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Appendix 11F Smelt Analysis 

11F.1 Introduction 

This appendix describes quantitative methods and supplementary results used in the impact 

analyses of delta smelt and longfin smelt: the Eurytemora affinis–X2 analysis for smelt prey, 

upstream sediment entrainment, the Sacramento–San Joaquin Delta (Delta) outflow–longfin 

smelt abundance analysis, the Delta outflow–longfin smelt abundance analysis (based on 

Nobriga and Rosenfield 2016), the X2–longfin smelt abundance index analysis, and tidal habitat 

restoration mitigation calculations for longfin smelt. 

11F.2 Eurytemora affinis–X2 Analysis 

This analysis followed Kimmerer’s (2002) methods to conduct an analysis of the relationship 

between the smelt zooplankton prey Eurytemora affinis and spring (March–May) X2 for the 

period from 1980 to 2017, as described by Greenwood (2018). The main steps in preparing the 

data for analysis were as follows: 

1. Historical zooplankton data were obtained from California Department of Fish and 

Wildlife (2018). 

a. Data were subset to only include surveys 3, 4, and 5 (March–May). 

b. Specific conductance was converted to salinity by applying Schemel’s (2001) 

method, then only samples within the low salinity zone (salinity = 0.5–6) were 

selected. 

c. A constant of 10 was added to E. affinis adult catch per unit effort (number per cubic 

meter) in each sample, then the resulting value was log10-transformed. 

d. The log10-transformed values were averaged first by month, and then by year. 

2. Historical X2 data were obtained from DAYFLOW 

(https://www.water.ca.gov/Programs/Environmental-Services/Compliance-Monitoring-

And-Assessment/Dayflow-Data). 

a. For years prior to water year 1997 (which is the year DAYFLOW X2 values began to 

be provided), the DAYFLOW daily predictive equation for X2 was used, based on a 

starting value from Anke Mueller-Solger (see Greenwood 2018 for details). 

b. The mean March–May X2 was calculated for each year. 

Similar to Kimmerer (2002), a generalized linear model (GLM) was used to regress mean annual 

log10-transformed E. affinis catch per unit effort against mean March–May X2, including a step 

change between 1987 and 1988 to reflect the Potamocorbula amurensis clam invasion and a step 
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change between 2002 and 2003 to reflect the onset of the Pelagic Organism Decline (POD; 

Thomson et al. 2010). The interaction of X2 and the step change was included in a full model, 

but the interaction was not statistically significant, so the model was rerun with only X2 and the 

step changes included. These analyses were conducted in SAS 9.4 software.1 The statistical 

outputs indicate that there is little difference in the regression coefficients for the post-

Potamocorbula and POD step changes, whereas both regression coefficients were significantly 

less than the coefficient for the pre-Potamocorbula period. Regression coefficients from the 

model were stored for prediction of E. affinis relative abundance for the No Action Alternative 

(NAA)2 and Alternative 1–3 scenarios. 

The stored regression coefficients from the regression of historical E. affinis catch per unit effort 

vs. X2 and step changes were then applied to the NAA and Alternative 1–3 scenarios using 

PROC PLM in SAS 9.4 software. The basic regression model being applied was: 

where 3.9404 is the intercept and -0.7863 is the coefficient for the POD step change (the POD 

step change being chosen because it represents the most recent time period). Predictions were 

back-transformed to the original measurement scale (catch per unit effort, number per cubic 

meter) for summary of results. X2 inputs for the analysis came from the DSM2 modeling of 

water years 1922–2003 for the NAA and Alternative 1–3 scenarios. 

Results of the analysis are summarized in the main body of Chapter 11, Aquatic Biological 

Resources. Tables 11F-1 through 11F-5 provide supplemental information also discussed in the 

main body of Chapter 11. Figure 11F-1 shows the prediction limits summarized in these tables. 

Table 11F-1. Eurytemora affinis–X2 Analysis: Mean and 95% Prediction Limits, NAA 

Year Mean Estimate 
Lower 95% Prediction 

Limit 

Upper 95% Prediction 

Limit 

1922 176 25 967 

1923 125 16 695 

1924 68 5 410 

1925 145 20 797 

1926 127 16 706 

1927 192 28 1,061 

1928 159 22 878 

1929 75 6 441 

 
1 Copyright 2002–2012, SAS Institute Inc. SAS and all other SAS Institute Inc. product or service names are 

registered trademarks or trademarks of SAS Institute Inc., Cary, NC, USA 

2 The term NAA, which is identical to the No Project Alternative, is used throughout Chapter 11, Aquatic Biological 

Resources, and associated aquatic resources appendices in the presentation of modeled results and represents no 

material difference from the No Project Alternative, as discussed in Chapter 3, Environmental Analysis. 

log10(E. affinis catch per unit effort) = 3.9404 – 0.0152 (mean March–May X2) – 0.7863 
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Year Mean Estimate 
Lower 95% Prediction 

Limit 

Upper 95% Prediction 

Limit 

1930 115 14 644 

1931 64 4 389 

1932 99 11 563 

1933 79 7 460 

1934 83 8 483 

1935 163 23 900 

1936 158 22 868 

1937 171 24 940 

1938 205 30 1,134 

1939 77 6 453 

1940 184 27 1,012 

1941 204 30 1,132 

1942 189 28 1,041 

1943 175 25 966 

1944 105 12 589 

1945 134 18 739 

1946 116 14 646 

1947 100 11 566 

1948 132 17 731 

1949 132 17 730 

1950 133 17 735 

1951 146 20 802 

1952 205 30 1,134 

1953 138 18 760 

1954 173 25 955 

1955 77 6 452 

1956 183 27 1,011 

1957 151 21 834 

1958 205 30 1,133 

1959 99 11 562 

1960 108 13 605 

1961 100 11 565 

1962 124 16 691 

1963 184 27 1,013 

1964 74 6 437 

1965 162 23 893 
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Year Mean Estimate 
Lower 95% Prediction 

Limit 

Upper 95% Prediction 

Limit 

1966 122 15 676 

1967 205 30 1,133 

1968 118 15 660 

1969 205 30 1,134 

1970 132 17 728 

1971 174 25 957 

1972 121 15 672 

1973 160 22 882 

1974 188 27 1,037 

1975 183 27 1,011 

1976 70 5 417 

1977 61 3 377 

1978 189 28 1,041 

1979 149 20 821 

1980 162 23 893 

1981 115 14 644 

1982 204 30 1,128 

1983 205 30 1,134 

1984 146 20 807 

1985 95 10 538 

1986 164 23 905 

1987 101 11 573 

1988 74 6 439 

1989 143 19 791 

1990 72 5 427 

1991 104 12 587 

1992 101 11 573 

1993 197 29 1,090 

1994 75 6 442 

1995 205 30 1,134 

1996 205 30 1,134 

1997 136 18 754 

1998 205 30 1,134 

1999 175 25 963 

2000 165 23 908 

2001 111 13 620 
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Year Mean Estimate 
Lower 95% Prediction 

Limit 

Upper 95% Prediction 

Limit 

2002 116 14 646 

2003 163 23 897 

Table 11F-2. Eurytemora affinis–X2 Analysis: Mean and 95% Prediction Limits, Alternative 

1A 

Year Mean Estimate 
Lower 95% Prediction 

Limit 

Upper 95% Prediction 

Limit 

1922 175 25 965 

1923 125 16 695 

1924 69 5 412 

1925 145 20 799 

1926 127 16 705 

1927 191 28 1,053 

1928 159 22 877 

1929 75 6 441 

1930 114 14 638 

1931 64 4 389 

1932 99 11 563 

1933 79 7 460 

1934 83 8 480 

1935 162 23 891 

1936 158 22 868 

1937 170 24 935 

1938 205 30 1,134 

1939 77 6 452 

1940 183 27 1,011 

1941 204 30 1,132 

1942 189 28 1,041 

1943 175 25 966 

1944 105 12 589 

1945 134 18 739 

1946 116 14 646 

1947 100 11 566 

1948 132 17 732 

1949 130 17 721 

1950 133 17 734 
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Year Mean Estimate 
Lower 95% Prediction 

Limit 

Upper 95% Prediction 

Limit 

1951 145 20 801 

1952 205 30 1,134 

1953 138 18 760 

1954 173 25 955 

1955 77 6 452 

1956 182 26 1,005 

1957 149 20 823 

1958 205 30 1,133 

1959 99 11 562 

1960 107 12 601 

1961 99 11 562 

1962 123 16 685 

1963 183 27 1,010 

1964 74 6 437 

1965 161 23 889 

1966 122 15 676 

1967 205 30 1,133 

1968 118 15 659 

1969 205 30 1,134 

1970 131 17 724 

1971 174 25 957 

1972 118 15 659 

1973 160 22 882 

1974 188 27 1,037 

1975 183 27 1,011 

1976 70 5 417 

1977 61 3 376 

1978 191 28 1,057 

1979 148 20 817 

1980 162 23 893 

1981 114 14 635 

1982 204 30 1,128 

1983 205 30 1,134 

1984 147 20 808 

1985 94 10 538 

1986 164 23 904 
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Year Mean Estimate 
Lower 95% Prediction 

Limit 

Upper 95% Prediction 

Limit 

1987 100 11 566 

1988 74 6 438 

1989 142 19 784 

1990 72 5 427 

1991 102 11 576 

1992 101 11 571 

1993 197 29 1,087 

1994 74 6 440 

1995 205 30 1,134 

1996 205 30 1,134 

1997 136 18 754 

1998 205 30 1,134 

1999 175 25 963 

2000 165 23 908 

2001 109 13 612 

2002 116 14 645 

2003 162 23 891 

 

Table 11F-3. Eurytemora affinis–X2 Analysis: Mean and 95% Prediction Limits, Alternative 

