Appendix 6C
 Upper Sacramento River Daily River Flow and Operations Modeling

Line items and numbers identified or noted as "No Action Alternative" represent the "Existing Conditions/No Project/No Action Condition" (described in Chapter 2 Alternatives Analysis).
Table numbering may not be consecutive for all appendixes.

This page intentionally left blank.

APPENDIX 6C Upper Sacramento River Daily River Flow and Operations Modeling

6C. 1 Overview and Description

This document provides the summary of modeling performed to simulate daily flow and operations in the reservoirs, rivers and other conveyance features that are part of the Central Valley Project (CVP) and the Sites Reservoir Project (Project) for the Project Draft Environmental Impact Report/Environmental Impact Statement (Project DEIR/EIS). It includes a description of the Upper Sacramento River Daily Operations Model (USRDOM) and results used in the detailed evaluation of alternatives. USRDOM results are used or referenced in:

- Chapter 6 Surface Water Resources
- Chapter 7 Surface Water Quality
- Chapter 8 Fluvial Geomorphology and Riparian Habitat
- Chapter 12 Aquatic Biological Resources

6C.1.1 Introduction

USRDOM simulates daily flow and storage conditions in the upper Sacramento River including Trinity basin, Sacramento River from Shasta Lake to Knights Landing and Colusa Basin including the Project conveyance and storage features. The analytical framework used to evaluate the alternatives is summarized in Chapter 5 Guide to the Resource Analyses and Appendix 6B Water Resources System Modeling. Assumptions used in modeling the alternatives are summarized in Appendix 6A Modeling of Alternatives. USRDOM utilizes results from CALSIM II to evaluate the impacts of changing diversion, in-basin use and Delta operations under projected conditions within current or future regulatory and operational regimes. It couples the downstream monthly operational decisions in CALSIM II to a simulation of the associated sub-monthly operational response at Lake Shasta depending on the inflows. It is particularly useful in verifying the CALSIM II simulated river conditions and the availability of excess flows to fill the Sites Reservoir under the capacity and operational constraints of the three intakes at the Red Bluff, Hamilton City and Delevan locations.

Development of the USRDOM, calibration and verification, its use in planning simulations and application to DEIR/EIS Alternatives evaluation is documented in detail in the final USRDOM Development, Calibration, and Application report prepared by CH2M HILL for Reclamation (CH2M HILL, 2011).

6C.1.2 Objective

USRDOM is used in several ways as part of modeling of the operations of DEIR/EIS Alternatives. It was used to test and finalize the CALSIM II operations for the Project alternatives. The main objective of using USRDOM in the DEIR/EIS was to simulate daily flows to inform CALSIM II (monthly) about the potential restrictions on the diversions due to pulse flow conditions. It was also used to evaluate storage conditions in Lake Shasta and Sites Reservoir, flow conditions on a daily-weekly time scale along the Sacramento River from Keswick Dam to Knights Landing and in the Colusa Basin conveyance. The
results from USRDOM are used for input into temperature, biological and flow regime models to evaluate Project alternatives.

6C.1.3 Project Intake Operations Assumptions

The detailed modeling assumptions used for the alternatives modeled for the DEIR/EIS are described in Appendix 6A Modeling of Alternatives. This section briefly describes the key operational assumptions used in the USRDOM model for evaluating the alternatives.

The operational assumptions governing the diversions at the three Project intakes, namely existing Tehama Colusa Canal (TCC) Intake, Glenn Colusa Canal (GCC) Intake and the Delevan Pipeline Intake include:

- Restrictions based on the available channel conveyance capacities at various locations along the TCC and GCC. Further, restrictions based on the dedicated annual maintenance periods for TCC, GCC, and Delevan pipeline.
- Restrictions based on meeting the specified bypass flow requirements downstream of each of the three intakes. In addition, diversions are restricted based on the seasonal bypass flow requirements specified for Sacramento River near Hood.
- Restrictions based on the occurrence of pulse flows in the Sacramento River, which provide key biological cues for the outmigrating juvenile winter-, spring-, fall, and late fall-run Chinook salmon, as well as a portion of the steelhead juvenile fish. Therefore, diversions are restricted for up to one pulse event recognized in each month of the October through May period. Bend Bridge flow was used to identify pulse signals as part of the modeling.

6C.1.4 Overview of the Planning Analysis

For DEIR/EIS, CALSIM II is the model of choice for the lead agencies to simulate reservoir operations and river flow conditions. CALSIM II simulates CVP and State Water Project (SWP) operations on a monthly timestep from WY 1922 through WY 2003. Therefore, for the USRDOM projected conditions simulation, the inputs are taken from CALSIM II for a consistent analysis. Appendix 6B Water Resources System Modeling includes detailed description of the CALSIM II model. Because USRDOM requires inputs on a daily timestep, the monthly inputs and outputs of the CALSIM II model are downscaled to a daily timestep using the CAL2DOM utility. CAL2DOM utility translates monthly CALSIM II operations data to a daily time step. It uses the inputs and outputs from CALSIM II, USRDOM hydrology inputs, and other datasets to compute inflows, diversions, and evaporation rates for using as inputs in the USRDOM.

6C.1.5 Analysis of Project Alternatives

CALSIM II was the core model used to simulate the Project operations. However, the assumptions related to the intake operations require daily flow data in determining the diversions allowed at the intakes, in turn affecting the system-wide operations. Since CALSIM II is a monthly timestep model, USRDOM results were used to enforce the intake operations on a sub-monthly scale. Due to the complexity in the intake operational rules, a spreadsheet tool was developed to implement the operational constraints using the daily results from the USRDOM. Further, the models were iterated to ensure all the intake operations assumptions were simulated accurately. Figure 6C-1 shows the schematic of the modeling process used to simulate Project operations.

In the first iteration, CALSIM II and USRDOM models are simulated for a Project alternative to determine the days requiring the pulse protection. A draft CALSIM II simulation was run with all the physical, regulatory and operational assumptions for the Project alternative. The results from this "draft" CALSIM II simulation were used to run the USRDOM model. The USRDOM setup included Project assumptions consistent with the draft CALSIM II. Since this USRDOM run is used to estimate daily flows in the river to determine the days requiring pulse protection, the diversions at the TCC, GCC, and Delevan intakes are restricted to meet the agricultural demands and other local uses in Colusa Basin region. The CAL2DOM logic was altered to estimate the diversions at the three intake locations without including the diversions for filling Sites Reservoir in this USRDOM run (called as, draft USRDOM No Fills Run). The results from the draft USRDOM No Fills run are used in a spreadsheet tool to determine the number of days under pulse protection in each month, over the 82 -year period.

1. Draft CALSIM II and USRDOM Simulations for a NODOS Alternative to determine days requiring "pulse protection"

2. Final CALSIM II and USRDOM Simulations for a NODOS Alternative to determine daily diversions for Sites Reservoir fill flows at TCC, GCC and proposed new Delevan Pipeline intakes

3. Final USRDOM Simulation for a NODOS Alternative to provide daily flow data for temperature, biological and flow regime models

Figure 6C-1 Operations Modeling Process used for the Project Alternatives Evaluation

In the second iteration, the draft CALSIM II from the first iteration is re-run with the pulse protection data, to simulate the final monthly operations for the Project alternative. The goal of this iteration is to determine the daily diversion amounts at the TCC, GCC, and Delevan pipeline intakes. Since the
complexity involved in simulating capacity and maintenance constraints, bypass flow requirements and pulse protection restrictions simultaneously, the existing CAL2DOM logic to determine the daily diversions at the three intakes is insufficient. Therefore, the results from the final CALSIM II simulation are used to run another USRDOM simulation without including the diversions needed to fill the Sites Reservoir at the three intake locations (called as, final USRDOM No Fills Run). The purpose of this final USRDOM No Fills run is to determine the daily flows in the Sacramento River at key control points. This data is used in a spreadsheet tool to determine the daily diversions required to fill Sites Reservoir at the three intakes while complying with all the operational rules.

The daily diversions for the Sites fills at the three intakes are determined in three steps in the spreadsheet tool. In the first step the available diversion capacity is determined based on the capacity and maintenance constraints described above. In addition, based on the daily USRDOM flow the available flow to meet the monthly average diversion for fill (from CALSIM II) is determined at each intake, while meeting the bypass flow requirements. If there are no pulse flow restrictions for a given day, then the diversion at each intake is estimated as the minimum of available capacity and the available flow for diversion.

If the total diversion volumes at each intake from the first step for each month are less than the amount determined in CALSIM II, additional diversions needed to make up the difference are estimated in the second step. In this step, the additional diversions are made up at any of the three intakes depending on the available diversion capacity and the available flow for the diversion. First TCC intake is checked, then the GCC intake and finally the Delevan pipeline intake for any available diversion capacity for each month.

Based on the diversions from the second step, the months with volumes continue to be short of the CALSIM II values are flagged in the third and final step. These shortages are carried forward to the next months in which the diversion capacity and the flow for the diversion are available. This carrying forward of the shortages is only allowed in November through May months, which generally is the Sites Reservoir filling period. The availability of the flow for the diversion is estimated as the Wilkins Slough flow in excess of the minimum flow requirement at Knights Landing (estimated in CAL2DOM).

In this process, a few reasonable simplifying assumptions were made for modeling purposes, mainly because CALSIM II determines the diversions at the three intakes on a monthly timestep without knowing the daily constraints due to the intake operations assumptions and the daily variability in the unregulated flows. It is assumed that based on the available real-time monitoring, there is enough flexibility in TCC, GCC, and Delevan pipeline operations and in the interoperability among the three conveyance systems such that the diversions to fill Sites Reservoir can be made up through the following:

- Diversions at any of the three intake locations while meeting all the intake operations assumptions at each intake
- Diversions in any of the months during the fill season of November through May if usable diversion capacity and divertible flow is available

In the third iteration final USRDOM run is simulated using the final CALSIM II results and the daily diversions for fills from the final step of the spreadsheet tool. CAL2DOM is modified to combine the diversions for the fills and the diversions for meeting local Colusa Basin demands to determine the total daily diversions at each of the three intakes.

The flow and storage results from the final USRDOM simulation are used to run the USRWQM for Sacramento River temperatures and other models to study the temperature, biological and flow regime effects of the Project alternatives. USRDOM results for the daily weir spills at Ord Ferry, Moulton Weir, Colusa Weir and Tisdale Weir were used in the evaluation of the DEIR/EIS Alternatives. Daily flow results from USRDOM and daily temperature results from USRWQM were used to simulate the potential impact of the Sites releases on the Sacramento River temperatures at the Delevan Pipeline, as described in Appendix 7F Sites Reservoir Discharge Temperature Modeling. USRDOM results were also used to identify inflow sources in the Sacramento River on a sub-monthly time-step to study likely water quality impacts summarized in Appendix 7C Surface Water Quality Analysis for Electrical Conductivity at Proposed Intakes. More information regarding the analytical framework used to evaluate the alternatives is in Appendix 6B Water Resources System Modeling.

6C.1.6 Limitations

In using the USRDOM results for the Alternatives evaluation following limitations should be noted:
The USRDOM calibration for Clear Creek flows below Whiskeytown Dam is significantly weaker than for other flows in the Trinity and Sacramento River systems. It is recommended that the CALSIM II model alone be used as the basis for impact assessment on Clear Creek flows.

In the downscaling of CALSIM II boundary condition flows for use in the USRDOM simulations, diversions at Red Bluff, Hamilton City and the Delevan Pipeline (Project alternatives) are smoothed from monthly to daily timestep. In this smoothing operation, in order to conserve volume and have a gradual change in diversion flows (as opposed to sharp changes at monthly or other time scale boundaries), there are some days in which diversions are represented in the model at flow rates that may exceed the sustainable rate of the physical capacity of these facilities. It is recommended that any assessment of flows or other parameters linked to the peak flow rate of these diversions use monthly average values rather than daily or other sub-monthly average values.

The CALSIM II model is used to establish system operational conditions and USRDOM is used to interpret these on a daily time-step; all residuals and inconsistencies between the CALSIM II and USRDOM models accumulate in storage facilities modeled, including Sites Reservoir; the Sites Reservoir storage in the USRDOM sometimes exceeds physical capacity slightly due to this inconsistency between the models.

6C.1.7 List of References

CH2M HILL. 2011. Final USRDOM Development, Calibration, and Application. Prepared for Bureau of Reclamation, Mid-Pacific Region.

6C. 2 Results

This section includes the results from the Upper Sacramento River Daily Operations Model (USRDOM) used in the detailed evaluation of the alternatives for the DEIR/EIS.

6C.2.1 Introduction

The USRDOM results included in this appendix are used in:

- Chapter 6 Surface Water Resources
- Chapter 7 Surface Water Quality
- Chapter 12 Aquatic Biological Resources

For each parameter and location shown in Table 6C-1, Summary Tables reports are provided. In the Summary Tables reports, for each parameter and location shown below, summary tables of USRDOM results by month are included. The tables include long-term average, and averages by water year type (SWRCB 40-30-30 Index). The tables also include the absolute and relative differences between alternatives.

6C.2.2 Locations and Parameters

The locations and the parameters for the results included in this appendix are tabulated below in Table 6C-1. Maps showing these locations are included in Appendix 6B Water Resources System Modeling.

Other analyses were used to evaluate flow conditions. The State Water Project (SWP) and Central Valley Project (CVP) water operations modeling using the CALSIM II model, referred to in Chapter 6 Surface Water Resources, for evaluating reservoir storage, flow and diversions for locations in the Sacramento River Basin and Sacramento-San Joaquin Delta is included in Appendix 6B Water Resources System Modeling.

Table 6C-1
Upper Sacramento River Daily Operations Model Results Locations and Parameters

	Report Title	Time-Step	Parameter
1	Ord Ferry Spills into Sutter Bypass	Monthly average of Daily flows	Diversion*
2	Moulton Weir Spills into Sutter Bypass	Monthly average of Daily flows	Diversion*
3	Colusa Weir Spills into Sutter Bypass	Monthly average of Daily flows	Diversion*
4	Tisdale Weir Spills into Sutter Bypass	Monthly average of Daily flows	Diversion**

[^0]
6C.2.3 Comparisons

Summary Tables reports are provided for the following comparisons:

- Alternative A compared to No Action Alternative
- Alternative B compared to No Action Alternative
- Alternative C compared to No Action Alternative
- Alternative D compared to No Action Alternative

This page intentionally left blank.

Sacramento River Daily Flow Modeling Results

This page intentionally left blank.

Alternative A Compared to No Action Alternative

This page intentionally left blank.

Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Diversion (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long-term												
Fuil Simulaion Peirio'												
Noaction Alterative	0	0	63	257	431	189	14	0	0	0	0	0
Alemative A	0	0	64	233	418	181	13	0	0	0	0	0
Diffeence	0	0	2	-24	-12	-8	-1	0	0	0	0	0
Perenen Difference?			2.4\%	-9.5\%	-2.9\%	-4.2\%	-4.7\%					
Water Year Types ${ }^{2}$												
Wet (32\%)												
Noaction Altenative	0	0	29	779	1213	554	34	0	0	0	0	0
Altemative A	0	0	36	722	1196	539	34	0	0	0	0	0
Diffeene	0	0	7	- 57	-17	-15	0	0	0	0	0	0
Perent Diffeence			22.7\%	.7.3\%	-1.4\%	-2.7\%	-0.1\%					
Above Nomal (15\%)												
Noaction Alemalive	0	0	1	68	316	88	19	0	0	0	0	0
Altemalive A	0	0	13	24	268	67	14	0	0	0	0	0
Diffeence	0	0	13	-44	-48	-21	-4	0	0	0	0	0
Perenen Diffeence				-64.4\%	-15.1\%	-23.8\%	-22.9\%					
Below Nomal (17\%)												
Noaction Altenative	0	0	123	0	0	0	0	0	0	0	0	0
Alemative A	0	0	103	0	0	0	0	0	0	0	0	0
Diffeence	0	0	-21	0	0	0	0	0	0	0	0	0
Perenen Difteence			-16.9\%									
Dry (22%)												
Noaction Alterative	0	0	147	0	0	0	0	0	0	0	0	0
Altemative A	0	0	152	0	0	0	0	0	0	0	0	0
Diffeene	0	0	5	0	0	0	0	0	0	0	0	0
Perener Diffeence			3.6\%									
Critical (15\%)												
Noaction Alemative	0	0	0	0	0	0	0	0	0	0	0	0
Altenalive A	0	0	0	0	0	0	0	0	0	0	0	0
Diffeence	0	0	0	0	0	0	0	0	0	0	0	0
Perent Diffeence												

Based on the e82year si
.
3 Realive difference of the monthy vereage

Figure SW-49-3b
Ord Ferry Spills into Sutter Bypass, Monthly Diversion

Table Sw-49.3b

Percent	October			$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
	No Action Altemative	Altemative A	$\begin{aligned} & \text { Absolute } \\ & \text { Difference } \\ & \text { (CFSS) } \end{aligned}$	
Probability	Monthly Diversion	Monthly Diversion		
${ }_{\text {(\%) }}^{(0.0 \%}$	(CFS)	CFS)		
	0	0	0	
1.2\%	0	0	0	
2.5\%	0	0	0	
3.7\%	0	0	0	
4.9\%	0	0	0	
6.2\%	0	0	0	
7.4\%	0	0	0	
8.6\%	0	0	0	
${ }^{\text {9.9.9\% }}$	0	0	0	
- ${ }_{\text {12.3\% }}^{11.19 \%}$	0	0	0	
13.6\%	0	0	0	
14.8\%	0	0	0	
16.0\%	0	0	0	
17.3\%	0	0	0	
18.5\%	0	0	0	
21.0\%				
22.2\%	0	0	0	
23.5\%	0	0	0	
24.7\%	0	0	0	
25.9\%	0	0	0	
28.4\%	0			
29.6\%	0	0	0	
30.9\%	0	0	0	
32.1\%	0	0	0	
33.3\%	0	0	0	
35.8\%	0			
37.0\%	0	0	0	
38.3\%	0	0	0	
39.5\%	0	0	0	
40.7\% 42.	0	0	0	
43.2\%	0	0		
44.4\%	0	0	0	
45.7\%	0	0	0	
46.9\%	0	0	0	
48.19\%	0	0	0	
50.6\%	0	0		
51.9\%	0	0	0	
53.1\%	0	0	0	
54.3\%	0	0	0	
55.8\%	0	0	0	
58.0\%	0	0		
59.3\%	0	0	0	
60.5\%	0	0	0	
61.7\%	0	0	0	
-63.0\%	${ }_{0}^{0}$	0	0	
65.4\%			0	
66.7\%	0	0	0	
67.9\%	0	0	0	
69.1\%	0	0	0	
70.1.4\%	${ }_{0}^{0}$	0	0	
72.8\%	0			
74.1\%	0	0	0	
75.3\%	0	0	0	
76.5\%	0	0	0	
77.0\%	\bigcirc	0	0	
80.2\%				
81.5\%	0	0	0	
82.7% 8.0 8.0	0	0	0	
84.0\%	0	0	0	
85.4\%	0	0	0	
87.7\%				
88.9\%	0	0	0	
90.14\%	0	0	0	
92.6\%				
93.5\%	0	0	0	
${ }_{96.3 \%}^{95.1 \%}$	0	0	0	
97.5\%		0	0	
98.8\% 100.0\%		0	0 0.0	

$\begin{aligned} & \text { Percent } \\ & \hline \text { Exceedance } \\ & \text { Probability } \end{aligned}$	November				$\begin{gathered} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{gathered}$	December			
	No Action Atemative	Alterative A	$\begin{gathered} \text { Absolute } \\ \text { Difference } \\ \text { (CFS) } \end{gathered}$	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$		$\frac{\text { No Action Alternative }}{\substack{\text { a } \\ \text { Monthly } \\ \text { (CFsers) }}}$	$\begin{array}{\|c} \hline \text { Alterentive A } \\ \hline \text { Monthy Iviversion } \\ \text { (CFS) } \end{array}$	$\begin{aligned} & \text { Absolute } \\ & \text { Difference } \\ & \text { (CFSS) } \end{aligned}$	$\begin{aligned} & \text { Relative } \\ & \text { Difference } \% \end{aligned}$
	Monthly Diversion (CFS)	Monthy Diversion (CFSS)							
0.0\%	0	0	0		0.0\%			-207	${ }^{-12.4 \%}$
1.2\%	0	0	0		1.2\%	1365	1265		
2.5\%	0	0	0		2.5\%	907	1004	97	10.7\%
3.7\%	0	0	0		3.7\%	${ }_{6}^{617}$	${ }_{223} 28$	106	17.2\%
4.9\%	0	0	0		4.9\%	377	287	-91	-24.0\%
6.2\%	0	0	0		6.2\%	${ }^{150}$	218	68	${ }^{45.3 \%}$
7.4\%	0	0	0		7.4\%	70	171	101	144.7\%
8.9\%	0	0	0		8.9\%	6	157	151	
9.9\%	0	0	0		9.9\%	0	0	0	
11.1\%	0	0	0		11.1\%	0	0	0	
12.3\%	0	0	0		12.3\%	0	0	0	
13.6\%	0	0	0		13.6\%	0	0	0	
14.8\%	0	0	0		14.8\%	0	0	0	
16.0\%	0	0	0		16.0\%	0	0	0	
17.3\%	0	0	0		17.3\%	0	0	0	
18.5\%	0	0	0		18.5\%	0	0	0	
19.8\%	0	0	0		19.8\%	0	0	0	
21.0\%	0	0	0		${ }_{-}^{21.0 \%}$	0	0	0	
${ }^{22.2 \%}$	0	0	0		${ }^{22.2 \%}$ 2.5\%	0	0	0	
24.7\%	0		0		24.7\%	0	0	0	
25.9\%	0	0	0		25.9\%	0	0	0	
27.2\%	0	0	0		27.2\%	0	0	0	
28.4\%	0	-	0		28.4\%	0	0	0	
29.6\% 30.9%	0	0	0		29.6\%	0	0	0	
${ }^{30.9 \%}$	0	0	0		${ }^{30.9 \%}$ 32.1\%	0	0	0	
33.3\%	0	0	0		- 3 3.3\%	0	0	0	
34.6\%	0		0		34.6\%	0	0	0	
35.8\%	0	0	0		35.8\%	0	0	0	
37.0% 38.3%	0	0	0		等37.0\%	0	0	0	
39.5\%			0		39.5\%	0	0	0	
40.7\%	0	0	0		40.7\%	0	0	0	
42.0\%	0		0		42.0\%	0	0	0	
43.2\%	0	0	0		43.2\%	0	0	0	
44.4% 45.7%	0	0	0		44.4\%	0	0	0	
45.7% 46.9%	0	0	0		45.7\%	0	0	0	
48.1\%	0	0	0		48.1\%	0	0	0	
49.4\%	0	0	O		4.4.4\%	0	0	0	
50.6\%	0	0	0		- 50.6%	0	0	0	
53.1\%	0	0	0		53.1\%	0	0	0	
54.3\%	0	0	0		54.3\%	0	0	0	
55.6\%	0	0	0		55.6\%	0	0	0	
56.8\%	0	0	0		56.8\%	0	0	0	
59.3\%	0	0	0		59.3\%	0	0	0	
60.5\%	0	0	0		-6.5\%	0	0	0	
61.7\%	0	0	0		- 61.7%	0	0	0	
64.2\%	0	0			64.2\%	0	0	0	
65.4\%	0	O	0		65.4\%	0	0	0	
67.9\%	0		0		- $6.6 .7 \%$	${ }_{0}$	0	0	
69.1\%	0		0		69.1\%	0	0	0	
70.4\%	0	0	0		70.4\%	0	0	0	
72.8\%	0				7.2.8\%				
74.1\%	0	0	0		74.1\%	0	0	0	
75.3\%	0	0	0		-75.3\%	0	0	0	
77.8\%	0				-7.7.3\%		0	0	
79.0\%	0	0	0		79.0\%	0	0	0	
-	0	0	0		- ${ }_{\text {80.2\% }}$	0	0	0	
827\%	0				82.7\%			0	
84.0\%	0	0	0		84.0\%	0	0	0	
85.2\%	0	0	0		85.2\%	0	0	0	
877\%	0				87.7\%		0	0	
88.9\%	0	0	0		88.9\%	0	0	0	
${ }_{9}^{90.14 \%}$	0	0	0		90.1\% 9	0	0	0	
92.6\%					92.6\%		0	0	
${ }^{93.8 \%} 9$	0	0	0		93.8\%	0	0	0	
${ }^{95.3 \%}$ 9\%	0	0	0		${ }^{95.13 \%}$	0	0	0	
97.5\%	0	0	0		97.5\%	0	0	0	
98.8\% 100.0%	0.0 0.0	0.0	0		98.8\%	0	0 0.0	0.0	

$\begin{gathered} \text { Percent } \\ \begin{array}{c} \text { Exceedance } \\ \text { Probability } \end{array} \end{gathered}$	January			$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
	No Action Atemative	Alterative A	$\begin{gathered} \text { Absolute } \\ \text { Differenere } \\ \text { (CFS) } \end{gathered}$	
	Monthly Diversion	Monthy Diversion		
0.0\%	${ }_{563}$	${ }_{5251}$	${ }^{382}$	6.8\%
1.2\%	4956	4949		
2.5\%	4426	3391	1035	
3.7\%	1331	1595	264	
4.9\%	1271	122	. 50	
6.2\%	1147	1081	66	
7.4\%	807	707	-99	
8.6\%	492	399	-93	
9.9\%	408	205	203	
-11.1\%	255 135	${ }^{93}$	164	-63.6\%
13.6\%	${ }_{131}$	50	-81	-61.7\%
14.8\%	29	36	7	23.3\%
16.0\%	${ }^{25}$	15	-10	39.8\%
	${ }^{21}$	0	21	100.0\%
- 18.8 \%	0	0	0	
21.0\%	0	0	0	
	0	0	0	
24.7\%	0	0	0	
25.9\%	0	0	0	
			0	
29.6\%	0	0	0	
30.9\%	0	0	0	
32.1\%	0	0		
33.3\%	0	0	0	
35.8\%	0	0	0	
37.0\%	0	0	0	
38.3\%	0	0	0	
39.5\%	0	0	0	
40.7\% 42.	0	0	0	
43.2\%	0	0	0	
44.4\%	0	0	0	
45.7\%	0	0	0	
46.9\%	0	0	0	
48.1\% \%	0	0	0	
50.6\%	0	0	0	
51.9\%	0	0	0	
53.1\%	0	0	0	
54.3\%	0	0	0	
55.6\%	0	0	0	
56.8\%	0	0	0	
58.0\%	0	0	0	
59.3\%	0	0	0	
60.5\%	0	0	0	
61.7\%	0	0	0	
63.0\%	0	0	0	
64.2\%	0	0	0	
65.4\%	0	0	0	
66.7\%	0	0	0	
67.9\%	0	0	0	
69.1\%	0	0	0	
70.4\%	0	0	0	
71.6\%	0	0	0	
72.8\%	0	0	0	
74.1\%	0	0	0	
75.3\%	0	0	0	
76.5\%	0	0	0	
77.8\%	0	0	0	
79.0\%	0	0	0	
80.2\%	0	0	0	
81.5\%	0	0	0	
82.7\%	0	0	0	
84.0\%	0	0	0	
85.2\%	0	0	0	
86.4\%	0	0	0	
87.7\%	0	0	0	
88.9\%	0	0	0	
90.1\%	0	0	0	
91.4\%	0	0	0	
92.6\%	0	0	0	
93.8\%	0	0	0	
95.1\%	0	0	0	
96.3\%	0	0	0	
97.5\%	0	0	0	
- 10.80%	0.0	0.0	0.0	

Table SW.-49.3b

Percent	February			
	No Action Altemative	Altemative A	$\begin{gathered} \text { Absolute } \\ \text { differene } \\ \text { (CFSS) } \end{gathered}$	
obability	Monthly Diversion	Monthly Diversion		Difference (\%)
(\%)	(CFFS)	(CFS)		
0.0\%	退366	${ }^{2366}$	0	0.0\%
1.2\%	6536	6641	105	
2.5\%	5493	5487		
3.7\%	2709	271	6	
4.9\%	2095	192	173	-8.3\%
6.2\%	1642	${ }^{126}$	373	
7.4\%	1220	1261	42	3.4\%
8.6\%	957	895	. 62	-6.5\%
9.9\%	888	682	${ }^{206}$	
11.1\%	${ }^{763}$	561	202	26.5\%
12.3\%	391	293	99	25.2\%
13.6\%	120	77	${ }^{43}$	36.0\%
14.8\%	63	75	12	18.8
-16.0\%	50	${ }^{37}$	${ }^{13}$	6\%
18.5\%	0			
19.8\%	0	0	0	
21.0\%	0	0	0	
22.2\%	0	0	0	
23.5\%	0	0	0	
24.7\%	0	0	0	
227.2\%	0	0	0	
28.4\%	0	0		
29.6\%	0	0	0	
30.9\%	0	0	0	
32.1\%	0	0	0	
334.6\%	0	0	0	
35.8\%	0	0	0	
37.0\%	0	0	0	
38.3\%	0	0	0	
39.5\%	0	0	0	
420.0\%	0	0	0	
43.2\%	0	0	0	
44.4\%	0	0	0	
45.7\%	0	0	0	
46.9\%	0	0	0	
${ }^{48.49 \%}$	0	0	0	
50.6\%	0	0	0	
51.9\%	0	0	0	
53.1\%	0	0	0	
54.3\%	0	0	0	
${ }_{5}^{56.8 \%}$	0	0	0	
58.0\%	0	0	0	
59.3\%	0	0	0	
60.5\%	0	0	0	
61.7\%	0	0	0	
64.2\%	0	0	0	
65.4\%	0			
66.7\%	0	0	0	
67.9\%	0	0	0	
69.1\%	0	0	0	
70.1.6\%	0	0	0	
72.8\%	0			
74.1\%	0	0	0	
75.3\%	0	0	0	
76.5\%	0	0	0	
77.8\%	0	0	0	
89.0\%	0	0	0	
81.5\%	0	0	0	
82.7\%	0	0	0	
84.0\%	0	0	0	
85.2\%	0	0	0	
887.7\%	0	0	0	
88.9\%	0	0	0	
90.1\%	0	0	0	
${ }^{99.4 \% \%}$	0	0	0	
${ }_{93.8 \%}^{92.6 \%}$	0	0	0	
95.1\%	0	0	0	
96.3\%	0	0	0	
97.5\%	0	0	0	
988\%	0 0.0	0 0.0		

