1 C.33. Qwest Flow

Figure C-33-1. Qwest, Long-Term* Average Flow

*Based on the 82-year simulation period.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-33-2. Qwest, Wet Year* Long-Term** Average Flow

*As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
**Based on the 82 -year simulation period.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-33-3. Qwest, Above Normal Year* Long-Term** Average Flow

*As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
**Based on the 82 -year simulation period.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-33-4. Qwest, Below Normal Year* Long-Term** Average Flow

*As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
**Based on the 82 -year simulation period.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text

Figure C-33-5. Qwest, Dry Year* Long-Term** Average Flow

*As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
**Based on the 82 -year simulation period.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-33-6. Qwest, Critical Year* Long-Term** Average Flow

*As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
**Based on the 82 -year simulation period.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text

Table C-33-1. Qwest, Monthly Flow

No Action Alternative

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	1,190	939	7,381	16,329	20,138	16,951	21,018	17,565	6,736	440	871	120
20\%	515	53	1,563	11,264	12,704	10,469	13,927	9,636	3,197	-437	-453	-734
30\%	215	-36	-367	5,662	10,982	7,517	10,386	6,993	1,869	-1,594	-1,445	-1,120
40\%	59	-439	-908	3,520	7,240	5,489	9,345	6,123	1,385	-2,172	-2,923	-1,931
50\%	13	-688	-1,266	2,051	4,895	3,149	7,690	5,136	1,021	-2,566	-3,852	-2,445
60\%	-277	-1,356	-1,870	926	3,228	2,565	6,087	2,939	740	-3,117	-4,635	-3,011
70\%	-498	-1,752	-3,347	-388	1,998	1,798	3,568	2,183	544	-3,831	-4,922	-3,732
80\%	-771	-2,186	-5,079	-1,042	1,138	1,341	2,090	1,276	97	-4,457	-5,315	-4,050
90\%	-1,577	-3,655	-5,613	-1,317	-525	826	1,649	929	-75	-4,771	-5,533	-4,414
Long Term												
Full Simulation Period ${ }^{\text {b }}$	-152	-604	354	6,065	8,790	7,514	9,325	6,938	2,291	-2,226	-3,046	-2,189
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	-159	-25	5,007	15,152	17,194	15,778	17,396	14,363	5,435	-668	-4,441	-2,977
Above Normal (16\%)	-434	-1,125	199	7,163	9,988	7,324	10,091	6,608	909	-2,220	-5,358	-1,608
Below Normal (13\%)	185	-1,055	-2,871	908	5,888	2,004	6,057	3,774	773	-4,223	-4,418	-3,135
Dry (24\%)	-166	-978	-2,732	266	2,980	3,262	4,539	2,664	538	-3,920	-846	-2,104
Critical (15\%)	-118	-258	-1,458	-420	1,627	1,952	1,977	1,228	1,289	-954	74	-384

Alternative 1

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	526	63	3,807	14,561	22,874	19,881	17,707	11,934	6,962	589	574	51
20\%	52	-329	-373	5,175	11,903	12,002	9,173	5,150	3,364	-449	-914	-893
30\%	-460	-1,268	-1,373	2,351	7,291	6,402	5,119	3,265	1,714	-1,165	-1,709	-1,906
40\%	-1,099	-1,835	-2,345	434	3,614	3,627	3,040	2,343	986	-1,555	-2,018	-2,562
50\%	-1,755	-2,203	-2,771	-770	1,066	1,641	2,151	2,056	282	-1,968	-3,060	-3,258
60\%	-2,219	-2,602	-2,967	-2,092	-314	884	1,828	1,415	13	-2,278	-3,763	-3,773
70\%	-2,740	-3,082	-3,330	-2,363	-1,709	-252	1,518	1,130	-706	-2,909	-4,291	-3,947
80\%	-3,336	-3,412	-3,547	-2,866	-2,513	-874	1,188	513	-1,399	-3,531	-4,804	-4,109
90\%	-3,917	-3,663	-4,036	-3,611	-3,110	-1,605	763	-453	-2,023	-4,332	-5,168	-4,339
Long Term												
Full Simulation Period ${ }^{\text {b }}$	-1,596	-1,575	-246	3,386	6,363	6,391	5,778	4,362	1,925	-1,726	-2,729	-2,654
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	-2,042	-1,353	3,511	12,143	15,965	16,223	12,737	10,629	6,448	-533	-3,786	-2,986
Above Normal (16\%)	-1,407	-1,408	-293	2,659	6,954	6,279	4,374	2,700	203	-2,384	-4,684	-4,210
Below Normal (13\%)	-2,223	-2,535	-2,647	-2,770	3,655	366	2,198	847	-1,135	-4,288	-3,305	-3,131
Dry (24\%)	-1,352	-1,850	-2,738	-1,663	-502	484	2,392	1,283	-289	-2,470	-1,259	-2,247
Critical (15\%)	-666	-898	-1,983	-742	-1,155	580	1,146	938	485	-14	-243	-491

Alternative 1 minus No Action Alternative

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	-664	-876	-3,574	-1,768	2,736	2,930	-3,312	-5,631	226	149	-297	-69
20\%	-463	-382	-1,936	-6,089	-801	1,533	-4,755	-4,487	167	-12	-461	-160
30\%	-675	-1,232	-1,006	-3,311	-3,691	-1,115	-5,267	-3,728	-155	429	-264	-786
40\%	-1,157	-1,396	-1,437	-3,087	-3,627	-1,862	-6,305	-3,780	-399	617	905	-631
50\%	-1,768	-1,515	-1,505	-2,821	-3,829	-1,507	-5,539	-3,080	-740	597	792	-813
60\%	-1,941	-1,246	-1,098	-3,018	-3,542	-1,681	-4,259	-1,524	-727	839	872	-762
70\%	-2,242	-1,329	16	-1,975	-3,707	-2,049	-2,050	-1,053	-1,251	922	631	-215
80\%	-2,565	-1,227	1,533	-1,824	-3,651	-2,215	-902	-763	-1,497	926	511	-59
90\%	-2,340	-8	1,577	-2,294	-2,585	-2,431	-886	-1,381	-1,948	440	365	75
Long Term												
Full Simulation Period ${ }^{\text {b }}$	-1,444	-971	-600	-2,679	-2,427	-1,123	-3,546	-2,575	-366	500	317	-465
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	-1,883	-1,328	-1,496	-3,009	-1,229	445	-4,659	-3,734	1,013	136	656	-9
Above Normal (16\%)	-973	-282	-492	-4,504	-3,034	-1,046	-5,717	-3,908	-707	-164	674	-2,602
Below Normal (13\%)	-2,408	-1,480	224	-3,677	-2,233	-1,637	-3,858	-2,927	-1,908	-65	1,112	4
Dry (24\%)	-1,186	-872	-6	-1,929	-3,482	-2,778	-2,147	-1,381	-827	1,451	-413	-142
Critical (15\%)	-549	-640	-524	-322	-2,782	-1,372	-831	-291	-804	940	-317	-107

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same,
therefore Second Basis of Comparison and Alternative 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-33-2. Qwest, Monthly Flow

No Action Alternative

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	1,190	939	7,381	16,329	20,138	16,951	21,018	17,565	6,736	440	871	120
20\%	515	53	1,563	11,264	12,704	10,469	13,927	9,636	3,197	-437	-453	-734
30\%	215	-36	-367	5,662	10,982	7,517	10,386	6,993	1,869	-1,594	-1,445	-1,120
40\%	59	-439	-908	3,520	7,240	5,489	9,345	6,123	1,385	-2,172	-2,923	-1,931
50\%	13	-688	-1,266	2,051	4,895	3,149	7,690	5,136	1,021	-2,566	-3,852	-2,445
60\%	-277	-1,356	-1,870	926	3,228	2,565	6,087	2,939	740	-3,117	-4,635	-3,011
70\%	-498	-1,752	-3,347	-388	1,998	1,798	3,568	2,183	544	-3,831	-4,922	-3,732
80\%	-771	-2,186	-5,079	-1,042	1,138	1,341	2,090	1,276	97	-4,457	-5,315	-4,050
90\%	-1,577	-3,655	-5,613	-1,317	-525	826	1,649	929	-75	-4,771	-5,533	-4,414
Long Term												
Full Simulation Period ${ }^{\text {b }}$	-152	-604	354	6,065	8,790	7,514	9,325	6,938	2,291	-2,226	-3,046	-2,189
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	-159	-25	5,007	15,152	17,194	15,778	17,396	14,363	5,435	-668	-4,441	-2,977
Above Normal (16\%)	-434	-1,125	199	7,163	9,988	7,324	10,091	6,608	909	-2,220	-5,358	-1,608
Below Normal (13\%)	185	-1,055	-2,871	908	5,888	2,004	6,057	3,774	773	-4,223	-4,418	-3,135
Dry (24\%)	-166	-978	-2,732	266	2,980	3,262	4,539	2,664	538	-3,920	-846	-2,104
Critical (15\%)	-118	-258	-1,458	-420	1,627	1,952	1,977	1,228	1,289	-954	74	-384

Alternative 3

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	83	73	6,891	16,697	23,223	20,213	15,887	10,799	4,840	710	346	66
20\%	49	-17	1,659	10,215	12,269	10,204	8,880	3,919	1,899	-325	-670	-971
30\%	-115	-844	38	6,317	10,027	6,380	5,473	2,022	631	-717	-1,640	-1,833
40\%	-600	-1,792	-930	3,541	6,548	4,551	3,460	1,600	180	-1,862	-2,730	-2,462
50\%	-1,730	-2,278	-1,568	2,754	4,145	2,910	3,048	1,243	-175	-2,431	-3,512	-3,217
60\%	-2,231	-2,540	-2,531	1,900	2,573	2,148	2,142	1,036	-675	-2,945	-4,187	-3,653
70\%	-2,815	-3,019	-3,073	841	1,626	1,517	1,694	609	-916	-3,376	-4,629	-3,809
80\%	-3,331	-3,396	-3,382	65	567	806	1,255	288	-1,370	-4,175	-5,134	-4,063
90\%	-3,941	-3,786	-3,798	-532	-963	-483	662	-390	-1,638	-4,926	-5,457	-4,430
Long Term												
Full Simulation Period ${ }^{\text {b }}$	-1,568	$-1,486$	783	6,530	8,539	7,092	5,910	3,725	1,179	-1,964	-2,963	-2,627
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	-2,011	-1,326	5,481	14,861	16,783	15,532	12,500	9,420	4,460	-362	-3,821	-2,846
Above Normal (16\%)	-1,488	-1,523	820	7,597	9,153	6,379	4,758	1,601	-233	-2,368	-5,066	-4,165
Below Normal (13\%)	-2,014	-2,255	-2,401	1,759	5,969	1,128	2,884	1,043	-736	-4,525	-4,783	-3,620
Dry (24\%)	-1,461	-1,779	-2,408	1,318	3,030	2,961	2,470	798	-649	-3,392	-1,162	-2,111
Critical (15\%)	-467	-597	-1,196	387	1,547	1,928	1,383	1,023	400	-269	-158	-435

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	-1,107	-866	-489	368	3,084	3,263	-5,131	-6,766	-1,896	270	-526	-54
20\%	-467	-70	96	-1,049	-435	-265	-5,048	-5,718	-1,298	112	-217	-237
30\%	-329	-808	405	655	-955	-1,137	-4,913	-4,971	-1,238	877	-196	-713
40\%	-659	-1,353	-22	20	-692	-938	-5,885	-4,523	-1,205	310	194	-532
50\%	-1,743	-1,590	-301	703	-751	-239	-4,642	-3,892	-1,196	134	340	-772
60\%	-1,953	-1,183	-661	974	-654	-417	-3,945	-1,903	-1,415	172	448	-642
70\%	-2,318	-1,267	273	1,229	-372	-281	-1,874	-1,574	-1,460	455	293	-77
80\%	-2,560	-1,210	1,698	1,107	-571	-535	-835	-989	-1,468	282	182	-13
90\%	-2,364	-131	1,816	785	-438	-1,309	-987	-1,319	-1,563	-154	76	-16
Long Term												
Full Simulation Period ${ }^{\text {b }}$	-1,416	-882	429	465	-251	-423	-3,415	-3,213	-1,112	262	83	-438
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	-1,852	-1,302	474	-291	-410	-246	-4,897	-4,943	-975	306	620	131
Above Normal (16\%)	-1,055	-397	622	434	-834	-946	-5,332	-5,007	-1,143	-148	292	-2,557
Below Normal (13\%)	-2,199	-1,200	469	851	81	-876	-3,172	-2,731	-1,509	-302	-365	-485
Dry (24\%)	-1,295	-801	323	1,052	50	-301	-2,069	-1,866	-1,187	528	-316	-7
Critical (15\%)	-349	-338	262	807	-80	-24	-594	-205	-888	685	-232	-51

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same,
therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-33-3. Qwest, Monthly Flow

No Action Alternative

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	1,190	939	7,381	16,329	20,138	16,951	21,018	17,565	6,736	440	871	120
20\%	515	53	1,563	11,264	12,704	10,469	13,927	9,636	3,197	-437	-453	-734
30\%	215	-36	-367	5,662	10,982	7,517	10,386	6,993	1,869	-1,594	-1,445	-1,120
40\%	59	-439	-908	3,520	7,240	5,489	9,345	6,123	1,385	-2,172	-2,923	-1,931
50\%	13	-688	-1,266	2,051	4,895	3,149	7,690	5,136	1,021	-2,566	-3,852	-2,445
60\%	-277	-1,356	-1,870	926	3,228	2,565	6,087	2,939	740	-3,117	-4,635	-3,011
70\%	-498	-1,752	-3,347	-388	1,998	1,798	3,568	2,183	544	-3,831	-4,922	-3,732
80\%	-771	-2,186	-5,079	-1,042	1,138	1,341	2,090	1,276	97	-4,457	-5,315	-4,050
90\%	-1,577	-3,655	-5,613	-1,317	-525	826	1,649	929	-75	-4,771	-5,533	-4,414
Long Term												
Full Simulation Period ${ }^{\text {b }}$	-152	-604	354	6,065	8,790	7,514	9,325	6,938	2,291	-2,226	-3,046	-2,189
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	-159	-25	5,007	15,152	17,194	15,778	17,396	14,363	5,435	-668	-4,441	-2,977
Above Normal (16\%)	-434	-1,125	199	7,163	9,988	7,324	10,091	6,608	909	-2,220	-5,358	-1,608
Below Normal (13\%)	185	-1,055	-2,871	908	5,888	2,004	6,057	3,774	773	-4,223	-4,418	-3,135
Dry (24\%)	-166	-978	-2,732	266	2,980	3,262	4,539	2,664	538	-3,920	-846	-2,104
Critical (15\%)	-118	-258	-1,458	-420	1,627	1,952	1,977	1,228	1,289	-954	74	-384

Alternative 5

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	1,313	968	7,282	16,331	20,138	16,955	21,014	17,566	6,728	437	81	120
20\%	638	63	1,597	11,247	13,399	10,470	13,753	9,636	2,812	-820	-724	-747
30\%	229	-54	-137	5,649	11,039	7,466	10,689	7,517	1,840	-1,646	-2,006	-1,275
40\%	63	-389	-911	3,523	7,238	5,229	9,387	6,665	1,308	-2,129	-3,225	-1,958
50\%	33	-628	-1,305	2,059	4,891	3,149	7,939	5,892	916	-2,560	-4,387	-2,417
60\%	-304	-1,160	-1,901	635	3,241	2,564	6,513	4,370	682	-3,583	-4,645	-3,022
70\%	-529	-1,607	-3,368	-267	1,998	1,797	4,975	3,342	316	-4,074	-4,946	-3,631
80\%	-808	-2,205	-5,076	-1,042	1,131	1,339	4,199	3,100	38	-4,661	-5,317	-3,869
90\%	-1,328	-3,634	-5,605	-1,318	-523	826	3,332	2,556	-228	-4,898	-5,527	-4,431
Long Term												
Full Simulation Period ${ }^{\text {b }}$	-126	-568	324	6,049	8,782	7,475	10,009	7,798	2,216	-2,354	-3,255	-2,188
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	-116	-170	4,930	15,168	17,253	15,677	17,395	14,643	5,404	-643	-4,504	-2,838
Above Normal (16\%)	-494	-665	200	7,142	9,916	7,321	10,237	7,138	900	-2,243	-5,317	-1,571
Below Normal (13\%)	244	-1,049	-2,835	903	5,803	1,948	6,741	4,691	713	-4,254	-4,527	-3,334
Dry (24\%)	-104	-940	-2,793	263	2,969	3,260	6,004	4,146	362	-4,324	-1,270	-2,188
Critical (15\%)	-124	-260	-1,433	-530	1,622	1,961	3,430	2,612	1,200	-1,154	-455	-399

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	124	28	-99	2	-1	4	-4	0	-8	-3	-790	0
20\%	122	9	34	-17	695	1	-174	0	-385	-382	-271	-14
30\%	14	-18	230	-13	57	-51	303	524	-29	-52	-561	-155
40\%	4	50	-3	3	-2	-260	42	542	-77	43	-301	-27
50\%	20	60	-39	8	-4	0	249	756	-105	5	-535	28
60\%	-27	197	-31	-291	13	-1	426	1,431	-58	-466	-10	-11
70\%	-31	145	-21	121	0	-1	1,407	1,159	-229	-243	-24	100
80\%	-37	-19	3	0	-7	-2	2,109	1,824	-59	-204	-2	181
90\%	250	21	8	-1	2	0	1,683	1,628	-153	-126	6	-17
Long Term												
Full Simulation Period ${ }^{\text {b }}$	26	36	-31	-16	-8	-40	684	860	-75	-128	-209	1
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	43	-146	-77	16	59	-102	-2	280	-31	25	-63	139
Above Normal (16\%)	-60	460	1	-20	-72	-4	146	530	-10	-23	41	37
Below Normal (13\%)	59	6	35	-5	-86	-55	684	918	-60	-31	-109	-199
Dry (24\%)	62	38	-62	-3	-12	-2	1,465	1,482	-177	-404	-423	-84
Critical (15\%)	-7	-2	26	-110	-5	8	1,453	1,383	-89	-200	-529	-15

a Exceedance probability is defined as the probability a given value will be exceeded in any one year
b Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same,
therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same,
therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-33-4. Qwest, Monthly Flow

Second Basis of Comparison

	Monthly Flow (cfs)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	526	63	3,807	14,561	22,874	19,881	17,707	11,934	6,962	589	574	51
20\%	52	-329	-373	5,175	11,903	12,002	9,173	5,150	3,364	-449	-914	-893
30\%	-460	-1,268	-1,373	2,351	7,291	6,402	5,119	3,265	1,714	-1,165	-1,709	-1,906
40\%	-1,099	-1,835	-2,345	434	3,614	3,627	3,040	2,343	986	-1,555	-2,018	-2,562
50\%	-1,755	-2,203	-2,771	-770	1,066	1,641	2,151	2,056	282	-1,968	-3,060	-3,258
60\%	-2,219	-2,602	-2,967	-2,092	-314	884	1,828	1,415	13	-2,278	-3,763	-3,773
70\%	-2,740	-3,082	-3,330	-2,363	-1,709	-252	1,518	1,130	-706	-2,909	-4,291	-3,947
80\%	-3,336	-3,412	-3,547	-2,866	-2,513	-874	1,188	513	-1,399	-3,531	-4,804	-4,109
90\%	-3,917	-3,663	-4,036	-3,611	-3,110	-1,605	763	-453	-2,023	-4,332	-5,168	-4,339
Long Term												
Full Simulation Period ${ }^{\text {b }}$	-1,596	-1,575	-246	3,386	6,363	6,391	5,778	4,362	1,925	-1,726	-2,729	-2,654
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	-2,042	-1,353	3,511	12,143	15,965	16,223	12,737	10,629	6,448	-533	-3,786	-2,986
Above Normal (16\%)	-1,407	-1,408	-293	2,659	6,954	6,279	4,374	2,700	203	-2,384	-4,684	-4,210
Below Normal (13\%)	-2,223	-2,535	-2,647	-2,770	3,655	366	2,198	847	-1,135	-4,288	-3,305	-3,131
Dry (24\%)	-1,352	-1,850	-2,738	-1,663	-502	484	2,392	1,283	-289	-2,470	-1,259	$-2,247$
Critical (15\%)	-666	-898	-1,983	-742	-1,155	580	1,146	938	485	-14	-243	-491

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	1,190	939	7,381	16,329	20,138	16,951	21,018	17,565	6,736	440	871	120
20\%	515	53	1,563	11,264	12,704	10,469	13,927	9,636	3,197	-437	-453	-734
30\%	215	-36	-367	5,662	10,982	7,517	10,386	6,993	1,869	-1,594	-1,445	-1,120
40\%	59	-439	-908	3,520	7,240	5,489	9,345	6,123	1,385	-2,172	-2,923	-1,931
50\%	13	-688	-1,266	2,051	4,895	3,149	7,690	5,136	1,021	-2,566	-3,852	-2,445
60\%	-277	-1,356	-1,870	926	3,228	2,565	6,087	2,939	740	-3,117	-4,635	-3,011
70\%	-498	-1,752	-3,347	-388	1,998	1,798	3,568	2,183	544	-3,831	-4,922	-3,732
80\%	-771	-2,186	-5,079	-1,042	1,138	1,341	2,090	1,276	97	-4,457	-5,315	-4,050
90\%	-1,577	-3,655	-5,613	-1,317	-525	826	1,649	929	-75	-4,771	-5,533	-4,414
Long Term												
Full Simulation Period ${ }^{\text {b }}$	-152	-604	354	6,065	8,790	7,514	9,325	6,938	2,291	-2,226	-3,046	-2,189
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	-159	-25	5,007	15,152	17,194	15,778	17,396	14,363	5,435	-668	-4,441	-2,977
Above Normal (16\%)	-434	-1,125	199	7,163	9,988	7,324	10,091	6,608	909	-2,220	-5,358	-1,608
Below Normal (13\%)	185	-1,055	-2,871	908	5,888	2,004	6,057	3,774	773	-4,223	-4,418	-3,135
Dry (24\%)	-166	-978	-2,732	266	2,980	3,262	4,539	2,664	538	-3,920	-846	-2,104
Critical (15\%)	-118	-258	-1,458	-420	1,627	1,952	1,977	1,228	1,289	-954	74	-384

No Action Alternative minus Second Basis of Comparison

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	664	876	3,574	1,768	-2,736	-2,930	3,312	5,631	-226	-149	297	69
20\%	463	382	1,936	6,089	801	-1,533	4,755	4,487	-167	12	461	160
30\%	675	1,232	1,006	3,311	3,691	1,115	5,267	3,728	155	-429	264	786
40\%	1,157	1,396	1,437	3,087	3,627	1,862	6,305	3,780	399	-617	-905	631
50\%	1,768	1,515	1,505	2,821	3,829	1,507	5,539	3,080	740	-597	-792	813
60\%	1,941	1,246	1,098	3,018	3,542	1,681	4,259	1,524	727	-839	-872	762
70\%	2,242	1,329	-16	1,975	3,707	2,049	2,050	1,053	1,251	-922	-631	215
80\%	2,565	1,227	-1,533	1,824	3,651	2,215	902	763	1,497	-926	-511	59
90\%	2,340	8	-1,577	2,294	2,585	2,431	886	1,381	1,948	-440	-365	-75
Long Term												
Full Simulation Period ${ }^{\text {b }}$	1,444	971	600	2,679	2,427	1,123	3,546	2,575	366	-500	-317	465
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	1,883	1,328	1,496	3,009	1,229	-445	4,659	3,734	-1,013	-136	-656	9
Above Normal (16\%)	973	282	492	4,504	3,034	1,046	5,717	3,908	707	164	-674	2,602
Below Normal (13\%)	2,408	1,480	-224	3,677	2,233	1,637	3,858	2,927	1,908	65	-1,112	-4
Dry (24\%)	1,186	872	6	1,929	3,482	2,778	2,147	1,381	827	-1,451	413	142
Critical (15\%)	549	640	524	322	2,782	1,372	831	291	804	-940	317	107

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period
C As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same,
therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same,
therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-33-5. Qwest, Monthly Flow

Second Basis of Comparison

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	526	63	3,807	14,561	22,874	19,881	17,707	11,934	6,962	589	574	51
20\%	52	-329	-373	5,175	11,903	12,002	9,173	5,150	3,364	-449	-914	-893
30\%	-460	-1,268	-1,373	2,351	7,291	6,402	5,119	3,265	1,714	-1,165	-1,709	-1,906
40\%	-1,099	-1,835	-2,345	434	3,614	3,627	3,040	2,343	986	-1,555	-2,018	-2,562
50\%	-1,755	-2,203	-2,771	-770	1,066	1,641	2,151	2,056	282	-1,968	-3,060	-3,258
60\%	-2,219	-2,602	-2,967	-2,092	-314	884	1,828	1,415	13	-2,278	-3,763	-3,773
70\%	-2,740	-3,082	-3,330	-2,363	-1,709	-252	1,518	1,130	-706	-2,909	-4,291	-3,947
80\%	-3,336	-3,412	-3,547	-2,866	-2,513	-874	1,188	513	-1,399	-3,531	-4,804	-4,109
90\%	-3,917	-3,663	-4,036	-3,611	-3,110	-1,605	763	-453	-2,023	-4,332	-5,168	-4,339
Long Term												
Full Simulation Period ${ }^{\text {b }}$	-1,596	-1,575	-246	3,386	6,363	6,391	5,778	4,362	1,925	-1,726	-2,729	-2,654
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	-2,042	-1,353	3,511	12,143	15,965	16,223	12,737	10,629	6,448	-533	-3,786	-2,986
Above Normal (16\%)	-1,407	-1,408	-293	2,659	6,954	6,279	4,374	2,700	203	-2,384	-4,684	-4,210
Below Normal (13\%)	-2,223	-2,535	-2,647	-2,770	3,655	366	2,198	847	-1,135	-4,288	-3,305	-3,131
Dry (24\%)	-1,352	-1,850	-2,738	-1,663	-502	484	2,392	1,283	-289	-2,470	-1,259	-2,247
Critical (15\%)	-666	-898	-1,983	-742	-1,155	580	1,146	938	485	-14	-243	-491

Alternative 3

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	83	73	6,891	16,697	23,223	20,213	15,887	10,799	4,840	710	346	66
20\%	49	-17	1,659	10,215	12,269	10,204	8,880	3,919	1,899	-325	-670	-971
30\%	-115	-844	38	6,317	10,027	6,380	5,473	2,022	631	-717	-1,640	-1,833
40\%	-600	-1,792	-930	3,541	6,548	4,551	3,460	1,600	180	-1,862	-2,730	-2,462
50\%	-1,730	-2,278	-1,568	2,754	4,145	2,910	3,048	1,243	-175	-2,431	-3,512	-3,217
60\%	-2,231	-2,540	-2,531	1,900	2,573	2,148	2,142	1,036	-675	-2,945	-4,187	-3,653
70\%	-2,815	-3,019	-3,073	841	1,626	1,517	1,694	609	-916	-3,376	-4,629	-3,809
80\%	-3,331	-3,396	-3,382	65	567	806	1,255	288	-1,370	-4,175	-5,134	-4,063
90\%	-3,941	-3,786	-3,798	-532	-963	-483	662	-390	-1,638	-4,926	-5,457	-4,430
Long Term												
Full Simulation Period ${ }^{\text {b }}$	-1,568	-1,486	783	6,530	8,539	7,092	5,910	3,725	1,179	-1,964	-2,963	-2,627
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	-2,011	-1,326	5,481	14,861	16,783	15,532	12,500	9,420	4,460	-362	-3,821	-2,846
Above Normal (16\%)	-1,488	-1,523	820	7,597	9,153	6,379	4,758	1,601	-233	-2,368	-5,066	-4,165
Below Normal (13\%)	-2,014	-2,255	-2,401	1,759	5,969	1,128	2,884	1,043	-736	-4,525	-4,783	-3,620
Dry (24\%)	-1,461	-1,779	-2,408	1,318	3,030	2,961	2,470	798	-649	-3,392	-1,162	-2,111
Critical (15\%)	-467	-597	-1,196	387	1,547	1,928	1,383	1,023	400	-269	-158	-435

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	-443	10	3,084	2,136	349	333	-1,819	-1,135	-2,122	121	-229	16
20\%	-4	312	2,032	5,040	365	-1,798	-293	-1,231	-1,465	124	244	-77
30\%	345	424	1,412	3,966	2,736	-22	354	-1,243	-1,083	448	68	73
40\%	498	43	1,415	3,107	2,934	924	420	-742	-806	-306	-712	100
50\%	25	-75	1,203	3,524	3,079	1,268	897	-812	-456	-463	-452	41
60\%	-12	62	436	3,991	2,888	1,264	314	-379	-689	-667	-424	120
70\%	-76	63	257	3,204	3,335	1,768	176	-521	-210	-467	-339	138
80\%	6	17	165	2,931	3,080	1,680	67	-225	29	-644	-330	46
90\%	-24	-123	239	3,079	2,147	1,122	-101	63	386	-594	-289	-91
Long Term												
Full Simulation Period ${ }^{\text {b }}$	27	89	1,030	3,144	2,176	700	131	-637	-746	-238	-234	27
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	31	26	1,970	2,718	819	-691	-238	-1,209	-1,988	170	-36	140
Above Normal (16\%)	-82	-115	1,113	4,938	2,200	100	385	-1,099	-436	16	-382	45
Below Normal (13\%)	209	280	245	4,529	2,314	761	686	196	399	-237	-1,477	-489
Dry (24\%)	-110	70	330	2,981	3,532	2,477	78	-485	-360	-923	98	136
Critical (15\%)	199	302	786	1,129	2,702	1,348	237	85	-84	-255	85	56

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same,
therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same,
therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-33-6. Qwest, Monthly Flow

Second Basis of Comparison

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	526	63	3,807	14,561	22,874	19,881	17,707	11,934	6,962	589	574	51
20\%	52	-329	-373	5,175	11,903	12,002	9,173	5,150	3,364	-449	-914	-893
30\%	-460	-1,268	-1,373	2,351	7,291	6,402	5,119	3,265	1,714	-1,165	-1,709	-1,906
40\%	-1,099	-1,835	-2,345	434	3,614	3,627	3,040	2,343	986	-1,555	-2,018	-2,562
50\%	-1,755	-2,203	-2,771	-770	1,066	1,641	2,151	2,056	282	-1,968	-3,060	-3,258
60\%	-2,219	-2,602	-2,967	-2,092	-314	884	1,828	1,415	13	-2,278	-3,763	-3,773
70\%	-2,740	-3,082	-3,330	-2,363	-1,709	-252	1,518	1,130	-706	-2,909	-4,291	-3,947
80\%	-3,336	-3,412	-3,547	-2,866	-2,513	-874	1,188	513	-1,399	-3,531	-4,804	-4,109
90\%	-3,917	-3,663	-4,036	-3,611	-3,110	-1,605	763	-453	-2,023	-4,332	-5,168	-4,339
Long Term												
Full Simulation Period ${ }^{\text {b }}$	-1,596	-1,575	-246	3,386	6,363	6,391	5,778	4,362	1,925	-1,726	-2,729	-2,654
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	-2,042	-1,353	3,511	12,143	15,965	16,223	12,737	10,629	6,448	-533	-3,786	-2,986
Above Normal (16\%)	-1,407	-1,408	-293	2,659	6,954	6,279	4,374	2,700	203	-2,384	-4,684	-4,210
Below Normal (13\%)	-2,223	-2,535	-2,647	-2,770	3,655	366	2,198	847	-1,135	-4,288	-3,305	-3,131
Dry (24\%)	-1,352	-1,850	-2,738	-1,663	-502	484	2,392	1,283	-289	-2,470	-1,259	-2,247
Critical (15\%)	-666	-898	-1,983	-742	-1,155	580	1,146	938	485	-14	-243	-491

Alternative 5

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	1,313	968	7,282	16,331	20,138	16,955	21,014	17,566	6,728	437	81	120
20\%	638	63	1,597	11,247	13,399	10,470	13,753	9,636	2,812	-820	-724	-747
30\%	229	-54	-137	5,649	11,039	7,466	10,689	7,517	1,840	-1,646	-2,006	-1,275
40\%	63	-389	-911	3,523	7,238	5,229	9,387	6,665	1,308	-2,129	-3,225	-1,958
50\%	33	-628	-1,305	2,059	4,891	3,149	7,939	5,892	916	-2,560	-4,387	-2,417
60\%	-304	-1,160	-1,901	635	3,241	2,564	6,513	4,370	682	-3,583	-4,645	-3,022
70\%	-529	-1,607	-3,368	-267	1,998	1,797	4,975	3,342	316	-4,074	-4,946	-3,631
80\%	-808	-2,205	-5,076	-1,042	1,131	1,339	4,199	3,100	38	-4,661	-5,317	-3,869
90\%	-1,328	-3,634	-5,605	-1,318	-523	826	3,332	2,556	-228	-4,898	-5,527	-4,431
Long Term												
Full Simulation Period ${ }^{\text {b }}$	-126	-568	324	6,049	8,782	7,475	10,009	7,798	2,216	-2,354	$-3,255$	-2,188
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	-116	-170	4,930	15,168	17,253	15,677	17,395	14,643	5,404	-643	-4,504	-2,838
Above Normal (16\%)	-494	-665	200	7,142	9,916	7,321	10,237	7,138	900	-2,243	-5,317	-1,571
Below Normal (13\%)	244	-1,049	-2,835	903	5,803	1,948	6,741	4,691	713	-4,254	-4,527	-3,334
Dry (24\%)	-104	-940	-2,793	263	2,969	3,260	6,004	4,146	362	-4,324	-1,270	-2,188
Critical (15\%)	-124	-260	-1,433	-530	1,622	1,961	3,430	2,612	1,200	-1,154	-455	-399

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	787	904	3,475	1,770	-2,737	-2,926	3,308	5,632	-234	-152	-493	69
20\%	585	391	1,970	6,072	1,495	-1,532	4,580	4,487	-552	-370	190	146
30\%	689	1,214	1,237	3,298	3,748	1,064	5,570	4,252	126	-481	-297	631
40\%	1,161	1,446	1,434	3,090	3,625	1,602	6,347	4,322	322	-574	-1,207	604
50\%	1,787	1,575	1,466	2,829	3,825	1,508	5,787	3,836	634	-592	-1,327	841
60\%	1,915	1,442	1,066	2,726	3,555	1,680	4,685	2,955	669	-1,305	-882	751
70\%	2,211	1,474	-37	2,096	3,706	2,049	3,457	2,212	1,022	-1,165	-655	316
80\%	2,528	1,208	-1,530	1,824	3,643	2,213	3,011	2,587	1,438	-1,129	-513	240
90\%	2,590	29	-1,568	2,293	2,588	2,431	2,569	3,009	1,795	-566	-359	-92
Long Term												
Full Simulation Period ${ }^{\text {b }}$	1,470	1,007	570	2,663	2,419	1,083	4,231	3,435	291	-627	-525	466
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	1,927	1,182	1,419	3,025	1,288	-547	4,657	4,014	-1,043	-110	-718	148
Above Normal (16\%)	913	742	493	4,484	2,962	1,042	5,863	4,438	697	141	-633	2,639
Below Normal (13\%)	2,467	1,487	-189	3,672	2,148	1,582	4,542	3,844	1,847	34	-1,222	-202
Dry (24\%)	1,248	910	-56	1,926	3,471	2,776	3,612	2,863	651	-1,855	-10	58
Critical (15\%)	542	638	550	213	2,776	1,380	2,284	1,674	715	-1,140	-212	93

a Exceedance probability is defined as the probability a given value will be exceeded in any one year
b Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same,
therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same,
therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

1 C.34. San Joaquin River Flow at Vernalis

Figure C-34-1. San Joaquin River at Vernalis, Long-Term* Average Flow

*Based on the 82-year simulation period.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-34-2. San Joaquin River at Vernalis, Wet Year* Long-Term** Average Flow

*As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
**Based on the 82 -year simulation period.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-34-3. San Joaquin River at Vernalis, Above Normal Year* Long-Term** Average Flow

*As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
**Based on the 82 -year simulation period.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-34-4. San Joaquin River at Vernalis, Below Normal Year* Long-Term** Average Flow

*As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
**Based on the 82 -year simulation period.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-34-5. San Joaquin River at Vernalis, Dry Year* Long-Term** Average Flow

*As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
**Based on the 82 -year simulation period.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-34-6. San Joaquin River at Vernalis, Critical Year* Long-Term** Average Flow

*As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
**Based on the 82 -year simulation period.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-34-1. San Joaquin River at Vernalis, Monthly Flow

No Action Alternative

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3,498	2,953	4,804	11,135	14,596	15,471	14,974	14,174	9,351	5,890	2,796	3,060
20\%	3,161	2,777	2,857	4,812	10,143	10,197	10,637	8,318	4,690	2,628	2,589	2,654
30\%	2,980	2,527	2,401	3,610	6,118	8,459	8,616	5,534	3,364	1,985	1,904	2,490
40\%	2,796	2,395	2,215	2,629	4,232	5,570	7,564	4,609	2,947	1,735	1,666	2,125
50\%	2,601	2,219	2,101	2,402	3,420	3,847	6,017	3,925	2,246	1,487	1,488	1,930
60\%	2,401	2,169	2,046	2,293	2,683	3,459	4,832	3,062	1,859	1,366	1,403	1,835
70\%	2,247	2,059	1,979	2,114	2,305	2,906	3,776	2,699	1,448	1,154	1,307	1,739
80\%	1,994	1,951	1,829	1,884	2,150	2,371	2,789	2,153	1,293	1,087	1,202	1,611
90\%	1,849	1,763	1,669	1,699	1,947	2,204	1,887	1,678	1,085	885	1,067	1,476
Long Term												
Full Simulation Period ${ }^{\text {b }}$	2,672	2,611	3,391	5,070	6,655	7,278	7,528	6,039	4,194	2,622	1,847	2,223
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	2,918	3,513	6,545	11,446	15,776	16,863	15,423	14,628	11,335	6,676	3,135	3,416
Above Normal (24\%)	2,700	2,416	2,663	4,883	6,881	7,536	8,542	5,264	3,280	1,989	1,975	2,345
Below Normal (10\%)	2,538	2,249	3,661	3,507	3,651	4,149	6,337	4,140	2,076	1,463	1,446	1,837
Dry (16\%)	2,767	2,569	2,232	2,402	2,549	3,241	3,996	2,805	1,680	1,254	1,347	1,776
Critical (27\%)	2,426	2,168	1,915	1,877	2,090	2,288	2,307	1,929	1,115	926	1,060	1,487

Alternative 1

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3,015	3,156	4,932	11,157	14,594	15,467	14,666	14,360	10,139	5,612	2,740	3,146
20\%	2,692	2,843	2,953	4,819	10,200	9,482	10,169	8,291	5,696	2,636	2,600	2,658
30\%	2,520	2,663	2,541	3,655	6,300	7,933	8,421	5,676	3,488	1,990	1,897	2,503
40\%	2,331	2,500	2,341	2,692	4,268	5,393	7,435	4,617	3,188	1,742	1,676	2,142
50\%	2,157	2,386	2,257	2,544	3,420	3,883	6,016	4,043	2,349	1,506	1,500	1,944
60\%	1,952	2,244	2,165	2,343	2,774	3,511	4,349	3,276	1,895	1,379	1,415	1,842
70\%	1,752	2,141	2,027	2,153	2,443	2,963	3,119	2,891	1,485	1,170	1,321	1,743
80\%	1,597	1,984	1,903	1,923	2,174	2,414	2,442	2,362	1,274	1,088	1,211	1,611
90\%	1,411	1,793	1,699	1,733	1,945	2,230	1,779	1,890	1,085	941	1,071	1,478
Long Term												
Full Simulation Period ${ }^{\text {b }}$	2,241	2,721	3,492	5,136	6,700	7,131	7,255	6,101	4,547	2,625	1,838	2,238
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	2,497	3,627	6,644	11,506	15,763	16,308	15,374	14,433	12,512	6,641	3,078	3,456
Above Normal (24\%)	2,288	2,532	2,757	4,947	6,946	7,415	8,260	5,348	3,525	1,999	1,977	2,352
Below Normal (10\%)	2,086	2,397	3,810	3,608	3,723	4,101	5,842	4,213	2,225	1,481	1,457	1,856
Dry (16\%)	2,339	2,684	2,347	2,487	2,628	3,304	3,551	2,976	1,714	1,267	1,362	1,789
Critical (27\%)	1,974	2,251	1,998	1,927	2,138	2,311	2,031	2,122	1,116	943	1,059	1,485

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	-483	203	128	23	-2	-4	-308	186	788	-278	-56	86
20\%	-469	65	96	7	57	-714	-468	-26	1,006	8	11	4
30\%	-460	136	141	44	182	-526	-195	142	124	5	-7	13
40\%	-465	105	125	64	36	-177	-129	8	241	8	10	17
50\%	-444	166	156	143	0	36	-2	118	103	20	12	14
60\%	-449	75	119	50	91	52	-483	214	36	14	13	7
70\%	-494	82	48	39	139	57	-657	192	37	15	14	4
80\%	-397	33	74	40	23	43	-347	209	-19	1	9	1
90\%	-438	30	30	34	-2	26	-108	213	0	56	5	2
Long Term												
Full Simulation Period ${ }^{\text {b }}$	-431	110	101	66	45	-147	-273	61	353	3	-9	14
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	-420	114	99	60	-13	-555	-49	-195	1,177	-35	-57	40
Above Normal (24\%)	-412	116	94	63	65	-121	-282	83	244	10	2	7
Below Normal (10\%)	-452	148	148	102	72	-49	-495	74	149	18	11	19
Dry (16\%)	-428	115	115	85	79	63	-445	171	33	12	15	13
Critical (27\%)	-452	83	83	49	48	23	-276	194	2	17	-1	-2

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same,
therefore Second Basis of Comparison and Alternative 4 results are not presented. Qualitative differences, if applicable, are discussed in text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in text.

Table C-34-2. San Joaquin River at Vernalis, Monthly Flow

No Action Alternative

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3,498	2,953	4,804	11,135	14,596	15,471	14,974	14,174	9,351	5,890	2,796	3,060
20\%	3,161	2,777	2,857	4,812	10,143	10,197	10,637	8,318	4,690	2,628	2,589	2,654
30\%	2,980	2,527	2,401	3,610	6,118	8,459	8,616	5,534	3,364	1,985	1,904	2,490
40\%	2,796	2,395	2,215	2,629	4,232	5,570	7,564	4,609	2,947	1,735	1,666	2,125
50\%	2,601	2,219	2,101	2,402	3,420	3,847	6,017	3,925	2,246	1,487	1,488	1,930
60\%	2,401	2,169	2,046	2,293	2,683	3,459	4,832	3,062	1,859	1,366	1,403	1,835
70\%	2,247	2,059	1,979	2,114	2,305	2,906	3,776	2,699	1,448	1,154	1,307	1,739
80\%	1,994	1,951	1,829	1,884	2,150	2,371	2,789	2,153	1,293	1,087	1,202	1,611
90\%	1,849	1,763	1,669	1,699	1,947	2,204	1,887	1,678	1,085	885	1,067	1,476
Long Term												
Full Simulation Period ${ }^{\text {b }}$	2,672	2,611	3,391	5,070	6,655	7,278	7,528	6,039	4,194	2,622	1,847	2,223
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	2,918	3,513	6,545	11,446	15,776	16,863	15,423	14,628	11,335	6,676	3,135	3,416
Above Normal (24\%)	2,700	2,416	2,663	4,883	6,881	7,536	8,542	5,264	3,280	1,989	1,975	2,345
Below Normal (10\%)	2,538	2,249	3,661	3,507	3,651	4,149	6,337	4,140	2,076	1,463	1,446	1,837
Dry (16\%)	2,767	2,569	2,232	2,402	2,549	3,241	3,996	2,805	1,680	1,254	1,347	1,776
Critical (27\%)	2,426	2,168	1,915	1,877	2,090	2,288	2,307	1,929	1,115	926	1,060	1,487

Alternative 3

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3,023	3,053	4,949	12,089	17,246	15,467	14,936	14,309	10,004	6,473	3,525	3,287
20\%	2,667	2,830	2,938	4,833	10,213	9,874	10,251	7,931	4,627	2,495	2,587	2,623
30\%	2,494	2,583	2,421	3,540	6,797	7,753	8,532	5,438	2,558	1,926	1,892	2,464
40\%	2,328	2,478	2,304	2,753	4,210	5,305	7,580	4,344	2,294	1,722	1,667	2,125
50\%	2,137	2,313	2,191	2,439	3,215	3,847	6,112	3,821	1,955	1,506	1,495	1,932
60\%	1,956	2,244	2,140	2,236	2,668	3,440	4,501	2,907	1,700	1,361	1,415	1,838
70\%	1,782	2,148	2,012	2,088	2,360	2,906	3,355	2,502	1,364	1,164	1,319	1,743
80\%	1,609	1,974	1,886	1,824	2,090	2,371	2,581	2,158	1,241	1,026	1,211	1,612
90\%	1,466	1,763	1,669	1,639	1,849	2,205	1,936	1,650	1,001	930	1,065	1,477
Long Term												
Full Simulation Period ${ }^{\text {b }}$	2,252	2,683	3,501	5,108	6,872	7,145	7,431	5,830	4,009	2,655	1,882	2,271
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	2,505	3,604	6,760	11,512	16,584	16,445	15,425	14,237	11,476	6,916	3,267	3,610
Above Normal (24\%)	2,310	2,488	2,775	4,925	6,937	7,444	8,476	5,078	2,579	1,910	1,972	2,341
Below Normal (10\%)	2,067	2,299	3,711	3,708	3,857	4,057	6,015	3,856	1,865	1,472	1,454	1,834
Dry (16\%)	2,346	2,646	2,309	2,419	2,607	3,241	3,785	2,611	1,568	1,253	1,360	1,782
Critical (27\%)	1,991	2,227	1,974	1,842	2,043	2,273	2,247	1,874	1,080	912	1,067	1,497

	Monthly Flow (cfs)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	-474	100	146	954	2,651	-4	-38	135	653	582	729	227
20\%	-495	53	80	21	70	-322	-386	-387	-63	-134	-2	-31
30\%	-486	56	20	-71	679	-706	-84	-95	-806	-59	-11	-25
40\%	-468	83	89	124	-22	-264	17	-265	-653	-12	1	0
50\%	-464	94	91	37	-205	1	95	-104	-291	19	6	3
60\%	-444	75	94	-57	-15	-19	-331	-155	-159	-5	13	3
70\%	-465	89	33	-26	55	0	-421	-197	-83	10	12	4
80\%	-385	23	56	-59	-60	1	-208	5	-52	-61	9	2
90\%	-382	0	0	-59	-98	1	49	-27	-84	45	-1	1
Long Term												
Full Simulation Period ${ }^{\text {b }}$	-420	72	110	38	218	-132	-97	-209	-186	33	35	47
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	-412	91	215	66	808	-418	2	-391	141	240	132	194
Above Normal (24\%)	-390	72	112	42	56	-93	-66	-186	-701	-79	-3	-4
Below Normal (10\%)	-471	50	50	201	206	-92	-322	-284	-210	9	8	-3
Dry (16\%)	-421	77	77	17	58	1	-212	-194	-112	-2	13	6
Critical (27\%)	-435	59	59	-35	-47	-15	-61	-54	-34	-14	7	10

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same,
therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in text.

1/0/1900

No Action Alternative

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3,498	2,953	4,804	11,135	14,596	15,471	14,974	14,174	9,351	5,890	2,796	3,060
20\%	3,161	2,777	2,857	4,812	10,143	10,197	10,637	8,318	4,690	2,628	2,589	2,654
30\%	2,980	2,527	2,401	3,610	6,118	8,459	8,616	5,534	3,364	1,985	1,904	2,490
40\%	2,796	2,395	2,215	2,629	4,232	5,570	7,564	4,609	2,947	1,735	1,666	2,125
50\%	2,601	2,219	2,101	2,402	3,420	3,847	6,017	3,925	2,246	1,487	1,488	1,930
60\%	2,401	2,169	2,046	2,293	2,683	3,459	4,832	3,062	1,859	1,366	1,403	1,835
70\%	2,247	2,059	1,979	2,114	2,305	2,906	3,776	2,699	1,448	1,154	1,307	1,739
80\%	1,994	1,951	1,829	1,884	2,150	2,371	2,789	2,153	1,293	1,087	1,202	1,611
90\%	1,849	1,763	1,669	1,699	1,947	2,204	1,887	1,678	1,085	885	1,067	1,476
Long Term												
Full Simulation Period ${ }^{\text {b }}$	2,672	2,611	3,391	5,070	6,655	7,278	7,528	6,039	4,194	2,622	1,847	2,223
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	2,918	3,513	6,545	11,446	15,776	16,863	15,423	14,628	11,335	6,676	3,135	3,416
Above Normal (24\%)	2,700	2,416	2,663	4,883	6,881	7,536	8,542	5,264	3,280	1,989	1,975	2,345
Below Normal (10\%)	2,538	2,249	3,661	3,507	3,651	4,149	6,337	4,140	2,076	1,463	1,446	1,837
Dry (16\%)	2,767	2,569	2,232	2,402	2,549	3,241	3,996	2,805	1,680	1,254	1,347	1,776
Critical (27\%)	2,426	2,168	1,915	1,877	2,090	2,288	2,307	1,929	1,115	926	1,060	1,487

Alternative 5

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3,495	2,953	4,804	11,129	14,597	15,473	14,976	14,176	9,351	5,773	2,776	3,084
20\%	3,146	2,777	2,897	4,811	10,142	9,856	10,265	8,232	4,688	2,628	2,589	2,654
30\%	2,938	2,527	2,401	3,610	6,118	8,461	8,576	5,670	3,364	1,985	1,904	2,488
40\%	2,763	2,395	2,204	2,629	4,232	5,570	7,567	5,162	2,947	1,735	1,666	2,125
50\%	2,588	2,219	2,101	2,402	3,420	3,846	6,110	4,183	2,219	1,484	1,488	1,930
60\%	2,385	2,169	2,046	2,289	2,683	3,459	5,047	3,554	1,860	1,365	1,402	1,835
70\%	2,196	2,059	1,979	2,083	2,303	2,906	4,317	2,916	1,447	1,155	1,307	1,739
80\%	1,988	1,951	1,829	1,883	2,145	2,371	3,100	2,401	1,283	1,052	1,202	1,611
90\%	1,849	1,763	1,669	1,699	1,947	2,204	2,461	2,245	1,000	885	1,025	1,431
Long Term												
Full Simulation Period ${ }^{\text {b }}$	2,660	2,609	3,371	5,071	6,639	7,235	7,686	6,290	4,174	2,597	1,818	2,213
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	2,903	3,513	6,448	11,445	15,743	16,679	15,389	14,666	11,287	6,580	3,020	3,379
Above Normal (24\%)	2,691	2,411	2,679	4,897	6,864	7,536	8,487	5,671	3,280	1,989	1,975	2,345
Below Normal (10\%)	2,531	2,249	3,661	3,506	3,650	4,149	6,299	4,206	2,062	1,462	1,446	1,837
Dry (16\%)	2,750	2,569	2,232	2,400	2,547	3,241	4,420	3,245	1,672	1,253	1,346	1,776
Critical (27\%)	2,418	2,163	1,910	1,871	2,078	2,288	2,741	2,177	1,090	916	1,051	1,480

Alternative 5 minus No Action Alternative

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	-2	0	0	-6	1	2	2	2	0	-117	-20	24
20\%	-16	0	39	0	0	-341	-372	-86	-2	-1	0	0
30\%	-42	0	0	0	0	1	-40	136	0	0	0	-1
40\%	-32	0	-11	0	0	0	3	553	0	0	0	0
50\%	-14	0	0	0	0	0	92	258	-26	-3	0	0
60\%	-15	0	0	-4	0	0	215	492	0	-1	0	0
70\%	-51	0	0	-31	-2	0	541	216	0	1	0	0
80\%	-7	0	0	0	-6	0	311	248	-10	-36	0	0
90\%	0	0	0	0	0	0	574	568	-85	0	-42	-45
Long Term												
Full Simulation Period ${ }^{\text {b }}$	-11	-2	-20	1	-15	-43	158	251	-20	-25	-29	-11
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	-15	0	-97	0	-32	-185	-34	38	-47	-96	-115	-38
Above Normal (24\%)	-9	-5	16	13	-17	0	-55	407	0	0	0	0
Below Normal (10\%)	-7	0	0	-1	-1	0	-38	66	-14	0	0	0
Dry (16\%)	-17	0	0	-2	-2	0	424	439	-9	-1	-1	0
Critical (27\%)	-8	-5	-5	-6	-13	0	434	248	-24	-10	-9	-7

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same,
therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in text.

