Appendix G - Attachment 1

# Appendix G1 Methylmercury Model Documentation

This attachment documents the fish tissue methylmercury modeling performed to estimate methylmercury concentrations in fish throughout the Delta for the assessment presented in Appendix G, *Water Quality Technical Appendix*, prepared in support of the Reinitiation of Consultation on the long-term operations of the Central Valley Project (CVP) and State Water Project (SWP) Environmental Impact Statement (EIS).

This appendix is organized into the following main sections:

- Section G.1: Modeling Methodology. This section provides information about the overall modeling framework, modeling tools, and how model input information was obtained and processed.
- Section G.2: Modeling Simulations and Assumptions. This section describes the modeling simulations conducted and input assumptions.
- Section G.3: Modeling Results. This section presents the modeling results.
- Section G.4: Model Limitations and Applicability. This section describes the limitations associated with the model and appropriate use of model results.

## G1.1 Modeling Methodology

This section describes the analytical framework and development and use of the models used to estimate methylmercury concentrations in fish throughout the Delta.

#### G1.1.1 Overview of the Modeling Approach and Objectives

CalSim II, Delta Simulation Model II (DSM2), and the Central Valley Regional Water Quality Control Board's (CVRWQCB) fish tissue model for Largemouth Bass (*Micropterus salmoides*) developed for the Delta Methylmercury Total Maximum Daily Load (CVRWQCB TMDL Model) (CVRWQCB 2010a) were used in sequence to develop modeled concentrations of methylmercury in fish tissue at select Delta locations. CalSim II simulates CVP and SWP operations and DSM2 simulates one-dimensional hydrodynamics in the Delta. One of the three DSM2 modules, QUAL, simulates one-dimensional source tracking in the Delta and outputs the flow-percentage at DSM2 nodes. The Total Maximum Daily Limit (TMDL) Model is based on a power curve that uses input water column methylmercury concentrations to model methylmercury concentrations in the fish fillets of standard 350-mm-long Largemouth Bass. Figure G1.1-1 shows the relationships among these modeling tools.



Figure G1.1-1. Relationships among the Different Predictive Modeling Tools

#### G1.1.2 DSM2 Postprocessing

The period average flow-fraction output from DSM2 was used in mass-balance calculations (processed outside of DSM2) to generate long-term average methylmercury concentrations at selected Delta locations. The flow-fraction output from DSM2 is the percentage of water at each specified Delta location constituted by the six primary source waters—Sacramento River, Yolo Bypass, San Joaquin River, eastside tributaries, San Francisco Bay, and in-Delta agriculture. Water column methylmercury concentrations for each Delta location were calculated using the following mass-balance equation:

$$C_{water} = [(I_1 * C_1) + (I_2 * C_2) + (I_3 * C_3) + (I_4 * C_4) + (I_5 * C_5) + (I_6 * C_6)]/100$$

Where:

- $C_{water}$  = methylmercury concentration in water (nanograms/liter [ng/L]) at a DSM2 output location
- $I_{1.6}$  = modeled daily inflow from each of the six sources of water to the Delta for each DSM2 output location (percentage)
- $C_{1.6}$  = methylmercury concentration in water (ng/L) from each of the six inflow sources to the Delta

The Delta source water concentrations used in the mass-balance calculations are summarized in Table G1.1-1.

Water column methylmercury concentrations from the mass balance calculations are shown in Table G1.1-2. Average concentrations are presented for the entire (1922–2003) period modeled and drought (1987–1991) period modeled by DSM2. A key assumption for the mass-balance calculation of water column concentrations of methylmercury is that the methylmercury acts in a conservative manner as the various source waters mix and flow through the Delta, which it does not.

| Source Water             | Station                          | Concentration in<br>Water (ng/L) | Years                    | Source        |
|--------------------------|----------------------------------|----------------------------------|--------------------------|---------------|
| Sacramento River         | Sacramento River at<br>Freeport  | 0.10                             | 2000–2003                | CVRWQCB 2010b |
| Yolo Bypass              | Prospect Slough (Yolo<br>Bypass) | 0.35                             | 2000–2003                | CVRWQCB 2010b |
| San Joaquin River        | San Joaquin River at<br>Vernalis | 0.16                             | 2000-2004                | CVRWQCB 2010b |
| East Side<br>Tributaries | Mokelumne River at I-<br>5       | 0.17                             | 2000–2004                | CVRWQCB 2010b |
| In-Delta<br>Agriculture  | Various Delta<br>locations       | 0.35                             | 2000, 2003               | CVRWQCB 2010b |
| San Francisco Bay        | Suisun Bay                       | 0.033                            | 2007–2011;<br>2013; 2015 | SFEI 2019     |

