Appendix E
CalSimII Assumptions
This page left blank intentionally.
CALSIM II ASSUMPTIONS

1 Introduction

CalSim II, a water resources planning model, is used by DWR and Reclamation to evaluate the effects of each Yolo Bypass Salmonid Habitat Restoration and Fish Passage Project (Project) alternative. A comparative analysis of benefits will also be used to support alternatives evaluation. This chapter describes CalSim II and its application in operations studies for the Project.

1.1 WRIMS

CalSim II is a particular application of the Water Resources Integrated Modeling System (WRIMS). WRIMS is generalized water resources software developed by the California Department of Water Resources (DWR) Bay-Delta Office. WRIMS is entirely data driven and can be applied to most reservoir river basin systems. WRIMS represents the physical system (reservoirs, streams, canals, pumping stations, etc.) by a network of nodes and arcs. The model user describes system connectivity and various operational constraints using a modeling language known as Water Resources Simulation Language (WRESL). WRIMS subsequently simulates system operation using optimization techniques to route water through the network based on mass balance accounting. A mixed integer programming solver determines an optimal set of decisions in each monthly time step for a set of user-defined priorities (weights) and system constraints. The model is described by DWR (2000) and Draper et al. (2004).

1.2 CalSim II

CalSim II was jointly developed by the U.S. Department of the Interior, Bureau of Reclamation (Reclamation), and DWR for performing planning studies related to CVP and SWP operations. The primary purpose of CalSim II is to evaluate the water supply reliability of the CVP and SWP at current and future levels of development (e.g., 2015, 2035), with and without various assumed future facilities, and with different modes of facility operations. Geographically, the model covers the drainage basin of the Delta, CVP and SWP deliveries to the Tulare basin, and SWP deliveries to the San Francisco Bay Area (Bay Area), Central Coast, and Southern California. CalSim II typically simulates system operations for a 82-year period using a monthly time step. The model assumes that facilities, land use, water supply contracts, and regulatory requirements are constant over this period, representing a fixed level of development. The historical flow record of October 1921 to September 2003, adjusted for the influence of land use changes, upstream flow regulations, and potentially climate change, is used to represent the possible range of water supply conditions. Results from a single simulation may not necessarily correspond to actual system operations for a specific month or year, but are representative of general water supply conditions over the modeled period of record. Model results are best interpreted using various statistical measures such as long-term or year-type averages. CalSim II can be used in either a comparative or an absolute mode. The comparative mode consists of comparing two
model runs: one containing modifications representing an alternative and one that does not. Differences in certain factors, such as deliveries or reservoir storage levels, are analyzed to determine the impacts of each alternative. In the absolute mode, results of a single model run, such as the amount of delivery or reservoir levels, are considered directly. Model assumptions are generally believed to be more reliable in a comparative mode than in an absolute mode. All of the assumptions are the same for baseline and alternative model runs, except assumptions regarding the action, and the focus of the analysis is on the differences in the results. For the purposes of the Project, CalSim II modeling output is used in the comparative mode rather than in the absolute mode.

2 General Assumptions

This section documents both the version of CalSim II the Project modeling is based on, and the general modifications that made to CalSim II for the Project.

2.1 CalSim II Version

CalSimII models prepared for the California Water Commission (CWC) to support Water Storage Investment Program (WSIP) studies were used as the basis for all models discussed in this document.

- 2030 future condition with projected climate and sea level conditions for a thirty-year period centered at 2030 (climate period 2016-2045),
- 2070 future condition with projected climate and sea level conditions for a thirty-year period centered at 2070 (climate period 2056-2085)

The CalSim-II model used for the WSIP product was derived from the model developed and published by DWR as part of the State Water Project Final Delivery Capability Report 2015 (DCR 2015). The primary change by the CWC to the DCR 2015 scenarios were related to climate change and sea level rise (CWC 2016). All other assumptions are as described in the DCR 2015.

Modifications were made by Reclamation for analysis of Project alternatives to the publically available CWC studies to include recent model updates, Reclamation guidance on American River contract assumptions, and incorporation of the California Water Fix into the future conditions studies. Specific modifications included the following:

- El Dorado ID and El Dorado County demands reflecting future contract assumptions
- Generalization of Folsom size inputs, and
- California Water Fix implementation and generalization of capacity assumptions

Ten CalSim II studies, five for existing conditions (2030 conditions) and five for future conditions (2070 conditions), were prepared for Project, as described below.
2.1.1 Existing Condition Runs

Model simulations for use in evaluating Project alternatives effects under existing conditions were developed. These simulations included the following:

- **ExistBase** – 2030 CWC with Reclamation Adjustments – Basis of comparison for Existing Condition scenarios
- **ExistAlt1** – ExistBase with weir notch Alternative 1 and Fish Passage Facility
- **ExistAlt4** – ExistBase with weir notch Alternative 4 and Fish Passage Facility
- **ExistAlt5** – ExistBase with weir notch Alternative 5 and Fish Passage Facility
- **ExistAlt6** – ExistBase with weir notch Alternative 6 and Fish Passage Facility

2.1.2 Future Condition Runs

Model simulations for use in evaluating Project alternatives effects under future conditions were developed. These simulations included the following:

- **FutureBase** – 2070 CWC with Reclamation adjustments and California Water Fix implementation – Basis of comparison for future condition scenarios
- **FutureAlt1** – FutureBase with weir notch Alternative 1 and Fish Passage Facility
- **FutureAlt4** – FutureBase with weir notch Alternative 4 and Fish Passage Facility
- **FutureAlt5** – FutureBase with weir notch Alternative 5 and Fish Passage Facility
- **FutureAlt6** – FutureBase with weir notch Alternative 6 and Fish Passage Facility

Two separate, independently operated, gated facilities are combined in the Alternative studies listed.

- Weir notch alternatives 1, 4, 5, and 6 – gates are operated to be open November 1 through March 16
- Fish passage facility – gates open upon weir overtopping, and remain open until the water surface elevation falls to a stage of 22 feet, whereupon they are closed and remain closed until the next weir overtopping event.

Monthly flow volumes computed by CalSimII are disaggregated based on an historical flow pattern to enable a representation of daily independent flow values. Daily weir spills are then calculated accordingly and re-aggregated to a monthly average weir spill.

CalSimII logic was adapted to identify river stage and notch operation criteria on a daily basis, combining the operations of both the fish passage facility and the weir notch alternative. Rating tables depicting weir flow under four potential weir conditions were used – all gates closed, fish passage only, weir notch only, and both fish passage and weir notch. The weir notch gate operation is pre-determined to be open November 1 – March 16, and daily switches are looked up from a table. The fish passage facility operation is dynamically determined based on the daily flow and previous day’s gate status.
2.1.3 System-Wide Assumptions

Table 2.2-1 summarizes assumptions for the CalSim II models developed for DWR’s 2015 Delivery Capability Report Early Long-Term Alternative. The only changes to the model for use in the Project are as described above.

Table 2.2-1. CalSim II modeling assumptions

<table>
<thead>
<tr>
<th>Planning Horizon</th>
<th>2025</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period of Simulation</td>
<td>82 years (1922-2003)</td>
</tr>
<tr>
<td>HYDROLOGY</td>
<td></td>
</tr>
<tr>
<td>Level of Development (land use)</td>
<td>2030 Level²</td>
</tr>
<tr>
<td>Climate Change</td>
<td>ELT (2025 emission level + 15 cm SLR)</td>
</tr>
<tr>
<td>DEMANDS</td>
<td></td>
</tr>
<tr>
<td>North of Delta (excluding the American River)</td>
<td></td>
</tr>
<tr>
<td>CVP</td>
<td>Land-use based, full build-out of contract amounts³</td>
</tr>
<tr>
<td>SWP (FRSA)</td>
<td>Land-use based, limited by contract amounts⁴,⁷</td>
</tr>
<tr>
<td>Non-project</td>
<td>Land-use based, limited by water rights and SWRCB Decisions for Existing Facilities</td>
</tr>
<tr>
<td>Antioch Water Works</td>
<td>Pre-1914 water right</td>
</tr>
<tr>
<td>Federal refuges</td>
<td>Firm Level 2 water needs⁵</td>
</tr>
<tr>
<td>American River Basin</td>
<td></td>
</tr>
<tr>
<td>Water rights</td>
<td>Year 2025, full water rights⁶</td>
</tr>
<tr>
<td>CVP</td>
<td>Year 2025, full contracts, including Freeport Regional Water Project⁶</td>
</tr>
<tr>
<td>San Joaquin River Basin⁸</td>
<td></td>
</tr>
<tr>
<td>Friant Unit</td>
<td>Limited by contract amounts, based on current allocation policy</td>
</tr>
<tr>
<td>Lower basin</td>
<td>Land-use based, based on district level operations and constraints</td>
</tr>
<tr>
<td>Stanislaus River basin⁹,¹⁷</td>
<td>Land-use based, based on New Melones Interim Operations Plan, up to full CVP Contractor deliveries (155 TAF/yr) depending on New</td>
</tr>
<tr>
<td>South of Delta</td>
<td></td>
</tr>
<tr>
<td>CVP</td>
<td>Demand based on contract amounts⁴</td>
</tr>
<tr>
<td>Federal refuges</td>
<td>Firm Level 2 water needs⁵</td>
</tr>
<tr>
<td>CCWD</td>
<td>195 TAF/yr CVP contract supply and water rights¹⁰</td>
</tr>
<tr>
<td>SWP⁴,¹¹</td>
<td>Demand based on full Table A amounts (4.13 MAF/yr)</td>
</tr>
<tr>
<td>Article 56</td>
<td>Based on 2001-2008 contractor requests</td>
</tr>
<tr>
<td>Article 21</td>
<td>MWD demand up to 200 TAF/month (December-March) subject to conveyance capacity, KCWA demand up to 180 TAF/month, and other contractor demands up to 34 TAF/month, subject to conveyance</td>
</tr>
</tbody>
</table>
2015 Delivery Capability Report Early Long-Term Assumptions

<table>
<thead>
<tr>
<th>FACILITIES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>System-wide</td>
<td>Existing facilities</td>
</tr>
<tr>
<td>Sacramento Valley</td>
<td></td>
</tr>
<tr>
<td>Shasta Lake</td>
<td>Existing, 4,552 TAF capacity</td>
</tr>
<tr>
<td>Red Bluff Diversion Dam</td>
<td>Diversion dam operated with gates out all year, NMFS BO (Jun 2009) Action I.3.1<sup>17</sup>;</td>
</tr>
<tr>
<td>Colusa Basin</td>
<td>Existing conveyance and storage facilities</td>
</tr>
<tr>
<td>Lower American River</td>
<td>Hodge criteria for diversion at Fairbairn</td>
</tr>
<tr>
<td>Upper American River</td>
<td>PCWA American River pump station</td>
</tr>
<tr>
<td>Lower Sacramento River</td>
<td>Freeport Regional Water Project</td>
</tr>
<tr>
<td>Fremont Weir</td>
<td>Existing Weir</td>
</tr>
<tr>
<td>Delta Export Conveyance</td>
<td></td>
</tr>
<tr>
<td>SWP Banks Pumping Plant (South Delta)</td>
<td>Physical capacity is 10,300 cfs, permitted capacity is 6,680 cfs in all months and up to 8,500 cfs during Dec 15<sup>th</sup> - Mar 15<sup>th</sup> depending on Vernalis flow conditions<sup>18</sup>; additional capacity of 500 cfs (up to 7,180 cfs) allowed Jul–Sep for reducing impact of NMFS BO (Jun 2009) Action IV.2.1<sup>17</sup> on SWP<sup>19</sup></td>
</tr>
<tr>
<td>CVP C.W. “Bill” Jones Pumping Plant (formerly Tracy PP)</td>
<td>Permit capacity is 4,600 cfs in all months (allowed for by the Delta-Mendota Canal - California Aqueduct Intertie)</td>
</tr>
<tr>
<td>Upper Delta-Mendota Canal Capacity</td>
<td>Exports limited to 4,200 cfs plus diversion upstream from DMC constriction plus 400 cfs Delta-Mendota Canal-California Aqueduct Intertie</td>
</tr>
<tr>
<td>Los Vaqueros Reservoir</td>
<td>Enlarged storage capacity (160 TAF), existing pump location, Alternate Intake Project included<sup>13</sup></td>
</tr>
<tr>
<td>San Joaquin River</td>
<td></td>
</tr>
<tr>
<td>Millerton Lake (Friant Dam)</td>
<td>Existing, 520 TAF capacity</td>
</tr>
<tr>
<td>Lower San Joaquin River</td>
<td>City of Stockton Delta Water Supply Project, 30 mgd capacity</td>
</tr>
<tr>
<td>South of Delta (CVP/SWP project facilities)</td>
<td></td>
</tr>
<tr>
<td>South Bay Aqueduct</td>
<td>SBA rehabilitation, 430 cfs capacity from junction with California Aqueduct to Alameda County FC&WSD Zone 7 point</td>
</tr>
<tr>
<td>California Aqueduct East Branch</td>
<td>Existing capacity</td>
</tr>
</tbody>
</table>
REGULATORY STANDARDS

<table>
<thead>
<tr>
<th>Location</th>
<th>Assumptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trinity River</td>
<td></td>
</tr>
<tr>
<td>Minimum Flow below Lewiston Dam</td>
<td>Trinity EIS Preferred Alternative (369-815 TAF/yr)</td>
</tr>
<tr>
<td>Trinity Reservoir end-of-September minimum storage</td>
<td>Trinity EIS Preferred Alternative (600 TAF/yr as able)</td>
</tr>
<tr>
<td>Clear Creek</td>
<td></td>
</tr>
<tr>
<td>Minimum flow below Whiskeytown Dam</td>
<td>Downstream water rights, 1963 Reclamation proposal to USFWS and NPS, predetermined Central Valley Protection Improvement Act 3406(b)(2) flows(^{10}), and NMFS BO (Jun 2009) Action I.1.1(^{17})</td>
</tr>
<tr>
<td>Upper Sacramento River</td>
<td></td>
</tr>
<tr>
<td>Shasta Lake end-of-September minimum storage</td>
<td>NMFS 2004 Winter-run Biological Opinion (1,900 TAF in non-critical dry years), and NMFS BO (Jun 2009) Action I.2.1(^{17})</td>
</tr>
<tr>
<td>Minimum flow below Keswick Dam</td>
<td>Flows for the SWRCB Water Rights Order 90-5, predetermined Central Valley Protection Improvement Act 3406(b)(2) flows, and NMFS BO (Jun 2009) Action I.2.2(^{17})</td>
</tr>
<tr>
<td>Feather River</td>
<td></td>
</tr>
<tr>
<td>Minimum flow below Thermalito Diversion Dam</td>
<td>2006 Settlement Agreement (700 / 800 cfs)</td>
</tr>
<tr>
<td>Minimum flow below Thermalito Afterbay outlet</td>
<td>1983 DWR, DFG agreement (750 – 1,700 cfs)</td>
</tr>
<tr>
<td>Yuba River</td>
<td></td>
</tr>
<tr>
<td>Minimum flow below Daguerre Point Dam</td>
<td>D-1644 Operations (Lower Yuba River Accord)(^{14})</td>
</tr>
<tr>
<td>American River</td>
<td></td>
</tr>
<tr>
<td>Minimum flow below Nimbus Dam</td>
<td>American River Flow Management as required by NMFS BO (Jun 2009) Action II.1(^{17})</td>
</tr>
<tr>
<td>Minimum flow at H Street Bridge</td>
<td>SWRCB D-893</td>
</tr>
<tr>
<td>Lower Sacramento River</td>
<td></td>
</tr>
<tr>
<td>Minimum flow near Rio Vista</td>
<td>SWRCB D-1641</td>
</tr>
<tr>
<td>Mokelumne River</td>
<td></td>
</tr>
<tr>
<td>Minimum flow below Camanche Dam</td>
<td>Federal Energy Regulatory Commission 2916-029(^{12}), 1996 (Joint Settlement Agreement) (100 – 325 cfs)</td>
</tr>
<tr>
<td>Minimum flow below Woodbridge Diversion Dam</td>
<td>Federal Energy Regulatory Commission 2916-029, 1996 (Joint Settlement Agreement) (25 – 300 cfs)</td>
</tr>
</tbody>
</table>
Appendix E CalSimII Assumptions