Table C-34-4. San Joaquin River at Vernalis, Monthly Flow

Second Basis of Comparison

	Monthly Flow (cfs)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3,015	3,156	4,932	11,157	14,594	15,467	14,666	14,360	10,139	5,612	2,740	3,146
20\%	2,692	2,843	2,953	4,819	10,200	9,482	10,169	8,291	5,696	2,636	2,600	2,658
30\%	2,520	2,663	2,541	3,655	6,300	7,933	8,421	5,676	3,488	1,990	1,897	2,503
40\%	2,331	2,500	2,341	2,692	4,268	5,393	7,435	4,617	3,188	1,742	1,676	2,142
50\%	2,157	2,386	2,257	2,544	3,420	3,883	6,016	4,043	2,349	1,506	1,500	1,944
60\%	1,952	2,244	2,165	2,343	2,774	3,511	4,349	3,276	1,895	1,379	1,415	1,842
70\%	1,752	2,141	2,027	2,153	2,443	2,963	3,119	2,891	1,485	1,170	1,321	1,743
80\%	1,597	1,984	1,903	1,923	2,174	2,414	2,442	2,362	1,274	1,088	1,211	1,611
90\%	1,411	1,793	1,699	1,733	1,945	2,230	1,779	1,890	1,085	941	1,071	1,478
Long Term												
Full Simulation Period ${ }^{\text {b }}$	2,241	2,721	3,492	5,136	6,700	7,131	7,255	6,101	4,547	2,625	1,838	2,238
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	2,497	3,627	6,644	11,506	15,763	16,308	15,374	14,433	12,512	6,641	3,078	3,456
Above Normal (24\%)	2,288	2,532	2,757	4,947	6,946	7,415	8,260	5,348	3,525	1,999	1,977	2,352
Below Normal (10\%)	2,086	2,397	3,810	3,608	3,723	4,101	5,842	4,213	2,225	1,481	1,457	1,856
Dry (16\%)	2,339	2,684	2,347	2,487	2,628	3,304	3,551	2,976	1,714	1,267	1,362	1,789
Critical (27\%)	1,974	2,251	1,998	1,927	2,138	2,311	2,031	2,122	1,116	943	1,059	1,485

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3,498	2,953	4,804	11,135	14,596	15,471	14,974	14,174	9,351	5,890	2,796	3,060
20\%	3,161	2,777	2,857	4,812	10,143	10,197	10,637	8,318	4,690	2,628	2,589	2,654
30\%	2,980	2,527	2,401	3,610	6,118	8,459	8,616	5,534	3,364	1,985	1,904	2,490
40\%	2,796	2,395	2,215	2,629	4,232	5,570	7,564	4,609	2,947	1,735	1,666	2,125
50\%	2,601	2,219	2,101	2,402	3,420	3,847	6,017	3,925	2,246	1,487	1,488	1,930
60\%	2,401	2,169	2,046	2,293	2,683	3,459	4,832	3,062	1,859	1,366	1,403	1,835
70\%	2,247	2,059	1,979	2,114	2,305	2,906	3,776	2,699	1,448	1,154	1,307	1,739
80\%	1,994	1,951	1,829	1,884	2,150	2,371	2,789	2,153	1,293	1,087	1,202	1,611
90\%	1,849	1,763	1,669	1,699	1,947	2,204	1,887	1,678	1,085	885	1,067	1,476
Long Term												
Full Simulation Period ${ }^{\text {b }}$	2,672	2,611	3,391	5,070	6,655	7,278	7,528	6,039	4,194	2,622	1,847	2,223
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	2,918	3,513	6,545	11,446	15,776	16,863	15,423	14,628	11,335	6,676	3,135	3,416
Above Normal (24\%)	2,700	2,416	2,663	4,883	6,881	7,536	8,542	5,264	3,280	1,989	1,975	2,345
Below Normal (10\%)	2,538	2,249	3,661	3,507	3,651	4,149	6,337	4,140	2,076	1,463	1,446	1,837
Dry (16\%)	2,767	2,569	2,232	2,402	2,549	3,241	3,996	2,805	1,680	1,254	1,347	1,776
Critical (27\%)	2,426	2,168	1,915	1,877	2,090	2,288	2,307	1,929	1,115	926	1,060	1,487

No Action Alternative minus Second Basis of Comparison

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	483	-203	-128	-23	2	4	308	-186	-788	278	56	-86
20\%	469	-65	-96	-7	-57	714	468	26	-1,006	-8	-11	-4
30\%	460	-136	-141	-44	-182	526	195	-142	-124	-5	7	-13
40\%	465	-105	-125	-64	-36	177	129	-8	-241	-8	-10	-17
50\%	444	-166	-156	-143	0	-36	2	-118	-103	-20	-12	-14
60\%	449	-75	-119	-50	-91	-52	483	-214	-36	-14	-13	-7
70\%	494	-82	-48	-39	-139	-57	657	-192	-37	-15	-14	-4
80\%	397	-33	-74	-40	-23	-43	347	-209	19	-1	-9	-1
90\%	438	-30	-30	-34	2	-26	108	-213	0	-56	-5	-2
Long Term												
Full Simulation Period ${ }^{\text {b }}$	431	-110	-101	-66	-45	147	273	-61	-353	-3	9	-14
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	420	-114	-99	-60	13	555	49	195	-1,177	35	57	-40
Above Normal (24\%)	412	-116	-94	-63	-65	121	282	-83	-244	-10	-2	-7
Below Normal (10\%)	452	-148	-148	-102	-72	49	495	-74	-149	-18	-11	-19
Dry (16\%)	428	-115	-115	-85	-79	-63	445	-171	-33	-12	-15	-13
Critical (27\%)	452	-83	-83	-49	-48	-23	276	-194	-2	-17	1	2

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same,
therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in text. 3) Model results for Alternative 2 and $N \mathrm{No}$ Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in text.

Table C-34-5. San Joaquin River at Vernalis, Monthly Flow

Second Basis of Comparison

	Monthly Flow (cfs)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3,015	3,156	4,932	11,157	14,594	15,467	14,666	14,360	10,139	5,612	2,740	3,146
20\%	2,692	2,843	2,953	4,819	10,200	9,482	10,169	8,291	5,696	2,636	2,600	2,658
30\%	2,520	2,663	2,541	3,655	6,300	7,933	8,421	5,676	3,488	1,990	1,897	2,503
40\%	2,331	2,500	2,341	2,692	4,268	5,393	7,435	4,617	3,188	1,742	1,676	2,142
50\%	2,157	2,386	2,257	2,544	3,420	3,883	6,016	4,043	2,349	1,506	1,500	1,944
60\%	1,952	2,244	2,165	2,343	2,774	3,511	4,349	3,276	1,895	1,379	1,415	1,842
70\%	1,752	2,141	2,027	2,153	2,443	2,963	3,119	2,891	1,485	1,170	1,321	1,743
80\%	1,597	1,984	1,903	1,923	2,174	2,414	2,442	2,362	1,274	1,088	1,211	1,611
90\%	1,411	1,793	1,699	1,733	1,945	2,230	1,779	1,890	1,085	941	1,071	1,478
Long Term												
Full Simulation Period ${ }^{\text {b }}$	2,241	2,721	3,492	5,136	6,700	7,131	7,255	6,101	4,547	2,625	1,838	2,238
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	2,497	3,627	6,644	11,506	15,763	16,308	15,374	14,433	12,512	6,641	3,078	3,456
Above Normal (24\%)	2,288	2,532	2,757	4,947	6,946	7,415	8,260	5,348	3,525	1,999	1,977	2,352
Below Normal (10\%)	2,086	2,397	3,810	3,608	3,723	4,101	5,842	4,213	2,225	1,481	1,457	1,856
Dry (16\%)	2,339	2,684	2,347	2,487	2,628	3,304	3,551	2,976	1,714	1,267	1,362	1,789
Critical (27\%)	1,974	2,251	1,998	1,927	2,138	2,311	2,031	2,122	1,116	943	1,059	1,485

Alternative 3

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3,023	3,053	4,949	12,089	17,246	15,467	14,936	14,309	10,004	6,473	3,525	3,287
20\%	2,667	2,830	2,938	4,833	10,213	9,874	10,251	7,931	4,627	2,495	2,587	2,623
30\%	2,494	2,583	2,421	3,540	6,797	7,753	8,532	5,438	2,558	1,926	1,892	2,464
40\%	2,328	2,478	2,304	2,753	4,210	5,305	7,580	4,344	2,294	1,722	1,667	2,125
50\%	2,137	2,313	2,191	2,439	3,215	3,847	6,112	3,821	1,955	1,506	1,495	1,932
60\%	1,956	2,244	2,140	2,236	2,668	3,440	4,501	2,907	1,700	1,361	1,415	1,838
70\%	1,782	2,148	2,012	2,088	2,360	2,906	3,355	2,502	1,364	1,164	1,319	1,743
80\%	1,609	1,974	1,886	1,824	2,090	2,371	2,581	2,158	1,241	1,026	1,211	1,612
90\%	1,466	1,763	1,669	1,639	1,849	2,205	1,936	1,650	1,001	930	1,065	1,477
Long Term												
Full Simulation Period ${ }^{\text {b }}$	2,252	2,683	3,501	5,108	6,872	7,145	7,431	5,830	4,009	2,655	1,882	2,271
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	2,505	3,604	6,760	11,512	16,584	16,445	15,425	14,237	11,476	6,916	3,267	3,610
Above Normal (24\%)	2,310	2,488	2,775	4,925	6,937	7,444	8,476	5,078	2,579	1,910	1,972	2,341
Below Normal (10\%)	2,067	2,299	3,711	3,708	3,857	4,057	6,015	3,856	1,865	1,472	1,454	1,834
Dry (16\%)	2,346	2,646	2,309	2,419	2,607	3,241	3,785	2,611	1,568	1,253	1,360	1,782
Critical (27\%)	1,991	2,227	1,974	1,842	2,043	2,273	2,247	1,874	1,080	912	1,067	1,497

	Monthly Flow (cfs)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	8	-103	17	932	2,652	0	270	-51	-135	861	785	140
20\%	-25	-12	-15	14	13	392	82	-360	-1,070	-142	-13	-34
30\%	-26	-80	-120	-115	497	-180	111	-238	-930	-64	-5	-39
40\%	-3	-22	-36	60	-58	-88	145	-273	-894	-20	-9	-17
50\%	-20	-72	-65	-105	-205	-36	97	-222	-394	-1	-6	-11
60\%	5	0	-25	-107	-107	-71	152	-369	-195	-19	0	-5
70\%	30	7	-15	-65	-84	-57	237	-389	-121	-5	-2	-1
80\%	12	-9	-17	-99	-84	-42	140	-203	-33	-62	0	1
90\%	55	-30	-30	-94	-96	-25	156	-240	-84	-11	-6	-1
Long Term												
Full Simulation Period ${ }^{\text {b }}$	11	-38	9	-27	172	14	176	-271	-538	31	44	33
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	8	-23	116	6	821	137	51	-197	-1,036	275	190	154
Above Normal (24\%)	22	-45	18	-21	-9	29	216	-269	-945	-89	-5	-11
Below Normal (10\%)	-19	-98	-98	100	134	-44	174	-357	-359	-9	-4	-22
Dry (16\%)	7	-38	-38	-68	-21	-62	233	-365	-146	-14	-2	-7
Critical (27\%)	16	-24	-24	-84	-95	-38	215	-248	-36	-31	8	12

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same,
therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in text. 3) Model results for Alternative 2 and No Action Alternative are the same,
therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in text.

Table C-34-6. San Joaquin River at Vernalis, Monthly Flow

Second Basis of Comparison

	Monthly Flow (cfs)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3,015	3,156	4,932	11,157	14,594	15,467	14,666	14,360	10,139	5,612	2,740	3,146
20\%	2,692	2,843	2,953	4,819	10,200	9,482	10,169	8,291	5,696	2,636	2,600	2,658
30\%	2,520	2,663	2,541	3,655	6,300	7,933	8,421	5,676	3,488	1,990	1,897	2,503
40\%	2,331	2,500	2,341	2,692	4,268	5,393	7,435	4,617	3,188	1,742	1,676	2,142
50\%	2,157	2,386	2,257	2,544	3,420	3,883	6,016	4,043	2,349	1,506	1,500	1,944
60\%	1,952	2,244	2,165	2,343	2,774	3,511	4,349	3,276	1,895	1,379	1,415	1,842
70\%	1,752	2,141	2,027	2,153	2,443	2,963	3,119	2,891	1,485	1,170	1,321	1,743
80\%	1,597	1,984	1,903	1,923	2,174	2,414	2,442	2,362	1,274	1,088	1,211	1,611
90\%	1,411	1,793	1,699	1,733	1,945	2,230	1,779	1,890	1,085	941	1,071	1,478
Long Term												
Full Simulation Period ${ }^{\text {b }}$	2,241	2,721	3,492	5,136	6,700	7,131	7,255	6,101	4,547	2,625	1,838	2,238
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	2,497	3,627	6,644	11,506	15,763	16,308	15,374	14,433	12,512	6,641	3,078	3,456
Above Normal (24\%)	2,288	2,532	2,757	4,947	6,946	7,415	8,260	5,348	3,525	1,999	1,977	2,352
Below Normal (10\%)	2,086	2,397	3,810	3,608	3,723	4,101	5,842	4,213	2,225	1,481	1,457	1,856
Dry (16\%)	2,339	2,684	2,347	2,487	2,628	3,304	3,551	2,976	1,714	1,267	1,362	1,789
Critical (27\%)	1,974	2,251	1,998	1,927	2,138	2,311	2,031	2,122	1,116	943	1,059	1,485

Alternative 5

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3,495	2,953	4,804	11,129	14,597	15,473	14,976	14,176	9,351	5,773	2,776	3,084
20\%	3,146	2,777	2,897	4,811	10,142	9,856	10,265	8,232	4,688	2,628	2,589	2,654
30\%	2,938	2,527	2,401	3,610	6,118	8,461	8,576	5,670	3,364	1,985	1,904	2,488
40\%	2,763	2,395	2,204	2,629	4,232	5,570	7,567	5,162	2,947	1,735	1,666	2,125
50\%	2,588	2,219	2,101	2,402	3,420	3,846	6,110	4,183	2,219	1,484	1,488	1,930
60\%	2,385	2,169	2,046	2,289	2,683	3,459	5,047	3,554	1,860	1,365	1,402	1,835
70\%	2,196	2,059	1,979	2,083	2,303	2,906	4,317	2,916	1,447	1,155	1,307	1,739
80\%	1,988	1,951	1,829	1,883	2,145	2,371	3,100	2,401	1,283	1,052	1,202	1,611
90\%	1,849	1,763	1,669	1,699	1,947	2,204	2,461	2,245	1,000	885	1,025	1,431
Long Term												
Full Simulation Period ${ }^{\text {b }}$	2,660	2,609	3,371	5,071	6,639	7,235	7,686	6,290	4,174	2,597	1,818	2,213
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	2,903	3,513	6,448	11,445	15,743	16,679	15,389	14,666	11,287	6,580	3,020	3,379
Above Normal (24\%)	2,691	2,411	2,679	4,897	6,864	7,536	8,487	5,671	3,280	1,989	1,975	2,345
Below Normal (10\%)	2,531	2,249	3,661	3,506	3,650	4,149	6,299	4,206	2,062	1,462	1,446	1,837
Dry (16\%)	2,750	2,569	2,232	2,400	2,547	3,241	4,420	3,245	1,672	1,253	1,346	1,776
Critical (27\%)	2,418	2,163	1,910	1,871	2,078	2,288	2,741	2,177	1,090	916	1,051	1,480

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	480	-204	-128	-28	3	6	310	-184	-788	161	37	-62
20\%	454	-65	-56	-8	-57	373	95	-60	-1,008	-8	-10	-3
30\%	418	-136	-141	-44	-182	527	155	-6	-124	-4	7	-14
40\%	432	-105	-137	-64	-36	176	131	545	-241	-8	-9	-18
50\%	430	-166	-156	-143	0	-36	94	140	-129	-22	-12	-14
60\%	433	-75	-119	-54	-91	-52	697	278	-35	-14	-13	-7
70\%	444	-82	-48	-69	-141	-57	1,198	24	-37	-15	-14	-4
80\%	390	-33	-74	-40	-29	-43	659	39	9	-37	-9	-1
90\%	438	-30	-30	-34	2	-26	682	355	-85	-56	-46	-47
Long Term												
Full Simulation Period ${ }^{\text {b }}$	420	-112	-121	-65	-61	104	431	189	-373	-28	-20	-25
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	406	-114	-196	-60	-20	371	14	233	-1,224	-61	-58	-77
Above Normal (24\%)	403	-121	-79	-50	-82	121	227	323	-244	-10	-3	-7
Below Normal (10\%)	444	-148	-148	-102	-73	48	457	-8	-162	-18	-12	-19
Dry (16\%)	411	-115	-115	-86	-81	-63	869	269	-42	-13	-15	-14
Critical (27\%)	443	-88	-88	-55	-61	-23	710	54	-26	-27	-8	-5

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same,
therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in text.

1 C.35. Stanislaus River Flow below Goodwin

Figure C-35-1. Stanislaus River below Goodwin, Long-Term* Average Flow

*Based on the 82-year simulation period.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-35-2. Stanislaus River below Goodwin, Wet Year* Long-Term** Average Flow

*As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
**Based on the 82 -year simulation period.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-35-3. Stanislaus River below Goodwin, Above Normal Year* Long-Term** Average Flow

*As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
**Based on the 82 -year simulation period.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-35-4. Stanislaus River below Goodwin, Below Normal Year* Long-Term** Average Flow

*As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
**Based on the 82 -year simulation period.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-35-5. Stanislaus River below Goodwin, Dry Year* Long-Term** Average Flow

*As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
**Based on the 82 -year simulation period.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-35-6. Stanislaus River below Goodwin, Critical Year* Long-Term** Average Flow

*As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
**Based on the 82 -year simulation period.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-35-1. Stanislaus River below Goodwin, Monthly Flow

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	837	290	306	358	897	1,648	1,633	1,929	1,103	429	390	390
20\%	797	200	218	232	409	1,521	1,553	1,555	1,090	310	300	300
30\%	774	200	200	232	290	440	1,553	1,296	940	300	284	250
40\%	774	200	200	226	236	200	1,400	1,242	855	300	283	250
50\%	774	200	200	226	236	200	1,400	1,242	363	271	283	250
60\%	636	200	200	219	229	200	812	918	363	265	283	249
70\%	636	200	200	219	229	200	767	705	297	265	283	249
80\%	578	200	200	214	221	200	767	631	261	265	283	249
90\%	577	200	200	213	215	200	505	546	255	265	283	249
Long Term												
Full Simulation Period ${ }^{\text {b }}$	723	278	365	518	595	754	1,158	1,123	680	394	361	351
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	781	499	787	999	1,201	2,016	1,536	1,691	1,140	715	639	692
Above Normal (24\%)	714	216	282	663	676	645	1,224	1,146	962	353	292	267
Below Normal (10\%)	740	225	225	282	346	365	1,454	1,201	476	269	285	256
Dry (16\%)	707	208	216	234	313	200	1,030	930	374	275	277	245
Critical (27\%)	683	205	215	227	255	234	741	699	281	269	262	231

Alternative 1

	Monthly Flow (cfs)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	350	499	508	508	907	709	1,500	1,500	2,887	360	300	300
20\%	350	415	415	415	503	415	1,462	1,500	1,709	306	300	300
30\%	331	386	415	408	415	415	1,337	1,434	1,571	300	296	268
40\%	286	318	326	318	415	318	991	1,303	845	300	283	268
50\%	286	318	318	318	318	318	664	1,303	450	284	283	268
60\%	194	247	275	242	318	275	512	1,112	398	268	283	249
70\%	194	247	247	242	260	242	461	920	289	268	283	249
80\%	173	233	247	242	242	242	424	848	257	265	283	249
90\%	164	230	230	200	239	200	378	760	255	265	283	249
Long Term												
Full Simulation Period ${ }^{\text {b }}$	291	388	466	584	642	607	884	1,181	1,028	390	347	363
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	360	612	886	1,060	1,196	1,462	1,488	1,497	2,316	678	580	731
Above Normal (24\%)	301	332	376	726	742	523	940	1,225	1,200	354	288	271
Below Normal (10\%)	288	373	373	383	418	316	955	1,266	613	272	285	270
Dry (16\%)	278	323	331	318	392	262	581	1,094	399	276	283	255
Critical (27\%)	230	287	298	275	303	256	464	890	280	283	259	228

Alternative 1 minus No Action Alternative

	Monthly Flow (cfs)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	-487	209	203	150	10	-939	-133	-429	1,783	-69	-90	-90
20\%	-447	215	197	183	94	-1,106	-91	-55	619	-4	0	0
30\%	-443	186	215	176	125	-25	-216	138	631	0	12	18
40\%	-488	118	126	92	179	118	-409	61	-10	0	0	18
50\%	-488	118	118	92	83	118	-736	61	87	13	0	18
60\%	-441	47	75	23	90	75	-300	194	35	3	0	0
70\%	-441	47	47	23	31	42	-306	215	-8	3	0	0
80\%	-405	33	47	28	21	42	-343	218	-4	0	0	0
90\%	-413	30	30	-13	24	0	-127	214	0	0	0	0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	-432	110	101	66	47	-147	-275	58	348	-4	-15	12
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	-421	113	99	61	-5	-554	-48	-195	1,176	-37	-59	39
Above Normal (24\%)	-413	116	94	63	66	-122	-284	79	238	1	-4	4
Below Normal (10\%)	-453	148	148	101	72	-50	-500	65	138	2	0	14
Dry (16\%)	-429	115	115	84	79	62	-449	164	25	1	6	9
Critical (27\%)	-453	83	83	49	47	23	-277	192	-1	14	-3	-3

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same,
therefore Second Basis of Comparison and Alternative 4 results are not presented. Qualitative differences, if applicable, are discussed in text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in text.

Table C-35-2. Stanislaus River below Goodwin, Monthly Flow

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	837	290	306	358	897	1,648	1,633	1,929	1,103	429	390	390
20\%	797	200	218	232	409	1,521	1,553	1,555	1,090	310	300	300
30\%	774	200	200	232	290	440	1,553	1,296	940	300	284	250
40\%	774	200	200	226	236	200	1,400	1,242	855	300	283	250
50\%	774	200	200	226	236	200	1,400	1,242	363	271	283	250
60\%	636	200	200	219	229	200	812	918	363	265	283	249
70\%	636	200	200	219	229	200	767	705	297	265	283	249
80\%	578	200	200	214	221	200	767	631	261	265	283	249
90\%	577	200	200	213	215	200	505	546	255	265	283	249
Long Term												
Full Simulation Period ${ }^{\text {b }}$	723	278	365	518	595	754	1,158	1,123	680	394	361	351
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	781	499	787	999	1,201	2,016	1,536	1,691	1,140	715	639	692
Above Normal (24\%)	714	216	282	663	676	645	1,224	1,146	962	353	292	267
Below Normal (10\%)	740	225	225	282	346	365	1,454	1,201	476	269	285	256
Dry (16\%)	707	208	216	234	313	200	1,030	930	374	275	277	245
Critical (27\%)	683	205	215	227	255	234	741	699	281	269	262	231

Alternative 3

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	300	300	609	1,135	2,548	1,189	1,500	1,165	255	265	283	952
20\%	300	300	305	300	1,157	344	1,500	1,165	255	265	283	249
30\%	300	300	300	300	333	300	1,500	1,165	255	265	283	249
40\%	252	300	300	300	300	300	1,034	963	255	265	283	249
50\%	252	300	300	150	176	200	893	829	255	265	283	249
60\%	252	300	300	150	173	200	893	829	255	265	283	249
70\%	252	300	300	150	173	200	893	829	255	265	283	249
80\%	200	200	220	150	173	200	528	466	255	265	283	249
90\%	200	200	200	150	173	200	493	466	255	265	283	249
Long Term												
Full Simulation Period ${ }^{\text {b }}$	302	349	475	557	814	622	1,060	911	490	421	391	397
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	368	589	1,001	1,066	2,016	1,599	1,538	1,300	1,279	952	768	885
Above Normal (24\%)	323	287	394	705	732	552	1,155	955	255	265	283	260
Below Normal (10\%)	269	275	275	483	552	272	1,128	909	255	265	283	249
Dry (16\%)	285	285	293	251	371	200	815	730	255	265	283	249
Critical (27\%)	246	264	274	191	208	218	680	643	245	254	268	240

Alternative 3 minus No Action Alternative

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	-537	10	303	776	1,651	-460	-133	-765	-848	-164	-107	562
20\%	-497	100	86	68	748	-1,177	-53	-390	-835	-45	-17	-51
30\%	-474	100	100	68	43	-140	-53	-131	-685	-35	-1	-1
40\%	-522	100	100	74	64	100	-366	-279	-599	-35	0	-1
50\%	-522	100	100	-76	-59	0	-507	-413	-108	-5	0	-1
60\%	-384	100	100	-69	-56	0	81	-89	-108	0	0	0
70\%	-384	100	100	-69	-56	0	127	124	-42	0	0	0
80\%	-378	0	20	-64	-48	0	-238	-165	-5	0	0	0
90\%	-377	0	0	-63	-42	0	-12	-79	0	0	0	0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	-421	71	110	39	219	-132	-99	-212	-190	27	30	45
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	-413	90	215	67	815	-417	2	-392	139	237	130	193
Above Normal (24\%)	-391	71	112	42	57	-93	-69	-191	-707	-88	-9	-7
Below Normal (10\%)	-471	50	50	201	206	-93	-327	-292	-220	-4	-2	-7
Dry (16\%)	-422	77	77	16	58	0	-215	-199	-119	-10	6	3
Critical (27\%)	-436	59	59	-36	-47	-15	-61	-56	-35	-15	6	9

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same, therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in text.

Table C-35-3. Stanislaus River below Goodwin, Monthly Flow

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	837	290	306	358	897	1,648	1,633	1,929	1,103	429	390	390
20\%	797	200	218	232	409	1,521	1,553	1,555	1,090	310	300	300
30\%	774	200	200	232	290	440	1,553	1,296	940	300	284	250
40\%	774	200	200	226	236	200	1,400	1,242	855	300	283	250
50\%	774	200	200	226	236	200	1,400	1,242	363	271	283	250
60\%	636	200	200	219	229	200	812	918	363	265	283	249
70\%	636	200	200	219	229	200	767	705	297	265	283	249
80\%	578	200	200	214	221	200	767	631	261	265	283	249
90\%	577	200	200	213	215	200	505	546	255	265	283	249
Long Term												
Full Simulation Period ${ }^{\text {b }}$	723	278	365	518	595	754	1,158	1,123	680	394	361	351
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	781	499	787	999	1,201	2,016	1,536	1,691	1,140	715	639	692
Above Normal (24\%)	714	216	282	663	676	645	1,224	1,146	962	353	292	267
Below Normal (10\%)	740	225	225	282	346	365	1,454	1,201	476	269	285	256
Dry (16\%)	707	208	216	234	313	200	1,030	930	374	275	277	245
Critical (27\%)	683	205	215	227	255	234	741	699	281	269	262	231

Alternative 5

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	797	200	306	358	885	1,636	1,717	1,958	1,103	423	300	300
20\%	797	200	211	232	415	1,521	1,633	1,815	979	307	300	300
30\%	774	200	200	232	274	343	1,553	1,595	940	300	283	250
40\%	774	200	200	226	236	200	1,487	1,555	759	297	283	250
50\%	636	200	200	226	236	200	1,400	1,341	363	265	283	249
60\%	636	200	200	219	229	200	1,324	1,242	342	265	283	249
70\%	636	200	200	219	222	200	1,134	1,068	270	265	283	249
80\%	577	200	200	213	221	200	825	887	255	265	283	249
90\%	577	200	200	213	214	200	767	798	255	265	283	249
Long Term												
Full Simulation Period ${ }^{\text {b }}$	711	276	345	520	580	712	1,317	1,375	660	369	332	341
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	766	499	690	998	1,169	1,831	1,502	1,730	1,093	619	523	655
Above Normal (24\%)	705	211	298	676	659	645	1,170	1,553	962	353	292	267
Below Normal (10\%)	733	225	225	281	345	365	1,416	1,267	462	269	285	256
Dry (16\%)	690	208	216	233	312	200	1,454	1,370	366	275	277	245
Critical (27\%)	674	200	210	221	242	234	1,175	948	257	260	253	224

Alternative 5 minus No Action Alternative

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	-41	-90	0	0	-12	-13	83	29	0	-6	-90	-90
20\%	0	0	-7	0	6	0	80	261	-111	-3	0	0
30\%	0	0	0	0	-15	-97	0	299	0	0	-1	0
40\%	0	0	0	0	0	0	87	313	-96	-3	0	0
50\%	-139	0	0	0	0	0	0	99	0	-5	0	-1
60\%	0	0	0	0	0	0	512	324	-21	0	0	0
70\%	0	0	0	0	-6	0	367	363	-27	0	0	0
80\%	-1	0	0	-1	0	0	59	256	-5	0	0	0
90\%	0	0	0	0	-1	0	262	252	0	0	0	0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	-11	-2	-20	1	-15	-43	159	251	-20	-25	-29	-11
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	-15	0	-97	0	-33	-185	-34	38	-47	-96	-115	-38
Above Normal (24\%)	-9	-5	16	13	-17	0	-55	407	0	0	0	0
Below Normal (10\%)	-7	0	0	-1	-1	0	-38	66	-13	0	0	0
Dry (16\%)	-17	0	0	-1	-2	0	424	440	-8	0	0	0
Critical (27\%)	-8	-5	-5	-6	-13	0	434	250	-24	-10	-9	-7

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same, therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in text.

Table C-35-4. Stanislaus River below Goodwin, Monthly Flow

Second Basis of Comparison

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	350	499	508	508	907	709	1,500	1,500	2,887	360	300	300
20\%	350	415	415	415	503	415	1,462	1,500	1,709	306	300	300
30\%	331	386	415	408	415	415	1,337	1,434	1,571	300	296	268
40\%	286	318	326	318	415	318	991	1,303	845	300	283	268
50\%	286	318	318	318	318	318	664	1,303	450	284	283	268
60\%	194	247	275	242	318	275	512	1,112	398	268	283	249
70\%	194	247	247	242	260	242	461	920	289	268	283	249
80\%	173	233	247	242	242	242	424	848	257	265	283	249
90\%	164	230	230	200	239	200	378	760	255	265	283	249
Long Term												
Full Simulation Period ${ }^{\text {b }}$	291	388	466	584	642	607	884	1,181	1,028	390	347	363
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	360	612	886	1,060	1,196	1,462	1,488	1,497	2,316	678	580	731
Above Normal (24\%)	301	332	376	726	742	523	940	1,225	1,200	354	288	271
Below Normal (10\%)	288	373	373	383	418	316	955	1,266	613	272	285	270
Dry (16\%)	278	323	331	318	392	262	581	1,094	399	276	283	255
Critical (27\%)	230	287	298	275	303	256	464	890	280	283	259	228

No Action Alternative

	Monthly Flow (cfs)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	837	290	306	358	897	1,648	1,633	1,929	1,103	429	390	390
20\%	797	200	218	232	409	1,521	1,553	1,555	1,090	310	300	300
30\%	774	200	200	232	290	440	1,553	1,296	940	300	284	250
40\%	774	200	200	226	236	200	1,400	1,242	855	300	283	250
50\%	774	200	200	226	236	200	1,400	1,242	363	271	283	250
60\%	636	200	200	219	229	200	812	918	363	265	283	249
70\%	636	200	200	219	229	200	767	705	297	265	283	249
80\%	578	200	200	214	221	200	767	631	261	265	283	249
90\%	577	200	200	213	215	200	505	546	255	265	283	249
Long Term												
Full Simulation Period ${ }^{\text {b }}$	723	278	365	518	595	754	1,158	1,123	680	394	361	351
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	781	499	787	999	1,201	2,016	1,536	1,691	1,140	715	639	692
Above Normal (24\%)	714	216	282	663	676	645	1,224	1,146	962	353	292	267
Below Normal (10\%)	740	225	225	282	346	365	1,454	1,201	476	269	285	256
Dry (16\%)	707	208	216	234	313	200	1,030	930	374	275	277	245
Critical (27\%)	683	205	215	227	255	234	741	699	281	269	262	231

No Action Alternative minus Second Basis of Comparison

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	487	-209	-203	-150	-10	939	133	429	-1,783	69	90	90
20\%	447	-215	-197	-183	-94	1,106	91	55	-619	4	0	0
30\%	443	-186	-215	-176	-125	25	216	-138	-631	0	-12	-18
40\%	488	-118	-126	-92	-179	-118	409	-61	10	0	0	-18
50\%	488	-118	-118	-92	-83	-118	736	-61	-87	-13	0	-18
60\%	441	-47	-75	-23	-90	-75	300	-194	-35	-3	0	0
70\%	441	-47	-47	-23	-31	-42	306	-215	8	-3	0	0
80\%	405	-33	-47	-28	-21	-42	343	-218	4	0	0	0
90\%	413	-30	-30	13	-24	0	127	-214	0	0	0	0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	432	-110	-101	-66	-47	147	275	-58	-348	4	15	-12
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	421	-113	-99	-61	5	554	48	195	-1,176	37	59	-39
Above Normal (24\%)	413	-116	-94	-63	-66	122	284	-79	-238	-1	4	-4
Below Normal (10\%)	453	-148	-148	-101	-72	50	500	-65	-138	-2	0	-14
Dry (16\%)	429	-115	-115	-84	-79	-62	449	-164	-25	-1	-6	-9
Critical (27\%)	453	-83	-83	-49	-47	-23	277	-192	1	-14	3	3

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same,
therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in text. 3) Model results for Alternative 2 and $N \mathrm{No}$ Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in text.

Table C-35-5. Stanislaus River below Goodwin, Monthly Flow

Second Basis of Comparison

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	350	499	508	508	907	709	1,500	1,500	2,887	360	300	300
20\%	350	415	415	415	503	415	1,462	1,500	1,709	306	300	300
30\%	331	386	415	408	415	415	1,337	1,434	1,571	300	296	268
40\%	286	318	326	318	415	318	991	1,303	845	300	283	268
50\%	286	318	318	318	318	318	664	1,303	450	284	283	268
60\%	194	247	275	242	318	275	512	1,112	398	268	283	249
70\%	194	247	247	242	260	242	461	920	289	268	283	249
80\%	173	233	247	242	242	242	424	848	257	265	283	249
90\%	164	230	230	200	239	200	378	760	255	265	283	249
Long Term												
Full Simulation Period ${ }^{\text {b }}$	291	388	466	584	642	607	884	1,181	1,028	390	347	363
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	360	612	886	1,060	1,196	1,462	1,488	1,497	2,316	678	580	731
Above Normal (24\%)	301	332	376	726	742	523	940	1,225	1,200	354	288	271
Below Normal (10\%)	288	373	373	383	418	316	955	1,266	613	272	285	270
Dry (16\%)	278	323	331	318	392	262	581	1,094	399	276	283	255
Critical (27\%)	230	287	298	275	303	256	464	890	280	283	259	228

Alternative 3

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	300	300	609	1,135	2,548	1,189	1,500	1,165	255	265	283	952
20\%	300	300	305	300	1,157	344	1,500	1,165	255	265	283	249
30\%	300	300	300	300	333	300	1,500	1,165	255	265	283	249
40\%	252	300	300	300	300	300	1,034	963	255	265	283	249
50\%	252	300	300	150	176	200	893	829	255	265	283	249
60\%	252	300	300	150	173	200	893	829	255	265	283	249
70\%	252	300	300	150	173	200	893	829	255	265	283	249
80\%	200	200	220	150	173	200	528	466	255	265	283	249
90\%	200	200	200	150	173	200	493	466	255	265	283	249
Long Term												
Full Simulation Period ${ }^{\text {b }}$	302	349	475	557	814	622	1,060	911	490	421	391	397
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	368	589	1,001	1,066	2,016	1,599	1,538	1,300	1,279	952	768	885
Above Normal (24\%)	323	287	394	705	732	552	1,155	955	255	265	283	260
Below Normal (10\%)	269	275	275	483	552	272	1,128	909	255	265	283	249
Dry (16\%)	285	285	293	251	371	200	815	730	255	265	283	249
Critical (27\%)	246	264	274	191	208	218	680	643	245	254	268	240

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	-50	-199	100	626	1,641	479	0	-335	-2,631	-94	-17	652
20\%	-50	-115	-110	-115	654	-71	38	-335	-1,454	-41	-17	-51
30\%	-31	-86	-115	-108	-82	-115	163	-269	-1,316	-35	-13	-19
40\%	-34	-18	-26	-18	-115	-18	43	-340	-590	-35	0	-19
50\%	-34	-18	-18	-168	-142	-118	229	-474	-195	-19	0	-19
60\%	58	53	25	-92	-145	-75	381	-283	-143	-3	0	0
70\%	58	53	53	-92	-87	-42	432	-91	-34	-3	0	0
80\%	27	-33	-27	-92	-69	-42	104	-382	-1	0	0	0
90\%	36	-30	-30	-50	-66	0	116	-294	0	0	0	0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	11	-38	9	-27	172	15	176	-270	-538	32	45	33
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	8	-23	116	6	820	137	50	-197	-1,037	274	189	154
Above Normal (24\%)	22	-45	18	-21	-9	29	215	-269	-945	-89	-5	-11
Below Normal (10\%)	-19	-98	-98	100	134	-43	173	-356	-358	-7	-2	-21
Dry (16\%)	7	-38	-38	-68	-21	-62	234	-364	-144	-11	0	-6
Critical (27\%)	17	-24	-24	-84	-95	-38	216	-247	-35	-29	9	12

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same,
therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in text. 3) Model results for Alternative 2 and $N \mathrm{No}$ Action Alternative are the same, therefore Altermative 2 results are not presented. Qualitative differences, if applicable, are discussed in text.

Table C-35-6. Stanislaus River below Goodwin, Monthly Flow

Second Basis of Comparison

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	350	499	508	508	907	709	1,500	1,500	2,887	360	300	300
20\%	350	415	415	415	503	415	1,462	1,500	1,709	306	300	300
30\%	331	386	415	408	415	415	1,337	1,434	1,571	300	296	268
40\%	286	318	326	318	415	318	991	1,303	845	300	283	268
50\%	286	318	318	318	318	318	664	1,303	450	284	283	268
60\%	194	247	275	242	318	275	512	1,112	398	268	283	249
70\%	194	247	247	242	260	242	461	920	289	268	283	249
80\%	173	233	247	242	242	242	424	848	257	265	283	249
90\%	164	230	230	200	239	200	378	760	255	265	283	249
Long Term												
Full Simulation Period ${ }^{\text {b }}$	291	388	466	584	642	607	884	1,181	1,028	390	347	363
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	360	612	886	1,060	1,196	1,462	1,488	1,497	2,316	678	580	731
Above Normal (24\%)	301	332	376	726	742	523	940	1,225	1,200	354	288	271
Below Normal (10\%)	288	373	373	383	418	316	955	1,266	613	272	285	270
Dry (16\%)	278	323	331	318	392	262	581	1,094	399	276	283	255
Critical (27\%)	230	287	298	275	303	256	464	890	280	283	259	228

Alternative 5

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	797	200	306	358	885	1,636	1,717	1,958	1,103	423	300	300
20\%	797	200	211	232	415	1,521	1,633	1,815	979	307	300	300
30\%	774	200	200	232	274	343	1,553	1,595	940	300	283	250
40\%	774	200	200	226	236	200	1,487	1,555	759	297	283	250
50\%	636	200	200	226	236	200	1,400	1,341	363	265	283	249
60\%	636	200	200	219	229	200	1,324	1,242	342	265	283	249
70\%	636	200	200	219	222	200	1,134	1,068	270	265	283	249
80\%	577	200	200	213	221	200	825	887	255	265	283	249
90\%	577	200	200	213	214	200	767	798	255	265	283	249
Long Term												
Full Simulation Period ${ }^{\text {b }}$	711	276	345	520	580	712	1,317	1,375	660	369	332	341
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	766	499	690	998	1,169	1,831	1,502	1,730	1,093	619	523	655
Above Normal (24\%)	705	211	298	676	659	645	1,170	1,553	962	353	292	267
Below Normal (10\%)	733	225	225	281	345	365	1,416	1,267	462	269	285	256
Dry (16\%)	690	208	216	233	312	200	1,454	1,370	366	275	277	245
Critical (27\%)	674	200	210	221	242	234	1,175	948	257	260	253	224

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	447	-299	-203	-150	-22	926	217	458	-1,783	63	0	0
20\%	447	-215	-204	-183	-88	1,106	171	315	-730	1	0	0
30\%	443	-186	-215	-176	-141	-72	216	161	-631	0	-13	-18
40\%	488	-118	-126	-92	-179	-118	496	252	-86	-3	0	-18
50\%	349	-118	-118	-92	-83	-118	736	38	-87	-19	0	-19
60\%	441	-47	-75	-23	-90	-75	812	130	-56	-3	0	0
70\%	441	-47	-47	-23	-38	-42	673	148	-19	-3	0	0
80\%	404	-33	-47	-29	-21	-42	401	38	-1	0	0	0
90\%	413	-30	-30	13	-25	0	389	38	0	0	0	0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	421	-112	-121	-65	-62	104	433	193	-368	-21	-15	-22
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	407	-113	-196	-61	-27	369	14	233	-1,223	-59	-56	-76
Above Normal (24\%)	404	-121	-78	-50	-83	122	230	328	-238	-1	4	-4
Below Normal (10\%)	445	-148	-148	-102	-73	50	462	2	-151	-2	0	-14
Dry (16\%)	412	-115	-115	-86	-80	-62	873	276	-34	-1	-6	-9
Critical (27\%)	445	-87	-87	-55	-60	-23	711	58	-23	-23	-6	-3

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same,
therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in text. 3) Model results for Alternative 2 and $N \mathrm{No}$ Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in text.

1 C.36. Stanislaus River Flow at Mouth

Figure C-36-1. Stanislaus River at Mouth, Long-Term* Average Flow

*Based on the 82-year simulation period.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-36-2. Stanislaus River at Mouth, Wet Year* Long-Term** Average Flow

*As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
**Based on the 82 -year simulation period.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-36-3. Stanislaus River at Mouth, Above Normal Year* Long-Term** Average Flow

*As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
**Based on the 82 -year simulation period.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-36-4. Stanislaus River at Mouth, Below Normal Year* Long-Term** Average Flow

*As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
**Based on the 82 -year simulation period.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-36-5. Stanislaus River at Mouth, Dry Year* Long-Term** Average Flow

*As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
**Based on the 82 -year simulation period.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-36-6. Stanislaus River at Mouth, Critical Year* Long-Term** Average Flow

*As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
**Based on the 82 -year simulation period.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-36-1. Stanislaus River at Mouth, Monthly Flow

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	1,122	463	442	576	1,084	1,969	1,886	1,989	1,536	751	587	646
20\%	1,029	384	368	427	643	1,708	1,769	1,647	1,334	606	488	507
30\%	982	348	319	368	472	520	1,696	1,536	1,221	502	462	473
40\%	958	337	304	347	406	433	1,610	1,362	1,053	442	445	443
50\%	879	319	290	337	369	367	1,485	1,289	635	412	445	439
60\%	826	292	281	326	331	336	936	873	510	383	416	428
70\%	772	267	262	312	279	314	806	755	406	372	395	389
80\%	755	260	241	295	253	241	686	646	358	341	371	360
90\%	676	248	224	273	230	207	572	576	311	308	331	318
Long Term												
Full Simulation Period ${ }^{\text {b }}$	903	398	448	630	719	903	1,279	1,207	883	546	505	533
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	952	624	881	1,115	1,412	2,258	1,779	1,828	1,456	976	831	946
Above Normal (24\%)	907	347	357	776	786	801	1,410	1,244	1,257	534	467	480
Below Normal (10\%)	932	354	358	430	517	539	1,556	1,378	669	449	440	429
Dry (16\%)	916	322	300	349	405	345	1,064	1,002	530	375	397	399
Critical (27\%)	837	310	277	317	319	286	754	695	335	321	346	342

Alternative 1

	Monthly Flow (cfs)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	662	653	656	688	1,117	1,153	1,804	1,679	3,009	661	569	673
20\%	582	548	522	557	694	613	1,608	1,592	2,016	555	485	508
30\%	507	492	464	518	562	562	1,489	1,533	1,772	502	461	481
40\%	471	459	427	473	512	522	1,040	1,423	1,092	444	445	457
50\%	405	421	378	412	484	446	821	1,331	694	412	443	439
60\%	377	388	341	364	423	394	637	1,049	572	386	416	431
70\%	346	355	329	339	331	361	529	972	402	378	395	396
80\%	327	312	311	318	296	295	440	865	352	350	373	373
90\%	249	280	269	283	257	233	406	787	312	318	331	316
Long Term												
Full Simulation Period ${ }^{\text {b }}$	471	507	549	696	766	756	1,004	1,265	1,231	542	491	545
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	530	737	980	1,176	1,407	1,704	1,731	1,634	2,632	939	772	985
Above Normal (24\%)	494	463	451	840	852	680	1,126	1,323	1,495	535	463	484
Below Normal (10\%)	480	503	506	532	589	489	1,057	1,443	807	452	440	443
Dry (16\%)	487	437	415	433	484	407	616	1,166	555	377	404	408
Critical (27\%)	384	393	360	366	367	309	476	887	334	335	343	338

Alternative 1 minus No Action Alternative

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	-461	190	214	112	33	-816	-82	-311	1,473	-90	-18	28
20\%	-447	165	154	130	51	-1,094	-161	-55	682	-51	-3	1
30\%	-475	145	146	150	89	42	-208	-3	551	0	-1	9
40\%	-488	122	123	125	106	89	-570	61	39	2	0	13
50\%	-474	102	88	74	115	80	-663	42	59	0	-2	0
60\%	-449	96	61	38	92	59	-299	176	62	2	0	3
70\%	-426	88	67	27	52	48	-277	218	-4	5	0	8
80\%	-427	52	70	23	43	54	-247	219	-5	9	2	12
90\%	-427	32	46	9	27	26	-165	211	1	9	0	-2
Long Term												
Full Simulation Period ${ }^{\text {b }}$	-432	110	101	66	47	-147	-275	58	348	-4	-15	12
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	-421	113	99	61	-5	-554	-48	-195	1,176	-37	-59	39
Above Normal (24\%)	-413	116	94	63	66	-122	-284	79	238	1	-4	4
Below Normal (10\%)	-453	148	148	101	72	-50	-500	65	138	2	0	14
Dry (16\%)	-429	115	115	84	79	62	-449	164	25	1	6	9
Critical (27\%)	-453	83	83	49	47	23	-277	192	-1	14	-3	-3

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030 .
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same,
therefore Second Basis of Comparison and Alternative 4 results are not presented. Qualitative differences, if applicable, are discussed in text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in text.

Table C-36-2. Stanislaus River at Mouth, Monthly Flow

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	1,122	463	442	576	1,084	1,969	1,886	1,989	1,536	751	587	646
20\%	1,029	384	368	427	643	1,708	1,769	1,647	1,334	606	488	507
30\%	982	348	319	368	472	520	1,696	1,536	1,221	502	462	473
40\%	958	337	304	347	406	433	1,610	1,362	1,053	442	445	443
50\%	879	319	290	337	369	367	1,485	1,289	635	412	445	439
60\%	826	292	281	326	331	336	936	873	510	383	416	428
70\%	772	267	262	312	279	314	806	755	406	372	395	389
80\%	755	260	241	295	253	241	686	646	358	341	371	360
90\%	676	248	224	273	230	207	572	576	311	308	331	318
Long Term												
Full Simulation Period ${ }^{\text {b }}$	903	398	448	630	719	903	1,279	1,207	883	546	505	533
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	952	624	881	1,115	1,412	2,258	1,779	1,828	1,456	976	831	946
Above Normal (24\%)	907	347	357	776	786	801	1,410	1,244	1,257	534	467	480
Below Normal (10\%)	932	354	358	430	517	539	1,556	1,378	669	449	440	429
Dry (16\%)	916	322	300	349	405	345	1,064	1,002	530	375	397	399
Critical (27\%)	837	310	277	317	319	286	754	695	335	321	346	342

Alternative 3

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	679	485	722	1,267	2,628	1,444	1,865	1,414	950	885	571	1,146
20\%	557	456	438	518	1,301	734	1,634	1,306	679	535	480	489
30\%	482	441	411	410	502	486	1,552	1,233	558	476	457	450
40\%	448	424	400	374	416	419	1,240	1,043	428	424	445	439
50\%	435	402	381	311	366	367	1,064	920	413	382	440	435
60\%	392	372	362	275	308	334	996	882	374	374	410	415
70\%	377	359	325	251	238	312	893	829	352	350	390	384
80\%	360	333	300	232	201	238	575	550	304	327	367	360
90\%	293	260	239	198	180	203	493	489	273	290	347	320
Long Term												
Full Simulation Period ${ }^{\text {b }}$	482	469	558	669	938	770	1,180	995	693	573	535	578
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	539	714	1,096	1,183	2,227	1,841	1,781	1,437	1,596	1,213	961	1,139
Above Normal (24\%)	516	418	468	818	843	708	1,341	1,054	550	446	457	473
Below Normal (10\%)	461	404	408	632	723	446	1,230	1,086	449	445	438	422
Dry (16\%)	495	399	377	365	463	345	849	803	411	365	404	402
Critical (27\%)	401	369	336	282	272	271	692	639	299	305	351	351

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	-443	22	279	690	1,545	-525	-22	-575	-586	133	-16	500
20\%	-472	72	71	92	658	-974	-135	-341	-654	-71	-8	-18
30\%	-501	93	92	42	30	-34	-144	-303	-663	-25	-5	-23
40\%	-511	87	95	26	11	-14	-370	-319	-626	-18	0	-4
50\%	-444	83	91	-26	-3	0	-420	-368	-222	-29	-4	-5
60\%	-434	80	81	-50	-23	-2	59	9	-136	-9	-5	-12
70\%	-395	93	63	-61	-41	-2	87	74	-54	-22	-5	-5
80\%	-395	73	59	-63	-52	-3	-112	-96	-54	-13	-3	0
90\%	-383	12	16	-75	-50	-4	-78	-88	-39	-18	16	2
Long Term												
Full Simulation Period ${ }^{\text {b }}$	-421	71	110	39	219	-132	-99	-212	-190	27	30	45
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	-413	90	215	67	815	-417	2	-392	139	237	130	193
Above Normal (24\%)	-391	71	112	42	57	-93	-69	-191	-707	-88	-9	-7
Below Normal (10\%)	-471	50	50	201	206	-93	-327	-292	-220	-4	-2	-7
Dry (16\%)	-422	77	77	16	58	0	-215	-199	-119	-10	6	3
Critical (27\%)	-436	59	59	-36	-47	-15	-61	-56	-35	-15	6	9

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same,
therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in text.

Table C-36-3. Stanislaus River at Mouth, Monthly Flow

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	1,122	463	442	576	1,084	1,969	1,886	1,989	1,536	751	587	646
20\%	1,029	384	368	427	643	1,708	1,769	1,647	1,334	606	488	507
30\%	982	348	319	368	472	520	1,696	1,536	1,221	502	462	473
40\%	958	337	304	347	406	433	1,610	1,362	1,053	442	445	443
50\%	879	319	290	337	369	367	1,485	1,289	635	412	445	439
60\%	826	292	281	326	331	336	936	873	510	383	416	428
70\%	772	267	262	312	279	314	806	755	406	372	395	389
80\%	755	260	241	295	253	241	686	646	358	341	371	360
90\%	676	248	224	273	230	207	572	576	311	308	331	318
Long Term												
Full Simulation Period ${ }^{\text {b }}$	903	398	448	630	719	903	1,279	1,207	883	546	505	533
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	952	624	881	1,115	1,412	2,258	1,779	1,828	1,456	976	831	946
Above Normal (24\%)	907	347	357	776	786	801	1,410	1,244	1,257	534	467	480
Below Normal (10\%)	932	354	358	430	517	539	1,556	1,378	669	449	440	429
Dry (16\%)	916	322	300	349	405	345	1,064	1,002	530	375	397	399
Critical (27\%)	837	310	277	317	319	286	754	695	335	321	346	342

Alternative 5

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	1,121	456	442	570	1,081	1,952	1,950	2,148	1,536	719	571	659
20\%	1,029	382	378	416	586	1,708	1,815	1,974	1,319	564	488	501
30\%	979	348	319	363	483	495	1,707	1,806	1,139	502	461	473
40\%	903	336	304	347	401	415	1,630	1,672	1,034	442	445	443
50\%	854	318	290	337	368	365	1,529	1,434	635	407	443	439
60\%	818	292	281	326	319	333	1,311	1,290	485	382	413	428
70\%	764	267	262	312	272	312	1,168	1,183	383	371	389	389
80\%	748	260	241	295	245	241	1,044	962	343	339	367	356
90\%	681	248	224	270	230	207	865	752	300	307	305	316
Long Term												
Full Simulation Period ${ }^{\text {b }}$	891	396	428	631	704	860	1,437	1,458	863	521	476	522
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	937	624	784	1,115	1,380	2,073	1,744	1,866	1,409	880	716	909
Above Normal (24\%)	898	342	372	790	770	801	1,356	1,651	1,257	534	467	480
Below Normal (10\%)	925	354	358	430	516	539	1,518	1,444	656	449	440	429
Dry (16\%)	900	322	300	347	403	345	1,488	1,442	522	375	397	399
Critical (27\%)	829	306	272	311	306	286	1,187	944	310	311	337	335

Alternative 5 minus No Action Alternative

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	-2	-7	0	-6	-3	-17	64	158	0	-32	-16	13
20\%	0	-2	10	-11	-57	0	46	327	-15	-42	0	-6
30\%	-4	0	0	-6	10	-25	10	270	-82	0	-1	0
40\%	-56	-1	0	-1	-4	-18	21	310	-19	0	0	0
50\%	-25	-1	0	0	-1	-2	44	145	0	-4	-2	0
60\%	-8	0	0	0	-12	-3	375	417	-25	-1	-3	0
70\%	-7	0	0	0	-8	-2	362	428	-23	-2	-6	0
80\%	-6	0	0	0	-8	0	357	316	-15	-2	-3	-4
90\%	5	0	0	-3	0	0	293	176	-12	-1	-25	-2
Long Term												
Full Simulation Period ${ }^{\text {b }}$	-11	-2	-20	1	-15	-43	159	251	-20	-25	-29	-11
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	-15	0	-97	0	-33	-185	-34	38	-47	-96	-115	-38
Above Normal (24\%)	-9	-5	16	13	-17	0	-55	407	0	0	0	0
Below Normal (10\%)	-7	0	0	-1	-1	0	-38	66	-13	0	0	0
Dry (16\%)	-17	0	0	-1	-2	0	424	440	-8	0	0	0
Critical (27\%)	-8	-5	-5	-6	-13	0	434	250	-24	-10	-9	-7

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period.
C As defined by the Sacramento Valley $40-30-30$ Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same,
therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in text. 3) Model results for Alternative 2 and $N \mathrm{No}$ Action Alternative are the same, therefore Altermative 2 results are not presented. Qualitative differences, if applicable, are discussed in text.