Table Sw-49-3b

		June		
${ }_{\text {Pereent }}^{\text {Penance }}$	No Action Altemative	Alterative A	${ }^{\text {Absolute }}$	
Probability	Monthy Diversion	Monthly Diversion	differene (CFS)	Difference (\%)
(\%) 0	(CFS)	(CFFS)		
1.2\%	0	0	0	
2.5\%	0	0	0	
3.7\%	0	0	0	
4.9\% 6.2%	0	0	0	
6.2\%\%	0	0	0	
(8.9\%	0	0	0	
9.9\%	0	0	0	
11.1\% 12.3%	0	0	0	
13.6\%	0	0	0	
14.8\% 16.0%	0	0	0	
- 16.0 17.0\%	0	0	0	
18.5\%	0	0	0	
19.8\%	0	0	0	
${ }_{2}^{21.0 \%}$	0	0	0	
23.5\%	0	0	0	
24.7\%	0	0	0	
${ }^{25.7 .2 \%}$	0	0	0	
28.4\%	0	0	0	
29.6\%	0	0	0	
30.3. ${ }^{30.9 \%}$	0	0	0	
年33.3\%	0	0	0	
34.6% 35.8%	0	0	0	
357.8\%	0	0	0	
38.3\%\%	0	0	0	
39.5\%	0	0		
42.0\%	0	0	0	
43.2\% 44.4	0	0	0	
44.4\%\%	0	0		
45.9\%	0	0	0	
488.1\%	0	0	0	
49.4\%	0	0	0	
51.9\%	0	0	0	
53.1\% 54.3%	0	0	0	
54.3\%	0	0		
56.8\%	0	0	0	
58.0\%	0	0	0	
59.3\%	0	0	0	
6.1.7\%	0	0	0	
63.0\%	0	0	0	
64.2\%	\bigcirc	0		
66.7\%	0	0	0	
67.9\%	0	0	0	
70.4\%	0	0	0	
71.6\%	0	0	0	
72.8\%	0	0	0	
74.1% 753%	0	0	0	
76.5\%	0	0	0	
77.8\%	0	0	0	
79.0\%	0	0	0	
81.5\%	0	0	0	
82.7\%	0	0	0	
84.0\%	0	0	0	
85.2\%	0	0	0	
${ }^{807.7 \%}$	0	0	0	
88.9\%	0	0	0	
90.1\%	0	0	0	
91.4\%	0	0	0	
93.8\%	0	0	0	
95.1\%	0	0	0	
96.3\%	0	0	0	
97.5\% ${ }^{98.8 \%}$	0	0	0	
- 10.0%	0.0	0.0	0.0	

Analysis Period	Monthly Diversion (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
Full Simulition Period'												
No Action Alemative	0	0	59	283	467	240	32	0	0	0	0	0
Alterative A	0	0	65	269	457	224	31	0	0	0	0	0
Diffeence	0	0	6	-14	-10	-16	-1	0	0	0	0	0
Percent bifference?			10.7\%	-5.1\%	-2.2\%	-6.7\%	-3.1\%					
Water Year Types ${ }^{2}$												
Wet (32%)												
No Action Altenative	0	0	42	829	1367	690	83	0	0	0	0	0
Altemadive A	0	0	49	806	1353	657	83	0	0	0	0	0
Diffeence	0	0	8	-23	-14	-33	0	0	0	0	0	0
Perent Difteence			18.3\%	-2.8\%	-1.0\%	-4.8\%	0.0\%					
Abve Nomal (15\%)												
No Action Altenative	0	0	7	139	229	147	38	0	0	0	0	0
Altemalive A	0	1	20	89	188	109	31	0	0	0	0	0
Diffeence	0	1	13	-50	-40	-38	-7	0	0	0	0	0
Pereent Diffeence				-36.0\%	-17.7\%	-25.8\%	-17.6\%					
Below Nomal (17\%)												
Noaction Altenative	0	0	94	1	0	0	0	0	0	0	0	0
Alemative A	0	0	94	3	0	0	0	0	0	0	0	0
Diffeence	0	0	-1	1	0	0	0	0	0	0	0	0
Perent Diffeence			-0.7\%	106.9\%								
Dr (229\%)												
Noaction Altenative	0	0	${ }^{130}$	0	0	0	0	0	0	0	0	0
Alemalive A	0	0	139	0	0	0	0	0	0	0	0	0
Diffeene	0	0	9	0	0	0	0	0	0	0	0	0
Pereent Difterence			7.2\%									
Critical (15\%)												
NoAction Alemative	0	0	0	0	0	0	0	0	0	0	0	0
Alemalive A	0	0	0	0	0	0	0	0	0	0	0	0
Diffeence	0	0	0	0	0	0	0	0	0	0	0	0
Perenen Diffeence												

1 18sese on the 82 2year simulition pericic
deter
3 Realive diffeence of the monthy yverage

Figure SW-50-3b
Moulton Weir Spills into Sutter Bypass, Monthly Diversion

Table SW-50-3b
Moulton Weir Spills into Sutter Bypass, Monthy Diversion

PercentFxeedance	Octob			$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
	No Action Atemative	Altemative A	$\begin{gathered} \text { Absolute } \\ \text { Difference } \\ \text { (CFSS) } \end{gathered}$	
Probability	Montly $\begin{aligned} & \text { Diversion } \\ & \text { (CFs) }\end{aligned}$	Monthly Diversion (CFS)		
0.0\%	(lefs)	0		
1.2\%	0	0	0	
2.5\%	0		0	
3.7\%\%	0	0	0	
6.2\%	0	0	0	
7.4\%	0		0	
9.9\%	0	0	0	
11.1\%	0	0	0	
12.3\% 13.6%	0	0	0	
- $11.8 .8 \%$	0	0	0	
16.0\%	0	0	0	
+ ${ }^{\text {17.3\% }}$ 17.5\%	0	0	0	
18.5\% ${ }^{19.8}$	0	0	0	
21.0\%	0	0	0	
	0	0	0	
224.7\%	0	0	0	
25.9\%	0	0	0	
28.4\%	0	0	0	
20.6\%	0	0	0	
30.9\%	0	0	0	
33.3\%	0	0		
34.6\%	0	0	0	
35.8\%	0	0	0	
38.3\%	0	0		
33.5\%	0	0	0	
40.7\%	0	0	0	
42.0\%\%	0	0		
44.4\%	0	0	0	
4.7\%\%	0	0	0	
46.9\%\%	0	0		
49.4\%	0	0	0	
55.9\%	0	0	0	
55.1\%	${ }_{0}^{0}$	0		
54.3\%	0	0	0	
55.6\%	0	0	0	
558.0\%	0	0		
59.3\%	0	0	0	
${ }^{6.50 \%}$	0	0	0	
63.0\%	0	0		
64.2\%	0	0	0	
㐌.4\%\%	0	0	0	
66.9\%	0	0	0	
69.1\%	0	0	0	
70.4\%	0	0	0	
772.8\%	0	0		
74.1\%	0	0	0	
7.3\%	0	0	0	
77.8\%	0	0	0	
79.0\%	0	0	0	
80.2\%	0	0	0	
82.7\%				
84.0\%	0	0	0	
85.2\% ${ }^{86.4 \%}$	0	0	0	
87.7\%				
88.9\%	0	0	0	
90.14\%	0	0	0	
92.6\%		0	0	
93.8\%	0	0	0	
95.1\% ${ }_{96}$	0	0	0	
99.5\%	0	0	0	
98.8\% 100.0\%	0.0	0	0	

Table SW.-50-3b

	ebruary			Relative
${ }_{\text {Percent }}^{\substack{\text { Pxceedance }}}$	No Action Altemative	Altemative A		
Proabaility	Monthly Divesision	Monthly Piversion	Difference	
(\%)	(CFF)	(CFS)	${ }^{15}$	
			5	${ }^{-0.2 \%}$
1.2\%	9304	9287	-18	
2.5\%	5144	5106	38	0.7\%
3.7\%\% 4.9%	${ }^{3323}$	3344	21	${ }_{\text {e }} 0.6 \%$
4.9\%	1751	1733	19	-1.1\%
7.4\%	1559 1482	1438 1358 1	-124	-7.4\%
8.6\%	1317	1318	1	0.1\%
9.9\%	976	920	-56	
11.1\%	806	700	106	13.1\%
12.3\%	682	541		
13.6\%	574	531	44	
14.8\%	510	516	6	1.17\%
16.0\% 17.3%	466	384	82	-17.5\%
	290		-	-0.7\%
19.8\%	${ }_{236} 23$	195	42	-17.6\%
21.0\%	118	96	22	
22.2\%	101	46	. 55	
${ }^{23.5 \%}$	${ }^{38}$	${ }^{27}$	${ }^{11}$	29.7\%
25.9\%			5	
${ }^{27.2 \%}$	0	5	5	
28.4\%	0	0	0	
29.6\%	0	0	0	
30.3\%	0	0	0	
33.3\%	0	0	0	
34.6\%	0	0	0	
35.8\%	0	0	0	
38.3\%	0	0	0	
39.5\%	0	0	0	
40.7\%	0	0	0	
42.0\%	0	0	0	
43.4.4\%	0	0	0	
45.7\%	0	0	0	
46.9\%	0	0	0	
48.19\%	0	0	0	
49.4\%	0	0	0	
51.9\%	0	0	0	
53.1\%	0	0	0	
54.3\%	0	0	0	
55.8\%	0	0	0	
56.0\%	0	0	0	
59.3\%	0	0	0	
- 60.5%	0	0	0	
61.7% 630%	0	0	0	
-63.0\%	0	0	0	
65.4\%	0	0	0	
66.7\%	0	0	0	
67.9\%	0	0	0	
69.1\%	0	0	0	
70.16\%	0	0	0	
72.8\%	0	0	0	
74.1\%	0	0	0	
75.3\%	0	0	0	
76.5\%	0	0	0	
779.8\%	0	0	0	
80.2\%	0			
81.5\%	0	0	0	
82.7\%	0	0	0	
84.0\%	0	0	0	
85.2\%	0	0	0	
87.7\%	0			
88.9\%	0	0	0	
90.1\%	0	0	0	
91.4\%	0	0	0	
932.6\%	0	0	0	
95.1\%	0	0	0	
96.3\%	0	0	0	
${ }^{97.5 \% \%}$	0	0	0	
988\%	0.0	0	0.0	

Table sw. 50.3 Bb
Moutton Weir Spills intos suture Sypass, Monthly Diversion

Percent	June			$\begin{gathered} \text { Relative } \\ \text { Difference (\% } \end{gathered}$
	No Action Attemative	Altemative A	$\begin{aligned} & \begin{array}{c} \text { Absolute } \\ \text { Difference } \\ \text { (CFSS) } \end{array} \end{aligned}$	
Probability	Monthly Diversion	Monthly Diversion		
${ }_{0}^{(\% .0 \%)}$	(CFS)	CFS		
1.2\%	0	0	0	
2.5\%	0	0	0	
3.7\%\%	0	0	0	
6.9\%	0	0	0	
7.4\%	0	0	0	
8.9\%	0	0	0	
9.9\%\%	0	0	0	
- 11.10%	0	0	0	
${ }^{13.6 \%}$	0	0	0	
14.8\%	0	0	0	
-16.0\%	0	0	0	
18.5\%	0	0	0	
19.8\%		0	0	
22.0\% 2.2	0	0	0	
23.5\%	0	0	0	
	0	0	0	
227.2\%	0	0	0	
28.4\%	0	0	0	
	0	0	0	
330.9\%	0	0	0	
33.3\%	0	0	0	
335.8\%	${ }_{0}^{0}$	0	0	
37.0\%	0	0	0	
38.3\%	0	0	0	
30.7\%	0	0	0	
42.0\%	0	0	0	
43.2\%	0	0	0	
4.4.7\%	0	0		
46.9\%	0	0	0	
49.1\%	0	0	0	
49.4\%	0	0		
551.9\%	0	0	0	
54.3\%	0	0	0	
55.3\%\%	0	0	0	
55.8\%	0	0	0	
	0	0	0	
59.3\%	0	0	0	
66.7\%	0	0	0	
64.3\%	0	0	0	
66.4\%\%	0	0		
66.7\%	0	0	0	
69.1\%	0	0	0	
70.4\%	0	0		
77.6\%	0	0	0	
77.8\%	0	0	0	
74.3\%	0	0	0	
76.5\%	0	0	0	
77.7\%	0	0	0	
79.0\%	0	0	0	
80.2\%	0	0	0	
82.7\%				
84.0\%		0	0	
85.2\%	0	0	0	
88.7\%	0	0	0	
87.7\%	0	0	0	
90.1\%	0	0	0	
91.4\%	0	0	0	
92.6\%	0	0	0	
93.8\%	0	0	0	
99.3\%		0	0	
996.5\%	0	0	0	
98.8\%	0	0	0	
100.0\%	0.0	0.0	0.0	

Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Diversion (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
Full Simulition Period ${ }^{\text {a }}$												
NoAction Allemative	7	126	1329	3917	5723	3523	1174	68	19	0	0	0
Alemaive A	10	127	1399	3791	5457	3328	1177	66	18	0	0	0
Diffeene	3	1	70	-126	-266	-195	3	-2	-2	0	0	0
Percen Diffeence?			5.3\%	-3.2\%	-4.6\%	-5.5\%	0.2\%					
Water Year Types ${ }^{2}$												
Wet (32\%)												
Noaction Altentive	0	35	1292	9956	14022	8607	3195	128	61	0	0	0
Alemative A	0	60	1402	10004	13875	8407	3233	123	56	0	0	0
Diffeence	0	25	111	49	-147	-199	38	-5	-5	0	0	0
Percent Diffeence			8.6\%	0.5\%	-1.0\%	-2.3\%	1.2\%					
Above Nomal (15\%)												
Noaction Altenalive	0	589	1240	3961	5888	4959	997	187	0	0	0	0
Alemaive A	0	552	1180	3254	5309	4335	958	186	0	0	0	0
Diffeene	0	-36	-60	-706	-579	-624	-38	-1	0	0	0	0
Percent Diffeence		-6.2\%	-4.8\%	-17.8\%	-9.8\%	-12.6\%	-3.9\%	-0.4\%				
Below Normal (17\%)												
NoA clion Altemative	40	75	1613	716	1433	83	89	0	0	0	0	0
Alemaive A	56	76	1801	643	948	27	69	0	0	0	0	0
Diffeence	16	0	188	.73	-485	-56	-20	0	0	0	0	0
Perene Diffeence	39.5\%	0.5\%	11.7\%	-10.2\%	-33.8\%	-67.5\%	-22.9\%					
Dry (224\%)												
Noaction Altenalive	0	75	2090	256	768	245	0	0	0	0	0	0
Alemaive A	0	65	2142	147	538	104	0	0	0	0	0	0
Diffeene	0	-9	52	-109	-231	-141	0	0	0	0	0	0
Percent iffeence		-12.3\%	2.5\%	-42.6\%	-30.0\%	-57.4\%						
Citical (15\%)												
Noaction Altemalive	0	0	29	14	13	0	0	0	0	0	0	0
Alemaive A	0	0	28	2	8	0	0	0	0	0	0	0
Diffeence	0	0	0	-13	-5	0	0	0	0	0	0	0
Percent ifiteence			-1.4\%	-87.8\%	-38.4\%							