2015 Delivery Capability Report Early Long-Term Assumptions

<table>
<thead>
<tr>
<th>River</th>
<th>Assumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stanislaus River</td>
<td>Minimum flow below Goodwin Dam 1987 Reclamation, DFG agreement, and flows required for NMFS BO (Jun 2009) Action III.1.2 and III.1.3</td>
</tr>
<tr>
<td></td>
<td>Minimum dissolved oxygen SWRCB D-1422</td>
</tr>
<tr>
<td>Merced River</td>
<td>Minimum flow below Crocker-Huffman Diversion Dam (180 – 220 cfs, Nov – Mar), and Cowell Agreement</td>
</tr>
<tr>
<td></td>
<td>Minimum flow at Shaffer Bridge Federal Energy Regulatory Commission 2179 (25 – 100 cfs)</td>
</tr>
<tr>
<td>Tuolumne River</td>
<td>Minimum flow at Lagrange Bridge Federal Energy Regulatory Commission 2299-024, 1995 (Settlement</td>
</tr>
<tr>
<td></td>
<td>Updated Tuolumne River New Don Pedro operations</td>
</tr>
<tr>
<td>San Joaquin River</td>
<td>San Joaquin River below Friant Full San Joaquin River Restoration flows</td>
</tr>
<tr>
<td></td>
<td>Maximum salinity near Vernalis SWRCB D-1641</td>
</tr>
<tr>
<td></td>
<td>Minimum flow near Vernalis SWRCB D1641. VAMP is turned off since the San Joaquin River</td>
</tr>
<tr>
<td>Sacramento-San Joaquin Delta</td>
<td>Delta Outflow Index (flow and salinity) SWRCB D-1641 and FWS BO (Dec 2008) Action 417</td>
</tr>
<tr>
<td></td>
<td>Delta Cross Channel gate operation SWRCB D-1641 with additional days closed from Oct 1-Jan 31 based on</td>
</tr>
<tr>
<td></td>
<td>South Delta exports (Jones PP and FRSA) SWRCB D-1641 export limits as required by NMFS BO (June 2009)</td>
</tr>
<tr>
<td></td>
<td>Combined Flow in Old and Middle FWS BO (Dec 2008) Actions 1-3 and NMFS BO (Jun 2009) Action IV.2.3</td>
</tr>
<tr>
<td>OPERATIONS CRITERIA: RIVER-SPECIFIC</td>
<td></td>
</tr>
<tr>
<td>Upper Sacramento River</td>
<td>Flow objective for navigation (Wilkins Slough) NMFS BO (Jun 2009) Action I.41; 3,250 – 5,000 cfs based on CVP water supply condition</td>
</tr>
<tr>
<td>American River</td>
<td>Folsom Dam flood control Variable 400/670 flood control diagram (without outlet modifications)</td>
</tr>
<tr>
<td>Feather River</td>
<td>Flow at mouth of Feather River (above Verona) Maintain the DFG/DWR flow target of 2,800 cfs for Apr - Sep dependent on Oroville inflow and FRSA allocation</td>
</tr>
<tr>
<td>Stanislaus River</td>
<td>Flow below Goodwin Dam Revised Operations Plan and NMFS BO (Jun 2009) Action III.1.2 and III.1.3</td>
</tr>
<tr>
<td>San Joaquin River</td>
<td>Salinity at Vernalis Grasslands Bypass Project (full implementation)</td>
</tr>
<tr>
<td>OPERATIONS CRITERIA: SYSTEMWIDE</td>
<td></td>
</tr>
<tr>
<td>CVP Water Allocation</td>
<td>CVP settlement and exchange 100% (75% in Shasta critical years)</td>
</tr>
<tr>
<td></td>
<td>CVP refuges 100% (75% in Shasta critical years)</td>
</tr>
</tbody>
</table>
Appendix E CalSimII Assumptions

2015 Delivery Capability Report Early Long-Term Assumptions

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVP agriculture</td>
<td>100% - 0% based on supply. South-of-Delta allocations are additionally limited due to D-1641, FWS BO (Dec 2008), and NMFS BO (Jun 2009) export restrictions.</td>
</tr>
<tr>
<td>CVP municipal & industrial</td>
<td>100% - 50% based on supply. South-of-Delta allocations are additionally limited due to D-1641, FWS BO (Dec 2008), and NMFS BO (Jun 2009) export restrictions.</td>
</tr>
</tbody>
</table>

SWP Water Allocation

<table>
<thead>
<tr>
<th>Area</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>North of Delta (FRSA)</td>
<td>Contract-specific NOD Allocation Settlement Agreement terms for Butte and Yuba.</td>
</tr>
<tr>
<td>South of Delta (including North Bay Aqueduct)</td>
<td>Based on supply; equal prioritization between Ag and M&I based on Monterey Agreement; allocations are limited due to D-1641, FWS BO (Dec 2008), and NMFS BO (Jun 2009) export restrictions. NOD Allocation Settlement Agreement terms for Napa and Solano.</td>
</tr>
</tbody>
</table>

CVP/SWP Coordinated Operations

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sharing of responsibility for in-basin use</td>
<td>1986 Coordinated Operations Agreement (FRWP and EBMUD 2/3 of the North Bay Aqueduct diversions are considered as Delta export, 1/3 of the North Bay Aqueduct diversion is considered as in-basin use).</td>
</tr>
<tr>
<td>Sharing of surplus flows</td>
<td>1986 Coordinated Operations Agreement.</td>
</tr>
<tr>
<td>Sharing of restricted export capacity for project-specific priority pumping</td>
<td>Equal sharing of export capacity under SWRCB D-1641, FWS BO (Dec 2008), and NMFS BO (Jun 2009) export restrictions.</td>
</tr>
<tr>
<td>Water transfers</td>
<td>Acquisitions by SWP contractors are wheeled at priority in Banks Pumping Plant over non-SWP users; LYRA included for SWP contractors.</td>
</tr>
<tr>
<td>Sharing of export capacity for lesser priority and wheeling-related pumping</td>
<td>Cross Valley Canal wheeling (max of 128 TAF/yr), CALFED ROD defined Joint Point of Diversion (JPOD).</td>
</tr>
<tr>
<td>San Luis Reservoir</td>
<td>San Luis Reservoir is allowed to operate to a minimum storage of 100 TAF.</td>
</tr>
</tbody>
</table>

CVPIA 3406(b)(2)

Policy decision	Per May 2003 Department of Interior decision
Allocation	800 TAF/yr, 700 TAF/yr in 40-30-30 dry years, and 600 TAF/yr in 40-30-30 critical years
Actions	Pre-determined non-discretionary FWS BO (Dec 2008) upstream fish flow objectives (Oct-Jan) for Clear Creek and Keswick Dam, non-discretionary NMFS BO (Jun 2009) actions for the American and Stanislaus Rivers, and NMFS BO (Jun 2009) actions leading to export restrictions.
Accounting adjustments	No discretion assumed under FWS BO (Dec 2008) and NMFS BO (Jun 2009), no accounting

WATER MANAGEMENT ACTIONS

<table>
<thead>
<tr>
<th>Water Transfer Supplies (long term programs)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Yuba River Accord</td>
<td>Yuba River acquisitions for reducing impact of NMFS BO export restrictions on SWP.</td>
</tr>
<tr>
<td>Phase 8</td>
<td>None</td>
</tr>
</tbody>
</table>
Water Transfers (short term or temporary programs)

<table>
<thead>
<tr>
<th>Sacramento Valley acquisitions conveyed through Banks PP</th>
<th>Post analysis of available capacity</th>
</tr>
</thead>
</table>

Notes:

1. These assumptions have been developed under the direction of the Department of Water Resources and Bureau of Reclamation management team for the BDCP HCP and EIR/EIS. Additional modifications were made by Reclamation for its October 2014 NEPA NAA baselines and by DWR for the 2015 DCR.

2. The Sacramento Valley hydrology used in the Existing Condition CalSim-II model reflects 2020 land-use assumptions associated with Bulletin 160-98. The San Joaquin Valley hydrology reflects draft 2030 land-use assumptions developed by Reclamation to support Reclamation studies.

3. CVP contract amounts have been reviewed and updated according to existing and amended contracts, as appropriate. Assumptions regarding CVP agricultural and M&I service contracts and Settlement Contract amounts are documented in the Delivery Specifications attachments to the BDCP CalSim assumptions document.

4. SWP contract amounts have been updated as appropriate based on recent Table A transfers/agreements. Assumptions regarding SWP agricultural and M&I contract amounts are documented in the Delivery Specifications attachments to the BDCP CalSim assumptions document.

5. Water needs for Federal refuges have been reviewed and updated, as appropriate. Assumptions regarding firm Level 2 refuge water needs are documented in the Delivery Specifications attachments to the BDCP CalSim assumptions document. Refuge Level 4 (and incremental Level 4) water is not included.

6. Assumptions regarding American River water rights and CVP contracts are documented in the Delivery Specifications attachments to the BDCP CalSim assumptions document. The Sacramento Area Water Forum agreement, its dry year diversion reductions, Middle Fork Project operations and “mitigation” water is not included.

7. Demand for rice straw decomposition water from Thermalito Afterbay was added to the model and updated to reflect historical diversion from Thermalito in the October through January period.

8. The new CalSim-II representation of the San Joaquin River has been included in this model package (CalSim-II San Joaquin River Model, Reclamation, 2005). Updates to the San Joaquin River have been included since the preliminary model release in August 2005. The model reflects the difficulties of on-going groundwater overdraft problems. The 2030 level of development representation of the San Joaquin River Basin does not make any attempt to offer solutions to groundwater overdraft problems. In addition, a dynamic groundwater simulation is not yet developed for the San Joaquin River Valley. Groundwater extraction/recharge and stream-groundwater interaction are static assumptions and may not accurately reflect a response to simulated actions. These limitations should be considered in the analysis of result.

9. The CALSIM II model representation for the Stanislaus River does not necessarily represent Reclamation’s current or future operational policies. A suitable plan for supporting flows has not been developed for NMFS BO (Jun 2009) Action III.1.3.

10. The actual amount diverted is reduced because of supplies from the Los Vaqueros project. The existing Los Vaqueros storage capacity is 100 TAF, and future storage capacity is 160 TAF. Associated water rights for Delta excess flows are included.

11. Under Existing Conditions and the Future No Action baseline, it is assumed that SWP Contractors can take delivery of all Table A allocations and Article 21 supplies. Article 56 provisions are assumed and allow for SWP Contractors to manage storage and delivery conditions such that full Table A allocations can be delivered. Article 21 deliveries are limited in wet years under the assumption that demand is decreased in these years.

Draft Yolo Bypass Salmonid Habitat Restoration and Fish Passage Project EIS/EIR
conditions. Article 21 deliveries for the NBA are dependent on excess conditions only, all other Article 21 deliveries also require that San Luis Reservoir be at capacity and that Banks PP and the California Aqueduct have available capacity to divert from the Delta for direct delivery.

12Mokelumne River flows reflect EBMUD supplies associated with the Freeport Regional Water Project.

13The CCWD Alternate Intake Project, an intake at Victoria Canal, which operates as an alternate Delta diversion for Los Vaqueros Reservoir.

14D-1644 and the Lower Yuba River Accord are assumed to be implemented for Existing baselines. The Yuba River is not dynamically modeled in CALSIM II. Yuba River hydrology and availability of water acquisitions under the Lower Yuba River Accord are based on modeling performed and provided by the Lower Yuba River Accord EIS/EIR study team.

15This includes draft logic for the updated Allocation Settlement Agreement for four NOD contractors: Butte, Yuba, Napa and Solano.

16It is assumed that D-1641 requirements will be in place in 2030, and VAMP is turned off.

17In cooperation with Reclamation, National Marine Fisheries Service, Fish and Wildlife Service, and CA Department of Fish and Game, the CA Department of Water Resources has developed assumptions for implementation of the FWS BO (Dec 15 2008) and NMFS BO (June 4 2009) in CALSIM II.

18Current ACOE permit for Banks PP allows for an average diversion rate of 6,680 cfs in all months. Diversion rate can increase up to 1/3 of the rate of San Joaquin River flow at Vernalis during Dec 15th – Mar 15th up to a maximum diversion of 8,500 cfs, if Vernalis flow exceeds 1,000 cfs.

19Acquisitions of Component 1 water under the Lower Yuba River Accord, and use of 500 cfs dedicated capacity at Banks PP during Jul Sep, are assumed to be used to reduce as much of the impact of the Apr-May Delta export actions on SWP contractors as possible.

20Delta actions, under USFWS discretionary use of CVPIA 3406(b)(2) allocations, are no longer dynamically operated and accounted for in the CALSIM II model. The Combined Old and Middle River Flow and Delta Export restrictions under the FWS BO (Dec 15 2008) and the NMFS BO (June 4 2009) severely limit any discretion that would have been otherwise assumed in selecting Delta actions under the CVPIA 3406(b)(2) accounting criteria. Therefore, it is anticipated that CVPIA 3406(b)(2) account availability for upstream river flows below Whiskeytown, Keswick and Nimbus Dams would be very limited. It appears the integration of BO RPA actions will likely exceed the 3406(b)(2) allocation in all water year types. For these baseline simulations, upstream flows on the Clear Creek and Sacramento River are pre-determined based on CVPIA 3406(b)(2) based operations from the Aug 2008 BA Study 7.0 and Study 8.0 for Existing and Future No Action baselines respectively. The procedures for dynamic operation and accounting of CVPIA 3406(b)(2) are not included in the CALSIM II model.