Table C-36-4. Stanislaus River at Mouth, Monthly Flow

Second Basis of Comparison

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	662	653	656	688	1,117	1,153	1,804	1,679	3,009	661	569	673
20\%	582	548	522	557	694	613	1,608	1,592	2,016	555	485	508
30\%	507	492	464	518	562	562	1,489	1,533	1,772	502	461	481
40\%	471	459	427	473	512	522	1,040	1,423	1,092	444	445	457
50\%	405	421	378	412	484	446	821	1,331	694	412	443	439
60\%	377	388	341	364	423	394	637	1,049	572	386	416	431
70\%	346	355	329	339	331	361	529	972	402	378	395	396
80\%	327	312	311	318	296	295	440	865	352	350	373	373
90\%	249	280	269	283	257	233	406	787	312	318	331	316
Long Term												
Full Simulation Period ${ }^{\text {b }}$	471	507	549	696	766	756	1,004	1,265	1,231	542	491	545
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	530	737	980	1,176	1,407	1,704	1,731	1,634	2,632	939	772	985
Above Normal (24\%)	494	463	451	840	852	680	1,126	1,323	1,495	535	463	484
Below Normal (10\%)	480	503	506	532	589	489	1,057	1,443	807	452	440	443
Dry (16\%)	487	437	415	433	484	407	616	1,166	555	377	404	408
Critical (27\%)	384	393	360	366	367	309	476	887	334	335	343	338

No Action Alternative

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	1,122	463	442	576	1,084	1,969	1,886	1,989	1,536	751	587	646
20\%	1,029	384	368	427	643	1,708	1,769	1,647	1,334	606	488	507
30\%	982	348	319	368	472	520	1,696	1,536	1,221	502	462	473
40\%	958	337	304	347	406	433	1,610	1,362	1,053	442	445	443
50\%	879	319	290	337	369	367	1,485	1,289	635	412	445	439
60\%	826	292	281	326	331	336	936	873	510	383	416	428
70\%	772	267	262	312	279	314	806	755	406	372	395	389
80\%	755	260	241	295	253	241	686	646	358	341	371	360
90\%	676	248	224	273	230	207	572	576	311	308	331	318
Long Term												
Full Simulation Period ${ }^{\text {b }}$	903	398	448	630	719	903	1,279	1,207	883	546	505	533
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	952	624	881	1,115	1,412	2,258	1,779	1,828	1,456	976	831	946
Above Normal (24%)	907	347	357	776	786	801	1,410	1,244	1,257	534	467	480
Below Normal (10\%)	932	354	358	430	517	539	1,556	1,378	669	449	440	429
Dry (16\%)	916	322	300	349	405	345	1,064	1,002	530	375	397	399
Critical (27\%)	837	310	277	317	319	286	754	695	335	321	346	342

No Action Alternative minus Second Basis of Comparison

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	461	-190	-214	-112	-33	816	82	311	-1,473	90	18	-28
20\%	447	-165	-154	-130	-51	1,094	161	55	-682	51	3	-1
30\%	475	-145	-146	-150	-89	-42	208	3	-551	0	1	-9
40\%	488	-122	-123	-125	-106	-89	570	-61	-39	-2	0	-13
50\%	474	-102	-88	-74	-115	-80	663	-42	-59	0	2	0
60\%	449	-96	-61	-38	-92	-59	299	-176	-62	-2	0	-3
70\%	426	-88	-67	-27	-52	-48	277	-218	4	-5	0	-8
80\%	427	-52	-70	-23	-43	-54	247	-219	5	-9	-2	-12
90\%	427	-32	-46	-9	-27	-26	165	-211	-1	-9	0	2
Long Term												
Full Simulation Period ${ }^{\text {b }}$	432	-110	-101	-66	-47	147	275	-58	-348	4	15	-12
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	421	-113	-99	-61	5	554	48	195	-1,176	37	59	-39
Above Normal (24\%)	413	-116	-94	-63	-66	122	284	-79	-238	-1	4	-4
Below Normal (10\%)	453	-148	-148	-101	-72	50	500	-65	-138	-2	0	-14
Dry (16\%)	429	-115	-115	-84	-79	-62	449	-164	-25	-1	-6	-9
Critical (27\%)	453	-83	-83	-49	-47	-23	277	-192	1	-14	3	3

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same,
therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in text.

Table C-36-5. Stanislaus River at Mouth, Monthly Flow

Second Basis of Comparison

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	662	653	656	688	1,117	1,153	1,804	1,679	3,009	661	569	673
20\%	582	548	522	557	694	613	1,608	1,592	2,016	555	485	508
30\%	507	492	464	518	562	562	1,489	1,533	1,772	502	461	481
40\%	471	459	427	473	512	522	1,040	1,423	1,092	444	445	457
50\%	405	421	378	412	484	446	821	1,331	694	412	443	439
60\%	377	388	341	364	423	394	637	1,049	572	386	416	431
70\%	346	355	329	339	331	361	529	972	402	378	395	396
80\%	327	312	311	318	296	295	440	865	352	350	373	373
90\%	249	280	269	283	257	233	406	787	312	318	331	316
Long Term												
Full Simulation Period ${ }^{\text {b }}$	471	507	549	696	766	756	1,004	1,265	1,231	542	491	545
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	530	737	980	1,176	1,407	1,704	1,731	1,634	2,632	939	772	985
Above Normal (24\%)	494	463	451	840	852	680	1,126	1,323	1,495	535	463	484
Below Normal (10\%)	480	503	506	532	589	489	1,057	1,443	807	452	440	443
Dry (16\%)	487	437	415	433	484	407	616	1,166	555	377	404	408
Critical (27\%)	384	393	360	366	367	309	476	887	334	335	343	338

Alternative 3

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	679	485	722	1,267	2,628	1,444	1,865	1,414	950	885	571	1,146
20\%	557	456	438	518	1,301	734	1,634	1,306	679	535	480	489
30\%	482	441	411	410	502	486	1,552	1,233	558	476	457	450
40\%	448	424	400	374	416	419	1,240	1,043	428	424	445	439
50\%	435	402	381	311	366	367	1,064	920	413	382	440	435
60\%	392	372	362	275	308	334	996	882	374	374	410	415
70\%	377	359	325	251	238	312	893	829	352	350	390	384
80\%	360	333	300	232	201	238	575	550	304	327	367	360
90\%	293	260	239	198	180	203	493	489	273	290	347	320
Long Term												
Full Simulation Period ${ }^{\text {b }}$	482	469	558	669	938	770	1,180	995	693	573	535	578
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	539	714	1,096	1,183	2,227	1,841	1,781	1,437	1,596	1,213	961	1,139
Above Normal (24\%)	516	418	468	818	843	708	1,341	1,054	550	446	457	473
Below Normal (10\%)	461	404	408	632	723	446	1,230	1,086	449	445	438	422
Dry (16\%)	495	399	377	365	463	345	849	803	411	365	404	402
Critical (27\%)	401	369	336	282	272	271	692	639	299	305	351	351

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	17	-168	65	578	1,512	291	60	-265	-2,059	223	2	473
20\%	-26	-93	-84	-39	607	121	26	-286	-1,336	-20	-5	-19
30\%	-26	-51	-53	-108	-59	-76	63	-300	-1,214	-25	-4	-32
40\%	-23	-36	-28	-99	-96	-103	200	-380	-664	-20	0	-17
50\%	30	-19	2	-100	-119	-80	243	-410	-281	-29	-2	-5
60\%	15	-16	20	-89	-115	-61	359	-167	-199	-12	-5	-15
70\%	31	4	-4	-88	-93	-49	364	-143	-50	-28	-5	-13
80\%	33	21	-11	-86	-95	-56	135	-315	-49	-23	-5	-12
90\%	44	-20	-30	-84	-77	-30	87	-299	-39	-27	16	4
Long Term												
Full Simulation Period ${ }^{\text {b }}$	11	-38	9	-27	172	15	176	-270	-538	32	45	33
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	8	-23	116	6	820	137	50	-197	-1,037	274	189	154
Above Normal (24\%)	22	-45	18	-21	-9	29	215	-269	-945	-89	-5	-11
Below Normal (10\%)	-19	-98	-98	100	134	-43	173	-356	-358	-7	-2	-21
Dry (16\%)	7	-38	-38	-68	-21	-62	234	-364	-144	-11	0	-6
Critical (27\%)	17	-24	-24	-84	-95	-38	216	-247	-35	-29	9	12

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same,
therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in text. 3) Model results for Alternative 2 and $N \mathrm{No}$ Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in text.

Table C-36-6. Stanislaus River at Mouth, Monthly Flow

Second Basis of Comparison

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	662	653	656	688	1,117	1,153	1,804	1,679	3,009	661	569	673
20\%	582	548	522	557	694	613	1,608	1,592	2,016	555	485	508
30\%	507	492	464	518	562	562	1,489	1,533	1,772	502	461	481
40\%	471	459	427	473	512	522	1,040	1,423	1,092	444	445	457
50\%	405	421	378	412	484	446	821	1,331	694	412	443	439
60\%	377	388	341	364	423	394	637	1,049	572	386	416	431
70\%	346	355	329	339	331	361	529	972	402	378	395	396
80\%	327	312	311	318	296	295	440	865	352	350	373	373
90\%	249	280	269	283	257	233	406	787	312	318	331	316
Long Term												
Full Simulation Period ${ }^{\text {b }}$	471	507	549	696	766	756	1,004	1,265	1,231	542	491	545
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	530	737	980	1,176	1,407	1,704	1,731	1,634	2,632	939	772	985
Above Normal (24\%)	494	463	451	840	852	680	1,126	1,323	1,495	535	463	484
Below Normal (10\%)	480	503	506	532	589	489	1,057	1,443	807	452	440	443
Dry (16\%)	487	437	415	433	484	407	616	1,166	555	377	404	408
Critical (27\%)	384	393	360	366	367	309	476	887	334	335	343	338

Alternative 5

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	1,121	456	442	570	1,081	1,952	1,950	2,148	1,536	719	571	659
20\%	1,029	382	378	416	586	1,708	1,815	1,974	1,319	564	488	501
30\%	979	348	319	363	483	495	1,707	1,806	1,139	502	461	473
40\%	903	336	304	347	401	415	1,630	1,672	1,034	442	445	443
50\%	854	318	290	337	368	365	1,529	1,434	635	407	443	439
60\%	818	292	281	326	319	333	1,311	1,290	485	382	413	428
70\%	764	267	262	312	272	312	1,168	1,183	383	371	389	389
80\%	748	260	241	295	245	241	1,044	962	343	339	367	356
90\%	681	248	224	270	230	207	865	752	300	307	305	316
Long Term												
Full Simulation Period ${ }^{\text {b }}$	891	396	428	631	704	860	1,437	1,458	863	521	476	522
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	937	624	784	1,115	1,380	2,073	1,744	1,866	1,409	880	716	909
Above Normal (24\%)	898	342	372	790	770	801	1,356	1,651	1,257	534	467	480
Below Normal (10\%)	925	354	358	430	516	539	1,518	1,444	656	449	440	429
Dry (16\%)	900	322	300	347	403	345	1,488	1,442	522	375	397	399
Critical (27\%)	829	306	272	311	306	286	1,187	944	310	311	337	335

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	459	-197	-214	-118	-36	799	146	469	-1,473	58	2	-15
20\%	447	-166	-144	-141	-109	1,094	207	381	-697	9	3	-7
30\%	471	-145	-146	-155	-79	-67	218	273	-633	0	0	-9
40\%	432	-123	-123	-126	-110	-107	590	248	-58	-2	0	-13
50\%	449	-103	-88	-74	-116	-82	708	103	-59	-4	0	0
60\%	441	-96	-61	-38	-104	-61	674	241	-87	-4	-3	-3
70\%	418	-88	-67	-27	-60	-49	639	211	-19	-7	-6	-8
80\%	421	-52	-70	-23	-50	-54	604	97	-9	-11	-5	-16
90\%	432	-32	-46	-13	-27	-26	459	-35	-13	-11	-25	0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	421	-112	-121	-65	-62	104	433	193	-368	-21	-15	-22
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	407	-113	-196	-61	-27	369	14	233	-1,223	-59	-56	-76
Above Normal (24\%)	404	-121	-78	-50	-83	122	230	328	-238	-1	4	-4
Below Normal (10\%)	445	-148	-148	-102	-73	50	462	2	-151	-2	0	-14
Dry (16\%)	412	-115	-115	-86	-80	-62	873	276	-34	-1	-6	-9
Critical (27\%)	445	-87	-87	-55	-60	-23	711	58	-23	-23	-6	-3

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same,
therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in text. 3) Model results for Alternative 2 and $N \mathrm{No}$ Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in text.

1 C.37. San Joaquin River Flow downstream of Merced River Confluence

Figure C-37-1. San Joaquin River d/s of Merced Confluence, Long-Term* Average Flow

*Based on the 82-year simulation period.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-37-2. San Joaquin River d/s of Merced Confluence, Wet Year* Long-Term** Average Flow

*As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
**Based on the 82 -year simulation period.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-37-3. San Joaquin River d/s of Merced Confluence, Above Normal Year* Long-Term** Average Flow

*As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
**Based on the 82 -year simulation period.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text

Figure C-37-4. San Joaquin River d/s of Merced Confluence, Below Normal Year* Long-Term** Average Flow

*As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
**Based on the 82 -year simulation period.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text

Figure C-37-5. San Joaquin River d/s of Merced Confluence, Dry Year* Long-Term** Average Flow

*As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
**Based on the 82 -year simulation period.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-37-6. San Joaquin River d/s of Merced Confluence, Critical Year* Long-Term** Average Flow

*As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
**Based on the 82 -year simulation period.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text

Table C-37-1. San Joaquin River d/s of Merced Confluence, Monthly Flow

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	961	1,382	3,009	4,348	9,518	6,030	7,514	7,799	3,969	1,656	1,016	1,095
20\%	792	1,288	1,482	2,766	4,303	3,738	4,295	2,720	2,395	825	906	994
30\%	691	1,173	1,020	1,846	3,057	2,816	3,739	1,695	669	268	305	891
40\%	660	1,114	970	1,219	2,220	2,088	3,329	786	494	215	206	604
50\%	587	1,087	935	1,002	1,583	1,813	2,337	577	424	160	151	554
60\%	559	1,064	902	926	1,421	1,608	1,761	458	371	147	133	535
70\%	504	1,033	890	852	1,222	1,478	1,262	398	296	106	118	521
80\%	486	1,004	870	819	1,116	1,378	857	321	219	34	74	495
90\%	438	895	810	748	1,018	1,273	326	229	130	0	10	444
Long Term												
Full Simulation Period ${ }^{\text {b }}$	675	1,230	1,664	2,454	3,531	3,227	3,322	2,290	1,686	652	379	700
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	780	1,541	3,334	6,096	8,323	7,527	7,783	7,422	5,839	2,267	935	1,095
Above Normal (24\%)	688	1,177	1,261	2,146	3,796	2,934	3,719	1,544	798	328	453	780
Below Normal (10\%)	581	1,161	1,896	1,433	1,865	1,766	2,281	562	473	177	157	532
Dry (16\%)	672	1,243	991	1,000	1,270	1,565	1,414	416	307	120	129	522
Critical (27\%)	609	1,028	901	819	1,092	1,293	615	270	163	39	60	451

Alternative 1

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	961	1,382	3,009	4,348	9,509	6,029	7,513	7,799	3,969	1,657	1,016	1,095
20\%	792	1,288	1,482	2,766	4,303	3,738	4,295	2,720	2,395	826	906	994
30\%	691	1,174	1,020	1,845	3,057	2,816	3,740	1,695	670	270	306	891
40\%	660	1,114	970	1,219	2,212	2,088	3,330	787	496	217	208	605
50\%	588	1,087	935	1,002	1,583	1,813	2,337	578	425	162	152	555
60\%	559	1,064	902	926	1,421	1,608	1,762	459	372	148	135	536
70\%	504	1,034	890	852	1,222	1,478	1,262	399	297	107	119	521
80\%	486	1,004	870	819	1,116	1,378	858	321	219	34	74	495
90\%	438	895	810	748	1,018	1,273	326	229	130	0	11	444
Long Term												
Full Simulation Period ${ }^{\text {b }}$	675	1,230	1,664	2,454	3,528	3,227	3,322	2,290	1,687	653	380	700
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	780	1,541	3,334	6,094	8,315	7,525	7,782	7,421	5,839	2,267	936	1,096
Above Normal (24\%)	688	1,177	1,261	2,146	3,795	2,934	3,720	1,544	799	329	454	781
Below Normal (10\%)	581	1,161	1,896	1,433	1,865	1,766	2,282	564	475	179	158	533
Dry (16\%)	672	1,243	991	1,000	1,270	1,565	1,414	417	308	121	130	523
Critical (27\%)	609	1,029	901	819	1,092	1,293	615	270	164	40	61	451

Alternative 1 minus No Action Alternative

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same,
therefore Second Basis of Comparison and Alternative 4 results are not presented. Qualitative differences, if applicable, are discussed in text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in text.

Table C-37-2. San Joaquin River d/s of Merced Confluence, Monthly Flow

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	961	1,382	3,009	4,348	9,518	6,030	7,514	7,799	3,969	1,656	1,016	1,095
20\%	792	1,288	1,482	2,766	4,303	3,738	4,295	2,720	2,395	825	906	994
30\%	691	1,173	1,020	1,846	3,057	2,816	3,739	1,695	669	268	305	891
40\%	660	1,114	970	1,219	2,220	2,088	3,329	786	494	215	206	604
50\%	587	1,087	935	1,002	1,583	1,813	2,337	577	424	160	151	554
60\%	559	1,064	902	926	1,421	1,608	1,761	458	371	147	133	535
70\%	504	1,033	890	852	1,222	1,478	1,262	398	296	106	118	521
80\%	486	1,004	870	819	1,116	1,378	857	321	219	34	74	495
90\%	438	895	810	748	1,018	1,273	326	229	130	0	10	444
Long Term												
Full Simulation Period ${ }^{\text {b }}$	675	1,230	1,664	2,454	3,531	3,227	3,322	2,290	1,686	652	379	700
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	780	1,541	3,334	6,096	8,323	7,527	7,783	7,422	5,839	2,267	935	1,095
Above Normal (24\%)	688	1,177	1,261	2,146	3,796	2,934	3,719	1,544	798	328	453	780
Below Normal (10\%)	581	1,161	1,896	1,433	1,865	1,766	2,281	562	473	177	157	532
Dry (16\%)	672	1,243	991	1,000	1,270	1,565	1,414	416	307	120	129	522
Critical (27\%)	609	1,028	901	819	1,092	1,293	615	270	163	39	60	451

Alternative 3

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	961	1,382	3,009	4,348	9,501	6,029	7,512	7,799	3,969	1,657	1,016	1,095
20\%	792	1,288	1,482	2,766	4,303	3,738	4,295	2,721	2,395	827	907	994
30\%	691	1,174	1,020	1,846	3,057	2,816	3,740	1,695	670	270	306	892
40\%	660	1,114	970	1,219	2,213	2,088	3,330	787	495	216	208	605
50\%	587	1,087	935	1,002	1,583	1,813	2,337	577	425	162	152	555
60\%	559	1,064	902	926	1,421	1,608	1,762	459	372	147	135	536
70\%	504	1,034	890	852	1,222	1,478	1,262	399	297	107	119	521
80\%	486	1,004	870	819	1,116	1,378	858	321	219	34	74	495
90\%	438	895	810	748	1,018	1,273	326	229	130	0	10	444
Long Term												
Full Simulation Period ${ }^{\text {b }}$	675	1,230	1,664	2,454	3,529	3,227	3,322	2,290	1,687	653	380	700
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	780	1,541	3,334	6,095	8,317	7,525	7,782	7,421	5,839	2,267	936	1,096
Above Normal (24\%)	688	1,177	1,261	2,146	3,795	2,934	3,720	1,544	799	329	453	781
Below Normal (10\%)	581	1,161	1,897	1,433	1,865	1,766	2,282	564	474	179	158	533
Dry (16\%)	672	1,243	991	1,000	1,270	1,565	1,414	417	308	121	129	523
Critical (27\%)	609	1,028	901	819	1,092	1,293	615	270	163	40	60	451

Alternative 3 minus No Action Alternative

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0	0	0	0	-17	0	-2	0	0	1	0	0
20\%	0	0	0	0	0	0	0	1	0	2	1	0
30\%	0	0	0	0	0	0	1	0	1	2	1	1
40\%	0	0	0	0	-7	0	1	1	1	1	2	0
50\%	0	0	0	0	0	0	1	0	1	2	2	0
60\%	0	0	0	0	0	0	1	1	1	0	1	1
70\%	0	0	0	0	0	0	0	1	1	1	1	0
80\%	0	0	0	0	0	0	1	0	0	0	0	0
90\%	0	0	0	0	0	0	0	0	0	0	0	0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0	0	0	0	-2	0	0	0	1	1	1	0
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	0	0	0	-1	-7	-2	-1	-1	0	0	0	0
Above Normal (24\%)	0	0	0	0	-1	0	0	0	1	1	1	0
Below Normal (10\%)	0	0	0	0	0	0	1	1	1	2	1	1
Dry (16\%)	0	0	0	0	0	0	0	1	1	1	1	0
Critical (27\%)	0	0	0	0	0	0	0	0	0	0	0	0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same,
therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in text. 3) Model results for Alternative 2 and $N \mathrm{No}$ Action Alternative are the same, therefero Alternative 1 and 4 results are not presented. Quailiative difierences, if applicable, are discussed in
therefore Alternative 2 results are not presented. Qualititive differences, if applicabbe, are discussed in text.

Table C-37-3. San Joaquin River d/s of Merced Confluence, Monthly Flow

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	961	1,382	3,009	4,348	9,518	6,030	7,514	7,799	3,969	1,656	1,016	1,095
20\%	792	1,288	1,482	2,766	4,303	3,738	4,295	2,720	2,395	825	906	994
30\%	691	1,173	1,020	1,846	3,057	2,816	3,739	1,695	669	268	305	891
40\%	660	1,114	970	1,219	2,220	2,088	3,329	786	494	215	206	604
50\%	587	1,087	935	1,002	1,583	1,813	2,337	577	424	160	151	554
60\%	559	1,064	902	926	1,421	1,608	1,761	458	371	147	133	535
70\%	504	1,033	890	852	1,222	1,478	1,262	398	296	106	118	521
80\%	486	1,004	870	819	1,116	1,378	857	321	219	34	74	495
90\%	438	895	810	748	1,018	1,273	326	229	130	0	10	444
Long Term												
Full Simulation Period ${ }^{\text {b }}$	675	1,230	1,664	2,454	3,531	3,227	3,322	2,290	1,686	652	379	700
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	780	1,541	3,334	6,096	8,323	7,527	7,783	7,422	5,839	2,267	935	1,095
Above Normal (24\%)	688	1,177	1,261	2,146	3,796	2,934	3,719	1,544	798	328	453	780
Below Normal (10\%)	581	1,161	1,896	1,433	1,865	1,766	2,281	562	473	177	157	532
Dry (16\%)	672	1,243	991	1,000	1,270	1,565	1,414	416	307	120	129	522
Critical (27\%)	609	1,028	901	819	1,092	1,293	615	270	163	39	60	451

Alternative 5

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	961	1,382	3,009	4,348	9,519	6,030	7,517	7,800	3,969	1,657	1,016	1,095
20\%	792	1,288	1,482	2,766	4,303	3,738	4,295	2,719	2,395	825	906	994
30\%	691	1,173	1,020	1,845	3,057	2,816	3,739	1,695	669	268	305	891
40\%	660	1,114	970	1,219	2,220	2,088	3,329	786	494	215	207	604
50\%	587	1,087	935	1,002	1,583	1,813	2,337	577	424	160	151	554
60\%	559	1,064	902	926	1,421	1,608	1,761	458	371	147	133	535
70\%	504	1,033	890	852	1,222	1,478	1,261	397	296	106	118	521
80\%	486	1,004	870	819	1,116	1,378	857	320	219	34	74	495
90\%	438	895	810	748	1,018	1,273	326	229	130	0	10	444
Long Term												
Full Simulation Period ${ }^{\text {b }}$	675	1,230	1,664	2,454	3,531	3,227	3,322	2,290	1,686	652	379	700
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	780	1,541	3,334	6,096	8,324	7,527	7,783	7,423	5,839	2,268	935	1,095
Above Normal (24\%)	688	1,177	1,261	2,146	3,796	2,934	3,719	1,544	798	328	453	780
Below Normal (10\%)	581	1,161	1,896	1,433	1,865	1,766	2,281	562	473	177	157	532
Dry (16\%)	672	1,243	991	1,000	1,270	1,565	1,414	416	307	120	128	522
Critical (27\%)	609	1,028	901	819	1,092	1,293	615	269	163	39	60	451

Alternative 5 minus No Action Alternative

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0	0	0	0	1	0	3	1	0	0	0	0
20\%	0	0	0	0	0	0	0	0	0	0	0	0
30\%	0	0	0	0	0	0	0	0	0	0	0	0
40\%	0	0	0	0	0	0	0	0	0	0	0	0
50\%	0	0	0	0	0	0	0	0	0	0	0	0
60\%	0	0	0	0	0	0	0	0	0	0	0	0
70\%	0	0	0	0	0	0	0	0	0	0	0	0
80\%	0	0	0	0	0	0	0	0	0	0	0	0
90\%	0	0	0	0	0	0	0	0	0	0	0	0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0	0	0	0	0	0	0	0	0	0	0	0
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	0	0	0	0	0	0	0	0	0	0	0	0
Above Normal (24\%)	0	0	0	0	0	0	0	0	0	0	0	0
Below Normal (10\%)	0	0	0	0	0	0	0	0	0	0	0	0
Dry (16\%)	0	0	0	0	0	0	0	0	0	0	0	0
Critical (27\%)	0	0	0	0	0	0	0	0	0	0	0	0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period
C As defined by the Sacramento Valley $40-30-30$ Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same,
therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in text. 3) Model results for Alternative 2 and $N \mathrm{No}$ Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in text.

Table C-37-4. San Joaquin River d/s of Merced Confluence, Monthly Flow

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	961	1,382	3,009	4,348	9,509	6,029	7,513	7,799	3,969	1,657	1,016	1,095
20\%	792	1,288	1,482	2,766	4,303	3,738	4,295	2,720	2,395	826	906	994
30\%	691	1,174	1,020	1,845	3,057	2,816	3,740	1,695	670	270	306	891
40\%	660	1,114	970	1,219	2,212	2,088	3,330	787	496	217	208	605
50\%	588	1,087	935	1,002	1,583	1,813	2,337	578	425	162	152	555
60\%	559	1,064	902	926	1,421	1,608	1,762	459	372	148	135	536
70\%	504	1,034	890	852	1,222	1,478	1,262	399	297	107	119	521
80\%	486	1,004	870	819	1,116	1,378	858	321	219	34	74	495
90\%	438	895	810	748	1,018	1,273	326	229	130	0	11	444
Long Term												
Full Simulation Period ${ }^{\text {b }}$	675	1,230	1,664	2,454	3,528	3,227	3,322	2,290	1,687	653	380	700
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	780	1,541	3,334	6,094	8,315	7,525	7,782	7,421	5,839	2,267	936	1,096
Above Normal (24\%)	688	1,177	1,261	2,146	3,795	2,934	3,720	1,544	799	329	454	781
Below Normal (10\%)	581	1,161	1,896	1,433	1,865	1,766	2,282	564	475	179	158	533
Dry (16\%)	672	1,243	991	1,000	1,270	1,565	1,414	417	308	121	130	523
Critical (27\%)	609	1,029	901	819	1,092	1,293	615	270	164	40	61	451

No Action Alternative

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	961	1,382	3,009	4,348	9,518	6,030	7,514	7,799	3,969	1,656	1,016	1,095
20\%	792	1,288	1,482	2,766	4,303	3,738	4,295	2,720	2,395	825	906	994
30\%	691	1,173	1,020	1,846	3,057	2,816	3,739	1,695	669	268	305	891
40\%	660	1,114	970	1,219	2,220	2,088	3,329	786	494	215	206	604
50\%	587	1,087	935	1,002	1,583	1,813	2,337	577	424	160	151	554
60\%	559	1,064	902	926	1,421	1,608	1,761	458	371	147	133	535
70\%	504	1,033	890	852	1,222	1,478	1,262	398	296	106	118	521
80\%	486	1,004	870	819	1,116	1,378	857	321	219	34	74	495
90\%	438	895	810	748	1,018	1,273	326	229	130	0	10	444
Long Term												
Full Simulation Period ${ }^{\text {b }}$	675	1,230	1,664	2,454	3,531	3,227	3,322	2,290	1,686	652	379	700
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	780	1,541	3,334	6,096	8,323	7,527	7,783	7,422	5,839	2,267	935	1,095
Above Normal (24\%)	688	1,177	1,261	2,146	3,796	2,934	3,719	1,544	798	328	453	780
Below Normal (10\%)	581	1,161	1,896	1,433	1,865	1,766	2,281	562	473	177	157	532
Dry (16\%)	672	1,243	991	1,000	1,270	1,565	1,414	416	307	120	129	522
Critical (27\%)	609	1,028	901	819	1,092	1,293	615	270	163	39	60	451

No Action Alternative minus Second Basis of Comparison

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0	0	0	0	9	1	1	0	0	-1	0	0
20\%	0	0	0	0	0	0	0	-1	0	-1	0	0
30\%	0	0	0	0	0	0	-1	0	-1	-2	0	0
40\%	0	0	0	0	8	0	-1	-1	-2	-1	-2	0
50\%	0	0	0	0	0	0	0	-1	-1	-2	-1	-1
60\%	0	0	0	0	0	0	-1	-1	-2	-1	-1	-1
70\%	0	0	0	0	0	0	0	-1	-1	-1	-2	0
80\%	0	0	0	0	0	0	-1	0	0	0	0	0
90\%	0	0	0	0	0	0	0	0	0	0	-1	0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0	0	0	0	2	0	0	0	-1	-1	-1	0
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	0	0	0	1	8	2	0	1	0	0	0	0
Above Normal (24\%)	0	0	0	0	2	0	0	0	-1	-1	-1	0
Below Normal (10\%)	0	0	0	0	0	0	-1	-1	-2	-2	-2	-1
Dry (16\%)	0	0	0	0	0	0	-1	-1	-1	-2	-1	-1
Critical (27\%)	0	0	0	0	0	0	0	0	0	0	0	0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year
b Based on the 82 -year simulation period
C As defined by the Sacramento Valley $40-30-30$ Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same,
herefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in text. 3) Model results for Alternative 2 and No Action Alternative are the same,
thereforere Attemative and 4 resulis are not presented. Quailititive differences, if apppicable, are discusssed in
therefere

Table C-37-5. San Joaquin River d/s of Merced Confluence, Monthly Flow

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	961	1,382	3,009	4,348	9,509	6,029	7,513	7,799	3,969	1,657	1,016	1,095
20\%	792	1,288	1,482	2,766	4,303	3,738	4,295	2,720	2,395	826	906	994
30\%	691	1,174	1,020	1,845	3,057	2,816	3,740	1,695	670	270	306	891
40\%	660	1,114	970	1,219	2,212	2,088	3,330	787	496	217	208	605
50\%	588	1,087	935	1,002	1,583	1,813	2,337	578	425	162	152	555
60\%	559	1,064	902	926	1,421	1,608	1,762	459	372	148	135	536
70\%	504	1,034	890	852	1,222	1,478	1,262	399	297	107	119	521
80\%	486	1,004	870	819	1,116	1,378	858	321	219	34	74	495
90\%	438	895	810	748	1,018	1,273	326	229	130	0	11	444
Long Term												
Full Simulation Period ${ }^{\text {b }}$	675	1,230	1,664	2,454	3,528	3,227	3,322	2,290	1,687	653	380	700
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	780	1,541	3,334	6,094	8,315	7,525	7,782	7,421	5,839	2,267	936	1,096
Above Normal (24\%)	688	1,177	1,261	2,146	3,795	2,934	3,720	1,544	799	329	454	781
Below Normal (10\%)	581	1,161	1,896	1,433	1,865	1,766	2,282	564	475	179	158	533
Dry (16\%)	672	1,243	991	1,000	1,270	1,565	1,414	417	308	121	130	523
Critical (27\%)	609	1,029	901	819	1,092	1,293	615	270	164	40	61	451

Alternative 3

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	961	1,382	3,009	4,348	9,501	6,029	7,512	7,799	3,969	1,657	1,016	1,095
20\%	792	1,288	1,482	2,766	4,303	3,738	4,295	2,721	2,395	827	907	994
30\%	691	1,174	1,020	1,846	3,057	2,816	3,740	1,695	670	270	306	892
40\%	660	1,114	970	1,219	2,213	2,088	3,330	787	495	216	208	605
50\%	587	1,087	935	1,002	1,583	1,813	2,337	577	425	162	152	555
60\%	559	1,064	902	926	1,421	1,608	1,762	459	372	147	135	536
70\%	504	1,034	890	852	1,222	1,478	1,262	399	297	107	119	521
80\%	486	1,004	870	819	1,116	1,378	858	321	219	34	74	495
90\%	438	895	810	748	1,018	1,273	326	229	130	0	10	444
Long Term												
Full Simulation Period ${ }^{\text {b }}$	675	1,230	1,664	2,454	3,529	3,227	3,322	2,290	1,687	653	380	700
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	780	1,541	3,334	6,095	8,317	7,525	7,782	7,421	5,839	2,267	936	1,096
Above Normal (24\%)	688	1,177	1,261	2,146	3,795	2,934	3,720	1,544	799	329	453	781
Below Normal (10\%)	581	1,161	1,897	1,433	1,865	1,766	2,282	564	474	179	158	533
Dry (16\%)	672	1,243	991	1,000	1,270	1,565	1,414	417	308	121	129	523
Critical (27\%)	609	1,028	901	819	1,092	1,293	615	270	163	40	60	451

Alternative 3 minus Second Basis of Comparison

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0	0	0	0	-8	0	-1	0	0	0	0	0
20\%	0	0	0	0	0	0	0	0	0	1	1	0
30\%	0	0	0	0	0	0	0	0	0	0	0	0
40\%	0	0	0	0	1	0	0	0	-1	-1	0	0
50\%	0	0	0	0	0	0	0	-1	0	0	0	0
60\%	0	0	0	0	0	0	0	0	-1	-1	0	0
70\%	0	0	0	0	0	0	0	0	0	0	0	0
80\%	0	0	0	0	0	0	0	0	0	-1	0	0
90\%	0	0	0	0	0	0	0	0	0	0	-1	0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0	0	0	0	0	0	0	0	0	0	0	0
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	0	0	0	0	1	0	-1	0	0	0	0	0
Above Normal (24\%)	0	0	0	0	0	0	0	0	0	0	0	0
Below Normal (10\%)	0	0	0	0	0	0	0	0	0	0	0	0
Dry (16\%)	0	0	0	0	0	0	0	0	0	0	0	0
Critical (27\%)	0	0	0	0	0	0	0	0	0	0	0	0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same,
therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in text.

Table C-37-6. San Joaquin River d/s of Merced Confluence, Monthly Flow

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	961	1,382	3,009	4,348	9,509	6,029	7,513	7,799	3,969	1,657	1,016	1,095
20\%	792	1,288	1,482	2,766	4,303	3,738	4,295	2,720	2,395	826	906	994
30\%	691	1,174	1,020	1,845	3,057	2,816	3,740	1,695	670	270	306	891
40\%	660	1,114	970	1,219	2,212	2,088	3,330	787	496	217	208	605
50\%	588	1,087	935	1,002	1,583	1,813	2,337	578	425	162	152	555
60\%	559	1,064	902	926	1,421	1,608	1,762	459	372	148	135	536
70\%	504	1,034	890	852	1,222	1,478	1,262	399	297	107	119	521
80\%	486	1,004	870	819	1,116	1,378	858	321	219	34	74	495
90\%	438	895	810	748	1,018	1,273	326	229	130	0	11	444
Long Term												
Full Simulation Period ${ }^{\text {b }}$	675	1,230	1,664	2,454	3,528	3,227	3,322	2,290	1,687	653	380	700
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	780	1,541	3,334	6,094	8,315	7,525	7,782	7,421	5,839	2,267	936	1,096
Above Normal (24\%)	688	1,177	1,261	2,146	3,795	2,934	3,720	1,544	799	329	454	781
Below Normal (10\%)	581	1,161	1,896	1,433	1,865	1,766	2,282	564	475	179	158	533
Dry (16\%)	672	1,243	991	1,000	1,270	1,565	1,414	417	308	121	130	523
Critical (27\%)	609	1,029	901	819	1,092	1,293	615	270	164	40	61	451

Alternative 5

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	961	1,382	3,009	4,348	9,519	6,030	7,517	7,800	3,969	1,657	1,016	1,095
20\%	792	1,288	1,482	2,766	4,303	3,738	4,295	2,719	2,395	825	906	994
30\%	691	1,173	1,020	1,845	3,057	2,816	3,739	1,695	669	268	305	891
40\%	660	1,114	970	1,219	2,220	2,088	3,329	786	494	215	207	604
50\%	587	1,087	935	1,002	1,583	1,813	2,337	577	424	160	151	554
60\%	559	1,064	902	926	1,421	1,608	1,761	458	371	147	133	535
70\%	504	1,033	890	852	1,222	1,478	1,261	397	296	106	118	521
80\%	486	1,004	870	819	1,116	1,378	857	320	219	34	74	495
90\%	438	895	810	748	1,018	1,273	326	229	130	0	10	444
Long Term												
Full Simulation Period ${ }^{\text {b }}$	675	1,230	1,664	2,454	3,531	3,227	3,322	2,290	1,686	652	379	700
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	780	1,541	3,334	6,096	8,324	7,527	7,783	7,423	5,839	2,268	935	1,095
Above Normal (24\%)	688	1,177	1,261	2,146	3,796	2,934	3,719	1,544	798	328	453	780
Below Normal (10\%)	581	1,161	1,896	1,433	1,865	1,766	2,281	562	473	177	157	532
Dry (16\%)	672	1,243	991	1,000	1,270	1,565	1,414	416	307	120	128	522
Critical (27\%)	609	1,028	901	819	1,092	1,293	615	269	163	39	60	451

Alternative 5 minus Second Basis of Comparison

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0	0	0	0	10	1	4	1	0	-1	0	0
20\%	0	0	0	0	0	0	0	-1	0	-1	0	0
30\%	0	0	0	0	0	0	-1	0	-1	-2	0	-1
40\%	0	0	0	0	7	0	-1	-1	-2	-1	-2	0
50\%	0	0	0	0	0	0	0	-1	-1	-2	-1	-1
60\%	0	0	0	0	0	0	-1	-1	-2	-1	-1	-1
70\%	0	0	0	0	0	0	0	-1	-1	-1	-2	0
80\%	0	0	0	0	0	0	-1	-1	0	0	0	0
90\%	0	0	0	0	0	0	0	-1	0	0	-1	0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0	0	0	0	2	0	0	0	-1	-1	-1	0
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	0	0	0	1	8	2	0	2	1	0	0	0
Above Normal (24\%)	0	0	0	0	2	0	0	0	-1	-1	-1	0
Below Normal (10\%)	0	0	0	0	0	0	-1	-1	-2	-2	-2	-1
Dry (16\%)	0	0	0	0	0	0	-1	-1	-1	-2	-1	-1
Critical (27\%)	0	0	0	0	0	0	0	-1	0	0	0	0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year
b Based on the 82 -year simulation period
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same,
therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in text.
C.38. San Joaquin River Restoration Flow

Figure C-38-1. San Joaquin River Restoration Flows, Long-Term* Average Flow

*Based on the 82-year simulation period.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-38-2. San Joaquin River Restoration Flows, Wet Year* Long-Term** Average Flow

*As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
**Based on the 82 -year simulation period.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-38-3. San Joaquin River Restoration Flows, Above Normal Year* Long-Term** Average Flow

*As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
**Based on the 82 -year simulation period.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-38-4. San Joaquin River Restoration Flows, Below Normal Year* Long-Term** Average Flow

*As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
**Based on the 82 -year simulation period.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-38-5. San Joaquin River Restoration Flows, Dry Year* Long-Term** Average Flow

*As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
**Based on the 82 -year simulation period.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-38-6. San Joaquin River Restoration Flows, Critical Year* Long-Term** Average Flow

*As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
**Based on the 82 -year simulation period.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-38-1. San Joaquin River Restoration Flows, Monthly Flow

	Monthly Flow (cfs)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	350	467	350	350	350	1,016	3,249	2,000	2,000	350	350	350
20\%	350	467	350	350	350	1,016	3,249	771	771	350	350	350
30\%	350	467	350	350	350	1,016	3,249	435	435	350	350	350
40\%	350	467	350	350	350	1,016	2,970	350	350	350	350	350
50\%	350	467	350	350	350	1,016	2,008	350	350	350	350	350
60\%	350	467	350	350	350	1,016	1,543	350	350	350	350	350
70\%	350	467	350	350	350	1,016	1,281	350	350	350	350	350
80\%	350	467	350	350	350	1,016	817	350	350	350	350	350
90\%	350	467	350	350	350	1,016	388	350	350	350	350	350
Long Term												
Full Simulation Period ${ }^{\text {b }}$	338	445	336	335	335	1,005	2,055	692	692	343	343	344
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	340	449	338	337	337	1,016	3,249	1,711	1,711	350	350	350
Above Normal (24\%)	341	447	339	338	338	1,016	2,967	500	500	350	350	350
Below Normal (10\%)	303	394	293	290	290	1,016	2,071	350	350	350	350	350
Dry (16\%)	350	467	350	350	350	1,016	1,300	350	350	350	350	350
Critical (27\%)	341	444	340	339	339	976	636	312	312	323	323	327

Alternative 1

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	350	467	350	350	350	1,016	3,249	2,000	2,000	350	350	350
20\%	350	467	350	350	350	1,016	3,249	771	771	350	350	350
30\%	350	467	350	350	350	1,016	3,249	435	435	350	350	350
40\%	350	467	350	350	350	1,016	2,970	350	350	350	350	350
50\%	350	467	350	350	350	1,016	2,008	350	350	350	350	350
60\%	350	467	350	350	350	1,016	1,543	350	350	350	350	350
70\%	350	467	350	350	350	1,016	1,281	350	350	350	350	350
80\%	350	467	350	350	350	1,016	817	350	350	350	350	350
90\%	350	467	350	350	350	1,016	388	350	350	350	350	350
Long Term												
Full Simulation Period ${ }^{\text {b }}$	338	445	336	335	335	1,005	2,055	692	692	343	343	344
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	340	449	338	337	337	1,016	3,249	1,711	1,711	350	350	350
Above Normal (24\%)	341	447	339	338	338	1,016	2,967	500	500	350	350	350
Below Normal (10\%)	303	394	293	290	290	1,016	2,071	350	350	350	350	350
Dry (16\%)	350	467	350	350	350	1,016	1,300	350	350	350	350	350
Critical (27\%)	341	444	340	339	339	976	636	312	312	323	323	327

Alternative 1 minus No Action Alternative

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0	0	0	0	0	0	0	0	0	0	0	0
20\%	0	0	0	0	0	0	0	0	0	0	0	0
30\%	0	0	0	0	0	0	0	0	0	0	0	0
40\%	0	0	0	0	0	0	0	0	0	0	0	0
50\%	0	0	0	0	0	0	0	0	0	0	0	0
60\%	0	0	0	0	0	0	0	0	0	0	0	0
70\%	0	0	0	0	0	0	0	0	0	0	0	0
80\%	0	0	0	0	0	0	0	0	0	0	0	0
90\%	0	0	0	0	0	0	0	0	0	0	0	0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0	0	0	0	0	0	0	0	0	0	0	0
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	0	0	0	0	0	0	0	0	0	0	0	0
Above Normal (24\%)	0	0	0	0	0	0	0	0	0	0	0	0
Below Normal (10\%)	0	0	0	0	0	0	0	0	0	0	0	0
Dry (16\%)	0	0	0	0	0	0	0	0	0	0	0	0
Critical (27\%)	0	0	0	0	0	0	0	0	0	0	0	0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year
b Based on the 82 -year simulation period
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same,
therefore Second Basis of Comparison and Alternative 4 results are not presented. Qualitative differences, if applicable, are discussed in text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in text.

Table C-38-2. San Joaquin River Restoration Flows, Monthly Flow

	Monthly Flow (cfs)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	350	467	350	350	350	1,016	3,249	2,000	2,000	350	350	350
20\%	350	467	350	350	350	1,016	3,249	771	771	350	350	350
30\%	350	467	350	350	350	1,016	3,249	435	435	350	350	350
40\%	350	467	350	350	350	1,016	2,970	350	350	350	350	350
50\%	350	467	350	350	350	1,016	2,008	350	350	350	350	350
60\%	350	467	350	350	350	1,016	1,543	350	350	350	350	350
70\%	350	467	350	350	350	1,016	1,281	350	350	350	350	350
80\%	350	467	350	350	350	1,016	817	350	350	350	350	350
90\%	350	467	350	350	350	1,016	388	350	350	350	350	350
Long Term												
Full Simulation Period ${ }^{\text {b }}$	338	445	336	335	335	1,005	2,055	692	692	343	343	344
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	340	449	338	337	337	1,016	3,249	1,711	1,711	350	350	350
Above Normal (24\%)	341	447	339	338	338	1,016	2,967	500	500	350	350	350
Below Normal (10\%)	303	394	293	290	290	1,016	2,071	350	350	350	350	350
Dry (16\%)	350	467	350	350	350	1,016	1,300	350	350	350	350	350
Critical (27\%)	341	444	340	339	339	976	636	312	312	323	323	327

Alternative 3

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	350	467	350	350	350	1,016	3,249	2,000	2,000	350	350	350
20\%	350	467	350	350	350	1,016	3,249	771	771	350	350	350
30\%	350	467	350	350	350	1,016	3,249	435	435	350	350	350
40\%	350	467	350	350	350	1,016	2,970	350	350	350	350	350
50\%	350	467	350	350	350	1,016	2,008	350	350	350	350	350
60\%	350	467	350	350	350	1,016	1,543	350	350	350	350	350
70\%	350	467	350	350	350	1,016	1,281	350	350	350	350	350
80\%	350	467	350	350	350	1,016	817	350	350	350	350	350
90\%	350	467	350	350	350	1,016	388	350	350	350	350	350
Long Term												
Full Simulation Period ${ }^{\text {b }}$	338	445	336	335	335	1,005	2,055	692	692	343	343	344
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	340	449	338	337	337	1,016	3,249	1,711	1,711	350	350	350
Above Normal (24\%)	341	447	339	338	338	1,016	2,967	500	500	350	350	350
Below Normal (10\%)	303	394	293	290	290	1,016	2,071	350	350	350	350	350
Dry (16\%)	350	467	350	350	350	1,016	1,300	350	350	350	350	350
Critical (27\%)	341	444	340	339	339	976	636	312	312	323	323	327

Alternative 3 minus No Action Alternative

a Exceedance probability is defined as the probability a given value will be exceeded in any one year
b Based on the 82 -year simulation period
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same,
therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in text.

Table C-38-3. San Joaquin River Restoration Flows, Monthly Flow

	Monthly Flow (cfs)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	350	467	350	350	350	1,016	3,249	2,000	2,000	350	350	350
20\%	350	467	350	350	350	1,016	3,249	771	771	350	350	350
30\%	350	467	350	350	350	1,016	3,249	435	435	350	350	350
40\%	350	467	350	350	350	1,016	2,970	350	350	350	350	350
50\%	350	467	350	350	350	1,016	2,008	350	350	350	350	350
60\%	350	467	350	350	350	1,016	1,543	350	350	350	350	350
70\%	350	467	350	350	350	1,016	1,281	350	350	350	350	350
80\%	350	467	350	350	350	1,016	817	350	350	350	350	350
90\%	350	467	350	350	350	1,016	388	350	350	350	350	350
Long Term												
Full Simulation Period ${ }^{\text {b }}$	338	445	336	335	335	1,005	2,055	692	692	343	343	344
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	340	449	338	337	337	1,016	3,249	1,711	1,711	350	350	350
Above Normal (24\%)	341	447	339	338	338	1,016	2,967	500	500	350	350	350
Below Normal (10\%)	303	394	293	290	290	1,016	2,071	350	350	350	350	350
Dry (16\%)	350	467	350	350	350	1,016	1,300	350	350	350	350	350
Critical (27\%)	341	444	340	339	339	976	636	312	312	323	323	327

Alternative 5

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	350	467	350	350	350	1,016	3,249	2,000	2,000	350	350	350
20\%	350	467	350	350	350	1,016	3,249	771	771	350	350	350
30\%	350	467	350	350	350	1,016	3,249	435	435	350	350	350
40\%	350	467	350	350	350	1,016	2,970	350	350	350	350	350
50\%	350	467	350	350	350	1,016	2,008	350	350	350	350	350
60\%	350	467	350	350	350	1,016	1,543	350	350	350	350	350
70\%	350	467	350	350	350	1,016	1,281	350	350	350	350	350
80\%	350	467	350	350	350	1,016	817	350	350	350	350	350
90\%	350	467	350	350	350	1,016	388	350	350	350	350	350
Long Term												
Full Simulation Period ${ }^{\text {b }}$	338	445	336	335	335	1,005	2,055	692	692	343	343	344
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	340	449	338	337	337	1,016	3,249	1,711	1,711	350	350	350
Above Normal (24\%)	341	447	339	338	338	1,016	2,967	500	500	350	350	350
Below Normal (10\%)	303	394	293	290	290	1,016	2,071	350	350	350	350	350
Dry (16\%)	350	467	350	350	350	1,016	1,300	350	350	350	350	350
Critical (27\%)	341	444	340	339	339	976	636	312	312	323	323	327

Alternative 5 minus No Action Alternative

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0	0	0	0	0	0	0	0	0	0	0	0
20\%	0	0	0	0	0	0	0	0	0	0	0	0
30\%	0	0	0	0	0	0	0	0	0	0	0	0
40\%	0	0	0	0	0	0	0	0	0	0	0	0
50\%	0	0	0	0	0	0	0	0	0	0	0	0
60\%	0	0	0	0	0	0	0	0	0	0	0	0
70\%	0	0	0	0	0	0	0	0	0	0	0	0
80\%	0	0	0	0	0	0	0	0	0	0	0	0
90\%	0	0	0	0	0	0	0	0	0	0	0	0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0	0	0	0	0	0	0	0	0	0	0	0
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	0	0	0	0	0	0	0	0	0	0	0	0
Above Normal (24\%)	0	0	0	0	0	0	0	0	0	0	0	0
Below Normal (10\%)	0	0	0	0	0	0	0	0	0	0	0	0
Dry (16\%)	0	0	0	0	0	0	0	0	0	0	0	0
Critical (27\%)	0	0	0	0	0	0	0	0	0	0	0	0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year
b Based on the 82 -year simulation period
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same,
therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in text. 3) Model results for Alternative 2 and № Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in text.