Basedon the 8 82verar smulaion perioc

3 Realive difference of the monthy vereage

Figure SW-51-3b
Colusa Weir Spills into Sutter Bypass, Monthly Diversion

Table Sw-51-3b

	October			Relative
	No Action Attemative	Altematio		
Probability	Monthly Diversion	Monthy Diversion	Difference	Difference (\%)
(\%) 0 \%	(CFF)	${ }^{\text {(CFF) }}$	221	39.5\%
1.2\%				
2.5\%	0	0	0	
3.7\%	0	0	0	
4.9\%	0	0	0	
6.2\%	0	0	0	
7.4\%	0	0	0	
9.9\%\%	0	0	0	
11.1\%	0	0	0	
12.3\%	0	0	0	
13.6\%	0	0	0	
14.8\%	0	0	0	
-16.7.3\%	0	0	0	
18.5\%	0	0	0	
19.8\%	0	0	0	
${ }_{2}^{21.0 \%}$	0	0	0	
23.5\%	0	0	0	
24.7\%	0	0	0	
25.9\%	0	0	0	
	0	0	0	
29.6\%	0	0	0	
30.9\%	0	0	0	
32.1\%	0	0	0	
隹 33.3%	0	0	0	
34.6\%	0	0	0	
37.0\%	0	0	0	
38.3\%	0	0	0	
39.5\%	0	0	0	
40.7\%	0	0	0	
43.2\%	${ }_{0}^{0}$	0	0	
4.4.4\%	0	0	0	
45.7\%	0	0	0	
46.9\%	0	0	0	
48.19\%	0	0	0	
49.4\%	0	0	0	
51.9\%	0	0	0	
53.1\%	0	0	0	
54.3\%	0	0	0	
55.6\%	0	0	0	
	0	0	0	
58.0\%	0	0	0	
60.5\%	0	0	0	
61.7\%	0	0	0	
63.0\%	0	0	0	
64.2\%	0	0	0	
65.4\%	0	0	0	
${ }^{66.7 \%}$	0	0	0	
67.9\%	0	0	0	
70.4\%	0	0	0	
71.6\%	0	0	0	
72.8\%	0	0	0	
74.1\%	0	0	0	
75.3\%	0	0	0	
76.7.8\%	0	0	0	
77.0\%	\bigcirc	0	0	
80.2\%	0			
81.5\%	0	0	0	
82.7\%	0	0	0	
84.0\%	0	0	0	
- ${ }_{\text {85. }}$	0	0	0	
87.7\%	0			
88.9\%	0	0	0	
90.1\%	0	0	0	
91.4\%	0	0	0	
932.6\%	0	0	0	
95.1\%	0	0	0	
96.3\%	0	0	0	
97.5\%	0	0	0	
- 9 9.8.0\%	0.0	0.0	0.0	

	ebruary			Relative
$\underset{\text { Perceent }}{\text { Eance }}$	No Action Altemativ	Altemative A		
Probability	Monthly Divesision	Monthy Diversion	Difference	Difference (\%)
(\%)	(CFS)	(CFFS)	7	
			,	0.0\%
1.2\%	49189	49081	107	
2.5\%	33038	33476	439	1.3\%
3.9\%\%	${ }_{20755}^{307}$	${ }_{25398}$	${ }_{132}$	1.4\%
	22915	2092	(307	\%
7.4\%	${ }_{1864}$	29022	1982	8.0\%\%
9.9\%	17925	${ }_{16653}$	1272	-7.1\%
11.1\%	17625	15891	1734	-9.8\%
12.3\%	17461	15819	${ }^{1643}$	
13.6\%	15972	13590	2382	14.9\%
14.8\%	12659	13062	403	3.2\%
16.70\%	11444	10961	482	4.2\%
17.3\%	11105	10216		
18.5% 19.8%	9984	10164	181	. 1.8%
19.8\%				
${ }^{2}$	${ }_{7924}$	7147	. 777	-12.8\%
23.5\%	7401	7055	-346	-4.7\%
24.7\%	7267	5798	1469	-20.2\%
25.9\%	5435	5660	226	4.2\%
27.2\%	5428	5210	-218	-4.0\%
28.4\%	5342	${ }^{4441}$	-901	16.9
29.6\%	5275	3789	1486	28.2
30.3\%	5208	3375	1834	-35.2\%
34.6\%	2783	2289	-494	-17.8\%
35.8\%	2667	2253	-414	-15.5\%
37.0\%	2603	2138	-465	-17.9\%
38.3\%	2391	1950	441	18.4\%
39.5\%	2311	1888	443	-19.2\%
40.7\%	2307	1726	582	25.2\%
42.0\%	1990	1555	435	21.9\%
43.2\%	1940	1541	398	20.5\%
44.4\%	1906	1429	476	25.0\%
45.7\%	1681	817	864	-51.4\%
46.9\%	983	688	295	30.0\%
48.19\%	553	591	38	6.9\%
49.4\% 50.6\%	534	414		
51.9\%	${ }_{290}^{498}$	${ }_{274}^{37}$	${ }_{-16}^{127}$	-5.5\%
53.1\%	160	99	-62	
54.3\%	145	92	53	
55.6\%	0	0	0	
	0	0	0	
59.3\%	0	0	0	
${ }^{60.5 \%}$	0	0	0	
61.7\%	0	0	0	
-63.0\%	0	0	0	
6.54\%	0	0	0	
66.7\%	0	0	0	
67.9\%	0	0	0	
69.1\%	0	0	0	
70.16\%	0	0	0	
7.2.8\%	0	0	0	
74.1\%	0	0	0	
75.3\%	0	0	0	
76.5\%	0	0	0	
77.8\%	0	0	0	
80.2\%	0	\bigcirc	0	
81.5\%	0	0	0	
- 82.78%	0	0	0	
84.0\%	0	0	0	
${ }^{85.2 \%}$	0	0	0	
87.7\%	0	0		
88.9\%	0	0	0	
90.1\%	0	0	0	
91.4\%	0	0	0	
93. ${ }_{\text {92.8\% }}$	0	0	0	
95.1\%	0	0	0	
96.3\%	0	0	0	
97.5\%	0	0	0	
- 98.80%	0	0	0.0	

Table SW.-51.3b

Percent	June			
	No Action Altemative	Altemative A		
Probability	Monthly Diversion	Monthly Diversion	Difference (CFS)	Difference (\%)
(\%)	(CFFS)			
${ }^{0.0 \% \%}$	1574	1444	${ }^{129}$	8.2\%
1.2\%	0	0		
2.5\%	0	0	0	
3.7\%\%	0	0	0	
4.9\%	0	0	0	
7.4.4\%	0	0	0	
8.6\%				
9.9\%	0	0	0	
11.1\%	0	0	0	
12.3\%	0	0	0	
- 13.6%	0	0	0	
14.8% 16.0%	0	0	0	
17.3\%	0	0	0	
18.5\%	0	0	0	
19.8\%	0	0	0	
${ }^{21.0 \%}$	0	0	0	
23.5\%	0	0	0	
24.7\%	0	0	0	
25.9\%	0	0	0	
27.2\%	0	0	0	
28.4\%	0	0	0	
30.9\%	0	0	0	
32.1\%	0	0	0	
33.3\%	0	0	0	
34.6\%	0	0	0	
35.7.\%	0	0	0	
38.3\%	0	0	0	
39.5\%	0	0	0	
40.7\%	0	0	0	
42.0\%	0	0	0	
${ }^{43.4 .4 \%}$	0	0	0	
45.7\%	0	0	0	
46.9\%	0	0	0	
48.1\%	0	0	0	
49.4\%	0	0	0	
50.9\%	0	0	0	
53.1\%	0	0	0	
54.3\%	0	0	0	
55.6\%	0	0	0	
56.8\%	0	0	0	
59.3\%	0	0	0	
60.5\%	0	0	0	
61.7\%	0	0	0	
63.0\%	0	0	0	
64.2\%	0	0	0	
65.4\%	0	0	0	
67.9\%	0			
69.1\%	0	0	0	
70.4\%	0	0	0	
71.6\%	0	0	0	
72.8\%	0	0	0	
75.3\%				
76.5\%	0	0	0	
77.8\%	0	0	0	
79.0\%	0	0	0	
80.2\%	0	0	0	
- ${ }_{\text {827.7\% }}$	0	0	0	
82.7\%	0	0	0	
85.2\%				
86.4\%	0	0	0	
877\%\%	0	0	0	
- ${ }^{88.1 \%}$ 9.1\%	0	0	0	
901.4\%	0	0	0	
92.6\%	0	0	0	
93.8\% ${ }^{951 \%}$	0	0	0	
96.3\%	0	0	0	
97.5\%	0	0	0	
98.8\%	0.0	${ }_{0}^{0}$	0	

	Juy			Probablin	August				
$\underset{\substack{\text { Percent } \\ \text { Exceedance }}}{\text { a }}$	No Action Altemative	Alterative A	Absolute		${ }_{\text {Percent }}^{\text {Peredane }}$	No Action Alterative	Alternative A	Absolute	Relativ
Probabaility	Monthly Diversion (CFS)	Monthly Diversion (CFS)	$\begin{aligned} & \text { Difference } \\ & \text { (CFSS) } \end{aligned}$	Difference (\%)	Probability	Monthly Diversion (CFS)	Monthy (Tiversion (CFs)	(ifferens	Difference (\%)
0.0\%	0		0		0.0\%	0	0	0	
1.2\%	0	0	0		1.2\%	0	0		
2.5\%	0	0	0		2.5\%	0	0	0	
3.79\%	0	0	0		3.7.9\%	0	0	0	
6.2\%	0	0	0		6.2\%	0	0	0	
7.4\%	0	0	0		7.4\%	0	0	0	
8.6\%	0	0	0		8.6\%	0	0	0	
- $1.9 .1 \%$	0	0	0		11.1\%	0	0	0	
12.3\%	0	0	0		123\%	0	0	0	
13.6\%	0	-	0		13.6\%	0	0	0	
14.8\%	0	0	0		14.8\%	0	0	0	
${ }^{16.0 \%}$	0	0	0		- 16.0%	0	0	0	
18.5\%	0	0	0		18.5\%	0	0	0	
19.8\%	0	0	0		19.8\%		0	0	
${ }_{2}^{21.0 \%}$	0	0	0		${ }_{2}^{21.0 \%}$	0	0	0	
23.5\%	0	0	0		22.5\%	0	0	0	
24.7\%	0	O	0		24.7\%	0	0	0	
${ }^{257.9 \%}$	0	0	0		- $2.5 .9 \%$	0	0	0	
28.4\%	0	0	0		28.4\%	0	0	0	
29.6\%	0	0			29.6\%	0	0	0	
30.9\%	0	0	0		30.9\%	0	0	0	
33.3\%	0	0	0		33.3\%	0	0	0	
34.6\%	0	0	0		34.6\%		0	0	
33.8\%	0	0	0		35.8\%	0	0	0	
37.3\%	0	0	0		37.0\%	0	0	0	
39.5\%	0	0	0		39.5\%	0	0	0	
40.7\%	0	0	0		40.7\%	0	0	0	
${ }^{4.3 .2 \%}$	0	0	0		43.2\%	0	0	0	
44.4\%	0	0	0		44.4\%	0	0	0	
45.7\%	0	0	0		455.7\%	0	0	0	
48.1\%	0	0	0		48.1\%	0	0	0	
4.9.4\%	0	0	0		49.4\%	0	0	0	
50.9\%	0	0	0		50.6\%	0	0	0	
53.1\%	0	0	0		53.1\%	0	0	0	
54.3\%	0	0	0		54.3\%	0	0	0	
55.6\%	0	0	0		55.6\%	0	0	0	
58.0\%	0	0	0		58.0\%		0	0	
59.3\%	0	0	0		59.3\%	0	0	0	
- 60.5%	0	0	0		${ }^{60.5 \%}$	0	0	0	
63.0\%	0	0	0		63.0\%		0	0	
64.2\%	0	0	0		64.2\%	0	0	0	
${ }_{66.7 \%}^{65.4 \%}$	0	0	0		${ }_{66.7 \%}^{65.4 \%}$	0	0	0	
67.9\%	0	0	0		67.9\%	0	0	0	
69.1\%	0	0	0		69.1\%	0	0	0	
70.4\%	0	0	0		70.4\%	0	0	0	
72.8\%	0	0	0		72.8\%		0	0	
74.1\%	0	0	0		74.1\%	0	0	0	
75.3\%	0	0	0		75.3\%	0	0	0	
77.8\%	0		0		77.8\%		0	0	
79.0\%	0	0	0		79.0\%	0	0	0	
80.2\%	0	0	0		80.2\%	0	0	0	
82.7\%	0		0		82.7\%	0	0	0	
84.0\%	0	O	0		84.0\%	0	0	0	
85.2\%	0	0	0		855.2\%	0	0	0	
87.7\%	0	0			87.7\%	0	0	0	
88.9\%	0	0	0		88.9\%	0	0	0	
90.14\%	0	0	0		90.1\%	0	0	0	
${ }_{\text {92.6\% }} 9$	0	0	0		99.6\%	0	0	0	
93.8\%	0	0	0		93.8\%	0	0	0	
95.1\%	0	0	0		95.1\%	O	0	0	
96.3\%	0	0	0		96.7.5\%	0	0	0	
98.8\%	0	0	0		98.8\%	0	0	0	