21Only acquisitions of Lower Yuba River Accord Component 1 water are included.

3 References

Appendix F
Assessment of Groundwater Impact on Project Excavation
This page left blank intentionally.
This page intentionally left blank.
PURPOSE AND BACKGROUND

HDR completed a high level assessment of the potential for encountering groundwater during project excavations for the six Environmental Impact Statement and Environmental Impact Report (EIS/EIR) alternatives selected. The information will help inform the evaluation of potential methods, costs, and schedules associated with constructing the alternatives, taking into account potential groundwater conditions. This technical memorandum (TM) presents the approach and findings of the groundwater analyses and is intended to accompany Volume II - 10% Design Drawings.

The six EIS/EIR project alternatives that were selected through the plan formulation process are listed below. The associated key project components are summarized in Table 1, the general alignments in the Yolo Bypass Fremont Weir State Wildlife Area are presented in Figure 1, the general location of the Tule Canal water control structures associated with Alternatives 4 and 5 are presented in Figure 2, and the 10 percent design drawings are contained in Volume II – 10% Design Drawings.

Six project alternatives have been developed:

- Alternative 1 – East Channel, 6,000 cubic feet per second (cfs) Design Flow
- Alternative 2 – Central Channel, 6000 cfs Design Flow
- Alternative 3 – West Channel, 6,000 cfs Design Flow
- Alternative 4 – West Channel, 3,000 cfs Design Flow and Managed Floodplain
- Alternative 5 – Multiple Channels, 3000 cfs Design Flow and Managed Floodplain
- Alternative 6 – West Channel, 12,000 cfs Design Flow and Managed Floodplain
Table 1. Alternative Components

<table>
<thead>
<tr>
<th>Components</th>
<th>Alt 1 East</th>
<th>Alt 2 Center</th>
<th>Alt 3 West</th>
<th>Alt 4 West</th>
<th>Alt 5 Multiple</th>
<th>Alt 6 West</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Design Flow (CFS)</td>
<td>6,000</td>
<td>6,000</td>
<td>6,000</td>
<td>3,000</td>
<td>3,000</td>
<td>12,000</td>
</tr>
<tr>
<td>East Channel (Intake Channel, Headworks, & Outlet Channel)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central Channel (Intake Channel, Headworks, & Outlet Channel)</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>West Channel (Intake Channel, Headworks, & Outlet Channel)</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excavated Fremont Weir Floodplain (Wildlife Area)</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suplemental Fish Passage West</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Suplemental Fish Passage East</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Downstream Channel</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Ag Crossing 1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Knaggs Area Improvements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Conaway Area Improvements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Swanston Area Improvements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Figure 1. Yolo Bypass Alternative Alignments within the Fremont Weir Wildlife Area
Figure 2. Yolo Bypass Alternatives and Components
2 GROUNDWATER ELEVATIONS

The majority of the excavation associated with all alternatives would occur within the Freemont Weir Wildlife Area. Therefore, the groundwater assessment focused on this area. Historical groundwater elevations relevant to this project were approximated based on the following groundwater data sources: three bore logs; three voluntary groundwater monitoring/irrigation wells within close proximity to the project site(s); and the Groundwater Information Center’s Interactive Map\(^1\) published by the Department of Water Resources (DWR).

Average spring and fall groundwater surface elevations were estimated at points along the alternative alignments, as shown in Figure 3. Review of the data indicates that the groundwater elevations vary significantly between spring and fall, with spring elevations being highest. The levels also tend to decrease with distance from the Sacramento River.

Figure 3. Alternative Alignments, and Groundwater Information

\(^{1}\) https://gis.water.ca.gov/app/gicima/
The construction window for the project is assumed to be April 15 to November 1 (typical construction season when working on or within a floodway). In general, the groundwater table will be the highest in late spring and lowest in late fall; analyzed data focused on these two periods to estimate expected groundwater elevations likely to be observed during construction.

Historical groundwater data dating back to 2013, and sometimes earlier, can be pulled from the online Groundwater Information Center Interactive Map Application provided by DWR. Table 2 shows the groundwater elevations for nine identified locations that were chosen along the project alternatives in order to assess the expected groundwater table during construction. These locations can be seen in Figure 3.

Table 2. Groundwater Elevation Estimates by Location

<table>
<thead>
<tr>
<th>Season</th>
<th>Year</th>
<th>W1</th>
<th>W2</th>
<th>W3</th>
<th>C1</th>
<th>C2</th>
<th>E1</th>
<th>E2</th>
<th>D1</th>
<th>D2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td>16</td>
<td>21.0</td>
<td>21.2</td>
<td>17.5</td>
<td>20.8</td>
<td>20.6</td>
<td>17.9</td>
<td>17.4</td>
<td>17.4</td>
<td>17.4</td>
</tr>
<tr>
<td>Fall</td>
<td>15</td>
<td>9.6</td>
<td>3.9</td>
<td>-0.6</td>
<td>7.4</td>
<td>4.4</td>
<td>3.2</td>
<td>1.3</td>
<td>-2.0</td>
<td>-3.2</td>
</tr>
<tr>
<td>Spring</td>
<td>15</td>
<td>15.1</td>
<td>14.6</td>
<td>14.6</td>
<td>15.7</td>
<td>15.1</td>
<td>16.0</td>
<td>15.2</td>
<td>14.3</td>
<td>13.5</td>
</tr>
<tr>
<td>Fall</td>
<td>14</td>
<td>5.5</td>
<td>6.8</td>
<td>10.4</td>
<td>9.0</td>
<td>8.8</td>
<td>12.6</td>
<td>11.6</td>
<td>9.9</td>
<td>8.5</td>
</tr>
<tr>
<td>Spring</td>
<td>14</td>
<td>14.6</td>
<td>12.8</td>
<td>9.9</td>
<td>13.9</td>
<td>12.5</td>
<td>9.2</td>
<td>9.4</td>
<td>10.0</td>
<td>10.5</td>
</tr>
<tr>
<td>Fall</td>
<td>13</td>
<td>9.4</td>
<td>8.9</td>
<td>5.0</td>
<td>10.9</td>
<td>9.1</td>
<td>3.8</td>
<td>3.9</td>
<td>5.5</td>
<td>7.0</td>
</tr>
<tr>
<td>Spring</td>
<td>13</td>
<td>18.5</td>
<td>17.6</td>
<td>16.7</td>
<td>17.9</td>
<td>17.5</td>
<td>17.4</td>
<td>16.9</td>
<td>16.6</td>
<td>16.4</td>
</tr>
<tr>
<td>Avg Spring</td>
<td>17.3</td>
<td>16.5</td>
<td>14.7</td>
<td>17.1</td>
<td>16.4</td>
<td>15.1</td>
<td>14.7</td>
<td>14.6</td>
<td>14.5</td>
<td></td>
</tr>
<tr>
<td>Avg Fall</td>
<td>8.2</td>
<td>6.5</td>
<td>4.9</td>
<td>9.1</td>
<td>7.4</td>
<td>6.5</td>
<td>5.6</td>
<td>4.4</td>
<td>4.1</td>
<td></td>
</tr>
</tbody>
</table>

a – Summary of the last 3 years of WSE for selected locations along each project alignment.

Table 2 shows the elevation at which groundwater was encountered in the three bore logs performed for the Fremont Weir Adult Fish Passage Project. Locations of these bore logs are shown in Table 3. The borings were completed in mid-spring (April) of 2016.

Table 3. Bore Log Groundwater Reported Information

<table>
<thead>
<tr>
<th>Log ID</th>
<th>Sample Date</th>
<th>GWSE (NAVD88)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FW-DH-1</td>
<td>4/18/2016</td>
<td>15.5</td>
</tr>
<tr>
<td>FW-DH-2</td>
<td>4/19/2016</td>
<td>19.6</td>
</tr>
<tr>
<td>FW-DH-3</td>
<td>4/20/2016</td>
<td>18</td>
</tr>
</tbody>
</table>
Additionally, there are three monitoring/irrigation wells in close proximity to the project site(s) for which the California Statewide Groundwater Elevation Monitoring (CASGEM) program has historical groundwater information. These three wells are:

- Monitoring/Irrigation Well – 387630N1216325, (CASGEM Well ID 50636)
- Monitoring/Irrigation Well – 387658N1216311, (CASGEM Well ID 50633)
- Monitoring/Irrigation Well – 387408N1216442, (CASGEM Well ID 50640)

Information from these wells dates back to 2009 and is reported in the online database. Table 4 shows the reported data for each well, with the corresponding sampling dates of April and November (or the closest available when sampling was not performed during that time period). An average groundwater surface elevation was then calculated for both the spring and fall periods.

Table 4. CASGEM Groundwater Surface Elevation Sampling Information

<table>
<thead>
<tr>
<th>Season</th>
<th>Sample Date</th>
<th>CASGEM Well ID 50636 WSE</th>
<th>Sample Date</th>
<th>CASGEM Well ID 50633 WSE</th>
<th>Sample Date</th>
<th>CASGEM Well ID 50640 WSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall 15</td>
<td>11/16/2015</td>
<td>5.3</td>
<td>11/16/2015</td>
<td>-1.3</td>
<td>11/16/2015</td>
<td>0.2</td>
</tr>
<tr>
<td>Fall 14</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Fall 13</td>
<td>11/8/2013</td>
<td>2</td>
<td>11/1/2013</td>
<td>6.1</td>
<td>11/1/2013</td>
<td>7.6</td>
</tr>
<tr>
<td>Fall 10</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Spring 10</td>
<td>N/A</td>
<td>N/A</td>
<td>3/4/2010</td>
<td>9.5</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Fall 09</td>
<td>N/A</td>
<td>N/A</td>
<td>11/4/2009</td>
<td>9.5</td>
<td>11/4/2009</td>
<td>10</td>
</tr>
<tr>
<td>Spring 09</td>
<td>N/A</td>
<td>N/A</td>
<td>4/2/2009</td>
<td>9.5</td>
<td>6/30/2009</td>
<td>9</td>
</tr>
<tr>
<td>Avg Spring</td>
<td>10.6</td>
<td>10.9</td>
<td>10.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg Fall</td>
<td>3.7</td>
<td>7.8</td>
<td>5.9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 – Data was noted by CASGEM as a questionable reading as a result of recent pumping.
2 – Averages exclude questionable readings
3 – All elevations are based on NAVD 88
3 COMPARISON OF GROUNDWATER AND EXCAVATION ELEVATIONS

Project construction consists of the excavation of an intake channel, excavation for the purpose of constructing the headworks structure, and excavation of an outlet channel, all within close proximity of the Sacramento River, and to depths below measured groundwater elevations.

The inlet channel will be excavated from an elevation of 12 feet (NAVD 88) at the Sacramento River bank and then sloped up to match the flowline of the headworks structure. Table 5 provides the design flowline elevation of the main channel through the headworks structure for each alignment alternative. Figure 4 and Figure 5 show the conceptual design of the headworks structure foundation. Total excavation depths will vary for each alignment alternative. The deepest anticipated excavation is at the headworks structure for the east alternative, which has a flowline elevation of 14 feet. At a minimum (excluding the excavation needed to construct the sump associated with housing the mechanical equipment, which has not been sized at this time), an additional 7 feet of over excavation is required in order to construct the foundation. This puts the bottom of excavation for the headworks structure at or below an elevation of 7 feet.

Table 5. Headworks Gate Invert Elevation based on Location

<table>
<thead>
<tr>
<th>Weir Location</th>
<th>Gates Invert. Elev. (ft. NAVD)</th>
<th>Depth of Over Excavation (ft.)</th>
<th>Estimated Average Groundwater Surface Elevation (ft. NAVD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alt 1 Eastern</td>
<td>Main: 14.0’ Bench: 18.0’</td>
<td>7</td>
<td>Spring = 15.1’, Fall = 6.5’</td>
</tr>
<tr>
<td>Alt 2 Central</td>
<td>Main: 14.8’ Bench: 18.8’</td>
<td>7</td>
<td>Spring = 17.1’, Fall = 9.1’</td>
</tr>
<tr>
<td>Alt 3 Western</td>
<td>Main: 16.1’ Bench: 20.1’</td>
<td>7</td>
<td>Spring = 17.3’, Fall = 8.2’</td>
</tr>
<tr>
<td>Alt 4 Western Managed</td>
<td>Main: 16.1’ Bench: 20.1’</td>
<td>7</td>
<td>Spring = 17.3’, Fall = 8.2’</td>
</tr>
<tr>
<td>Alt 5 Central Multiple Gates with Floodplain</td>
<td>Gates A: 14’ Gates B: 17’ Gates C: 18’ Gates D: 21’</td>
<td>5</td>
<td>Spring = 17.1’, Fall = 9.1’</td>
</tr>
<tr>
<td>Alt 6 Western Large</td>
<td>Main: 16.1’ Bench: 20.1’</td>
<td>7</td>
<td>Spring = 17.3’, Fall = 8.2’</td>
</tr>
</tbody>
</table>
A 100–foot-long concrete channel transition connects the headworks structure to the rock-lined, earthen channel for Alternatives 1-3, 4, and 6, and then flows to Tule Pond. The channel outfalls into Tule Pond at an elevation of 12 feet and requires an additional 2 feet of over-excavation in order to
install the revetment and bedding material. This places the bottom of excavation at an elevation of 10 feet. See Figure 6 for typical channel section. For Alternative 5, the headworks transition into three rock-lined, braided channels that converge into one rock-lined channel, roughly 1,000 feet south of the weir/headworks, which then opens up into a large graded floodplain. The floodplain grading ranges from an elevation 16 feet down to an elevation of 12.5 feet. See Volume II - 10% Design Drawings, Alternative 5 for the floodplain grading concept.

Figure 6. Outlet Channel, East Channel Typical Section

The Tule Pond connects the channel alignments for Alternatives 1-3, 4, and 6 to a common downstream channel improvement that outlets to the Tule drain. The downstream channel improvement is also a rock-lined, earthen channel. See Figure 7 for a typical channel section. The channel flowline is at an approximate elevation of 12 feet and requires an additional 2 feet of over-excavation required to install the revetment and bedding material. This places the bottom of excavation at an elevation of 10 feet.

Figure 7. Downstream Channel Typical Section
Table 6 summarizes the expected excavation elevations for each component. These elevations will be used to determine the likelihood and magnitude of work performed below the groundwater table.