| Table G1.1-1. Methvimercur | v (Total | I) Concentrations in Water in Inflow Sources to the Delta |
|----------------------------|----------|-----------------------------------------------------------|
|                            | , (      |                                                           |

ng/L = nanogram(s) per liter

### G1.1.3 CVRWQCB TMDL Model

The CVRWQCB TMDL Model is an empirical power curve that uses water column concentrations of methylmercury to estimate methylmercury concentrations in the fish fillets of standard 350-mm-long Largemouth Bass (CVRWQCB 2010a). The CVRWQCB developed the nonlinear model based on Largemouth Bass as grouped in large regions of the Delta (rather than specific locations) compared to average methylmercury concentrations in water for those same general regions (CVRWQCB 2010a). Data were grouped by subareas of the Delta such as Sacramento River, Mokelumne River, Central Delta, San Joaquin River, and West Delta (CVRWQCB 2010a).

Largemouth Bass are excellent indicators of mercury contamination because they have a relatively high level of mercury compared to other species, are piscivorous, are abundantly distributed throughout the Delta, are popular gamefish, and have high site fidelity. Largemouth Bass are therefore representative of spatial patterns of tissue mercury concentrations throughout the aquatic food web, including exposure to humans.

The CVRWQCB TMDL Model used for estimating fish tissue concentrations of methylmercury in Largemouth Bass is presented below.

Fish methylmercury (milligrams/kilogram, wet weight) =  $20.365 \times (methylmercury in water, ng/L)^{1.6374}$ (with  $r^2=0.91$ , and P less than 0.05)

The water column methylmercury concentrations presented in Table G1.1-2 were input into the above equation to generate the fish tissue methylmercury concentrations. The overall construction and calibration of the model were unchanged for the simulations described herein.

|                                    |                     | Period Average Concentration (ng/L) |               |               |               |               |
|------------------------------------|---------------------|-------------------------------------|---------------|---------------|---------------|---------------|
| Location                           | Period <sup>1</sup> | No Action<br>Alternative            | Alternative 1 | Alternative 2 | Alternative 3 | Alternative 4 |
| Delta Interior                     |                     |                                     |               |               |               |               |
| San Joaquin River                  | All                 | 0.17                                | 0.17          | 0.17          | 0.17          | 0.17          |
| at Stockton                        | Drought             | 0.18                                | 0.18          | 0.18          | 0.18          | 0.18          |
| Turner Cut                         | All                 | 0.17                                | 0.17          | 0.17          | 0.17          | 0.17          |
|                                    | Drought             | 0.17                                | 0.17          | 0.17          | 0.17          | 0.17          |
| San Joaquin River at               | All                 | 0.12                                | 0.11          | 0.11          | 0.12          | 0.12          |
| San Andreas Landing                | Drought             | 0.11                                | 0.11          | 0.11          | 0.11          | 0.11          |
| San Joaquin River                  | All                 | 0.12                                | 0.12          | 0.12          | 0.12          | 0.12          |
| at Jersey Point                    | Drought             | 0.11                                | 0.11          | 0.11          | 0.11          | 0.11          |
| Victoria Canal                     | All                 | 0.15                                | 0.15          | 0.15          | 0.15          | 0.16          |
|                                    | Drought             | 0.15                                | 0.15          | 0.14          | 0.15          | 0.15          |
| Western Delta                      |                     |                                     |               |               |               |               |
| Sacramento River at                | All                 | 0.12                                | 0.12          | 0.12          | 0.12          | 0.12          |
| Emmaton                            | Drought             | 0.11                                | 0.11          | 0.11          | 0.11          | 0.11          |
| San Joaquin River                  | All                 | 0.11                                | 0.11          | 0.11          | 0.11          | 0.11          |
| at Antioch                         | Drought             | 0.10                                | 0.10          | 0.10          | 0.10          | 0.10          |
| Montezuma Slough                   | All                 | 0.10                                | 0.09          | 0.09          | 0.09          | 0.10          |
| at Hunter Cut/ Beldon's<br>Landing | Drought             | 0.08                                | 0.08          | 0.07          | 0.07          | 0.08          |
| Major Diversions (Pumpi            | ng Stations)        |                                     |               |               |               |               |
| Barker Slough at                   | All                 | 0.14                                | 0.14          | 0.14          | 0.14          | 0.14          |
| North Bay Aqueduct<br>Intake       | Drought             | 0.13                                | 0.13          | 0.13          | 0.12          | 0.13          |
| Contra Costa                       | All                 | 0.14                                | 0.14          | 0.13          | 0.14          | 0.14          |
| Pumping Plant #1                   | Drought             | 0.13                                | 0.13          | 0.13          | 0.13          | 0.13          |
| Banks Pumping                      | All                 | 0.15                                | 0.14          | 0.14          | 0.14          | 0.15          |
| Plant                              | Drought             | 0.15                                | 0.14          | 0.14          | 0.14          | 0.15          |
| Jones Pumping                      | All                 | 0.15                                | 0.15          | 0.15          | 0.15          | 0.15          |
| Plant                              | Drought             | 0.15                                | 0.15          | 0.14          | 0.14          | 0.15          |