$\begin{array}{\|c} \text { Percent } \\ \text { Exceedance } \\ \text { Probability } \end{array}$	September			$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
	No Action Alternative	Alterative A	$\begin{aligned} & \text { Absolute } \\ & \text { Difference } \\ & \text { (CFSS) } \end{aligned}$	
	Monthy Diversion	Monthly Diversion		
(\%)	(CFS)	(CFS)		
	0	0	0	
1.2\%	0	0	0	
2.5\%	0	0	0	
3.7\%	0	0	0	
4.9\%	0	0	0	
6.2\%	0	0	0	
7.4\%	0	0	0	
8.6\%	0	0	0	
9.9\%	0	0	0	
${ }^{11.1 \%} 1$	0	0	0	
13.6\%	0	0	0	
14.8\%	0	0	0	
16.0\%	0	0	0	
17.3\%	0	0	0	
18.5\%	0	0	0	
	0	0	0	
${ }^{2} 2.2 .2 \%$	0	0	0	
23.5\%	0	0	0	
24.7\%	0	0	0	
25.9\%	0	0	0	
28.4\%	0	0	0	
29.6\%	0	0	0	
30.9\%	0	0	0	
32.1\%	0	0	0	
	\bigcirc	0	0	
35.8\%	0	0	0	
37.0\%	0	0	0	
38.3\%	0	0	0	
39.5\%	0	0	0	
40.7\%	0	0	0	
43.2\%	0	0	0	
44.4\%	0	0	0	
45.7\%	0	0	0	
46.9\%	0	0	0	
48.4\%\%	0	0	0	
50.6\%	0	0	0	
51.9\%	0	0	0	
53.1\%	0	0	0	
54.3\%	0	0	0	
55.8\%	0	0	0	
58.0\%	0	0	0	
59.3\%	0	0	0	
60.5\%	0	0	0	
61.7\%	0	0	0	
-63.0\%	${ }_{0}^{0}$	0	0	
65.4\%	0	0		
66.7\%	0	0	0	
67.9\%	0	0	0	
69.1\% 7	0	0	0	
7.1.6\%	0	0	0	
728\%	0		0	
74.1\%	0	0	0	
75.3\%	0	0	0	
76.7.8\%	0	0	0	
77.0\%	0	0	0	
- 80.2%	0		0	
81.5\%	0	0	0	
822.7\%	0	0	0	
85.2\%				
86.4\%	0	0	0	
887.7\%	0	0	0	
90.1\%	0	0	0	
91.4\%	0	0	0	
92.6\% ${ }^{93.8 \%}$	0	0	0	
95.1\%	0	0	0	
96.3\%	0	0	0	
97.5\%	0	0	0	
98.8\% 100.0\%	0	000	0	

Year Ty												
Analysis Period	Monthly Diversion (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
Full Simulaton Period												
No Action Altemative	8	147	1010	2248	3231	2125	897	89	45	0	0	0
Altemaive A	11	132	983	2162	3058	1969	872	85	45	0	0	0
Diffeence	3	-15	-27	-85	-173	-156	-25	-4	-1	0	0	0
Perenen Difference?		-10.3\%	-2.7\%	-3.8\%	-5.4\%	.7.3\%	-2.8\%	-4.4\%				
Water Year Types ${ }^{2}$												
Wet (32\%)												
No Action Altenative	0	98	1109	5277	7193	4834	2396	169	143	0	0	0
Alemaive A	0	91	1095	5283	7050	4650	2363	158	141	0	0	0
Diffeene	0	-7	-14	5	-144	-185	-33	${ }^{-11}$	-2	0	0	0
Pereent Difterene			-1.3\%	0.1\%	-2.0\%	-3.8\%	-1.4\%					
Abve Nomal (15\%)												
Noaction Altenative	0	511	1096	2726	3647	3200	767	241	0	0	0	0
Alemative A	1	446	1011	2375	3389	2860	714	239	0	0	0	0
Diffeence	1	-65	-85	-350	-258	-340	-53	-2	0	0	0	0
Perenen Diffeence		-12.8\%	-7.8\%	-12.9\%	-7.1\%	-10.6\%	-6.9\%	-0.8\%				
Below Nomal (17\%)												
No Action Altemative	49	101	1231	${ }^{613}$	1293	265	147	0	0	0	0	0
Altemaive A	65	101	1296	549	1012	158	110	0	0	0	0	0
Diffeence	16	0	65	-64	-281	-106	-37	0	0	0	0	0
Perener Differene	33.2\%	0.2\%	5.3\%	-10.4\%	-21.7\%	-40.1\%	-25.3\%					
Dry (22\%)												
NoAction Altenative	0	110	1255	278	823	356	0	0	0	0	0	0
Altemaive A	0	95	1160	177	643	224	0	0	0	0	0	0
Diffeene	0	-15	-95	-101	-180	-132	0	0	0	0	0	0
Perent Diffeence		-13.7\%	-7.5\%	-36.3\%	-21.9\%	-37.1\%						
Critical (15\%)												
Noaction Altenative	0	0	86	67	101	3	0	0	0	0	0	0
Alemalive A	0	0	84	47	87	0	0	0	0	0	0	0
Diffeence	0	0	-3	-20	-14	- 3	0	0	0	0	0	0
Perenen Difteence			-3.3\%	-29.5\%	-14.0\%	-100.0\%						

Based on the 82 2years inimudion neniod
Hydroopic Classififation (SWRCB B-1644. 1999

Figure SW-52-3b
Tisdale Weir Spills into Sutter Bypass, Monthly Diversion

Table SW-52-3b
Tisdale Weir Spills into sutter Bypass, Monthly Diversion

	Ocrober			Relative
	No Action Altemative	Atemative A	Absolute	
Probability	Monthly Diverion	Monthly Diversion	Difierence (cFs)	Difference (\%)
${ }^{\text {0.0. }}$ \%	685	${ }_{912}^{(C F 5)}$	${ }^{227}$	33.2%
1.2\%	0	12	12	
2.5\%	0	0	0	
3.7\% 4.9%	0	0	0	
6.2\%	0	0	0	
7.4\%	0	0	0	
- ${ }_{\text {8.9.9\% }}$	0	0	0	
11.1\%	0	0	0	
12.3\%	0	0	0	
- 13.6%	0	0	0	
16.0\%	0	0	0	
17.3\%	0	0	0	
18.5\%	0	0	0	
21.0\%	0	0	0	
22.2\%	0	0	0	
${ }^{23.5 \%}$	0	0	0	
25.9\%	0	0	0	
27.2\%	0	0	0	
28.4\%	0	0	0	
30.9\%	0	0	0	
	0	0	0	
34.6\%	0	0	0	
35.8\%	0	0	0	
	0	0	0	
38.5\%	0	0	0	
40.7\%	0	0	0	
42.0\%	0	0		
${ }^{43.4 \%}$	0	0	0	
45.7\%	0	0	0	
46.9\%	0	0		
49.4\%	0	0	0	
50.6\%	0	0	0	
53.1.9\%	0	0		
54.3\%	0	0	0	
55.6\%	0	0	0	
56.8\%	0	0		
59.3\%	0	0	0	
${ }^{60.5 \%}$	0	0	0	
63.0\%	0	0		
64.2\%	0	0	0	
${ }^{65.4 \%}$	0	0	0	
${ }^{66.9 \%}$	0	0		
69.1\%	0	0	0	
70.4\%	0	0	0	
71.2\%\%		0		
74.1\%	0	0	0	
75.3\%	0	0	0	
77.8\%		0	0	
79.0\%	0	0	0	
80.2\%	0	0	0	
${ }^{82.7 \%}$		0	0	
84.0\%	0	0	0	
85.2\%	0	0	0	
${ }^{86.7 \%}$	0	0	0	
88.9\%	0	0	0	
90.1\%	0	0	0	
92.6\%	0	0	0	
93.8\%	0	0	0	
95.1\%	0	0	0	
96.3\%	0	0	0	
97.5\%	0	0	0	
100.0\%	0.0	0.0	0.0	

$\begin{gathered} \text { Percent } \\ \hline \begin{array}{c} \text { Exeedance } \\ \text { Probabability } \end{array} \\ \hline \end{gathered}$	January			
	No Action Alterative	Alterative A	$\begin{gathered} \text { Abssolute } \\ \text { Difference } \\ \text { (CFS) } \end{gathered}$	Relative Difference
	Monthly Diversion	Monthly Diversion		
(\%)	(CF)	(CFFS)		0.9\%
	S256	15398	141	0.9\%
1.2\%	14749	14770	21	
2.5\%	11425	11537	113	\%
3.7\%	11244	11417	173	1.5\%
4.9\%	10953	11250	298	2.7\%
6.2\%	10456	10768	312	3.0\%
7.4\%	10022	10037	15	
8.6\%	9259	${ }^{8768}$	492	5.3\%
9.9\%	9014	8543	-470	-5.2\%
11.1\%	6571	6919	348	3\%
12.3\%	6512	6566	54	0.8\%
13.6\%	6193	5723	470	-7.6\%
14.8\%	6139	5620	.519	-8.5\%
16.70\%	5743	4655	-1088	-18.9\%
17.3\%	5398	4541	857	-15.9\%
18.5\%	4727	4453	274	-5.8\%
19.8\%	4232	3982	250	-5.9\%
21.0\%	3952	${ }^{3524}$	428	-10.8\%
22.2\%	3881	3500	-381	-9.8\%
23.5\%	${ }^{3723}$	3364	-358	-9.6\%
24.7\%	3397	${ }^{3152}$	-245	-7.2\%
25.9\%	3236	${ }_{2288}^{2288}$	-947	-29.3\%
27.2\%	${ }^{2265}$	${ }^{2127}$	-138	-6.1\%
28.4\%	${ }^{2209}$	${ }^{2052}$	-157	-7.1\%
29.6\%	2125	2004	-121	-5.7\%
30.9\%	2108	1882	${ }^{226}$	-10.7\%
32.1\%	1700	1700	0	0.0\%
33.3\%	1161	1241	80	6.9\%
34.6\%	1085	987	${ }^{-99}$	-9.1\%
35.8\%	1066	872	-193	-18.1\%
37.0\%	977	834	-143	-14.6\%
38.3\%	836	${ }^{734}$	-102	-12.2\%
39.5\%	824	658	-166	-20.1\%
40.7\%	${ }^{482}$	${ }_{3}^{383}$	-99	-20.5\%
42.0\%	451	${ }^{334}$	-116	-25.8\%
43.4\% 4	319	${ }^{230}$	${ }^{-88}$	-27.7\%
4.5.7\%	${ }_{103}^{174}$	${ }_{143}^{144}$	-29	-16.9\%
46.9\%	98	87	-11	
48.1\%	96	47	-49	
4994\%	55	${ }^{33}$	-22	
50.6\%	${ }^{42}$	30	-12	
51.9\%	${ }^{35}$	0	-35	
54.3\%	${ }^{12}$	0	${ }^{-12}$	
55.\%\%	${ }_{0}$	0	-2	
56.8\%	0	0	0	
58.0\%	0	0	0	
59.3\%	0	0	0	
	0	0	0	
63.0\%	0	0	0	
64.2\%	0	0	0	
65.4\%	0	0	0	
66.7\%	0	0	0	
- 67.9 6.1\%	0	0	0	
70.4\%	0	0		
71.6\%	0	0	0	
72.8\%	0	0	0	
74.1\%	0	0	0	
75.5\%	0	0	0	
77.8\%	0			
79.0\%	0	0	0	
80.2\%	0	0	0	
81.5\%	0	0	0	
- ${ }_{\text {82, }}$	0	0	0	
85.2\%				
86.4\%	0	0	0	
877\%\%	0	0	0	
98.1\%	0	0	0	
91.4\%	0	0	0	
92.6\%	0	0	0	
${ }^{93.8 \%}$	0	0	0	
95.1\% ${ }^{963 \%}$	0	0	0	
96.3\%	\bigcirc	\bigcirc	0	
98.8\%	0	0	0	
100.0\%	0.0	0.0	0.0	