Table 6. Deepest Estimated Excavation Elevation for each Project Component

<table>
<thead>
<tr>
<th>Component</th>
<th>Deepest Est. Excavation Elevation (NAVD88)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intake Shelf</td>
<td>12</td>
</tr>
<tr>
<td>Headworks (East)</td>
<td>≤7</td>
</tr>
<tr>
<td>Headworks (Center)</td>
<td>≤7.8</td>
</tr>
<tr>
<td>Headworks (West)</td>
<td>≤9.1</td>
</tr>
<tr>
<td>Outlet Channel (East, Center, West)</td>
<td>10</td>
</tr>
<tr>
<td>Downstream</td>
<td>10</td>
</tr>
<tr>
<td>Floodplain</td>
<td>12.5</td>
</tr>
</tbody>
</table>

4 ANALYSIS

4.1 INLET SHELF IMPACTS
Based on the data sources used, groundwater elevations at the inlet shelf are anticipated to range between 6 and 17 feet, depending upon the season. Excavation at the inlet shelf is expected to be no deeper than an elevation of 12 feet. As such, it is anticipated that saturated soils would be encountered during inlet shelf excavation. Dewatering is likely needed and may be accomplished by placing a sheet pile wall near the bank of the Sacramento River and a series of pumps and/or wells to lower/dewater the areas of excavation. Even with dewatering efforts in place, it is anticipated that a large portion of the excavation, approximately 40 percent, would be in saturated conditions and would be performed with a large excavator rather than scrappers, as scrappers don’t perform well in overly-saturated conditions.

4.2 HEADWORKS STRUCTURE
Based on the data sources used, groundwater elevations at the headworks structure are anticipated to range between 8 and 17 feet, depending upon the season. Excavation at the headworks structure is expected to be at an approximate elevation of 7 feet. As such, it is anticipated that saturated soils would be encountered during headworks excavation. Dewatering is likely to be needed and may be accomplished by placing a sheet pile wall coffer dam, which would surround the site to be excavated and a series of pumps and/or wells to lower/dewater the areas of excavation. Even with dewatering efforts in place, it is anticipated that saturated soils will be encountered and that a mud pad may be needed after the piles have been placed, in order to provide a flat and dry working surface for construction.
4.3 OUTLET, FLOODPLAIN AND DOWNSTREAM CHANNEL IMPACTS

Based on the data sources used, groundwater elevations at the outlet (eastern, central, and western channel location) are anticipated to be between 6 and 15 feet, depending upon the season. Excavations at the outlet, floodplain, and downstream channel are expected to be no deeper than an elevation of 10 feet. As such, it is anticipated that saturated soils would be encountered during channel excavation. It is impractical and cost-prohibitive to dewater the entire footprint of the outlet channel because of the extensive amount of dewatering that would be needed. It is anticipated that, because of the relatively dry soil conditions, the upper portion of the channel excavation (roughly 80 percent) would be completed using scrappers, while the lower portion of the channel excavation (roughly 20 percent) would be completed using large excavators.

It is anticipated that construction of the downstream channel will require dewatering. Dewatering may be accomplished by placing a sheet pile wall near the southern bank of the Tule Pond (the northern point of the downstream channel), and a series of pumps and/or wells to lower/dewater the areas of excavation. Even with dewatering efforts in place, it is anticipated that a large portion of the lower elevation excavation for the downstream channel would be performed with a large excavator rather than scrappers, as scrappers don’t perform well in overly-saturated conditions.

4.4 ALTERNATIVES 4 AND 5 ADDITIONAL COMPONENTS

Alternatives 4 and 5 consists of additional improvements further south in the Yolo Bypass, which include engineered berm improvements, fish bypass channels, and water control structures at three locations: one is referred to as Knaggs, another as Conaway, and a third as Swanston. For reference to these areas please refer to Volume II - 10% Design Drawings for Alternatives 4 & 5. The groundwater impacts of these alternative components were not evaluated for this document, but it is anticipated that similar mitigation and best management practices as what will be employed for Alternatives 1-4 and 6 would also be used for the construction of these facilities to manage groundwater impacts.

5 CONCLUSIONS

Based on the available groundwater elevation information, and the expected excavation depths, it is anticipated that groundwater will be encountered during the various project excavations, regardless of the alternative selected. Excavations are deepest for the East Alternative, followed by the Center Alternative, then lastly the West Alternative. Groundwater elevations vary depending on alternative location. In general, dewatering will be required at deeper elevations for the East Alternative and at shallower elevations for the West Alternative.
Appendix G1
Scenario Analysis of Fremont Weir Notch – Integration of Engineering Designs, Telemetry, and Flow Fields
This page left blank intentionally.
SCENARIO ANALYSIS OF FREMONT WEIR NOTCH – INTEGRATION OF ENGINEERING DESIGNS, TELEMETRY, AND FLOW FIELDS

David L. Smith, Tammy Threadgill, Bertrand Lemasson, Yong Lai, Anna Steel Christa Woodley, Amanda Hines, R. Andrew Goodwin, Josh Israel

July 2017

Approved for public release; distribution is unlimited.
The US Army Engineer Research and Development Center (ERDC) solves the nation’s toughest engineering and environmental challenges. ERDC develops innovative solutions in civil and military engineering, geospatial sciences, water resources, and environmental sciences for the Army, the Department of Defense, civilian agencies, and our nation’s public good. Find out more at www.erdc.usace.army.mil.

To search for other technical reports published by ERDC, visit the ERDC online library at http://acwc.sdp.sirsi.net/client/default.
SCENARIO ANALYSIS OF FREMONT WEIR NOTCH – INTEGRATION OF ENGINEERING DESIGNS, TELEMETRY, AND FLOW FIELDS

David L. Smith, Tammy Threadgill, Christa Woodley, R. Andrew Goodwin

Environmental Laboratory
US Army Engineer Research and Development Center
3909 Halls Ferry Road
Vicksburg, MS 39180-6199

Amanda Hines

Information Technology Laboratory
US Army Engineer Research and Development Center
3909 Halls Ferry Road
Vicksburg, MS 39180-6199

Anna Steel

University of California, Davis
One Shields Ave
Davis, CA 95616

Yong Lai

Bureau of Reclamation
Denver Technical Services Center
6th & Kipling, Bldg 67
Denver, CO 80225

Josh Israel

US Bureau of Reclamation
Bay Delta Office, Science Division
801 I Street, Suite 140
Sacramento, CA 95814-2536

Final report

Approved for public release; distribution is unlimited.
Abstract

The United States Bureau of Reclamation and the California Department of Water Resources are planning a notch in the Fremont Weir on the Sacramento River. The notch is intended to provide access to the Yolo Bypass floodplain for juvenile salmon across a range of flows and to provide passage for adult anadromous fishes, and to increase floodplain inundation. This study estimated the entrainment rate of 12 separate notch scenarios. Entrainment estimates vary from approximately 1 to 25%. Across all scenarios larger notch flows entrain greater fish numbers, although not proportionally to the volume through the notch. West located notches entrain more fish than central and east and intakes perform better than shelves. However, intakes and shelves both performed poorly, regardless of notch flows, when intake channels were angled from the mainstem. Entrainment estimates are comparable to measured entrainment rates elsewhere in the Sacramento River suggesting that the modeled estimates are reasonable. The results further suggest that the approach used is valuable for incorporating structural modifications and evaluating expected outcomes.

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. All product names and trademarks cited are the property of their respective owners. The findings of this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.
Contents

Abstract .. ii
Figures and Tables ... v
Unit Conversion Factors ... viii
1 Introduction .. 1
 1.1 Fremont Weir ... 3
2 Goals and Objectives ... 5
3 Scenario Descriptions and Domain Development ... 6
 3.1 Scenarios ... 6
 3.2 Domain development .. 7
4 Study Design and Model Application ... 9
 4.1 Fish telemetry .. 10
 4.2 2D hydraulic models and landscape modeling ... 11
 4.3 Scenario descriptions .. 14
 4.3.1 Scenario 1 West 6K Shelf ... 14
 4.3.2 Scenario 2 West 6K Intake ... 14
 4.3.3 Scenario 3 West 3K Shelf ... 14
 4.3.4 Scenario 4 West 1K Shelf ... 15
 4.3.5 Scenario 5 Central .. 15
 4.3.6 Scenario 6 East ... 15
 4.3.7 Scenario 7 East ... 15
 4.3.8 Scenario 8 East ... 16
 4.3.9 Scenario 9 East and West ... 16
 4.3.10 Scenario 10 and 10B Central ... 16
 4.3.11 Scenario 11 West .. 16
 4.3.12 Scenario 12 West .. 17
 4.4 ELAM description .. 23
 4.4.1 Movement .. 24
 4.5 Fish movement modeling procedure .. 24
5 Results ... 26
 5.1 Spatial distribution ... 26
 5.2 Kernel density estimates .. 26
 5.3 Speed Estimates ... 28
 5.4 Entrainment across all scenarios .. 28
 5.5 Flow and entrainment relationships .. 31
6 Discussion ... 42
 6.1 Accuracy and precision in planning studies .. 44
6.2 Behavior ... 45
6.3 Notch flow and design ... 45
6.4 Unknown factors that influence entrainment 46
6.5 2D data in 3D river .. 46
6.6 Impact of bank structures on secondary circulations .. 46

7 Bibliography ... 47

8 Appendix 1: EIS/EIR Alternatives 1 through 6 Entrainment Estimates 50
 8.1 Reason for Addendum ... 50
 8.2 Results ... 52
 8.3 Conclusions ... 55
Figures and Tables

Figures.

Figure 1. Map of project site ... 4
Figure 2. Scenario notch locations .. 7
Figure 3. Workflow for development of fish movement model. SOG is speed over ground. .. 9
Figure 4. Detection array at Fremont Weir ... 10
Figure 5. Rating curves for notches .. 18
Figure 6. Images of notches as modeled .. 19
Figure 7. Measured and Modeled Fish Locations ... 26
Figure 8. Contour lines showing the density speed estimates for modeled (A) and measured fish positions (B) .. 27
Figure 9. Box plot of fish speed for modeled (A) and measured (B) fish speed over ground estimates ... 28
Figure 10. Modifications completed for Scenario 10B based on email from Josh Urias to David Smith, 12/2/2016 ... 30
Figure 11. Mean entrainment estimates for each scenario at maximum flow with standard deviations. Scenario number is placed above each error bar. .. 31
Figure 12. Scenario 1 shelf .. 32
Figure 13. Scenario 2 intake ... 32
Figure 14. Scenario 3 .. 33
Figure 15. Scenario 4 .. 33
Figure 16. Scenario 5 .. 34
Figure 17. Scenario 6 .. 34
Figure 18. Scenario 7 .. 35
Figure 19. Scenario 8 .. 35
Figure 20. Scenario 9 .. 36
Figure 21. Scenario 10 and 10B ... 37
Figure 22. Scenario 11 ... 38
Figure 23. Scenario 12 ... 38
Figure 24. Stage at Ferment weir gage and point estimates of entrainment for all ELAM scenarios. ... 39
Figure 25. Modeled stage at Fremont Weir compared to stage at each notch entrance in ft, NAVD88 ... 41
Figure 26. Plot of ELAM estimates with comparable estimates from the Sacramento River. Cavallo et al (2015) line estimated by pulling values from graph and thus is an approximation. 1:1 line denotes when entrainment is proportional to entrainment flow ... 43
Figure 27. USGS and DWR rating curves and the SRH2D output used for the entrainment estimates for the original 12 scenarios ... 51
Figure 28. Entrainment estimates across flows and stage referenced to Fremont Weir gage. ... 53

Figure 29. Validation plot of estimated entrainments for the EIS/EIR Alternatives. Grey dashed line is the 1:1 line where entrainment is proportional to flow ratio.............. 55

Tables.

Table 1 Physical properties of modeled scenarios. Notch/River is the ratio of notch flow to river flow.. 8

Table 2. Stage at Fremont and point estimates of entrainment for all ELAM scenarios... 40

Table 3. New stages and flows used for the EIS/EIR Alternatives. ... 51

Table 4. Stage and flow used for EIS/EIR Alternatives 1 through 6... 52

Table 5. Entrainment estimates across flows and stage referenced to Fremont Weir gage. ... 53

Table 6. Comparison of EIS/EIR Alternative 1 and ELAM Scenario 7 highlighted in green... 56
Preface

This study was conducted for the United States Bureau of Reclamation using Interagency Agreement R13PG20203. The technical monitor was Dr. Patrick Deliman.

The work was performed by the Water Quality and Contaminant Modeling Branch (EPW) of the Environmental Processes and Effects Division (EP), US Army Engineer Research and Development Center, Environmental Laboratory. At the time of publication, Mark Noel was Acting Chief, CEERD-EPW; Warren Lorenz was Chief, CEERD-EP; and Pat Deliman, CEERD-EV-E was the Technical Director. The Deputy Director of ERDC-EL was Dr. Jack Davis and the Director was Dr. Beth Fleming.

COL Bryan Green was the Commander of ERDC, and Dr. David Pittman was the Director.
Unit Conversion Factors

<table>
<thead>
<tr>
<th>Multiply</th>
<th>By</th>
<th>To Obtain</th>
</tr>
</thead>
<tbody>
<tr>
<td>feet</td>
<td>0.3048</td>
<td>Meters</td>
</tr>
<tr>
<td>miles (US statute)</td>
<td>1,609.347</td>
<td>Meters</td>
</tr>
</tbody>
</table>
1. **Introduction**

As California’s largest river, the Sacramento River is an important economic, recreational, and ecological resource. The river has an extensive flood control infrastructure that includes a system of dams, levees, and floodways intended to protect agricultural and urban regions. In particular, the metropolitan area of Sacramento with some 2 million residents is protected from flooding by this system. Protection is due to levees but flood events are conveyed out of the river channels and onto floodways such as the Yolo Bypass. In addition to providing protection, the floodways receive sediment and nutrients and thus impact ecosystem processes including those associated with floodplain access by fish [1].

The Yolo Bypass is a 24,000 ha basin protected by levees and inundated during high flow on the Sacramento River. The floodway is 61 km long and is flooded approximately 7 out of 10 years with a peak flow of 14,000 m³/s. Water is conveyed over the Fremont Weir onto the Yolo Bypass [2].

The Fremont Weir was constructed in 1924 by the U. S. Army Corps of Engineers. It is the first overflow structure on the river’s right bank and its two-mile overall length marks the beginning of the Yolo Bypass. It is located about 15 miles northwest of Sacramento and eight miles northeast of Woodland. South of this latitude the Yolo Bypass conveys 80% of the system’s maximum flows through Yolo and Solano Counties until it connects to the Sacramento River a few miles upstream of Rio Vista. The Fremont Weir’s primary purpose is to release overflow waters of the Sacramento River, Sutter Bypass, and the Feather River into the Yolo Bypass. The crest elevation is approximately 32.0 feet (NAVD88) and the project design capacity of the weir is 343,000 cfs. Adding a notch will change the frequency/duration of water flowing onto the Yolo Bypass via flows through the notch channel, not over the Fremont Weir.