Table G1.1-2. Modeled Methylmercury Concentrations in Water

<sup>1</sup> "All" water years 1922–2003 represent the 82-year period modeled using DSM2; "drought" represents a 5-consecutive-year (water years 1987–1991) drought period consisting of dry and critical water year types (as defined by the Sacramento Valley 40-30-30 water year hydrologic classification index).

ng/L = nanograms per liter

## G1.2 Modeling Simulations and Assumptions

This section describes the assumptions for the CVRWQCB TMDL Model simulations.

#### G1.2.1 Location Assumptions

The CVRWQCB TMDL Model was based on data for Largemouth Bass as grouped in large regions of the Delta, rather than specific locations, compared to average methylmercury concentrations in water for those same general regions (CVRWQCB 2010a). As such, the model provides a Delta-specific, general, long-term average relationship between co-located water column methylmercury concentrations and methylmercury concentrations in Largemouth Bass fillets.

### G1.2.2 Normalization and Tissue Type Assumptions

As discussed above, Largemouth Bass are excellent indicators of long-term average mercury exposure, risk, and the spatial pattern for both ecological and human health effects. A fish tissue mercury dataset was available for Largemouth Bass from locations across the Delta. It is important to standardize concentrations to the same length fish for establishment of the model and for model predictions because of the well-established positive relationship between fish length and age and tissue mercury concentrations (e.g., Alpers et al. 2008). This same normalization technique was used by the CVRWQCB for the TMDL Model (CVRWQCB 2010a). The 350-mm size fish is an appropriate size representative of human health consumption and risk. The standardized size allows the best comparison among locations and alternatives. The fillet concentrations as consumed by wildlife, but allow for comparison between alternative to determine relative effects to fish and wildlife as well as estimating effects to human consumers.

### G1.2.3 Model Application

To evaluate differences between the No Action Alternative and Alternatives 1 through 4, modeled fish tissue methylmercury concentrations were compared directly for percent change relative to the No Action Alternative and to the CVRWQCB's fish tissue objective of 0.24 milligrams per kilogram (mg/kg), wet weight, for trophic level 4 fish (CVRWQCB 2018). The comparison of each fish tissue concentration to the fish tissue objective is expressed as an exceedance quotient (EQ).

## G1.3 Modeling Results

Output data resulting from the TMDL Model simulations for each alternative are presented in Tables G1.5-1 through G1.5-5 and Figures G1.5-1 and G1.5-2. Outputs from the TMDL Model are average fish tissue methylmercury concentrations for the entire (1922–2003) period modeled and the five-year (1987–1991) drought period modeled using DSM2.

## G1.4 Model Limitations and Applicability

CalSim II and DSM2 are planning level models, not predictive models. Further, mathematical models like DSM2 can only approximate processes of physical systems. Models are inherently inexact because the mathematical description of the physical system is imperfect and the understanding of interrelated physical processes is incomplete.

The goal of the CVRWQCB TMDL Model was to establish the linkage between the 0.24 mg/kg tissue mercury TMDL target (which is now the Delta water quality objective for trophic level 4 fish) to a water column concentration goal for methylmercury of 0.066 ng/l. The model results are presented with the

recognition of the imprecision of predicting fish tissue concentrations from estimates of methylmercury concentrations for specific Delta locations, but with the knowledge that Largemouth Bass are probably the best indicator of fish tissue contamination. Results provide an estimated mean tissue concentration as would be expected based on the input water column concentration.

Mercury concentrations for inflow sources to the Delta (for example, agriculture in the Delta, Yolo Bypass, Eastside Tributaries) also present uncertainty in the modeling because of limited data.