1B 

Year Mean Estimate 
Lower 95% Prediction 

Limit 

Upper 95% Prediction 

Limit 

1922 175 25 965 

1923 126 16 697 

1924 69 5 412 

1925 144 20 797 

1926 127 16 706 

1927 191 28 1,053 

1928 159 22 877 

1929 75 6 441 

1930 114 14 638 

1931 64 4 389 

1932 99 11 563 

1933 79 7 460 

1934 83 8 480 

1935 162 23 891 
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Year Mean Estimate 
Lower 95% Prediction 

Limit 

Upper 95% Prediction 

Limit 

1936 158 22 868 

1937 170 24 935 

1938 205 30 1,134 

1939 76 6 448 

1940 183 27 1,011 

1941 204 30 1,132 

1942 189 28 1,041 

1943 175 25 966 

1944 105 12 589 

1945 134 18 739 

1946 116 14 646 

1947 100 11 566 

1948 132 17 733 

1949 130 17 721 

1950 133 17 734 

1951 145 20 801 

1952 205 30 1,134 

1953 138 18 760 

1954 173 25 955 

1955 77 6 452 

1956 182 26 1,006 

1957 150 21 824 

1958 205 30 1,133 

1959 99 11 562 

1960 107 12 602 

1961 99 11 563 

1962 123 16 685 

1963 183 27 1,010 

1964 74 6 437 

1965 163 23 895 

1966 121 15 674 

1967 205 30 1,133 

1968 118 15 659 

1969 205 30 1,134 

1970 133 17 735 

1971 173 25 955 
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Year Mean Estimate 
Lower 95% Prediction 

Limit 

Upper 95% Prediction 

Limit 

1972 118 15 659 

1973 160 22 882 

1974 188 27 1,037 

1975 183 27 1,011 

1976 70 5 417 

1977 61 3 376 

1978 191 28 1,057 

1979 148 20 817 

1980 162 23 893 

1981 114 14 636 

1982 204 30 1,130 

1983 205 30 1,134 

1984 148 20 817 

1985 94 10 536 

1986 164 23 904 

1987 100 11 566 

1988 74 6 438 

1989 142 19 785 

1990 72 5 427 

1991 102 11 575 

1992 101 11 570 

1993 197 29 1,088 

1994 74 6 440 

1995 205 30 1,134 

1996 205 30 1,134 

1997 135 18 747 

1998 205 30 1,134 

1999 175 25 963 

2000 165 23 908 

2001 109 13 612 

2002 115 14 642 

2003 162 23 891 
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Table 11F-4. Eurytemora affinis–X2 Analysis: Mean and 95% Prediction Limits, Alternative 

2 

Year Mean Estimate 
Lower 95% Prediction 

Limit 

Upper 95% Prediction 

Limit 

1922 175 25 965 

1923 125 16 695 

1924 69 5 412 

1925 145 20 799 

1926 127 16 705 

1927 191 28 1,053 

1928 159 22 877 

1929 75 6 441 

1930 114 14 638 

1931 64 4 389 

1932 99 11 563 

1933 79 7 460 

1934 82 7 479 

1935 162 23 891 

1936 158 22 868 

1937 170 24 935 

1938 205 30 1,134 

1939 77 6 452 

1940 183 27 1,011 

1941 204 30 1,132 

1942 189 28 1,041 

1943 175 25 966 

1944 105 12 589 

1945 134 18 739 

1946 116 14 646 

1947 100 11 566 

1948 132 17 732 

1949 130 17 721 

1950 133 17 734 

1951 145 20 801 

1952 205 30 1,134 

1953 138 18 760 

1954 173 25 955 

1955 77 6 452 
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Year Mean Estimate 
Lower 95% Prediction 

Limit 

Upper 95% Prediction 

Limit 

1956 182 26 1,005 

1957 149 21 824 

1958 205 30 1,133 

1959 99 11 562 

1960 107 12 601 

1961 99 11 562 

1962 123 16 685 

1963 183 27 1,010 

1964 74 6 437 

1965 161 23 889 

1966 122 15 676 

1967 205 30 1,133 

1968 118 15 659 

1969 205 30 1,134 

1970 131 17 724 

1971 174 25 957 

1972 118 15 659 

1973 160 22 882 

1974 188 27 1,037 

1975 183 27 1,011 

1976 70 5 417 

1977 61 3 376 

1978 191 28 1,056 

1979 148 20 817 

1980 162 23 893 

1981 114 14 635 

1982 204 30 1,128 

1983 205 30 1,134 

1984 147 20 808 

1985 94 10 538 

1986 164 23 904 

1987 100 11 566 

1988 74 6 438 

1989 142 19 785 

1990 72 5 427 

1991 102 11 577 
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Year Mean Estimate 
Lower 95% Prediction 

Limit 

Upper 95% Prediction 

Limit 

1992 101 11 571 

1993 197 29 1,087 

1994 74 6 440 

1995 205 30 1,134 

1996 205 30 1,134 

1997 136 18 754 

1998 205 30 1,134 

1999 175 25 963 

2000 165 23 908 

2001 109 13 612 

2002 116 14 645 

2003 162 23 891 

 

Table 11F-5. Eurytemora affinis–X2 Analysis: Mean and 95% Prediction Limits, Alternative 

3 

Year Mean Estimate 
Lower 95% Prediction 

Limit 

Upper 95% Prediction 

Limit 

1922 176 25 967 

1923 125 16 695 

1924 69 5 412 

1925 145 20 799 

1926 127 16 706 

1927 191 28 1,053 

1928 161 23 889 

1929 75 6 441 

1930 114 14 638 

1931 64 4 389 

1932 99 11 562 

1933 78 7 460 

1934 83 8 481 

1935 162 23 891 

1936 158 22 868 

1937 170 24 935 

1938 205 30 1,134 

1939 76 6 448 

1940 183 27 1,011 
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Year Mean Estimate 
Lower 95% Prediction 

Limit 

Upper 95% Prediction 

Limit 

1941 204 30 1,132 

1942 189 28 1,041 

1943 175 25 966 

1944 105 12 589 

1945 134 18 739 

1946 116 14 646 

1947 100 11 566 

1948 132 17 729 

1949 129 17 716 

1950 133 17 735 

1951 145 20 798 

1952 205 30 1,134 

1953 138 18 760 

1954 173 25 955 

1955 77 6 453 

1956 183 27 1,009 

1957 148 20 817 

1958 205 30 1,133 

1959 99 11 562 

1960 108 13 608 

1961 99 11 562 

1962 124 16 686 

1963 183 27 1,010 

1964 74 6 437 

1965 161 23 889 

1966 118 14 655 

1967 205 30 1,133 

1968 118 15 659 

1969 205 30 1,134 

1970 131 17 724 

1971 173 25 955 

1972 118 15 659 

1973 160 22 882 

1974 188 27 1,037 

1975 183 27 1,011 

1976 70 5 417 
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Year Mean Estimate 
Lower 95% Prediction 

Limit 

Upper 95% Prediction 

Limit 

1977 61 3 378 

1978 189 28 1,044 

1979 148 20 817 

1980 162 23 893 

1981 114 14 638 

1982 204 30 1,130 

1983 205 30 1,134 

1984 148 20 817 

1985 94 10 536 

1986 164 23 904 

1987 100 11 565 

1988 74 6 438 

1989 143 19 786 

1990 72 5 427 

1991 102 11 575 

1992 101 11 570 

1993 197 29 1,089 

1994 75 6 441 

1995 205 30 1,134 

1996 205 30 1,134 

1997 135 18 745 

1998 205 30 1,134 

1999 175 25 963 

2000 165 23 908 

2001 109 13 612 

2002 116 14 646 

2003 162 23 891 
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Note: CPUE = catch per unit effort. Each chart compares the named alternative (color shades) to the NAA (broken 

lines). 

Figure 11F-1. 95% Prediction Intervals of Longfin Smelt Fall Midwater Trawl Index by 

Water Year Type from Eurytemora affinis–X2 Analysis. 

11F.3 Upstream Sediment Entrainment 

Estimates of the percentage of suspended sediment in the Sacramento River that could be 

entrained by the Project intakes at Red Bluff and Hamilton City were made using previously 

developed rating curves (Huang and Greimann 2011) and USRDOM daily flow data for 

upstream and downstream at each intake. 

Daily suspended sediment concentration (milligrams per liter) in the Sacramento River 

immediately upstream of the Red Bluff and Hamilton City intakes was estimated from daily 

mean river flow (cubic feet per second [cfs]) with the following equations: 

• Red Bluff (USRDOM flow output for Sacramento River flow upstream of Tehama-

Colusa Canal, 176-ABVRBDIVDA):

• Flow < 10,000 cfs: Concentration = 0.0000368*Flow1.5
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• Flow 10,000–20,000 cfs: Concentration = 2.32E-10*Flow2.8

• Flow > 20,000 cfs: Concentration = 0.34*Flow0.67

• Hamilton City (USRDOM flow output for Sacramento River flow upstream of Glenn-

Colusa Irrigation District Main Canal, 155-BLW-WOODSO):

• Flow < 10,000 cfs: Concentration = 8E-11*Flow3

• Flow ≥ 10,000 cfs: Concentration = 0.0002*Flow1.4

For all scenarios, suspended sediment concentration at each intake was calculated based on the 

NAA scenario, to avoid estimating differing suspended sediment concentration because of 

differences in operations (e.g., reservoir releases, Project diversions). The daily suspended 

sediment load approaching each intake was calculated as the suspended sediment concentration 

(from equations above, converted to grams per cubic foot by multiplying by 28.316836) 

multiplied by the river flow from the USRDOM output locations shown above, multiplied by the 

number of seconds per day (i.e., 86,400). 