On June 4, 2009, the National Marine Fisheries Service (NMFS) issued its Biological Opinion and Conference Opinion on the Long-term Operation of the Central Valley Project (CVP) and State Water Project (SWP) (NMFS Operation BO). The NMFS Operation BO concluded that, if left unchanged, CVP and SWP operations were likely to jeopardize the continued existence of four federally-listed anadromous fish species: Sacramento
River winter-run Chinook salmon (*Oncorhynchus tshawytscha*), Central Valley spring-run Chinook salmon, California Central Valley steelhead (*O. mykiss*), and Southern Distinct Population Segment (DPS) North American green sturgeon (*Acipenser medirostris*). The NMFS Operation BO sets forth Reasonable and Prudent Alternative (RPA) actions that would allow SWP and CVP operations to remain in compliance with the federal Endangered Species Act (ESA). RPA actions include restoration of floodplain rearing habitat, through a “notched” channel that increases seasonal inundation within the lower Sacramento River basin. A significant component of these risk reduction actions is lowering a section of the Fremont Weir (Figure 1) to allow juvenile fish to enter the bypass and adult fish to more easily return to the Sacramento River. Questions remain on the details of notch implementation (e.g., size, location), fish entrainment efficiency, and species-specific and ontology-based behaviors.

Among actions being considered are alternatives to “increase inundation of publicly and privately owned suitable acreage within the Yolo Bypass.” During inundation, the Yolo Bypass has been shown to have beneficial effects on growth of juvenile salmonids (Sommer et al. 2001) due to the favorable rearing conditions (e.g., increased primary productivity, relatively slow water velocities, abundant invertebrates). Entrainment of juvenile salmonids into the bypass routes them around the Delta, thereby minimizing the potential for entrainment by the pumps at the State Water Project and Central Valley Project. Therefore, maximizing entrainment into the bypass, particularly at lower stages, is of particular interest. Uncertainty exists about how the location, approach channel, and notch design and setting influence the effectiveness for entraining juvenile salmonids from the Sacramento River onto the Yolo Bypass.

It is generally recognized that fish are unevenly distributed across a channel cross section and that the position of the fish influences the probability that entrainment occurs [3]. The distribution of fish is in part related to secondary circulations which tend to concentrate passive particles such as sediment away from the channel margins and towards the bank of long radius of a river bend. This conceptual model is often applied to downstream movement of fish such as juvenile salmon in the Sacramento River. Notch entrainment efficiency is potentially improved by placing the notch where fish density is maximized along the outside bend. Of course, the specifics of the fish distribution are related to the unique attributes of each cross section, notch design, and the behavior of fish therein. The efficiency of
an entrainment channel is the most important factor impacting fish benefits based on the Fishery Benefit Model (Hinkelmann et al. in review).

In 2015, two-dimensional (2-D) positions were measured for hatchery late-fall and winter-run Chinook along a portion of the Fremont Weir. These tracks provided the basis for this study. The objective of this study was to validate an existing fish behavior model for use on this project, simulate a range of alternate notch designs, and evaluate the sensitivity on entrainment to different locations and designs. Additionally, this modeling approach allowed for exploration of different hypotheses regarding fish behavior and the influence they could have on movement and entrainment through the simulated notches. These results will evaluate the sensitivity on entrainment for different designs and locations along the Fremont Weir.

1.1 Fremont Weir

Fremont Weir is a 1.8-mile long flood control structure designed with a concrete, energy-dissipating splash basin, which minimizes scouring during overtopping events at the weir. The splash basin lies just downstream of the crest of the weir and spans the full length of the weir.

When the river stage is sufficiently higher than the weir, all juvenile salmonids that get entrained onto the Yolo Bypass are hypothesized to enter the bypass due to the overwhelming extent of Sacramento River flows being pushed out of the channel and onto the bypass. It is also hypothesized that during lower-stage overtopping events, when the Sacramento River is just barely above the crest of Fremont Weir, this effect is also the predominant cause of entrainment of Sacramento River fish onto the bypass. Overtopping events can vary in duration from just a few hours to several weeks, but are relatively short-lived compared with the resulting flooded footprint of the Yolo Bypass, which persists following the overtopping events. This footprint is a result not just of overtopping at the Fremont Weir, but substantial out-of-channel flows from four westside tributaries: Knights Landing Ridge Cut, Cache Creek, Willow Slough, and Putah Creek.

As part of RPA Action I.6.1, inundation flows from the Sacramento River onto the Yolo Bypass will occur at river flows lower than when the weir is overtopped, while species of interest are migrating past the Fremont Weir reach towards the Delta. It is during this period that the action aims to in-
crease entrainment of salmonids. Aciero et al. (2014) evaluated the potential for entrainment based on proportion of flow entering the bypass and identified that it was potentially limited. Uncertainty exists about how fish utilize the channel for migration and rearing and their relationship to cross-channel flow patterns and secondary circulations. This study evaluates how these bathymetric and hydraulic structures may influence fish entrainment and flow relationships.

As part of Action I.6.1, Fremont Weir will be modified to allow seasonal, partial floodplain inundation in order to provide increased habitat for salmonid rearing and to improve fish passage. The same physical feature used for floodplain inundation flows will be used for juvenile fish entrainment. The primary modification of Fremont Weir will add a notch with one or more bays.

Figure 1. Map of project site.
Goals and Objectives

This study analyzes 12 notch scenarios in the Fremont Weir in terms of entrainment of juvenile salmon. The goal is to quantify the relative entrainment rates (between 0 and 1) across the suite of scenarios and to identify possible strategies for enhancing entrainment outcomes. This study does not predict future entrainment as models generally do not predict future outcomes so much as highlight trends. As there is no notch yet built, predictions of absolute entrainment rates risk missing any number of unforeseen variables driving the movement of complex animals like salmon in riverine systems. In a planning context, relative changes across scenarios are an accepted standard practice. The outcomes of this study will be one factor of the overall decision on which alternative is most suited for meeting the larger project objectives. Once the notch is constructed, evaluation studies will provide the opportunity for additional calibration and verification of model output.

The objectives of this study include the following:

- Develop a base fish movement data set under existing conditions (no notch). This work was completed as part of Steel et al (2017).
- Develop a calibrated three dimensional (i.e., U2RANS, a 3D Reynolds Averaged Navier-Stokes solver) and two dimensional (i.e., SRH-2D, Sedimentation and River Hydraulics-Two-Dimension) time varying hydrodynamic model of the project reach. This work was completed as part of Lai (2016).
- Integrate engineering designs of proposed notches into existing bathymetry and landscape (LiDAR) data capturing important differences in locations, widths, invert elevations, and construction techniques.
- Develop two dimensional flow fields for each of the scenarios that capture the hydraulic impacts of each unique notch.
- Apply the calibrated fish movement model to the flow fields produced by each scenario and summarize estimated entrainment rates.
- Make recommendations on next steps and possible improvements.
3 Scenario Descriptions and Domain

Development

3.1 Scenarios

A suite of twelve notch scenarios was developed by the California Department of Water Resources (DWR) and the United States Bureau of Reclamation (USBR). The scenarios fall into two broad categories: 1) those with an extensive shelf adjacent to the notch and 2) those with a narrow channel or intake leading to the notch headworks. The headworks are where fish will exit the Sacramento River and enter the Yolo Bypass. The shelf-based scenarios have a larger project footprint than the intake based scenarios. The primary purpose of the headworks for the shelf and intake configurations is to create a hydraulic connection between the Sacramento River and the Yolo Bypass during lower flows in the Sacramento River than currently exists. The headworks will consist of the inlet transition, the control structure, and the outlet transition, and will control the diversion of flow (up to about 12,000 cfs) from the Sacramento River into the Yolo Bypass.

Scenario notch locations are concentrated in the west, central, and east portion of the Fremont Weir (Figure 2). Table 1 highlights the dimensions captured in the landscape model of each scenario. Each scenario is different in terms of size, location, notch invert elevation, and width. These differences are translated into the 2D simulation of the flow field which, in turn, translates into simulated fish movement.
3.2 Domain development

An IGES (initial graphic exchange specification) file was received from the USBR for each of the scenarios. Upon receipt of these files, each file was loaded into Capstone and an STL (stereolithography) file was created of the intake area. Once the intake area had a mesh associated with it, the original STL file of the river and intake STL file were then merged to create one mesh that represented the mesh used for the scenario. The STL was exported as a 2dm file using Paraview and extraneous faces were removed from the dataset or modified to best work with SRH-2D.
Table 1 Physical properties of modeled scenarios. Notch/River is the ratio of notch flow to river flow.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Lower Intake</th>
<th>Upper Intake</th>
<th># of Points</th>
<th># of Elements</th>
<th>Notch Flow (cfs)</th>
<th>River Flow (cfs)</th>
<th>Notch/River</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Elev. Width</td>
<td>Elev. Width</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Original</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scenario 1</td>
<td>14 ft</td>
<td>31 ft</td>
<td>20 ft</td>
<td>44 ft</td>
<td>31200</td>
<td>33924</td>
<td>0.14</td>
</tr>
<tr>
<td>Scenario 2</td>
<td>14 ft</td>
<td>32 ft</td>
<td>20 ft</td>
<td>44 ft</td>
<td>33427</td>
<td>36126</td>
<td>0.14</td>
</tr>
<tr>
<td>Scenario 3</td>
<td>17 ft</td>
<td>21 ft</td>
<td>23 ft</td>
<td>24 ft</td>
<td>32858</td>
<td>35596</td>
<td>0.07</td>
</tr>
<tr>
<td>Scenario 4</td>
<td>22 ft</td>
<td>14 ft</td>
<td>NA</td>
<td>NA</td>
<td>32913</td>
<td>35782</td>
<td>0.02</td>
</tr>
<tr>
<td>Scenario 5</td>
<td>14 ft</td>
<td>31 ft</td>
<td>20 ft</td>
<td>41 ft</td>
<td>31308</td>
<td>33702</td>
<td>0.14</td>
</tr>
<tr>
<td>Scenario 6</td>
<td>14 ft</td>
<td>32 ft</td>
<td>20 ft</td>
<td>43 ft</td>
<td>29238</td>
<td>32313</td>
<td>0.13</td>
</tr>
<tr>
<td>Scenario 7</td>
<td>14 ft</td>
<td>33 ft</td>
<td>20 ft</td>
<td>44 ft</td>
<td>37538</td>
<td>40628</td>
<td>0.13</td>
</tr>
<tr>
<td>Scenario 8</td>
<td>17 ft</td>
<td>21 ft</td>
<td>23 ft</td>
<td>25 ft</td>
<td>31115</td>
<td>33941</td>
<td>0.06</td>
</tr>
<tr>
<td>Scenario 9 – West</td>
<td>17 ft</td>
<td>21 ft</td>
<td>23 ft</td>
<td>37 ft</td>
<td>38372</td>
<td>41453</td>
<td>0.06</td>
</tr>
<tr>
<td>Scenario 9 – East</td>
<td>17 ft</td>
<td>21 ft</td>
<td>23 ft</td>
<td>25 ft</td>
<td>3000.11</td>
<td>47029.93</td>
<td>0.06</td>
</tr>
<tr>
<td>Scenario 10 – West (A/B)</td>
<td>14 ft</td>
<td>33 ft</td>
<td>17 ft</td>
<td>35 ft</td>
<td>42119</td>
<td>45016</td>
<td>0.02</td>
</tr>
<tr>
<td>Scenario 10 – Central (C)</td>
<td>18 ft</td>
<td>142 ft</td>
<td>-</td>
<td>-</td>
<td>42119</td>
<td>45016</td>
<td>0.07</td>
</tr>
<tr>
<td>Scenario 10 – East (D)</td>
<td>21 ft</td>
<td>146 ft</td>
<td>-</td>
<td>-</td>
<td>42119</td>
<td>45016</td>
<td>0.02</td>
</tr>
<tr>
<td>Scenario 11</td>
<td>16 ft</td>
<td>220 ft</td>
<td>-</td>
<td>-</td>
<td>34037</td>
<td>36504</td>
<td>0.27</td>
</tr>
<tr>
<td>Scenario 12</td>
<td>16 ft</td>
<td>40 ft</td>
<td>20 ft</td>
<td>60 ft</td>
<td>33288</td>
<td>35711</td>
<td>0.13</td>
</tr>
</tbody>
</table>

Study Design and Model Application

Developing a fish movement model to assist with scenario evaluation for the Fremont Weir notch requires integration of data and information from several sources and professional disciplines (Figure 3). The report used biological data from a telemetry study, hydrodynamic data and models, and landscape modeling techniques.

Figure 3. Workflow for development of fish movement model. SOG is speed over ground.

- Biological data
- Telemetry
 - SOG, distributions
 - Measure WRC LFC movement at project site
- Hydraulic/bathymetric data
- CFD (Computational fluid dynamic)
 - Demonstrate model can simulate Fremont Weir flow fields
- Landscape data modification
- Scenario development
 - 12 notch scenarios
 - Integrate with CFD domain
- CFD model of all twelve notches/scenarios
- Fish movement model of Fremont Weir site, calibrate to measured fish movement data
- Fish movement model for scenario notches – relative entrainment estimates
4.1 Fish telemetry

In 2015, 250 winter run Chinook (mean fork length of 103 mm) from Livingston Stone Hatchery and 250 late fall run Chinook (mean fork length of 145 mm) from Coleman National fish hatchery were tagged with acoustic tags and released through a detection area at Fremont Weir. The array was in a long sweeping bend located at the head of the upstream end of the Fremont weir. This location was thought to have the best conditions for redistributing fish to the outside bend where susceptibility to entrainment by a future notch would be higher. All fish were released over 24 hour periods at Knights Landing. River discharge was low and stable with gage readings at Fremont weir of approximately 14 ft and flows of approximately 5700 cfs. Analysis suggested little difference in movement between winter run Chinook and late fall run Chinook at Fremont weir.

Speeds over grounds and size were not statistically different for winter and late fall run Chinook. The combined mean speed over ground was 0.67 m/s.

Cross-channel spatial distributions were also similar for winter and late fall run Chinook. There was a moderate shift in the spatial distribution to the outside bend of approximately 5 to 8 m away from the channel center. Channel width is approximately 70 m with the centerline, therefore 35 m away from either bank.

Figure 4. Detection array at Fremont Weir
For more detail please refer to Steel et al. (2017) describes in detail the telemetry study that was completed to support work described in this report.