Table C-38-4. San Joaquin River Restoration Flows, Monthly Flow

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	350	467	350	350	350	1,016	3,249	2,000	2,000	350	350	350
20\%	350	467	350	350	350	1,016	3,249	771	771	350	350	350
30\%	350	467	350	350	350	1,016	3,249	435	435	350	350	350
40\%	350	467	350	350	350	1,016	2,970	350	350	350	350	350
50\%	350	467	350	350	350	1,016	2,008	350	350	350	350	350
60\%	350	467	350	350	350	1,016	1,543	350	350	350	350	350
70\%	350	467	350	350	350	1,016	1,281	350	350	350	350	350
80\%	350	467	350	350	350	1,016	817	350	350	350	350	350
90\%	350	467	350	350	350	1,016	388	350	350	350	350	350
Long Term												
Full Simulation Period ${ }^{\text {b }}$	338	445	336	335	335	1,005	2,055	692	692	343	343	344
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	340	449	338	337	337	1,016	3,249	1,711	1,711	350	350	350
Above Normal (24\%)	341	447	339	338	338	1,016	2,967	500	500	350	350	350
Below Normal (10\%)	303	394	293	290	290	1,016	2,071	350	350	350	350	350
Dry (16\%)	350	467	350	350	350	1,016	1,300	350	350	350	350	350
Critical (27\%)	341	444	340	339	339	976	636	312	312	323	323	327

No Action Alternative

	Monthly Flow (cfs)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	350	467	350	350	350	1,016	3,249	2,000	2,000	350	350	350
20\%	350	467	350	350	350	1,016	3,249	771	771	350	350	350
30\%	350	467	350	350	350	1,016	3,249	435	435	350	350	350
40\%	350	467	350	350	350	1,016	2,970	350	350	350	350	350
50\%	350	467	350	350	350	1,016	2,008	350	350	350	350	350
60\%	350	467	350	350	350	1,016	1,543	350	350	350	350	350
70\%	350	467	350	350	350	1,016	1,281	350	350	350	350	350
80\%	350	467	350	350	350	1,016	817	350	350	350	350	350
90\%	350	467	350	350	350	1,016	388	350	350	350	350	350
Long Term												
Full Simulation Period ${ }^{\text {b }}$	338	445	336	335	335	1,005	2,055	692	692	343	343	344
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	340	449	338	337	337	1,016	3,249	1,711	1,711	350	350	350
Above Normal (24\%)	341	447	339	338	338	1,016	2,967	500	500	350	350	350
Below Normal (10\%)	303	394	293	290	290	1,016	2,071	350	350	350	350	350
Dry (16\%)	350	467	350	350	350	1,016	1,300	350	350	350	350	350
Critical (27\%)	341	444	340	339	339	976	636	312	312	323	323	327

No Action Alternative minus Second Basis of Comparison

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0	0	0	0	0	0	0	0	0	0	0	0
20\%	0	0	0	0	0	0	0	0	0	0	0	0
30\%	0	0	0	0	0	0	0	0	0	0	0	0
40\%	0	0	0	0	0	0	0	0	0	0	0	0
50\%	0	0	0	0	0	0	0	0	0	0	0	0
60\%	0	0	0	0	0	0	0	0	0	0	0	0
70\%	0	0	0	0	0	0	0	0	0	0	0	0
80\%	0	0	0	0	0	0	0	0	0	0	0	0
90\%	0	0	0	0	0	0	0	0	0	0	0	0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0	0	0	0	0	0	0	0	0	0	0	0
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	0	0	0	0	0	0	0	0	0	0	0	0
Above Normal (24\%)	0	0	0	0	0	0	0	0	0	0	0	0
Below Normal (10\%)	0	0	0	0	0	0	0	0	0	0	0	0
Dry (16\%)	0	0	0	0	0	0	0	0	0	0	0	0
Critical (27\%)	0	0	0	0	0	0	0	0	0	0	0	0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year
b Based on the 82 -year simulation period.
C As defined by the Sacramento Valley $40-30-30$ Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same,
therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in text. 3) Model results for Alternative 2 and $N \mathrm{No}$ Action Alternative are the same, therefore Aternaive 1 and 4 results are not presented. Quatiative differences, if appicicabe, are discussed in
therefore Altemative 2 results are not presented. Qualitative differences, if applicable, are discussed in text.

Table C-38-5. San Joaquin River Restoration Flows, Monthly Flow

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	350	467	350	350	350	1,016	3,249	2,000	2,000	350	350	350
20\%	350	467	350	350	350	1,016	3,249	771	771	350	350	350
30\%	350	467	350	350	350	1,016	3,249	435	435	350	350	350
40\%	350	467	350	350	350	1,016	2,970	350	350	350	350	350
50\%	350	467	350	350	350	1,016	2,008	350	350	350	350	350
60\%	350	467	350	350	350	1,016	1,543	350	350	350	350	350
70\%	350	467	350	350	350	1,016	1,281	350	350	350	350	350
80\%	350	467	350	350	350	1,016	817	350	350	350	350	350
90\%	350	467	350	350	350	1,016	388	350	350	350	350	350
Long Term												
Full Simulation Period ${ }^{\text {b }}$	338	445	336	335	335	1,005	2,055	692	692	343	343	344
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	340	449	338	337	337	1,016	3,249	1,711	1,711	350	350	350
Above Normal (24\%)	341	447	339	338	338	1,016	2,967	500	500	350	350	350
Below Normal (10\%)	303	394	293	290	290	1,016	2,071	350	350	350	350	350
Dry (16\%)	350	467	350	350	350	1,016	1,300	350	350	350	350	350
Critical (27\%)	341	444	340	339	339	976	636	312	312	323	323	327

Alternative 3

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	350	467	350	350	350	1,016	3,249	2,000	2,000	350	350	350
20\%	350	467	350	350	350	1,016	3,249	771	771	350	350	350
30\%	350	467	350	350	350	1,016	3,249	435	435	350	350	350
40\%	350	467	350	350	350	1,016	2,970	350	350	350	350	350
50\%	350	467	350	350	350	1,016	2,008	350	350	350	350	350
60\%	350	467	350	350	350	1,016	1,543	350	350	350	350	350
70\%	350	467	350	350	350	1,016	1,281	350	350	350	350	350
80\%	350	467	350	350	350	1,016	817	350	350	350	350	350
90\%	350	467	350	350	350	1,016	388	350	350	350	350	350
Long Term												
Full Simulation Period ${ }^{\text {b }}$	338	445	336	335	335	1,005	2,055	692	692	343	343	344
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	340	449	338	337	337	1,016	3,249	1,711	1,711	350	350	350
Above Normal (24\%)	341	447	339	338	338	1,016	2,967	500	500	350	350	350
Below Normal (10\%)	303	394	293	290	290	1,016	2,071	350	350	350	350	350
Dry (16\%)	350	467	350	350	350	1,016	1,300	350	350	350	350	350
Critical (27\%)	341	444	340	339	339	976	636	312	312	323	323	327

Alternative 3 minus Second Basis of Comparison

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0	0	0	0	0	0	0	0	0	0	0	0
20\%	0	0	0	0	0	0	0	0	0	0	0	0
30\%	0	0	0	0	0	0	0	0	0	0	0	0
40\%	0	0	0	0	0	0	0	0	0	0	0	0
50\%	0	0	0	0	0	0	0	0	0	0	0	0
60\%	0	0	0	0	0	0	0	0	0	0	0	0
70\%	0	0	0	0	0	0	0	0	0	0	0	0
80\%	0	0	0	0	0	0	0	0	0	0	0	0
90\%	0	0	0	0	0	0	0	0	0	0	0	0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0	0	0	0	0	0	0	0	0	0	0	0
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	0	0	0	0	0	0	0	0	0	0	0	0
Above Normal (24\%)	0	0	0	0	0	0	0	0	0	0	0	0
Below Normal (10\%)	0	0	0	0	0	0	0	0	0	0	0	0
Dry (16\%)	0	0	0	0	0	0	0	0	0	0	0	0
Critical (27\%)	0	0	0	0	0	0	0	0	0	0	0	0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same,
therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in text. 3) Model results for Alternative 2 and $N \mathrm{No}$ Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in text.

Table C-38-6. San Joaquin River Restoration Flows, Monthly Flow

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	350	467	350	350	350	1,016	3,249	2,000	2,000	350	350	350
20\%	350	467	350	350	350	1,016	3,249	771	771	350	350	350
30\%	350	467	350	350	350	1,016	3,249	435	435	350	350	350
40\%	350	467	350	350	350	1,016	2,970	350	350	350	350	350
50\%	350	467	350	350	350	1,016	2,008	350	350	350	350	350
60\%	350	467	350	350	350	1,016	1,543	350	350	350	350	350
70\%	350	467	350	350	350	1,016	1,281	350	350	350	350	350
80\%	350	467	350	350	350	1,016	817	350	350	350	350	350
90\%	350	467	350	350	350	1,016	388	350	350	350	350	350
Long Term												
Full Simulation Period ${ }^{\text {b }}$	338	445	336	335	335	1,005	2,055	692	692	343	343	344
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	340	449	338	337	337	1,016	3,249	1,711	1,711	350	350	350
Above Normal (24\%)	341	447	339	338	338	1,016	2,967	500	500	350	350	350
Below Normal (10\%)	303	394	293	290	290	1,016	2,071	350	350	350	350	350
Dry (16\%)	350	467	350	350	350	1,016	1,300	350	350	350	350	350
Critical (27\%)	341	444	340	339	339	976	636	312	312	323	323	327

Alternative 5

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	350	467	350	350	350	1,016	3,249	2,000	2,000	350	350	350
20\%	350	467	350	350	350	1,016	3,249	771	771	350	350	350
30\%	350	467	350	350	350	1,016	3,249	435	435	350	350	350
40\%	350	467	350	350	350	1,016	2,970	350	350	350	350	350
50\%	350	467	350	350	350	1,016	2,008	350	350	350	350	350
60\%	350	467	350	350	350	1,016	1,543	350	350	350	350	350
70\%	350	467	350	350	350	1,016	1,281	350	350	350	350	350
80\%	350	467	350	350	350	1,016	817	350	350	350	350	350
90\%	350	467	350	350	350	1,016	388	350	350	350	350	350
Long Term												
Full Simulation Period ${ }^{\text {b }}$	338	445	336	335	335	1,005	2,055	692	692	343	343	344
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	340	449	338	337	337	1,016	3,249	1,711	1,711	350	350	350
Above Normal (24\%)	341	447	339	338	338	1,016	2,967	500	500	350	350	350
Below Normal (10\%)	303	394	293	290	290	1,016	2,071	350	350	350	350	350
Dry (16\%)	350	467	350	350	350	1,016	1,300	350	350	350	350	350
Critical (27\%)	341	444	340	339	339	976	636	312	312	323	323	327

Alternative 5 minus Second Basis of Comparison

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0	0	0	0	0	0	0	0	0	0	0	0
20\%	0	0	0	0	0	0	0	0	0	0	0	0
30\%	0	0	0	0	0	0	0	0	0	0	0	0
40\%	0	0	0	0	0	0	0	0	0	0	0	0
50\%	0	0	0	0	0	0	0	0	0	0	0	0
60\%	0	0	0	0	0	0	0	0	0	0	0	0
70\%	0	0	0	0	0	0	0	0	0	0	0	0
80\%	0	0	0	0	0	0	0	0	0	0	0	0
90\%	0	0	0	0	0	0	0	0	0	0	0	0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0	0	0	0	0	0	0	0	0	0	0	0
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	0	0	0	0	0	0	0	0	0	0	0	0
Above Normal (24\%)	0	0	0	0	0	0	0	0	0	0	0	0
Below Normal (10\%)	0	0	0	0	0	0	0	0	0	0	0	0
Dry (16\%)	0	0	0	0	0	0	0	0	0	0	0	0
Critical (27\%)	0	0	0	0	0	0	0	0	0	0	0	0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period
C As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same,
therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in text. 3) Model results for Alternative 2 and $N \mathrm{No}$ Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in text.
C.39. San Joaquin River Flow at Vernalis minus San Joaquin River Flow downstream of Merced River Confluence

Figure C-39-1. San Joaquin River at Vernalis - Joaquin River d/s of Merced Confluence, Long-Term* Average Flow

*Based on the 82-year simulation period.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-39-2. San Joaquin River at Vernalis - Joaquin River d/s of Merced Confluence, Wet Year* Long-Term** Average Flow

*As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
**Based on the 82 -year simulation period.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-39-3. San Joaquin River at Vernalis - Joaquin River d/s of Merced Confluence, Above Normal Year* Long-Term** Average Flow

*As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
**Based on the 82 -year simulation period.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text

Figure C-39-4. San Joaquin River at Vernalis - Joaquin River d/s of Merced Confluence, Below Normal Year* Long-Term** Average Flow

*As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
**Based on the 82 -year simulation period.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text

Figure C-39-5. San Joaquin River at Vernalis - Joaquin River d/s of Merced Confluence, Dry Year* Long-Term** Average Flow

*As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
**Based on the 82 -year simulation period.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text

Figure C-39-6. San Joaquin River at Vernalis - Joaquin River d/s of Merced Confluence, Critical Year* Long-Term** Average Flow

*As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
**Based on the 82 -year simulation period.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text

Table C-39-1. San Joaquin River at Vernalis - San Joaquin River d/s of Merced Confluence, Monthly Flow

No Action Alternative

	Monthly Flow (cfs)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	2,505	1,686	2,261	4,481	8,588	9,439	7,674	7,184	5,515	4,577	1,821	1,918
20\%	2,335	1,468	1,469	2,369	4,963	6,708	6,148	4,646	3,168	2,020	1,670	1,665
30\%	2,208	1,301	1,329	1,606	2,516	5,262	5,007	4,152	2,696	1,654	1,571	1,591
40\%	2,111	1,199	1,200	1,485	1,609	3,567	4,388	3,639	2,299	1,537	1,466	1,473
50\%	1,994	1,129	1,125	1,387	1,375	2,036	3,598	3,113	1,799	1,305	1,334	1,382
60\%	1,822	1,079	1,105	1,255	1,259	1,609	2,904	2,543	1,390	1,184	1,243	1,284
70\%	1,671	1,000	1,033	1,108	1,134	1,199	2,245	2,213	1,163	1,112	1,192	1,219
80\%	1,581	932	971	1,018	1,022	1,076	1,832	1,772	1,095	990	1,088	1,146
90\%	1,337	843	854	888	895	909	1,496	1,509	904	860	996	1,019
Long Term												
Full Simulation Period ${ }^{\text {b }}$	1,997	1,381	1,727	2,616	3,124	4,051	4,206	3,750	2,508	1,970	1,468	1,523
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	2,138	1,972	3,211	5,350	7,453	9,336	7,641	7,206	5,495	4,409	2,200	2,321
Above Normal (24\%)	2,012	1,239	1,402	2,737	3,085	4,602	4,823	3,720	2,482	1,662	1,522	1,564
Below Normal (10\%)	1,957	1,088	1,765	2,074	1,785	2,383	4,056	3,577	1,603	1,286	1,289	1,305
Dry (16\%)	2,095	1,326	1,241	1,402	1,279	1,676	2,582	2,389	1,374	1,134	1,218	1,254
Critical (27\%)	1,817	1,139	1,014	1,058	999	995	1,692	1,659	951	886	999	1,036

Alternative 1

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	2,056	1,892	2,379	4,517	8,588	8,333	7,534	7,093	6,724	4,063	1,810	2,005
20\%	1,882	1,616	1,613	2,452	5,143	6,125	5,907	4,546	3,985	2,031	1,668	1,681
30\%	1,754	1,411	1,461	1,695	2,701	4,985	4,748	4,121	2,812	1,658	1,570	1,591
40\%	1,648	1,330	1,340	1,625	1,750	3,378	4,029	3,788	2,430	1,546	1,470	1,494
50\%	1,511	1,256	1,231	1,483	1,481	2,117	3,199	3,223	1,861	1,317	1,341	1,397
60\%	1,343	1,148	1,167	1,302	1,326	1,662	2,392	2,757	1,394	1,198	1,252	1,289
70\%	1,248	1,078	1,139	1,162	1,201	1,259	1,796	2,398	1,173	1,115	1,203	1,227
80\%	1,127	981	1,025	1,055	1,078	1,095	1,552	1,965	1,102	1,001	1,092	1,147
90\%	921	885	885	927	920	935	1,311	1,726	907	869	980	1,023
Long Term												
Full Simulation Period ${ }^{\text {b }}$	1,565	1,491	1,828	2,682	3,172	3,904	3,933	3,811	2,860	1,972	1,458	1,537
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	1,717	2,086	3,310	5,411	7,448	8,783	7,592	7,012	6,673	4,374	2,142	2,360
Above Normal (24\%)	1,600	1,356	1,496	2,801	3,151	4,481	4,540	3,803	2,725	1,670	1,524	1,571
Below Normal (10\%)	1,505	1,236	1,913	2,176	1,858	2,335	3,560	3,650	1,750	1,302	1,299	1,323
Dry (16\%)	1,667	1,442	1,356	1,486	1,358	1,739	2,137	2,559	1,406	1,145	1,232	1,267
Critical (27\%)	1,365	1,222	1,097	1,107	1,047	1,018	1,416	1,852	953	903	998	1,034

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	-448	207	118	36	0	-1,106	-141	-91	1,209	-514	-12	87
20\%	-453	148	144	83	180	-583	-240	-100	817	12	-2	16
30\%	-454	110	132	88	184	-277	-259	-31	116	4	-2	-1
40\%	-464	131	140	139	141	-189	-359	149	131	10	4	20
50\%	-483	127	106	96	106	81	-399	110	62	13	7	15
60\%	-478	70	62	47	67	53	-512	214	4	14	9	5
70\%	-422	78	106	54	68	61	-449	185	10	3	10	8
80\%	-454	49	55	37	56	20	-280	193	7	11	4	1
90\%	-416	42	32	39	25	26	-186	217	4	8	-16	4
Long Term												
Full Simulation Period ${ }^{\text {b }}$	-431	110	101	66	47	-146	-273	61	352	2	-10	14
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	-420	114	99	61	-5	-554	-49	-193	1,177	-35	-57	39
Above Normal (24\%)	-413	116	94	63	66	-121	-283	83	243	9	1	7
Below Normal (10\%)	-452	148	148	102	72	-49	-496	72	147	16	10	18
Dry (16\%)	-428	115	115	85	79	63	-446	170	32	11	13	13
Critical (27\%)	-452	83	83	49	48	23	-276	193	1	17	-1	-2

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same,
therefore Second Basis of Comparison and Alternative 4 results are not presented. Qualitative differences, if applicable, are discussed in text. 3) Model results for Alternative 2 and No Action therefore Second Basis of Comparison and Alternative 4 results are not presented. Qualitative differences, if applicable, are discussed
Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in text.

Table C-39-2. San Joaquin River at Vernalis - San Joaquin River d/s of Merced Confluence, Monthly Flow

No Action Alternative

	Monthly Flow (cfs)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	2,505	1,686	2,261	4,481	8,588	9,439	7,674	7,184	5,515	4,577	1,821	1,918
20\%	2,335	1,468	1,469	2,369	4,963	6,708	6,148	4,646	3,168	2,020	1,670	1,665
30\%	2,208	1,301	1,329	1,606	2,516	5,262	5,007	4,152	2,696	1,654	1,571	1,591
40\%	2,111	1,199	1,200	1,485	1,609	3,567	4,388	3,639	2,299	1,537	1,466	1,473
50\%	1,994	1,129	1,125	1,387	1,375	2,036	3,598	3,113	1,799	1,305	1,334	1,382
60\%	1,822	1,079	1,105	1,255	1,259	1,609	2,904	2,543	1,390	1,184	1,243	1,284
70\%	1,671	1,000	1,033	1,108	1,134	1,199	2,245	2,213	1,163	1,112	1,192	1,219
80\%	1,581	932	971	1,018	1,022	1,076	1,832	1,772	1,095	990	1,088	1,146
90\%	1,337	843	854	888	895	909	1,496	1,509	904	860	996	1,019
Long Term												
Full Simulation Period ${ }^{\text {b }}$	1,997	1,381	1,727	2,616	3,124	4,051	4,206	3,750	2,508	1,970	1,468	1,523
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	2,138	1,972	3,211	5,350	7,453	9,336	7,641	7,206	5,495	4,409	2,200	2,321
Above Normal (24\%)	2,012	1,239	1,402	2,737	3,085	4,602	4,823	3,720	2,482	1,662	1,522	1,564
Below Normal (10\%)	1,957	1,088	1,765	2,074	1,785	2,383	4,056	3,577	1,603	1,286	1,289	1,305
Dry (16\%)	2,095	1,326	1,241	1,402	1,279	1,676	2,582	2,389	1,374	1,134	1,218	1,254
Critical (27\%)	1,817	1,139	1,014	1,058	999	995	1,692	1,659	951	886	999	1,036

Alternative 3

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	2,042	1,844	2,484	5,349	8,588	8,881	7,550	6,797	5,625	4,924	2,340	2,418
20\%	1,863	1,547	1,542	2,459	5,856	6,228	6,133	4,336	2,364	1,873	1,653	1,667
30\%	1,740	1,374	1,398	1,640	2,799	4,941	5,081	3,850	1,900	1,614	1,570	1,561
40\%	1,655	1,277	1,300	1,525	1,684	3,279	4,146	3,453	1,709	1,517	1,468	1,473
50\%	1,495	1,222	1,211	1,386	1,347	2,037	3,450	2,840	1,416	1,290	1,339	1,380
60\%	1,374	1,127	1,159	1,224	1,186	1,632	2,578	2,458	1,192	1,177	1,248	1,286
70\%	1,280	1,087	1,110	1,059	1,050	1,199	2,146	2,040	1,141	1,069	1,199	1,224
80\%	1,147	995	1,030	981	901	1,076	1,815	1,831	987	954	1,083	1,147
90\%	959	880	891	812	811	903	1,401	1,397	899	855	1,002	1,021
Long Term												
Full Simulation Period ${ }^{\text {b }}$	1,576	1,453	1,837	2,654	3,344	3,919	4,109	3,541	2,322	2,002	1,502	1,570
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	1,725	2,063	3,426	5,417	8,268	8,920	7,644	6,816	5,637	4,649	2,332	2,515
Above Normal (24\%)	1,622	1,311	1,514	2,779	3,142	4,510	4,756	3,534	1,780	1,581	1,518	1,560
Below Normal (10\%)	1,486	1,138	1,815	2,276	1,992	2,291	3,734	3,292	1,391	1,293	1,296	1,302
Dry (16\%)	1,674	1,403	1,318	1,418	1,337	1,676	2,370	2,194	1,260	1,132	1,230	1,260
Critical (27\%)	1,382	1,199	1,073	1,023	952	980	1,632	1,604	917	872	1,006	1,046

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	-463	159	222	867	0	-558	-124	-387	110	347	519	500
20\%	-472	79	73	90	892	-480	-15	-310	-804	-147	-17	2
30\%	-468	73	69	34	283	-321	74	-302	-797	-40	-1	-30
40\%	-456	79	100	39	75	-288	-242	-186	-590	-20	3	0
50\%	-499	94	86	-2	-27	1	-148	-273	-383	-15	5	-1
60\%	-448	48	54	-31	-73	23	-327	-85	-198	-7	5	1
70\%	-390	86	77	-49	-83	0	-100	-173	-22	-43	7	5
80\%	-434	63	60	-37	-121	0	-17	59	-108	-37	-5	0
90\%	-378	38	37	-75	-84	-6	-95	-112	-5	-5	6	2
Long Term												
Full Simulation Period ${ }^{\text {b }}$	-420	71	110	39	219	-132	-97	-209	-186	32	34	47
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	-412	91	215	67	815	-417	3	-390	141	240	132	194
Above Normal (24\%)	-390	72	112	42	57	-93	-67	-186	-702	-81	-4	-5
Below Normal (10\%)	-471	50	50	201	206	-92	-322	-285	-212	7	6	-3
Dry (16\%)	-421	77	77	17	58	0	-212	-195	-113	-3	12	6
Critical (27\%)	-435	59	59	-35	-47	-15	-61	-55	-34	-14	7	9

a Exceedance probability is defined as the probability a given value will be exceeded in any one year
b Based on the 82 -year simulation period
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same,
therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in text. 3) Model results for Alternative 2 and № Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in text.

Table C-39-3. San Joaquin River at Vernalis - San Joaquin River d/s of Merced Confluence, Monthly Flow

No Action Alternative

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	2,505	1,686	2,261	4,481	8,588	9,439	7,674	7,184	5,515	4,577	1,821	1,918
20\%	2,335	1,468	1,469	2,369	4,963	6,708	6,148	4,646	3,168	2,020	1,670	1,665
30\%	2,208	1,301	1,329	1,606	2,516	5,262	5,007	4,152	2,696	1,654	1,571	1,591
40\%	2,111	1,199	1,200	1,485	1,609	3,567	4,388	3,639	2,299	1,537	1,466	1,473
50\%	1,994	1,129	1,125	1,387	1,375	2,036	3,598	3,113	1,799	1,305	1,334	1,382
60\%	1,822	1,079	1,105	1,255	1,259	1,609	2,904	2,543	1,390	1,184	1,243	1,284
70\%	1,671	1,000	1,033	1,108	1,134	1,199	2,245	2,213	1,163	1,112	1,192	1,219
80\%	1,581	932	971	1,018	1,022	1,076	1,832	1,772	1,095	990	1,088	1,146
90\%	1,337	843	854	888	895	909	1,496	1,509	904	860	996	1,019
Long Term												
Full Simulation Period ${ }^{\text {b }}$	1,997	1,381	1,727	2,616	3,124	4,051	4,206	3,750	2,508	1,970	1,468	1,523
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	2,138	1,972	3,211	5,350	7,453	9,336	7,641	7,206	5,495	4,409	2,200	2,321
Above Normal (24\%)	2,012	1,239	1,402	2,737	3,085	4,602	4,823	3,720	2,482	1,662	1,522	1,564
Below Normal (10\%)	1,957	1,088	1,765	2,074	1,785	2,383	4,056	3,577	1,603	1,286	1,289	1,305
Dry (16\%)	2,095	1,326	1,241	1,402	1,279	1,676	2,582	2,389	1,374	1,134	1,218	1,254
Critical (27\%)	1,817	1,139	1,014	1,058	999	995	1,692	1,659	951	886	999	1,036

Alternative 5

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	2,505	1,686	2,261	4,481	8,588	9,439	7,488	7,184	5,515	4,295	1,797	1,944
20\%	2,335	1,452	1,469	2,369	4,963	6,662	6,052	4,957	3,168	2,021	1,664	1,665
30\%	2,201	1,301	1,323	1,606	2,517	5,262	5,002	4,380	2,697	1,654	1,572	1,591
40\%	2,071	1,199	1,200	1,485	1,584	3,567	4,421	4,045	2,299	1,537	1,466	1,473
50\%	1,960	1,129	1,125	1,387	1,370	2,036	3,637	3,505	1,763	1,305	1,333	1,381
60\%	1,817	1,079	1,105	1,249	1,259	1,609	3,176	3,153	1,390	1,183	1,243	1,284
70\%	1,671	1,000	1,033	1,108	1,134	1,199	2,549	2,322	1,151	1,090	1,192	1,219
80\%	1,547	932	971	1,018	984	1,076	2,229	2,070	1,072	978	1,075	1,121
90\%	1,337	843	854	888	892	909	2,109	1,989	902	860	996	1,019
Long Term												
Full Simulation Period ${ }^{\text {b }}$	1,985	1,379	1,707	2,617	3,109	4,008	4,364	4,001	2,488	1,945	1,439	1,513
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	2,123	1,972	3,114	5,350	7,420	9,152	7,606	7,244	5,448	4,312	2,084	2,283
Above Normal (24\%)	2,003	1,234	1,418	2,751	3,068	4,602	4,768	4,127	2,482	1,662	1,522	1,564
Below Normal (10\%)	1,949	1,088	1,765	2,073	1,785	2,383	4,018	3,643	1,589	1,286	1,289	1,305
Dry (16\%)	2,078	1,326	1,241	1,400	1,277	1,676	3,006	2,829	1,365	1,134	1,218	1,253
Critical (27\%)	1,809	1,135	1,009	1,052	986	995	2,126	1,907	927	877	991	1,029

Alternative 5 minus No Action Alternative

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0	0	0	-1	0	0	-186	0	0	-282	-25	26
20\%	0	-16	0	0	0	-46	-96	311	0	1	-7	0
30\%	-8	0	-7	0	0	0	-5	228	0	0	0	0
40\%	-41	0	0	0	-25	0	33	406	0	0	0	0
50\%	-34	0	0	0	-5	0	39	393	-35	0	0	0
60\%	-5	0	0	-6	0	0	272	610	0	-1	0	0
70\%	0	0	0	0	0	0	304	109	-12	-21	0	0
80\%	-34	0	0	0	-38	0	397	298	-23	-12	-13	-26
90\%	0	0	0	0	-3	0	612	480	-2	0	0	0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	-11	-2	-20	1	-15	-43	158	251	-20	-25	-29	-11
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	-15	0	-97	0	-33	-185	-35	38	-47	-97	-115	-38
Above Normal (24\%)	-9	-5	16	13	-17	0	-55	407	0	0	0	0
Below Normal (10\%)	-7	0	0	-1	-1	0	-38	66	-14	0	0	0
Dry (16\%)	-17	0	0	-2	-2	0	424	440	-9	-1	0	0
Critical (27\%)	-8	-5	-5	-6	-13	0	434	248	-24	-10	-9	-7

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same,
therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in text.

Table C-39-4. San Joaquin River at Vernalis - San Joaquin River d/s of Merced Confluence, Monthly Flow

Second Basis of Comparison

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	2,056	1,892	2,379	4,517	8,588	8,333	7,534	7,093	6,724	4,063	1,810	2,005
20\%	1,882	1,616	1,613	2,452	5,143	6,125	5,907	4,546	3,985	2,031	1,668	1,681
30\%	1,754	1,411	1,461	1,695	2,701	4,985	4,748	4,121	2,812	1,658	1,570	1,591
40\%	1,648	1,330	1,340	1,625	1,750	3,378	4,029	3,788	2,430	1,546	1,470	1,494
50\%	1,511	1,256	1,231	1,483	1,481	2,117	3,199	3,223	1,861	1,317	1,341	1,397
60\%	1,343	1,148	1,167	1,302	1,326	1,662	2,392	2,757	1,394	1,198	1,252	1,289
70\%	1,248	1,078	1,139	1,162	1,201	1,259	1,796	2,398	1,173	1,115	1,203	1,227
80\%	1,127	981	1,025	1,055	1,078	1,095	1,552	1,965	1,102	1,001	1,092	1,147
90\%	921	885	885	927	920	935	1,311	1,726	907	869	980	1,023
Long Term												
Full Simulation Period ${ }^{\text {b }}$	1,565	1,491	1,828	2,682	3,172	3,904	3,933	3,811	2,860	1,972	1,458	1,537
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	1,717	2,086	3,310	5,411	7,448	8,783	7,592	7,012	6,673	4,374	2,142	2,360
Above Normal (24\%)	1,600	1,356	1,496	2,801	3,151	4,481	4,540	3,803	2,725	1,670	1,524	1,571
Below Normal (10\%)	1,505	1,236	1,913	2,176	1,858	2,335	3,560	3,650	1,750	1,302	1,299	1,323
Dry (16\%)	1,667	1,442	1,356	1,486	1,358	1,739	2,137	2,559	1,406	1,145	1,232	1,267
Critical (27\%)	1,365	1,222	1,097	1,107	1,047	1,018	1,416	1,852	953	903	998	1,034

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	2,505	1,686	2,261	4,481	8,588	9,439	7,674	7,184	5,515	4,577	1,821	1,918
20\%	2,335	1,468	1,469	2,369	4,963	6,708	6,148	4,646	3,168	2,020	1,670	1,665
30\%	2,208	1,301	1,329	1,606	2,516	5,262	5,007	4,152	2,696	1,654	1,571	1,591
40\%	2,111	1,199	1,200	1,485	1,609	3,567	4,388	3,639	2,299	1,537	1,466	1,473
50\%	1,994	1,129	1,125	1,387	1,375	2,036	3,598	3,113	1,799	1,305	1,334	1,382
60\%	1,822	1,079	1,105	1,255	1,259	1,609	2,904	2,543	1,390	1,184	1,243	1,284
70\%	1,671	1,000	1,033	1,108	1,134	1,199	2,245	2,213	1,163	1,112	1,192	1,219
80\%	1,581	932	971	1,018	1,022	1,076	1,832	1,772	1,095	990	1,088	1,146
90\%	1,337	843	854	888	895	909	1,496	1,509	904	860	996	1,019
Long Term												
Full Simulation Period ${ }^{\text {b }}$	1,997	1,381	1,727	2,616	3,124	4,051	4,206	3,750	2,508	1,970	1,468	1,523
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	2,138	1,972	3,211	5,350	7,453	9,336	7,641	7,206	5,495	4,409	2,200	2,321
Above Normal (24\%)	2,012	1,239	1,402	2,737	3,085	4,602	4,823	3,720	2,482	1,662	1,522	1,564
Below Normal (10\%)	1,957	1,088	1,765	2,074	1,785	2,383	4,056	3,577	1,603	1,286	1,289	1,305
Dry (16\%)	2,095	1,326	1,241	1,402	1,279	1,676	2,582	2,389	1,374	1,134	1,218	1,254
Critical (27\%)	1,817	1,139	1,014	1,058	999	995	1,692	1,659	951	886	999	1,036

No Action Alternative minus Second Basis of Comparison

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	448	-207	-118	-36	0	1,106	141	91	-1,209	514	12	-87
20\%	453	-148	-144	-83	-180	583	240	100	-817	-12	2	-16
30\%	454	-110	-132	-88	-184	277	259	31	-116	-4	2	1
40\%	464	-131	-140	-139	-141	189	359	-149	-131	-10	-4	-20
50\%	483	-127	-106	-96	-106	-81	399	-110	-62	-13	-7	-15
60\%	478	-70	-62	-47	-67	-53	512	-214	-4	-14	-9	-5
70\%	422	-78	-106	-54	-68	-61	449	-185	-10	-3	-10	-8
80\%	454	-49	-55	-37	-56	-20	280	-193	-7	-11	-4	-1
90\%	416	-42	-32	-39	-25	-26	186	-217	-4	-8	16	-4
Long Term												
Full Simulation Period ${ }^{\text {b }}$	431	-110	-101	-66	-47	146	273	-61	-352	-2	10	-14
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	420	-114	-99	-61	5	554	49	193	-1,177	35	57	-39
Above Normal (24\%)	413	-116	-94	-63	-66	121	283	-83	-243	-9	-1	-7
Below Normal (10\%)	452	-148	-148	-102	-72	49	496	-72	-147	-16	-10	-18
Dry (16\%)	428	-115	-115	-85	-79	-63	446	-170	-32	-11	-13	-13
Critical (27\%)	452	-83	-83	-49	-48	-23	276	-193	-1	-17	1	2

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same,
therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in text.

Table C-39-5. San Joaquin River at Vernalis - San Joaquin River d/s of Merced Confluence, Monthly Flow

Second Basis of Comparison

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	2,056	1,892	2,379	4,517	8,588	8,333	7,534	7,093	6,724	4,063	1,810	2,005
20\%	1,882	1,616	1,613	2,452	5,143	6,125	5,907	4,546	3,985	2,031	1,668	1,681
30\%	1,754	1,411	1,461	1,695	2,701	4,985	4,748	4,121	2,812	1,658	1,570	1,591
40\%	1,648	1,330	1,340	1,625	1,750	3,378	4,029	3,788	2,430	1,546	1,470	1,494
50\%	1,511	1,256	1,231	1,483	1,481	2,117	3,199	3,223	1,861	1,317	1,341	1,397
60\%	1,343	1,148	1,167	1,302	1,326	1,662	2,392	2,757	1,394	1,198	1,252	1,289
70\%	1,248	1,078	1,139	1,162	1,201	1,259	1,796	2,398	1,173	1,115	1,203	1,227
80\%	1,127	981	1,025	1,055	1,078	1,095	1,552	1,965	1,102	1,001	1,092	1,147
90\%	921	885	885	927	920	935	1,311	1,726	907	869	980	1,023
Long Term												
Full Simulation Period ${ }^{\text {b }}$	1,565	1,491	1,828	2,682	3,172	3,904	3,933	3,811	2,860	1,972	1,458	1,537
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	1,717	2,086	3,310	5,411	7,448	8,783	7,592	7,012	6,673	4,374	2,142	2,360
Above Normal (24\%)	1,600	1,356	1,496	2,801	3,151	4,481	4,540	3,803	2,725	1,670	1,524	1,571
Below Normal (10\%)	1,505	1,236	1,913	2,176	1,858	2,335	3,560	3,650	1,750	1,302	1,299	1,323
Dry (16\%)	1,667	1,442	1,356	1,486	1,358	1,739	2,137	2,559	1,406	1,145	1,232	1,267
Critical (27\%)	1,365	1,222	1,097	1,107	1,047	1,018	1,416	1,852	953	903	998	1,034

Alternative 3

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	2,042	1,844	2,484	5,349	8,588	8,881	7,550	6,797	5,625	4,924	2,340	2,418
20\%	1,863	1,547	1,542	2,459	5,856	6,228	6,133	4,336	2,364	1,873	1,653	1,667
30\%	1,740	1,374	1,398	1,640	2,799	4,941	5,081	3,850	1,900	1,614	1,570	1,561
40\%	1,655	1,277	1,300	1,525	1,684	3,279	4,146	3,453	1,709	1,517	1,468	1,473
50\%	1,495	1,222	1,211	1,386	1,347	2,037	3,450	2,840	1,416	1,290	1,339	1,380
60\%	1,374	1,127	1,159	1,224	1,186	1,632	2,578	2,458	1,192	1,177	1,248	1,286
70\%	1,280	1,087	1,110	1,059	1,050	1,199	2,146	2,040	1,141	1,069	1,199	1,224
80\%	1,147	995	1,030	981	901	1,076	1,815	1,831	987	954	1,083	1,147
90\%	959	880	891	812	811	903	1,401	1,397	899	855	1,002	1,021
Long Term												
Full Simulation Period ${ }^{\text {b }}$	1,576	1,453	1,837	2,654	3,344	3,919	4,109	3,541	2,322	2,002	1,502	1,570
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	1,725	2,063	3,426	5,417	8,268	8,920	7,644	6,816	5,637	4,649	2,332	2,515
Above Normal (24\%)	1,622	1,311	1,514	2,779	3,142	4,510	4,756	3,534	1,780	1,581	1,518	1,560
Below Normal (10\%)	1,486	1,138	1,815	2,276	1,992	2,291	3,734	3,292	1,391	1,293	1,296	1,302
Dry (16\%)	1,674	1,403	1,318	1,418	1,337	1,676	2,370	2,194	1,260	1,132	1,230	1,260
Critical (27\%)	1,382	1,199	1,073	1,023	952	980	1,632	1,604	917	872	1,006	1,046

	Monthly Flow (cfs)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	-14	-48	104	832	0	548	16	-296	-1,099	861	530	413
20\%	-19	-69	-71	7	713	103	226	-210	-1,621	-158	-15	-14
30\%	-15	-37	-63	-55	98	-44	333	-271	-913	-44	1	-30
40\%	8	-53	-40	-100	-66	-99	117	-335	-722	-29	-1	-20
50\%	-16	-33	-20	-98	-134	-80	251	-383	-445	-27	-2	-16
60\%	31	-21	-8	-78	-140	-30	185	-298	-202	-21	-4	-4
70\%	32	8	-29	-103	-151	-60	349	-357	-32	-46	-4	-3
80\%	20	14	5	-74	-176	-19	263	-134	-115	-48	-10	0
90\%	38	-5	5	-114	-109	-32	90	-329	-8	-14	22	-2
Long Term												
Full Simulation Period ${ }^{\text {b }}$	11	-38	9	-27	172	14	176	-271	-538	31	44	33
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	8	-23	116	6	820	137	52	-197	-1,036	275	189	154
Above Normal (24\%)	22	-45	18	-21	-9	29	216	-270	-945	-89	-5	-11
Below Normal (10\%)	-19	-98	-98	100	134	-44	173	-357	-359	-8	-3	-22
Dry (16\%)	7	-38	-38	-68	-21	-62	233	-365	-146	-14	-2	-7
Critical (27\%)	16	-24	-24	-84	-95	-38	215	-248	-36	-31	8	12

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same,
therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in text.

Table C-39-6. San Joaquin River at Vernalis - San Joaquin River d/s of Merced Contluence, Monthly Flow

Second Basis of Comparison

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	2,056	1,892	2,379	4,517	8,588	8,333	7,534	7,093	6,724	4,063	1,810	2,005
20\%	1,882	1,616	1,613	2,452	5,143	6,125	5,907	4,546	3,985	2,031	1,668	1,681
30\%	1,754	1,411	1,461	1,695	2,701	4,985	4,748	4,121	2,812	1,658	1,570	1,591
40\%	1,648	1,330	1,340	1,625	1,750	3,378	4,029	3,788	2,430	1,546	1,470	1,494
50\%	1,511	1,256	1,231	1,483	1,481	2,117	3,199	3,223	1,861	1,317	1,341	1,397
60\%	1,343	1,148	1,167	1,302	1,326	1,662	2,392	2,757	1,394	1,198	1,252	1,289
70\%	1,248	1,078	1,139	1,162	1,201	1,259	1,796	2,398	1,173	1,115	1,203	1,227
80\%	1,127	981	1,025	1,055	1,078	1,095	1,552	1,965	1,102	1,001	1,092	1,147
90\%	921	885	885	927	920	935	1,311	1,726	907	869	980	1,023
Long Term												
Full Simulation Period ${ }^{\text {b }}$	1,565	1,491	1,828	2,682	3,172	3,904	3,933	3,811	2,860	1,972	1,458	1,537
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	1,717	2,086	3,310	5,411	7,448	8,783	7,592	7,012	6,673	4,374	2,142	2,360
Above Normal (24\%)	1,600	1,356	1,496	2,801	3,151	4,481	4,540	3,803	2,725	1,670	1,524	1,571
Below Normal (10\%)	1,505	1,236	1,913	2,176	1,858	2,335	3,560	3,650	1,750	1,302	1,299	1,323
Dry (16\%)	1,667	1,442	1,356	1,486	1,358	1,739	2,137	2,559	1,406	1,145	1,232	1,267
Critical (27\%)	1,365	1,222	1,097	1,107	1,047	1,018	1,416	1,852	953	903	998	1,034

Alternative 5

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	2,505	1,686	2,261	4,481	8,588	9,439	7,488	7,184	5,515	4,295	1,797	1,944
20\%	2,335	1,452	1,469	2,369	4,963	6,662	6,052	4,957	3,168	2,021	1,664	1,665
30\%	2,201	1,301	1,323	1,606	2,517	5,262	5,002	4,380	2,697	1,654	1,572	1,591
40\%	2,071	1,199	1,200	1,485	1,584	3,567	4,421	4,045	2,299	1,537	1,466	1,473
50\%	1,960	1,129	1,125	1,387	1,370	2,036	3,637	3,505	1,763	1,305	1,333	1,381
60\%	1,817	1,079	1,105	1,249	1,259	1,609	3,176	3,153	1,390	1,183	1,243	1,284
70\%	1,671	1,000	1,033	1,108	1,134	1,199	2,549	2,322	1,151	1,090	1,192	1,219
80\%	1,547	932	971	1,018	984	1,076	2,229	2,070	1,072	978	1,075	1,121
90\%	1,337	843	854	888	892	909	2,109	1,989	902	860	996	1,019
Long Term												
Full Simulation Period ${ }^{\text {b }}$	1,985	1,379	1,707	2,617	3,109	4,008	4,364	4,001	2,488	1,945	1,439	1,513
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	2,123	1,972	3,114	5,350	7,420	9,152	7,606	7,244	5,448	4,312	2,084	2,283
Above Normal (24\%)	2,003	1,234	1,418	2,751	3,068	4,602	4,768	4,127	2,482	1,662	1,522	1,564
Below Normal (10\%)	1,949	1,088	1,765	2,073	1,785	2,383	4,018	3,643	1,589	1,286	1,289	1,305
Dry (16\%)	2,078	1,326	1,241	1,400	1,277	1,676	3,006	2,829	1,365	1,134	1,218	1,253
Critical (27\%)	1,809	1,135	1,009	1,052	986	995	2,126	1,907	927	877	991	1,029

Statistic	Monthly Flow (cfs)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	448	-207	-118	-36	0	1,106	-45	91	-1,209	232	-13	-62
20\%	453	-164	-144	-83	-180	537	145	411	-816	-11	-5	-16
30\%	446	-110	-139	-88	-184	277	254	259	-116	-4	2	0
40\%	423	-131	-140	-139	-166	189	392	257	-131	-10	-4	-21
50\%	448	-127	-106	-96	-111	-81	438	282	-97	-12	-8	-15
60\%	474	-70	-62	-53	-67	-53	784	396	-4	-15	-9	-5
70\%	422	-78	-106	-54	-68	-61	753	-76	-21	-25	-11	-8
80\%	420	-49	-55	-37	-93	-20	677	105	-29	-24	-17	-26
90\%	416	-42	-32	-39	-28	-26	798	264	-6	-8	16	-4
Long Term												
Full Simulation Period ${ }^{\text {b }}$	420	-112	-121	-65	-63	104	432	189	-372	-27	-19	-25
Water Year Types ${ }^{\text {c }}$												
Wet (23\%)	406	-114	-196	-62	-28	369	14	231	-1,225	-61	-58	-77
Above Normal (24\%)	403	-121	-79	-50	-83	121	228	324	-243	-9	-2	-7
Below Normal (10\%)	445	-148	-148	-102	-73	49	458	-6	-161	-16	-10	-19
Dry (16\%)	411	-115	-115	-86	-81	-63	869	270	-41	-12	-14	-13
Critical (27\%)	443	-88	-88	-55	-61	-23	710	55	-26	-26	-8	-5

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same,
therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in text. 3) Model results for Alternative 2 and № Action Alternative are the same,
therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in text.