The daily amount of suspended sediment load entrained by the intakes was calculated using the 

above procedure, but instead of river flow being used to estimated suspended sediment load, the 

diverted water flow was represented as the difference in flow between upstream and downstream 

of each intake (in this case specific to each scenario, reflecting differences in diversions), where 

the downstream flow was from the following USRDOM outputs: 

• Red Bluff: Sacramento River flow downstream of Tehama-Colusa Canal (175-

RDBLFDIVDA)

• Hamilton City: Sacramento River flow downstream of Glenn-Colusa Irrigation District

Main Canal (150-GCC-DIV)

The results of the analysis showed the potential for greater sediment entrainment at the Red Bluff 

and Hamilton City intakes under Alternatives 1, 2, and 3 than the NAA (Tables 11F-6 and 11F-

7). Because the greatest suspended sediment load occurs in wetter years, the overall total for the 

full simulation period (i.e., 1922–2003) was similar to values in wet years. Across all years, at 

Red Bluff 2.6%–2.7% of suspended sediment was estimated to be entrained under Alternatives 1, 

2, and 3 compared to 1.2% under the NAA (Table 11F-6), whereas at Hamilton City 2.1% of 

suspended sediment was estimated to be entrained under Alternatives 1, 2, and 3 compared to 

1.8% under the NAA (Table 11F-7). 

Table 11F-6. Mean Percentage of Suspended Sediment Entrained by Water Year Type and 

Total Percentage Entrained Over Full 82-Year Simulation Period, Red Bluff Intake 

Water Year Type NAA Alt 1A Alt 1B Alt 2 Alt 3 

Wet 1.1% 2.2% 2.3% 2.1% 2.4% 

Above Normal 1.8% 3.9% 3.7% 3.9% 3.5% 

Below Normal 2.8% 5.1% 4.9% 5.1% 4.7% 

Dry 2.7% 4.8% 4.5% 4.8% 4.2% 

Critically Dry 1.2% 2.0% 2.0% 2.0% 2.0% 
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Water Year Type NAA Alt 1A Alt 1B Alt 2 Alt 3 

Total 1.2% 2.7% 2.6% 2.6% 2.7% 

Note: Water year type values are the means of the annual percentage of suspended sediment load diverted. Total is 

the overall percentage of the sum of suspended sediment load diverted over the 82-year simulation period. 

Table 11F-7. Mean Percentage of Suspended Sediment Entrained by Water Year Type and 

Total Percentage Entrained Over Full 82-Year Simulation Period, Hamilton City Intake 

Water Year Type NAA Alt 1A Alt 1B Alt 2 Alt 3 

Wet 1.6% 2.0% 2.0% 1.9% 2.1% 

Above Normal 2.8% 3.3% 3.3% 3.3% 3.0% 

Below Normal 5.4% 6.0% 6.0% 6.0% 5.4% 

Dry 8.5% 8.2% 8.2% 8.3% 7.5% 

Critically Dry 12.9% 11.4% 11.2% 11.6% 11.3% 

Total 1.8% 2.1% 2.1% 2.1% 2.1% 

Note: Water year type values are the means of the annual percentage of suspended sediment load diverted. Total is 

the overall percentage of the sum of suspended sediment load diverted over the 82-year simulation period. 

11F.4 Delta Outflow–Longfin Smelt Abundance Index Analysis 

11F.4.1. Development of Statistical Relationship 

The potential effect of the Project on longfin smelt was investigated through development of a 

statistical model relating the longfin smelt fall midwater trawl (FMWT) abundance index to 

Delta outflow, the FMWT abundance index 2 years earlier (as a representation of parental stock 

size), and ecological regime (i.e., 1967–1987, pre-Potamocorbula amurensis invasion; 1988–

2002, post-P. amurensis invasion; and 2003–2020, POD; to represent major ecological 

changepoints in the Delta, e.g., Nobriga and Rosenfield 2016). Total Delta outflow (thousand 

acre-feet) was summed and examined for March through May and December through May, 

similar time periods to previous work by Mount et al. (2013:66–69) and Nobriga and Rosenfield 

(2016). 

Twelve log-linear regression models were considered in the analysis. The models were fit using 

a Bayesian approach implemented in the R statistical computing language (R Core Team 2021) 

via the brms package (Bürkner 2017) with model weights for averaging posterior predictive 

distributions calculated using the loo package (Vehtari et al. 2017): three Markov Chain Monte 

Carlo chains were run; flat priors were assumed; there was a 2,000-sample warm-up; 10,000 

samples were retained from each chain (30,000 samples total from the posterior); and the R̂ 

<1.01 on estimated parameters indicated sampling converged on the posterior probability 

distributions for all models. 

Preliminary model comparison was performed using leave-one-out cross validation (LOO; 

Vehtari et al. 2017). Measures of model predictive accuracy using LOO are asymptotically equal 

to the widely applicable information criteria (WAIC; Watanabe 2010), but in the case of finite 

data LOO has been shown to be more robust to influential observations like outliers (Vehtari et 
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al. 2017). The preliminary model comparisons indicated there was a relatively high degree of 

similarity in terms of predictive ability between the top scoring individual models. The extent of 

model overlap in predictive accuracy was measured by the differences (and the standard errors of 

the differences) in expected log pointwise predictive densities, i.e., the differences in out-of-

sample predictive accuracy between models. 

Therefore, rather than selecting a single model for inference, the posterior predictive probability 

distributions were combined as a weighted average across models. This process involved taking 

draws from the posterior of each single model in proportion to its model weight. For example, if 

a single model’s weight was 25% of the total model set, then 2,500 draws from its posterior were 

added to the averaged posterior predictive distribution, which again included 10,000 total draws 

across all models. The statistical approach used to calculate the model weights for averaging the 

posterior predictive distributions across models is known as “stacking” (Yao et al. 2018). 

Compared to more traditional model averaging approaches, stacking differs in terms of how 

model weights are assigned. Instead of calculating model weights based on the relative predictive 

ability for each individual model—where the best model for prediction would be given the 

highest weight —the model weights estimated through stacking minimize the LOO mean 

squared error of the resulting averaged posterior predictive distribution across models. In other 

words, stacking was used to estimate the optimal linear combination of model weights (Yao et al. 

2018). 

Hence, the model with the largest stacking weight does not necessarily have the highest 

predictive score compared to other models in the set. For example, the models in this case can be 

divided into two subsets: one subset includes a covariate for Delta outflow during December–

May and the other model subset includes a covariate for March–May Delta outflow (Table 11F-

8). Comparing the predictive ability of each individual model using LOO resulted in a model 

with December–May outflow (the model with the third highest stacking weight in Table 11F-8) 

having the highest individual predictive accuracy of any single model considered. In contrast, 

stacking resulted in a model with March–May having the highest single model weight (36% of 

the total stacking weight). Nevertheless, because stacking optimizes the linear combination of 

model weights, the next three models (~64% of the stacking weight) all include December–May 

instead of March–May. Therefore, in this case, even though the model with highest stacking 

weight included March–May Delta outflow, the averaged posterior predictive distribution was 

ultimately weighted more heavily with models that include December–May Delta outflow 

compared to models with March–May Delta outflow. Of the 12 models considered, the top four 

models by stacking weight accounted for 99.9% of the averaged posterior predictive distribution 

(Table 11F-8). 

Several additional models were also examined, in addition to those in Table 11F-8, but they were 

ultimately not included in this analysis due to poor model fits and what would have been 

additional computational cost without an expected difference in results. The additional models 

included a squared term on Delta outflow and their examination was motivated by the modeling 

results of Nobriga and Rosenfield (2016). Those authors assessed the relationship between Delta 

outflow and the ratio of age-0 to age-2 longfin smelt abundance in the two-life-stage versions of 

the models included in their analyses. They found support for non-linearity in this relationship 

(i.e., there was a peak in productivity at more intermediate outflow values), which led to the 
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inclusion of a second-order polynomial regression (i.e., a squared term) on Delta outflow 

(Nobriga and Rosenfield 2016:50). Given the approach taken here, which differs from the 

Nobriga and Rosenfield analysis in terms of: (1) the survey data used for longfin smelt 

abundance; (2) how Delta outflow values were included as covariates; and (3) the overall time 

periods for available data included in the regression models, there was little to no support found 

for a second-order polynomial regression on Delta outflow. The aforementioned factors that 

differed between the two analyses are briefly described in the next paragraph for completeness; 

however, given the poor predictive ability of the second-order polynomial regressions under the 

current approach, that subset of models was ultimately not included because the preliminary 

results indicated the stacked model weights would be near zero. Hence the averaged posterior 

predictive distributions would not be expected to be sensitive to the exclusion of those models in 

this case, but their inclusion would have increased the computational time necessary to run and 

perform the averaging over a larger set of models. 