4.2 2D hydraulic models and landscape modeling

SRH-2D is a 2D depth-averaged hydraulic and sediment transport model for river systems. It was developed at the Technical Service Center, Bureau of Reclamation. The hydraulic flow modeling theory and user manual were documented by Lai (2008; 2010). SRH-2D was used for all hydrodynamic simulations used to support entrainment modeling.

SRH-2D adopts the arbitrarily shaped element method of Lai et al. (2003a, b), the finite-volume discretization method, and an implicit integration scheme. The numerical procedure is very robust so SRH-2D can simulate simultaneously all flow regimes (sub-, super-, and trans-critical flows) and both steady and unsteady flows. A special wetting-drying algorithm makes the model very stable in handling flows over dry surfaces.

The mobile-bed sediment transport theory has been documented by Greimann et al. (2008), Lai and Greimann (2010), and Lai et al. (2011). The mobile-bed module predicts vertical stream bed changes by tracking multi-size, non-equilibrium sediment transport for suspended, mixed, and bed loads, and for cohesive and non-cohesive sediments, and on granular, erodible rock, or non-erodible beds. The effects of gravity and secondary flows on the sediment transport are accounted for by displacing the direction of the sediment transport vector from that of the local depth-averaged flow vector.

Major capabilities of SRH-2D are listed below:

- 2D depth-averaged solution of the St. Venant equations (dynamic wave equations) for flow hydraulics;
- An implicit solution scheme for solution robustness and efficiency;
- Hybrid mesh methodology which uses arbitrary mesh cell shapes. In most applications, a combination of quadrilateral and triangular meshes works the best;
- Steady or unsteady flows;
• All flow regimes simulated simultaneously: subcritical, supercritical, or transcritical flows;

• Mobile bed modeling of alluvial rivers with a steady, quasi-unsteady, or unsteady hydrograph.

• Non-cohesive or cohesive sediment transport;

• Non-equilibrium sediment transport;

• Multi-size sediment transport with bed sorting and armoring;

• A single sediment transport governing equation for both bed load, suspended load, and mixed load;

• Effects of gravity and secondary flows at curved bends; and

• Granular bed, erodible rock bed, or non-erodible bed.

SRH-2D is a 2D model, and it is particularly useful for problems where 2D effects are important. Examples include flows with in-stream structures such as weirs, diversion dams, release gates, coffer dams, etc.; bends and point bars; perched rivers; and multi-channel systems. 2D models may also be needed if certain hydraulic characteristics are important such as flow recirculation and eddy patterns; lateral variations; flow overtopping banks and levees; differential flow shears on river banks; and interaction between the main channel, vegetated areas and floodplains. Some of the scenarios listed above may be modeled in 1D, but additional empirical models and input parameters are needed and extra calibration must be carried out with unknown accuracy.

The 2D model was built and calibrated for the same conditions under which fish were released and their locations measured at Fremont Weir in 2015. This served as the base case. Refer to Lai (2016) for model specifics.

We represented each of the twelve scenario notch designs by integrating basic CAD designs into topography and bathymetry data. We used the Capstone software which is part of the DOD CREATE software suite. Capstone is a feature-rich application designed to produce analyzable representations of geometry for use with physics based solvers. In particular the
geometry, mesh and associative attribution required for a computational simulation can be produced.

Geometry-related capabilities include:

• Geometry import and export for the IGES and STEP file formats
• Low-level geometry creation
• Edge and face splitting and merging
• Boolean operations
• Lofting, sweeping and extrusion
• Fillet and chamfer
• Various healing and stitching operations

Capstone excels at generating unstructured meshes for complex geometries. Due to the robust topology model, high-quality meshes can be generated for the manifold and non-manifold geometries often required in aerospace applications.

Meshing-related capabilities include:

• Mesh import and export for common formats including STL, CGNS, SURF and UGRID
• Mesh import and export for Create file formats including Kestrel (avm) and Sentri (Exodus)
• Robust and flexible sizing field
• Robust unstructured surface mesh generation
• Unstructured tet-dominant volume mesh generation
• Extruded boundary layer generation via the third-party AFLR volume mesher
• Sliding interfaces

• Mesh manipulation and repair operations

• Mesh export with associated attribution

One of the most important capabilities that Capstone provides is a framework for attributing a mesh based on the underlying geometry. For supported output formats the mesh is exported with associated attributes to be used in a physics-based analysis.

By integrating the CAD designs with existing landscape data and then modeling the 2D flow fields we captured the influence of notch details such as size, angle, step heights and the subsequent influence the local flow field and thus fish distribution and potential for entrainment.

Each of the notch designs are represented in Figure XC. Flows through the notch were represented using rating curves developed by the CA DWR. See Lai (2017)

Scenario descriptions

4.3.1 Scenario 1 West 6K Shelf

This scenario is located past the west end of the Fremont Weir. It has a minimum invert of 14 feet and a maximum flow of 6000 cfs. A broad shelf starts from the river and tapers toward the notch structure. The location is coincident with the Steel et al. (2017) fish movement study location.

4.3.2 Scenario 2 West 6K Intake

This scenario is located past the west end of Fremont Weir. It has a minimum invert of 14 feet and a maximum flow of 6000 cfs. A narrow intake channel starts from the river and leads toward the notch structure. Comparing Scenarios 1 and 2 allows for direct evaluation of the shelf versus intake approach. The location is coincident with the Steel et al. (2017) fish movement study location.

4.3.3 Scenario 3 West 3K Shelf

This scenario is located past the west end of the Fremont Weir. It has a minimum invert of 17 feet and a maximum flow of 3000 cfs. A broad shelf
starts from the river and tapers toward the notch structure. Scenario 3 is most comparable to Scenario 1 with the exception of the minimum invert height. In addition, Scenario 3 and Scenario 1 have different rating curves leading to different notch flows at similar stages (Figure 5). The location is coincident with the Steel et al. (2017) fish movement study location.

4.3.4 Scenario 4 West 1K Shelf

This scenario is located past the west end of the Fremont Weir. It has a minimum invert of 22 feet and a maximum flow of 1,106. A broad shelf starts from the river and tapers toward the notch structure. Scenario 4 is placed in a similar location to Scenarios 1, 2 and 3. It is distinct because of the high minimum invert elevation and low maximum flow. Scenario 4 represents the smallest scenario in terms of concrete.

4.3.5 Scenario 5 Central

This scenario is in the central portion of the Fremont Weir located past the west end of the Fremont Weir. It has a minimum invert of 14 feet and a maximum flow of 6000 cfs. A broad shelf starts from the river and tapers toward the notch structure. Scenario 5 and Scenario 1 are similar in terms of size, have the same rating curve (Figure 5) and therefore allow comparison of the entrainment rate between the west and central positions. However, fish movement data were not collected in the Scenario 5 location in 2015. This reach has some remnant pilings, revetment and may require bank modification if constructed.

4.3.6 Scenario 6 East

This scenario is at the east portion of the Fremont Weir. It has a minimum invert of 14 feet and a maximum flow of 6000 cfs. A broad shelf starts from the river and tapers toward the notch structure. Scenario 6 is comparable to Scenario 1 in terms of terms of size, they have the same rating curve (Figure 5) and therefore allow comparison of the entrainment rate between the west and east positions.

4.3.7 Scenario 7 East

This scenario is in the east portion of the Fremont Weir. It has a minimum invert of 14 feet and a maximum flow of 6,000 cfs. A narrow intake channel broad shelf starts from the river and leads toward the notch struc-
tune. Scenario 7 is comparable to Scenario 6 and allows entrainment estimates between a shelf and intake style notch at the east location. In addition, Scenario 7 is comparable to Scenario 2 in terms of terms of size, they have the same rating curve (Figure X) and therefore allow comparison of the entrainment rate between the west and east positions. However, fish movement data were not collected in the Scenario 7 location.

4.3.8 Scenario 8 East

This scenario is in the east portion of the Fremont Weir. It has a minimum invert of 17 feet and a maximum flow of 3000 cfs. A broad shelf starts from the river and tapers toward the notch structure. Scenario 8 and Scenario 3 are comparable in terms of size and rating curves.

4.3.9 Scenario 9 East and West

This scenario has a structure located off of the west end of the Fremont Weir and in the east portion of the Fremont Weir. The east and the west structures are identical with minimum inverts of 17 feet and maximum flows of 3000 cfs each for a total of 6000 cfs. Both structures have a broad shelf that tapers to the notch. Scenario 9 has the same rating curves as Scenario 3 and 8.

4.3.10 Scenario 10 and 10B Central

This scenario has a three structure cluster in the central portion of the Fremont Weir. The structures combine to have a maximum flow of approximately 3400 cfs. The structures have a range of minimum inverts of 14, 18 and 21 feet. The structures are connected to the river with a narrow intake channel. Scenario 10B is structurally the same as 10 with some modifications to the underlying bathymetry and landscape model. Scenarios 10 and 10B are not readily comparable to other scenarios in terms of size, invert elevations and rating curves. Scenario 10 is most comparable to 10B and allows estimating entrainment as a function of terrain modification.

4.3.11 Scenario 11 West

Scenario 11 is located at the west end of Fremont Weir. Unlike Scenarios 1 through 4, which are set off the end of the Fremont weir, Scenario 11 placement is further downstream and intersects the Fremont weir structure. An intake channel leads from the river to the structure. Scenario 11 has a
minimum invert of 16 feet and a maximum flow of 12,000 cfs. It is the largest structure in the study.

4.3.12 Scenario 12 West

Scenario 12 is located at the west end of Fremont Weir and like Scenario 11 intersects the Fremont weir structure. An intake channel leads from the river to the structure. Scenario 12 has a minimum invert of 16 feet and a maximum flow of 6,000 cfs. It is comparable to Scenario 1 in terms of size but has a different rating curve.
Figure 5. Rating curves for notches

(1) For Scenarios 1, 2, 5, 6, 7
(2) For Scenarios 3, 8, 9
(3) Scenario 4
(4) Scenario 10
(5) Scenario 11
(6) Scenario 12
Figure 6. Images of notches as modeled.

Scenario 1 – West - 6K – Shelf

Scenario 2 – West - 6K - Intake

Scenario 3 – West - 3K – Shelf

Scenario 4 – West - 1K - Shelf
Scenario 12 – Inundation - West - 6K – Intake
ELAM description

The ELAM (Eulerian-Lagrangian-agent Method) is a mechanistic representation of individual fish movement which accounts for local hydraulic patterns represented in computational fluid dynamic models (CFD) such as the 2D models developed for this project. Rule-based behaviors can be implemented within the model to drive fish movement. The model is agent based providing a mathematical means of representing the environment from the perspective of animal perception. The approach is informed by observations of fish movement such as what was collected at Fremont Weir (Steel et al. 2017) but individual tracks are not directly modeled. Rather, statistical properties of the measured tracks are used to guide model coefficient development. The approach supports extension of empirical observations toward unmeasured environmental conditions such as the wide scenario range evaluated as part of this project. The ELAM is documented in a number of publications (Appendix 1).

Hydrodynamic information generated at discrete points in the Eulerian mesh is interpolated to locations anywhere within the physical domain where fish may be. This conversion of information from the Eulerian mesh to a Lagrangian framework allows the generation of directional sensory inputs and movements in a reference framework similar to that perceived by real fish. Movement is treated as a two-step process: first, the fish evaluates agent attributes within the detection range of its sensory system and, second, it executes a response to an agent by moving (Bian 2003). The volume from which a fish acquires decision-making information is represented as a 2-D sensory ovoid. A virtual fish’s sense of direction at each time increment is based on its orientation at the beginning of the time increment. Directional sensory inputs are tracked relative to the horizontal orientation of the fish because fish response to laterally-located versus frontally-located stimuli can be different (Coombs et al. 2000). The sensory ovoid has a vertical reference because fish detect accelerations and gravitation through the otolith of its inner ear (Paxton 2000). It also senses three-dimensional information on motion (Braun and Coombs 2000). In this individual-based model (IBM) a symmetrical (spherical) sensory ovoid is used.
4.4.1 Movement

Two fish swim speeds were used: the drift velocity set at 0.25 BL/s and the cruising velocity of 1.5 BL/s. Fish speed variability was induced by calculating a random seed from a normal distribution centered on 0 with a standard deviation of 1 termed RRR (residual resistivity ratio). Swim speed variability was simulated by first calculating a deviation as

$$\sigma = RRR \times Cruise - Drift$$

where cruise is the cruising velocity and drift is the drift velocity. Next the swim speed is computed as

$$Speed = BL \times (Cruise + \sigma)$$

Many behaviors can be implemented within the ELAM. For this study only one behavior, a biased random walk in the downstream direction was used. The 2015 Fremont Weir fish movement data suggest no additional behaviors are represented.

The Ornstein-Uhlenbeck (OU) process was used to simulate sensing and orientation in the fish, i.e. how straight or variable a fish track composed of multiple sequential points is. The process was implemented by first calling a random seed from a wrapped uniform distribution. Two coefficients, \(\lambda_{xy} \) and \(c_{xy} \) are used to calibrate computed fish positions using measured fish positions as a guide. Sensing describes the ability of the fish to locate the proper swim direction. For example, \(\lambda_{xy} = 1 \) would be perfect sensing ability and the fish would always know which movement direction was correct. On the other hand, \(c_{xy} \) represents the orientating ability with a value of 0 being perfect.

4.5 Fish movement modeling procedure

There were 13 separate hydraulic models representing the base condition and 12 scenarios. The base condition matched the location, discharge, and stage under which late fall and winter run chinook were tagged and released in 2015. Thus the base condition was used to calibrate the fish movement model. The calibration was done using 2D depth averaged hydraulic models. This was done in lieu of 3D hydraulic models for two reasons: First, the telemetry data is also 2D due to technology limitations of
the telemetry gear that was used and second, since there were twelve sce-
narios to be considered, developing 3D models was time and cost prohibi-
tive. Additional 3D models may be developed in the future if required for
particular questions.

For calibration, fish were released in the model at Knights Landing. A to-
total of 500 particles or fish were placed in a lateral cross section. The fish
length was set to the mean size of fish released as part of Steel et al. (2017)
equaling 124 mm. No differentiation in the fish movement model is made
between late fall chinook and winter run chinook. Fish moved down-
stream, passed through the Fremont Weir reach, and exited the model at
Verona.

Fish movement model data were post processed to produce speed over
ground (SOG) and spatial distributions (kernel densities) using JMP
(John’s Macintosh Project software) 2012. The estimates were compared
to the measured data, adjustments made to model parameters, and the
model rerun until measured and computed values were similar. The two
coefficients lamda_xy and c_xy were adjusted to approximate the speed
over ground and spatial distribution through the project reach. Coefficient
lamda_xy was set to 0.1 and c_xy was set to 2.0. Speed was insensitive
and spatial distribution was sensitive to the parameters.