C.40. Steamboat Slough downstream of Sutter Slough Water Surface Elevation

Figure C-40-1-1. Steamboat SI d/s of Sutter SI, Monthly Averaged Daily Maximum Elevation, October

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-40-1-2. Steamboat SI d/s of Sutter SI, Monthly Averaged Daily Maximum Elevation, November

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-40-1-3. Steamboat SI d/s of Sutter SI, Monthly Averaged Daily Maximum Elevation, December

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-40-1-4. Steamboat SI d/s of Sutter SI, Monthly Averaged Daily Maximum Elevation, January

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-40-1-5. Steamboat SI d/s of Sutter SI, Monthly Averaged Daily Maximum Elevation, February

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-40-1-6. Steamboat SI d/s of Sutter SI, Monthly Averaged Daily Maximum Elevation, March

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-40-1-7. Steamboat SI d/s of Sutter SI, Monthly Averaged Daily Maximum Elevation, April

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-40-1-8. Steamboat SI d/s of Sutter SI, Monthly Averaged Daily Maximum Elevation, May

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-40-1-9. Steamboat SI d/s of Sutter SI, Monthly Averaged Daily Maximum Elevation, June

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-40-1-10. Steamboat SI d/s of Sutter SI, Monthly Averaged Daily Maximum Elevation, July

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-40-1-11. Steamboat SI d/s of Sutter SI, Monthly Averaged Daily Maximum Elevation, August

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-40-1-12. Steamboat SI d/s of Sutter SI, Monthly Averaged Daily Maximum Elevation, September

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-40-1-1. Steamboat SI d/s of Sutter SI, Monthly Averaged Daily Maximum Elevation

Statistic	Monthly Averaged Daily Maximum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.9	4.4	5.6	6.8	7.1	6.4	5.3	4.7	4.4	4.5	4.2	4.5
20\%	3.8	4.2	4.8	5.7	6.4	5.4	4.4	4.3	4.2	4.4	4.2	4.3
30\%	3.8	4.0	4.3	5.0	5.6	4.5	3.9	4.1	4.1	4.4	4.2	4.2
40\%	3.7	3.9	4.1	4.4	5.0	4.2	3.8	4.0	4.1	4.4	4.1	4.1
50\%	3.7	3.8	4.1	4.3	4.5	4.0	3.7	3.9	4.1	4.3	4.1	4.0
60\%	3.6	3.8	4.0	4.1	4.2	3.8	3.6	3.8	4.0	4.3	4.0	3.9
70\%	3.6	3.7	3.9	4.0	4.1	3.7	3.6	3.8	3.9	4.3	4.0	3.8
80\%	3.5	3.6	3.8	3.9	3.9	3.6	3.5	3.7	3.9	4.2	3.9	3.8
90\%	3.4	3.5	3.7	3.8	3.8	3.5	3.4	3.6	3.8	4.1	3.9	3.7
Long Term												
Full Simulation Period ${ }^{\text {b }}$	3.7	3.9	4.4	4.8	5.0	4.5	4.0	4.0	4.1	4.3	4.1	4.0
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	3.8	4.2	5.1	5.8	6.1	5.4	4.6	4.5	4.3	4.4	4.2	4.4
Above Normal (16\%)	3.6	4.0	4.5	5.1	5.6	4.8	4.0	4.0	4.1	4.4	4.2	4.1
Below Normal (13\%)	3.7	3.9	4.1	4.1	4.5	3.7	3.6	3.8	4.0	4.4	4.1	3.9
Dry (24\%)	3.6	3.7	3.9	4.0	4.1	3.9	3.6	3.8	4.0	4.2	4.0	3.8
Critical (15\%)	3.6	3.7	3.9	4.0	3.9	3.6	3.5	3.7	3.9	4.1	3.9	3.7

Alternative 1

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.9	4.3	5.9	6.8	7.2	6.5	5.3	4.7	4.5	4.4	4.2	4.1
20\%	3.8	4.0	4.9	6.0	6.4	5.4	4.4	4.3	4.3	4.4	4.2	4.0
30\%	3.7	3.9	4.3	5.0	5.6	4.8	3.9	4.1	4.2	4.4	4.1	4.0
40\%	3.7	3.8	4.1	4.4	5.2	4.2	3.8	4.0	4.1	4.3	4.1	3.9
50\%	3.7	3.7	4.0	4.3	4.5	4.0	3.7	3.9	4.1	4.3	4.0	3.9
60\%	3.6	3.7	3.9	4.1	4.2	3.9	3.6	3.8	4.1	4.3	4.0	3.8
70\%	3.6	3.6	3.9	4.0	4.1	3.7	3.6	3.8	4.0	4.2	4.0	3.8
80\%	3.5	3.6	3.8	3.8	3.9	3.6	3.5	3.7	3.9	4.1	3.9	3.7
90\%	3.4	3.5	3.7	3.7	3.7	3.5	3.3	3.6	3.9	4.0	3.9	3.7

Full Simulation Period ${ }^{\text {b }}$	3.7	3.8	4.4	4.8	5.0	4.5	4.0	4.1	4.2	4.3	4.1	3.9
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	3.7	4.1	5.2	5.9	6.2	5.5	4.6	4.5	4.3	4.4	4.1	4.0
Above Normal (16\%)	3.6	3.9	4.4	5.1	5.7	4.9	4.0	4.1	4.1	4.4	4.1	3.9
Below Normal (13\%)	3.7	3.8	4.0	4.1	4.6	3.7	3.6	3.9	4.2	4.3	4.1	3.9
Dry (24\%)	3.6	3.6	3.9	4.0	4.1	3.9	3.6	3.8	4.1	4.2	4.0	3.8
Critical (15\%)	3.6	3.7	3.9	3.9	3.9	3.6	3.5	3.7	3.9	4.1	3.9	3.7

Statistic	Monthly Averaged Daily Maximum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.0	0.0	0.4	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	0.0	-0.4
20\%	0.0	-0.1	0.2	0.3	0.0	0.0	0.0	0.0	0.1	0.0	0.0	-0.3
30\%	0.0	-0.2	0.0	0.0	0.0	0.2	0.0	0.0	0.1	0.0	0.0	-0.2
40\%	0.0	-0.1	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	-0.1
50\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1
60\%	0.0	-0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1
70\%	0.0	-0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.1	-0.1	0.0	-0.1
80\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1
90\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	-0.1	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.0	-0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	-0.2
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.0	-0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.4
Above Normal (16\%)	0.0	-0.1	0.0	0.0	0.1	0.1	0.0	0.0	0.1	0.0	0.0	-0.2
Below Normal (13\%)	0.0	-0.1	0.0	0.0	0.1	0.0	0.0	0.1	0.1	0.0	0.0	0.0
Dry (24\%)	0.0	-0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.1	-0.1	0.0	0.0
Critical (15\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year
b Based on the 82 -year simulation period
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same,
therefore Second Basis of Comparison and Alternative 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text

Table C-40-1-2. Steamboat SI d/s of Sutter SI, Monthly Averaged Daily Maximum Elevation

Statistic	Monthly Averaged Daily Maximum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.9	4.4	5.6	6.8	7.1	6.4	5.3	4.7	4.4	4.5	4.2	4.5
20\%	3.8	4.2	4.8	5.7	6.4	5.4	4.4	4.3	4.2	4.4	4.2	4.3
30\%	3.8	4.0	4.3	5.0	5.6	4.5	3.9	4.1	4.1	4.4	4.2	4.2
40\%	3.7	3.9	4.1	4.4	5.0	4.2	3.8	4.0	4.1	4.4	4.1	4.1
50\%	3.7	3.8	4.1	4.3	4.5	4.0	3.7	3.9	4.1	4.3	4.1	4.0
60\%	3.6	3.8	4.0	4.1	4.2	3.8	3.6	3.8	4.0	4.3	4.0	3.9
70\%	3.6	3.7	3.9	4.0	4.1	3.7	3.6	3.8	3.9	4.3	4.0	3.8
80\%	3.5	3.6	3.8	3.9	3.9	3.6	3.5	3.7	3.9	4.2	3.9	3.8
90\%	3.4	3.5	3.7	3.8	3.8	3.5	3.4	3.6	3.8	4.1	3.9	3.7
Long Term												
Full Simulation Period ${ }^{\text {b }}$	3.7	3.9	4.4	4.8	5.0	4.5	4.0	4.0	4.1	4.3	4.1	4.0
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	3.8	4.2	5.1	5.8	6.1	5.4	4.6	4.5	4.3	4.4	4.2	4.4
Above Normal (16\%)	3.6	4.0	4.5	5.1	5.6	4.8	4.0	4.0	4.1	4.4	4.2	4.1
Below Normal (13\%)	3.7	3.9	4.1	4.1	4.5	3.7	3.6	3.8	4.0	4.4	4.1	3.9
Dry (24\%)	3.6	3.7	3.9	4.0	4.1	3.9	3.6	3.8	4.0	4.2	4.0	3.8
Critical (15\%)	3.6	3.7	3.9	4.0	3.9	3.6	3.5	3.7	3.9	4.1	3.9	3.7

Alternative 3

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.9	4.3	5.9	6.8	7.2	6.5	5.3	4.7	4.4	4.5	4.2	4.1
20\%	3.8	4.0	5.0	6.0	6.4	5.4	4.4	4.3	4.3	4.4	4.2	4.0
30\%	3.7	3.8	4.3	5.0	5.6	4.7	3.9	4.1	4.2	4.4	4.1	4.0
40\%	3.7	3.8	4.1	4.5	5.2	4.2	3.8	4.0	4.2	4.3	4.1	3.9
50\%	3.7	3.7	4.0	4.3	4.5	4.0	3.7	3.9	4.1	4.3	4.1	3.9
60\%	3.6	3.7	3.9	4.1	4.2	3.9	3.6	3.8	4.1	4.3	4.0	3.8
70\%	3.5	3.6	3.9	4.0	4.1	3.7	3.6	3.8	4.0	4.2	4.0	3.8
80\%	3.5	3.6	3.8	3.9	3.9	3.6	3.5	3.7	4.0	4.2	3.9	3.7
90\%	3.4	3.5	3.7	3.7	3.7	3.5	3.4	3.6	3.9	4.0	3.9	3.7

Full Simulation Period ${ }^{\text {b }}$	3.7	3.8	4.4	4.8	5.1	4.5	4.0	4.1	4.2	4.3	4.1	3.9
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	3.7	4.1	5.2	5.9	6.1	5.5	4.6	4.5	4.4	4.4	4.1	4.0
Above Normal (16\%)	3.6	3.9	4.4	5.1	5.7	4.9	4.0	4.1	4.1	4.4	4.1	3.9
Below Normal (13\%)	3.7	3.8	4.0	4.1	4.6	3.7	3.6	3.8	4.1	4.4	4.2	3.9
Dry (24\%)	3.6	3.6	3.9	4.0	4.1	3.9	3.6	3.8	4.1	4.2	4.0	3.8
Critical (15\%)	3.6	3.6	3.9	3.9	3.9	3.6	3.5	3.7	4.0	4.1	3.9	3.7

Statistic	Monthly Averaged Daily Maximum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	-0.1	-0.1	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.4
20\%	-0.1	-0.1	0.2	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.3
30\%	0.0	-0.2	0.0	0.0	0.1	0.1	0.0	0.0	0.1	0.0	0.0	-0.3
40\%	0.0	-0.1	0.0	0.0	0.2	0.1	0.0	0.0	0.1	0.0	0.0	-0.1
50\%	0.0	-0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1
60\%	-0.1	-0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	-0.1
70\%	0.0	-0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0
80\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	-0.1
90\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	-0.1	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.0	-0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	-0.2
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.0	-0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.4
Above Normal (16\%)	0.0	-0.1	0.0	0.0	0.1	0.1	0.0	0.0	0.1	0.0	0.0	-0.2
Below Normal (13\%)	0.0	-0.1	0.0	0.0	0.1	0.0	0.0	0.0	0.1	0.0	0.0	0.0
Dry (24\%)	0.0	-0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0
Critical (15\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year
b Based on the 82 -year simulation period
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same
therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and $N o$ Action Alternative are the same, herefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-40-1-3. Steamboat SI d/s of Sutter SI, Monthly Averaged Daily Maximum Elevation

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.9	4.4	5.6	6.8	7.1	6.4	5.3	4.7	4.4	4.5	4.2	4.5
20\%	3.8	4.2	4.8	5.7	6.4	5.4	4.4	4.3	4.2	4.4	4.2	4.3
30\%	3.8	4.0	4.3	5.0	5.6	4.5	3.9	4.1	4.1	4.4	4.2	4.2
40\%	3.7	3.9	4.1	4.4	5.0	4.2	3.8	4.0	4.1	4.4	4.1	4.1
50\%	3.7	3.8	4.1	4.3	4.5	4.0	3.7	3.9	4.1	4.3	4.1	4.0
60\%	3.6	3.8	4.0	4.1	4.2	3.8	3.6	3.8	4.0	4.3	4.0	3.9
70\%	3.6	3.7	3.9	4.0	4.1	3.7	3.6	3.8	3.9	4.3	4.0	3.8
80\%	3.5	3.6	3.8	3.9	3.9	3.6	3.5	3.7	3.9	4.2	3.9	3.8
90\%	3.4	3.5	3.7	3.8	3.8	3.5	3.4	3.6	3.8	4.1	3.9	3.7
Long Term												
Full Simulation Period ${ }^{\text {b }}$	3.7	3.9	4.4	4.8	5.0	4.5	4.0	4.0	4.1	4.3	4.1	4.0
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	3.8	4.2	5.1	5.8	6.1	5.4	4.6	4.5	4.3	4.4	4.2	4.4
Above Normal (16\%)	3.6	4.0	4.5	5.1	5.6	4.8	4.0	4.0	4.1	4.4	4.2	4.1
Below Normal (13\%)	3.7	3.9	4.1	4.1	4.5	3.7	3.6	3.8	4.0	4.4	4.1	3.9
Dry (24\%)	3.6	3.7	3.9	4.0	4.1	3.9	3.6	3.8	4.0	4.2	4.0	3.8
Critical (15\%)	3.6	3.7	3.9	4.0	3.9	3.6	3.5	3.7	3.9	4.1	3.9	3.7

Alternative 5

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.9	4.4	5.6	6.8	7.1	6.4	5.3	4.7	4.4	4.5	4.3	4.5
20\%	3.8	4.2	4.8	5.7	6.4	5.4	4.4	4.3	4.2	4.5	4.2	4.3
30\%	3.7	4.0	4.3	5.0	5.6	4.5	3.9	4.0	4.1	4.4	4.2	4.2
40\%	3.7	3.9	4.1	4.4	5.0	4.2	3.8	4.0	4.1	4.4	4.1	4.1
50\%	3.7	3.8	4.1	4.3	4.5	4.0	3.7	3.9	4.1	4.3	4.1	4.0
60\%	3.6	3.8	4.0	4.1	4.2	3.8	3.6	3.8	4.0	4.3	4.0	3.9
70\%	3.6	3.7	3.9	4.0	4.1	3.7	3.6	3.7	3.9	4.2	4.0	3.8
80\%	3.5	3.6	3.8	3.9	3.9	3.6	3.5	3.6	3.9	4.2	3.9	3.8
90\%	3.4	3.5	3.7	3.8	3.8	3.5	3.3	3.6	3.8	4.1	3.9	3.7

Alternative 5 minus No Action Alternative

Statistic	Monthly Averaged Daily Maximum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
20\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
30\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
40\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
50\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
60\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
70\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
80\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
90\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Above Normal (16\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Below Normal (13\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dry (24\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Critical (15\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year
b Based on the 82 -year simulation period
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same,
therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and $N o$ Action Alternative are the same, herefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-40-1-4. Steamboat SI d/s of Sutter SI, Monthly Averaged Daily Maximum Elevation

Second Basis of Comparison

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.9	4.3	5.9	6.8	7.2	6.5	5.3	4.7	4.5	4.4	4.2	4.1
20\%	3.8	4.0	4.9	6.0	6.4	5.4	4.4	4.3	4.3	4.4	4.2	4.0
30\%	3.7	3.9	4.3	5.0	5.6	4.8	3.9	4.1	4.2	4.4	4.1	4.0
40\%	3.7	3.8	4.1	4.4	5.2	4.2	3.8	4.0	4.1	4.3	4.1	3.9
50\%	3.7	3.7	4.0	4.3	4.5	4.0	3.7	3.9	4.1	4.3	4.0	3.9
60\%	3.6	3.7	3.9	4.1	4.2	3.9	3.6	3.8	4.1	4.3	4.0	3.8
70\%	3.6	3.6	3.9	4.0	4.1	3.7	3.6	3.8	4.0	4.2	4.0	3.8
80\%	3.5	3.6	3.8	3.8	3.9	3.6	3.5	3.7	3.9	4.1	3.9	3.7
90\%	3.4	3.5	3.7	3.7	3.7	3.5	3.3	3.6	3.9	4.0	3.9	3.7
Long Term												
Full Simulation Period ${ }^{\text {b }}$	3.7	3.8	4.4	4.8	5.0	4.5	4.0	4.1	4.2	4.3	4.1	3.9
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	3.7	4.1	5.2	5.9	6.2	5.5	4.6	4.5	4.3	4.4	4.1	4.0
Above Normal (16\%)	3.6	3.9	4.4	5.1	5.7	4.9	4.0	4.1	4.1	4.4	4.1	3.9
Below Normal (13\%)	3.7	3.8	4.0	4.1	4.6	3.7	3.6	3.9	4.2	4.3	4.1	3.9
Dry (24\%)	3.6	3.6	3.9	4.0	4.1	3.9	3.6	3.8	4.1	4.2	4.0	3.8
Critical (15\%)	3.6	3.7	3.9	3.9	3.9	3.6	3.5	3.7	3.9	4.1	3.9	3.7

No Action Alternative

Statistic	Monthly Averaged Daily Maximum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.9	4.4	5.6	6.8	7.1	6.4	5.3	4.7	4.4	4.5	4.2	4.5
20\%	3.8	4.2	4.8	5.7	6.4	5.4	4.4	4.3	4.2	4.4	4.2	4.3
30\%	3.8	4.0	4.3	5.0	5.6	4.5	3.9	4.1	4.1	4.4	4.2	4.2
40\%	3.7	3.9	4.1	4.4	5.0	4.2	3.8	4.0	4.1	4.4	4.1	4.1
50\%	3.7	3.8	4.1	4.3	4.5	4.0	3.7	3.9	4.1	4.3	4.1	4.0
60\%	3.6	3.8	4.0	4.1	4.2	3.8	3.6	3.8	4.0	4.3	4.0	3.9
70\%	3.6	3.7	3.9	4.0	4.1	3.7	3.6	3.8	3.9	4.3	4.0	3.8
80\%	3.5	3.6	3.8	3.9	3.9	3.6	3.5	3.7	3.9	4.2	3.9	3.8
90\%	3.4	3.5	3.7	3.8	3.8	3.5	3.4	3.6	3.8	4.1	3.9	3.7

Full Simulation Period ${ }^{\text {b }}$	3.7	3.9	4.4	4.8	5.0	4.5	4.0	4.0	4.1	4.3	4.1	4.0
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	3.8	4.2	5.1	5.8	6.1	5.4	4.6	4.5	4.3	4.4	4.2	4.4
Above Normal (16\%)	3.6	4.0	4.5	5.1	5.6	4.8	4.0	4.0	4.1	4.4	4.2	4.1
Below Normal (13\%)	3.7	3.9	4.1	4.1	4.5	3.7	3.6	3.8	4.0	4.4	4.1	3.9
Dry (24\%)	3.6	3.7	3.9	4.0	4.1	3.9	3.6	3.8	4.0	4.2	4.0	3.8
Critical (15\%)	3.6	3.7	3.9	4.0	3.9	3.6	3.5	3.7	3.9	4.1	3.9	3.7

No Action Alternative minus Second Basis of Comparison

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.0	0.0	-0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.4
20\%	0.0	0.1	-0.2	-0.3	0.0	0.0	0.0	0.0	-0.1	0.0	0.0	0.3
30\%	0.0	0.2	0.0	0.0	0.0	-0.2	0.0	0.0	-0.1	0.0	0.0	0.2
40\%	0.0	0.1	0.0	0.0	-0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.1
50\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
60\%	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
70\%	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	0.1	0.0	0.1
80\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
90\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	0.1	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	0.0	0.0	0.2
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.0	0.1	-0.1	-0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.4
Above Normal (16\%)	0.0	0.1	0.0	0.0	-0.1	-0.1	0.0	0.0	-0.1	0.0	0.0	0.2
Below Normal (13\%)	0.0	0.1	0.0	0.0	-0.1	0.0	0.0	-0.1	-0.1	0.0	0.0	0.0
Dry (24\%)	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	0.1	0.0	0.0
Critical (15\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year
b Based on the 82 -year simulation period.
C As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All atternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same,
therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and N No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-40-1-5. Steamboat SI d/s of Sutter SI, Monthly Averaged Daily Maximum Elevation

Second Basis of Comparison

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.9	4.3	5.9	6.8	7.2	6.5	5.3	4.7	4.5	4.4	4.2	4.1
20\%	3.8	4.0	4.9	6.0	6.4	5.4	4.4	4.3	4.3	4.4	4.2	4.0
30\%	3.7	3.9	4.3	5.0	5.6	4.8	3.9	4.1	4.2	4.4	4.1	4.0
40\%	3.7	3.8	4.1	4.4	5.2	4.2	3.8	4.0	4.1	4.3	4.1	3.9
50\%	3.7	3.7	4.0	4.3	4.5	4.0	3.7	3.9	4.1	4.3	4.0	3.9
60\%	3.6	3.7	3.9	4.1	4.2	3.9	3.6	3.8	4.1	4.3	4.0	3.8
70\%	3.6	3.6	3.9	4.0	4.1	3.7	3.6	3.8	4.0	4.2	4.0	3.8
80\%	3.5	3.6	3.8	3.8	3.9	3.6	3.5	3.7	3.9	4.1	3.9	3.7
90\%	3.4	3.5	3.7	3.7	3.7	3.5	3.3	3.6	3.9	4.0	3.9	3.7
Long Term												
Full Simulation Period ${ }^{\text {b }}$	3.7	3.8	4.4	4.8	5.0	4.5	4.0	4.1	4.2	4.3	4.1	3.9
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	3.7	4.1	5.2	5.9	6.2	5.5	4.6	4.5	4.3	4.4	4.1	4.0
Above Normal (16\%)	3.6	3.9	4.4	5.1	5.7	4.9	4.0	4.1	4.1	4.4	4.1	3.9
Below Normal (13\%)	3.7	3.8	4.0	4.1	4.6	3.7	3.6	3.9	4.2	4.3	4.1	3.9
Dry (24\%)	3.6	3.6	3.9	4.0	4.1	3.9	3.6	3.8	4.1	4.2	4.0	3.8
Critical (15\%)	3.6	3.7	3.9	3.9	3.9	3.6	3.5	3.7	3.9	4.1	3.9	3.7

Alternative 3

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.9	4.3	5.9	6.8	7.2	6.5	5.3	4.7	4.4	4.5	4.2	4.1
20\%	3.8	4.0	5.0	6.0	6.4	5.4	4.4	4.3	4.3	4.4	4.2	4.0
30\%	3.7	3.8	4.3	5.0	5.6	4.7	3.9	4.1	4.2	4.4	4.1	4.0
40\%	3.7	3.8	4.1	4.5	5.2	4.2	3.8	4.0	4.2	4.3	4.1	3.9
50\%	3.7	3.7	4.0	4.3	4.5	4.0	3.7	3.9	4.1	4.3	4.1	3.9
60\%	3.6	3.7	3.9	4.1	4.2	3.9	3.6	3.8	4.1	4.3	4.0	3.8
70\%	3.5	3.6	3.9	4.0	4.1	3.7	3.6	3.8	4.0	4.2	4.0	3.8
80\%	3.5	3.6	3.8	3.9	3.9	3.6	3.5	3.7	4.0	4.2	3.9	3.7
90\%	3.4	3.5	3.7	3.7	3.7	3.5	3.4	3.6	3.9	4.0	3.9	3.7

Full Simulation Period ${ }^{\text {b }}$	3.7	3.8	4.4	4.8	5.1	4.5	4.0	4.1	4.2	4.3	4.1	3.9
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	3.7	4.1	5.2	5.9	6.1	5.5	4.6	4.5	4.4	4.4	4.1	4.0
Above Normal (16\%)	3.6	3.9	4.4	5.1	5.7	4.9	4.0	4.1	4.1	4.4	4.1	3.9
Below Normal (13\%)	3.7	3.8	4.0	4.1	4.6	3.7	3.6	3.8	4.1	4.4	4.2	3.9
Dry (24\%)	3.6	3.6	3.9	4.0	4.1	3.9	3.6	3.8	4.1	4.2	4.0	3.8
Critical (15\%)	3.6	3.6	3.9	3.9	3.9	3.6	3.5	3.7	4.0	4.1	3.9	3.7

Alternative 3 minus Second Basis of Comparison

Statistic	Monthly Averaged Daily Maximum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.0	-0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
20\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
30\%	0.0	0.0	0.0	0.0	0.0	-0.1	0.0	0.0	0.0	0.0	0.0	0.0
40\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
50\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
60\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
70\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
80\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
90\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Above Normal (16\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Below Normal (13\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	0.0	0.1	0.0
Dry (24\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Critical (15\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year
b Based on the 82 -year simulation period
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-40-1-6. Steamboat SI d/s of Sutter SI, Monthly Averaged Daily Maximum Elevation

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.9	4.3	5.9	6.8	7.2	6.5	5.3	4.7	4.5	4.4	4.2	4.1
20\%	3.8	4.0	4.9	6.0	6.4	5.4	4.4	4.3	4.3	4.4	4.2	4.0
30\%	3.7	3.9	4.3	5.0	5.6	4.8	3.9	4.1	4.2	4.4	4.1	4.0
40\%	3.7	3.8	4.1	4.4	5.2	4.2	3.8	4.0	4.1	4.3	4.1	3.9
50\%	3.7	3.7	4.0	4.3	4.5	4.0	3.7	3.9	4.1	4.3	4.0	3.9
60\%	3.6	3.7	3.9	4.1	4.2	3.9	3.6	3.8	4.1	4.3	4.0	3.8
70\%	3.6	3.6	3.9	4.0	4.1	3.7	3.6	3.8	4.0	4.2	4.0	3.8
80\%	3.5	3.6	3.8	3.8	3.9	3.6	3.5	3.7	3.9	4.1	3.9	3.7
90\%	3.4	3.5	3.7	3.7	3.7	3.5	3.3	3.6	3.9	4.0	3.9	3.7
Long Term												
Full Simulation Period ${ }^{\text {b }}$	3.7	3.8	4.4	4.8	5.0	4.5	4.0	4.1	4.2	4.3	4.1	3.9
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	3.7	4.1	5.2	5.9	6.2	5.5	4.6	4.5	4.3	4.4	4.1	4.0
Above Normal (16\%)	3.6	3.9	4.4	5.1	5.7	4.9	4.0	4.1	4.1	4.4	4.1	3.9
Below Normal (13\%)	3.7	3.8	4.0	4.1	4.6	3.7	3.6	3.9	4.2	4.3	4.1	3.9
Dry (24\%)	3.6	3.6	3.9	4.0	4.1	3.9	3.6	3.8	4.1	4.2	4.0	3.8
Critical (15\%)	3.6	3.7	3.9	3.9	3.9	3.6	3.5	3.7	3.9	4.1	3.9	3.7

Alternative 5

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.9	4.4	5.6	6.8	7.1	6.4	5.3	4.7	4.4	4.5	4.3	4.5
20\%	3.8	4.2	4.8	5.7	6.4	5.4	4.4	4.3	4.2	4.5	4.2	4.3
30\%	3.7	4.0	4.3	5.0	5.6	4.5	3.9	4.0	4.1	4.4	4.2	4.2
40\%	3.7	3.9	4.1	4.4	5.0	4.2	3.8	4.0	4.1	4.4	4.1	4.1
50\%	3.7	3.8	4.1	4.3	4.5	4.0	3.7	3.9	4.1	4.3	4.1	4.0
60\%	3.6	3.8	4.0	4.1	4.2	3.8	3.6	3.8	4.0	4.3	4.0	3.9
70\%	3.6	3.7	3.9	4.0	4.1	3.7	3.6	3.7	3.9	4.2	4.0	3.8
80\%	3.5	3.6	3.8	3.9	3.9	3.6	3.5	3.6	3.9	4.2	3.9	3.8
90\%	3.4	3.5	3.7	3.8	3.8	3.5	3.3	3.6	3.8	4.1	3.9	3.7

Full Simulation Period ${ }^{\text {b }}$	3.7	3.9	4.4	4.8	5.0	4.5	4.0	4.0	4.1	4.3	4.1	4.0
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	3.8	4.2	5.1	5.8	6.1	5.4	4.6	4.5	4.3	4.4	4.2	4.4
Above Normal (16\%)	3.7	4.0	4.5	5.1	5.6	4.8	4.0	4.0	4.1	4.4	4.1	4.1
Below Normal (13\%)	3.7	3.9	4.1	4.1	4.5	3.7	3.6	3.8	4.0	4.4	4.2	3.9
Dry (24\%)	3.6	3.7	3.9	4.0	4.1	3.9	3.6	3.8	4.0	4.2	4.0	3.8
Critical (15\%)	3.6	3.7	3.9	4.0	3.9	3.6	3.5	3.6	3.9	4.1	3.9	3.7

Alternative 5 minus Second Basis of Comparison

Statistic	Monthly Averaged Daily Maximum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.0	0.0	-0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.4
20\%	0.0	0.1	-0.2	-0.3	0.0	0.0	0.0	0.0	-0.1	0.0	0.1	0.3
30\%	0.0	0.2	0.0	0.0	0.0	-0.2	0.0	0.0	-0.1	0.0	0.0	0.2
40\%	0.0	0.1	0.0	0.0	-0.1	0.0	0.0	0.0	-0.1	0.0	0.0	0.1
50\%	0.0	0.1	0.0	0.0	0.0	0.0	0.0	-0.1	0.0	0.0	0.0	0.1
60\%	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
70\%	0.0	0.1	0.0	0.0	0.0	0.0	0.0	-0.1	-0.1	0.1	0.0	0.1
80\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	0.0	0.0	0.0	0.1
90\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	0.1	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	0.0	0.0	0.2
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.0	0.1	-0.1	-0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.4
Above Normal (16\%)	0.0	0.1	0.0	0.0	-0.1	-0.1	0.0	0.0	-0.1	0.0	0.0	0.2
Below Normal (13\%)	0.0	0.1	0.0	0.0	-0.1	0.0	0.0	-0.1	-0.1	0.0	0.0	0.0
Dry (24\%)	0.0	0.1	0.0	0.0	0.0	0.0	0.0	-0.1	-0.1	0.1	0.0	0.0
Critical (15\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year
b Based on the 82 -year simulation period
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4, and Second Basis of Comparison are the same,
therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and $N o$ Action Alternative are the same, herefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-40-2-1. Steamboat SI d/s of Sutter SI, Monthly Averaged Daily Minimum Elevation, October

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-40-2-2. Steamboat SI d/s of Sutter SI, Monthly Averaged Daily Minimum Elevation, November

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-40-2-3. Steamboat SI d/s of Sutter SI, Monthly Averaged Daily Minimum Elevation, December

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-40-2-4. Steamboat SI d/s of Sutter SI, Monthly Averaged Daily Minimum Elevation, January

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-40-2-5. Steamboat SI d/s of Sutter SI, Monthly Averaged Daily Minimum Elevation, February

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-40-2-6. Steamboat SI d/s of Sutter SI, Monthly Averaged Daily Minimum Elevation, March

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-40-2-7. Steamboat SI d/s of Sutter SI, Monthly Averaged Daily Minimum Elevation, April

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-40-2-8. Steamboat SI d/s of Sutter SI, Monthly Averaged Daily Minimum Elevation, May

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-40-2-9. Steamboat SI d/s of Sutter SI, Monthly Averaged Daily Minimum Elevation, June

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-40-2-10. Steamboat SI d/s of Sutter SI, Monthly Averaged Daily Minimum Elevation, July

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-40-2-11. Steamboat SI d/s of Sutter SI, Monthly Averaged Daily Minimum Elevation, August

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-40-2-12. Steamboat SI d/s of Sutter SI, Monthly Averaged Daily Minimum Elevation, September

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-40-2-1. Steamboat SI d/s of Sutter SI, Monthly Averaged Daily Minimum Elevation

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.4	0.9	3.4	5.0	5.9	5.0	3.3	2.2	0.6	0.8	0.5	1.5
20\%	0.3	0.6	1.6	3.7	4.8	3.6	1.8	1.0	0.3	0.7	0.5	1.4
30\%	0.3	0.5	0.8	2.3	3.5	2.0	0.9	0.4	0.2	0.7	0.4	0.9
40\%	0.2	0.4	0.5	1.2	2.7	1.4	0.5	0.3	0.2	0.6	0.4	0.7
50\%	0.1	0.2	0.3	0.8	1.7	1.0	0.2	0.1	0.1	0.5	0.4	0.5
60\%	0.1	0.1	0.2	0.5	1.0	0.7	0.1	0.1	0.1	0.5	0.3	0.3
70\%	0.0	0.0	0.1	0.3	0.7	0.5	0.0	0.0	0.1	0.4	0.3	0.3
80\%	0.0	-0.1	0.0	0.2	0.4	0.3	0.0	0.0	0.0	0.3	0.2	0.2
90\%	-0.1	-0.2	-0.1	0.1	0.3	0.0	-0.1	-0.1	-0.1	0.2	0.1	0.1
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.2	0.4	1.0	1.8	2.4	1.8	0.9	0.6	0.3	0.5	0.4	0.7
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.3	0.8	2.2	3.6	4.3	3.4	2.1	1.5	0.7	0.6	0.5	1.4
Above Normal (16\%)	0.1	0.5	1.1	2.4	3.3	2.6	1.0	0.5	0.2	0.7	0.5	0.7
Below Normal (13\%)	0.2	0.3	0.4	0.6	1.7	0.5	0.2	0.1	0.1	0.6	0.4	0.4
Dry (24\%)	0.1	0.1	0.1	0.5	1.0	0.8	0.2	0.1	0.1	0.4	0.2	0.2
Critical (15\%)	0.0	-0.1	0.1	0.3	0.4	0.2	0.0	-0.1	0.0	0.2	0.2	0.2

Alternative 1

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.4	0.8	3.9	5.1	5.9	5.0	3.3	2.1	0.6	0.7	0.5	0.6
20\%	0.2	0.3	1.9	4.1	4.8	3.6	1.8	1.2	0.4	0.6	0.4	0.5
30\%	0.2	0.2	0.8	2.5	3.6	2.6	0.8	0.5	0.3	0.6	0.4	0.4
40\%	0.1	0.1	0.4	1.2	3.0	1.5	0.5	0.3	0.3	0.5	0.4	0.4
50\%	0.1	0.0	0.3	0.8	1.7	1.0	0.2	0.2	0.2	0.5	0.3	0.3
60\%	0.1	0.0	0.1	0.4	1.0	0.7	0.1	0.1	0.2	0.4	0.3	0.3
70\%	0.0	-0.1	0.1	0.2	0.6	0.6	0.0	0.0	0.1	0.3	0.3	0.2
80\%	0.0	-0.1	0.0	0.2	0.4	0.3	0.0	0.0	0.1	0.2	0.2	0.2
90\%	-0.1	-0.2	-0.1	0.1	0.2	0.0	-0.1	-0.1	0.0	0.1	0.1	0.1
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.1	0.2	1.0	1.8	2.5	1.8	0.9	0.6	0.4	0.4	0.3	0.3
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.3	0.6	2.4	3.7	4.3	3.4	2.0	1.5	0.8	0.6	0.4	0.5
Above Normal (16\%)	0.1	0.4	1.1	2.5	3.4	2.7	1.0	0.5	0.3	0.6	0.4	0.4
Below Normal (13\%)	0.1	0.2	0.3	0.6	1.8	0.6	0.2	0.2	0.3	0.6	0.4	0.4
Dry (24\%)	0.1	0.0	0.1	0.4	1.0	0.8	0.2	0.1	0.2	0.3	0.2	0.2
Critical (15\%)	0.0	-0.1	0.0	0.2	0.4	0.2	0.0	-0.1	0.0	0.1	0.2	0.2

Statistic	Monthly Averaged Daily Minimum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.0	-0.1	0.5	0.1	0.0	0.0	0.0	0.0	0.0	-0.1	0.0	-1.0
20\%	-0.1	-0.3	0.3	0.4	0.0	0.0	0.0	0.2	0.1	-0.1	0.0	-1.0
30\%	-0.1	-0.3	0.0	0.3	0.1	0.5	0.0	0.0	0.1	-0.1	0.0	-0.5
40\%	-0.1	-0.2	-0.1	0.0	0.3	0.0	0.0	0.0	0.1	-0.1	0.0	-0.3
50\%	0.0	-0.2	-0.1	0.0	0.0	0.0	0.0	0.0	0.1	-0.1	0.0	-0.1
60\%	0.0	-0.1	-0.1	0.0	0.1	0.0	0.0	0.1	0.1	-0.1	0.0	0.0
70\%	0.0	-0.1	-0.1	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0
80\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	-0.1	0.0	0.0
90\%	0.0	0.0	-0.1	0.0	-0.1	0.0	0.0	0.0	0.1	-0.1	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.0	-0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.1	-0.1	0.0	-0.4
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	-0.1	-0.2	0.2	0.1	0.0	0.0	0.0	0.0	0.0	-0.1	0.0	-0.9
Above Normal (16\%)	0.0	-0.2	-0.1	0.1	0.1	0.2	0.0	0.1	0.1	-0.1	0.0	-0.3
Below Normal (13\%)	0.0	-0.1	0.0	0.0	0.1	0.1	0.0	0.1	0.2	-0.1	-0.1	0.0
Dry (24\%)	0.0	-0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.1	-0.1	0.0	0.0
Critical (15\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period.
C As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same,
therefore Second Basis of Comparison and Alternative 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-40-2-2. Steamboat SI d/s of Sutter SI, Monthly Averaged Daily Minimum Elevation

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.4	0.9	3.4	5.0	5.9	5.0	3.3	2.2	0.6	0.8	0.5	1.5
20\%	0.3	0.6	1.6	3.7	4.8	3.6	1.8	1.0	0.3	0.7	0.5	1.4
30\%	0.3	0.5	0.8	2.3	3.5	2.0	0.9	0.4	0.2	0.7	0.4	0.9
40\%	0.2	0.4	0.5	1.2	2.7	1.4	0.5	0.3	0.2	0.6	0.4	0.7
50\%	0.1	0.2	0.3	0.8	1.7	1.0	0.2	0.1	0.1	0.5	0.4	0.5
60\%	0.1	0.1	0.2	0.5	1.0	0.7	0.1	0.1	0.1	0.5	0.3	0.3
70\%	0.0	0.0	0.1	0.3	0.7	0.5	0.0	0.0	0.1	0.4	0.3	0.3
80\%	0.0	-0.1	0.0	0.2	0.4	0.3	0.0	0.0	0.0	0.3	0.2	0.2
90\%	-0.1	-0.2	-0.1	0.1	0.3	0.0	-0.1	-0.1	-0.1	0.2	0.1	0.1
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.2	0.4	1.0	1.8	2.4	1.8	0.9	0.6	0.3	0.5	0.4	0.7
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.3	0.8	2.2	3.6	4.3	3.4	2.1	1.5	0.7	0.6	0.5	1.4
Above Normal (16\%)	0.1	0.5	1.1	2.4	3.3	2.6	1.0	0.5	0.2	0.7	0.5	0.7
Below Normal (13\%)	0.2	0.3	0.4	0.6	1.7	0.5	0.2	0.1	0.1	0.6	0.4	0.4
Dry (24\%)	0.1	0.1	0.1	0.5	1.0	0.8	0.2	0.1	0.1	0.4	0.2	0.2
Critical (15\%)	0.0	-0.1	0.1	0.3	0.4	0.2	0.0	-0.1	0.0	0.2	0.2	0.2

Alternative 3

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.4	0.8	3.9	5.1	5.9	5.0	3.2	2.1	0.6	0.7	0.5	0.6
20\%	0.2	0.3	2.0	4.0	4.8	3.6	1.8	1.1	0.4	0.7	0.5	0.5
30\%	0.2	0.2	0.8	2.5	3.6	2.3	0.8	0.5	0.3	0.7	0.4	0.4
40\%	0.1	0.1	0.4	1.2	3.0	1.5	0.5	0.3	0.3	0.6	0.4	0.4
50\%	0.1	0.0	0.3	0.7	1.7	1.1	0.2	0.2	0.2	0.5	0.4	0.3
60\%	0.1	0.0	0.1	0.4	1.0	0.7	0.1	0.1	0.2	0.5	0.3	0.3
70\%	0.0	-0.1	0.0	0.3	0.7	0.6	0.0	0.0	0.1	0.4	0.3	0.2
80\%	0.0	-0.1	0.0	0.2	0.4	0.3	0.0	0.0	0.1	0.2	0.2	0.2
90\%	-0.1	-0.2	-0.1	0.0	0.3	0.0	-0.1	-0.1	0.0	0.1	0.1	0.1

Full Simulation Period ${ }^{\text {b }}$	0.1	0.2	1.0	1.8	2.5	1.8	0.9	0.6	0.4	0.5	0.3	0.3
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.2	0.6	2.4	3.7	4.3	3.4	2.0	1.5	0.8	0.6	0.4	0.5
Above Normal (16\%)	0.1	0.4	1.1	2.4	3.4	2.7	1.0	0.5	0.3	0.6	0.4	0.4
Below Normal (13\%)	0.1	0.2	0.3	0.6	1.8	0.6	0.2	0.2	0.2	0.7	0.4	0.4
Dry (24\%)	0.1	0.0	0.1	0.4	1.0	0.8	0.2	0.1	0.2	0.3	0.2	0.2
Critical (15\%)	0.0	-0.1	0.0	0.2	0.4	0.2	0.0	-0.1	0.0	0.1	0.2	0.2

Alternative 3 minus No Action Alternative

Statistic	Monthly Averaged Daily Minimum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	-0.1	-0.1	0.4	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-1.0
20\%	-0.1	-0.3	0.4	0.4	0.0	0.0	0.0	0.1	0.1	0.0	0.0	-1.0
30\%	-0.1	-0.3	0.0	0.3	0.1	0.3	0.0	0.1	0.1	0.0	0.0	-0.5
40\%	-0.1	-0.3	-0.1	0.0	0.3	0.0	0.0	0.0	0.1	0.0	0.0	-0.3
50\%	0.0	-0.2	-0.1	-0.1	0.0	0.0	0.0	0.1	0.1	0.0	0.0	-0.1
60\%	0.0	-0.1	-0.1	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0
70\%	0.0	-0.1	-0.1	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0
80\%	0.0	-0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	0.0	0.0
90\%	0.0	0.0	-0.1	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.0	-0.1	0.0	0.0	0.1	0.0	0.0	0.0	0.1	0.0	0.0	-0.3
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	-0.1	-0.2	0.2	0.1	0.0	0.0	0.0	0.0	0.1	0.0	0.0	-1.0
Above Normal (16\%)	0.0	-0.2	-0.1	0.0	0.1	0.1	0.0	0.0	0.1	0.0	0.0	-0.3
Below Normal (13\%)	-0.1	-0.2	0.0	0.0	0.1	0.1	0.0	0.1	0.1	0.0	0.0	0.0
Dry (24\%)	0.0	-0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0
Critical (15\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year
b Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-40-2-3. Steamboat SI d/s of Sutter SI, Monthly Averaged Daily Minimum Elevation

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.4	0.9	3.4	5.0	5.9	5.0	3.3	2.2	0.6	0.8	0.5	1.5
20\%	0.3	0.6	1.6	3.7	4.8	3.6	1.8	1.0	0.3	0.7	0.5	1.4
30\%	0.3	0.5	0.8	2.3	3.5	2.0	0.9	0.4	0.2	0.7	0.4	0.9
40\%	0.2	0.4	0.5	1.2	2.7	1.4	0.5	0.3	0.2	0.6	0.4	0.7
50\%	0.1	0.2	0.3	0.8	1.7	1.0	0.2	0.1	0.1	0.5	0.4	0.5
60\%	0.1	0.1	0.2	0.5	1.0	0.7	0.1	0.1	0.1	0.5	0.3	0.3
70\%	0.0	0.0	0.1	0.3	0.7	0.5	0.0	0.0	0.1	0.4	0.3	0.3
80\%	0.0	-0.1	0.0	0.2	0.4	0.3	0.0	0.0	0.0	0.3	0.2	0.2
90\%	-0.1	-0.2	-0.1	0.1	0.3	0.0	-0.1	-0.1	-0.1	0.2	0.1	0.1
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.2	0.4	1.0	1.8	2.4	1.8	0.9	0.6	0.3	0.5	0.4	0.7
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.3	0.8	2.2	3.6	4.3	3.4	2.1	1.5	0.7	0.6	0.5	1.4
Above Normal (16\%)	0.1	0.5	1.1	2.4	3.3	2.6	1.0	0.5	0.2	0.7	0.5	0.7
Below Normal (13\%)	0.2	0.3	0.4	0.6	1.7	0.5	0.2	0.1	0.1	0.6	0.4	0.4
Dry (24\%)	0.1	0.1	0.1	0.5	1.0	0.8	0.2	0.1	0.1	0.4	0.2	0.2
Critical (15\%)	0.0	-0.1	0.1	0.3	0.4	0.2	0.0	-0.1	0.0	0.2	0.2	0.2

Alternative 5

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.4	0.9	3.4	5.0	5.9	5.0	3.3	2.2	0.6	0.8	0.5	1.5
20\%	0.3	0.6	1.6	3.7	4.8	3.6	1.8	1.0	0.3	0.7	0.5	1.4
30\%	0.2	0.5	0.8	2.3	3.5	2.0	0.9	0.4	0.2	0.7	0.4	0.9
40\%	0.2	0.4	0.5	1.2	2.7	1.4	0.5	0.2	0.2	0.6	0.4	0.7
50\%	0.1	0.2	0.3	0.8	1.7	1.0	0.2	0.1	0.1	0.5	0.4	0.5
60\%	0.1	0.1	0.2	0.5	1.0	0.7	0.1	0.0	0.1	0.5	0.3	0.3
70\%	0.0	0.0	0.1	0.3	0.7	0.5	0.0	0.0	0.1	0.4	0.3	0.3
80\%	0.0	-0.1	0.0	0.2	0.4	0.3	0.0	-0.1	0.0	0.3	0.2	0.2
90\%	-0.1	-0.2	-0.1	0.1	0.3	0.0	-0.1	-0.2	-0.1	0.2	0.1	0.1

Long Term Full Simulation Period ${ }^{\text {b }}$	0.2	0.4	1.0	1.8	2.4	1.8	0.9	0.6	0.3	0.5	0.4	0.7
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.3	0.8	2.2	3.6	4.3	3.4	2.1	1.5	0.7	0.7	0.5	1.4
Above Normal (16\%)	0.1	0.5	1.1	2.4	3.3	2.6	1.0	0.5	0.2	0.7	0.5	0.7
Below Normal (13\%)	0.2	0.3	0.4	0.6	1.7	0.5	0.2	0.1	0.1	0.6	0.4	0.4
Dry (24\%)	0.1	0.1	0.1	0.5	1.0	0.8	0.2	0.0	0.1	0.4	0.2	0.2
Critical (15\%)	0.0	-0.1	0.1	0.3	0.4	0.2	-0.1	-0.1	0.0	0.2	0.2	0.2

Alternative 5 minus No Action Alternative

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
20\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
30\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
40\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
50\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
60\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
70\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
80\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
90\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Above Normal (16\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Below Normal (13\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dry (24\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Critical (15\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year
b Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same,
therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and $N o$ Action Alternative are the same, herefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-40-2-4. Steamboat SI d/s of Sutter SI, Monthly Averaged Daily Minimum Elevation

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.4	0.8	3.9	5.1	5.9	5.0	3.3	2.1	0.6	0.7	0.5	0.6
20\%	0.2	0.3	1.9	4.1	4.8	3.6	1.8	1.2	0.4	0.6	0.4	0.5
30\%	0.2	0.2	0.8	2.5	3.6	2.6	0.8	0.5	0.3	0.6	0.4	0.4
40\%	0.1	0.1	0.4	1.2	3.0	1.5	0.5	0.3	0.3	0.5	0.4	0.4
50\%	0.1	0.0	0.3	0.8	1.7	1.0	0.2	0.2	0.2	0.5	0.3	0.3
60\%	0.1	0.0	0.1	0.4	1.0	0.7	0.1	0.1	0.2	0.4	0.3	0.3
70\%	0.0	-0.1	0.1	0.2	0.6	0.6	0.0	0.0	0.1	0.3	0.3	0.2
80\%	0.0	-0.1	0.0	0.2	0.4	0.3	0.0	0.0	0.1	0.2	0.2	0.2
90\%	-0.1	-0.2	-0.1	0.1	0.2	0.0	-0.1	-0.1	0.0	0.1	0.1	0.1
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.1	0.2	1.0	1.8	2.5	1.8	0.9	0.6	0.4	0.4	0.3	0.3
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.3	0.6	2.4	3.7	4.3	3.4	2.0	1.5	0.8	0.6	0.4	0.5
Above Normal (16\%)	0.1	0.4	1.1	2.5	3.4	2.7	1.0	0.5	0.3	0.6	0.4	0.4
Below Normal (13\%)	0.1	0.2	0.3	0.6	1.8	0.6	0.2	0.2	0.3	0.6	0.4	0.4
Dry (24\%)	0.1	0.0	0.1	0.4	1.0	0.8	0.2	0.1	0.2	0.3	0.2	0.2
Critical (15\%)	0.0	-0.1	0.0	0.2	0.4	0.2	0.0	-0.1	0.0	0.1	0.2	0.2

No Action Alternative

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.4	0.9	3.4	5.0	5.9	5.0	3.3	2.2	0.6	0.8	0.5	1.5
20\%	0.3	0.6	1.6	3.7	4.8	3.6	1.8	1.0	0.3	0.7	0.5	1.4
30\%	0.3	0.5	0.8	2.3	3.5	2.0	0.9	0.4	0.2	0.7	0.4	0.9
40\%	0.2	0.4	0.5	1.2	2.7	1.4	0.5	0.3	0.2	0.6	0.4	0.7
50\%	0.1	0.2	0.3	0.8	1.7	1.0	0.2	0.1	0.1	0.5	0.4	0.5
60\%	0.1	0.1	0.2	0.5	1.0	0.7	0.1	0.1	0.1	0.5	0.3	0.3
70\%	0.0	0.0	0.1	0.3	0.7	0.5	0.0	0.0	0.1	0.4	0.3	0.3
80\%	0.0	-0.1	0.0	0.2	0.4	0.3	0.0	0.0	0.0	0.3	0.2	0.2
90\%	-0.1	-0.2	-0.1	0.1	0.3	0.0	-0.1	-0.1	-0.1	0.2	0.1	0.1

Long Term Full Simulation Period												
${ }^{\mathbf{b}}$	0.2	0.4	1.0	1.8	2.4	1.8	0.9	0.6	0.3	0.5	0.4	0.7
Water Year Types $^{\text {c }}$												
Wet (32\%)	0.3	0.8	2.2	3.6	4.3	3.4	2.1	1.5	0.7	0.6	0.5	1.4
Above Normal (16\%)	0.1	0.5	1.1	2.4	3.3	2.6	1.0	0.5	0.2	0.7	0.5	0.7
Below Normal (13\%)	0.2	0.3	0.4	0.6	1.7	0.5	0.2	0.1	0.1	0.6	0.4	0.4
Dry (24\%)	0.1	0.1	0.1	0.5	1.0	0.8	0.2	0.1	0.1	0.4	0.2	0.2
Critical (15\%)	0.0	-0.1	0.1	0.3	0.4	0.2	0.0	-0.1	0.0	0.2	0.2	0.2

No Action Alternative minus Second Basis of Comparison

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.0	0.1	-0.5	-0.1	0.0	0.0	0.0	0.0	0.0	0.1	0.0	1.0
20\%	0.1	0.3	-0.3	-0.4	0.0	0.0	0.0	-0.2	-0.1	0.1	0.0	1.0
30\%	0.1	0.3	0.0	-0.3	-0.1	-0.5	0.0	0.0	-0.1	0.1	0.0	0.5
40\%	0.1	0.2	0.1	0.0	-0.3	0.0	0.0	0.0	-0.1	0.1	0.0	0.3
50\%	0.0	0.2	0.1	0.0	0.0	0.0	0.0	0.0	-0.1	0.1	0.0	0.1
60\%	0.0	0.1	0.1	0.0	-0.1	0.0	0.0	-0.1	-0.1	0.1	0.0	0.0
70\%	0.0	0.1	0.1	0.0	0.0	0.0	0.0	0.0	-0.1	0.0	0.0	0.0
80\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	0.1	0.0	0.0
90\%	0.0	0.0	0.1	0.0	0.1	0.0	0.0	0.0	-0.1	0.1	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	0.1	0.0	0.4
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.1	0.2	-0.2	-0.1	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.9
Above Normal (16\%)	0.0	0.2	0.1	-0.1	-0.1	-0.2	0.0	-0.1	-0.1	0.1	0.0	0.3
Below Normal (13\%)	0.0	0.1	0.0	0.0	-0.1	-0.1	0.0	-0.1	-0.2	0.1	0.1	0.0
Dry (24\%)	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	0.1	0.0	0.0
Critical (15\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year
b Based on the 82 -year simulation period.
C As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same,
therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and N No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-40-2-5. Steamboat SI d/s of Sutter SI, Monthly Averaged Daily Minimum Elevation

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.4	0.8	3.9	5.1	5.9	5.0	3.3	2.1	0.6	0.7	0.5	0.6
20\%	0.2	0.3	1.9	4.1	4.8	3.6	1.8	1.2	0.4	0.6	0.4	0.5
30\%	0.2	0.2	0.8	2.5	3.6	2.6	0.8	0.5	0.3	0.6	0.4	0.4
40\%	0.1	0.1	0.4	1.2	3.0	1.5	0.5	0.3	0.3	0.5	0.4	0.4
50\%	0.1	0.0	0.3	0.8	1.7	1.0	0.2	0.2	0.2	0.5	0.3	0.3
60\%	0.1	0.0	0.1	0.4	1.0	0.7	0.1	0.1	0.2	0.4	0.3	0.3
70\%	0.0	-0.1	0.1	0.2	0.6	0.6	0.0	0.0	0.1	0.3	0.3	0.2
80\%	0.0	-0.1	0.0	0.2	0.4	0.3	0.0	0.0	0.1	0.2	0.2	0.2
90\%	-0.1	-0.2	-0.1	0.1	0.2	0.0	-0.1	-0.1	0.0	0.1	0.1	0.1
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.1	0.2	1.0	1.8	2.5	1.8	0.9	0.6	0.4	0.4	0.3	0.3
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.3	0.6	2.4	3.7	4.3	3.4	2.0	1.5	0.8	0.6	0.4	0.5
Above Normal (16\%)	0.1	0.4	1.1	2.5	3.4	2.7	1.0	0.5	0.3	0.6	0.4	0.4
Below Normal (13\%)	0.1	0.2	0.3	0.6	1.8	0.6	0.2	0.2	0.3	0.6	0.4	0.4
Dry (24\%)	0.1	0.0	0.1	0.4	1.0	0.8	0.2	0.1	0.2	0.3	0.2	0.2
Critical (15\%)	0.0	-0.1	0.0	0.2	0.4	0.2	0.0	-0.1	0.0	0.1	0.2	0.2

Alternative 3

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.4	0.8	3.9	5.1	5.9	5.0	3.2	2.1	0.6	0.7	0.5	0.6
20\%	0.2	0.3	2.0	4.0	4.8	3.6	1.8	1.1	0.4	0.7	0.5	0.5
30\%	0.2	0.2	0.8	2.5	3.6	2.3	0.8	0.5	0.3	0.7	0.4	0.4
40\%	0.1	0.1	0.4	1.2	3.0	1.5	0.5	0.3	0.3	0.6	0.4	0.4
50\%	0.1	0.0	0.3	0.7	1.7	1.1	0.2	0.2	0.2	0.5	0.4	0.3
60\%	0.1	0.0	0.1	0.4	1.0	0.7	0.1	0.1	0.2	0.5	0.3	0.3
70\%	0.0	-0.1	0.0	0.3	0.7	0.6	0.0	0.0	0.1	0.4	0.3	0.2
80\%	0.0	-0.1	0.0	0.2	0.4	0.3	0.0	0.0	0.1	0.2	0.2	0.2
90\%	-0.1	-0.2	-0.1	0.0	0.3	0.0	-0.1	-0.1	0.0	0.1	0.1	0.1
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.1	0.2	1.0	1.8	2.5	1.8	0.9	0.6	0.4	0.5	0.3	0.3
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.2	0.6	2.4	3.7	4.3	3.4	2.0	1.5	0.8	0.6	0.4	0.5
Above Normal (16\%)	0.1	0.4	1.1	2.4	3.4	2.7	1.0	0.5	0.3	0.6	0.4	0.4
Below Normal (13\%)	0.1	0.2	0.3	0.6	1.8	0.6	0.2	0.2	0.2	0.7	0.4	0.4
Dry (24\%)	0.1	0.0	0.1	0.4	1.0	0.8	0.2	0.1	0.2	0.3	0.2	0.2
Critical (15\%)	0.0	-0.1	0.0	0.2	0.4	0.2	0.0	-0.1	0.0	0.1	0.2	0.2

Alternative 3 minus Second Basis of Comparison

Statistic	Monthly Averaged Daily Minimum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0
20\%	0.0	0.0	0.1	0.0	0.0	0.0	0.0	-0.1	0.0	0.1	0.0	0.0
30\%	0.0	0.0	0.0	0.0	0.0	-0.2	0.0	0.0	0.0	0.1	0.0	0.0
40\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0
50\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0
60\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0
70\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
80\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0
90\%	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Above Normal (16\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0
Below Normal (13\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	0.1	0.1	0.0
Dry (24\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0
Critical (15\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year
b Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and $N o$ Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-40-2-6. Steamboat SI d/s of Sutter SI, Monthly Averaged Daily Minimum Elevation

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.4	0.8	3.9	5.1	5.9	5.0	3.3	2.1	0.6	0.7	0.5	0.6
20\%	0.2	0.3	1.9	4.1	4.8	3.6	1.8	1.2	0.4	0.6	0.4	0.5
30\%	0.2	0.2	0.8	2.5	3.6	2.6	0.8	0.5	0.3	0.6	0.4	0.4
40\%	0.1	0.1	0.4	1.2	3.0	1.5	0.5	0.3	0.3	0.5	0.4	0.4
50\%	0.1	0.0	0.3	0.8	1.7	1.0	0.2	0.2	0.2	0.5	0.3	0.3
60\%	0.1	0.0	0.1	0.4	1.0	0.7	0.1	0.1	0.2	0.4	0.3	0.3
70\%	0.0	-0.1	0.1	0.2	0.6	0.6	0.0	0.0	0.1	0.3	0.3	0.2
80\%	0.0	-0.1	0.0	0.2	0.4	0.3	0.0	0.0	0.1	0.2	0.2	0.2
90\%	-0.1	-0.2	-0.1	0.1	0.2	0.0	-0.1	-0.1	0.0	0.1	0.1	0.1
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.1	0.2	1.0	1.8	2.5	1.8	0.9	0.6	0.4	0.4	0.3	0.3
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.3	0.6	2.4	3.7	4.3	3.4	2.0	1.5	0.8	0.6	0.4	0.5
Above Normal (16\%)	0.1	0.4	1.1	2.5	3.4	2.7	1.0	0.5	0.3	0.6	0.4	0.4
Below Normal (13\%)	0.1	0.2	0.3	0.6	1.8	0.6	0.2	0.2	0.3	0.6	0.4	0.4
Dry (24\%)	0.1	0.0	0.1	0.4	1.0	0.8	0.2	0.1	0.2	0.3	0.2	0.2
Critical (15\%)	0.0	-0.1	0.0	0.2	0.4	0.2	0.0	-0.1	0.0	0.1	0.2	0.2