| | | |
| :--- | :--- | :--- | :--- |
| | | |

${ }_{\text {Pereen }}^{\text {Exceatare }}$	march Apmild								
	No Action Altemative	Altemative A	Assolue		${ }_{\text {Perean }}^{\text {Exceatare }}$	No Acion Alemative	Altematre A	Assoute	
Proabaility	Montuy Divesion	Monthy Divesion	citiceence	Diffeence $\%$ \％	Probability	Monthy Divesion	Monthy ivisesion	cititeence	Dfteence $\left.9^{\circ} \mathrm{F}\right)$
（0．0）		${ }_{\text {l／fss }}^{\text {（T77）}}$	0		（\％）\％	${ }_{\text {chess }}^{\text {get }}$	${ }_{\text {（CFSs }}$	${ }^{16}$	．0．2\％
－ 1.26	${ }_{\substack{17055 \\ 1355}}$	${ }_{12697}^{19770}$	${ }_{8}^{88}$	－0．10\％	${ }_{\substack{1.29 \% \\ 2.5 \%}}$	${ }_{8066}^{8796}$		${ }_{24}^{2}$	O．0．0\％
	，	12729	${ }_{-62}$	－ 4.80%	－	${ }^{8065}$	${ }_{\substack{8089 \\ 7658}}$	${ }_{1}^{24}$	0．0\％
${ }^{4.29 \%}$	${ }_{8855}^{9990}$	${ }_{7599} 9969$	－996	${ }_{\text {－}}^{\text {－} 0.1 .5 \%}$		${ }_{4953}^{7095}$	${ }_{\text {lasi }}$	${ }_{3} 12$	
7．4\％	7759	7076	614	8．0\％	7．4\％	3399	3399		
8．6\％	7209	6887	${ }^{382}$	5．3\％	8．6\％	${ }^{3511}$	${ }_{3515}$		
${ }^{11.15 \%}$	${ }_{632}$	${ }_{6} 6322$	－	－0．0\％	－${ }_{\text {1．1．\％}}$	${ }_{\text {3 }}^{3009}$	${ }_{2533}$	${ }_{63}$	25\％
（13．3\％	${ }_{\substack{6110 \\ 5093}}^{60}$	${ }_{5509}^{550}$	${ }_{54}^{54}$	年．8．9\％	123% 13.6% 1.0	${ }_{2059}^{2286}$	（1938	${ }_{\text {H }}^{1288}$	
－	${ }_{\text {5 }}^{5893}$	${ }_{4092}^{5737}$	${ }_{-83}$	－1．7\％\％	－ 13.85	${ }_{2027}^{2029}$	1930 1685	－${ }_{-128}^{128}$	${ }^{-6.29 \%}$
－ $\begin{aligned} & \text { 160\％} \\ & 17.3 \%\end{aligned}$	${ }_{\text {43954 }}^{4595}$	${ }_{3949}^{4596}$	2	${ }_{\text {O．}}^{0.17 \%}$	－ 16.0%	${ }_{1642}^{1597}$	${ }_{1}^{1537}$	${ }_{-105}^{105}$	－${ }_{\text {－} 6.49 \%}$
$\xrightarrow{18.5 \%}$	－	${ }_{3213}^{3385}$	${ }_{-146}$	${ }^{-0.14 \%}$	－ 18.50%	${ }_{\substack{1525 \\ 1066}}^{1}$	$\underset{\substack{1598 \\ 590}}{1}$	${ }_{4}^{3}$	－ $0.2 \% \%$
${ }^{2}$	${ }_{325} 3$	${ }_{2742}$	483	－150\％	21．0\％	595	556		
－	（	（		－16．9\％\％	${ }_{\substack{22.2 \% \\ 20.5 \%}}$	${ }_{310}^{547}$	${ }_{\substack{24 \\ 307}}^{42}$	${ }^{-3}$	
	${ }_{2582}^{2704}$	${ }_{247}^{2534}$	${ }_{-92}^{170}$		－	$\underset{\substack{374 \\ \\ 274 \\ \hline}}{ }$	302 170	$\stackrel{2}{204}$	－ $0.7 .7 \%$
${ }^{252 \%}$		$\xrightarrow{2238}$	－ 3 30	，		7	4		
$c284296$	${ }_{2335}^{2535}$	2081 1706 1	－${ }_{\text {－}}^{.659}$			\bigcirc	：	：	
${ }^{30.09 \%}$	$\begin{array}{r}2249 \\ 1701 \\ \hline 1\end{array}$	${ }_{1258}^{1378}$	${ }^{8783}$		${ }^{30.9 \%}$	\bigcirc	\bigcirc	：	
	${ }_{\substack{1567 \\ 1355}}$	1123 1102 102	${ }_{\text {r }}$			：	\bigcirc	\bigcirc	
	（1309	999	${ }_{3}^{2155}$	－		0	0	\％	
303\％	${ }^{1110}$	${ }_{7}^{788}$	${ }^{322}$	－2．0．6	－${ }^{383 \% \%}$	0	\bigcirc	0	
${ }^{30.05 \%}$	${ }_{9} 955$	${ }_{727}^{727}$	208	－222\％	－ 4.0 .75	\bigcirc	\bigcirc	\bigcirc	
	${ }_{\substack{598 \\ 508}}$		${ }_{.} 104$			：	：	：	
	${ }_{416}^{504}$	${ }_{\substack{373 \\ 278}}$	－149	－	${ }_{\substack{44.45 \% \\ 457 \%}}$	\bigcirc	：	：	
$\underbrace{}_{\substack{46.9 \% \\ 48.1 \%}}$	${ }_{3}^{406}$	${ }_{1}^{141}$	－ 2.204			\bigcirc	\bigcirc	\bigcirc	
	（en	（109	越			\bigcirc	：	：	
${ }^{50.6 \%}$	${ }_{171}^{217}$	${ }_{94}^{108}$	－179	（50．0\％	－	：	：	：	
	${ }_{95}^{156}$	${ }_{42}^{83}$	${ }_{\text {－}}^{\text {F3 }}$	470\％		\bigcirc	：	：	
－ 5 56．8\％\％	${ }_{0}^{33}$	：	${ }_{0}^{33}$			：	：	\bigcirc	
¢	：	：	：			\bigcirc	\bigcirc	0	
	－	－	：			\bigcirc	：	：	
	：	！	：			：	：	：	
	：	0	：		${ }^{654.46}$	：	\bigcirc	\bigcirc	
	0				－6．996				
69．19\％	：	：	：		6．9．19\％	\bigcirc	：	：	
－	：	：	：		－	：	：	\bigcirc	
（intion	：	0	：		－	0	0	0	
	：	：	：			：	\bigcirc	\bigcirc	
	：	：	：		（i．9\％	\bigcirc	\bigcirc	\bigcirc	
（in	！	：	：			\bigcirc	\bigcirc	\bigcirc	
	：	：	：			：	\bigcirc	\bigcirc	
	：	：	：		－85.26% 88.4%	：	：	\bigcirc	
－	：	：	：			\bigcirc	：	：	
－${ }_{\text {90．19\％}}^{\text {91．4\％}}$	：	：	：		－ 90.19%	\bigcirc	：	：	
come	：	：	：			：	：	：	
	：	：	：			\bigcirc	：	0	
（9，5\％\％	\bigcirc	：	：			：	\bigcirc	\bigcirc	
98．8\％	0.0	0	0.0		¢98．8\％	0	0		

Pereat		May		
	NoAction Altemative	Altemative A		
Promability	Month Diversion	Morthy		
0．0\％	2982	${ }_{285}$	${ }^{23}$	．0．8\％
$\underset{\substack{1.2 \% \\ 2.5 \%}}{\text { en }}$	${ }_{1950}^{1980}$	${ }_{1}^{1930}$	${ }_{.22}{ }_{20}$	${ }_{\text {－}}^{\text {－}}$－ 4.4% \％
－${ }_{\text {3，7．9\％}}$	${ }_{8}^{873}$	${ }_{6}^{64}$	${ }^{223}$	25．6\％
6．2\％			0	
$\xrightarrow{7.4 \%} \begin{gathered}\text { ¢．6\％} \\ 8.6\end{gathered}$	\bigcirc	：	：	
9．9\％	0	0	0	
－	\bigcirc	：	：	
13．6\％ 14．8\％	\bigcirc	：	：	
${ }^{16.0 \%}$	0	0	0	
		：	：	
${ }^{19.9 \%}$	\bigcirc	：	0	
${ }^{2}$	\bigcirc	\bigcirc	\bigcirc	
${ }^{224.75 \%}$	\bigcirc	：	：	
－ $\begin{array}{r}2.5 \% \\ 27.2 \%\end{array}$	\bigcirc	\bigcirc	：	
	\bigcirc	：		
	\bigcirc	\bigcirc	：	
${ }^{321 \%}$	0	：	0	
	\bigcirc	\bigcirc	：	
－	\bigcirc	：	：	
	\bigcirc	\bigcirc	：	
${ }^{40.7 \%}$		0	0	
${ }^{420 \% \%}$	\bigcirc	\bigcirc	：	
－ 44.4 .48	\bigcirc	\bigcirc	\bigcirc	
${ }_{\text {c }}^{4.5 .9 \%}$	\bigcirc	\bigcirc	：	
	\bigcirc	\bigcirc	：	
	\bigcirc	\bigcirc	：	
－ 5 54．3\％\％	\bigcirc	\bigcirc	：	
	0	：		
－5．3\％\％	\bigcirc	\bigcirc	\bigcirc	
	\bigcirc	：	：	
－ 6.60%	\bigcirc	\bigcirc	：	
	\bigcirc	\bigcirc	：	
	\bigcirc	\bigcirc	0	
70．4\％	\bigcirc	\bigcirc	0	
${ }^{\text {che }}$	\bigcirc	0	0	
	0	\bigcirc	：	
$\underset{\substack{76.5 \% \% \\ 77.3 \% \%}}{ }$	\bigcirc	：	：	
－	\bigcirc	\bigcirc	：	
${ }^{\text {coin }}$	\bigcirc	\bigcirc	\bigcirc	
	\bigcirc	\bigcirc	\bigcirc	
－	。	\bigcirc	\bigcirc	
－	\bigcirc	：	：	
		：	：	
－926\％			0	
	。			
	\bigcirc	：	－	
98．8\％	\bigcirc	0	0.0	

Table ew. $5 .-3 \mathrm{~b}$

Tisdale Weir Spills into sutter Bypass, Monthy Diversion

Percent	June			
	No Action Atemative	Alterative A	Absolute	
Probability	Monthly Diversion	Monthly Piversion	ditifences (cFs)	Difference (\%)
(\%)	(CFS)	(CFS)		
0.0\%	3625	3567	. 58	-1.6\%
1.2\%	97	93	-3	3.6\%
2.5\%	0	0	0	
3.7\%\%	0	0	0	
6.2\%	0	0	0	
7.4\%	0	0	0	
- $\begin{aligned} & \text { 8.9\%\% } \\ & 9.9 \%\end{aligned}$	0	0	0	
11.1\%	0	0	0	
12.3\%	0	0	0	
(13.6\%	0	0	0	
16.0\%	0	0	0	
17.3\%	0	0	0	
18.5\%	0	0	0	
21.0\%	0	0	0	
	0	0	0	
${ }^{23.47 \%}$	0	0	0	
25.9\%	0	0	0	
27.2\%	0	0	0	
28.6\%	0	0	0	
30.9\%	0	0	0	
32.1\%	0	0	0	
33.6\%	0	0	0	
35.8\%	0	0	0	
37.0\%	0	0	0	
38.3\%	0	0	0	
40.7\%	0	0	0	
42.0\%	0	0	0	
43.4.4\%	0	0	0	
45.7\%	0		0	
46.9\%	0	0	0	
48.19\%	0	0	0	
50.6\%	0	0	0	
53.1\%	0	0	0	
54.3\%	0	0	0	
55.6\%	0	0	0	
58.0\%	0	0	0	
59.3\%	0	0	0	
60.5\%	0	0	0	
63.0\%	0	0	0	
64.2\%	0	0	0	
65.4\%	0	0	0	
67.9\%	0		0	
69.1\%	0	0	0	
70.4\%	0	0	0	
72.8\%	0	0	0	
74.1\%	0	0	0	
75.3\%	0	0	-	
77.8\%	0	0	0	
79.0\%	0	0	0	
80.2\%	0	0	0	
- ${ }^{81.5 \%}$ 827\%	0	0	0	
84.0\%	0	0	0	
85.2\%	0	0	0	
86.4\%	0	0	0	
877.7\%	0	0	0	
90.1\%	0	0	0	
91.4\%	0	0	0	
92.6\%	0	0	0	
93.8\%	0	0	0	
${ }^{951.3 \%}$	0	0	0	
97.5\%	0	0	0	
98.8% 100.0\%	0.0	0.0	0.0	

Alternative B Compared to No Action Alternative

This page intentionally left blank.

Ord Ferry Spills into Sutter Bypass, Monthly DiversionLong-term Average and Average by Water Year Type												
Analysis Period	Monthly Diversion (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
${ }_{\text {Full SImulation Period }}$												
No Action Alterative	0	0	63	257	431	189	14	0	0	0	0	0
Alemative ${ }^{\text {B }}$	0	0	68	232	399	174	11	0	0	0	0	0
Diffeene	0	0	5	-25	-32	-15	-2	0	0	0	0	0
Percent Difteences			8.4\%	-9.8\%	-7.3\%	-8.0\%	-16.9\%					
Water Year Types ${ }^{2}$												
Wet (32%)												
NoAction Altentive	0	0	29	779	1213	554	34	0	0	0	0	0
Alemative B	0	0	36	717	${ }^{1136}$	517	29	0	0	0	0	0
Diffeene	0	0	7	-62	-77	-38	-5	0	0	0	0	0
Percent ifiteence			22.7\%	-7.9\%	-6.4\%	-6.8\%	-15.4\%					
Above Nomal (15\%)												
NoA clion Altemalive	0	0	1	68	${ }^{316}$	88	19	0	0	0	0	0
Alemaive B	0	0	8	30	268	67	14	0	0	0	0	0
Diffeeree	0	0	7	-38	-48	-21	-4	0	0	0	0	0
Percent ififeence				.55.9\%	-15.2\%	-23.8\%	-22.8\%					
Beolow Noma (17\%)												
Noaction Altenative	0	0	123	0	0	0	0	0	0	0	0	0
Alemative ${ }^{\text {B }}$	0	0	${ }^{153}$	0	0	0	0	0	0	0	0	0
Diffeeree	0	0	30	0	0	0	0	0	0	0	0	0
Pecent Difitence			24.1\%									
Dry (22\%)												
Noaction Altemalive	0	0	147	0	0	0	0	0	0	0	0	0
Alemative B	0	0	${ }^{134}$	0	0	0	0	0	0	0	0	0
Diffeence	0	0	-13	0	0	0	0	0	0	0	0	0
Percent iffeence			-9.1\%									
Critical (15\%)												
NoAction Altenalive	0	0	0	0	0	0	0	0	0	0	0	0
Alemalive B	0	0	0	0	0	0	0	0	0	0	0	0
Diffeence	0	0	0	0	0	0	0	0	0	0	0	0
Percent ififeence												

Based on the 82 2-veras sinudation perió
.
3 Realive difference of the monthy vereage
Ferry Spills into Sutter SBpass, Monthly Diversion
Full Simultation Period action Alterative

Ord Ferry Spills into Sulter Bypass, Monthly Diversion

Dry Water Year Typss, Mont
No Action Alternative aAlternative B

Critical Water Year Types (15\%)
Critical Water

- No Action Alternative

Figure SW-49-5b
Ord Ferry Spills into Sutter Bypass, Monthly Diversion

Table SW-49.5b

Percent	October			$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
	No Action Attemative	Altemative B	$\begin{gathered} \text { Absolute } \\ \text { Difference } \\ \text { (CFSS) } \end{gathered}$	
Probability	Monthly Diversion	Monthly Diversion		
(\%)	CFS	CFS		
1.2\%	-			
2.5\%	0	0	0	
3.7\%	0	0	0	
4.9\% 6	0	0	0	
7.4\%	0	0	0	
8.6\%	0	0	0	
9\%	0	0	0	
11.1\%	0	0	0	
- ${ }_{\text {l }}^{12.3 \%}$ 1.3\%	0	0	0	
14.8\%	0	0	0	
16.0\%	0	0	0	
17.3\%	0	0	0	
18.5\%	0	0	0	
21.0\%	0	0	0	
22.2\%	0	0	0	
23.5\%	0	0	0	
24.7\%	0	0	0	
25.9\%	0	0	0	
28.4\%	0	0	0	
29.6\%	0	0	0	
30.9\%	0	0	0	
32.1\% ${ }_{\text {33, }}$	0	0	0	
33.6\%	0	0	0	
35.8\%	0	0	0	
37.0\%	0	0	0	
38.3\%	0	0	0	
39.5\%	0	0	0	
40.7\% 4.0%	0	0	0	
43.2\%	0	0	0	
44.4\%	0	0	0	
45.7\%	0	0	0	
46.9\%	0	0	0	
48.19\%	0	0	0	
50.6\%	0	0	0	
51.9\%		0	0	
53.1\%	0	0	0	
54.3\%	0	0	0	
55.6\%	0	0	0	
58.0\%	0	0	0	
59.3\%	0	0	0	
60.5\%	0	0	0	
61.7\%	0	0	0	
- 63.0%	0	0	0	
65.4\%	0		0	
66.7\%	0	0	0	
67.9\%	0	0	0	
69.1\%	0	0	0	
70.4\% 71.6	0	0	0	
72.8\%	0		0	
74.1\%	0	0	0	
75.3\%	0	0	0	
77.8\%	0		0	
79.0\%	0	0	0	
80.2\%	0	0	0	
81.5\%	0	0	0	
822.7\%	0	0	0	
85.2\%	0		0	
86.4\%	0	0	0	
887.7\%	0	0	\bigcirc	
90.1\%	0	0	0	
91.4\%	0	0	0	
92.6\%	0	0	0	
95.1\%	0	0	0	
96.3\%	0	-	0	
97.5\%	0	0	0	
100.0\%	0.0	0.0	0.0	