As outlined above, there are several differences between these analyses and those of Nobriga and 

Rosenfield (2016) that might explain the discrepancy in terms of support (or lack thereof) found 

for dome-shaped longfin smelt productivity as a function of Delta outflow. Firstly, Nobriga and 

Rosenfield (2016) found support for this relationship fitting models to catch data from the San 

Francisco Bay Study. In these analyses, on the other hand, the regression models have been fit to 

the FMWT index of abundance instead. Second, Nobriga and Rosenfield (2016) incorporated 

covariate values for Delta outflow based on a principal component analysis (the first principal 

component values) of the z-scored monthly means from December to May. Here, the monthly 

total outflow (either from December to May, or March to May) were summed, resulting in a total 

outflow value during each time period each year, and the regression covariate values were 

calculated as the z-scores of the period-total outflow values taken across years. Third, in addition 

to examining indices of abundance from different surveys, the annual time periods that have 

been examined also differ. Nobriga and Rosenfield (2016) examined the relationship between 

annual indices of longfin smelt abundance-at-age and Delta outflow that were available from the 

Bay Study during 1980–2013. Whereas in these analyses this relationship was examined over a 

longer period, during 1967–2020, which includes 20 additional years in the comparison with 

Delta outflow. 
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Table 11F-8. The Optimal Linear Combination of Model Weights Based on Stacking, Which 

Minimizes the Mean Squared Error of the Leave-One-Out Cross Validation for the 

Resulting Model Averaged Posterior Predictive Distribution across the Twelve Log-Linear 

Regressions of Longfin Smelt Fall Midwater Trawl Abundance Index. Models are a 

Function of Delta Outflow (December–May or March–May), Ecological Regime (1967–

1987, pre-Potamocorbula amurensis invasion; 1988–2002, post-P. amurensis invasion; and 

2003–2020, Pelagic Organism Decline), and Abundance Index 2 Years Earlier (Log10 
FMWT(yr – 2)) 

Log10FMWT Linear Regression Model 1 Stacking Weight 

Mar–May + Regime + Log10 FMWT(yr – 2) 0.3583 

Dec–May + Regime 0.3154 

Dec–May + Regime + Log10 FMWT(yr – 2) 0.1995 

Dec–May + Log10 FMWT(yr – 2) 0.1260 

Dec–May + Regime + Dec–May * Regime 0.0006 

Dec–May + Regime + Dec–May * Regime + Log10 FMWT(yr – 2) <0.0001 

Mar–May + Regime + Mar–May * Regime + Log10 FMWT(yr – 2) <0.0001 

Mar–May + Log10 FMWT(yr – 2) <0.0001 

Mar–May + Regime <0.0001 

Mar–May + Regime + Mar–May * Regime <0.0001 

Dec–May <0.0001 

Mar–May <0.0001 

1 An asterisk “*” sign represents an interaction term between regime and Delta outflow. 

11F.4.2. Assessment of Project Alternatives 

Predictions of the FMWT abundance index under the alternative modeled CALSIM outflow 

scenarios (1922–2003) were generated using the model stacking approach described above to 

generate a weighted average Bayesian posterior predictive distribution across the set of models 

considered. Dropping subscripts denoting individual models for simplicity, the general form of 

the models can be written as: 

𝐿𝑜𝑔10[𝐹𝑀𝑊𝑇𝑦𝑟]~𝑁(𝜇𝑦𝑟 , 𝜎
2) (1) 

𝜇𝑦𝑟 = 𝛽0,𝑖 + 𝛽1𝑂𝑢𝑡𝑓𝑙𝑜𝑤𝑦𝑟,𝑗 + 𝛽2𝐿𝑜𝑔10[𝐹𝑀𝑊𝑇𝑦𝑟−2] + 𝛽3𝑅𝑒𝑔𝑖𝑚𝑒𝑖 ∗ 𝑂𝑢𝑡𝑓𝑙𝑜𝑤𝑦𝑟,𝑗 (2) 

Where: 

𝐿𝑜𝑔10[𝐹𝑀𝑊𝑇𝑦𝑟] is the model predicted Log10 value of the FMWT index in water year yr; 
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𝜇𝑦𝑟  is the expected FMWT index in water year yr (the stacked posterior predictive distribution 

for 𝜇𝑦𝑟  is shown as the dark gray ribbon in Figure 11F-2); 

𝜎2 is the residual variance parameter (the stacked posterior predictive distribution including the 
residual variance is shown as the light gray ribbon in Figure 11F-2); 

𝛽0,𝑖 represents the intercept parameter estimated for each regime: Pre-Potamocorbula (i = 1); 

Potamocorbula (i = 2); and POD (i = 3). For models without a regime covariate, a single 
intercept is estimated across all years instead, i.e., 𝛽0 is substituted for 𝛽0,𝑖; 

𝛽1 represents the slope parameter estimated for the relationship between the FMWT index and 
Delta outflow; 

Outflowyr,j is the normalized3 outflow level during water year yr, and j denotes the outflow level 
during either the December through May, or the March through May period; 

𝛽2 represents the slope parameter estimated for the relationship between the expected FMWT 
index and the value of that index 2 years prior. For models without the parental stock 
covariate, 𝛽2 = 0, and; 

𝛽3 represents the interaction covariate (the difference in slopes) with respect to the estimated 
effect of outflow on the FMWT index of abundance during different regimes. For models 
without this interaction term, 𝛽3 = 0. 

3 Normalized outflow values for each CALSIM scenario were calculated by subtracting the mean and dividing by 

the standard deviation of observed Delta outflow values (1967–2020). 
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Note: The circles represent the annual historical values of the fall midwater trawl abundance index. The solid lines connect the annual 

expected values from the stacked Bayesian posterior predictive distribution. Colors correspond to the three modeled regimes. The 

darker gray ribbon represents the averaged 95% probability interval for draws from the means (in log-space) of the posterior 

predictive distribution for the fall midwater trawl index value. The lighter gray ribbon with a dashed black outline represents the 

averaged 95% overall posterior predictive probability interval. The posterior predictive interval for the means has a smaller range 

than the overall posterior predictive interval because in addition to uncertainty in the estimated mean values, the overall posterior 

predictive distribution also incorporates uncertainty in the residual error of the model fits (Equations 1 and 2). 

Figure 11F-2. Stacked Posterior Predictive Distributions for the Log-Linear Regressions of 

Longfin Smelt Fall Midwater Trawl Abundance Index as a Function of Delta Outflow 

(December–May), Ecological Regime (1967–1987, pre-Potamocorbula amurensis invasion; 

1988–2002, post-Potamocorbula invasion [shown as Potamocorbula]; and 2003–2020, 

Pelagic Organism Decline), and Abundance Index 2 Years Earlier [Log10 FMWT(yr – 2)]) 
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For those models that included the Log10 FMWT(yr – 2) parental stock size covariate (Table 11F-

8), the starting parental stock size in 1922 and 1923 was set at a FMWT index value of 99.4, 

corresponding to the mean index value from 2011 through 2020. Given the starting values for the 

FMWT index (in the relevant models), the recursive nature of the regression formula was used to 

generate the expected FMWT index value in successive years from the posterior predictive 

distribution 2 years prior. For all models, predictions were conditional on the estimated 

relationship between the FMWT index and Delta outflow (in December–May, or March–May, 

depending on the model), and for those models that included a regime covariate, draws from the 

posterior predictive distributions were conditioned on estimates during the POD regime. 

As an example, starting in 1924, draws from the posterior predictive distribution for models 

including the parental stock size covariate were generated by first substituting the normalized 

1924 December through May (or March through May) CALSIM outflow value for each 

alternative. Draws from the posterior distributions for the regression parameters and the starting 

value for 𝐿𝑜𝑔10[𝐹𝑀𝑊𝑇1922] were then used to generate the posterior predictive distribution for

the FMWT index in 1924 (𝜇1924). This value was then substituted into Equation 1, and the

posterior distribution for the residual variance parameter was used to generate draws from the 

pointwise posterior predictive distributions for the FMWT index.4 This process was iterated over 

each successive year, substituting the derived 𝜇𝑦𝑟−2 values for 𝐿𝑜𝑔10[𝐹𝑀𝑊𝑇𝑦𝑟−2] to calculate

𝜇𝑦𝑟, and to generate the annual posterior predictive distributions for the FMWT index under each

alternative. For models that did not include the parental stock size covariate, the posterior 

predictive distributions were generated based on the corresponding CALSIM outflow values for 

the monthly period corresponding to the individual model estimates, and likewise conditioned on 

covariate estimates during the POD regime for models that included a regime covariate (or the 

constant intercept parameter 𝛽0, for models without the regime covariate). As noted above in the

description of the model stacking approach, draws from the posterior predictive distribution for 

each model were sampled in proportion to the stacking model weights, to generate a weighted 

average posterior predictive distribution across the models considered. Summaries were then 

calculated by grouping the stacked annual posterior predictive distributions by water year type 

and calculating the means and credible intervals for each aggregated water year type posterior 

predictive distribution. 

11F.5 Delta Outflow–Longfin Smelt Abundance Analysis (Based 

on Nobriga and Rosenfield 2016) 

Nobriga and Rosenfield (2016) examined various formulations of a Ricker (1954) stock-

recruitment model to simulate FMWT indices through time. They found that December–May 

Delta outflow had a positive association with recruits per spawner and that juvenile recruitment 

from age 0 to age 2 was density dependent (lower survival with greater numbers of juveniles) but 

4 “~N” in Eqn. 1 denotes a normal (Gaussian) distribution. 
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cautioned that the density dependence in the model may be too strong.5 As described by 

California Department of Water Resources (2020:4-178), it should also be noted that analyses 

relying on surveys such as the FMWT index do not fully encompass the range of longfin smelt 

and do not reflect potential changes in catchability over time because of factors such as increased 

water clarity and gear avoidance (Latour 2016) that are the subject of ongoing investigations. 

The model has been retained for this Final EIR/EIS for continuity with the RDEIR/SDEIS, 

although to address comments on the RDEIR/SDEIS and comments on the analysis based on 

Nobriga and Rosenfield (2016), the analysis described above in Section 11F.4, Delta Outflow–

Longfin Smelt Abundance Index Analysis was added and receives greater weight in the 

consideration of potential impacts. 

11F.5.1. Reproduction of Nobriga and Rosenfield (2016) Model 

This analysis reproduced the methods described in Nobriga and Rosenfield (2016) for calculation 

of the two-life-stage model referred to as the “2abc” model, which includes the embedded 

hypotheses that understanding the trend in age-0 longfin smelt relative abundance requires 

explicit modeling of spawning and recruit relative abundance, that the production of age-0 fish is 

density dependent, and that juvenile survival from age 0 to age 2 has changed over time. For 

purposes of this effects analysis, the “2abc” model was selected because its median predictions 

visually fit recent years of empirical data better than the other model evaluated. 