Alternative 5

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.4	0.9	3.4	5.0	5.9	5.0	3.3	2.2	0.6	0.8	0.5	1.5
20\%	0.3	0.6	1.6	3.7	4.8	3.6	1.8	1.0	0.3	0.7	0.5	1.4
30\%	0.2	0.5	0.8	2.3	3.5	2.0	0.9	0.4	0.2	0.7	0.4	0.9
40\%	0.2	0.4	0.5	1.2	2.7	1.4	0.5	0.2	0.2	0.6	0.4	0.7
50\%	0.1	0.2	0.3	0.8	1.7	1.0	0.2	0.1	0.1	0.5	0.4	0.5
60\%	0.1	0.1	0.2	0.5	1.0	0.7	0.1	0.0	0.1	0.5	0.3	0.3
70\%	0.0	0.0	0.1	0.3	0.7	0.5	0.0	0.0	0.1	0.4	0.3	0.3
80\%	0.0	-0.1	0.0	0.2	0.4	0.3	0.0	-0.1	0.0	0.3	0.2	0.2
90\%	-0.1	-0.2	-0.1	0.1	0.3	0.0	-0.1	-0.2	-0.1	0.2	0.1	0.1

Long Term										
Full Simulation Period $^{\text {b }}$	0.2	0.4	1.0	1.8	2.4	1.8	0.9	0.6	0.3	0.5
Water Year Types $^{\text {c }}$										
Wet (32\%)	0.3	0.8	2.2	3.6	4.3	3.4	2.1	1.5	0.7	0.7
Above Normal (16\%)	0.1	0.5	1.1	2.4	3.3	2.6	1.0	0.5	0.2	0.7
Below Normal (13\%)	0.2	0.3	0.4	0.6	1.7	0.5	0.2	0.1	0.1	0.6
Dry (24\%)	0.1	0.1	0.1	0.5	1.0	0.8	0.2	0.0	0.1	0.4
Critical (15\%)	0.0	-0.1	0.1	0.3	0.4	0.2	-0.1	-0.1	0.2	0.2

Alternative 5 minus Second Basis of Comparison

Statistic	Monthly Averaged Daily Minimum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.1	0.1	-0.4	-0.1	0.0	0.0	0.0	0.0	0.0	0.1	0.0	1.0
20\%	0.1	0.3	-0.3	-0.4	0.0	0.0	0.0	-0.2	-0.1	0.1	0.0	0.9
30\%	0.0	0.3	0.0	-0.3	-0.1	-0.5	0.0	0.0	-0.1	0.1	0.1	0.5
40\%	0.1	0.2	0.1	0.0	-0.3	0.0	0.0	0.0	-0.1	0.1	0.0	0.3
50\%	0.0	0.2	0.1	0.0	0.0	0.0	0.0	-0.1	-0.1	0.1	0.0	0.1
60\%	0.0	0.1	0.1	0.0	-0.1	0.0	0.0	-0.1	-0.1	0.1	0.0	0.0
70\%	0.0	0.1	0.1	0.0	0.0	0.0	0.0	-0.1	-0.1	0.1	0.0	0.0
80\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	0.1	0.0	0.0
90\%	0.0	0.0	0.1	0.0	0.1	0.0	0.0	-0.1	-0.1	0.1	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	0.1	0.0	0.3
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.1	0.2	-0.2	-0.1	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.9
Above Normal (16\%)	0.0	0.2	0.1	-0.1	-0.1	-0.2	0.0	-0.1	-0.1	0.1	0.0	0.3
Below Normal (13\%)	0.0	0.1	0.0	0.0	-0.1	-0.1	0.0	-0.1	-0.2	0.1	0.1	0.0
Dry (24\%)	0.0	0.1	0.0	0.0	0.0	0.0	0.0	-0.1	-0.1	0.1	0.0	0.0
Critical (15\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year
b Based on the 82 -year simulation period
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, herefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-41-1-1. Old River at Tracy Blvd, Monthly Averaged Daily Maximum Elevation, October

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-41-1-2. Old River at Tracy Blvd, Monthly Averaged Daily Maximum Elevation, November

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-41-1-3. Old River at Tracy Blvd, Monthly Averaged Daily Maximum Elevation, December

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-41-1-4. Old River at Tracy Blvd, Monthly Averaged Daily Maximum Elevation, January

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-41-1-5. Old River at Tracy Blvd, Monthly Averaged Daily Maximum Elevation, February

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-41-1-6. Old River at Tracy Blvd, Monthly Averaged Daily Maximum Elevation, March

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-41-1-7. Old River at Tracy Blvd, Monthly Averaged Daily Maximum Elevation, April

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-41-1-8. Old River at Tracy Blvd, Monthly Averaged Daily Maximum Elevation, May

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-41-1-9. Old River at Tracy Blvd, Monthly Averaged Daily Maximum Elevation, June

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-41-1-10. Old River at Tracy Blvd, Monthly Averaged Daily Maximum Elevation, July

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-41-1-11. Old River at Tracy Blvd, Monthly Averaged Daily Maximum Elevation, August

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-41-1-12. Old River at Tracy Blvd, Monthly Averaged Daily Maximum Elevation, September

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-41-1-1. Old River at Tracy Blvd, Monthly Averaged Daily Maximum Elevation

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.1	3.1	3.9	4.4	4.5	4.4	4.4	4.4	3.9	3.5	3.3	3.2
20\%	2.9	2.9	3.5	4.1	4.2	3.8	3.9	3.8	3.5	3.2	3.1	3.1
30\%	2.9	2.9	3.4	3.7	3.9	3.5	3.6	3.6	3.3	3.1	3.1	3.0
40\%	2.9	2.8	3.3	3.5	3.7	3.3	3.5	3.5	3.2	3.0	3.0	2.9
50\%	2.8	2.7	3.1	3.4	3.5	3.2	3.4	3.4	3.2	2.8	2.9	2.8
60\%	2.8	2.7	3.1	3.3	3.4	3.1	3.3	3.3	3.1	2.7	2.8	2.8
70\%	2.7	2.6	3.0	3.2	3.3	3.0	3.2	3.2	3.1	2.6	2.7	2.7
80\%	2.7	2.5	2.8	3.1	3.2	2.9	3.1	3.1	3.0	2.6	2.7	2.7
90\%	2.6	2.5	2.7	3.0	2.9	2.8	3.0	3.0	2.9	2.5	2.6	2.6
Long Term												
Full Simulation Period ${ }^{\text {b }}$	2.8	2.8	3.3	3.7	3.8	3.5	3.6	3.5	3.3	2.9	2.9	2.9
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	2.9	2.9	3.6	4.4	4.4	4.1	4.1	4.0	3.7	3.3	2.9	3.0
Above Normal (16\%)	2.8	2.7	3.2	3.8	3.9	3.4	3.6	3.5	3.2	2.9	2.7	2.7
Below Normal (13\%)	2.8	2.7	3.1	3.3	3.5	3.0	3.3	3.3	3.1	2.6	2.8	2.8
Dry (24\%)	2.7	2.7	3.0	3.2	3.3	3.2	3.2	3.2	3.1	2.6	3.0	2.8
Critical (15\%)	2.9	2.9	3.2	3.2	3.3	3.1	3.1	3.2	3.2	3.0	3.1	3.1

Alternative 1

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.0	3.0	3.7	4.2	4.7	4.5	4.2	4.1	4.2	3.5	3.3	3.1
20\%	2.8	2.9	3.4	3.8	4.2	3.9	3.3	3.3	3.5	3.2	3.1	3.0
30\%	2.8	2.8	3.2	3.4	3.8	3.5	3.1	3.1	3.3	3.1	3.1	3.0
40\%	2.7	2.7	3.1	3.2	3.5	3.2	2.9	3.0	3.2	3.0	3.0	2.9
50\%	2.7	2.6	3.0	3.1	3.3	3.1	2.9	2.9	3.1	2.9	2.9	2.8
60\%	2.6	2.6	2.9	3.0	3.1	3.0	2.8	2.8	3.0	2.8	2.8	2.8
70\%	2.5	2.5	2.9	2.9	3.0	2.9	2.7	2.7	2.9	2.7	2.8	2.7
80\%	2.5	2.5	2.8	2.9	2.8	2.7	2.7	2.6	2.8	2.7	2.7	2.6
90\%	2.4	2.4	2.7	2.8	2.6	2.6	2.6	2.5	2.7	2.6	2.6	2.6
Long Term												
Full Simulation Period ${ }^{\text {b }}$	2.7	2.7	3.2	3.4	3.6	3.4	3.1	3.1	3.3	3.0	2.9	2.9
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	2.7	2.8	3.5	4.2	4.3	4.2	3.7	3.5	3.9	3.3	3.0	2.9
Above Normal (16\%)	2.7	2.7	3.1	3.4	3.7	3.3	2.9	2.9	3.1	2.9	2.7	2.6
Below Normal (13\%)	2.6	2.6	3.0	3.0	3.4	2.9	2.8	2.7	2.9	2.6	2.9	2.8
Dry (24\%)	2.6	2.6	2.9	3.0	3.0	3.0	2.8	2.8	3.0	2.8	3.0	2.8
Critical (15\%)	2.8	2.8	3.1	3.1	3.1	2.9	2.9	3.0	3.0	3.1	3.1	3.1

Alternative 1 minus No Action Alternative

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	-0.1	-0.1	-0.1	-0.2	0.2	0.1	-0.1	-0.3	0.3	0.0	0.0	-0.1
20\%	-0.1	-0.1	-0.1	-0.3	0.0	0.1	-0.6	-0.5	0.0	0.0	0.0	-0.1
30\%	-0.1	-0.1	-0.1	-0.3	-0.1	0.0	-0.5	-0.5	0.0	0.0	0.0	0.0
40\%	-0.1	-0.1	-0.1	-0.3	-0.3	-0.1	-0.6	-0.5	-0.1	0.0	0.0	0.0
50\%	-0.1	-0.1	-0.1	-0.3	-0.2	-0.1	-0.5	-0.5	-0.1	0.0	0.0	0.0
60\%	-0.1	-0.1	-0.1	-0.3	-0.3	-0.1	-0.5	-0.5	-0.1	0.1	0.0	0.0
70\%	-0.2	-0.1	-0.1	-0.3	-0.3	-0.1	-0.5	-0.5	-0.2	0.1	0.0	0.0
80\%	-0.2	-0.1	0.0	-0.3	-0.3	-0.2	-0.5	-0.5	-0.2	0.1	0.0	0.0
90\%	-0.2	-0.1	0.0	-0.2	-0.3	-0.2	-0.4	-0.5	-0.2	0.1	0.1	-0.1
Long Term												
Full Simulation Period ${ }^{\text {b }}$	-0.1	-0.1	-0.1	-0.2	-0.2	-0.1	-0.4	-0.5	0.0	0.1	0.0	0.0
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	-0.2	-0.1	-0.1	-0.2	-0.1	0.0	-0.4	-0.5	0.1	0.0	0.0	-0.1
Above Normal (16\%)	-0.1	-0.1	-0.1	-0.4	-0.2	0.0	-0.7	-0.7	-0.1	0.0	0.1	-0.1
Below Normal (13\%)	-0.2	-0.2	0.0	-0.3	-0.1	-0.1	-0.5	-0.6	-0.2	0.0	0.1	0.0
Dry (24\%)	-0.1	-0.1	0.0	-0.2	-0.3	-0.2	-0.4	-0.4	-0.1	0.1	0.0	0.0
Critical (15\%)	-0.1	-0.1	-0.1	-0.1	-0.2	-0.1	-0.2	-0.2	-0.1	0.1	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year
b Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same,
therefore Second Basis of Comparison and Alternative 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-41-1-2. Old River at Tracy Blvd, Monthly Averaged Daily Maximum Elevation

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.1	3.1	3.9	4.4	4.5	4.4	4.4	4.4	3.9	3.5	3.3	3.2
20\%	2.9	2.9	3.5	4.1	4.2	3.8	3.9	3.8	3.5	3.2	3.1	3.1
30\%	2.9	2.9	3.4	3.7	3.9	3.5	3.6	3.6	3.3	3.1	3.1	3.0
40\%	2.9	2.8	3.3	3.5	3.7	3.3	3.5	3.5	3.2	3.0	3.0	2.9
50\%	2.8	2.7	3.1	3.4	3.5	3.2	3.4	3.4	3.2	2.8	2.9	2.8
60\%	2.8	2.7	3.1	3.3	3.4	3.1	3.3	3.3	3.1	2.7	2.8	2.8
70\%	2.7	2.6	3.0	3.2	3.3	3.0	3.2	3.2	3.1	2.6	2.7	2.7
80\%	2.7	2.5	2.8	3.1	3.2	2.9	3.1	3.1	3.0	2.6	2.7	2.7
90\%	2.6	2.5	2.7	3.0	2.9	2.8	3.0	3.0	2.9	2.5	2.6	2.6
Long Term												
Full Simulation Period ${ }^{\text {b }}$	2.8	2.8	3.3	3.7	3.8	3.5	3.6	3.5	3.3	2.9	2.9	2.9
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	2.9	2.9	3.6	4.4	4.4	4.1	4.1	4.0	3.7	3.3	2.9	3.0
Above Normal (16\%)	2.8	2.7	3.2	3.8	3.9	3.4	3.6	3.5	3.2	2.9	2.7	2.7
Below Normal (13\%)	2.8	2.7	3.1	3.3	3.5	3.0	3.3	3.3	3.1	2.6	2.8	2.8
Dry (24\%)	2.7	2.7	3.0	3.2	3.3	3.2	3.2	3.2	3.1	2.6	3.0	2.8
Critical (15\%)	2.9	2.9	3.2	3.2	3.3	3.1	3.1	3.2	3.2	3.0	3.1	3.1

Alternative 3

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.0	3.0	3.8	4.4	4.7	4.6	4.2	4.0	3.8	3.6	3.3	3.2
20\%	2.9	2.8	3.5	4.2	4.2	3.8	3.6	3.4	3.4	3.2	3.2	3.1
30\%	2.8	2.8	3.3	3.7	3.9	3.5	3.3	3.2	3.2	3.1	3.1	3.0
40\%	2.7	2.7	3.2	3.5	3.7	3.4	3.2	3.2	3.1	2.9	3.0	2.9
50\%	2.7	2.6	3.1	3.4	3.5	3.2	3.1	3.1	3.0	2.9	2.9	2.8
60\%	2.6	2.6	3.0	3.3	3.4	3.1	3.0	3.0	2.9	2.8	2.8	2.8
70\%	2.6	2.5	2.9	3.2	3.2	3.0	3.0	3.0	2.8	2.7	2.7	2.7
80\%	2.4	2.4	2.9	3.1	3.1	2.9	2.9	2.9	2.8	2.6	2.6	2.6
90\%	2.4	2.4	2.8	3.0	2.9	2.7	2.8	2.8	2.7	2.5	2.6	2.6
Long Term												
Full Simulation Period ${ }^{\text {b }}$	2.7	2.7	3.3	3.7	3.7	3.4	3.3	3.2	3.2	3.0	2.9	2.9
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	2.7	2.8	3.6	4.4	4.4	4.1	3.8	3.6	3.6	3.3	3.0	2.9
Above Normal (16\%)	2.7	2.7	3.2	3.8	3.9	3.3	3.2	3.1	3.0	2.8	2.7	2.6
Below Normal (13\%)	2.6	2.6	3.1	3.3	3.5	2.9	3.1	3.0	2.9	2.6	2.7	2.8
Dry (24\%)	2.6	2.6	3.0	3.2	3.3	3.1	3.0	3.0	2.9	2.7	3.0	2.8
Critical (15\%)	2.9	2.8	3.2	3.2	3.3	3.1	3.1	3.2	3.0	3.1	3.1	3.1

Alternative 3 minus No Action Alternative

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	-0.1	-0.1	0.0	0.0	0.2	0.1	-0.1	-0.3	0.0	0.1	0.0	0.0
20\%	-0.1	-0.1	0.0	0.0	0.0	0.0	-0.3	-0.4	-0.2	0.0	0.0	0.0
30\%	-0.1	-0.1	0.0	0.0	0.0	0.0	-0.3	-0.3	-0.1	0.0	0.0	0.0
40\%	-0.1	-0.1	-0.1	0.0	0.0	0.0	-0.3	-0.3	-0.2	0.0	0.0	0.0
50\%	-0.1	-0.1	0.0	0.0	0.0	-0.1	-0.3	-0.3	-0.2	0.0	0.0	0.0
60\%	-0.1	-0.1	-0.1	0.0	0.0	0.0	-0.3	-0.3	-0.2	0.1	0.0	0.0
70\%	-0.2	-0.1	0.0	0.0	0.0	0.0	-0.2	-0.2	-0.2	0.0	0.0	0.0
80\%	-0.2	-0.1	0.0	0.0	0.0	0.0	-0.2	-0.2	-0.2	0.0	0.0	0.0
90\%	-0.2	-0.1	0.1	0.0	-0.1	-0.1	-0.2	-0.3	-0.3	0.0	0.0	-0.1
Long Term												
Full Simulation Period ${ }^{\text {b }}$	-0.1	-0.1	0.0	0.0	0.0	0.0	-0.2	-0.3	-0.2	0.0	0.0	0.0
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	-0.2	-0.1	0.0	0.0	0.0	0.0	-0.3	-0.4	-0.1	0.0	0.0	0.0
Above Normal (16\%)	-0.1	-0.1	0.0	0.0	0.0	-0.1	-0.4	-0.5	-0.2	0.0	0.0	-0.1
Below Normal (13\%)	-0.2	-0.2	0.0	0.0	0.0	-0.1	-0.3	-0.3	-0.2	0.0	0.0	-0.1
Dry (24\%)	-0.1	-0.1	0.0	0.0	0.0	0.0	-0.2	-0.2	-0.2	0.0	0.0	0.0
Critical (15\%)	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	0.0	-0.1	0.1	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year
b Based on the 82 -year simulation period
C As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same, therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and $N o$ Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-41-1-3. Old River at Tracy Blvd, Monthly Averaged Daily Maximum Elevation

Statistic	Monthly Averaged Daily Maximum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.1	3.1	3.9	4.4	4.5	4.4	4.4	4.4	3.9	3.5	3.3	3.2
20\%	2.9	2.9	3.5	4.1	4.2	3.8	3.9	3.8	3.5	3.2	3.1	3.1
30\%	2.9	2.9	3.4	3.7	3.9	3.5	3.6	3.6	3.3	3.1	3.1	3.0
40\%	2.9	2.8	3.3	3.5	3.7	3.3	3.5	3.5	3.2	3.0	3.0	2.9
50\%	2.8	2.7	3.1	3.4	3.5	3.2	3.4	3.4	3.2	2.8	2.9	2.8
60\%	2.8	2.7	3.1	3.3	3.4	3.1	3.3	3.3	3.1	2.7	2.8	2.8
70\%	2.7	2.6	3.0	3.2	3.3	3.0	3.2	3.2	3.1	2.6	2.7	2.7
80\%	2.7	2.5	2.8	3.1	3.2	2.9	3.1	3.1	3.0	2.6	2.7	2.7
90\%	2.6	2.5	2.7	3.0	2.9	2.8	3.0	3.0	2.9	2.5	2.6	2.6
Long Term												
Full Simulation Period ${ }^{\text {b }}$	2.8	2.8	3.3	3.7	3.8	3.5	3.6	3.5	3.3	2.9	2.9	2.9
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	2.9	2.9	3.6	4.4	4.4	4.1	4.1	4.0	3.7	3.3	2.9	3.0
Above Normal (16\%)	2.8	2.7	3.2	3.8	3.9	3.4	3.6	3.5	3.2	2.9	2.7	2.7
Below Normal (13\%)	2.8	2.7	3.1	3.3	3.5	3.0	3.3	3.3	3.1	2.6	2.8	2.8
Dry (24\%)	2.7	2.7	3.0	3.2	3.3	3.2	3.2	3.2	3.1	2.6	3.0	2.8
Critical (15\%)	2.9	2.9	3.2	3.2	3.3	3.1	3.1	3.2	3.2	3.0	3.1	3.1

Alternative 5

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.1	3.1	3.9	4.4	4.5	4.4	4.4	4.4	3.9	3.5	3.2	3.2
20\%	2.9	2.9	3.5	4.1	4.2	3.8	3.9	3.8	3.5	3.2	3.1	3.1
30\%	2.9	2.9	3.4	3.7	3.9	3.5	3.7	3.7	3.3	3.1	3.0	3.0
40\%	2.8	2.8	3.3	3.5	3.7	3.3	3.6	3.6	3.2	2.9	3.0	2.9
50\%	2.8	2.7	3.1	3.4	3.5	3.2	3.5	3.5	3.1	2.8	2.9	2.8
60\%	2.8	2.7	3.1	3.3	3.4	3.1	3.4	3.5	3.1	2.7	2.8	2.8
70\%	2.7	2.6	3.0	3.2	3.3	3.0	3.3	3.4	3.1	2.6	2.7	2.7
80\%	2.7	2.5	2.8	3.1	3.2	2.9	3.3	3.4	3.0	2.6	2.7	2.7
90\%	2.6	2.5	2.7	3.0	2.9	2.8	3.2	3.3	2.9	2.4	2.6	2.6
Long Term												
Full Simulation Period ${ }^{\text {b }}$	2.8	2.8	3.3	3.7	3.7	3.5	3.6	3.7	3.3	2.9	2.9	2.9
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	2.9	2.9	3.6	4.4	4.4	4.1	4.1	4.0	3.7	3.3	2.9	3.0
Above Normal (16\%)	2.8	2.8	3.2	3.8	3.9	3.4	3.6	3.6	3.2	2.9	2.7	2.7
Below Normal (13\%)	2.8	2.7	3.1	3.3	3.5	3.0	3.4	3.5	3.1	2.6	2.8	2.8
Dry (24\%)	2.7	2.7	3.0	3.2	3.3	3.2	3.4	3.5	3.0	2.6	3.0	2.8
Critical (15\%)	2.9	2.9	3.2	3.2	3.3	3.1	3.3	3.4	3.1	3.0	3.1	3.0

Alternative 5 minus No Action Alternative

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	0.0
20\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	0.0	0.0	0.0
30\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0
40\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0
50\%	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.0	0.0	0.0	0.0
60\%	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.2	0.0	0.0	0.0	0.0
70\%	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.2	0.0	0.0	0.0	0.0
80\%	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.2	0.0	0.0	0.0	0.0
90\%	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.3	0.0	-0.1	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.0	0.0	0.0	0.0
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Above Normal (16\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0
Below Normal (13\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.2	0.0	0.0	0.0	0.0
Dry (24\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.3	0.0	0.0	0.0	0.0
Critical (15\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.2	0.0	0.0	-0.1	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year
b Based on the 82 -year simulation period
C As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same,
therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and $N o$ Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-41-1-4. Old River at Tracy Blvd, Monthly Averaged Daily Maximum Elevation

Second Basis of Comparison

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.0	3.0	3.7	4.2	4.7	4.5	4.2	4.1	4.2	3.5	3.3	3.1
20\%	2.8	2.9	3.4	3.8	4.2	3.9	3.3	3.3	3.5	3.2	3.1	3.0
30\%	2.8	2.8	3.2	3.4	3.8	3.5	3.1	3.1	3.3	3.1	3.1	3.0
40\%	2.7	2.7	3.1	3.2	3.5	3.2	2.9	3.0	3.2	3.0	3.0	2.9
50\%	2.7	2.6	3.0	3.1	3.3	3.1	2.9	2.9	3.1	2.9	2.9	2.8
60\%	2.6	2.6	2.9	3.0	3.1	3.0	2.8	2.8	3.0	2.8	2.8	2.8
70\%	2.5	2.5	2.9	2.9	3.0	2.9	2.7	2.7	2.9	2.7	2.8	2.7
80\%	2.5	2.5	2.8	2.9	2.8	2.7	2.7	2.6	2.8	2.7	2.7	2.6
90\%	2.4	2.4	2.7	2.8	2.6	2.6	2.6	2.5	2.7	2.6	2.6	2.6
Long Term												
Full Simulation Period ${ }^{\text {b }}$	2.7	2.7	3.2	3.4	3.6	3.4	3.1	3.1	3.3	3.0	2.9	2.9
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	2.7	2.8	3.5	4.2	4.3	4.2	3.7	3.5	3.9	3.3	3.0	2.9
Above Normal (16\%)	2.7	2.7	3.1	3.4	3.7	3.3	2.9	2.9	3.1	2.9	2.7	2.6
Below Normal (13\%)	2.6	2.6	3.0	3.0	3.4	2.9	2.8	2.7	2.9	2.6	2.9	2.8
Dry (24\%)	2.6	2.6	2.9	3.0	3.0	3.0	2.8	2.8	3.0	2.8	3.0	2.8
Critical (15\%)	2.8	2.8	3.1	3.1	3.1	2.9	2.9	3.0	3.0	3.1	3.1	3.1

No Action Alternative

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.1	3.1	3.9	4.4	4.5	4.4	4.4	4.4	3.9	3.5	3.3	3.2
20\%	2.9	2.9	3.5	4.1	4.2	3.8	3.9	3.8	3.5	3.2	3.1	3.1
30\%	2.9	2.9	3.4	3.7	3.9	3.5	3.6	3.6	3.3	3.1	3.1	3.0
40\%	2.9	2.8	3.3	3.5	3.7	3.3	3.5	3.5	3.2	3.0	3.0	2.9
50\%	2.8	2.7	3.1	3.4	3.5	3.2	3.4	3.4	3.2	2.8	2.9	2.8
60\%	2.8	2.7	3.1	3.3	3.4	3.1	3.3	3.3	3.1	2.7	2.8	2.8
70\%	2.7	2.6	3.0	3.2	3.3	3.0	3.2	3.2	3.1	2.6	2.7	2.7
80\%	2.7	2.5	2.8	3.1	3.2	2.9	3.1	3.1	3.0	2.6	2.7	2.7
90\%	2.6	2.5	2.7	3.0	2.9	2.8	3.0	3.0	2.9	2.5	2.6	2.6
Long Term												
Full Simulation Period ${ }^{\text {b }}$	2.8	2.8	3.3	3.7	3.8	3.5	3.6	3.5	3.3	2.9	2.9	2.9
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	2.9	2.9	3.6	4.4	4.4	4.1	4.1	4.0	3.7	3.3	2.9	3.0
Above Normal (16\%)	2.8	2.7	3.2	3.8	3.9	3.4	3.6	3.5	3.2	2.9	2.7	2.7
Below Normal (13\%)	2.8	2.7	3.1	3.3	3.5	3.0	3.3	3.3	3.1	2.6	2.8	2.8
Dry (24\%)	2.7	2.7	3.0	3.2	3.3	3.2	3.2	3.2	3.1	2.6	3.0	2.8
Critical (15\%)	2.9	2.9	3.2	3.2	3.3	3.1	3.1	3.2	3.2	3.0	3.1	3.1

No Action Alternative minus Second Basis of Comparison

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.1	0.1	0.1	0.2	-0.2	-0.1	0.1	0.3	-0.3	0.0	0.0	0.1
20\%	0.1	0.1	0.1	0.3	0.0	-0.1	0.6	0.5	0.0	0.0	0.0	0.1
30\%	0.1	0.1	0.1	0.3	0.1	0.0	0.5	0.5	0.0	0.0	0.0	0.0
40\%	0.1	0.1	0.1	0.3	0.3	0.1	0.6	0.5	0.1	0.0	0.0	0.0
50\%	0.1	0.1	0.1	0.3	0.2	0.1	0.5	0.5	0.1	0.0	0.0	0.0
60\%	0.1	0.1	0.1	0.3	0.3	0.1	0.5	0.5	0.1	-0.1	0.0	0.0
70\%	0.2	0.1	0.1	0.3	0.3	0.1	0.5	0.5	0.2	-0.1	0.0	0.0
80\%	0.2	0.1	0.0	0.3	0.3	0.2	0.5	0.5	0.2	-0.1	0.0	0.0
90\%	0.2	0.1	0.0	0.2	0.3	0.2	0.4	0.5	0.2	-0.1	-0.1	0.1
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.1	0.1	0.1	0.2	0.2	0.1	0.4	0.5	0.0	-0.1	0.0	0.0
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.2	0.1	0.1	0.2	0.1	0.0	0.4	0.5	-0.1	0.0	0.0	0.1
Above Normal (16\%)	0.1	0.1	0.1	0.4	0.2	0.0	0.7	0.7	0.1	0.0	-0.1	0.1
Below Normal (13\%)	0.2	0.2	0.0	0.3	0.1	0.1	0.5	0.6	0.2	0.0	-0.1	0.0
Dry (24\%)	0.1	0.1	0.0	0.2	0.3	0.2	0.4	0.4	0.1	-0.1	0.0	0.0
Critical (15\%)	0.1	0.1	0.1	0.1	0.2	0.1	0.2	0.2	0.1	-0.1	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year
b Based on the 82 -year simulation period.
C As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same,
therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and $N o$ Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-41-1-5. Old River at Tracy Blvd, Monthly Averaged Daily Maximum Elevation

Second Basis of Comparison

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.0	3.0	3.7	4.2	4.7	4.5	4.2	4.1	4.2	3.5	3.3	3.1
20\%	2.8	2.9	3.4	3.8	4.2	3.9	3.3	3.3	3.5	3.2	3.1	3.0
30\%	2.8	2.8	3.2	3.4	3.8	3.5	3.1	3.1	3.3	3.1	3.1	3.0
40\%	2.7	2.7	3.1	3.2	3.5	3.2	2.9	3.0	3.2	3.0	3.0	2.9
50\%	2.7	2.6	3.0	3.1	3.3	3.1	2.9	2.9	3.1	2.9	2.9	2.8
60\%	2.6	2.6	2.9	3.0	3.1	3.0	2.8	2.8	3.0	2.8	2.8	2.8
70\%	2.5	2.5	2.9	2.9	3.0	2.9	2.7	2.7	2.9	2.7	2.8	2.7
80\%	2.5	2.5	2.8	2.9	2.8	2.7	2.7	2.6	2.8	2.7	2.7	2.6
90\%	2.4	2.4	2.7	2.8	2.6	2.6	2.6	2.5	2.7	2.6	2.6	2.6
Long Term												
Full Simulation Period ${ }^{\text {b }}$	2.7	2.7	3.2	3.4	3.6	3.4	3.1	3.1	3.3	3.0	2.9	2.9
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	2.7	2.8	3.5	4.2	4.3	4.2	3.7	3.5	3.9	3.3	3.0	2.9
Above Normal (16\%)	2.7	2.7	3.1	3.4	3.7	3.3	2.9	2.9	3.1	2.9	2.7	2.6
Below Normal (13\%)	2.6	2.6	3.0	3.0	3.4	2.9	2.8	2.7	2.9	2.6	2.9	2.8
Dry (24\%)	2.6	2.6	2.9	3.0	3.0	3.0	2.8	2.8	3.0	2.8	3.0	2.8
Critical (15\%)	2.8	2.8	3.1	3.1	3.1	2.9	2.9	3.0	3.0	3.1	3.1	3.1

Alternative 3

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.0	3.0	3.8	4.4	4.7	4.6	4.2	4.0	3.8	3.6	3.3	3.2
20\%	2.9	2.8	3.5	4.2	4.2	3.8	3.6	3.4	3.4	3.2	3.2	3.1
30\%	2.8	2.8	3.3	3.7	3.9	3.5	3.3	3.2	3.2	3.1	3.1	3.0
40\%	2.7	2.7	3.2	3.5	3.7	3.4	3.2	3.2	3.1	2.9	3.0	2.9
50\%	2.7	2.6	3.1	3.4	3.5	3.2	3.1	3.1	3.0	2.9	2.9	2.8
60\%	2.6	2.6	3.0	3.3	3.4	3.1	3.0	3.0	2.9	2.8	2.8	2.8
70\%	2.6	2.5	2.9	3.2	3.2	3.0	3.0	3.0	2.8	2.7	2.7	2.7
80\%	2.4	2.4	2.9	3.1	3.1	2.9	2.9	2.9	2.8	2.6	2.6	2.6
90\%	2.4	2.4	2.8	3.0	2.9	2.7	2.8	2.8	2.7	2.5	2.6	2.6
Long Term												
Full Simulation Period ${ }^{\text {b }}$	2.7	2.7	3.3	3.7	3.7	3.4	3.3	3.2	3.2	3.0	2.9	2.9
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	2.7	2.8	3.6	4.4	4.4	4.1	3.8	3.6	3.6	3.3	3.0	2.9
Above Normal (16\%)	2.7	2.7	3.2	3.8	3.9	3.3	3.2	3.1	3.0	2.8	2.7	2.6
Below Normal (13\%)	2.6	2.6	3.1	3.3	3.5	2.9	3.1	3.0	2.9	2.6	2.7	2.8
Dry (24\%)	2.6	2.6	3.0	3.2	3.3	3.1	3.0	3.0	2.9	2.7	3.0	2.8
Critical (15\%)	2.9	2.8	3.2	3.2	3.3	3.1	3.1	3.2	3.0	3.1	3.1	3.1

Alternative 3 minus Second Basis of Comparison

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.0	0.0	0.1	0.2	0.0	0.0	0.0	-0.1	-0.3	0.1	0.0	0.0
20\%	0.0	0.0	0.1	0.4	0.0	-0.1	0.3	0.2	-0.2	0.0	0.0	0.0
30\%	0.0	0.0	0.1	0.3	0.1	0.0	0.2	0.1	-0.1	0.0	0.0	0.0
40\%	0.0	0.0	0.1	0.2	0.3	0.1	0.3	0.1	-0.1	-0.1	0.0	0.0
50\%	0.0	0.0	0.1	0.3	0.2	0.0	0.2	0.1	-0.1	0.0	0.0	0.0
60\%	0.0	0.0	0.1	0.3	0.2	0.1	0.2	0.2	-0.1	0.0	0.0	0.0
70\%	0.0	0.0	0.0	0.3	0.3	0.1	0.3	0.3	-0.1	0.0	-0.1	0.0
80\%	0.0	0.0	0.1	0.2	0.3	0.1	0.2	0.3	-0.1	-0.1	-0.1	0.0
90\%	0.0	0.0	0.1	0.2	0.2	0.1	0.2	0.2	0.0	-0.1	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.0	0.0	0.1	0.2	0.2	0.0	0.2	0.2	-0.1	0.0	0.0	0.0
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.0	0.0	0.1	0.2	0.1	0.0	0.1	0.1	-0.3	0.0	0.0	0.0
Above Normal (16\%)	0.0	0.0	0.1	0.4	0.2	0.0	0.3	0.2	-0.1	0.0	0.0	0.0
Below Normal (13\%)	0.0	0.0	0.0	0.3	0.2	0.1	0.3	0.3	0.0	0.0	-0.1	-0.1
Dry (24\%)	0.0	0.0	0.0	0.2	0.3	0.2	0.2	0.2	-0.1	-0.1	0.0	0.0
Critical (15\%)	0.0	0.0	0.1	0.1	0.2	0.1	0.2	0.2	0.0	0.0	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year
b Based on the 82 -year simulation period
C As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same,
therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and N No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-41-1-6. Old River at Tracy Blvd, Monthly Averaged Daily Maximum Elevation

Second Basis of Comparison

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.0	3.0	3.7	4.2	4.7	4.5	4.2	4.1	4.2	3.5	3.3	3.1
20\%	2.8	2.9	3.4	3.8	4.2	3.9	3.3	3.3	3.5	3.2	3.1	3.0
30\%	2.8	2.8	3.2	3.4	3.8	3.5	3.1	3.1	3.3	3.1	3.1	3.0
40\%	2.7	2.7	3.1	3.2	3.5	3.2	2.9	3.0	3.2	3.0	3.0	2.9
50\%	2.7	2.6	3.0	3.1	3.3	3.1	2.9	2.9	3.1	2.9	2.9	2.8
60\%	2.6	2.6	2.9	3.0	3.1	3.0	2.8	2.8	3.0	2.8	2.8	2.8
70\%	2.5	2.5	2.9	2.9	3.0	2.9	2.7	2.7	2.9	2.7	2.8	2.7
80\%	2.5	2.5	2.8	2.9	2.8	2.7	2.7	2.6	2.8	2.7	2.7	2.6
90\%	2.4	2.4	2.7	2.8	2.6	2.6	2.6	2.5	2.7	2.6	2.6	2.6
Long Term												
Full Simulation Period ${ }^{\text {b }}$	2.7	2.7	3.2	3.4	3.6	3.4	3.1	3.1	3.3	3.0	2.9	2.9
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	2.7	2.8	3.5	4.2	4.3	4.2	3.7	3.5	3.9	3.3	3.0	2.9
Above Normal (16\%)	2.7	2.7	3.1	3.4	3.7	3.3	2.9	2.9	3.1	2.9	2.7	2.6
Below Normal (13\%)	2.6	2.6	3.0	3.0	3.4	2.9	2.8	2.7	2.9	2.6	2.9	2.8
Dry (24\%)	2.6	2.6	2.9	3.0	3.0	3.0	2.8	2.8	3.0	2.8	3.0	2.8
Critical (15\%)	2.8	2.8	3.1	3.1	3.1	2.9	2.9	3.0	3.0	3.1	3.1	3.1

Alternative 5

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.1	3.1	3.9	4.4	4.5	4.4	4.4	4.4	3.9	3.5	3.2	3.2
20\%	2.9	2.9	3.5	4.1	4.2	3.8	3.9	3.8	3.5	3.2	3.1	3.1
30\%	2.9	2.9	3.4	3.7	3.9	3.5	3.7	3.7	3.3	3.1	3.0	3.0
40\%	2.8	2.8	3.3	3.5	3.7	3.3	3.6	3.6	3.2	2.9	3.0	2.9
50\%	2.8	2.7	3.1	3.4	3.5	3.2	3.5	3.5	3.1	2.8	2.9	2.8
60\%	2.8	2.7	3.1	3.3	3.4	3.1	3.4	3.5	3.1	2.7	2.8	2.8
70\%	2.7	2.6	3.0	3.2	3.3	3.0	3.3	3.4	3.1	2.6	2.7	2.7
80\%	2.7	2.5	2.8	3.1	3.2	2.9	3.3	3.4	3.0	2.6	2.7	2.7
90\%	2.6	2.5	2.7	3.0	2.9	2.8	3.2	3.3	2.9	2.4	2.6	2.6
Long Term												
Full Simulation Period ${ }^{\text {b }}$	2.8	2.8	3.3	3.7	3.7	3.5	3.6	3.7	3.3	2.9	2.9	2.9
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	2.9	2.9	3.6	4.4	4.4	4.1	4.1	4.0	3.7	3.3	2.9	3.0
Above Normal (16\%)	2.8	2.8	3.2	3.8	3.9	3.4	3.6	3.6	3.2	2.9	2.7	2.7
Below Normal (13\%)	2.8	2.7	3.1	3.3	3.5	3.0	3.4	3.5	3.1	2.6	2.8	2.8
Dry (24\%)	2.7	2.7	3.0	3.2	3.3	3.2	3.4	3.5	3.0	2.6	3.0	2.8
Critical (15\%)	2.9	2.9	3.2	3.2	3.3	3.1	3.3	3.4	3.1	3.0	3.1	3.0

Alternative 5 minus Second Basis of Comparison

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.1	0.1	0.1	0.2	-0.2	-0.1	0.1	0.2	-0.3	0.0	-0.1	0.0
20\%	0.1	0.1	0.1	0.3	0.0	-0.1	0.6	0.5	-0.1	0.0	0.0	0.0
30\%	0.1	0.1	0.1	0.3	0.1	0.0	0.6	0.6	0.0	0.0	0.0	0.0
40\%	0.1	0.1	0.1	0.3	0.3	0.1	0.6	0.6	0.1	-0.1	0.0	0.1
50\%	0.1	0.1	0.1	0.3	0.2	0.1	0.6	0.6	0.0	0.0	0.0	0.0
60\%	0.2	0.1	0.1	0.3	0.3	0.1	0.6	0.7	0.1	-0.1	-0.1	0.0
70\%	0.2	0.1	0.1	0.3	0.3	0.1	0.6	0.7	0.2	-0.1	-0.1	0.0
80\%	0.2	0.1	0.0	0.2	0.3	0.2	0.6	0.8	0.2	-0.1	0.0	0.0
90\%	0.2	0.1	0.0	0.2	0.3	0.2	0.6	0.8	0.2	-0.2	-0.1	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.1	0.1	0.1	0.2	0.2	0.1	0.5	0.6	0.0	-0.1	0.0	0.0
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.2	0.1	0.1	0.2	0.1	0.0	0.4	0.5	-0.1	0.0	-0.1	0.1
Above Normal (16\%)	0.1	0.1	0.1	0.3	0.2	0.0	0.7	0.8	0.1	0.0	0.0	0.1
Below Normal (13\%)	0.2	0.2	0.0	0.3	0.1	0.1	0.6	0.8	0.3	0.0	-0.1	0.0
Dry (24\%)	0.1	0.1	0.0	0.2	0.3	0.2	0.6	0.6	0.1	-0.2	0.0	0.0
Critical (15\%)	0.1	0.1	0.1	0.1	0.2	0.1	0.4	0.5	0.1	-0.2	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period.
C As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same, therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and $N o$ Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-41-2-1. Old River at Tracy Blvd, Monthly Averaged Daily Minimum Elevation, October

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-41-2-2. Old River at Tracy Blvd, Monthly Averaged Daily Minimum Elevation, November

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-41-2-3. Old River at Tracy Blvd, Monthly Averaged Daily Minimum Elevation, December

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-41-2-4. Old River at Tracy Blvd, Monthly Averaged Daily Minimum Elevation, January

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-41-2-5. Old River at Tracy Blvd, Monthly Averaged Daily Minimum Elevation, February

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-41-2-6. Old River at Tracy Blvd, Monthly Averaged Daily Minimum Elevation, March

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-41-2-7. Old River at Tracy Blvd, Monthly Averaged Daily Minimum Elevation, April

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-41-2-8. Old River at Tracy Blvd, Monthly Averaged Daily Minimum Elevation, May

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-41-2-9. Old River at Tracy Blvd, Monthly Averaged Daily Minimum Elevation, June

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-41-2-10. Old River at Tracy Blvd, Monthly Averaged Daily Minimum Elevation, July

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-41-2-11. Old River at Tracy Blvd, Monthly Averaged Daily Minimum Elevation, August

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-41-2-12. Old River at Tracy Blvd, Monthly Averaged Daily Minimum Elevation, September

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-41-2-1. Old River at Tracy Blvd, Monthly Averaged Daily Minimum Elevation

Statistic	Monthly Averaged Daily Minimum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	1.8	1.7	0.6	1.1	1.8	1.9	1.8	1.6	2.8	2.3	1.9	1.8
20\%	1.7	1.6	0.1	0.7	1.2	1.0	1.2	1.0	2.0	1.7	1.8	1.8
30\%	1.7	1.6	0.0	0.3	0.8	0.6	0.8	0.7	1.9	1.6	1.7	1.7
40\%	1.7	1.5	-0.1	0.1	0.6	0.3	0.5	0.5	1.7	1.5	1.6	1.7
50\%	1.6	1.5	-0.2	0.0	0.3	0.2	0.4	0.3	1.6	1.4	1.5	1.6
60\%	1.6	1.5	-0.2	-0.1	0.1	0.1	0.2	0.3	1.5	1.4	1.5	1.6
70\%	1.5	1.5	-0.3	-0.1	0.1	-0.1	0.0	0.2	1.5	1.3	1.5	1.6
80\%	1.5	1.4	-0.4	-0.2	0.0	-0.1	-0.1	0.1	1.4	1.3	1.5	1.5
90\%	1.5	1.4	-0.5	-0.2	-0.2	-0.2	-0.2	0.0	1.3	1.2	1.4	1.5
Long Term												
Full Simulation Period ${ }^{\text {b }}$	1.6	1.6	0.0	0.5	0.8	0.6	0.6	0.7	1.8	1.6	1.6	1.7
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	1.7	1.7	0.5	1.4	1.8	1.7	1.6	1.4	2.3	2.0	1.8	1.8
Above Normal (16\%)	1.6	1.5	0.0	0.4	0.9	0.5	0.7	0.6	1.9	1.5	1.5	1.6
Below Normal (13\%)	1.7	1.6	-0.2	0.0	0.3	0.0	0.3	0.3	1.6	1.4	1.5	1.6
Dry (24\%)	1.6	1.5	-0.3	-0.1	0.1	0.1	0.1	0.3	1.5	1.3	1.6	1.6
Critical (15\%)	1.6	1.5	-0.2	-0.2	0.0	-0.1	-0.1	0.1	1.4	1.3	1.5	1.6

Alternative 1

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	1.6	1.6	0.5	1.2	2.0	2.2	1.6	1.4	3.1	2.3	1.9	1.8
20\%	1.6	1.6	0.0	0.6	1.3	1.1	0.5	0.5	2.2	1.7	1.8	1.7
30\%	1.5	1.5	0.0	0.1	0.7	0.6	0.1	0.2	1.9	1.6	1.7	1.7
40\%	1.5	1.5	-0.2	-0.1	0.3	0.3	0.0	0.1	1.8	1.5	1.6	1.6
50\%	1.5	1.5	-0.3	-0.2	0.2	0.1	-0.1	0.0	1.6	1.5	1.5	1.6
60\%	1.5	1.5	-0.3	-0.2	0.0	0.0	-0.2	-0.1	1.5	1.4	1.5	1.6
70\%	1.4	1.4	-0.4	-0.3	-0.1	-0.1	-0.3	-0.1	1.4	1.3	1.5	1.5
80\%	1.4	1.4	-0.4	-0.3	-0.2	-0.2	-0.3	-0.1	1.3	1.3	1.5	1.5
90\%	1.4	1.4	-0.5	-0.4	-0.3	-0.3	-0.4	-0.2	1.2	1.2	1.4	1.5

Full Simulation Period ${ }^{\text {b }}$	1.5	1.6	0.0	0.3	0.7	0.6	0.3	0.4	1.8	1.6	1.6	1.7
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	1.6	1.7	0.4	1.2	1.7	1.7	1.2	1.1	2.5	2.0	1.8	1.8
Above Normal (16\%)	1.5	1.5	-0.1	0.2	0.8	0.5	0.0	0.1	1.9	1.6	1.6	1.6
Below Normal (13\%)	1.5	1.5	-0.2	-0.2	0.2	-0.1	-0.2	0.0	1.5	1.4	1.6	1.6
Dry (24\%)	1.5	1.5	-0.3	-0.3	-0.1	0.0	-0.2	0.0	1.5	1.4	1.6	1.6
Critical (15\%)	1.5	1.5	-0.2	-0.2	-0.1	-0.2	-0.3	0.0	1.4	1.4	1.5	1.6

Alternative 1 minus No Action Alternative

Statistic	Monthly Averaged Daily Minimum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{a}$												
10\%	-0.2	0.0	-0.1	0.1	0.2	0.2	-0.2	-0.2	0.3	0.0	0.0	0.0
20\%	-0.2	0.0	-0.1	-0.2	0.0	0.1	-0.7	-0.5	0.1	0.1	0.0	0.0
30\%	-0.1	0.0	0.0	-0.2	0.0	0.0	-0.7	-0.5	0.0	0.0	0.0	0.0
40\%	-0.1	0.0	-0.1	-0.2	-0.2	0.0	-0.6	-0.4	0.0	0.0	0.0	0.0
50\%	-0.2	0.0	-0.1	-0.2	-0.1	-0.1	-0.5	-0.3	-0.1	0.0	0.0	0.0
60\%	-0.1	0.0	-0.1	-0.2	-0.2	-0.1	-0.5	-0.3	0.0	0.0	0.0	0.0
70\%	-0.1	0.0	0.0	-0.2	-0.2	-0.1	-0.3	-0.3	-0.1	0.0	0.0	0.0
80\%	-0.1	0.0	0.0	-0.1	-0.2	-0.1	-0.2	-0.3	-0.1	0.0	0.0	0.0
90\%	-0.1	0.0	0.0	-0.1	-0.1	-0.1	-0.2	-0.2	0.0	0.1	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	-0.1	0.0	0.0	-0.2	-0.1	-0.1	-0.4	-0.3	0.0	0.0	0.0	0.0
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	-0.2	-0.1	-0.1	-0.1	-0.1	0.0	-0.4	-0.4	0.2	0.0	0.0	0.0
Above Normal (16\%)	-0.1	0.0	0.0	-0.2	-0.1	-0.1	-0.6	-0.5	0.0	0.0	0.0	0.0
Below Normal (13\%)	-0.2	-0.1	0.0	-0.2	-0.1	-0.1	-0.5	-0.3	-0.1	0.0	0.0	0.0
Dry (24\%)	-0.1	0.0	0.0	-0.1	-0.2	-0.1	-0.3	-0.2	0.0	0.1	0.0	0.0
Critical (15\%)	-0.1	0.0	0.0	-0.1	-0.1	-0.1	-0.2	-0.1	0.0	0.0	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Second Basis of Comparison and Alternative 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-41-2-2. Old River at Tracy Blvd, Monthly Averaged Daily Minimum Elevation

Statistic	Monthly Averaged Daily Minimum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	1.8	1.7	0.6	1.1	1.8	1.9	1.8	1.6	2.8	2.3	1.9	1.8
20\%	1.7	1.6	0.1	0.7	1.2	1.0	1.2	1.0	2.0	1.7	1.8	1.8
30\%	1.7	1.6	0.0	0.3	0.8	0.6	0.8	0.7	1.9	1.6	1.7	1.7
40\%	1.7	1.5	-0.1	0.1	0.6	0.3	0.5	0.5	1.7	1.5	1.6	1.7
50\%	1.6	1.5	-0.2	0.0	0.3	0.2	0.4	0.3	1.6	1.4	1.5	1.6
60\%	1.6	1.5	-0.2	-0.1	0.1	0.1	0.2	0.3	1.5	1.4	1.5	1.6
70\%	1.5	1.5	-0.3	-0.1	0.1	-0.1	0.0	0.2	1.5	1.3	1.5	1.6
80\%	1.5	1.4	-0.4	-0.2	0.0	-0.1	-0.1	0.1	1.4	1.3	1.5	1.5
90\%	1.5	1.4	-0.5	-0.2	-0.2	-0.2	-0.2	0.0	1.3	1.2	1.4	1.5
Long Term												
Full Simulation Period ${ }^{\text {b }}$	1.6	1.6	0.0	0.5	0.8	0.6	0.6	0.7	1.8	1.6	1.6	1.7
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	1.7	1.7	0.5	1.4	1.8	1.7	1.6	1.4	2.3	2.0	1.8	1.8
Above Normal (16\%)	1.6	1.5	0.0	0.4	0.9	0.5	0.7	0.6	1.9	1.5	1.5	1.6
Below Normal (13\%)	1.7	1.6	-0.2	0.0	0.3	0.0	0.3	0.3	1.6	1.4	1.5	1.6
Dry (24\%)	1.6	1.5	-0.3	-0.1	0.1	0.1	0.1	0.3	1.5	1.3	1.6	1.6
Critical (15\%)	1.6	1.5	-0.2	-0.2	0.0	-0.1	-0.1	0.1	1.4	1.3	1.5	1.6

Alternative 3

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	1.6	1.6	0.6	1.4	2.5	2.2	1.7	1.4	2.8	2.3	2.0	1.9
20\%	1.6	1.6	0.1	0.7	1.3	1.0	0.9	0.7	1.9	1.7	1.8	1.8
30\%	1.6	1.5	0.0	0.3	0.8	0.5	0.4	0.4	1.7	1.5	1.7	1.7
40\%	1.5	1.5	-0.1	0.1	0.6	0.3	0.3	0.2	1.6	1.5	1.6	1.6
50\%	1.5	1.5	-0.2	0.0	0.2	0.2	0.1	0.2	1.5	1.4	1.5	1.6
60\%	1.5	1.5	-0.3	-0.1	0.1	0.0	0.0	0.1	1.4	1.4	1.5	1.6
70\%	1.4	1.4	-0.3	-0.1	0.0	-0.1	-0.1	0.1	1.4	1.3	1.5	1.6
80\%	1.4	1.4	-0.4	-0.2	-0.1	-0.2	-0.2	0.0	1.3	1.3	1.5	1.5
90\%	1.4	1.4	-0.4	-0.2	-0.2	-0.2	-0.3	0.0	1.2	1.2	1.4	1.5