Table SW-49-5b

Percent	February			
	No Action Altemative	Alterative B	Absolute	
Probability	Monthy Diversion	Monthy Diversion	(c)	Difference (\%)
(\%)	${ }_{\text {(CFFS }} 12366$	${ }^{\text {(CFFS) }}$. 972	.79\%
12\%	6536	6618		
2.5\%	${ }_{5493}$	4949	${ }_{-544}$	-9.9\%
3.7\%	2799	2445	263	-9.7\%
4.9\%	2095	1921	175	8.3\%
7.4\%	1642 1220 1	1267 1262 1	375 43	32.5\%
8.6\%	957	895	-62	6.5\%
9.9\%	888	837	-51	-5.8\%
- 11.12%	${ }_{391}^{763}$	${ }_{293}^{665}$	-98	- ${ }^{-22.8 \%}$
13.6\%	120	77	${ }^{43}$	\%
14.8\%	63	75	12	
116.3\%	50 41	30 23	-20 -18	-40.6\%
18.5\%	0	0	0	
19.8\%	0	0	0	
22.0\%\%	0	0	0	
23.5\%	0	0	0	
22.7\%\%	0	0	0	
27.2\%	0	0	0	
28.4\%	0	0	0	
29.9\%\%	0	0		
332.1\%	0	0	0	
33.3\%	0	0	0	
334.8\%	0	0	0	
37.0\%	0	0	0	
38.3\%	0	0	0	
30.7\%	0	0		
42.0\%	0	0	0	
43.2\%	0	0	0	
44.7\%\%	0	0		
46.9\%	0	0	0	
48.1\%	0	0	0	
50.6\%	0			
55.9\%	0	0	0	
53.1\%	0	0	0	
55.6\%	0	0	0	
55.8\%	0	0	0	
年5.0\%\%	0	0	0	
60.5\%	0	0		
61.7\%	0	0	0	
63.0\%	0	0	0	
65.4\%	0	0		
66.7\%	0	0	0	
67.9\%	0	0	0	
70.4\%	0	0	0	
71.6\%	0	0	0	
72.8\% 74.10	0	0	0	
75.3\%	0	0		
76.5\%	0	0	0	
77.0\%	0	0	0	
80.2\%				
81.5\%	0	0	0	
82.7\%\%	0	0	0	
85.2\%				
86.4\%	0	0	0	
887.7\%	0	0	0	
90.1\%				
91.4\%	0	0	0	
92.6\% ${ }_{\text {93.8\% }}$	0	0	0	
95.1\%	0	0	0	
96.3\%	0	0	0	
978.8\%	0	0	0	
100.0\%	0.0	0.0	0.0	

$\begin{aligned} & \text { Percent } \\ & \hline \text { Exceedance } \\ & \text { Probability } \end{aligned}$	$\frac{\text { No Action Atemative }}{\text { Monthly }}$	March				April			
		Altemative B	$\begin{gathered} \text { Absolute } \\ \text { didereence } \\ \text { (CFSS) } \end{gathered}$	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$		$\frac{\text { No Action Alterative }}{\text { Monthy Diversion }}$	Alterative B	$\begin{aligned} & \text { Absolute } \\ & \text { Difference } \\ & \text { (CFSS) } \end{aligned}$	$\begin{aligned} & \text { Reliative } \\ & \text { Difference (\%) } \end{aligned}$
		Monthly Diversion					Monthly Diversion		
(\%)	${ }^{\text {(CFFS }} 736$	CFFS		00	0, \%	(CFS)			0.0\%
				0.0\%					0.0\%
1.2\%	3196		. 396		1.2\%	285	73	111	
2.5\%	1350	109	252	18.7\%	2.5\%	225	148		
3.7\%	994	993	0	0.0\%	3.7\%			0	
4.9\%	987	679	308	-31.2\%	4.9\%	0	0	0	
6.2\%	737	585	-152	20.6\%	6.2\%	0	0	0	
7.4\%	383	425	41	10.8\%	7.4\%	0	0	0	
8.6\%		222	100	-31.1\%	8.6\%	0	0	0	
9\%	91	47	44	-48.7\%	9.9\%	0	0	0	
11.1\%	49	29	20	-40.6\%	11.1\%	0	0	0	
123\%	0	0	0		12.3\%	0	0	0	
13.6\%	0	0	0		13.6\%	0	0	0	
4.8\%	0	0	0		14.8\%	0	0	0	
16.0\%	0	0	0		16.0\%	0	0	0	
7.3\%	0	0	0		17.3\%	0	0	0	
18.5\%	0	0	0		18.5\%	0	0	0	
9.8\%	0	0	0		19.8\%	0	0	0	
21.0\%	0	0	0		21.0\%	0	0		
2.2\%	0	0	0		22.2\%	0	0	0	
${ }^{23.5 \%}$	0	0	0		${ }^{23.4 .7 \%}$	0	0	0	
25.9\%	0	0	0		25.9\%	0	0	0	
27.2\%	0	0	0		27.2\%	0	0	0	
28.4\%	0	0	0		28.4\%	0	0	0	
29.6\%	0	0	0		29.6\%	0	0	0	
30.1\%	${ }_{0}$	0	0		30.1\%	0	0	0	
33.3\%	0	0	0		33.3\%	0	0	0	
34.6\%	0	0	0		34.6\%	0	0	0	
35.8\%	0	0	0		35.8\%	0	0	0	
37.0\%	0	0	0		37.0\%	0	0	0	
隹 38.3%	0	0	0		38.3\%	0	0	0	
39.5\%	0	0	0		39.5\%	0	0	0	
40.7\%	0	0	0		40.7\%	0	0	0	
42.0\%	0	0	0		42.0\%	0	0	0	
${ }^{43.4 \%}$	0	0	0		${ }^{43.2 \%}$	0	0	0	
45.7\%	0	0	0		45.7\%	0	0	0	
46.9\%	0	0	0		46.9\%	0	0	0	
48.19\%	0	0	0		48.1\%	0	0	0	
49.4\%	0	0	0		4994\%	0	0	0	
50.6\%	0	0	0		50.6\%	0	0	0	
51.9\%	0	0	0		51.9\%	0	0	0	
53.19\%	0	0	0		53.1\%	0	0	0	
54.3\%	0	0	0		54.3\%	0	0	0	
55.6\%	0	0	0		55.6\%	0	0	0	
56.8\%	0	0	0		56.8\%	0	0	0	
58.0\%	0	0	0		58.0\%	0	0	0	
59.3\%	0	0	0		59.3\%	0	0	0	
${ }^{60.5 \%}$	0	0	0		60.5\%	0	0	0	
${ }^{61.7 \%}$	0	0	0		61.7\%	0	0	0	
63.0\%	0	0	0		63.0\%	0	0	0	
64.2\%	0	0	0		64.2\%	0	0	0	
${ }_{66.7 \%}^{65.4 \%}$	0	0	0		${ }_{6}^{65.7 \%}$	0	0	0	
67.9\%	0	0	0		67.9\%	0	0	0	
69.1\%	0	0	0		69.1\%	0	0	0	
70.4\%	0	0	0		70.4\%	0	0	0	
71.6\%	0	0	0		71.6\%	0	0	0	
72.8\%	0	0	0		72.8\%	0	0	0	
74.19\%	0	0	0		74.1\%	0	0	0	
75.3\%	0	0	0		75.3\%	0	0	0	
76.5\%	0	0	0		76.5\%	0	0	0	
77.8\%	0	0	0		77.8\%	0	0	0	
79.0\%	0	0	0		79.0\%	0	0	0	
81.5\%	0	0	0		80. ${ }_{\text {80, }}$	0	0	0	
82.7\%	0				82.7\%			0	
84.0\%	0	0	0		84.0\%	0	0	0	
85.2\%	0	0	0		85.\%	0	0	0	
86.4\%	0	0	0		86.4\%	0	0	0	
87.7\%	0	0	0		87.7\%	0	0	0	
88.9\%	0	0	0		88.9\%	0	0	0	
91.4\%	0	0	0		91.4\%	0	0	0	
92.6\%					92.6\%				
93.8\%	0	0	0		93.8\%	0	0	0	
95.1\%	0	0	0		95.1\%	0	0	0	
96.5\%	\bigcirc	0	0		96.3\%	0	0	0	
98.8\%	0	0	O		98.8\%	0	0	0	
00.0\%	0.0	0.0	0.0		100.0\%	0.0	0.0		

Table Ew.49.5b

		June		
${ }_{\text {Pereent }}^{\text {Penance }}$	No Action Attemative	Alterative B	${ }^{\text {Absolute }}$	
Probability	Monthly (iversion	Monthly Diversion	differene (CFS)	Difference (\%)
(\%) 0	(CFS)	(CFFS)		
1.2\%	0	0	0	
2.5\%	0	0	0	
3.7\%	0	0	0	
4.9\% 6.2%	0	0	0	
6.2\%\%	0	0	0	
(8.9\%	0	0	0	
9.9\%	0	0	0	
11.1\% 12.3%	0	0	0	
13.6\%	0	0	0	
14.8\% 16.0%	0	0	0	
- 16.0 17.0\%	0	0	0	
18.5\%	0	0	0	
19.8\%	0	0	0	
${ }_{2}^{21.0 \%}$	0	0	0	
23.5\%	0	0	0	
24.7\%	0	0	0	
${ }^{25.7 .2 \%}$	0	0	0	
28.4\%	0	0	0	
29.6\%	0	0	0	
30.3. ${ }^{30.9 \%}$	0	0	0	
年33.3\%	0	0	0	
34.6% 35.8%	${ }_{0}^{0}$	0	0	
357.8\%	0	0	0	
38.3\%\%	0	0	0	
39.5\%	0	0		
42.0\%	0	0	0	
43.2\% 44.4	0	0	0	
44.4\%	0	0		
45.9\%	0	0	0	
488.1\%	0	0	0	
49.4\%	0	0	0	
51.9\%	0	0	0	
53.1\% 54.3%	0	0	0	
54.3\%	0	0		
56.8\%	0	0	0	
58.0\%	0	0	0	
59.3\%	0	0	0	
6.1.7\%	0	0	0	
63.0\%	0	0	0	
64.2\%	\bigcirc	0		
66.7\%	0	0	0	
67.9\%	0	0	0	
70.4\%	0	0	0	
71.6\%	0	0	0	
72.8\%	0	0	0	
74.1\%	0	0	0	
76.5\%	0	0	0	
77.8\%	0	0	0	
79.0\%	0	0	0	
81.5\%	0	0	0	
82.7\%	0	0	0	
84.0\%	0	0	0	
85.2\%	0	0	0	
${ }^{807.7 \%}$	0		0	
88.9\%	0	0	0	
90.1\%	0	0	0	
91.4\%	0	0	0	
${ }_{93.8 \%}^{92.6 \%}$	0	0	0	
95.1\%	0	0	0	
96.3\%	0	0	0	
97.5\%	0	0	0	
$\begin{array}{r}\text { 98.8\% } \\ \text { 100.0\% } \\ \hline\end{array}$	0.0	0 0.0	0	

Analysis Period	Monthly Diversion (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
Full Simulition Period'												
No Action Altenative	0	0	59	283	467	240	32	0	0	0	0	0
Altemative B	0	0	67	265	439	216	27	0	0	0	0	0
Diffeence	0	0	8	-19	-28	-24	-5	0	0	0	0	0
Percent bifference?			13.9\%	-6.5\%	-6.0\%	-9.9\%	-14.6\%					
Water Year Types ${ }^{2}$												
Wet (32%)												
No Action Altenative	0	0	42	829	1367	690	83	0	0	0	0	0
Altemative B	0	0	49	789	1294	633	71	0	0	0	0	0
Diffeence	0	0	8	-40	-73	-57	-12	0	0	0	0	0
Perent Difteence			18.3\%	-4.9\%	-5.3\%	-8.3\%	-14.0\%					
Abve Nomal (15\%)												
No Action Altenative	0	0	7	139	229	147	38	0	0	0	0	0
Altemaive B	0	0	15	98	190	108	32	0	0	0	0	0
Diffeence	0	0	9	-41	-38	-39	-7	0	0	0	0	0
Pereent Diffeence			130.4\%	-29.4\%	-16.7\%	-26.5\%	-17.4\%					
Below Nomal (17\%)												
Noaction Altenative	0	0	94	1	0	0	0	0	0	0	0	0
Alemative B	0	0	115	3	6	0	0	0	0	0	0	0
Diffeence	0	0	21	1	6	0	0	0	0	0	0	0
Perent Diffeence			22.0\%	107.8\%								
Dr (229\%)												
Noaction Alterative	0	0	130	0	0	0	0	0	0	0	0	0
Alemative B	0	0	134	0	0	0	0	0	0	0	0	0
Diffeene	0	0	4	0	0	0	0	0	0	0	0	0
Pereent Difterence			3.2\%									
Critical (15\%)												
NoAction Altenative	0	0	0	0	0	0	0	0	0	0	0	0
Alemalive B	0	0	0	0	0	0	0	0	0	0	0	0
Diffeence	0	0	0	0	0	0	0	0	0	0	0	0
Perenen Diffeence												

Based on the 82 2-jear sinuludion pefiod
dele fir
3 Realive diffeence of the monthy yverage

Figure SW-50-5b
Moulton Weir Spills into Sutter Bypass, Monthly Diversion

Table SW-50-5b
Mouton Weir Spills into Sutter Bypass, Monthy Diversion

Percentxceedance	Octoo		$\begin{gathered} \text { Absolute } \\ \text { Difference } \\ \text { (CFSS) } \end{gathered}$	$\begin{gathered} \text { Relative } \\ \text { Difference (\%) } \end{gathered}$
	No Action Altemative	tive B		
Probability	$\begin{aligned} & \text { Monthly Diverion } \\ & \text { (CFs) } \end{aligned}$	Monthy Diversion (CFs)		
	0		0	
2.5\%	0	0	0	
3.7\%	0	0	0	
4.9\%	0		0	
7.4\%	0	0	0	
8.9\%	0	0	0	
9.9\%	0		0	
${ }^{\text {11.12\% }}$ 12.3\%	0	0	0	
13.6\%	0	0	0	
14.8\% 16.0%	${ }_{0}^{0}$	0	0	
- 11.0% \%	0	0	0	
18.5\%	0	0	0	
19.8\%\%	0	0	0	
${ }_{222.2 \%}^{21.0 \%}$	0	0	0	
23.5\%	0	0	0	
22.7\%\%	0	0	0	
227.2\%	0	0	0	
28.4\%	0	0	0	
39.9\%	0	0		
332.1\%	0	0	0	
33.3\%	0	0	0	
334.8\%	0	0	0	
37.0\%	0	0	0	
38.3\%	0	0	0	
30.7\%	0	0		
42.0\%	0	0	0	
${ }^{4.3 \%}$	0	0	0	
4.4.7\%	0	0		
46.9\%	0	0	0	
${ }^{48.1 \%}$	0	0	0	
50.6\%	${ }_{0}^{0}$	0		
51.9\%	0	0	0	
53.1\%	0	0	0	
55.6\%	0	0		
55.8\%	0	0	0	
年5.0\%\%	0	0	0	
60.5\%	0	0		
61.7\%	0	0	0	
63.0\%	0	0	0	
65.4\%	0	0		
66.7\%	0	0	0	
67.9\%	0	0	0	
70.4\%	0	0	0	
71.6\%	0	0	0	
72.8\%	0	0	0	
75.3\%	0	0		
76.5\%	0	0	0	
77.0\%	0	0	0	
80.2\%				
81.5\%	0	0	0	
82.7\%\%	0	0	0	
85.2\%				
${ }^{\text {86.4\% }}$	0	0	0	
887.7\%	0	0	0	
90.1\%				
91.4\%	0	0	0	
92.6\% ${ }_{\text {93.8\% }}$	0	0	0	
95.1\%	0	0	0	
96.3\%	0	0	0	
${ }_{988.5 \%}^{97.5}$	0	0	0	
- 90.0 (0.0\%	0.0	0.0	0.0	