Model input data used to reproduce the “2abc” model were as provided in Table 2 of Nobriga 

and Rosenfield (2016). The input data are provided in Appendix A of Greenwood and Phillis 

(2018). The analyses were run in R software (R Core Team 2021). 

Graphical comparison of the reproduction of the “2abc” model to the original Nobriga and 

Rosenfield (2016) “2abc” model (Figure 11F-3 and Figure 11F-4) suggests that the reproduced 

model was a reasonable approximation of the original model (i.e., the reproduction of the method 

was reasonably successful). It should be noted that the original “2abc” model 95% confidence 

intervals are wider than the reproduction utilized in this analysis. However, the model 

coefficients and standard errors are identical between the original and reproduced models. 

Therefore, the reproduced “2abc” model utilized in this analysis is considered appropriate, and 

the differences in 95% confidence intervals among the original and reproduced models do not 

affect the comparison of the scenarios discussed below. 

5 Comments on the draft Environmental Impact Report for Long-Term Operation of the California State Water 

Project suggested that a form of stock-recruitment function other than the Ricker method used by Nobriga and 

Rosenfield (2016) would be appropriate for exploration, such as the Beverton-Holt method (California Department 

of Water Resources 2020:4-178). The Beverton-Holt method was explored for the Final EIR but was found to be a 

poorer fit to the empirical data than the Ricker method, so the Ricker method consistent with Nobriga and 

Rosenfield (2016) was retained (California Department of Water Resources 2020:4-178). For the present impact 

analysis of Alternatives 1, 2, and 3 compared to the NAA, the Ricker method was also retained, consistent with 

California Department of Water Resources (2020) and Nobriga and Rosenfield (2016). 



Smelt Analysis 

Sites Reservoir Project Final EIR/EIS 11F-25 

2023 

Source: California Department of Water Resources 2020:E-86. 

FMWT = fall midwater trawl. 

Figure 11F-3. Reproduction of Nobriga and Rosenfield (2016) 2abc Model Predictions 

Compared to Historical Fall Midwater Trawl Survey Longfin Smelt Abundance Index. 

Source: California Department of Water Resources 2020:E-86. 

Gray shading indicates 95% interval. 

FMWT = fall midwater trawl. 

Figure 11F-4. Original (Figure 6c of Nobriga and Rosenfield 2016) 2abc Model Predictions 

Compared to Historical Fall Midwater Trawl Survey Longfin Smelt Abundance Index. 
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11F.5.2. Calculation of Delta Outflow Model Inputs for Scenario Comparison 

To obtain the required first principal component (PC1) model inputs for comparison of the NAA 

and Alternative 1–3 scenarios, it was first necessary to reproduce the principal components 

analysis (PCA). Following Nobriga and Rosenfield (2016), historical daily Delta outflow data 

were acquired from the DAYFLOW database.6 Flow data were averaged for December to May 

by month and year and the principal component analysis was conducted using the ‘PCA’ 

function in the R package FactoMineR (Le et al. 2008) on water years 1956–2013. The resulting 

PC1 outputs were very similar to the original values computed by Nobriga and Rosenfield 

(2016), suggesting that the reported method had been successfully reproduced.7 The ‘predict 

PCA’ function was then used to predict PC1 values for the NAA and Alternative 1–3 scenarios 

for water years 1922–2003 based on the CALSIM modeling of the scenarios, on the same 

projection as the PCA. The resulting PC1 values were used as the input for the model simulation 

of the flow scenarios described in the next section. 

11F.5.3. Model Simulation to Compare Scenarios 

Model simulation to compare the NAA and Alternative 1–3 scenarios used the PC1 flow inputs. 

To produce a simulation for the 1922–2003 time series, and consistent with Nobriga and 

Rosenfield (2016), the model was initiated with 2 years (i.e., years 1922 and 1923) of FMWT 

indices equal to 798, which represents the median observed FMWT index from 1967 to 2013. 

The simulation was conducted for two juvenile survival functions: 

• ‘good,’ which used the pre-1991 relatively high survival for simulation over the full

1922–2003 time series;

• ‘poor,’ which used the post-1991 relatively low survival for simulation over the full

1922–2003 simulation time series.

Following Nobriga and Rosenfield (2016), 1,000 stochastic simulations were conducted in which 

random draws were made based on the mean and standard error of the model parameters. 

Consistent with Nobriga and Rosenfield (2016), the variability among the estimates was 

examined using the 95% intervals. Results of the analysis are summarized in the main body of 

Chapter 11, Aquatic Biological Resources. 

11F.6 X2–Longfin Smelt Abundance Index Analysis 

The method is the same as that used recently by California Department of Water Resources 

(2020). The methods described herein are the same as those used in that application; the methods 

description below was adapted from California Department of Water Resources (2020:E2-1). 

The analysis essentially updated previously described X2-abundance index regressions 

(Kimmerer et al. 2009, Mount et al. 2013) by adding additional years of data. Updating the 

6 https://www.water.ca.gov/Programs/Environmental-Services/Compliance-Monitoring-And-Assessment/Dayflow-

Data 

7 The small differences may have arisen because of varying PCA algorithms in different statistical software 

packages, for example. 



Smelt Analysis 

Sites Reservoir Project Final EIR/EIS 11F-27 

2023 

analysis allowed full accounting of sources of error in the predictions, allowing calculation of 

prediction intervals from estimates of X2, as recommended by Simenstad et al. (2016), for the 

NAA and Alternative 1–3 scenarios. 

Longfin smelt FMWT index data were obtained 

(http://www.dfg.ca.gov/delta/data/fmwt/indices.asp?view=single), including indices for 1967–

2014 (excluding 1974 and 1979, when there was no sampling). For each index year, mean X2 

during January–June was calculated based on X2 from the DAYFLOW database 

(https://data.cnra.ca.gov/dataset/dayflow), in addition to calculated X2 for earlier years.8 

Similar to Mount et al. (2013), GLMs were run, predicting longfin smelt FMWT relative 

abundance index as a function of X2 and step changes in 1987/1988 and 2002/2003: 

Where y indicates year, a is the intercept, b is the coefficient applied to the mean Delta outflow, 

and c takes one of three values for period: 0 for the pre-Potamocorbula period (1967–1987), and 

values to be estimated for post-Potamocorbula (1988–2002) and POD (2003–2014) periods. 

Regarding the months used for mean X2, Mount et al. (2013:67) noted the following: 

The months selected in the original analysis [by Jassby et al. 1995] were based on the assumption 

that the (unknown) X2 mechanism operated during early life history of Longfin Smelt, which 

smelt experts linked to this period. Autocorrelation in the X2 values through months means that 

statistical analysis provides little guidance for improving the selection of months. A better 

understanding of the mechanism(s) underlying the relationship would probably allow this period 

to be narrowed and focused, but for now there is little basis for selecting a narrower period for 

averaging X2. 

Mount et al. (2013) compared the fit of X2 averaging periods for January–June (i.e., the original 

period used by Jassby et al. 1995, also used by Kimmerer et al. 2009) and March–May; they 

selected the former because the fit to the empirical data was slightly superior. In the present 

analysis, both the January–June and March–May averaging periods were compared for their 

adequacy of fit, using standard criteria (Akaike’s Information Criterion adjusted for small sample 

sizes, AICc; and variation explained, r2). This showed that the January–June X2 averaging period 

was better supported in terms of explaining variability in the FMWT index (Table 11F-9; Figure 

11F-5), so this averaging period was used in the subsequent comparison of the NAA and 

Alternative 1–3 scenarios based on DSM2 outputs of X2. 

8 DAYFLOW provides X2 estimates from water year 1997 onwards, so the DAYFLOW equation (X2(t) = 10.16 + 

0.945*X2(t-1) – 1.487log(QOUT(t))) was used to provide X2 for earlier years, based on a starting unpublished 

estimate of X2 (Mueller-Solger 2012 as cited by Greenwood [2018: 3]). 

Log10(FMWT indexy) = a + b·(mean X2y) + c·periody
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Table 11F-9. Parameter Coefficients for General Linear Models Explaining Longfin Smelt 

Fall Midwater Trawl Index as a Function of Mean January–June and March–May X2 and 

Step Changes in 1987/1988 (Potamocorbula Invasion) and 2002/2003 (Pelagic Organism 

Decline). 

Parameter 

January–

June 

Estimate 

January–June 

Standard 

Error 

January–June 

P 

March–May 

Estimate 

March–May 

Standard Error 

March–May 

P 

a (Intercept) 7.3059 0.3299 < 0.0001 6.8100 0.3224 < 0.0001 

b (X2) -0.0542 0.0049 < 0.0001 -0.0475 0.0047 < 0.0001 

c (Period: Post-

Potamocorbula) 
-0.5704 0.1174 < 0.0001 -0.6368 0.1271 < 0.0001 

c (Period: POD) -1.4067 0.1244 < 0.0001 -1.4581 0.1351 < 0.0001 

Fit - - - - - - 

AICc
1 -47.4904 -47.4904 -47.4904 -39.5492 -39.5492 -39.5492

r2 0.8666 0.8666 0.8666 0.8414 0.8414 0.8414 

Note: 
1 The difference of ~8 AICc units between the two GLMs indicates that the January–June mean X2 GLM is better 

supported in terms of explaining the patterns in the data (Burnham et al. 2011). 

Source: California Department of Water Resources 2020:E2-3. 

Figure 11F-5. Fit to Empirical Data of General Linear Model Predicting Longfin Smelt Fall 

Midwater Trawl Relative Abundance Index as a Function of Mean January–June X2 and 

Step Changes for Potamocorbula and Pelagic Organism Decline. 
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For the comparison of the NAA and Alternative 1–3 scenarios, mean January–June X2 was 

calculated for each year of the 1922–2003 simulation based on DSM2 X2 outputs. The X2-

abundance index GLM calculated as above was used to estimate abundance index for the 

scenarios, based on the POD period coefficient in addition to the intercept and X2 slope terms. 