For the reasons discussed above, the water column concentration and fish tissue concentration results presented herein are not predictive in nature. Rather, they are for comparative assessment to identify the effect the alternatives would have on fish tissue methylmercury concentrations relative to the No Action Alternative.

## G1.5 References

Alpers, C. N., C. Eagles-Smith, C. Foe, S. Klasing, M. C. Marvin-DiPasquale, D. G. Slotton, and L. Windham-Meyers. 2008. Mercury Conceptual Model. Sacramento (CA): Delta Regional Ecosystem Restoration Implementation Plan. January 24. Available: http://www.science.calwater.ca.gov/pdf/drerip/drerip\_mercury\_conceptual\_model\_final\_012408. pdf. Accessed: March 13, 2019.

Central Valley Regional Water Quality Control Board (CVRWQCB). 2010a. Amendments to the Water Quality Control Plan for the Sacramento River and San Joaquin River Basins for the Control of Methylmercury and Total Mercury in the Sacramento-San Joaquin Delta Estuary, Staff Report. Rancho Cordova, CA. April. Available:

https://www.waterboards.ca.gov/rwqcb5/water\_issues/tmdl/central\_valley\_projects/delta\_hg/. Accessed: March 13, 2019.

Central Valley Regional Water Quality Control Board (CVRWQCB). 2010b. Sacramento–San Joaquin Delta Estuary TMDL for Methylmercury, Final Staff Report. April. Rancho Cordova, CA. Available: https://www.waterboards.ca.gov/rwqcb5/water\_issues/tmdl/central\_valley\_projects/delta\_hg/.

Accessed: March 13, 2019.

Central Valley Regional Water Quality Control Board (CVRWQCB). 2018. Water Quality Control Plan (Basin Plan) for the California Regional Water Quality Control Board Central Valley Region, Fifth Edition, Revised May 2018 (With Approved Amendments), The Sacramento River Basin and The San Joaquin River Basin. Available: https://www.waterboards.ca.gov/centralvalley/water\_issues/basin\_plans/#basinplans. Accessed: March 13, 2019.

San Francisco Estuary Institute (SFEI). 2019. *Regional Data Center*. Available: http://www.sfei.org/data. Accessed: February 28, 2019.

| Location                            | Period <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Estimated<br>Concentrations of<br>Methylmercury<br>(mg/kg, wet weight) | Exceedance Quotients <sup>2</sup> |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------|
|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | No Action Alternative                                                  | No Action Alternative             |
| Delta Interior                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                        |                                   |
| San Joaquin River at                | All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.12                                                                   | 4.7                               |
| Stockton                            | Drought                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.20                                                                   | 5.0                               |
| Turner Cut                          | All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.10                                                                   | 4.6                               |
| Tulliel Cut                         | Drought                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.13                                                                   | 4.7                               |
| San Joaquin River at                | All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.60                                                                   | 2.5                               |
| San Andreas Landing                 | Drought                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.57                                                                   | 2.4                               |
| San Joaquin River at                | All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.63                                                                   | 2.6                               |
| Jersey Point<br>Victoria Canal      | Drought                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.56                                                                   | 2.3                               |
| Victoria Canal                      | All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.95                                                                   | 4.0                               |
| viciona Canai                       | ion Period <sup>1</sup> Pe | 0.93                                                                   | 3.9                               |
| Western Delta                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                        |                                   |
| Sacramento River at                 | All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.62                                                                   | 2.6                               |
| Emmaton                             | Drought                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.53                                                                   | 2.2                               |
| San Joaquin River at                | All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.57                                                                   | 2.4                               |
| Antioch                             | Drought                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.47                                                                   | 2.0                               |
| Montezuma Slough at                 | All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.44                                                                   | 1.8                               |
| Hunter Cut/Beldon's Landing         | Drought                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.30                                                                   | 1.3                               |
| Major Diversions (Pumping Stations) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                        |                                   |
| Barker Slough at North Bay Aqueduct | All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.84                                                                   | 3.5                               |
| Intake                              | Drought                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.69                                                                   | 2.9                               |
| Contro Costo Dumning Plant #1       | All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.81                                                                   | 3.4                               |
| Contra Costa Pumping Plant #1       | Drought                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.75                                                                   | 3.1                               |
| Donks Dumning Diont                 | All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.88                                                                   | 3.7                               |
| Danks Fumping Plant                 | Drought                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.89                                                                   | 3.7                               |
| Ionos Dumaria a Diant               | All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.93                                                                   | 3.9                               |
| Jones Pumping Plant                 | Drought                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.93                                                                   | 3.9                               |