Full Simulation Period ${ }^{\text {b }}$	1.5	1.6	0.0	0.5	0.8	0.6	0.5	0.5	1.7	1.6	1.6	1.7
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	1.6	1.7	0.5	1.4	1.8	1.7	1.4	1.2	2.2	2.0	1.9	1.9
Above Normal (16\%)	1.5	1.5	0.0	0.4	0.9	0.5	0.4	0.4	1.7	1.5	1.5	1.6
Below Normal (13\%)	1.5	1.5	-0.2	0.0	0.4	0.0	0.1	0.2	1.5	1.4	1.5	1.6
Dry (24\%)	1.5	1.5	-0.3	-0.1	0.1	0.1	0.0	0.2	1.4	1.3	1.6	1.6
Critical (15\%)	1.5	1.5	-0.2	-0.2	0.0	-0.1	-0.2	0.1	1.3	1.4	1.5	1.6

Alternative 3 minus No Action Alternative

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	-0.2	0.0	0.0	0.2	0.6	0.3	-0.1	-0.3	0.0	0.0	0.2	0.1
20\%	-0.1	0.0	0.0	-0.1	0.0	0.0	-0.3	-0.3	-0.2	0.0	0.0	0.0
30\%	-0.1	0.0	0.0	0.0	0.0	-0.1	-0.4	-0.3	-0.2	0.0	0.0	0.0
40\%	-0.1	0.0	0.0	0.0	0.0	0.0	-0.3	-0.2	-0.2	0.0	0.0	0.0
50\%	-0.1	0.0	0.0	0.0	-0.1	0.0	-0.2	-0.2	-0.2	0.0	0.0	0.0
60\%	-0.1	0.0	0.0	0.0	0.0	0.0	-0.2	-0.1	-0.1	0.0	0.0	0.0
70\%	-0.1	0.0	0.0	0.0	0.0	0.0	-0.1	-0.1	-0.1	0.0	0.0	0.0
80\%	-0.1	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	-0.1	0.0	0.0	0.0
90\%	-0.1	-0.1	0.0	0.0	0.0	0.0	-0.1	-0.1	-0.1	0.0	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	-0.1	0.0	0.0	0.0	0.0	0.0	-0.2	-0.2	-0.1	0.0	0.0	0.0
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	-0.1	-0.1	0.0	0.0	0.1	0.0	-0.2	-0.3	-0.1	0.0	0.0	0.0
Above Normal (16\%)	-0.1	0.0	0.0	0.0	0.0	-0.1	-0.3	-0.3	-0.2	0.0	0.0	0.0
Below Normal (13\%)	-0.2	-0.1	0.0	0.0	0.0	0.0	-0.2	-0.2	-0.1	0.0	0.0	0.0
Dry (24\%)	-0.1	0.0	0.0	0.0	0.0	0.0	-0.1	-0.1	-0.1	0.0	0.0	0.0
Critical (15\%)	-0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	0.0	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-41-2-3. Old River at Tracy Blvd, Monthly Averaged Daily Minimum Elevation

Statistic	Monthly Averaged Daily Minimum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	1.8	1.7	0.6	1.1	1.8	1.9	1.8	1.6	2.8	2.3	1.9	1.8
20\%	1.7	1.6	0.1	0.7	1.2	1.0	1.2	1.0	2.0	1.7	1.8	1.8
30\%	1.7	1.6	0.0	0.3	0.8	0.6	0.8	0.7	1.9	1.6	1.7	1.7
40\%	1.7	1.5	-0.1	0.1	0.6	0.3	0.5	0.5	1.7	1.5	1.6	1.7
50\%	1.6	1.5	-0.2	0.0	0.3	0.2	0.4	0.3	1.6	1.4	1.5	1.6
60\%	1.6	1.5	-0.2	-0.1	0.1	0.1	0.2	0.3	1.5	1.4	1.5	1.6
70\%	1.5	1.5	-0.3	-0.1	0.1	-0.1	0.0	0.2	1.5	1.3	1.5	1.6
80\%	1.5	1.4	-0.4	-0.2	0.0	-0.1	-0.1	0.1	1.4	1.3	1.5	1.5
90\%	1.5	1.4	-0.5	-0.2	-0.2	-0.2	-0.2	0.0	1.3	1.2	1.4	1.5
Long Term												
Full Simulation Period ${ }^{\text {b }}$	1.6	1.6	0.0	0.5	0.8	0.6	0.6	0.7	1.8	1.6	1.6	1.7
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	1.7	1.7	0.5	1.4	1.8	1.7	1.6	1.4	2.3	2.0	1.8	1.8
Above Normal (16\%)	1.6	1.5	0.0	0.4	0.9	0.5	0.7	0.6	1.9	1.5	1.5	1.6
Below Normal (13\%)	1.7	1.6	-0.2	0.0	0.3	0.0	0.3	0.3	1.6	1.4	1.5	1.6
Dry (24\%)	1.6	1.5	-0.3	-0.1	0.1	0.1	0.1	0.3	1.5	1.3	1.6	1.6
Critical (15\%)	1.6	1.5	-0.2	-0.2	0.0	-0.1	-0.1	0.1	1.4	1.3	1.5	1.6

Alternative 5

Statistic	Monthly Averaged Daily Minimum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	1.8	1.7	0.6	1.1	1.8	1.9	1.8	1.6	2.8	2.3	1.8	1.8
20\%	1.7	1.6	0.1	0.7	1.3	1.0	1.2	1.0	2.0	1.7	1.8	1.8
30\%	1.7	1.6	0.0	0.3	0.8	0.6	0.7	0.7	1.9	1.6	1.7	1.7
40\%	1.7	1.5	-0.1	0.1	0.6	0.3	0.5	0.5	1.7	1.5	1.6	1.7
50\%	1.6	1.5	-0.2	0.0	0.3	0.2	0.4	0.4	1.7	1.4	1.5	1.6
60\%	1.6	1.5	-0.2	-0.1	0.1	0.1	0.3	0.4	1.5	1.4	1.5	1.6
70\%	1.6	1.5	-0.3	-0.1	0.1	-0.1	0.1	0.3	1.5	1.3	1.5	1.6
80\%	1.5	1.4	-0.4	-0.2	0.0	-0.1	0.0	0.2	1.4	1.3	1.4	1.5
90\%	1.5	1.4	-0.5	-0.2	-0.2	-0.2	-0.1	0.1	1.3	1.1	1.4	1.5

| Long Term | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Full Simulation Period | | | | | | | | |

Alternative 5 minus No Action Alternative

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
20\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
30\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
40\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0
50\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0
60\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0
70\%	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.0	0.0	0.0	0.0
80\%	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.0	0.0	0.0	0.0
90\%	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.0	0.0	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Above Normal (16\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0
Below Normal (13\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0
Dry (24\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.0	0.0	0.0	0.0
Critical (15\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.0	0.0	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same, therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and $N o$ Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-41-2-4. Old River at Tracy Blvd, Monthly Averaged Daily Minimum Elevation

Statistic	Monthly Averaged Daily Minimum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	1.6	1.6	0.5	1.2	2.0	2.2	1.6	1.4	3.1	2.3	1.9	1.8
20\%	1.6	1.6	0.0	0.6	1.3	1.1	0.5	0.5	2.2	1.7	1.8	1.7
30\%	1.5	1.5	0.0	0.1	0.7	0.6	0.1	0.2	1.9	1.6	1.7	1.7
40\%	1.5	1.5	-0.2	-0.1	0.3	0.3	0.0	0.1	1.8	1.5	1.6	1.6
50\%	1.5	1.5	-0.3	-0.2	0.2	0.1	-0.1	0.0	1.6	1.5	1.5	1.6
60\%	1.5	1.5	-0.3	-0.2	0.0	0.0	-0.2	-0.1	1.5	1.4	1.5	1.6
70\%	1.4	1.4	-0.4	-0.3	-0.1	-0.1	-0.3	-0.1	1.4	1.3	1.5	1.5
80\%	1.4	1.4	-0.4	-0.3	-0.2	-0.2	-0.3	-0.1	1.3	1.3	1.5	1.5
90\%	1.4	1.4	-0.5	-0.4	-0.3	-0.3	-0.4	-0.2	1.2	1.2	1.4	1.5
Long Term												
Full Simulation Period ${ }^{\text {b }}$	1.5	1.6	0.0	0.3	0.7	0.6	0.3	0.4	1.8	1.6	1.6	1.7
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	1.6	1.7	0.4	1.2	1.7	1.7	1.2	1.1	2.5	2.0	1.8	1.8
Above Normal (16\%)	1.5	1.5	-0.1	0.2	0.8	0.5	0.0	0.1	1.9	1.6	1.6	1.6
Below Normal (13\%)	1.5	1.5	-0.2	-0.2	0.2	-0.1	-0.2	0.0	1.5	1.4	1.6	1.6
Dry (24\%)	1.5	1.5	-0.3	-0.3	-0.1	0.0	-0.2	0.0	1.5	1.4	1.6	1.6
Critical (15\%)	1.5	1.5	-0.2	-0.2	-0.1	-0.2	-0.3	0.0	1.4	1.4	1.5	1.6

No Action Alternative

	Monthly Averaged Daily Minimum Elevation (Feet)											
	Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug
Probability of Exceedance	a											
10%	1.8	1.7	0.6	1.1	1.8	1.9	1.8	1.6	2.8	2.3	1.9	1.8
20%	1.7	1.6	0.1	0.7	1.2	1.0	1.2	1.0	2.0	1.7	1.8	1.8
30%	1.7	1.6	0.0	0.3	0.8	0.6	0.8	0.7	1.9	1.6	1.7	1.7
40%	1.7	1.5	-0.1	0.1	0.6	0.3	0.5	0.5	1.7	1.5	1.6	1.7
50%	1.6	1.5	-0.2	0.0	0.3	0.2	0.4	0.3	1.6	1.4	1.5	1.6
60%	1.6	1.5	-0.2	-0.1	0.1	0.1	0.2	0.3	1.5	1.4	1.5	1.6
70%	1.5	1.5	-0.3	-0.1	0.1	-0.1	0.0	0.2	1.5	1.3	1.5	1.6
80%	1.5	1.4	-0.4	-0.2	0.0	-0.1	-0.1	0.1	1.4	1.3	1.5	1.5
90%	1.5	1.4	-0.5	-0.2	-0.2	-0.2	-0.2	0.0	1.3	1.2	1.4	1.5

Full Simulation Period ${ }^{\text {b }}$	1.6	1.6	0.0	0.5	0.8	0.6	0.6	0.7	1.8	1.6	1.6	1.7
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	1.7	1.7	0.5	1.4	1.8	1.7	1.6	1.4	2.3	2.0	1.8	1.8
Above Normal (16\%)	1.6	1.5	0.0	0.4	0.9	0.5	0.7	0.6	1.9	1.5	1.5	1.6
Below Normal (13\%)	1.7	1.6	-0.2	0.0	0.3	0.0	0.3	0.3	1.6	1.4	1.5	1.6
Dry (24\%)	1.6	1.5	-0.3	-0.1	0.1	0.1	0.1	0.3	1.5	1.3	1.6	1.6
Critical (15\%)	1.6	1.5	-0.2	-0.2	0.0	-0.1	-0.1	0.1	1.4	1.3	1.5	1.6

No Action Alternative minus Second Basis of Comparison

Statistic	Monthly Averaged Daily Minimum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.2	0.0	0.1	-0.1	-0.2	-0.2	0.2	0.2	-0.3	0.0	0.0	0.0
20\%	0.2	0.0	0.1	0.2	0.0	-0.1	0.7	0.5	-0.1	-0.1	0.0	0.0
30\%	0.1	0.0	0.0	0.2	0.0	0.0	0.7	0.5	0.0	0.0	0.0	0.0
40\%	0.1	0.0	0.1	0.2	0.2	0.0	0.6	0.4	0.0	0.0	0.0	0.0
50\%	0.2	0.0	0.1	0.2	0.1	0.1	0.5	0.3	0.1	0.0	0.0	0.0
60\%	0.1	0.0	0.1	0.2	0.2	0.1	0.5	0.3	0.0	0.0	0.0	0.0
70\%	0.1	0.0	0.0	0.2	0.2	0.1	0.3	0.3	0.1	0.0	0.0	0.0
80\%	0.1	0.0	0.0	0.1	0.2	0.1	0.2	0.3	0.1	0.0	0.0	0.0
90\%	0.1	0.0	0.0	0.1	0.1	0.1	0.2	0.2	0.0	-0.1	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.1	0.0	0.0	0.2	0.1	0.1	0.4	0.3	0.0	0.0	0.0	0.0
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.2	0.1	0.1	0.1	0.1	0.0	0.4	0.4	-0.2	0.0	0.0	0.0
Above Normal (16\%)	0.1	0.0	0.0	0.2	0.1	0.1	0.6	0.5	0.0	0.0	0.0	0.0
Below Normal (13\%)	0.2	0.1	0.0	0.2	0.1	0.1	0.5	0.3	0.1	0.0	0.0	0.0
Dry (24\%)	0.1	0.0	0.0	0.1	0.2	0.1	0.3	0.2	0.0	-0.1	0.0	0.0
Critical (15\%)	0.1	0.0	0.0	0.1	0.1	0.1	0.2	0.1	0.0	0.0	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same, therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and $N o$ Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-41-2-5. Old River at Tracy Blvd, Monthly Averaged Daily Minimum Elevation

Statistic	Monthly Averaged Daily Minimum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	1.6	1.6	0.5	1.2	2.0	2.2	1.6	1.4	3.1	2.3	1.9	1.8
20\%	1.6	1.6	0.0	0.6	1.3	1.1	0.5	0.5	2.2	1.7	1.8	1.7
30\%	1.5	1.5	0.0	0.1	0.7	0.6	0.1	0.2	1.9	1.6	1.7	1.7
40\%	1.5	1.5	-0.2	-0.1	0.3	0.3	0.0	0.1	1.8	1.5	1.6	1.6
50\%	1.5	1.5	-0.3	-0.2	0.2	0.1	-0.1	0.0	1.6	1.5	1.5	1.6
60\%	1.5	1.5	-0.3	-0.2	0.0	0.0	-0.2	-0.1	1.5	1.4	1.5	1.6
70\%	1.4	1.4	-0.4	-0.3	-0.1	-0.1	-0.3	-0.1	1.4	1.3	1.5	1.5
80\%	1.4	1.4	-0.4	-0.3	-0.2	-0.2	-0.3	-0.1	1.3	1.3	1.5	1.5
90\%	1.4	1.4	-0.5	-0.4	-0.3	-0.3	-0.4	-0.2	1.2	1.2	1.4	1.5
Long Term												
Full Simulation Period ${ }^{\text {b }}$	1.5	1.6	0.0	0.3	0.7	0.6	0.3	0.4	1.8	1.6	1.6	1.7
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	1.6	1.7	0.4	1.2	1.7	1.7	1.2	1.1	2.5	2.0	1.8	1.8
Above Normal (16\%)	1.5	1.5	-0.1	0.2	0.8	0.5	0.0	0.1	1.9	1.6	1.6	1.6
Below Normal (13\%)	1.5	1.5	-0.2	-0.2	0.2	-0.1	-0.2	0.0	1.5	1.4	1.6	1.6
Dry (24\%)	1.5	1.5	-0.3	-0.3	-0.1	0.0	-0.2	0.0	1.5	1.4	1.6	1.6
Critical (15\%)	1.5	1.5	-0.2	-0.2	-0.1	-0.2	-0.3	0.0	1.4	1.4	1.5	1.6

Alternative 3

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	1.6	1.6	0.6	1.4	2.5	2.2	1.7	1.4	2.8	2.3	2.0	1.9
20\%	1.6	1.6	0.1	0.7	1.3	1.0	0.9	0.7	1.9	1.7	1.8	1.8
30\%	1.6	1.5	0.0	0.3	0.8	0.5	0.4	0.4	1.7	1.5	1.7	1.7
40\%	1.5	1.5	-0.1	0.1	0.6	0.3	0.3	0.2	1.6	1.5	1.6	1.6
50\%	1.5	1.5	-0.2	0.0	0.2	0.2	0.1	0.2	1.5	1.4	1.5	1.6
60\%	1.5	1.5	-0.3	-0.1	0.1	0.0	0.0	0.1	1.4	1.4	1.5	1.6
70\%	1.4	1.4	-0.3	-0.1	0.0	-0.1	-0.1	0.1	1.4	1.3	1.5	1.6
80\%	1.4	1.4	-0.4	-0.2	-0.1	-0.2	-0.2	0.0	1.3	1.3	1.5	1.5
90\%	1.4	1.4	-0.4	-0.2	-0.2	-0.2	-0.3	0.0	1.2	1.2	1.4	1.5

Full Simulation Period ${ }^{\text {b }}$	1.5	1.6	0.0	0.5	0.8	0.6	0.5	0.5	1.7	1.6	1.6	1.7
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	1.6	1.7	0.5	1.4	1.8	1.7	1.4	1.2	2.2	2.0	1.9	1.9
Above Normal (16\%)	1.5	1.5	0.0	0.4	0.9	0.5	0.4	0.4	1.7	1.5	1.5	1.6
Below Normal (13\%)	1.5	1.5	-0.2	0.0	0.4	0.0	0.1	0.2	1.5	1.4	1.5	1.6
Dry (24\%)	1.5	1.5	-0.3	-0.1	0.1	0.1	0.0	0.2	1.4	1.3	1.6	1.6
Critical (15\%)	1.5	1.5	-0.2	-0.2	0.0	-0.1	-0.2	0.1	1.3	1.4	1.5	1.6

Alternative 3 minus Second Basis of Comparison

Statistic	Monthly Averaged Daily Minimum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.0	0.0	0.1	0.1	0.5	0.0	0.1	-0.1	-0.3	0.0	0.1	0.1
20\%	0.0	0.0	0.1	0.1	0.0	-0.2	0.4	0.2	-0.3	-0.1	0.0	0.0
30\%	0.0	0.0	0.0	0.3	0.0	0.0	0.3	0.2	-0.2	0.0	0.0	0.0
40\%	0.0	0.0	0.0	0.2	0.3	0.0	0.3	0.1	-0.2	0.0	0.0	0.0
50\%	0.0	0.0	0.1	0.2	0.1	0.1	0.3	0.2	-0.1	0.0	0.0	0.0
60\%	0.0	0.0	0.0	0.1	0.2	0.1	0.2	0.2	0.0	0.0	0.0	0.0
70\%	0.0	0.0	0.0	0.2	0.2	0.0	0.2	0.2	0.0	0.0	0.0	0.0
80\%	0.0	0.0	0.0	0.2	0.2	0.1	0.2	0.1	0.0	0.0	0.0	0.0
90\%	0.0	0.0	0.0	0.2	0.1	0.1	0.1	0.1	-0.1	0.0	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.0	0.0	0.1	0.2	0.1	0.0	0.2	0.1	-0.1	0.0	0.0	0.0
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.0	0.0	0.1	0.1	0.1	0.0	0.2	0.1	-0.3	0.0	0.0	0.0
Above Normal (16\%)	0.0	0.0	0.1	0.2	0.1	0.0	0.3	0.2	-0.1	0.0	0.0	0.0
Below Normal (13\%)	0.0	0.0	0.0	0.2	0.1	0.0	0.3	0.2	0.0	0.0	-0.1	0.0
Dry (24\%)	0.0	0.0	0.0	0.1	0.2	0.1	0.2	0.2	0.0	0.0	0.0	0.0
Critical (15\%)	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-41-2-6. Old River at Tracy Blvd, Monthly Averaged Daily Minimum Elevation

Statistic	Monthly Averaged Daily Minimum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	1.6	1.6	0.5	1.2	2.0	2.2	1.6	1.4	3.1	2.3	1.9	1.8
20\%	1.6	1.6	0.0	0.6	1.3	1.1	0.5	0.5	2.2	1.7	1.8	1.7
30\%	1.5	1.5	0.0	0.1	0.7	0.6	0.1	0.2	1.9	1.6	1.7	1.7
40\%	1.5	1.5	-0.2	-0.1	0.3	0.3	0.0	0.1	1.8	1.5	1.6	1.6
50\%	1.5	1.5	-0.3	-0.2	0.2	0.1	-0.1	0.0	1.6	1.5	1.5	1.6
60\%	1.5	1.5	-0.3	-0.2	0.0	0.0	-0.2	-0.1	1.5	1.4	1.5	1.6
70\%	1.4	1.4	-0.4	-0.3	-0.1	-0.1	-0.3	-0.1	1.4	1.3	1.5	1.5
80\%	1.4	1.4	-0.4	-0.3	-0.2	-0.2	-0.3	-0.1	1.3	1.3	1.5	1.5
90\%	1.4	1.4	-0.5	-0.4	-0.3	-0.3	-0.4	-0.2	1.2	1.2	1.4	1.5
Long Term												
Full Simulation Period ${ }^{\text {b }}$	1.5	1.6	0.0	0.3	0.7	0.6	0.3	0.4	1.8	1.6	1.6	1.7
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	1.6	1.7	0.4	1.2	1.7	1.7	1.2	1.1	2.5	2.0	1.8	1.8
Above Normal (16\%)	1.5	1.5	-0.1	0.2	0.8	0.5	0.0	0.1	1.9	1.6	1.6	1.6
Below Normal (13\%)	1.5	1.5	-0.2	-0.2	0.2	-0.1	-0.2	0.0	1.5	1.4	1.6	1.6
Dry (24\%)	1.5	1.5	-0.3	-0.3	-0.1	0.0	-0.2	0.0	1.5	1.4	1.6	1.6
Critical (15\%)	1.5	1.5	-0.2	-0.2	-0.1	-0.2	-0.3	0.0	1.4	1.4	1.5	1.6

Alternative 5

Statistic	Monthly Averaged Daily Minimum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	1.8	1.7	0.6	1.1	1.8	1.9	1.8	1.6	2.8	2.3	1.8	1.8
20\%	1.7	1.6	0.1	0.7	1.3	1.0	1.2	1.0	2.0	1.7	1.8	1.8
30\%	1.7	1.6	0.0	0.3	0.8	0.6	0.7	0.7	1.9	1.6	1.7	1.7
40\%	1.7	1.5	-0.1	0.1	0.6	0.3	0.5	0.5	1.7	1.5	1.6	1.7
50\%	1.6	1.5	-0.2	0.0	0.3	0.2	0.4	0.4	1.7	1.4	1.5	1.6
60\%	1.6	1.5	-0.2	-0.1	0.1	0.1	0.3	0.4	1.5	1.4	1.5	1.6
70\%	1.6	1.5	-0.3	-0.1	0.1	-0.1	0.1	0.3	1.5	1.3	1.5	1.6
80\%	1.5	1.4	-0.4	-0.2	0.0	-0.1	0.0	0.2	1.4	1.3	1.4	1.5
90\%	1.5	1.4	-0.5	-0.2	-0.2	-0.2	-0.1	0.1	1.3	1.1	1.4	1.5

Full Simulation Period ${ }^{\text {b }}$	1.6	1.6	0.0	0.5	0.8	0.6	0.7	0.7	1.8	1.6	1.6	1.7
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	1.7	1.7	0.5	1.4	1.8	1.7	1.6	1.5	2.3	2.0	1.8	1.8
Above Normal (16\%)	1.6	1.5	0.0	0.4	0.9	0.5	0.7	0.7	1.9	1.5	1.5	1.6
Below Normal (13\%)	1.7	1.6	-0.2	0.0	0.3	0.0	0.3	0.4	1.6	1.4	1.5	1.6
Dry (24\%)	1.6	1.5	-0.3	-0.1	0.1	0.1	0.2	0.4	1.5	1.3	1.5	1.6
Critical (15\%)	1.6	1.5	-0.2	-0.2	0.0	-0.1	0.0	0.2	1.4	1.3	1.5	1.6

Alternative 5 minus Second Basis of Comparison

Statistic	Monthly Averaged Daily Minimum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.2	0.0	0.1	-0.1	-0.2	-0.2	0.2	0.2	-0.3	0.0	-0.1	0.0
20\%	0.2	0.1	0.1	0.2	0.0	-0.1	0.7	0.5	-0.1	-0.1	0.0	0.0
30\%	0.1	0.0	0.0	0.2	0.0	0.0	0.6	0.5	0.0	0.0	0.0	0.0
40\%	0.1	0.0	0.1	0.2	0.2	0.0	0.6	0.4	0.0	0.0	0.0	0.0
50\%	0.2	0.0	0.1	0.2	0.1	0.1	0.6	0.4	0.1	0.0	0.0	0.0
60\%	0.1	0.0	0.1	0.2	0.2	0.1	0.5	0.4	0.0	0.0	0.0	0.0
70\%	0.1	0.0	0.0	0.2	0.2	0.1	0.4	0.4	0.1	0.0	0.0	0.0
80\%	0.1	0.0	0.0	0.1	0.2	0.1	0.3	0.4	0.1	-0.1	0.0	0.0
90\%	0.1	0.0	0.0	0.1	0.1	0.1	0.3	0.3	0.0	-0.1	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.1	0.0	0.0	0.2	0.1	0.1	0.4	0.4	0.0	0.0	0.0	0.0
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.2	0.0	0.1	0.1	0.1	0.0	0.4	0.4	-0.2	0.0	0.0	0.0
Above Normal (16\%)	0.1	0.0	0.0	0.2	0.1	0.0	0.6	0.5	0.0	0.0	0.0	0.0
Below Normal (13\%)	0.2	0.1	0.0	0.2	0.1	0.1	0.5	0.4	0.1	0.0	0.0	0.0
Dry (24\%)	0.1	0.0	0.0	0.1	0.2	0.1	0.4	0.3	0.0	-0.1	0.0	0.0
Critical (15\%)	0.1	0.0	0.0	0.1	0.1	0.1	0.3	0.2	0.0	-0.1	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

1 C.42. Mokelumne River at Terminous Water Surface Elevation

Figure C-42-1-1. Mokelumne River at Terminous, Monthly Averaged Daily Maximum Elevation, October

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-42-1-2. Mokelumne River at Terminous, Monthly Averaged Daily Maximum Elevation, November

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-42-1-3. Mokelumne River at Terminous, Monthly Averaged Daily Maximum Elevation, December

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-42-1-4. Mokelumne River at Terminous, Monthly Averaged Daily Maximum Elevation, January

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-42-1-5. Mokelumne River at Terminous, Monthly Averaged Daily Maximum Elevation, February

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-42-1-6. Mokelumne River at Terminous, Monthly Averaged Daily Maximum Elevation, March

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-42-1-7. Mokelumne River at Terminous, Monthly Averaged Daily Maximum Elevation, April

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-42-1-8. Mokelumne River at Terminous, Monthly Averaged Daily Maximum Elevation, May

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-42-1-9. Mokelumne River at Terminous, Monthly Averaged Daily Maximum Elevation, June

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-42-1-10. Mokelumne River at Terminous, Monthly Averaged Daily Maximum Elevation, July

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-42-1-11. Mokelumne River at Terminous, Monthly Averaged Daily Maximum Elevation, August

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-42-1-12. Mokelumne River at Terminous, Monthly Averaged Daily Maximum Elevation, September

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-42-1-1. Mokelumne River at Terminous, Monthly Averaged Daily Maximum Elevation

Statistic	Monthly Averaged Daily Maximum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.7	3.9	4.3	4.6	4.6	4.2	3.9	4.0	4.1	4.2	4.1	4.0
20\%	3.7	3.8	4.1	4.3	4.3	3.9	3.7	3.9	4.0	4.1	4.0	3.9
30\%	3.6	3.7	3.9	4.1	4.1	3.7	3.6	3.8	4.0	4.1	4.0	3.9
40\%	3.6	3.7	3.8	3.9	3.9	3.6	3.5	3.7	4.0	4.1	4.0	3.8
50\%	3.6	3.6	3.8	3.8	3.8	3.5	3.4	3.7	3.9	4.1	3.9	3.8
60\%	3.5	3.6	3.7	3.8	3.7	3.4	3.4	3.6	3.9	4.0	3.9	3.7
70\%	3.5	3.5	3.7	3.7	3.6	3.4	3.3	3.6	3.8	4.0	3.8	3.7
80\%	3.4	3.5	3.6	3.6	3.5	3.3	3.3	3.5	3.8	3.9	3.8	3.6
90\%	3.4	3.4	3.5	3.5	3.4	3.2	3.2	3.4	3.7	3.9	3.8	3.6
Long Term												
Full Simulation Period ${ }^{\text {b }}$	3.6	3.6	3.8	3.9	3.9	3.6	3.5	3.7	3.9	4.0	3.9	3.8
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	3.6	3.7	4.1	4.3	4.2	3.9	3.7	3.9	4.0	4.1	3.9	3.9
Above Normal (16\%)	3.6	3.6	3.8	4.0	4.2	3.7	3.5	3.7	3.9	4.1	3.9	3.8
Below Normal (13\%)	3.6	3.6	3.8	3.7	3.8	3.3	3.4	3.6	3.9	4.0	3.9	3.8
Dry (24\%)	3.5	3.5	3.6	3.7	3.6	3.5	3.3	3.6	3.9	4.0	3.9	3.7
Critical (15\%)	3.6	3.6	3.7	3.7	3.6	3.4	3.4	3.6	3.9	4.0	3.9	3.7

Alternative 1

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.8	3.9	4.3	4.6	4.6	4.2	3.9	4.0	4.2	4.2	4.1	3.9
20\%	3.7	3.8	4.1	4.3	4.3	3.9	3.7	3.9	4.1	4.1	4.0	3.9
30\%	3.6	3.7	3.9	4.0	4.1	3.7	3.6	3.8	4.0	4.1	4.0	3.9
40\%	3.6	3.7	3.8	3.9	3.9	3.6	3.5	3.7	4.0	4.1	4.0	3.8
50\%	3.5	3.6	3.8	3.8	3.8	3.5	3.4	3.6	3.9	4.1	3.9	3.8
60\%	3.5	3.5	3.7	3.7	3.7	3.4	3.4	3.6	3.9	4.0	3.9	3.7
70\%	3.5	3.5	3.7	3.7	3.6	3.4	3.3	3.5	3.8	4.0	3.8	3.7
80\%	3.4	3.4	3.6	3.6	3.5	3.3	3.3	3.5	3.8	3.9	3.8	3.6
90\%	3.4	3.4	3.5	3.5	3.4	3.2	3.2	3.4	3.7	3.9	3.8	3.6

| Long Term | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Full Simulation Period | | | | | | | | |

Alternative 1 minus No Action Alternative

Statistic	Monthly Averaged Daily Maximum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
20\%	0.0	0.0	0.0	-0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
30\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
40\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
50\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
60\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
70\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
80\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
90\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Above Normal (16\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Below Normal (13\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dry (24\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Critical (15\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Second Basis of Comparison and Alternative 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-42-1-2. Mokelumne River at Terminous, Monthly Averaged Daily Maximum Elevation

Statistic	Monthly Averaged Daily Maximum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.7	3.9	4.3	4.6	4.6	4.2	3.9	4.0	4.1	4.2	4.1	4.0
20\%	3.7	3.8	4.1	4.3	4.3	3.9	3.7	3.9	4.0	4.1	4.0	3.9
30\%	3.6	3.7	3.9	4.1	4.1	3.7	3.6	3.8	4.0	4.1	4.0	3.9
40\%	3.6	3.7	3.8	3.9	3.9	3.6	3.5	3.7	4.0	4.1	4.0	3.8
50\%	3.6	3.6	3.8	3.8	3.8	3.5	3.4	3.7	3.9	4.1	3.9	3.8
60\%	3.5	3.6	3.7	3.8	3.7	3.4	3.4	3.6	3.9	4.0	3.9	3.7
70\%	3.5	3.5	3.7	3.7	3.6	3.4	3.3	3.6	3.8	4.0	3.8	3.7
80\%	3.4	3.5	3.6	3.6	3.5	3.3	3.3	3.5	3.8	3.9	3.8	3.6
90\%	3.4	3.4	3.5	3.5	3.4	3.2	3.2	3.4	3.7	3.9	3.8	3.6
Long Term												
Full Simulation Period ${ }^{\text {b }}$	3.6	3.6	3.8	3.9	3.9	3.6	3.5	3.7	3.9	4.0	3.9	3.8
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	3.6	3.7	4.1	4.3	4.2	3.9	3.7	3.9	4.0	4.1	3.9	3.9
Above Normal (16\%)	3.6	3.6	3.8	4.0	4.2	3.7	3.5	3.7	3.9	4.1	3.9	3.8
Below Normal (13\%)	3.6	3.6	3.8	3.7	3.8	3.3	3.4	3.6	3.9	4.0	3.9	3.8
Dry (24\%)	3.5	3.5	3.6	3.7	3.6	3.5	3.3	3.6	3.9	4.0	3.9	3.7
Critical (15\%)	3.6	3.6	3.7	3.7	3.6	3.4	3.4	3.6	3.9	4.0	3.9	3.7

Alternative 3

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.8	3.9	4.3	4.6	4.6	4.2	3.9	4.0	4.1	4.2	4.1	3.9
20\%	3.7	3.8	4.2	4.3	4.3	3.9	3.7	3.9	4.0	4.1	4.0	3.9
30\%	3.6	3.7	3.9	4.1	4.1	3.7	3.6	3.8	4.0	4.1	4.0	3.9
40\%	3.6	3.6	3.8	3.9	3.9	3.6	3.5	3.7	4.0	4.1	4.0	3.8
50\%	3.5	3.6	3.8	3.8	3.8	3.5	3.4	3.6	3.9	4.1	3.9	3.8
60\%	3.5	3.5	3.7	3.8	3.7	3.4	3.4	3.6	3.9	4.0	3.9	3.7
70\%	3.5	3.5	3.7	3.7	3.6	3.4	3.3	3.5	3.8	4.0	3.8	3.7
80\%	3.4	3.4	3.6	3.6	3.5	3.3	3.2	3.5	3.8	3.9	3.8	3.6
90\%	3.4	3.4	3.5	3.5	3.4	3.2	3.2	3.4	3.7	3.9	3.8	3.6

Full Simulation Period ${ }^{\text {b }}$	3.6	3.6	3.8	4.0	3.9	3.6	3.5	3.7	3.9	4.0	3.9	3.8
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	3.6	3.7	4.1	4.3	4.2	3.9	3.7	3.8	4.0	4.1	3.9	3.8
Above Normal (16\%)	3.6	3.6	3.8	4.1	4.2	3.7	3.5	3.7	3.9	4.0	3.9	3.7
Below Normal (13\%)	3.5	3.6	3.8	3.8	3.8	3.3	3.4	3.6	3.9	4.0	3.9	3.8
Dry (24\%)	3.5	3.5	3.6	3.7	3.6	3.5	3.3	3.6	3.9	4.0	3.9	3.7
Critical (15\%)	3.6	3.6	3.7	3.7	3.6	3.4	3.4	3.6	3.9	4.0	3.9	3.7

Alternative 3 minus No Action Alternative

Statistic	Monthly Averaged Daily Maximum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	0.0	0.0	0.0	0.0
20\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
30\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
40\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
50\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
60\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
70\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
80\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
90\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Above Normal (16\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Below Normal (13\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dry (24\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Critical (15\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-42-1-3. Mokelumne River at Terminous, Monthly Averaged Daily Maximum Elevation

Statistic	Monthly Averaged Daily Maximum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.7	3.9	4.3	4.6	4.6	4.2	3.9	4.0	4.1	4.2	4.1	4.0
20\%	3.7	3.8	4.1	4.3	4.3	3.9	3.7	3.9	4.0	4.1	4.0	3.9
30\%	3.6	3.7	3.9	4.1	4.1	3.7	3.6	3.8	4.0	4.1	4.0	3.9
40\%	3.6	3.7	3.8	3.9	3.9	3.6	3.5	3.7	4.0	4.1	4.0	3.8
50\%	3.6	3.6	3.8	3.8	3.8	3.5	3.4	3.7	3.9	4.1	3.9	3.8
60\%	3.5	3.6	3.7	3.8	3.7	3.4	3.4	3.6	3.9	4.0	3.9	3.7
70\%	3.5	3.5	3.7	3.7	3.6	3.4	3.3	3.6	3.8	4.0	3.8	3.7
80\%	3.4	3.5	3.6	3.6	3.5	3.3	3.3	3.5	3.8	3.9	3.8	3.6
90\%	3.4	3.4	3.5	3.5	3.4	3.2	3.2	3.4	3.7	3.9	3.8	3.6
Long Term												
Full Simulation Period ${ }^{\text {b }}$	3.6	3.6	3.8	3.9	3.9	3.6	3.5	3.7	3.9	4.0	3.9	3.8
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	3.6	3.7	4.1	4.3	4.2	3.9	3.7	3.9	4.0	4.1	3.9	3.9
Above Normal (16\%)	3.6	3.6	3.8	4.0	4.2	3.7	3.5	3.7	3.9	4.1	3.9	3.8
Below Normal (13\%)	3.6	3.6	3.8	3.7	3.8	3.3	3.4	3.6	3.9	4.0	3.9	3.8
Dry (24\%)	3.5	3.5	3.6	3.7	3.6	3.5	3.3	3.6	3.9	4.0	3.9	3.7
Critical (15\%)	3.6	3.6	3.7	3.7	3.6	3.4	3.4	3.6	3.9	4.0	3.9	3.7

Alternative 5

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.7	3.9	4.3	4.6	4.6	4.2	3.9	4.0	4.1	4.2	4.1	4.0
20\%	3.7	3.8	4.1	4.3	4.3	3.9	3.7	3.9	4.0	4.1	4.0	3.9
30\%	3.6	3.7	3.9	4.1	4.1	3.7	3.6	3.8	4.0	4.1	4.0	3.9
40\%	3.6	3.7	3.8	3.9	3.9	3.6	3.5	3.7	4.0	4.1	4.0	3.8
50\%	3.6	3.6	3.8	3.8	3.8	3.5	3.5	3.7	3.9	4.1	3.9	3.8
60\%	3.5	3.6	3.7	3.8	3.7	3.4	3.4	3.6	3.9	4.0	3.9	3.7
70\%	3.5	3.5	3.7	3.7	3.6	3.4	3.3	3.6	3.8	4.0	3.8	3.7
80\%	3.4	3.5	3.6	3.6	3.5	3.3	3.3	3.5	3.8	3.9	3.8	3.6
90\%	3.4	3.4	3.5	3.5	3.4	3.2	3.2	3.4	3.7	3.9	3.8	3.6

Full Simulation Period ${ }^{\text {b }}$	3.6	3.6	3.8	3.9	3.9	3.6	3.5	3.7	3.9	4.1	3.9	3.8
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	3.6	3.7	4.1	4.3	4.2	3.9	3.7	3.9	4.0	4.1	3.9	3.9
Above Normal (16\%)	3.6	3.7	3.8	4.0	4.2	3.7	3.5	3.7	3.9	4.1	3.9	3.8
Below Normal (13\%)	3.6	3.6	3.8	3.7	3.8	3.3	3.4	3.6	3.9	4.0	3.9	3.8
Dry (24\%)	3.5	3.5	3.6	3.7	3.6	3.5	3.4	3.6	3.9	4.0	3.9	3.7
Critical (15\%)	3.6	3.6	3.7	3.7	3.6	3.4	3.4	3.6	3.9	4.0	3.9	3.7

Alternative 5 minus No Action Alternative

Statistic	Monthly Averaged Daily Maximum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
20\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
30\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
40\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
50\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
60\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
70\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
80\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
90\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Above Normal (16\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Below Normal (13\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dry (24\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Critical (15\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-42-1-4. Mokelumne River at Terminous, Monthly Averaged Daily Maximum Elevation

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.8	3.9	4.3	4.6	4.6	4.2	3.9	4.0	4.2	4.2	4.1	3.9
20\%	3.7	3.8	4.1	4.3	4.3	3.9	3.7	3.9	4.1	4.1	4.0	3.9
30\%	3.6	3.7	3.9	4.0	4.1	3.7	3.6	3.8	4.0	4.1	4.0	3.9
40\%	3.6	3.7	3.8	3.9	3.9	3.6	3.5	3.7	4.0	4.1	4.0	3.8
50\%	3.5	3.6	3.8	3.8	3.8	3.5	3.4	3.6	3.9	4.1	3.9	3.8
60\%	3.5	3.5	3.7	3.7	3.7	3.4	3.4	3.6	3.9	4.0	3.9	3.7
70\%	3.5	3.5	3.7	3.7	3.6	3.4	3.3	3.5	3.8	4.0	3.8	3.7
80\%	3.4	3.4	3.6	3.6	3.5	3.3	3.3	3.5	3.8	3.9	3.8	3.6
90\%	3.4	3.4	3.5	3.5	3.4	3.2	3.2	3.4	3.7	3.9	3.8	3.6
Long Term												
Full Simulation Period ${ }^{\text {b }}$	3.6	3.6	3.8	3.9	3.9	3.6	3.5	3.7	3.9	4.0	3.9	3.8
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	3.6	3.7	4.1	4.3	4.2	3.9	3.7	3.8	4.0	4.1	3.9	3.8
Above Normal (16\%)	3.6	3.6	3.8	4.0	4.1	3.7	3.5	3.7	3.9	4.0	3.9	3.7
Below Normal (13\%)	3.5	3.6	3.8	3.7	3.8	3.3	3.4	3.6	3.9	4.0	3.9	3.8
Dry (24\%)	3.5	3.5	3.6	3.7	3.6	3.5	3.3	3.6	3.9	4.0	3.9	3.7
Critical (15\%)	3.6	3.6	3.7	3.7	3.6	3.3	3.4	3.6	3.9	4.0	3.9	3.7

Statistic	Monthly Averaged Daily Maximum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.7	3.9	4.3	4.6	4.6	4.2	3.9	4.0	4.1	4.2	4.1	4.0
20\%	3.7	3.8	4.1	4.3	4.3	3.9	3.7	3.9	4.0	4.1	4.0	3.9
30\%	3.6	3.7	3.9	4.1	4.1	3.7	3.6	3.8	4.0	4.1	4.0	3.9
40\%	3.6	3.7	3.8	3.9	3.9	3.6	3.5	3.7	4.0	4.1	4.0	3.8
50\%	3.6	3.6	3.8	3.8	3.8	3.5	3.4	3.7	3.9	4.1	3.9	3.8
60\%	3.5	3.6	3.7	3.8	3.7	3.4	3.4	3.6	3.9	4.0	3.9	3.7
70\%	3.5	3.5	3.7	3.7	3.6	3.4	3.3	3.6	3.8	4.0	3.8	3.7
80\%	3.4	3.5	3.6	3.6	3.5	3.3	3.3	3.5	3.8	3.9	3.8	3.6
90\%	3.4	3.4	3.5	3.5	3.4	3.2	3.2	3.4	3.7	3.9	3.8	3.6
Long Term												
Full Simulation Period ${ }^{\text {b }}$	3.6	3.6	3.8	3.9	3.9	3.6	3.5	3.7	3.9	4.0	3.9	3.8
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	3.6	3.7	4.1	4.3	4.2	3.9	3.7	3.9	4.0	4.1	3.9	3.9
Above Normal (16\%)	3.6	3.6	3.8	4.0	4.2	3.7	3.5	3.7	3.9	4.1	3.9	3.8
Below Normal (13\%)	3.6	3.6	3.8	3.7	3.8	3.3	3.4	3.6	3.9	4.0	3.9	3.8
Dry (24\%)	3.5	3.5	3.6	3.7	3.6	3.5	3.3	3.6	3.9	4.0	3.9	3.7
Critical (15\%)	3.6	3.6	3.7	3.7	3.6	3.4	3.4	3.6	3.9	4.0	3.9	3.7

No Action Alternative minus Second Basis of Comparison

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
20\%	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
30\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
40\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
50\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
60\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
70\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
80\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
90\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Above Normal (16\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Below Normal (13\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dry (24\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Critical (15\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030 .
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same, therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and $N o$ Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-42-1-5. Mokelumne River at Terminous, Monthly Averaged Daily Maximum Elevation

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.8	3.9	4.3	4.6	4.6	4.2	3.9	4.0	4.2	4.2	4.1	3.9
20\%	3.7	3.8	4.1	4.3	4.3	3.9	3.7	3.9	4.1	4.1	4.0	3.9
30\%	3.6	3.7	3.9	4.0	4.1	3.7	3.6	3.8	4.0	4.1	4.0	3.9
40\%	3.6	3.7	3.8	3.9	3.9	3.6	3.5	3.7	4.0	4.1	4.0	3.8
50\%	3.5	3.6	3.8	3.8	3.8	3.5	3.4	3.6	3.9	4.1	3.9	3.8
60\%	3.5	3.5	3.7	3.7	3.7	3.4	3.4	3.6	3.9	4.0	3.9	3.7
70\%	3.5	3.5	3.7	3.7	3.6	3.4	3.3	3.5	3.8	4.0	3.8	3.7
80\%	3.4	3.4	3.6	3.6	3.5	3.3	3.3	3.5	3.8	3.9	3.8	3.6
90\%	3.4	3.4	3.5	3.5	3.4	3.2	3.2	3.4	3.7	3.9	3.8	3.6
Long Term												
Full Simulation Period ${ }^{\text {b }}$	3.6	3.6	3.8	3.9	3.9	3.6	3.5	3.7	3.9	4.0	3.9	3.8
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	3.6	3.7	4.1	4.3	4.2	3.9	3.7	3.8	4.0	4.1	3.9	3.8
Above Normal (16\%)	3.6	3.6	3.8	4.0	4.1	3.7	3.5	3.7	3.9	4.0	3.9	3.7
Below Normal (13\%)	3.5	3.6	3.8	3.7	3.8	3.3	3.4	3.6	3.9	4.0	3.9	3.8
Dry (24\%)	3.5	3.5	3.6	3.7	3.6	3.5	3.3	3.6	3.9	4.0	3.9	3.7
Critical (15\%)	3.6	3.6	3.7	3.7	3.6	3.3	3.4	3.6	3.9	4.0	3.9	3.7

Alternative 3

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.8	3.9	4.3	4.6	4.6	4.2	3.9	4.0	4.1	4.2	4.1	3.9
20\%	3.7	3.8	4.2	4.3	4.3	3.9	3.7	3.9	4.0	4.1	4.0	3.9
30\%	3.6	3.7	3.9	4.1	4.1	3.7	3.6	3.8	4.0	4.1	4.0	3.9
40\%	3.6	3.6	3.8	3.9	3.9	3.6	3.5	3.7	4.0	4.1	4.0	3.8
50\%	3.5	3.6	3.8	3.8	3.8	3.5	3.4	3.6	3.9	4.1	3.9	3.8
60\%	3.5	3.5	3.7	3.8	3.7	3.4	3.4	3.6	3.9	4.0	3.9	3.7
70\%	3.5	3.5	3.7	3.7	3.6	3.4	3.3	3.5	3.8	4.0	3.8	3.7
80\%	3.4	3.4	3.6	3.6	3.5	3.3	3.2	3.5	3.8	3.9	3.8	3.6
90\%	3.4	3.4	3.5	3.5	3.4	3.2	3.2	3.4	3.7	3.9	3.8	3.6

Full Simulation Period ${ }^{\text {b }}$	3.6	3.6	3.8	4.0	3.9	3.6	3.5	3.7	3.9	4.0	3.9	3.8
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	3.6	3.7	4.1	4.3	4.2	3.9	3.7	3.8	4.0	4.1	3.9	3.8
Above Normal (16\%)	3.6	3.6	3.8	4.1	4.2	3.7	3.5	3.7	3.9	4.0	3.9	3.7
Below Normal (13\%)	3.5	3.6	3.8	3.8	3.8	3.3	3.4	3.6	3.9	4.0	3.9	3.8
Dry (24\%)	3.5	3.5	3.6	3.7	3.6	3.5	3.3	3.6	3.9	4.0	3.9	3.7
Critical (15\%)	3.6	3.6	3.7	3.7	3.6	3.4	3.4	3.6	3.9	4.0	3.9	3.7

Alternative 3 minus Second Basis of Comparison

Statistic	Monthly Averaged Daily Maximum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
20\%	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
30\%	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
40\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
50\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
60\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
70\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
80\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
90\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Above Normal (16\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Below Normal (13\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dry (24\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Critical (15\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-42-1-6. Mokelumne River at Terminous, Monthly Averaged Daily Maximum Elevation

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.8	3.9	4.3	4.6	4.6	4.2	3.9	4.0	4.2	4.2	4.1	3.9
20\%	3.7	3.8	4.1	4.3	4.3	3.9	3.7	3.9	4.1	4.1	4.0	3.9
30\%	3.6	3.7	3.9	4.0	4.1	3.7	3.6	3.8	4.0	4.1	4.0	3.9
40\%	3.6	3.7	3.8	3.9	3.9	3.6	3.5	3.7	4.0	4.1	4.0	3.8
50\%	3.5	3.6	3.8	3.8	3.8	3.5	3.4	3.6	3.9	4.1	3.9	3.8
60\%	3.5	3.5	3.7	3.7	3.7	3.4	3.4	3.6	3.9	4.0	3.9	3.7
70\%	3.5	3.5	3.7	3.7	3.6	3.4	3.3	3.5	3.8	4.0	3.8	3.7
80\%	3.4	3.4	3.6	3.6	3.5	3.3	3.3	3.5	3.8	3.9	3.8	3.6
90\%	3.4	3.4	3.5	3.5	3.4	3.2	3.2	3.4	3.7	3.9	3.8	3.6
Long Term												
Full Simulation Period ${ }^{\text {b }}$	3.6	3.6	3.8	3.9	3.9	3.6	3.5	3.7	3.9	4.0	3.9	3.8
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	3.6	3.7	4.1	4.3	4.2	3.9	3.7	3.8	4.0	4.1	3.9	3.8
Above Normal (16\%)	3.6	3.6	3.8	4.0	4.1	3.7	3.5	3.7	3.9	4.0	3.9	3.7
Below Normal (13\%)	3.5	3.6	3.8	3.7	3.8	3.3	3.4	3.6	3.9	4.0	3.9	3.8
Dry (24\%)	3.5	3.5	3.6	3.7	3.6	3.5	3.3	3.6	3.9	4.0	3.9	3.7
Critical (15\%)	3.6	3.6	3.7	3.7	3.6	3.3	3.4	3.6	3.9	4.0	3.9	3.7

Alternative 5

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.7	3.9	4.3	4.6	4.6	4.2	3.9	4.0	4.1	4.2	4.1	4.0
20\%	3.7	3.8	4.1	4.3	4.3	3.9	3.7	3.9	4.0	4.1	4.0	3.9
30\%	3.6	3.7	3.9	4.1	4.1	3.7	3.6	3.8	4.0	4.1	4.0	3.9
40\%	3.6	3.7	3.8	3.9	3.9	3.6	3.5	3.7	4.0	4.1	4.0	3.8
50\%	3.6	3.6	3.8	3.8	3.8	3.5	3.5	3.7	3.9	4.1	3.9	3.8
60\%	3.5	3.6	3.7	3.8	3.7	3.4	3.4	3.6	3.9	4.0	3.9	3.7
70\%	3.5	3.5	3.7	3.7	3.6	3.4	3.3	3.6	3.8	4.0	3.8	3.7
80\%	3.4	3.5	3.6	3.6	3.5	3.3	3.3	3.5	3.8	3.9	3.8	3.6
90\%	3.4	3.4	3.5	3.5	3.4	3.2	3.2	3.4	3.7	3.9	3.8	3.6

Full Simulation Period ${ }^{\text {b }}$	3.6	3.6	3.8	3.9	3.9	3.6	3.5	3.7	3.9	4.1	3.9	3.8
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	3.6	3.7	4.1	4.3	4.2	3.9	3.7	3.9	4.0	4.1	3.9	3.9
Above Normal (16\%)	3.6	3.7	3.8	4.0	4.2	3.7	3.5	3.7	3.9	4.1	3.9	3.8
Below Normal (13\%)	3.6	3.6	3.8	3.7	3.8	3.3	3.4	3.6	3.9	4.0	3.9	3.8
Dry (24\%)	3.5	3.5	3.6	3.7	3.6	3.5	3.4	3.6	3.9	4.0	3.9	3.7
Critical (15\%)	3.6	3.6	3.7	3.7	3.6	3.4	3.4	3.6	3.9	4.0	3.9	3.7

Alternative 5 minus Second Basis of Comparison

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
20\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
30\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
40\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
50\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
60\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
70\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
80\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
90\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Above Normal (16\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Below Normal (13\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dry (24\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Critical (15\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-42-2-1. Mokelumne River at Terminous, Monthly Averaged Daily Minimum Elevation, October

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-42-2-2. Mokelumne River at Terminous, Monthly Averaged Daily Minimum Elevation, November

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-42-2-3. Mokelumne River at Terminous, Monthly Averaged Daily Minimum Elevation, December

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-42-2-4. Mokelumne River at Terminous, Monthly Averaged Daily Minimum Elevation, January

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-42-2-5. Mokelumne River at Terminous, Monthly Averaged Daily Minimum Elevation, February

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-42-2-6. Mokelumne River at Terminous, Monthly Averaged Daily Minimum Elevation, March

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-42-2-7. Mokelumne River at Terminous, Monthly Averaged Daily Minimum Elevation, April

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-42-2-8. Mokelumne River at Terminous, Monthly Averaged Daily Minimum Elevation, May

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-42-2-9. Mokelumne River at Terminous, Monthly Averaged Daily Minimum Elevation, June