The calibrated model was then run for the twelve proposed scenarios and
the proportion of fish entering the notch versus exiting the model domain
at Verona was computed. Ten to thirty runs each with 500 fish were com-
pleted in order to estimate model variability. Each run was made with a
different random seed to start the model. Higher levels of variability were
possible by adjusting calibrated model parameters but results begin to dif-
fer from measured results. Thus, for the final runs we only modified the
random seed.

Estimates of entrainment percentages for each scenario were made for the
maximum anticipated notch flow ranging from 1,000 to 12,000 cfs. Addi-
tional analysis was done for Scenarios 1 and 2 representing an intake and
shelf style notch respectively. The analysis required running across a
range of anticipated notch flows and estimating the entrainment for each.
In addition, Scenarios 10 and 10B involved three separate structures and a
complicated rating curve. Additional analysis for 10 and 10B across a
range of flows was also done.
Results

Spatial distribution

Spatial distribution was assessed qualitatively by overlying measured fish positions from Steel et al. (2017) with modeled fish tracks (Figure 7). Tracks overlapped and have similar cross channel distributions.

Figure 7. Measured and Modeled Fish Locations

Kernel density estimates

Kernel densities for the measured and modeled fish distributions were calculated (Figure 8). Bivariate density estimation models a smooth surface that describes how dense the data points are at each point in that surface.
The plot adds a set of contour lines showing the density (Figure 8). Optionally, the contour lines are quantile contours in 5% intervals with thicker lines at the 10% quantile intervals. This means that about 5% of the points are below the lowest contour, 10% are below the next contour, and so forth. The highest contour has about 95% of the points below it.

Figure 8. Contour lines showing the density speed estimates for modeled (A) and measured fish positions (B)
This nonparametric density method requires 1) dividing each axis into 50 binning intervals, for a total of 2,500 bins over the whole surface, 2) counting the points in each bin, 3) decide the smoothing kernel standard deviation (handled in JMP), 4) run a bivariate normal kernel smoother using an FFT (fast Fourier transform) and inverse FFT to do the convolution, and 5) create a contour map on the 2,500 bins using a bilinear surface patch model.

5.3 Speed Estimates

Speed over ground was computed for measured and modeled fish. Modeled fish estimates were based on 500 individual particles. Fish were released at Knights Landing Bridge and exited the domain at Verona. The resulting data set was subsampled to capture track data corresponding to the measured fish position data. Fish speed was computed for each fish and represented as a box plot (Figure 9). Modeled fish speed was 0.71 m/s and measured fish speed was 0.67 m/s with arrange of 0 to 2.0 m/s.

Figure 9. Box plot of fish speed for modeled (A) and measured (B) fish speed over ground estimates.

5.4 Entrainment across all scenarios

Entrainment, as depicted in Figure 11, varied as a function of notch type (intake versus shelf), location (west, central, or east weir) and notch flow volume (cfs). Scenarios 1 (shelf) and 2 (intake) had entrainment rates of approximately 8% with Scenario 2 slightly superior to Scenario 1. Both Scenarios 1 and 2 have a maximum notch flow of 6,000 cfs. In contrast, Scenarios 3 and 4, while in the same location as Scenarios 1 and 2, have
entrainment estimates of approximately 5 and 1% respectively. However, it is important to note that Scenarios 3 and 4 have higher invert elevations and lower notch flows when compared to Scenarios 1 and 2.

Scenario 5 is located in the central portion of the Fremont Weir but is otherwise similar to Scenario 2. Scenario 5 entrains approximately 4%. Scenario 5 is the only single notch structure evaluated for the central Fremont Weir location. Scenarios 10 and 10B structures are in a similar location and are described below.

Scenarios 6 through 8 are all located on the east portion of Fremont Weir. Scenarios 6 and 7 entrain approximately 5%, and Scenario 8 entrains approximately 2%. Like Scenarios 1 and 2, Scenarios 6 and 7 are a direct comparison of an intake versus shelf. Like Scenarios 1 and 2, Scenarios 6 and 7 have similar entrainment estimates. Compared to Scenarios 1 and 2, Scenarios 6 and 7 have lower entrainment estimates. Scenario 8 is directly comparable to Scenario 3 with the exception of its location on the east portion of Fremont Weir. Both Scenarios 3 and 8 have approximately 2% entrainment.

Scenario 9 is a combination of Scenarios 3 and 6 with one structure located on the west portion and one located on the east portion of Fremont Weir. Scenario 9 has an approximately 2% entrainment rate similar to
Scenario 3 or Scenario 6 alone.

Figure 10. Modifications completed for Scenario 10B based on email from Josh Urias to David Smith, 12/2/2016

Scenario 10 was similar to Scenarios 5, 6, and 7 at a flow of 3402 cfs. Scenario 10B was modified based on correspondence with Josh Urias, CA DWR (Figure 10). The modification required generating a new spatial model and running the 2D hydraulic model to produce the new flow fields. We attempted to capture as much of the input as possible. We modified the bathymetry and resloped the bank. We flattened the bathymetry signal from the existing piles and we softened the edges of the intake structure to round them. The resulting flow field and subsequent entrainment estimates were improved over Scenario 10 with approximately 10% of the fish entrained at 3402 cfs.
Scenario 11, with the flow of 12,000 cfs entrained the greatest number of fish at approximately 25%. Scenario 12 is comparable to Scenario 2 as both are intake style notches. Entrainment rates for both are approximately 7%.

5.5 Flow and entrainment relationships

The following figures are all referenced to stage at Fremont Weir (ft, NAVD88). In most cases higher stages mean more notch flow and lower stages mean less notch flow.

For Scenario 1 (shelf) and Scenario 2 (intake) entrainment was modeled for a range of flows to establish the notch entrainment trends over the range of expected operating conditions. Scenarios 1 and 2 were chosen because each is located in the reach where fish were tracked in 2015. The hydrograph from the time period of December 1 to December 30 2015 was used as it contained both low and high river flows (represented as stages from Fremont Weir gage) needed to capture the full range of notch entrainment and was also used for the base model. The figures are entrainment estimates for simulated fish for Scenarios 1 and 2 at Fremont Weir across a range of notch flows and stages. Each data point is the mean entrainment rate at each notch flow. Error bars are the standard deviation based on a minimum of 6 runs of 500 fish each. Entrainment increases with stage for both but the transition from low entrainment (~1%) versus...
high entrainment (~8%) is slower for the shelf. Both scenarios entrain similar percentages of fish but Scenario 1 (shelf type notch) uses less water to achieve maximum entrainment.

![Figure 12. Scenario 1 shelf](image)

![Figure 13. Scenario 2 intake.](image)

The error bars suggest that the mean estimated entrainment will vary up to approximately 3% based on the standard deviation around the mean. For example, a mean estimate of 10% could have a standard deviation ranging from approximately 13% to 7%. Error estimates for entrainment are not complete due to the late submission of ELAM scenarios. Error
bars are expected to be similar to what has already been reported. Scenario 3 (Figure 14) entrains relatively few fish over the range of flows evaluated with the trend suggesting maximum entrainment of approximately 1 to 2% from 1500 to 3000 cfs.

Figure 14. Scenario 3

Scenario 4 (Figure 15) provides the lowest flow and entrainment across flows remains below 1%.

Figure 15. Scenario 4

Scenario 5 (Figure 16) has a peak entrainment of approximately 5 % and reaches a plateau near 5000 cfs (approximately 29 ft at Fremont Weir gage)
Scenario 6 (Figure 17) reaches a peak entrainment of approximately 10% at approximately 3000 cfs or half of the rated maximum notch flow. This appears to be related to the interaction of the excavated bench and stage that tends to diminish near bank recirculation zones and promote direct streamlines along the bank.
Scenario 7 (Figure 18) entrains approximately 3 to 4% across a wide range of notch flows but has more variability across flows than other scenarios.

Figure 18. Scenario 7

Scenario 8 (Figure 19) entrains approximately 3 to 4% and the entrainment trend suggest that an entrainment plateau has not been reached.

Figure 19. Scenario 8
Scenario 9 (Figure 20) entrains approximately 1% and the entrainment trend suggests that an entrainment plateau has been reached. The flow through the notches and estimated entrainment were summed for the combined west and east structures.

Scenarios 10 and 10B (Figure 21) represent a different notch design on comparison to the other designs. Flows from 37.5 cfs to 3648 cfs (499, 1363, 2098, 2521, 3358, 3402, 3648 cfs) were run incrementally for both Scenarios 10 and 10B covering the range of flows dictated by the rating curve. For both scenarios a flow of 3402 cfs maximized entrainment. All other flows entrained less than 1% of fish. This is likely related to the complicated bank and bathymetry at this location and a recirculation zone that is established in the bend. Please note that there were errors in the notch invert elevations in the original CAD files for Scenario 10 and 10B that were correct in Alternative runs (see Appendix 1).
Scenario 11 (Figure 22) shows a strong increase in entrainment rates with notch flow and even at the midpoint of flow of 6000 cfs is entraining approximately 15% of the fish and reaching a maximum of approximately 24% at 12000 cfs. Scenarios 11 and 12 are located deeper into the bend than other west scenarios and have a different design lacking a two-step weir and instead relying on a single invert elevation. The width of the structure is wide (220 ft) and it attracts a large cross section of streamlines from the river.
Scenario 12 (Figure 23) entrains approximately 5% of the fish. The trend suggests a plateau is reached at around 3000 cfs but with an increase suggested at higher stages. This upward trend is likely within the uncertainty of the model.

We also plot all scenarios on one graph (Figure 24) and provide the plotting data in Table 2. Across all scenarios several trends are suggested.
From stages of 23 to 29 ft there is little meaningful difference in entrainment considering the uncertainty of the point estimates (approximately 3%). Beyond 28 ft there is a decline in entrainment performance for most scenarios with only Scenario 11 clearly deviating from this observation. The decline in entrainment coincides with the approximate elevation of the land surface between the river and the Fremont Weir suggesting a sudden hydrodynamic change that decreases the notch performance. Scenarios 1, 2 and 11 all perform well at stages of approximately 24 to 27 feet with elevated entrainment rates compared to the other scenarios.

Figure 24. Stage at Ferment weir gage and point estimates of entrainment for all ELAM scenarios.
Finally, we plot the modeled stage at Fremont weir and compared it to the modeled stage at each notch across the 12 scenarios for the month of December 2014 (Figure 25). The trend in stage highlights how the gage at Fremont weir, located upstream of the proposed scenarios, is the highest elevation as expected as the distance downstream increases the estimated river stage at the notch also decreases as is expected.
Figure 25. Modeled stage at Fremont Weir compared to stage at each notch entrance in ft, NAVD88.
Discussion

The ELAM was calibrated using fish telemetry data collected in 2015 (Steel et al. 2017) and the CFD simulations (Lai 2016). Once complete, additional CFD runs were made for proposed notches that represented different locations and notch designs (Lai 2017).

The broad pattern of entrainment across all scenarios finds that entrainments estimates vary from a low of approximately 1% to a high of approximately 25%. Ratio of entrainment flow to river flow correspondingly was 2 to 27%. These numbers broadly agree with several studies completed at the Georgianna Slough junction with the Sacramento River. Perry et al. (2014) measured the percentage of fish in 2011 entering Georgianna Slough, which ranged from 1 to 30% with 20 to 30% entering when a non-physical barrier was not operating. The flow split between Georgianna Slough and the Sacramento River was approximately 20% during the study period. Entrainment into Georgianna Slough is strongly dependent on tides and flows. The 2011 year was dominated by high non-reversing flows, conditions under which entrainment probabilities decline dramatically (Perry et al. 2015). Perry et al. (2015) summarized data from a wide range of sources and estimated an entrainment probability from negative to approximately 55% across a number of low flow years. The mean flow ratio between Georgianna Slough and the Sacramento River was 22% with a low of 15 and a high of -17% (more water going down Georgianna Slough than the Sacramento River). Perry (2010) found mean daily flow ratios between Georgianna Slough and the Sacramento River from 2007 to 2009 varied from approximately 30% to 80% and entrainment probabilities 30 to 55%. Finally, Cavallo et al. (2015) summarized data from Sacramento River diversions (Delta Cross Channel, Georgianna Slough, Head of Old River, Sutter Slough, Turner Cut) and concluded entrainment rates varied from 10% to 60% with diversion ratios of approximately 18% to 60%.

We plotted summary data from Perry (2010) and Cavallo et al. (2015) with the ELAM entrainment estimates to contextualize our findings (Figure 26). The data suggest that our entrainment estimates trend well with measured entrainment values within the Sacramento River. However, the diversion ratios proposed at the Fremont Weir notch are generally less than the reported data. In addition the slope relating river diversion ratio to entrainment differs with the ELAM estimates being the most sensitive
to river diversion ratio. However, the entrainment estimates we developed overlap suggesting that the ELAM entrainment estimates are reasonable.

The Fremont Weir notch scenarios differ from Georgianna Slough in important ways. First, the proportion of water entrained varies from approximately 1% (Scenario 4) to 27% (Scenario 11). Only Scenario 11 approaches the ratios of flow diverted at Georgianna Slough. The remainder is considerably less. Georgianna Slough is also tidal and the reach has lower current velocities than the Fremont Weir reach which is often around 0.75 m/s. This suggests the exposure time of a fish to the diversion point is less in the Fremont Weir. Finally, cross channel distributions of fish in the Fremont Weir reach and the nearby USACE test reach at river mile 85.6 and 43.7 are relatively insensitive to discharge (Sandstrom et al. 2013, Singer et al. in review, Steel et al. 2017, Woods et al. in review) with most fish tending toward center channel. In comparison, cross channel distributions at Georgianna Slough vary with discharge and stage. Entrainment at any of the Fremont Weir notches may not be as dynamic or of similar magnitude as it is to Georgianna Slough.

Figure 26. Plot of ELAM estimates with comparable estimates from the Sacramento River. Cavallaro et al (2015) line estimated by pulling values from graph and thus is an approximation. 1:1 line denotes when entrainment is proportional to entrainment flow.
The difference in slope between the ELAM and the Georgianna Slough may also be partially explained through differences in the river environment. The Fremont Weir is strongly advective and fish movement though this reach reflects that. In comparison, the tidal junction at Georgianna Slough induces upstream movement, station holding along the bank and in general more complicated swim paths. Of the studies, Perry et al. (2014) is the most comparable to the Fremont Weir because reversing flows were rare. The ratio between Georgianna Slough and the Sacramento River was approximately 16% and entrainment was approximately 22% when a non-physical barrier was not operating. This compares with a ratio of 27% flow for 25% entrainment for Scenario 11 (the largest notch evaluated).