#### Table G1.5-1. Methylmercury Concentrations in 350 millimeter Largemouth Bass Fillets for the No **Action Alternative**

<sup>1</sup> "All" water years 1922–2003 represent the 82-year period modeled using DSM2; "drought" represents a 5-consecutive-year (water years 1987–1991) drought period consisting of dry and critical water year types (as defined by the Sacramento Valley 40 30-30 water year hydrologic classification index) <sup>2</sup> Exceedance Quotient = tissue concentration / 0.24 mg/kg

| Table G1.5-2. Methylmercury Concentrations in 350 millimeter Largemouth Bass Fillets | for |
|--------------------------------------------------------------------------------------|-----|
| Alternative 1, and Comparison to No Action Alternative                               |     |

| Location                       | Period <sup>1</sup> | Estimated<br>Concentrations of<br>Methylmercury<br>(mg/kg, wet weight) | % Change In<br>Methylmercury<br>Concentrations<br>Compared to No<br>Action Alternative <sup>2</sup> | Exceedance<br>Quotients <sup>3</sup> |
|--------------------------------|---------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------|
|                                |                     | Alternative 1                                                          | Alternative 1                                                                                       | Alternative 1                        |
| Delta Interior                 |                     |                                                                        |                                                                                                     |                                      |
| San Joaquin River at           | All                 | 1.13                                                                   | 1                                                                                                   | 4.7                                  |
| Stockton                       | Drought             | 1.22                                                                   | 2                                                                                                   | 5.1                                  |
| Turnor Cut                     | All                 | 1.09                                                                   | -1                                                                                                  | 4.5                                  |
| Tullier Cut                    | Drought             | 1.09                                                                   | -3                                                                                                  | 4.5                                  |
| San Joaquin River at           | All                 | 0.58                                                                   | -2                                                                                                  | 2.4                                  |
| San Andreas Landing            | Drought             | 0.56                                                                   | -2                                                                                                  | 2.3                                  |
| San Joaquin River at           | All                 | 0.61                                                                   | -3                                                                                                  | 2.5                                  |
| Jersey Point                   | Drought             | 0.55                                                                   | -2                                                                                                  | 2.3                                  |
| Vistoria Canal                 | All                 | 0.92                                                                   | -4                                                                                                  | 3.8                                  |
| victoria Canai                 | Drought             | 0.87                                                                   | -7                                                                                                  | 3.6                                  |
| Western Delta                  |                     |                                                                        | ·                                                                                                   |                                      |
| Sacramento River at            | All                 | 0.61                                                                   | -1                                                                                                  | 2.5                                  |
| Emmaton                        | Drought             | 0.52                                                                   | -1                                                                                                  | 2.2                                  |
| San Joaquin River at           | All                 | 0.55                                                                   | -4                                                                                                  | 2.3                                  |
| Antioch                        | Drought             | 0.46                                                                   | -3                                                                                                  | 1.9                                  |
| Montezuma Slough at            | All                 | 0.42                                                                   | -3                                                                                                  | 1.8                                  |
| Hunter Cut/Beldon's<br>Landing | Drought             | 0.29                                                                   | -3                                                                                                  | 1.2                                  |
| Major Diversions (Pumping      | Stations)           |                                                                        |                                                                                                     |                                      |
| Barker Slough at North         | All                 | 0.85                                                                   | 1                                                                                                   | 3.5                                  |
| Bay Aqueduct Intake            | Drought             | 0.69                                                                   | -0.3                                                                                                | 2.9                                  |
| Contra Costa Pumping           | All                 | 0.78                                                                   | -4                                                                                                  | 3.2                                  |
| Plant #1                       | Drought             | 0.71                                                                   | -5                                                                                                  | 3.0                                  |
| Donka Dumning Dlast            | All                 | 0.85                                                                   | -4                                                                                                  | 3.5                                  |
| Danks Pumping Plant            | Drought             | 0.82                                                                   | -7                                                                                                  | 3.4                                  |
| Longo Duraning Diard           | All                 | 0.91                                                                   | -2                                                                                                  | 3.8                                  |
| Jones Pumping Plant            | Drought             | 0.89                                                                   | -4                                                                                                  | 3.7                                  |

<sup>1</sup> "All" water years 1922–2003 represent the 82-year period modeled using DSM2; "drought" represents a 5-consecutive-year (water years 1987–1991) drought period consisting of dry and critical water year types (as defined by the Sacramento Valley 40 30-30 water year hydrologic classification index)

<sup>2</sup> % change indicates a negative change (increased concentrations) relative to the No Action Alternative when values are positive and a positive change (lowered concentrations) relative to the No Action Alternative when values are negative.

