the breached area adjacent to Suisun Bay. Tidal trapping in Zone 1 caused only minor increases in Delta EC.

Tidal restoration scenarios that decreased Delta EC tended to increase EC in Suisun Marsh, although changes in the details of the EC profile for each scenario depended on

³ Tidal trapping refers to the dispersive mechanism by which differences in tidal phase between a main channel and side channel or embayment create a net horizontal dispersion, in this case, of EC.

the particular location examined, the operation of the Suisun Marsh Salinity Control Gate (SMSCG), and the season. The Zone 1 scenario was most similar to the Base case, with little or no EC change in the eastern marsh but some increase in the west. The Zone 4 scenario decreased EC in most of the marsh whenever the SMSCG was operating, except in eastern Montezuma Slough where it increased EC. The Set 1 scenario generally resulted in the highest EC conditions in the Marsh, except upstream of the Zone 4 breaches on Montezuma Slough. The Set 2 scenario tended to increase EC in much of the marsh when the SMSCG was operating, with variable increase or decrease otherwise.

Figure 1-1 Regions flooded as tidal marsh in each of the scenarios, with the location of breaches in levees indicated by stars.