The basic equation used was (see also Table 11F-9): 

The log-transformed abundance indices were back-transformed to a linear scale for comparison 

of scenarios. In order to illustrate the variability in predictions from the X2-abundance index 

GLM, annual estimates were made for the mean and upper and lower 95% prediction limits of 

the abundance indices, as recommended by Simenstad et al. (2016). Statistical analyses were 

conducted with PROC GLM and PROC PLM in SAS/STAT software, Version 9.4 of the SAS 

System for Windows.9 

Results of the analysis are summarized in the main body of Chapter 11, Aquatic Biological 

Resources. Tables 11F-10 through 11F-14 provide supplemental information also discussed in 

the main body of Chapter 11. Figure 11F-6 shows the 95% prediction limits described in the 

table. 

Table 11F-10. X2–Longfin Smelt Abundance Index Analysis: Mean and 95% Prediction 

Limits, NAA 

Year Mean Estimate 
Lower 95% Prediction 

Limit 

Upper 95% Prediction 

Limit 

1922 351 61 1,824 

1923 168 25 886 

1924 12 -6 102 

1925 147 21 783 

1926 110 14 593 

1927 523 94 2,727 

1928 188 29 991 

1929 21 -4 150 

1930 92 10 504 

1931 9 -6 88 

1932 84 9 466 

1933 24 -3 164 

1934 42 0 254 

1935 218 35 1,140 

1936 306 52 1,596 

9 Copyright 2002–2012, SAS Institute Inc. SAS and all other SAS Institute Inc. product or service names are 

registered trademarks or trademarks of SAS Institute Inc., Cary, NC, USA 

log10(Longfin Smelt FMWT index) = 7.3059 - 0.0542*(January–June X2) - 1.4067 
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Year Mean Estimate 
Lower 95% Prediction 

Limit 

Upper 95% Prediction 

Limit 

1937 217 35 1,136 

1938 798 145 4,190 

1939 18 -5 136 

1940 365 64 1,898 

1941 733 133 3,844 

1942 690 125 3,615 

1943 439 78 2,282 

1944 60 4 342 

1945 132 18 707 

1946 170 26 899 

1947 45 1 269 

1948 107 13 580 

1949 66 5 374 

1950 153 22 810 

1951 311 53 1,619 

1952 891 162 4,693 

1953 323 56 1,682 

1954 278 47 1,450 

1955 37 -1 229 

1956 635 115 3,322 

1957 116 15 626 

1958 744 135 3,902 

1959 96 11 526 

1960 58 3 333 

1961 58 3 334 

1962 102 12 555 

1963 368 64 1,915 

1964 35 -1 220 

1965 397 70 2,064 

1966 138 19 733 

1967 894 163 4,710 

1968 128 17 686 

1969 868 158 4,572 

1970 251 42 1,310 

1971 455 81 2,371 

1972 77 7 428 
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Year Mean Estimate 
Lower 95% Prediction 

Limit 

Upper 95% Prediction 

Limit 

1973 402 71 2,090 

1974 591 107 3,086 

1975 313 54 1,632 

1976 10 -6 96 

1977 6 -7 72 

1978 551 99 2,872 

1979 207 33 1,085 

1980 417 74 2,172 

1981 92 10 502 

1982 765 139 4,017 

1983 927 169 4,890 

1984 300 51 1,561 

1985 48 1 285 

1986 283 48 1,474 

1987 46 1 272 

1988 39 0 241 

1989 69 6 390 

1990 20 -4 144 

1991 26 -3 174 

1992 48 1 284 

1993 698 127 3,657 

1994 22 -4 156 

1995 879 160 4,632 

1996 670 121 3,504 

1997 281 47 1,465 

1998 863 157 4,543 

1999 447 79 2,326 

2000 267 45 1,395 

2001 68 5 384 

2002 155 23 821 

2003 385 68 2,003 
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Table 11F-11. X2–Longfin Smelt Abundance Index Analysis: Mean and 95% Prediction 

Limits, Alternative 1A 

Year Mean Estimate 
Lower 95% Prediction 

Limit 

Upper 95% Prediction 

Limit 

1922 343 59 1,785 

1923 168 25 885 

1924 12 -6 104 

1925 148 21 788 

1926 108 13 584 

1927 496 89 2,586 

1928 183 28 965 

1929 21 -4 150 

1930 90 10 495 

1931 9 -6 88 

1932 82 8 452 

1933 24 -3 164 

1934 43 0 260 

1935 209 33 1,097 

1936 304 52 1,584 

1937 214 34 1,120 

1938 794 145 4,173 

1939 18 -5 135 

1940 359 63 1,867 

1941 733 133 3,841 

1942 690 125 3,615 

1943 438 78 2,279 

1944 59 4 341 

1945 143 20 760 

1946 168 25 889 

1947 45 1 270 

1948 108 13 585 

1949 63 5 361 

1950 152 22 807 

1951 311 53 1,617 

1952 891 163 4,694 

1953 323 56 1,681 

1954 265 44 1,382 

1955 37 -1 230 
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Year Mean Estimate 
Lower 95% Prediction 

Limit 

Upper 95% Prediction 

Limit 

1956 629 114 3,287 

1957 112 14 606 

1958 732 133 3,839 

1959 93 10 509 

1960 56 3 324 

1961 55 3 320 

1962 100 12 545 

1963 362 63 1,881 

1964 35 -1 219 

1965 392 69 2,042 

1966 135 19 720 

1967 890 162 4,690 

1968 127 17 681 

1969 867 158 4,567 

1970 248 41 1,294 

1971 455 81 2,370 

1972 74 7 414 

1973 401 71 2,084 

1974 591 107 3,087 

1975 312 53 1,623 

1976 10 -6 96 

1977 5 -7 70 

1978 568 102 2,963 

1979 203 32 1,065 

1980 415 73 2,160 

1981 87 9 479 

1982 765 139 4,017 

1983 927 169 4,890 

1984 300 51 1,562 

1985 48 1 284 

1986 283 48 1,474 

1987 44 1 263 

1988 37 -1 228 

1989 67 5 381 

1990 20 -4 145 

1991 25 -3 169 
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Year Mean Estimate 
Lower 95% Prediction 

Limit 

Upper 95% Prediction 

Limit 

1992 47 1 279 

1993 688 125 3,602 

1994 22 -4 152 

1995 870 159 4,583 

1996 661 120 3,459 

1997 281 47 1,465 

1998 856 156 4,504 

1999 446 79 2,324 

2000 263 44 1,373 

2001 65 5 372 

2002 151 22 804 

2003 379 66 1,972 

Table 11F-12. X2–Longfin Smelt Abundance Index Analysis: Mean and 95% Prediction 

Limits, Alternative 1B 

Year Mean Estimate 
Lower 95% Prediction 

Limit 

Upper 95% Prediction 

Limit 

1922 343 59 1,785 

1923 168 25 888 

1924 12 -6 104 

1925 147 21 780 

1926 108 13 584 

1927 497 89 2,588 

1928 183 28 964 

1929 21 -4 150 

1930 90 10 495 

1931 9 -6 88 

1932 82 8 452 

1933 24 -3 164 

1934 43 0 260 

1935 209 33 1,097 

1936 304 52 1,584 

1937 213 34 1,118 

1938 794 145 4,173 

1939 17 -5 130 

1940 359 62 1,867 
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Year Mean Estimate 
Lower 95% Prediction 

Limit 

Upper 95% Prediction 

Limit 

1941 733 133 3,842 

1942 690 125 3,615 

1943 438 78 2,279 

1944 59 4 341 

1945 132 18 705 

1946 168 25 889 

1947 45 1 271 

1948 108 13 585 

1949 63 5 361 

1950 152 22 806 

1951 310 53 1,616 

1952 891 163 4,694 

1953 323 56 1,681 

1954 265 44 1,381 

1955 37 -1 231 

1956 630 114 3,291 

1957 113 14 608 

1958 717 130 3,759 

1959 93 10 509 

1960 57 3 329 

1961 60 4 345 

1962 100 12 545 

1963 362 63 1,882 

1964 35 -1 218 

1965 401 71 2,084 

1966 127 17 681 

1967 889 162 4,686 

1968 127 17 681 

1969 868 158 4,570 

1970 257 43 1,342 

1971 457 81 2,379 

1972 74 7 413 

1973 400 70 2,079 

1974 591 107 3,087 

1975 312 53 1,623 

1976 10 -6 95 
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Year Mean Estimate 
Lower 95% Prediction 

Limit 

Upper 95% Prediction 

Limit 

1977 5 -7 70 

1978 568 102 2,964 

1979 203 32 1,065 

1980 415 73 2,161 

1981 87 9 479 

1982 765 139 4,017 

1983 927 169 4,890 

1984 311 53 1,619 

1985 47 1 281 

1986 283 48 1,477 

1987 44 1 263 

1988 37 -1 227 

1989 67 5 377 

1990 20 -4 145 

1991 25 -3 168 

1992 47 1 277 

1993 689 125 3,607 

1994 22 -4 152 

1995 871 159 4,585 

1996 661 120 3,459 

1997 276 47 1,440 

1998 857 156 4,512 

1999 446 79 2,324 

2000 263 44 1,373 

2001 66 5 372 

2002 152 22 806 

2003 379 66 1,972 

Table 11F-13. X2–Longfin Smelt Abundance Index Analysis: Mean and 95% Prediction 

Limits, Alternative 2 

Year Mean Estimate 
Lower 95% Prediction 

Limit 

Upper 95% Prediction 

Limit 

1922 343 59 1,785 

1923 168 25 885 

1924 12 -6 104 

1925 148 21 788 
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Year Mean Estimate 
Lower 95% Prediction 