<sup>3</sup> Exceedance Quotient = tissue concentration / 0.24 mg/kg

| Table G1.5-3. Methylmercury Concentrations in 350 millimeter Largemouth Bass Fillets for | r |
|------------------------------------------------------------------------------------------|---|
| Alternative 2, and Comparison to No Action Alternative                                   |   |

| Location                       | Period <sup>1</sup> | Estimated<br>Concentrations of<br>Methylmercury<br>(mg/kg, wet weight) | % Change In<br>Methylmercury<br>Concentrations<br>Compared to No<br>Action Alternative <sup>2</sup> | Exceedance<br>Quotients <sup>3</sup> |
|--------------------------------|---------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------|
|                                |                     | Alternative 2                                                          | Alternative 2                                                                                       | Alternative 2                        |
| Delta Interior                 |                     |                                                                        |                                                                                                     |                                      |
| San Joaquin River at           | All                 | 1.13                                                                   | 1                                                                                                   | 4.7                                  |
| Stockton                       | Drought             | 1.22                                                                   | 1                                                                                                   | 5.1                                  |
| Turnor Cut                     | All                 | 1.08                                                                   | -2                                                                                                  | 4.5                                  |
| Turner Cut                     | Drought             | 1.08                                                                   | -4                                                                                                  | 4.5                                  |
| San Joaquin River at           | All                 | 0.58                                                                   | -3                                                                                                  | 2.4                                  |
| San Andreas Landing            | Drought             | 0.55                                                                   | -2                                                                                                  | 2.3                                  |
| San Joaquin River at           | All                 | 0.61                                                                   | -3                                                                                                  | 2.5                                  |
| Jersey Point                   | Drought             | 0.55                                                                   | -3                                                                                                  | 2.3                                  |
| Vistorio Consl                 | All                 | 0.89                                                                   | -6                                                                                                  | 3.7                                  |
| victoria Canai                 | Drought             | 0.85                                                                   | -9                                                                                                  | 3.5                                  |
| Western Delta                  |                     |                                                                        |                                                                                                     |                                      |
| Sacramento River at            | All                 | 0.61                                                                   | -1                                                                                                  | 2.5                                  |
| Emmaton                        | Drought             | 0.52                                                                   | -2                                                                                                  | 2.2                                  |
| San Joaquin River at           | All                 | 0.54                                                                   | -5                                                                                                  | 2.3                                  |
| Antioch                        | Drought             | 0.45                                                                   | -4                                                                                                  | 1.9                                  |
| Montezuma Slough at            | All                 | 0.42                                                                   | -5                                                                                                  | 1.7                                  |
| Hunter Cut/Beldon's<br>Landing | Drought             | 0.29                                                                   | -4                                                                                                  | 1.2                                  |
| Major Diversions (Pumping      | Stations)           |                                                                        |                                                                                                     |                                      |
| Barker Slough at North         | All                 | 0.85                                                                   | 1                                                                                                   | 3.5                                  |
| Bay Aqueduct Intake            | Drought             | 0.69                                                                   | -0.3                                                                                                | 2.9                                  |
| Contra Costa Pumping           | All                 | 0.75                                                                   | -7                                                                                                  | 3.1                                  |
| Plant #1                       | Drought             | 0.69                                                                   | -7                                                                                                  | 2.9                                  |
| Danka Daras in Diss            | All                 | 0.82                                                                   | -7                                                                                                  | 3.4                                  |
| Banks Pumping Plant            | Drought             | 0.80                                                                   | -10                                                                                                 | 3.3                                  |
|                                | All                 | 0.88                                                                   | -6                                                                                                  | 3.7                                  |
| Jones Pumping Plant            | Drought             | 0.85                                                                   | -8                                                                                                  | 3.5                                  |

<sup>1</sup> "All" water years 1922–2003 represent the 82-year period modeled using DSM2; "drought" represents a 5-consecutive-year (water years 1987–1991) drought period consisting of dry and critical water year types (as defined by the Sacramento Valley 40 30-30 water year hydrologic classification index)

<sup>2</sup>% change indicates a negative change (increased concentrations) relative to the No Action Alternative when values are positive and a positive change (lowered concentrations) relative to the No Action Alternative when values are negative.