Table SW-50-5b
Moulton Weir Spills into situter Eypass, Monthy Diversion

$\underset{\substack{\text { Perent } \\ \text { Exceedance }}}{\text { a }}$	February			
	No Action Altemative	Altemative B	${ }^{\text {Absolute }}$	
	Monthy Diversion	Monthly Diverision	Difierence (CFS)	Difference (\%)
0.0\%	${ }_{9}\left(\mathrm{CF5} 5{ }^{\text {a }}\right.$	${ }_{883}$.522	5.6\%
1.2\%	9304	8740	-564	-6.1\%
2.5\%	5144	5086	-58	-1.1\%
3.7\% 4.9%	-3323 1751	3070 1732	-253 -19	- ${ }_{\text {- }}^{\text {-1.7\% }}$
4.9\%	1751	${ }_{1}^{1732}$	-19	-1.1\%
7.4\%	1559 1482 1	(1433	- 126	-8.8\%
8.6\%	1317	1315	-2	-0.1\%
9.9\%	976	880	-96	-9.8\%
11.1\%	806 682	701 541	-141	-
13.6\%	574	529	-45	-7.9\%
14.8\%	510	517	6	1.2\%
-16.0\%		374 206	-91	- ${ }^{-19.6 \%}$
18.5\%	239	198	-40	-16.8\%
19.8\%	236	158	-78	-33.1\%
${ }^{21.0 \%}$	118 101 101	${ }_{78}^{93}$	$\begin{array}{r}-24 \\ -24 \\ \hline\end{array}$	-20.7\%
23.5\%	38	67	29	74.4\%
224.7\%	14	46 26	32 26	
227.2\%	0	0	${ }^{26} 0$	
28.4\%	0	0	0	
	0	0		
32.1\%	0	0	0	
33.3\%	0	0	0	
34.6\% 358%	0	0	0	
37.0\%	0	0	0	
38.3\%	0	0	0	
39.5\%	0	0		
42.0\%	0	0	0	
43.2\%	0	0	0	
44.7\%\%	0	0	0	
46.9\%	0	0	0	
48.1\%	0	0	0	
50.6\%	0	0	0	
551.9\%	0	0	0	
53.1\%	0	0	0	
55.6\%	0	0		
55.8\%	0	0	0	
59.0\%	0	0	0	
60.5\%	0	0		
66.7.7\%	0	0	0	
	0	0	0	
65.4\%	0	0		
66.7\%	0	0	0	
69.9\%\%	0	0	0	
70.4\%	0	0		
71.6\%	0	0	0	
72.8\%	0	0	0	
75.3\%		0		
76.5\%	0	0	0	
77.8.0\%	0	0	0	
80.2\%		0	0	
81.5\%	0	0	0	
82.7\% 84.0%	0	0	0	
85.2\%	0	0	0	
86.4\%	0	0	0	
887.9\%	0	0	0	
90.1\%	0	0	0	
91.4\%	0	0	0	
${ }^{92.6 \%}$	0	0	0	
93.8\% ${ }_{\text {951\% }}$	0	0	0	
${ }_{965}^{95.13 \%}$	0	0	0	
97.5\%		0	0	
98.8\%	0	0	0	
100.0\%	0.0	0.0	0.0	

Table sw.50.5b
Moutton Weir Spills into suture Sypass, Monthly Diversion

		June		
	No Action Attemative	Atemative B	Absolute	
Probability	Monthy Diversion	Monthy Diversion	(ifferes)	Difference (\%)
${ }_{0}^{(\% .0 \%}$	(CF5)	0		
1.2\%	0	0		
2.5\%	0	0	0	
3.7\%	0	0	0	
4.9\%	0	0	0	
7.4\%	0	0	0	
8.6\%	0	0	0	
9.9\%			0	
- ${ }_{\text {12.3\% }}^{11.19 \%}$	0	0	0	
1.3.6\% 14.8\%	0	0	0	
14.8% 16.0%		0	0	
17.3\%	0	0	0	
18.5\%	0	0	0	
	0	0	0	
${ }^{21.2 .2 \%}$	0	0	0	
23.5\%	0	0	0	
24.7% 259%	0	0	0	
${ }^{257.2 \%}$	0	0	0	
28.4\%	0	0	0	
2.6\%	0	0	0	
30.3. ${ }^{30.9 \%}$	0	0	0	
33.3\%	0	0	0	
34.6\%	0	0	0	
第35.7.9\%	0	0	0	
38.3\%	0	0	0	
39.5\%	0	0	0	
40.7\%	0	0	0	
43.2\%	0	0	0	
44.4\%	0	0	0	
46.7\%	0	\bigcirc	0	
48.1\%	0	0	0	
9.4\%	0	0	0	
50.9\%	0	0	0	
54.19\%	0	0	0	
55.6\%	0		0	
56.8\%	0	0	0	
59.3\%	0	0	0	
50.5\%	0	0	0	
61.7\%	0	0	0	
	0	0	0	
64.2\% 6.4%	0	0	0	
66.7\%	0	0	0	
67.9\%	0	0	0	
70.4\%	0	0		
71.6\%	0	0	0	
72.8\%	0	0	0	
75.3\%	0	0	0	
76.5\%	0	0	0	
77.8\%	0	0	0	
80.2\%	0	0		
81.5\%	0	0	0	
827\%	0	0	0	
85.2\%	0	0	0	
86.4\%	0	0	0	
877.9\%	0	0	0	
90.1\%		0		
91.4\%	0	0	0	
92.6\%	0	0	0	
95.1\%	0	0	0	
96.3\%	0	0	0	
97.5\%	0	0	0	
100.0\%	0.0	0.0	0.0	

Long-term Average and Average by Water Year Type												
Analysis Period	Monthly Diversion (CFS)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Long.term												
Full Simulion Period'												
No Action Alemative	7	126	1329	3917	5723	3523	1174	68	19	0	0	0
Alemative B	9	128	1434	3845	5456	3232	1080	54	18	0	0	0
Diffeene	3	1	105	-72	-267	-290	-94	-14	-1	0	0	0
Perenti Diffeence			7.9\%	-1.8\%	-4.7\%	-8.2\%	8.0\%					
Water Year Types ${ }^{2}$												
Wet $\left(32^{\%}\right)$												
No Action Altenative	0	35	1292	9956	14022	8607	3195	128	61	0	0	0
Allemative B	0	62	1399	10021	13729	8104	2943	103	58	0	0	0
Diffeene	0	27	107	65	-293	-503	-252	-25	-3	0	0	0
Perenen Diffeence			8.3\%	0.7\%	-2.1\%	-5.8\%	-7.9\%					
Above Nomal (15\%)												
No Action Alemative	0	589	1240	3961	5888	4959	997	187	0	0	0	0
Alemative B	0	553	1192	3486	5371	4347	927	149	0	0	0	0
Diffeence	0	-36	-48	-475	-517	-612	-70	-38	0	0	0	0
Perenen Difference		-6.1\%	-3.9\%	-12.0\%	-8.8\%	-12.3\%	-7.1\%	-20.4\%				
Below Nomal (17\%)												
Noaction Alemative	40	75	1613	716	1433	83	89	0	0	0	0	0
Alemative ${ }^{\text {B }}$	55	75	1838	709	1080	16	68	0	0	0	0	0
Diffeence	15	0	226	-7	-353	-67	-21	-	0	0	0	0
Perenen Difference	37.4\%	0.4\%	14.0\%	-1.0\%	-24.7\%	-80.2\%	-24.0\%					
No Action Alemative	0	75	2090	256	768	245	0	0	0	0	0	0
Allemative B	0	65	2269	163	599	108	0	0	0	0	0	0
Diffeence	0	-10	179	-93	-169	-137	0	0	0	0	0	0
Perenen Difference		-13.3\%	8.6\%	-36.3\%	-22.1\%	-55.9\%						
Critica (15\%)												
No Action Altenative	0	0	29	14	13	0	0	0		0	0	0
Alemative ${ }^{\text {B }}$	0	0	29	3	9	0	0	0	0	0	0	0
Diffeene	0	0	0	-11	4	0	0	0	0	0	0	0
Perenen Difiemee			-1.0\%	-79.5\%	-32.8\%							

Based on the 82 2years inulution period
(SWVCB -1641190
3 Realive diffeence of the monthy yverage

Figure SW-51-5b
Colusa Weir Spills into Sutter Bypass, Monthly Diversion

Colusa Weir Spils into sutuer Eypass, Monthy Diversion

Percent	Ocrober			Relative
	No Action Altemative	Atemative B	Absolute	
Probability	Monthly Diverion	Monthly Diversion	Difierence (cFs)	Difference (\%)
0.0\%	(CFF5)	${ }_{7} 78$	209	37.4\%
1.2\%	-	0	0	
2.5\%	0	0	0	
3.7\%	0	0	0	
4.9\%	0	0	0	
7.4\%	0	0	0	
8.9\%	0	0	0	
9.9\%	0	0	0	
11.1\% 12.3\%	0	0	0	
13.6\%	0	0	0	
14.8\%	0	0	0	
- 16.0%	0	0	0	
18.5\%	0	0	0	
19.8\%	0	0	0	
${ }_{2}^{21.0 \% \%}$	0	0	0	
${ }^{22.35 \%}$	0	0	0	
224.7\%	0	0	0	
27.2\%	0	0	0	
28.4\%	0	0	0	
	0	0	0	
332.1\%	0	0	0	
33.3\%	0	0	0	
	0	0	0	
337.0\%	0	0	0	
38.3\%	0	0	0	
	0	0	0	
42.0\%	0	0	0	
${ }^{43.2 \%}$	0	0	0	
		0		
46.9\%	0	0	0	
48.1\%	0	0	0	
4.9.4\% 50.6%	0	0		
551.9\%	0	0	0	
53.1\%	0	0	0	
54.3\%	0	0		
55.8\%	0	0	0	
59.0\%	0	0	0	
59.3\%\%	0	0	0	
66.7\%\%	0	0	0	
63.0\%	0	0	0	
65.4\%	0	0		
66.7\%	0	0	0	
69.1\%	0	0	0	
70.4\%		0	0	
71.6\%	0	0	0	
72.8.1\%	0	0	0	
75.3\%		0	0	
76.5\%	0	0	0	
${ }_{7}^{77.0 \%}$	0	0	0	
80.2\%		0	0	
81.5\%	0	0	0	
82.7% 84.0%	0	0	0	
85.2\%	0	0	0	
86.4\%	0	0	0	
887.9\%	0	0	0	
90.1\%	0	0	0	
91.4\%	0	0	0	
92.6\%	0	0	0	
93.8\%	0	0	0	
95.1\%	0	0	0	
997.5\%	0	0	0	
98.8\%	0	0	0	
100.0\%	0.0	0.0	0.0	

	ebruary			Relative
$\underset{\text { Perceent }}{\text { Eance }}$	No Action Altemativ	Altemative B		
Probability	Monthly Divesision	Monthy Diversion	Difference	Difference（\％）
（\％）	（CFS）	（CFFS）	¢41	
			． 64	－1．2\％
1．2\％	49189	${ }_{33472}^{4822}$	1166	年迆
3．7\％	30755	${ }_{30168}$	－586	
4．9\％	${ }_{26703}$	${ }_{26287}$	． 416	源
6．2\％	22915	23094	178	0．8\％
7．4\％	18664	22591	3927	21．0\％
8．6\％	17950	17226	724	－4．0\％
9．9\％	17925	16632	1292	
11．1\％	17625	16529	1096	6．2\％
12．3\％	17461	14677	2784	15．9\％
13．6\％	15972	14328	1644	10．3\％
14．8\％	12659	13058	399	
16．0\％	11444	10319	1125	9．8\％
17．3\％	11105	9969	1137	
－ 18.8 \％${ }^{\text {19．8\％}}$	9984	9574	－499	－4．1\％
22．2\％	7924	7403	． 521	－6．6\％
23．5\％	7401	7219 6480	－ 181	2．4\％
24．7\％	7267	6480	787	10.8
25．7\％	5435	${ }_{5}^{624}$	810	14．9\％
27．2\％	5428	5016	413	7．6\％
	5342	4888	－454	8．5\％
30．9\％	5208	3521	－1687	－32．4\％
32．1\％	4943	2776	2168	－43．9\％
33．3\％	3667	2605	1061	－28．9\％
34．6\％	2783	2444	－339	12．2\％
35．7\％	${ }^{2667}$	${ }^{2115}$	－552	20．7\％
37．0\％ 38．3\％	2603		．580	
笛38．3\％	${ }^{2391}$	1997	－394	－16．5\％
－ 40.7%	${ }_{2307}^{2311}$	$\begin{array}{r}1851 \\ 1682 \\ \hline 1\end{array}$	－-620	－197．9\％
42．0\％	1990	1638	－ 35	－17．7\％
43．2\％	1940	1541	－398	20．5\％
44．4\％	1906	1232	674	35．4\％
45．7\％	1681	838	843	50．1\％
－46．9\％	983	834	149	－15．1\％
48．19\％	553	465	－88	－15．9\％
50．6\％	498	398	－100	－20．1\％
51．9\％	290	281	－9	－3．2\％
53．1\％	160	144	${ }^{16}$	
54．3\％	145	108	37	
55．6\％	0	0	0	
	0	0	0	
59．3\％	0	0	0	
${ }^{60.5 \%}$	0	0	0	
61．7\％	0	0	0	
－63．0\％	0	0	0	
65．4\％	0	0	0	
66．7\％	0	0	0	
67．9\％	0	0	0	
69．1\％	0	0	0	
70．16\％	0	0	0	
72．8\％	0	0	0	
74．1\％	0	0	0	
75．3\％	0	0	0	
76．5\％	0	0	0	
77．8\％	0	0	0	
80．2\％	0	0		
81．5\％	0	0	0	
82．7\％	0	0	0	
84．0\％	0	0	0	
${ }^{85.2 \%}$	0	0	0	
87．7\％	0	0		
88．9\％	0	0	0	
90．1\％	0	0	0	
${ }_{\text {920．6\％}}^{91.4 \%}$	0	0	0	
93．8\％	0	0	0	
95．1\％	0	0	0	
96．3\％	0	0	0	
97．5\％	0	0	0	
988\％	0	0	0.0	

[^0]: *Diversion of flow from the Sacramento River through the weir into the Sutter Bypass; this is a result of high flows in the Sacramento River such that the river stage is greater than the crest of the weir.