Limit 

Upper 95% Prediction 

Limit 

1926 108 13 584 

1927 496 89 2,586 

1928 183 28 965 

1929 21 -4 150 

1930 90 10 496 

1931 9 -6 88 

1932 81 8 452 

1933 24 -3 164 

1934 43 0 259 

1935 209 33 1,097 

1936 305 52 1,590 

1937 214 34 1,119 

1938 794 145 4,173 

1939 18 -5 135 

1940 359 63 1,867 

1941 733 133 3,842 

1942 690 125 3,615 

1943 438 78 2,279 

1944 59 4 341 

1945 143 20 760 

1946 168 25 889 

1947 45 1 270 

1948 108 13 585 

1949 63 5 361 

1950 152 22 805 

1951 311 53 1,617 

1952 891 163 4,694 

1953 323 56 1,681 

1954 265 44 1,383 

1955 37 -1 230 

1956 629 114 3,287 

1957 112 14 607 

1958 732 133 3,839 

1959 93 10 509 

1960 56 3 324 

1961 55 3 320 
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Year Mean Estimate 
Lower 95% Prediction 

Limit 

Upper 95% Prediction 

Limit 

1962 100 12 545 

1963 362 63 1,881 

1964 35 -1 219 

1965 392 69 2,041 

1966 134 18 713 

1967 890 162 4,690 

1968 127 17 681 

1969 867 158 4,567 

1970 248 41 1,294 

1971 455 81 2,370 

1972 74 7 414 

1973 401 71 2,084 

1974 591 107 3,087 

1975 312 53 1,623 

1976 10 -6 96 

1977 5 -7 70 

1978 567 102 2,961 

1979 203 32 1,065 

1980 415 73 2,160 

1981 87 9 479 

1982 765 139 4,017 

1983 927 169 4,890 

1984 300 51 1,562 

1985 48 1 284 

1986 283 48 1,474 

1987 44 1 263 

1988 37 -1 228 

1989 69 6 388 

1990 20 -4 145 

1991 25 -3 170 

1992 47 1 278 

1993 688 125 3,604 

1994 22 -4 152 

1995 870 159 4,583 

1996 661 120 3,459 

1997 281 47 1,465 
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Year Mean Estimate 
Lower 95% Prediction 

Limit 

Upper 95% Prediction 

Limit 

1998 856 156 4,504 

1999 446 79 2,324 

2000 263 44 1,374 

2001 65 5 372 

2002 151 22 804 

2003 379 66 1,971 

Table 11F-14. X2–Longfin Smelt Abundance Index Analysis: Mean and 95% Prediction 

Limits, Alternative 3 

Year Mean Estimate 
Lower 95% Prediction 

Limit 

Upper 95% Prediction 

Limit 

1922 343 59 1,783 

1923 167 25 882 

1924 12 -6 104 

1925 148 21 785 

1926 108 13 585 

1927 498 89 2,594 

1928 190 30 999 

1929 21 -4 148 

1930 90 10 494 

1931 9 -6 89 

1932 81 8 449 

1933 24 -3 164 

1934 43 0 260 

1935 209 33 1,097 

1936 306 52 1,591 

1937 213 34 1,116 

1938 794 145 4,173 

1939 17 -5 131 

1940 358 62 1,861 

1941 733 133 3,842 

1942 690 125 3,615 

1943 438 78 2,279 

1944 59 4 341 

1945 145 21 771 

1946 168 25 890 
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Year Mean Estimate 
Lower 95% Prediction 

Limit 

Upper 95% Prediction 

Limit 

1947 44 1 263 

1948 104 13 565 

1949 61 4 351 

1950 151 22 802 

1951 309 53 1,607 

1952 891 163 4,695 

1953 323 56 1,681 

1954 265 44 1,381 

1955 40 0 243 

1956 633 115 3,310 

1957 109 14 591 

1958 713 130 3,737 

1959 93 10 508 

1960 58 3 333 

1961 56 3 323 

1962 100 12 547 

1963 362 63 1,881 

1964 35 -1 218 

1965 393 69 2,042 

1966 121 16 648 

1967 885 161 4,660 

1968 127 17 680 

1969 870 159 4,580 

1970 250 41 1,306 

1971 457 81 2,380 

1972 74 7 413 

1973 400 70 2,079 

1974 591 107 3,083 

1975 312 53 1,624 

1976 10 -6 95 

1977 6 -7 73 

1978 551 99 2,875 

1979 202 32 1,061 

1980 416 73 2,162 

1981 88 9 482 

1982 765 139 4,017 
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Year Mean Estimate 
Lower 95% Prediction 

Limit 

Upper 95% Prediction 

Limit 

1983 927 169 4,890 

1984 311 53 1,619 

1985 47 1 281 

1986 299 51 1,559 

1987 44 1 262 

1988 37 -1 227 

1989 69 6 390 

1990 20 -4 144 

1991 25 -3 168 

1992 46 1 276 

1993 690 125 3,615 

1994 22 -4 153 

1995 871 159 4,584 

1996 661 120 3,460 

1997 275 46 1,434 

1998 858 156 4,515 

1999 446 79 2,324 

2000 263 44 1,372 

2001 65 5 372 

2002 153 22 811 

2003 380 67 1,976 
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Note: FMWT Index = longfin smelt fall midwater trawl index. Each chart compares the named alternative (color 

shades) to the NAA (broken lines). 

Figure 11F-6. 95% Prediction Intervals of Longfin Smelt Fall Midwater Trawl Index by 

Water Year Type from X2–Longfin Smelt Abundance Index Analysis. 

11F.7 Tidal Habitat Restoration Mitigation Calculations for 

Longfin Smelt 

Tidal habitat restoration mitigation for longfin smelt was calculated based on the same method 

recently applied by California Department of Water Resources (2019:5-5). The method applied 

is that of Kratville (2010), who combined statistical relationships between export:inflow (E:I) 

ratio and proportion of particles entrained from various particle injection locations included in 

DSM2-PTM runs by Kimmerer and Nobriga (2008) with areas of habitat represented by groups 

of particle injection locations. The logistic equations for these particle injection locations that 

were applied in the analysis to mean CALSIM-modeled E:I during February–June were as 

follows (Nobriga pers. comm.; see Kratville 2010 for further explanation of station codes): 

• Antioch: Proportional entrainment = 1-(1/(1+ 0.00271028300855596*e6.84578776491213*E:I))
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• Bacon Island: Proportional entrainment = 1-(1/(1+

0.00360067831643248*e48.0279532945984*E:I))

• Collinsville: Proportional entrainment = 1-(1/(1+

0.00122681735447479*e7.34600447344753*E:I))

• Franks Tract East: Proportional entrainment = 1-(1/(1+

0.0882721350895259*e6.51283857598075*E:I))

• Franks West: Proportional entrainment = 1-(1/(1+

0.0321221161869743*e5.5544157874989*E:I))

• Georgiana Slough: Proportional entrainment = 1-(1/(1+

0.0556193254426028*e7.53188118299606*E:I))

• Hood: Proportional entrainment = 1-(1/(1+ 0.0370940945312037*e6.00721899458561*E:I))

• Medford Island: Proportional entrainment = 1-(1/(1+

0.00592509281258315*e34.8002358833536*E:I))

• Mossdale: Proportional entrainment = 1-(1/(1+ 0.111111111111111*e26.6493233888825*E:I))

• North Fork Mokelumne: Proportional entrainment = 1-(1/(1+ 0.0610234435346189*e
7.28620279196804*E:I))

• Potato Slough: Proportional entrainment = 1-(1/(1+

0.0163841512024925*e23.708308398635*E:I))

• Rio Vista: Proportional entrainment = 1-(1/(1+ 0.0076755045686138*e6.69498358561645*E:I))

• Ryde: Proportional entrainment = 1-(1/(1+ 0.0117017438595754*e6.7207341005591*E:I))

• South Fork Mokelumne: Proportional entrainment = 1-(1/(1+ 0.0389615268878375*e
14.4737516748024*E:I))

• Stockton: Proportional entrainment = 1-(1/(1+ 0.00840706847099802*e32.6988703978096*E:I))

• Three Mile Slough: Proportional entrainment = 1-(1/(1+

0.0157935505682666*e6.10724605041376*E:I))

• Twitchell Island: Proportional entrainment = 1-(1/(1+

0.0342441647821108*e6.37831755748149*E:I))

• Vernalis: Proportional entrainment = 1-(1/(1+ 0.111111111111111*e27.3073879175582*E:I))

• Victoria Canal: Proportional entrainment = 1-(1/(1+

0.00000001283874368*e219.722457733622*E:I))

The mean estimate of particle proportional entrainment from application of these equations was 

calculated for four geographic zones, with this mean estimate of particle entrainment then being 

multiplied by the area of each zone: 

• Lower Sacramento (Antioch, Collinsville, Rio Vista, Ryde, Three Mile Slough):

19,140.69 acres

• Hood and West Dela San Joaquin (Hood, Twitchell Island): 6,080.929 acres
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• Georgiana Slough/North Fork Mokelumne (Georgiana Slough, North Fork Mokelumne):

2,704.28 acres

• San Joaquin (Bacon Island, Franks Tract East, Franks Tract West, Medford Island,

Mossdale, Potato Slough, South Fork Mokelumne, Stockton, Vernalis, Victoria Canal):

21,124.31 acres

The overall area of effect for each scenario was calculated as 10% of the area of the above 

calculations, consistent with calculations for the mitigation requirements used by California 

Department of Fish and Game (2009) and California Department of Water Resources (2019). 

Results of the mitigation calculations for the number of acres that Alternatives 1–3 were in 

excess of NAA are provided in the main body of Chapter 11, Aquatic Biological Resources. 