<sup>3</sup> Exceedance Quotient = tissue concentration / 0.24 mg/kg

E

| Location                       | Period <sup>1</sup> | Estimated<br>Concentrations of<br>Methylmercury<br>(mg/kg, wet weight) | % Change In<br>Methylmercury<br>Concentrations<br>Compared to No<br>Action Alternative <sup>2</sup> | Exceedance<br>Quotients <sup>3</sup> |
|--------------------------------|---------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------|
|                                |                     | Alternative 3                                                          | Alternative 3                                                                                       | Alternative 3                        |
| Delta Interior                 |                     |                                                                        |                                                                                                     |                                      |
| San Joaquin River at           | All                 | 1.12                                                                   | 0.2                                                                                                 | 4.7                                  |
| Stockton                       | Drought             | 1.21                                                                   | 1                                                                                                   | 5.1                                  |
| Turner Cut                     | All                 | 1.10                                                                   | 0                                                                                                   | 4.6                                  |
| Turner Cut                     | Drought             | 1.12                                                                   | -1                                                                                                  | 4.7                                  |
| San Joaquin River at           | All                 | 0.59                                                                   | -1                                                                                                  | 2.5                                  |
| San Andreas Landing            | Drought             | 0.57                                                                   | 0                                                                                                   | 2.4                                  |
| San Joaquin River at           | All                 | 0.62                                                                   | -2                                                                                                  | 2.6                                  |
| Jersey Point                   | Drought             | 0.55                                                                   | -2                                                                                                  | 2.3                                  |
| Victoria Canal                 | All                 | 0.91                                                                   | -4                                                                                                  | 3.8                                  |
|                                | Drought             | 0.87                                                                   | -7                                                                                                  | 3.6                                  |
| Western Delta                  |                     |                                                                        |                                                                                                     |                                      |
| Sacramento River at            | All                 | 0.61                                                                   | -1                                                                                                  | 2.5                                  |
| Emmaton                        | Drought             | 0.52                                                                   | -1                                                                                                  | 2.2                                  |
| San Joaquin River at           | All                 | 0.56                                                                   | -3                                                                                                  | 2.3                                  |
| Antioch                        | Drought             | 0.46                                                                   | -2                                                                                                  | 1.9                                  |
| Montezuma Slough at            | All                 | 0.39                                                                   | -12                                                                                                 | 1.6                                  |
| Hunter Cut/Beldon's<br>Landing | Drought             | 0.26                                                                   | -15                                                                                                 | 1.1                                  |
| Major Diversions (Pumping      | g Stations)         |                                                                        |                                                                                                     |                                      |
| Barker Slough at North         | All                 | 0.78                                                                   | -8                                                                                                  | 3.2                                  |
| Bay Aqueduct Intake            | Drought             | 0.60                                                                   | -14                                                                                                 | 2.5                                  |
| Contra Costa Pumping           | All                 | 0.77                                                                   | -5                                                                                                  | 3.2                                  |
| Plant #1                       | Drought             | 0.71                                                                   | -5                                                                                                  | 2.9                                  |
| Banks Pumping Plant            | All                 | 0.83                                                                   | -6                                                                                                  | 3.5                                  |
| Danks I umping I lait          | Drought             | 0.81                                                                   | -9                                                                                                  | 3.4                                  |
| Iones Pumping Plant            | All                 | 0.89                                                                   | -5                                                                                                  | 3.7                                  |
| Jones Pumping Plant            | Drought             | 0.86                                                                   | _7                                                                                                  | 3.6                                  |

Table G1.5-4. Methylmercury Concentrations in 350 millimeter Largemouth Bass Fillets for Alternative 3, and Comparison to No Action Alternative

 Joines Fulliping Flatt
 Drought
 0.86
 -7
 5.0

 <sup>1</sup> "All" water years 1922–2003 represent the 82-year period modeled using DSM2; "drought" represents a 5-consecutive-year (water years 1987–1991) drought period consisting of dry and critical water year types (as defined by the Sacramento Valley 40 30-30 water year hydrologic classification index)

2% change indicates a negative change (increased concentrations) relative to the No Action Alternative when values are positive and a positive change (lowered concentrations) relative to the No Action Alternative when values are negative.