We may underestimate entrainment for Scenarios 1, 2, 3, 4, 9, 11, and 12, all located in the western portion of the notch. This is because the spatial distributions of the modeled fish deviate from the measured distribution with the measured fish having a larger outside bend density. Broadly, the kernel density estimates overlap and agree but entrainment is sensitive to lateral position in the channel. The difference is likely due to not representing secondary circulations in the 2D hydraulic model. We believe this is acceptable because of the following reasons. First, developing 3D time varying RANS (Reynolds-averaged Navier–Stokes) simulations for all 12 alternatives was infeasible. Working in 2D allowed all the spatial domains to be represented. Future design work (as opposed to planning work) may need to consider 3D simulations. Second, the bias introduced by the lateral distribution is equal across all alternatives. Third, the ELAM estimates are comparable to other entrainment estimates from the Sacramento River suggesting whatever potential underestimation we report is likely within the range of variation we expect to see within existing measured entrainment data sets.

There are some additional caveats to this study as we presented model results that will apply to future engineering design and analysis.

6.1 Accuracy and precision in planning studies

This study has provided entrainment estimates for a range of scenarios. The results should be viewed cautiously for several reasons. First, there is no fish entrainment data for any notch that was modeled. We simply calibrated to existing conditions (base scenario) and extended that calibration to the 12 notch scenarios. Each notch scenario reported has an error bar.
associated with it which captures the variability of the entrainment as modified by varying ELAM boundary conditions slightly. Thus each scenario entrainment estimate is an ensemble estimate which is considered a best practice for physical system numerical modeling. However, since the real entrainment rate is unknown the raw estimates should not be viewed as absolute numbers. Rather, the entrainment estimates should be used as relative entrainment rates to highlight differences across scenarios. This is consistent with USACE best practice. Future work should include more detailed modeling and after construction measurement of notch performance.

Behavior

Fish have a near limitless level of behaviors that can be implemented and our representation is inherently limited by incomplete understanding. The behavior quantified in Steel et al. (2017) was simple but undoubtedly other behaviors which might influence movement were occurring but were not measured. In addition, the notch will change the local environment and expose fish to acceleration gradients in excess of what is found in the river. Elevated acceleration gradients generally repel migrating juvenile salmon.

In addition, data and behavior for fry sized salmon are largely unavailable. USACE studies suggest very limited numbers of fry size salmon near banks. Susceptibility of fry size salmon to a notch may be greater than smolts or, if fry size fish are migrating similarly to parr and smolts then entrainment estimates may correspond to results in this study. Finally, hatchery fish were used for calibrating of this study and may not be a surrogate for wild fish.

Notch flow and design

Across all scenarios larger notch flows entrain greater fish numbers, although not proportionally to the volume through the notch. West located notches entrain more fish than central and east and intakes perform better than shelves. However, intakes and shelves both performed poorly, regardless of notch flows, when intake channels were angled from the mainstem.

A primary exception to notch flows being the most important design criteria is demonstrated with Scenario 10B. Scenario 10B was a late modification of Scenario 10 and those modifications improved notch performance.
These findings highlight the importance of hydrodynamics along the upstream bank and angle of the intake off of the Sacramento River for optimizing fish entrainment. Additionally, the substantial biological response resulting from stakeholder-generated scenario design changes suggest this model can further analyze advance optimization exercises and higher-order design drawings.

6.4 Unknown factors that influence entrainment

When a notch is constructed it may closely resemble the scenarios examined in this study or it may deviate. We captured many details of each scenario including structural changes and bankline, bathymetry, and over-bank changes. As the design goes forward additional details will be added and these details may begin to deviate from what was analyzed as part of this study.

6.5 2D data in 3D river

Depth information for fish is unavailable. The measured positions therefore are in 2D. Not having depth information induces uncertainty in the measured positions. As fish move deeper, as may occur in the river bend, the estimated path length measured in 2D diverges from the 3D path length. This bias is inherent in the fish position data used for this study.

6.6 Impact of bank structures on secondary circulations

Secondary circulations are one factor driving the lateral distribution of fish in the Sacramento River with the likely result of shifting fish positions toward the outside bank. When one of the scenarios is implemented and constructed, we would expect that the existing secondary circulation patterns in the vicinity of the notch will change. For example, bend way weirs are put along the outside bends of river expressly to disrupt secondary circulations. The end result may be that the constructed structure diminishes the tendency of to skew lateral distributions to the outside bend.

6.7 Low calibration flow

The 2015 fish telemetry work was completed at a low stage of approximately 14 ft. Additional data was collected in 2016 at much higher flows and as the design process moves forward using a wider range of fish data across more flows would help strengthen the modeling effort and support project completion more fully.
Bibliography

Steel, A., Lemasson, B., Smith, D., Israel, J. 2017. Two-Dimensional Movement Patterns of Juvenile Winter-Run and Late-Fall-Run Chinook Salmon at the Fremont Weir, Sacramento River, CA. ERDC/EL TR-17-10

Woods, A.K., Steel, A.E., Smith, D.L. Movement and channel usage patterns of juvenile winter-run and late-fall run Chinook salmon at Sacramento River Mile 43.7. ERDC EL (in review).
Appendix 1: EIS/EIR Alternatives 1 through 6 Entrainment Estimates

Reason for Addendum

The EIS/EIR alternatives have been under refinement for the duration of the entrainment modeling with six near final concepts provided to the entrainment modeling team in early June 2017. This is long after the previous 12 scenarios had been run and summarized. The project required some additional simulations of the EIS/EIR alternatives to better capture the anticipated alternative differences.

Late input from USGS (mid-June 2017) noted that the 2D model (Lai 2016) likely was putting more water through the Sacramento River than is expected (Figure 27) while accurately representing the stage at Fremont Weir gage. The explanation for this is in Lai (2016) and simply reflects the unknown inflow locations of water flowing from the Sutter Bypass into the Sacramento River.

Reducing the flow in the model to match USGS provided suggestions will influence entrainment estimates because a larger portion of river water will be diverted at a notch for a given stage. The influence will be greater at higher stages. Therefore we reran the EIS/EIR Alternatives using the new flow information and by adjusting the boundary conditions as follows:

We adjusted the boundary conditions as follows. The difference in discharges between the old way and the new USGS way, i.e., \(Q_{at_Fremont_OldWay} - Q_{at_Fremont_USGS} \), is added to Sacramento Slough Karnak first (up to 50 cms), and then to the Feather River confluence with the Sacramento River with the remaining flow. This way, the total discharge matches the 2014-2015 recorded discharge hydrograph at the Verona Station and the flows passing the Fremont Weir gage match USGS estimates.
To evaluate how this impacts the overall conclusions of the analysis, we developed 36 separate simulations with 6 stages and flow based on the USGS rating curve for the Fremont Weir site. We decided to enhance evaluation across the EIS/EIR alternatives by running the exact same hydro for each alternative (Table 3). Some of these stages and alternatives are represented in the original 12 ELAM scenario analyses but with different flows and sometimes different geometries.

Table 3. New stages and flows used for the EIS/EIR Alternatives.

<table>
<thead>
<tr>
<th>Stage (ft NAVD88) at Gage</th>
<th>Original Q (cfs) at gage</th>
<th>USGS rating curve Q (cfs)</th>
<th>Upper bound of data envelope (est)</th>
<th>Lower bound of data envelope (est)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.79</td>
<td>21888</td>
<td>14925</td>
<td>14925</td>
<td>10546</td>
</tr>
<tr>
<td>22.99</td>
<td>24074</td>
<td>16161</td>
<td>16161</td>
<td>12800</td>
</tr>
<tr>
<td>27.94</td>
<td>30809</td>
<td>21261</td>
<td>27583</td>
<td>19300</td>
</tr>
<tr>
<td>24.5</td>
<td>28805</td>
<td>17717</td>
<td>27900</td>
<td>14364</td>
</tr>
<tr>
<td>29.44</td>
<td>37635</td>
<td>22806</td>
<td>27915</td>
<td>20200</td>
</tr>
<tr>
<td>31.22</td>
<td>45018</td>
<td>24640</td>
<td>28222</td>
<td>22546</td>
</tr>
</tbody>
</table>
With the new boundary conditions applied we found that the model predicted stage at the Fremont Gage (4th column in the Table 3) does not match the “nominal” stage in the first column. The model predicted stages are 1.5 to 2.4 ft lower than the nominal stage. We have matched the recorded stage and discharge at the Verona Station; at the same time we used the discharge through the Fremont Gage according to the USGS rating curve (Table 4). This mismatch suggests something else is going on. We conjecture that the mismatch may be caused by: (1) 2015 flow was towards the high end of the flows through the Fremont Gage area but we used the “average” flow according to the USGS rating curve, and/or, (2) unaccounted flow distribution along the Sutter Bypass flows back to the Sacramento River. Despite the mismatch, this set of new data should provide a new set of possible conditions occurring at the Fremont Weir site that may be used to address the variability issue.

<table>
<thead>
<tr>
<th>Stage(ft) at Fremont</th>
<th>Q(cms) at Fremont from USGS</th>
<th>Q(cms) at Fremont based on Old Way</th>
<th>Stage(ft) predicted by the model at Fremont</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.79</td>
<td>14952</td>
<td>16063</td>
<td>20.23</td>
</tr>
<tr>
<td>22.99</td>
<td>16161</td>
<td>17924</td>
<td>21.16</td>
</tr>
<tr>
<td>24.5</td>
<td>17717</td>
<td>20066</td>
<td>22.32</td>
</tr>
<tr>
<td>27.94</td>
<td>21261</td>
<td>26601</td>
<td>25.54</td>
</tr>
<tr>
<td>29.44</td>
<td>22806</td>
<td>30944</td>
<td>27</td>
</tr>
<tr>
<td>31.22</td>
<td>24640</td>
<td>42166</td>
<td>28.83</td>
</tr>
</tbody>
</table>

All entrainment simulations were run using the same boundary conditions as the twelve ELAM scenarios. No ensembles were developed due to time constraints. We anticipate developing the ensembles at a later date.

Results

Results are shown graphically (Figure 28) and with a Table (Table 5).
As expected, the lower flows (Column 3, Table 3) compared to the twelve ELAM scenario simulations compared well at the lower stages and flows (20.23 to 25.54 ft). At the higher flows and stages of 27 and 28.83 ft, the EIS/EIR tended to be higher. This is because the ratio of flow between the river and the notch is greater for the EIS/EIR alternatives than for the 12 ELAM scenarios.

Broadly, higher stages and entraining flows result in greater entrainment and entrainment is less than 5% for all alternatives at stages below 25.5 ft (NAVD88) at Fremont Weir gage.
One departure between the twelve ELAM scenarios and the EIS/EIR alternatives is EIS/EIR Alternative 1. EIS/EIR Alternative 1 is similar to Scenario 7. Both are located at the east end of the Fremont Weir and have similar flows with a nominal maximum of 6,000 cfs. However, EIS/EIR alternative 1 entrains approximately 14% of the fish at 6000 cfs while ELAM Scenario 7 entrains approximately 4% of the fish. The differences are attributable to dimensions of the EIS/EIR structure (Table 4).

We checked the entrainment estimates against report entrainments for Sacramento River salmon as a validation of our results (Figure 29). The new EIS/EIR Alternatives 1 through 6 entrainment estimates compare favorably with the twelve ELAM scenarios and also are reasonable when compared to actual entrainment rates in the Sacramento River.
Conclusions

1. The recommendation to use the entrainment estimates as relative indicators of notch performance when compared across all notches still stands. However, the favorable comparison with measured data comparing entrainment rates elsewhere in the Sacramento is encouraging and adds credibility to the analysis.

2. Broadly, higher stages and entraining flows result in greater entrainment and entrainment is less than 5% for all alternatives at stages below 25.5 ft (NAVD88) at Fremont Weir gage.

3. One departure between the twelve ELAM scenarios and the EIS/EIR alternatives is EIS/EIR Alternative 1. EIS/EIR Alternative 1 is similar to Scenario 7. Both are located at the east end of the Fremont Weir and have similar flows with a nominal maximum of 6,000 cfs. However, EIS/EIR 1 entrains approximately 14% of the fish at 6000 cfs while ELAM Scenario 7 entrains approximately 4%
of the fish. The differences are attributable to dimensions of the EIS/EIR structure (Table 6).

Table 6. Comparison of EIS/EIR Alternative 1 and ELAM Scenario 7 highlighted in green.

<table>
<thead>
<tr>
<th>EIR/S Alt</th>
<th>Location</th>
<th>Shelf/ Intake</th>
<th>Max Flow</th>
<th>Main Channel-Gate 1 (Invert) Ft.</th>
<th>Main Channel-Gate 1 (Width) Ft.</th>
<th>Elevated Channel Gates 2 & 3 (Invert) Ft.</th>
<th>Elevated Channel Gates 2 & 3 (Width) Ft.</th>
<th>Full Intake (Btm Width) Ft.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 East Intake</td>
<td>6,000</td>
<td>14</td>
<td>34</td>
<td>18</td>
<td>27</td>
<td>98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Central Intake</td>
<td>6,000</td>
<td>14.8</td>
<td>40</td>
<td>18.8</td>
<td>27</td>
<td>104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 West Intake</td>
<td>6,000</td>
<td>16.1</td>
<td>40</td>
<td>20.1</td>
<td>27</td>
<td>104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 West Intake</td>
<td>3,000</td>
<td>16.1</td>
<td>40</td>
<td>20.1</td>
<td>27</td>
<td>104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Central Intake</td>
<td>3,000</td>
<td>14 (A), 17 (B)</td>
<td>10x3 (A), 10x3 (B)</td>
<td>20 [C], 23 [D]</td>
<td>10x10 [C], 10X11 [D]</td>
<td>75 [A&B], 128 [C], 140 [D]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 West Intake</td>
<td>12,000</td>
<td>16.1</td>
<td>40 x 5</td>
<td>n/a</td>
<td>n/a</td>
<td>220</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Finally, this workflow resulted in valuable and accurate spatial domains representing the bathymetry, topography, and structure suitable for subsequent planning and design including finite element modeling and computational fluid dynamics in two and three dimensions.

4. The EIS/EIR Alternatives were run at similar stages but lower flows than the ELAM Scenarios because of recent input from USGS and the stage discharge relationship in the Fremont Weir reach. The analyses of the ELAM 12 scenarios were completed with accurate stage estimates but elevated discharge estimates (Figure 23).
The effect of this is that there are higher river velocities in the model which translates into higher speed over ground estimates for simulated fish. In addition, the ratio of diverted flow to river flow is smaller suggesting that we may have underestimated the proportion of fish entrained. However, the new alternative results suggest that the higher flows did not grossly underestimate entrainment.