11F.8 References Cited 

11F.8.1. Printed References 

Bürkner, P.-C. 2017. brms: An R Package for Bayesian Multilevel Models Using Stan. Journal 

of Statistical Software 80(1):1–28. 

Burnham, K. P., D. R. Anderson, and K. P. Huyvaert. 2011. AIC Model Selection and 

Multimodel Inference in Behavioral Ecology: Some Background, Observations, and 

Comparisons. Behavioral Ecology and Sociobiology 65(1):23–35. 

California Department of Fish and Game. 2009. California Endangered Species Act Incidental 

Take Permit No. 2081-2009-001-03. Department of Water Resources California State 

Water Project Delta Facilities and Operations. Yountville, CA: California Department of 

Fish and Game, Bay Delta Region. 

California Department of Fish and Wildlife. 2018. Zooplankton Study Clarke-Bumpus Net Data, 

1972-2017 (file <1972-2017CBMatrix.xlsx>). Available: 

ftp://ftp.dfg.ca.gov/IEP_Zooplankton/. Accessed: June 4, 2018. 

California Department of Water Resources. 2019. Incidental Take Permit Application for Long-

Term Operation of the California State Water Project. December 13. Available: 

https://water.ca.gov/-/media/DWR-Website/Web-Pages/Programs/State-Water-

Project/Files/1_DWR_LTO_ITP_Application_2019-12-13_a_y19.pdf. Accessed: 

February 24, 2020. 

California Department of Water Resources. 2020. Final Environmental Impact Report for Long-

term Operation of the California State Water Project. State Clearinghouse No. 

2019049121. March. 

Greenwood, M. 2018. Potential Effects on Zooplankton from California WaterFix Operations. 

Technical Memorandum to California Department of Water Resources. July 2. Available: 

https://www.waterboards.ca.gov/waterrights/water_issues/programs/bay_delta/california_

ftp://ftp.dfg.ca.gov/IEP_Zooplankton/
https://water.ca.gov/-/media/DWR-Website/Web-Pages/Programs/State-Water-Project/Files/1_DWR_LTO_ITP_Application_2019-12-13_a_y19.pdf
https://water.ca.gov/-/media/DWR-Website/Web-Pages/Programs/State-Water-Project/Files/1_DWR_LTO_ITP_Application_2019-12-13_a_y19.pdf
https://www.waterboards.ca.gov/waterrights/water_issues/programs/bay_delta/california_waterfix/exhibits/docs/petitioners_exhibit/dwr/part2_rebuttal/dwr_1349.pdf


 Smelt Analysis 

 

 

Sites Reservoir Project Final EIR/EIS 11F-45 

 2023 
 

waterfix/exhibits/docs/petitioners_exhibit/dwr/part2_rebuttal/dwr_1349.pdf. Accessed: 

November 30, 2018. 

Greenwood, M., and C. Phillis. 2018. Comparison of Predicted Longfin Smelt Fall Midwater 

Trawl Index for Existing Conditions, No Action Alternative, and California WaterFix 

CWF H3+ Operational Scenarios Using the Nobriga and Rosenfield (2016) Population 

Dynamics Model. Technical Memorandum to California Department of Water Resources. 

Sacramento, CA: ICF. Available: 

https://www.waterboards.ca.gov/waterrights/water_issues/programs/bay_delta/california_

waterfix/exhibits/docs/petitioners_exhibit/dwr/part2_rebuttal/dwr_1352.pdf. Accessed: 

September 24, 2019. 

Huang, J. V., and B. Greimann. 2011. Sediment Loads at Tehama-Colusa, Glen-Colusa, and 

Delevan Diversions. Technical Report No. SRH-2011-22. Mid Pacific Region NODOS 

Investigation Report. June. Denver, CO: Bureau of Reclamation, Technical Service 

Center, Sedimentation and River Hydraulics Group. 

Jassby, A. D., W. J. Kimmerer, S. G. Monismith, C. Armor, J. E. Cloern, T. M. Powell, J. R. 

Schubel, and T. J. Vendlinski. 1995. Isohaline Position as a Habitat Indicator for 

Estuarine Populations. Ecological Applications 5(1):272–289. 

Kimmerer, W. J. 2002. Effects of Freshwater Flow on Abundance of Estuarine Organisms: 

Physical Effects or Trophic Linkages? Marine Ecology Progress Series 243:39–55. 

Kimmerer, W. J., E. S. Gross, and M. L. MacWilliams. 2009. Is the Response of Estuarine 

Nekton to Freshwater Flow in the San Francisco Estuary Explained by Variation in 

Habitat Volume? Estuaries and Coasts 32(2):375–389. 

Kimmerer, W. J., and M. L. Nobriga. 2008. Investigating Particle Transport and Fate in the 

Sacramento–San Joaquin Delta Using a Particle Tracking Model. San Francisco Estuary 

and Watershed Science 6(1). 

Kratville, D. 2010. California Department of Fish and Game Rationale for Effects of Exports. 

California Department of Fish and Game, Sacramento, CA. 

Latour, R. J. 2016. Explaining Patterns of Pelagic Fish Abundance in the Sacramento–San 

Joaquin Delta. Estuaries and Coasts 39(1):233–247. 

Le, S., J. Josse, and F. Husson. 2008. FactoMineR: An R Package for Multivariate Analysis. 

Journal of Statistical Software 25(1):1–18. 

Mount, J., W. Fleenor, B. Gray, B. Herbold, and W. Kimmerer. 2013. Panel Review of the Draft 

Bay-Delta Conservation Plan. Prepared for the Nature Conservancy and American 

Rivers. September. Saracino & Mount, LLC, Sacramento, CA. 

Nobriga, M. L., and J. A. Rosenfield. 2016. Population Dynamics of an Estuarine Forage Fish: 

Disaggregating Forces Driving Long-Term Decline of Longfin Smelt in California’s San 

Francisco Estuary. Transactions of the American Fisheries Society 145(1):44–58. 

https://www.waterboards.ca.gov/waterrights/water_issues/programs/bay_delta/california_waterfix/exhibits/docs/petitioners_exhibit/dwr/part2_rebuttal/dwr_1349.pdf
https://www.waterboards.ca.gov/waterrights/water_issues/programs/bay_delta/california_waterfix/exhibits/docs/petitioners_exhibit/dwr/part2_rebuttal/dwr_1352.pdf
https://www.waterboards.ca.gov/waterrights/water_issues/programs/bay_delta/california_waterfix/exhibits/docs/petitioners_exhibit/dwr/part2_rebuttal/dwr_1352.pdf


Smelt Analysis 

Sites Reservoir Project Final EIR/EIS 11F-46 

2023 

R Core Team. 2021. R: A Language and Environment for Statistical Computing. R Foundation 

for Statistical Computing, Vienna, Austria. Available: https://www.Rproject.org/. 

Ricker, W. E. 1954. Stock and Recruitment. Journal of the Fisheries Research Board of Canada 

11(5):559–623. 

Schemel, L. E. 2001. Simplified Conversions between Specific Conductance and Salinity Units 

for Use with Data from Monitoring Stations. Interagency Ecological Program Newsletter 

14(1):17–18. 

Simenstad, C., J. Van Sickle, N. Monsen, E. Peebles, G. T. Ruggerone, and H. Gosnell. 2016. 

Independent Review Panel Report for the 2016 California WaterFix Aquatic Science 

Peer Review. Sacramento, CA: Delta Stewardship Council, Delta Science Program. 

Thomson, J. R., W. J. Kimmerer, L. R. Brown, K. B. Newman, R. Mac Nally, W. A. Bennett, F. 

Feyrer, and E. Fleishman. 2010. Bayesian Change Point Analysis of Abundance Trends 

for Pelagic Fishes in the Upper San Francisco Estuary. Ecological Applications 

20(5):1431–1448. 

Vehtari, A., A. Gelman, and J. Gabry. 2017. Practical Bayesian model evaluation using leave-

one-out cross-validation and WAIC. Statistics and Computing 27(5): 1413–1432. 

Watanabe, S. 2010. Asymptotic equivalence of Bayes cross validation and widely applicable 

information criterion in singular learning theory. Journal of Machine Learning Research 

11: 3571–3594. 

Yao, Y., A. Vehtari, D. Simpson, and A. Gelman. 2018. Using Stacking to Average Bayesian 

Predictive Distributions (with Discussion). Bayesian Analysis 13(3):917–1007. 

11F.8.2. Personal Communications 

Nobriga, Matthew. Fish Biologist, Bay Delta Fish and Wildlife Office, U.S. Fish and Wildlife 

Service, Sacramento, CA. May 14, 2012—Email containing Excel file < 

logistic_parameters.xls> sent to Marin Greenwood, Aquatic Ecologist, ICF, Sacramento, 

CA. 

https://www.rproject.org/

	Appendix 11F Smelt Analysis
	11F.1 Introduction
	11F.2 Eurytemora affinis–X2 Analysis
	11F.3 Upstream Sediment Entrainment
	11F.4 Delta Outflow–Longfin Smelt Abundance Index Analysis
	11F.4.1. Development of Statistical Relationship
	11F.4.2. Assessment of Project Alternatives

	11F.5 Delta Outflow–Longfin Smelt Abundance Analysis (Based on Nobriga and Rosenfield 2016)
	11F.5.1. Reproduction of Nobriga and Rosenfield (2016) Model
	11F.5.2. Calculation of Delta Outflow Model Inputs for Scenario Comparison
	11F.5.3. Model Simulation to Compare Scenarios

	11F.6 X2–Longfin Smelt Abundance Index Analysis
	11F.7 Tidal Habitat Restoration Mitigation Calculations for Longfin Smelt
	11F.8 References Cited
	11F.8.1. Printed References
	11F.8.2. Personal Communications