<sup>3</sup> Exceedance Quotient = tissue concentration / 0.24 mg/kg

| Table G1.5-5. Methylmercury Concentrations in 350 millimeter Largemouth Bass Fillets | for |
|--------------------------------------------------------------------------------------|-----|
| Alternative 4, and Comparison to No Action Alternative                               |     |

| Location                       | Period <sup>1</sup> | Estimated<br>Concentrations of<br>Methylmercury<br>(mg/kg, wet weight) | % Change In<br>Methylmercury<br>Concentrations<br>Compared to No<br>Action Alternative <sup>2</sup> | Exceedance<br>Quotients <sup>3</sup> |
|--------------------------------|---------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------|
|                                |                     | Alternative 4                                                          | Alternative 4                                                                                       | Alternative 4                        |
| Delta Interior                 |                     |                                                                        | ·                                                                                                   |                                      |
| San Joaquin River at           | All                 | 1.13                                                                   | 0.4                                                                                                 | 4.7                                  |
| Stockton                       | Drought             | 1.22                                                                   | 1.1                                                                                                 | 5.1                                  |
| Turper Cut                     | All                 | 1.10                                                                   | 0.3                                                                                                 | 4.6                                  |
| Turner Cut                     | Drought             | 1.12                                                                   | -0.7                                                                                                | 4.7                                  |
| San Joaquin River at           | All                 | 0.60                                                                   | 0.1                                                                                                 | 2.5                                  |
| San Andreas Landing            | Drought             | 0.57                                                                   | 0.3                                                                                                 | 2.4                                  |
| San Joaquin River at           | All                 | 0.63                                                                   | 0.0                                                                                                 | 2.6                                  |
| Jersey Point                   | Drought             | 0.56                                                                   | 0.1                                                                                                 | 2.3                                  |
| Victoria Concl                 | All                 | 0.97                                                                   | 2.0                                                                                                 | 4.0                                  |
| viciona Canai                  | Drought             | 0.93                                                                   | -0.1                                                                                                | 3.9                                  |
| Western Delta                  |                     |                                                                        | ·                                                                                                   |                                      |
| Sacramento River at            | All                 | 0.62                                                                   | 0.0                                                                                                 | 2.6                                  |
| Emmaton                        | Drought             | 0.53                                                                   | 0.0                                                                                                 | 2.2                                  |
| San Joaquin River at           | All                 | 0.56                                                                   | -1.6                                                                                                | 2.3                                  |
| Antioch                        | Drought             | 0.47                                                                   | -0.7                                                                                                | 2.0                                  |
| Montezuma Slough at            | All                 | 0.44                                                                   | -0.7                                                                                                | 1.8                                  |
| Hunter Cut/Beldon's<br>Landing | Drought             | 0.30                                                                   | -0.4                                                                                                | 1.3                                  |
| Major Diversions (Pumping      | g Stations)         |                                                                        |                                                                                                     |                                      |
| Barker Slough at North         | All                 | 0.85                                                                   | 1.0                                                                                                 | 3.5                                  |
| Bay Aqueduct Intake            | Drought             | 0.69                                                                   | -0.9                                                                                                | 2.9                                  |
| Contra Costa Pumping           | All                 | 0.84                                                                   | 3.5                                                                                                 | 3.5                                  |
| Plant #1                       | Drought             | 0.76                                                                   | 1.4                                                                                                 | 3.2                                  |
| Banka Dumping Dlant            | All                 | 0.89                                                                   | 0.9                                                                                                 | 3.7                                  |
|                                | Drought             | 0.89                                                                   | -0.1                                                                                                | 3.7                                  |
| Ionos Dumning Dlast            | All                 | 0.93                                                                   | -0.1                                                                                                | 3.9                                  |
| Jones Pumping Plant            | Drought             | 0.92                                                                   | -0.4                                                                                                | 3.8                                  |

<sup>1</sup> "All" water years 1922–2003 represent the 82-year period modeled using DSM2; "drought" represents a 5-consecutive-year (water years 1987–1991) drought period consisting of dry and critical water year types (as defined by the Sacramento Valley 40 30-30 water year hydrologic classification index)

<sup>2</sup>% change indicates a negative change (increased concentrations) relative to the No Action Alternative when values are positive and a positive change (lowered concentrations) relative to the No Action Alternative when values are negative.

<sup>3</sup> Exceedance Quotient = tissue concentration / 0.24 mg/kg









NAA



SJR at

San Andreas Landing

5













Figure G1.5-1. Level of Concern Exceedance Quotients for Mercury Concentrations in 350 millimeter Largemouth Bass Fillets for All Years



Figure G1.5-2. Level of Concern Exceedance Quotients for Mercury Concentrations in 350 millimeter Largemouth Bass Fillets for Drought Years

This page left blank intentionally.