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-42-2-10. Mokelumne River at Terminous, Monthly Averaged Daily Minimum Elevation, July

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-42-2-11. Mokelumne River at Terminous, Monthly Averaged Daily Minimum Elevation, August

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-42-2-12. Mokelumne River at Terminous, Monthly Averaged Daily Minimum Elevation, September

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-42-2-1. Mokelumne River at Terminous, Monthly Averaged Daily Minimum Elevation

Statistic	Monthly Averaged Daily Minimum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	-0.1	-0.3	0.2	0.5	0.9	0.5	0.2	0.0	-0.1	-0.1	-0.1	0.0
20\%	-0.2	-0.3	-0.1	0.3	0.4	0.1	0.0	-0.2	-0.2	-0.2	-0.1	0.0
30\%	-0.2	-0.4	-0.3	-0.1	0.2	-0.1	-0.2	-0.3	-0.3	-0.2	-0.2	-0.1
40\%	-0.3	-0.4	-0.4	-0.3	0.1	-0.2	-0.3	-0.4	-0.3	-0.3	-0.2	-0.1
50\%	-0.3	-0.5	-0.4	-0.3	-0.1	-0.2	-0.4	-0.4	-0.4	-0.3	-0.2	-0.1
60\%	-0.4	-0.5	-0.5	-0.4	-0.2	-0.3	-0.5	-0.5	-0.4	-0.3	-0.3	-0.2
70\%	-0.4	-0.5	-0.6	-0.5	-0.3	-0.4	-0.5	-0.5	-0.4	-0.3	-0.3	-0.2
80\%	-0.4	-0.6	-0.6	-0.5	-0.4	-0.5	-0.6	-0.5	-0.5	-0.4	-0.3	-0.3
90\%	-0.5	-0.6	-0.7	-0.6	-0.5	-0.6	-0.6	-0.6	-0.5	-0.4	-0.3	-0.3
Long Term												
Full Simulation Period ${ }^{\text {b }}$	-0.3	-0.4	-0.4	-0.1	0.1	-0.1	-0.3	-0.4	-0.3	-0.3	-0.2	-0.1
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	-0.3	-0.4	-0.1	0.3	0.5	0.3	0.0	-0.2	-0.2	-0.2	-0.2	0.0
Above Normal (16\%)	-0.3	-0.4	-0.4	-0.1	0.3	-0.1	-0.3	-0.3	-0.4	-0.3	-0.2	-0.2
Below Normal (13\%)	-0.3	-0.5	-0.5	-0.4	-0.2	-0.4	-0.4	-0.5	-0.4	-0.3	-0.2	-0.1
Dry (24\%)	-0.3	-0.5	-0.6	-0.5	-0.3	-0.3	-0.5	-0.5	-0.4	-0.3	-0.2	-0.2
Critical (15\%)	-0.3	-0.5	-0.5	-0.5	-0.3	-0.5	-0.5	-0.6	-0.4	-0.3	-0.2	-0.2

Alternative 1

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	-0.1	-0.3	0.1	0.5	0.9	0.6	0.1	0.0	-0.1	-0.1	0.0	0.0
20\%	-0.2	-0.4	-0.1	0.2	0.4	0.1	0.0	-0.2	-0.2	-0.2	-0.1	-0.1
30\%	-0.3	-0.4	-0.3	-0.2	0.2	-0.1	-0.3	-0.3	-0.3	-0.2	-0.1	-0.1
40\%	-0.3	-0.4	-0.4	-0.3	0.1	-0.2	-0.4	-0.4	-0.3	-0.2	-0.2	-0.1
50\%	-0.4	-0.5	-0.5	-0.4	-0.2	-0.3	-0.5	-0.5	-0.4	-0.3	-0.2	-0.2
60\%	-0.4	-0.5	-0.5	-0.5	-0.3	-0.4	-0.5	-0.5	-0.4	-0.3	-0.2	-0.2
70\%	-0.4	-0.6	-0.6	-0.5	-0.4	-0.4	-0.6	-0.5	-0.4	-0.3	-0.3	-0.2
80\%	-0.5	-0.6	-0.7	-0.6	-0.4	-0.5	-0.6	-0.6	-0.5	-0.4	-0.3	-0.3
90\%	-0.5	-0.7	-0.7	-0.6	-0.6	-0.6	-0.7	-0.6	-0.5	-0.4	-0.3	-0.3

Long Term												
Full Simulation Period ${ }^{\mathbf{b}}$	-0.3	-0.5	-0.4	-0.2	0.0	-0.1	-0.4	-0.4	-0.3	-0.3	-0.2	-0.2
Water Year Types ${ }^{\mathbf{c}}$												
Wet (32\%)	-0.3	-0.4	-0.1	0.3	0.5	0.3	-0.1	-0.2	-0.2	-0.2	-0.2	-0.1
Above Normal (16\%)	-0.3	-0.4	-0.4	-0.1	0.2	-0.1	-0.3	-0.4	-0.4	-0.3	-0.2	-0.2
Below Normal (13\%)	-0.4	-0.5	-0.5	-0.4	-0.2	-0.5	-0.5	-0.5	-0.4	-0.3	-0.2	-0.1
Dry (24\%)	-0.4	-0.6	-0.6	-0.5	-0.4	-0.3	-0.5	-0.5	-0.4	-0.3	-0.2	-0.2
Critical (15\%)	-0.3	-0.5	-0.5	-0.5	-0.4	-0.5	-0.5	-0.6	-0.4	-0.3	-0.2	-0.2

Alternative 1 minus No Action Alternative

Statistic	Monthly Averaged Daily Minimum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{a}$												
10\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
20\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	0.0	0.0	0.0	0.0
30\%	0.0	0.0	0.0	-0.1	0.0	0.0	-0.1	0.0	0.0	0.0	0.0	0.0
40\%	0.0	0.0	0.0	-0.1	0.0	0.0	-0.1	0.0	0.0	0.0	0.0	0.0
50\%	0.0	0.0	0.0	-0.1	0.0	-0.1	-0.1	0.0	0.0	0.0	0.0	0.0
60\%	0.0	0.0	0.0	0.0	-0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
70\%	0.0	0.0	0.0	0.0	-0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
80\%	0.0	0.0	0.0	0.0	-0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
90\%	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	0.0	0.0	0.0	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	0.0	0.0	0.0	0.0	0.0
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	-0.1	0.0	0.0	0.0	0.0
Above Normal (16\%)	0.0	0.0	0.0	-0.1	0.0	0.0	-0.1	-0.1	0.0	0.0	0.0	-0.1
Below Normal (13\%)	0.0	0.0	0.0	-0.1	0.0	0.0	-0.1	0.0	0.0	0.0	0.0	0.0
Dry (24\%)	0.0	0.0	0.0	0.0	-0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Critical (15\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Second Basis of Comparison and Alternative 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-42-2-2. Mokelumne River at Terminous, Monthly Averaged Daily Minimum Elevation

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	-0.1	-0.3	0.2	0.5	0.9	0.5	0.2	0.0	-0.1	-0.1	-0.1	0.0
20\%	-0.2	-0.3	-0.1	0.3	0.4	0.1	0.0	-0.2	-0.2	-0.2	-0.1	0.0
30\%	-0.2	-0.4	-0.3	-0.1	0.2	-0.1	-0.2	-0.3	-0.3	-0.2	-0.2	-0.1
40\%	-0.3	-0.4	-0.4	-0.3	0.1	-0.2	-0.3	-0.4	-0.3	-0.3	-0.2	-0.1
50\%	-0.3	-0.5	-0.4	-0.3	-0.1	-0.2	-0.4	-0.4	-0.4	-0.3	-0.2	-0.1
60\%	-0.4	-0.5	-0.5	-0.4	-0.2	-0.3	-0.5	-0.5	-0.4	-0.3	-0.3	-0.2
70\%	-0.4	-0.5	-0.6	-0.5	-0.3	-0.4	-0.5	-0.5	-0.4	-0.3	-0.3	-0.2
80\%	-0.4	-0.6	-0.6	-0.5	-0.4	-0.5	-0.6	-0.5	-0.5	-0.4	-0.3	-0.3
90\%	-0.5	-0.6	-0.7	-0.6	-0.5	-0.6	-0.6	-0.6	-0.5	-0.4	-0.3	-0.3
Long Term												
Full Simulation Period ${ }^{\text {b }}$	-0.3	-0.4	-0.4	-0.1	0.1	-0.1	-0.3	-0.4	-0.3	-0.3	-0.2	-0.1
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	-0.3	-0.4	-0.1	0.3	0.5	0.3	0.0	-0.2	-0.2	-0.2	-0.2	0.0
Above Normal (16\%)	-0.3	-0.4	-0.4	-0.1	0.3	-0.1	-0.3	-0.3	-0.4	-0.3	-0.2	-0.2
Below Normal (13\%)	-0.3	-0.5	-0.5	-0.4	-0.2	-0.4	-0.4	-0.5	-0.4	-0.3	-0.2	-0.1
Dry (24\%)	-0.3	-0.5	-0.6	-0.5	-0.3	-0.3	-0.5	-0.5	-0.4	-0.3	-0.2	-0.2
Critical (15\%)	-0.3	-0.5	-0.5	-0.5	-0.3	-0.5	-0.5	-0.6	-0.4	-0.3	-0.2	-0.2

Alternative 3

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	-0.1	-0.3	0.1	0.5	0.9	0.5	0.1	0.0	-0.1	-0.1	-0.1	0.0
20\%	-0.2	-0.4	-0.1	0.3	0.4	0.1	0.0	-0.3	-0.3	-0.2	-0.1	-0.1
30\%	-0.3	-0.4	-0.3	-0.1	0.2	-0.1	-0.3	-0.3	-0.3	-0.2	-0.2	-0.1
40\%	-0.3	-0.4	-0.4	-0.2	0.1	-0.2	-0.4	-0.4	-0.3	-0.2	-0.2	-0.1
50\%	-0.4	-0.5	-0.4	-0.3	-0.1	-0.3	-0.5	-0.5	-0.4	-0.3	-0.2	-0.2
60\%	-0.4	-0.5	-0.5	-0.4	-0.3	-0.3	-0.5	-0.5	-0.4	-0.3	-0.2	-0.2
70\%	-0.4	-0.6	-0.5	-0.4	-0.3	-0.4	-0.6	-0.6	-0.4	-0.3	-0.3	-0.2
80\%	-0.4	-0.6	-0.6	-0.5	-0.4	-0.5	-0.6	-0.6	-0.5	-0.4	-0.3	-0.3
90\%	-0.5	-0.7	-0.7	-0.6	-0.5	-0.6	-0.7	-0.6	-0.5	-0.4	-0.3	-0.3
Long Term												
Full Simulation Period ${ }^{\text {b }}$	-0.3	-0.5	-0.4	-0.1	0.1	-0.1	-0.4	-0.4	-0.3	-0.3	-0.2	-0.2
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	-0.3	-0.4	-0.1	0.3	0.5	0.3	-0.1	-0.2	-0.2	-0.2	-0.2	-0.1
Above Normal (16\%)	-0.3	-0.4	-0.4	0.0	0.3	-0.1	-0.3	-0.4	-0.4	-0.3	-0.2	-0.2
Below Normal (13\%)	-0.4	-0.5	-0.4	-0.4	-0.1	-0.4	-0.5	-0.5	-0.4	-0.3	-0.2	-0.1
Dry (24\%)	-0.4	-0.6	-0.6	-0.4	-0.3	-0.3	-0.5	-0.5	-0.4	-0.3	-0.2	-0.2
Critical (15\%)	-0.3	-0.5	-0.5	-0.5	-0.3	-0.5	-0.5	-0.6	-0.4	-0.3	-0.2	-0.2

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
20\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	0.0	0.0	0.0	0.0
30\%	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	0.0	0.0	0.0	0.0	0.0
40\%	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	0.0	0.0	0.0	0.0	0.0
50\%	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	0.0	0.0	0.0	0.0	0.0
60\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
70\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
80\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
90\%	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	0.0	0.0	0.0	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	-0.1	0.0	0.0	0.0	0.0
Above Normal (16\%)	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	-0.1	0.0	0.0	0.0	-0.1
Below Normal (13\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dry (24\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Critical (15\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); ;rojected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same, therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and $N o$ Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-42-2-3. Mokelumne River at Terminous, Monthly Averaged Daily Minimum Elevation

Statistic	Monthly Averaged Daily Minimum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	-0.1	-0.3	0.2	0.5	0.9	0.5	0.2	0.0	-0.1	-0.1	-0.1	0.0
20\%	-0.2	-0.3	-0.1	0.3	0.4	0.1	0.0	-0.2	-0.2	-0.2	-0.1	0.0
30\%	-0.2	-0.4	-0.3	-0.1	0.2	-0.1	-0.2	-0.3	-0.3	-0.2	-0.2	-0.1
40\%	-0.3	-0.4	-0.4	-0.3	0.1	-0.2	-0.3	-0.4	-0.3	-0.3	-0.2	-0.1
50\%	-0.3	-0.5	-0.4	-0.3	-0.1	-0.2	-0.4	-0.4	-0.4	-0.3	-0.2	-0.1
60\%	-0.4	-0.5	-0.5	-0.4	-0.2	-0.3	-0.5	-0.5	-0.4	-0.3	-0.3	-0.2
70\%	-0.4	-0.5	-0.6	-0.5	-0.3	-0.4	-0.5	-0.5	-0.4	-0.3	-0.3	-0.2
80\%	-0.4	-0.6	-0.6	-0.5	-0.4	-0.5	-0.6	-0.5	-0.5	-0.4	-0.3	-0.3
90\%	-0.5	-0.6	-0.7	-0.6	-0.5	-0.6	-0.6	-0.6	-0.5	-0.4	-0.3	-0.3
Long Term												
Full Simulation Period ${ }^{\text {b }}$	-0.3	-0.4	-0.4	-0.1	0.1	-0.1	-0.3	-0.4	-0.3	-0.3	-0.2	-0.1
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	-0.3	-0.4	-0.1	0.3	0.5	0.3	0.0	-0.2	-0.2	-0.2	-0.2	0.0
Above Normal (16\%)	-0.3	-0.4	-0.4	-0.1	0.3	-0.1	-0.3	-0.3	-0.4	-0.3	-0.2	-0.2
Below Normal (13\%)	-0.3	-0.5	-0.5	-0.4	-0.2	-0.4	-0.4	-0.5	-0.4	-0.3	-0.2	-0.1
Dry (24\%)	-0.3	-0.5	-0.6	-0.5	-0.3	-0.3	-0.5	-0.5	-0.4	-0.3	-0.2	-0.2
Critical (15\%)	-0.3	-0.5	-0.5	-0.5	-0.3	-0.5	-0.5	-0.6	-0.4	-0.3	-0.2	-0.2

Alternative 5

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	-0.1	-0.3	0.2	0.5	0.9	0.5	0.2	0.0	-0.1	-0.1	-0.1	0.0
20\%	-0.2	-0.3	-0.1	0.3	0.4	0.1	0.0	-0.2	-0.2	-0.2	-0.1	0.0
30\%	-0.2	-0.4	-0.3	-0.1	0.2	-0.1	-0.2	-0.3	-0.3	-0.2	-0.2	-0.1
40\%	-0.3	-0.4	-0.4	-0.3	0.1	-0.2	-0.3	-0.4	-0.3	-0.3	-0.2	-0.1
50\%	-0.3	-0.4	-0.4	-0.3	-0.1	-0.2	-0.4	-0.4	-0.4	-0.3	-0.2	-0.1
60\%	-0.4	-0.5	-0.5	-0.4	-0.2	-0.3	-0.5	-0.5	-0.4	-0.3	-0.3	-0.2
70\%	-0.4	-0.5	-0.6	-0.5	-0.3	-0.4	-0.5	-0.5	-0.4	-0.3	-0.3	-0.2
80\%	-0.4	-0.6	-0.6	-0.5	-0.4	-0.5	-0.6	-0.5	-0.5	-0.4	-0.3	-0.3
90\%	-0.5	-0.6	-0.7	-0.6	-0.5	-0.6	-0.6	-0.6	-0.5	-0.4	-0.3	-0.3
Long Term												
Full Simulation Period ${ }^{\text {b }}$	-0.3	-0.4	-0.4	-0.1	0.1	-0.1	-0.3	-0.4	-0.3	-0.3	-0.2	-0.1
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	-0.3	-0.4	-0.1	0.3	0.5	0.3	0.0	-0.2	-0.2	-0.2	-0.2	0.0
Above Normal (16\%)	-0.3	-0.4	-0.4	-0.1	0.3	-0.1	-0.3	-0.3	-0.4	-0.3	-0.2	-0.2
Below Normal (13\%)	-0.3	-0.5	-0.5	-0.4	-0.2	-0.4	-0.4	-0.5	-0.4	-0.3	-0.2	-0.1
Dry (24\%)	-0.3	-0.5	-0.6	-0.5	-0.3	-0.3	-0.5	-0.5	-0.4	-0.3	-0.2	-0.2
Critical (15\%)	-0.3	-0.5	-0.5	-0.5	-0.3	-0.5	-0.5	-0.5	-0.4	-0.3	-0.2	-0.2

Statistic	Monthly Averaged Daily Minimum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
20\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
30\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
40\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
50\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
60\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
70\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
80\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
90\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Above Normal (16\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Below Normal (13\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dry (24\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Critical (15\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same, therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and $N o$ Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-42-2-4. Mokelumne River at Terminous, Monthly Averaged Daily Minimum Elevation

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	-0.1	-0.3	0.1	0.5	0.9	0.6	0.1	0.0	-0.1	-0.1	0.0	0.0
20\%	-0.2	-0.4	-0.1	0.2	0.4	0.1	0.0	-0.2	-0.2	-0.2	-0.1	-0.1
30\%	-0.3	-0.4	-0.3	-0.2	0.2	-0.1	-0.3	-0.3	-0.3	-0.2	-0.1	-0.1
40\%	-0.3	-0.4	-0.4	-0.3	0.1	-0.2	-0.4	-0.4	-0.3	-0.2	-0.2	-0.1
50\%	-0.4	-0.5	-0.5	-0.4	-0.2	-0.3	-0.5	-0.5	-0.4	-0.3	-0.2	-0.2
60\%	-0.4	-0.5	-0.5	-0.5	-0.3	-0.4	-0.5	-0.5	-0.4	-0.3	-0.2	-0.2
70\%	-0.4	-0.6	-0.6	-0.5	-0.4	-0.4	-0.6	-0.5	-0.4	-0.3	-0.3	-0.2
80\%	-0.5	-0.6	-0.7	-0.6	-0.4	-0.5	-0.6	-0.6	-0.5	-0.4	-0.3	-0.3
90\%	-0.5	-0.7	-0.7	-0.6	-0.6	-0.6	-0.7	-0.6	-0.5	-0.4	-0.3	-0.3
Long Term												
Full Simulation Period ${ }^{\text {b }}$	-0.3	-0.5	-0.4	-0.2	0.0	-0.1	-0.4	-0.4	-0.3	-0.3	-0.2	-0.2
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	-0.3	-0.4	-0.1	0.3	0.5	0.3	-0.1	-0.2	-0.2	-0.2	-0.2	-0.1
Above Normal (16\%)	-0.3	-0.4	-0.4	-0.1	0.2	-0.1	-0.3	-0.4	-0.4	-0.3	-0.2	-0.2
Below Normal (13\%)	-0.4	-0.5	-0.5	-0.4	-0.2	-0.5	-0.5	-0.5	-0.4	-0.3	-0.2	-0.1
Dry (24\%)	-0.4	-0.6	-0.6	-0.5	-0.4	-0.3	-0.5	-0.5	-0.4	-0.3	-0.2	-0.2
Critical (15\%)	-0.3	-0.5	-0.5	-0.5	-0.4	-0.5	-0.5	-0.6	-0.4	-0.3	-0.2	-0.2

Statistic	Monthly Averaged Daily Minimum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	-0.1	-0.3	0.2	0.5	0.9	0.5	0.2	0.0	-0.1	-0.1	-0.1	0.0
20\%	-0.2	-0.3	-0.1	0.3	0.4	0.1	0.0	-0.2	-0.2	-0.2	-0.1	0.0
30\%	-0.2	-0.4	-0.3	-0.1	0.2	-0.1	-0.2	-0.3	-0.3	-0.2	-0.2	-0.1
40\%	-0.3	-0.4	-0.4	-0.3	0.1	-0.2	-0.3	-0.4	-0.3	-0.3	-0.2	-0.1
50\%	-0.3	-0.5	-0.4	-0.3	-0.1	-0.2	-0.4	-0.4	-0.4	-0.3	-0.2	-0.1
60\%	-0.4	-0.5	-0.5	-0.4	-0.2	-0.3	-0.5	-0.5	-0.4	-0.3	-0.3	-0.2
70\%	-0.4	-0.5	-0.6	-0.5	-0.3	-0.4	-0.5	-0.5	-0.4	-0.3	-0.3	-0.2
80\%	-0.4	-0.6	-0.6	-0.5	-0.4	-0.5	-0.6	-0.5	-0.5	-0.4	-0.3	-0.3
90\%	-0.5	-0.6	-0.7	-0.6	-0.5	-0.6	-0.6	-0.6	-0.5	-0.4	-0.3	-0.3
Long Term												
Full Simulation Period ${ }^{\text {b }}$	-0.3	-0.4	-0.4	-0.1	0.1	-0.1	-0.3	-0.4	-0.3	-0.3	-0.2	-0.1
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	-0.3	-0.4	-0.1	0.3	0.5	0.3	0.0	-0.2	-0.2	-0.2	-0.2	0.0
Above Normal (16\%)	-0.3	-0.4	-0.4	-0.1	0.3	-0.1	-0.3	-0.3	-0.4	-0.3	-0.2	-0.2
Below Normal (13\%)	-0.3	-0.5	-0.5	-0.4	-0.2	-0.4	-0.4	-0.5	-0.4	-0.3	-0.2	-0.1
Dry (24\%)	-0.3	-0.5	-0.6	-0.5	-0.3	-0.3	-0.5	-0.5	-0.4	-0.3	-0.2	-0.2
Critical (15\%)	-0.3	-0.5	-0.5	-0.5	-0.3	-0.5	-0.5	-0.6	-0.4	-0.3	-0.2	-0.2

No Action Alternative minus Second Basis of Comparison

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
20\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0
30\%	0.0	0.0	0.0	0.1	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0
40\%	0.0	0.0	0.0	0.1	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0
50\%	0.0	0.0	0.0	0.1	0.0	0.1	0.1	0.0	0.0	0.0	0.0	0.0
60\%	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
70\%	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
80\%	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
90\%	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.0	0.0	0.0	0.0
Above Normal (16\%)	0.0	0.0	0.0	0.1	0.0	0.0	0.1	0.1	0.0	0.0	0.0	0.1
Below Normal (13\%)	0.0	0.0	0.0	0.1	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0
Dry (24\%)	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Critical (15\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year
b Based on the 82 -year simulation period.
C As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same, therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and $N o$ Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-42-2-5. Mokelumne River at Terminous, Monthly Averaged Daily Minimum Elevation

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	-0.1	-0.3	0.1	0.5	0.9	0.6	0.1	0.0	-0.1	-0.1	0.0	0.0
20\%	-0.2	-0.4	-0.1	0.2	0.4	0.1	0.0	-0.2	-0.2	-0.2	-0.1	-0.1
30\%	-0.3	-0.4	-0.3	-0.2	0.2	-0.1	-0.3	-0.3	-0.3	-0.2	-0.1	-0.1
40\%	-0.3	-0.4	-0.4	-0.3	0.1	-0.2	-0.4	-0.4	-0.3	-0.2	-0.2	-0.1
50\%	-0.4	-0.5	-0.5	-0.4	-0.2	-0.3	-0.5	-0.5	-0.4	-0.3	-0.2	-0.2
60\%	-0.4	-0.5	-0.5	-0.5	-0.3	-0.4	-0.5	-0.5	-0.4	-0.3	-0.2	-0.2
70\%	-0.4	-0.6	-0.6	-0.5	-0.4	-0.4	-0.6	-0.5	-0.4	-0.3	-0.3	-0.2
80\%	-0.5	-0.6	-0.7	-0.6	-0.4	-0.5	-0.6	-0.6	-0.5	-0.4	-0.3	-0.3
90\%	-0.5	-0.7	-0.7	-0.6	-0.6	-0.6	-0.7	-0.6	-0.5	-0.4	-0.3	-0.3
Long Term												
Full Simulation Period ${ }^{\text {b }}$	-0.3	-0.5	-0.4	-0.2	0.0	-0.1	-0.4	-0.4	-0.3	-0.3	-0.2	-0.2
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	-0.3	-0.4	-0.1	0.3	0.5	0.3	-0.1	-0.2	-0.2	-0.2	-0.2	-0.1
Above Normal (16\%)	-0.3	-0.4	-0.4	-0.1	0.2	-0.1	-0.3	-0.4	-0.4	-0.3	-0.2	-0.2
Below Normal (13\%)	-0.4	-0.5	-0.5	-0.4	-0.2	-0.5	-0.5	-0.5	-0.4	-0.3	-0.2	-0.1
Dry (24\%)	-0.4	-0.6	-0.6	-0.5	-0.4	-0.3	-0.5	-0.5	-0.4	-0.3	-0.2	-0.2
Critical (15\%)	-0.3	-0.5	-0.5	-0.5	-0.4	-0.5	-0.5	-0.6	-0.4	-0.3	-0.2	-0.2

Alternative 3

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	-0.1	-0.3	0.1	0.5	0.9	0.5	0.1	0.0	-0.1	-0.1	-0.1	0.0
20\%	-0.2	-0.4	-0.1	0.3	0.4	0.1	0.0	-0.3	-0.3	-0.2	-0.1	-0.1
30\%	-0.3	-0.4	-0.3	-0.1	0.2	-0.1	-0.3	-0.3	-0.3	-0.2	-0.2	-0.1
40\%	-0.3	-0.4	-0.4	-0.2	0.1	-0.2	-0.4	-0.4	-0.3	-0.2	-0.2	-0.1
50\%	-0.4	-0.5	-0.4	-0.3	-0.1	-0.3	-0.5	-0.5	-0.4	-0.3	-0.2	-0.2
60\%	-0.4	-0.5	-0.5	-0.4	-0.3	-0.3	-0.5	-0.5	-0.4	-0.3	-0.2	-0.2
70\%	-0.4	-0.6	-0.5	-0.4	-0.3	-0.4	-0.6	-0.6	-0.4	-0.3	-0.3	-0.2
80\%	-0.4	-0.6	-0.6	-0.5	-0.4	-0.5	-0.6	-0.6	-0.5	-0.4	-0.3	-0.3
90\%	-0.5	-0.7	-0.7	-0.6	-0.5	-0.6	-0.7	-0.6	-0.5	-0.4	-0.3	-0.3
Long Term												
Full Simulation Period ${ }^{\text {b }}$	-0.3	-0.5	-0.4	-0.1	0.1	-0.1	-0.4	-0.4	-0.3	-0.3	-0.2	-0.2
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	-0.3	-0.4	-0.1	0.3	0.5	0.3	-0.1	-0.2	-0.2	-0.2	-0.2	-0.1
Above Normal (16\%)	-0.3	-0.4	-0.4	0.0	0.3	-0.1	-0.3	-0.4	-0.4	-0.3	-0.2	-0.2
Below Normal (13\%)	-0.4	-0.5	-0.4	-0.4	-0.1	-0.4	-0.5	-0.5	-0.4	-0.3	-0.2	-0.1
Dry (24\%)	-0.4	-0.6	-0.6	-0.4	-0.3	-0.3	-0.5	-0.5	-0.4	-0.3	-0.2	-0.2
Critical (15\%)	-0.3	-0.5	-0.5	-0.5	-0.3	-0.5	-0.5	-0.6	-0.4	-0.3	-0.2	-0.2

Alternative 3 minus Second Basis of Comparison

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
20\%	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
30\%	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
40\%	0.0	0.0	0.0	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
50\%	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
60\%	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
70\%	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
80\%	0.0	0.0	0.0	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
90\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Above Normal (16\%)	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Below Normal (13\%)	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dry (24\%)	0.0	0.0	0.0	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Critical (15\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same, therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and $N o$ Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-42-2-6. Mokelumne River at Terminous, Monthly Averaged Daily Minimum Elevation

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	-0.1	-0.3	0.1	0.5	0.9	0.6	0.1	0.0	-0.1	-0.1	0.0	0.0
20\%	-0.2	-0.4	-0.1	0.2	0.4	0.1	0.0	-0.2	-0.2	-0.2	-0.1	-0.1
30\%	-0.3	-0.4	-0.3	-0.2	0.2	-0.1	-0.3	-0.3	-0.3	-0.2	-0.1	-0.1
40\%	-0.3	-0.4	-0.4	-0.3	0.1	-0.2	-0.4	-0.4	-0.3	-0.2	-0.2	-0.1
50\%	-0.4	-0.5	-0.5	-0.4	-0.2	-0.3	-0.5	-0.5	-0.4	-0.3	-0.2	-0.2
60\%	-0.4	-0.5	-0.5	-0.5	-0.3	-0.4	-0.5	-0.5	-0.4	-0.3	-0.2	-0.2
70\%	-0.4	-0.6	-0.6	-0.5	-0.4	-0.4	-0.6	-0.5	-0.4	-0.3	-0.3	-0.2
80\%	-0.5	-0.6	-0.7	-0.6	-0.4	-0.5	-0.6	-0.6	-0.5	-0.4	-0.3	-0.3
90\%	-0.5	-0.7	-0.7	-0.6	-0.6	-0.6	-0.7	-0.6	-0.5	-0.4	-0.3	-0.3
Long Term												
Full Simulation Period ${ }^{\text {b }}$	-0.3	-0.5	-0.4	-0.2	0.0	-0.1	-0.4	-0.4	-0.3	-0.3	-0.2	-0.2
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	-0.3	-0.4	-0.1	0.3	0.5	0.3	-0.1	-0.2	-0.2	-0.2	-0.2	-0.1
Above Normal (16\%)	-0.3	-0.4	-0.4	-0.1	0.2	-0.1	-0.3	-0.4	-0.4	-0.3	-0.2	-0.2
Below Normal (13\%)	-0.4	-0.5	-0.5	-0.4	-0.2	-0.5	-0.5	-0.5	-0.4	-0.3	-0.2	-0.1
Dry (24\%)	-0.4	-0.6	-0.6	-0.5	-0.4	-0.3	-0.5	-0.5	-0.4	-0.3	-0.2	-0.2
Critical (15\%)	-0.3	-0.5	-0.5	-0.5	-0.4	-0.5	-0.5	-0.6	-0.4	-0.3	-0.2	-0.2

Alternative 5

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	-0.1	-0.3	0.2	0.5	0.9	0.5	0.2	0.0	-0.1	-0.1	-0.1	0.0
20\%	-0.2	-0.3	-0.1	0.3	0.4	0.1	0.0	-0.2	-0.2	-0.2	-0.1	0.0
30\%	-0.2	-0.4	-0.3	-0.1	0.2	-0.1	-0.2	-0.3	-0.3	-0.2	-0.2	-0.1
40\%	-0.3	-0.4	-0.4	-0.3	0.1	-0.2	-0.3	-0.4	-0.3	-0.3	-0.2	-0.1
50\%	-0.3	-0.4	-0.4	-0.3	-0.1	-0.2	-0.4	-0.4	-0.4	-0.3	-0.2	-0.1
60\%	-0.4	-0.5	-0.5	-0.4	-0.2	-0.3	-0.5	-0.5	-0.4	-0.3	-0.3	-0.2
70\%	-0.4	-0.5	-0.6	-0.5	-0.3	-0.4	-0.5	-0.5	-0.4	-0.3	-0.3	-0.2
80\%	-0.4	-0.6	-0.6	-0.5	-0.4	-0.5	-0.6	-0.5	-0.5	-0.4	-0.3	-0.3
90\%	-0.5	-0.6	-0.7	-0.6	-0.5	-0.6	-0.6	-0.6	-0.5	-0.4	-0.3	-0.3
Long Term												
Full Simulation Period ${ }^{\text {b }}$	-0.3	-0.4	-0.4	-0.1	0.1	-0.1	-0.3	-0.4	-0.3	-0.3	-0.2	-0.1
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	-0.3	-0.4	-0.1	0.3	0.5	0.3	0.0	-0.2	-0.2	-0.2	-0.2	0.0
Above Normal (16\%)	-0.3	-0.4	-0.4	-0.1	0.3	-0.1	-0.3	-0.3	-0.4	-0.3	-0.2	-0.2
Below Normal (13\%)	-0.3	-0.5	-0.5	-0.4	-0.2	-0.4	-0.4	-0.5	-0.4	-0.3	-0.2	-0.1
Dry (24\%)	-0.3	-0.5	-0.6	-0.5	-0.3	-0.3	-0.5	-0.5	-0.4	-0.3	-0.2	-0.2
Critical (15\%)	-0.3	-0.5	-0.5	-0.5	-0.3	-0.5	-0.5	-0.5	-0.4	-0.3	-0.2	-0.2

Alternative 5 minus Second Basis of Comparison

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
20\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0
30\%	0.0	0.0	0.0	0.1	0.1	0.0	0.1	0.0	0.0	0.0	0.0	0.0
40\%	0.0	0.0	0.0	0.1	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0
50\%	0.0	0.0	0.0	0.1	0.0	0.1	0.1	0.0	0.0	0.0	0.0	0.0
60\%	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
70\%	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
80\%	0.0	0.0	0.0	0.0	0.1	0.0	0.1	0.1	0.0	0.0	0.0	0.0
90\%	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.0	0.0	0.0	0.0
Above Normal (16\%)	0.0	0.0	0.0	0.1	0.0	0.0	0.1	0.1	0.0	0.0	0.0	0.1
Below Normal (13\%)	0.0	0.0	0.0	0.1	0.0	0.0	0.1	0.1	0.0	0.0	0.0	0.0
Dry (24\%)	0.0	0.0	0.0	0.0	0.1	0.0	0.1	0.0	0.0	0.0	0.0	0.0
Critical (15\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); ;rojected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same, therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and $N o$ Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

1 C.43. Sacramento River at Freeport Water Surface Elevation

Figure C-43-1-1. Sacramento River at Freeport, Monthly Averaged Daily Maximum Elevation, October

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-43-1-2. Sacramento River at Freeport, Monthly Averaged Daily Maximum Elevation, November

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-43-1-3. Sacramento River at Freeport, Monthly Averaged Daily Maximum Elevation, December

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-43-1-4. Sacramento River at Freeport, Monthly Averaged Daily Maximum Elevation, January

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-43-1-5. Sacramento River at Freeport, Monthly Averaged Daily Maximum Elevation, February

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-43-1-6. Sacramento River at Freeport, Monthly Averaged Daily Maximum Elevation, March

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-43-1-7. Sacramento River at Freeport, Monthly Averaged Daily Maximum Elevation, April

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-43-1-8. Sacramento River at Freeport, Monthly Averaged Daily Maximum Elevation, May

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-43-1-9. Sacramento River at Freeport, Monthly Averaged Daily Maximum Elevation, June

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-43-1-10. Sacramento River at Freeport, Monthly Averaged Daily Maximum Elevation, July

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-43-1-11. Sacramento River at Freeport, Monthly Averaged Daily Maximum Elevation, August

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-43-1-12. Sacramento River at Freeport, Monthly Averaged Daily Maximum Elevation, September

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-43-1-1. Sacramento River at Freeport, Monthly Averaged Daily Maximum Elevation

Statistic	Monthly Averaged Daily Maximum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	4.6	6.2	12.0	14.9	16.2	14.5	11.3	9.6	5.7	6.5	5.2	7.5
20\%	4.5	5.5	8.3	12.7	14.5	12.2	8.3	6.7	5.0	6.4	5.1	7.3
30\%	4.4	5.2	5.9	9.6	12.0	9.2	6.0	5.0	4.7	6.1	5.0	6.2
40\%	4.3	4.9	5.2	6.7	10.5	7.5	5.4	4.6	4.7	5.8	4.9	5.7
50\%	4.1	4.6	4.9	5.9	8.2	6.4	4.6	4.5	4.6	5.5	4.9	4.7
60\%	4.0	4.4	4.8	5.3	6.4	5.6	4.3	4.3	4.5	5.3	4.7	4.4
70\%	4.0	4.1	4.6	4.8	5.4	5.2	4.1	4.2	4.5	5.1	4.5	4.3
80\%	3.9	4.0	4.3	4.5	4.8	4.4	4.0	4.1	4.3	4.9	4.4	4.2
90\%	3.7	3.9	4.2	4.3	4.5	4.0	3.8	4.0	4.2	4.6	4.2	4.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	4.2	5.0	6.5	8.0	9.3	8.0	6.1	5.5	5.0	5.6	4.8	5.4
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	4.5	5.9	9.2	11.8	13.3	11.5	8.8	7.8	5.9	5.8	5.0	7.3
Above Normal (16\%)	4.1	5.4	6.8	9.6	11.3	10.0	6.5	5.2	4.7	6.2	5.1	5.7
Below Normal (13\%)	4.3	4.9	5.0	5.5	7.8	5.2	4.5	4.5	4.6	6.0	5.0	4.5
Dry (24\%)	4.1	4.4	4.7	5.3	6.4	5.8	4.6	4.3	4.6	5.2	4.4	4.2
Critical (15\%)	4.0	4.1	4.5	4.8	4.9	4.3	4.0	4.0	4.3	4.6	4.3	4.1

Alternative 1

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	4.6	6.1	13.0	15.2	16.2	14.8	11.3	9.6	5.9	6.2	5.1	4.9
20\%	4.4	4.7	8.8	13.4	14.6	12.3	8.3	7.2	5.4	5.9	5.0	4.7
30\%	4.3	4.6	6.1	10.2	12.4	10.3	6.0	5.2	5.2	5.7	4.9	4.6
40\%	4.2	4.4	5.3	7.1	11.1	7.6	5.4	4.7	5.0	5.6	4.8	4.6
50\%	4.1	4.2	4.9	6.2	8.4	6.5	4.7	4.6	4.9	5.4	4.7	4.5
60\%	4.1	4.2	4.7	5.3	6.5	5.6	4.3	4.5	4.7	5.2	4.6	4.3
70\%	4.0	4.1	4.5	4.8	5.6	5.2	4.2	4.3	4.6	4.8	4.4	4.2
80\%	3.9	4.0	4.3	4.5	4.8	4.5	4.0	4.2	4.5	4.6	4.4	4.1
90\%	3.8	3.8	4.2	4.3	4.5	4.0	3.8	4.0	4.3	4.5	4.3	4.0

Full Simulation Period ${ }^{\text {b }}$	4.2	4.8	6.6	8.1	9.4	8.1	6.1	5.6	5.2	5.3	4.7	4.5
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	4.4	5.5	9.6	12.1	13.4	11.6	8.8	7.8	6.0	5.6	4.9	4.8
Above Normal (16\%)	4.1	5.0	6.7	9.8	11.5	10.4	6.5	5.4	5.1	5.9	5.0	4.6
Below Normal (13\%)	4.3	4.6	5.0	5.6	8.2	5.4	4.5	4.7	5.2	5.8	4.8	4.5
Dry (24\%)	4.0	4.2	4.6	5.2	6.4	5.9	4.6	4.4	4.8	4.9	4.4	4.3
Critical (15\%)	4.0	4.0	4.5	4.8	4.9	4.3	4.0	4.0	4.4	4.5	4.3	4.1

Alternative 1 minus No Action Alternative

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.0	-0.1	1.1	0.3	0.0	0.3	0.0	0.0	0.2	-0.3	-0.1	-2.6
20\%	-0.1	-0.8	0.5	0.8	0.1	0.1	0.0	0.5	0.4	-0.5	-0.1	-2.6
30\%	-0.1	-0.7	0.1	0.6	0.4	1.0	0.0	0.1	0.5	-0.4	-0.1	-1.6
40\%	-0.1	-0.5	0.1	0.4	0.6	0.2	0.0	0.1	0.4	-0.2	-0.1	-1.1
50\%	0.0	-0.3	0.0	0.3	0.1	0.0	0.0	0.1	0.3	-0.1	-0.2	-0.2
60\%	0.0	-0.2	-0.1	-0.1	0.0	0.0	0.0	0.2	0.2	-0.1	-0.1	-0.1
70\%	0.0	-0.1	-0.1	0.0	0.2	0.0	0.0	0.1	0.1	-0.4	-0.1	-0.1
80\%	0.0	0.0	-0.1	0.0	0.0	0.0	0.0	0.1	0.1	-0.3	0.0	0.0
90\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	-0.1	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.0	-0.3	0.1	0.1	0.1	0.1	0.0	0.1	0.2	-0.2	-0.1	-1.0
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	-0.1	-0.3	0.5	0.2	0.1	0.1	0.0	0.0	0.1	-0.2	-0.1	-2.5
Above Normal (16\%)	0.0	-0.3	-0.1	0.2	0.2	0.4	0.0	0.2	0.4	-0.2	-0.1	-1.1
Below Normal (13\%)	-0.1	-0.3	0.0	0.1	0.3	0.2	0.0	0.3	0.6	-0.3	-0.2	0.0
Dry (24\%)	0.0	-0.3	0.0	0.0	0.1	0.0	0.0	0.1	0.2	-0.3	0.0	0.0
Critical (15\%)	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	-0.1	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same,
therefore Second Basis of Comparison and Alternative 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-43-1-2. Sacramento River at Freeport, Monthly Averaged Daily Maximum Elevation

Statistic	Monthly Averaged Daily Maximum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	4.6	6.2	12.0	14.9	16.2	14.5	11.3	9.6	5.7	6.5	5.2	7.5
20\%	4.5	5.5	8.3	12.7	14.5	12.2	8.3	6.7	5.0	6.4	5.1	7.3
30\%	4.4	5.2	5.9	9.6	12.0	9.2	6.0	5.0	4.7	6.1	5.0	6.2
40\%	4.3	4.9	5.2	6.7	10.5	7.5	5.4	4.6	4.7	5.8	4.9	5.7
50\%	4.1	4.6	4.9	5.9	8.2	6.4	4.6	4.5	4.6	5.5	4.9	4.7
60\%	4.0	4.4	4.8	5.3	6.4	5.6	4.3	4.3	4.5	5.3	4.7	4.4
70\%	4.0	4.1	4.6	4.8	5.4	5.2	4.1	4.2	4.5	5.1	4.5	4.3
80\%	3.9	4.0	4.3	4.5	4.8	4.4	4.0	4.1	4.3	4.9	4.4	4.2
90\%	3.7	3.9	4.2	4.3	4.5	4.0	3.8	4.0	4.2	4.6	4.2	4.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	4.2	5.0	6.5	8.0	9.3	8.0	6.1	5.5	5.0	5.6	4.8	5.4
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	4.5	5.9	9.2	11.8	13.3	11.5	8.8	7.8	5.9	5.8	5.0	7.3
Above Normal (16\%)	4.1	5.4	6.8	9.6	11.3	10.0	6.5	5.2	4.7	6.2	5.1	5.7
Below Normal (13\%)	4.3	4.9	5.0	5.5	7.8	5.2	4.5	4.5	4.6	6.0	5.0	4.5
Dry (24\%)	4.1	4.4	4.7	5.3	6.4	5.8	4.6	4.3	4.6	5.2	4.4	4.2
Critical (15\%)	4.0	4.1	4.5	4.8	4.9	4.3	4.0	4.0	4.3	4.6	4.3	4.1

Alternative 3

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	4.5	6.1	13.0	15.1	16.2	14.8	11.3	9.6	5.7	6.4	5.1	4.8
20\%	4.4	4.8	8.9	13.3	14.6	12.3	8.3	6.9	5.3	6.3	5.0	4.7
30\%	4.3	4.5	6.1	10.2	12.4	9.7	6.0	5.2	5.1	6.1	4.9	4.6
40\%	4.2	4.3	5.3	7.0	11.0	7.6	5.4	4.7	5.0	5.8	4.9	4.6
50\%	4.1	4.2	4.9	6.1	8.4	6.5	4.7	4.6	4.8	5.6	4.7	4.5
60\%	4.0	4.2	4.7	5.3	6.5	5.7	4.3	4.4	4.8	5.3	4.6	4.4
70\%	3.9	4.1	4.5	4.8	5.7	5.2	4.2	4.3	4.7	5.0	4.5	4.2
80\%	3.9	4.0	4.3	4.5	4.8	4.5	4.0	4.2	4.5	4.7	4.4	4.2
90\%	3.7	3.8	4.2	4.3	4.6	4.0	3.8	4.0	4.3	4.5	4.3	4.1
Long Term												
Full Simulation Period ${ }^{\text {b }}$	4.2	4.8	6.6	8.1	9.4	8.1	6.1	5.6	5.2	5.5	4.7	4.5
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	4.4	5.5	9.6	12.1	13.4	11.5	8.8	7.9	6.1	5.7	4.9	4.8
Above Normal (16\%)	4.1	5.1	6.7	9.7	11.5	10.3	6.5	5.4	5.0	6.1	5.0	4.6
Below Normal (13\%)	4.2	4.6	5.0	5.7	8.2	5.4	4.5	4.6	4.9	6.1	5.0	4.6
Dry (24\%)	4.0	4.2	4.6	5.2	6.4	5.8	4.6	4.4	4.8	5.1	4.4	4.2
Critical (15\%)	4.0	4.0	4.5	4.8	5.0	4.3	4.0	4.0	4.4	4.5	4.3	4.1

Alternative 3 minus No Action Alternative

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	-0.1	0.0	1.0	0.2	0.0	0.3	0.0	0.0	0.0	-0.1	-0.1	-2.7
20\%	-0.1	-0.7	0.7	0.7	0.1	0.1	0.0	0.2	0.3	-0.1	0.0	-2.6
30\%	-0.1	-0.7	0.2	0.6	0.4	0.5	0.0	0.2	0.4	0.0	-0.1	-1.6
40\%	-0.1	-0.6	0.1	0.4	0.5	0.2	0.0	0.1	0.3	0.0	-0.1	-1.1
50\%	0.0	-0.4	0.0	0.2	0.1	0.0	0.0	0.1	0.2	0.1	-0.1	-0.2
60\%	0.0	-0.2	-0.1	0.0	0.0	0.1	0.0	0.1	0.3	0.0	-0.1	-0.1
70\%	0.0	-0.1	-0.1	0.0	0.2	0.0	0.0	0.1	0.2	-0.1	0.0	0.0
80\%	0.0	0.0	-0.1	0.0	0.0	0.0	0.0	0.1	0.2	-0.2	0.0	0.0
90\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	-0.1	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	-0.1	-0.3	0.1	0.1	0.1	0.1	0.0	0.1	0.2	-0.1	0.0	-1.0
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	-0.1	-0.3	0.5	0.3	0.1	0.1	0.0	0.0	0.2	-0.1	-0.1	-2.5
Above Normal (16\%)	-0.1	-0.3	-0.1	0.1	0.2	0.3	0.0	0.2	0.3	-0.1	-0.1	-1.1
Below Normal (13\%)	-0.1	-0.3	0.0	0.2	0.3	0.2	0.0	0.2	0.3	0.1	0.1	0.1
Dry (24\%)	0.0	-0.3	0.0	0.0	0.1	0.0	0.0	0.1	0.2	-0.1	0.0	0.0
Critical (15\%)	0.0	-0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.1	-0.1	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year
b Based on the 82 -year simulation period
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030,
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same,
therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and $N o$ Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-43-1-3. Sacramento River at Freeport, Monthly Averaged Daily Maximum Elevation

Statistic	Monthly Averaged Daily Maximum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	4.6	6.2	12.0	14.9	16.2	14.5	11.3	9.6	5.7	6.5	5.2	7.5
20\%	4.5	5.5	8.3	12.7	14.5	12.2	8.3	6.7	5.0	6.4	5.1	7.3
30\%	4.4	5.2	5.9	9.6	12.0	9.2	6.0	5.0	4.7	6.1	5.0	6.2
40\%	4.3	4.9	5.2	6.7	10.5	7.5	5.4	4.6	4.7	5.8	4.9	5.7
50\%	4.1	4.6	4.9	5.9	8.2	6.4	4.6	4.5	4.6	5.5	4.9	4.7
60\%	4.0	4.4	4.8	5.3	6.4	5.6	4.3	4.3	4.5	5.3	4.7	4.4
70\%	4.0	4.1	4.6	4.8	5.4	5.2	4.1	4.2	4.5	5.1	4.5	4.3
80\%	3.9	4.0	4.3	4.5	4.8	4.4	4.0	4.1	4.3	4.9	4.4	4.2
90\%	3.7	3.9	4.2	4.3	4.5	4.0	3.8	4.0	4.2	4.6	4.2	4.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	4.2	5.0	6.5	8.0	9.3	8.0	6.1	5.5	5.0	5.6	4.8	5.4
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	4.5	5.9	9.2	11.8	13.3	11.5	8.8	7.8	5.9	5.8	5.0	7.3
Above Normal (16\%)	4.1	5.4	6.8	9.6	11.3	10.0	6.5	5.2	4.7	6.2	5.1	5.7
Below Normal (13\%)	4.3	4.9	5.0	5.5	7.8	5.2	4.5	4.5	4.6	6.0	5.0	4.5
Dry (24\%)	4.1	4.4	4.7	5.3	6.4	5.8	4.6	4.3	4.6	5.2	4.4	4.2
Critical (15\%)	4.0	4.1	4.5	4.8	4.9	4.3	4.0	4.0	4.3	4.6	4.3	4.1

Alternative 5

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	4.6	6.2	12.0	14.9	16.2	14.5	11.3	9.6	5.7	6.5	5.2	7.5
20\%	4.5	5.5	8.3	12.6	14.5	12.2	8.3	6.7	5.0	6.4	5.1	7.3
30\%	4.4	5.3	5.9	9.6	12.0	9.2	6.0	5.0	4.8	6.2	5.0	6.2
40\%	4.3	4.9	5.2	6.6	10.5	7.5	5.4	4.5	4.7	5.8	5.0	5.7
50\%	4.1	4.6	4.9	5.9	8.3	6.4	4.6	4.4	4.6	5.6	4.9	4.7
60\%	4.0	4.3	4.8	5.3	6.4	5.6	4.3	4.3	4.5	5.4	4.8	4.5
70\%	4.0	4.2	4.6	4.8	5.4	5.2	4.1	4.2	4.5	5.2	4.5	4.3
80\%	3.9	4.0	4.3	4.5	4.8	4.4	3.9	4.1	4.3	5.1	4.4	4.2
90\%	3.7	3.9	4.2	4.3	4.5	4.0	3.8	3.9	4.2	4.6	4.3	4.0

Full Simulation Period ${ }^{\text {b }}$	4.2	5.1	6.5	8.0	9.3	8.0	6.1	5.5	5.0	5.6	4.8	5.4
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	4.5	5.9	9.2	11.9	13.3	11.5	8.8	7.8	5.9	5.9	5.0	7.2
Above Normal (16\%)	4.1	5.4	6.8	9.6	11.3	10.0	6.5	5.2	4.7	6.2	5.1	5.7
Below Normal (13\%)	4.3	4.9	5.0	5.5	7.8	5.2	4.5	4.4	4.6	6.1	5.0	4.5
Dry (24\%)	4.1	4.4	4.7	5.3	6.4	5.8	4.6	4.2	4.6	5.3	4.5	4.2
Critical (15\%)	4.0	4.1	4.5	4.8	4.9	4.3	3.9	4.0	4.3	4.6	4.3	4.1

Alternative 5 minus No Action Alternative

Statistic	Monthly Averaged Daily Maximum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
20\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	0.0	0.0	0.0
30\%	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.1	0.0	0.0
40\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
50\%	0.0	0.0	0.0	0.0	0.1	0.0	0.0	-0.1	0.0	0.0	0.1	0.0
60\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.0
70\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0
80\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0
90\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	0.0	0.0	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Above Normal (16\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Below Normal (13\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dry (24\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	0.0	0.1	0.1	0.0
Critical (15\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year
b Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-43-1-4. Sacramento River at Freeport, Monthly Averaged Daily Maximum Elevation

Statistic	Monthly Averaged Daily Maximum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	4.6	6.1	13.0	15.2	16.2	14.8	11.3	9.6	5.9	6.2	5.1	4.9
20\%	4.4	4.7	8.8	13.4	14.6	12.3	8.3	7.2	5.4	5.9	5.0	4.7
30\%	4.3	4.6	6.1	10.2	12.4	10.3	6.0	5.2	5.2	5.7	4.9	4.6
40\%	4.2	4.4	5.3	7.1	11.1	7.6	5.4	4.7	5.0	5.6	4.8	4.6
50\%	4.1	4.2	4.9	6.2	8.4	6.5	4.7	4.6	4.9	5.4	4.7	4.5
60\%	4.1	4.2	4.7	5.3	6.5	5.6	4.3	4.5	4.7	5.2	4.6	4.3
70\%	4.0	4.1	4.5	4.8	5.6	5.2	4.2	4.3	4.6	4.8	4.4	4.2
80\%	3.9	4.0	4.3	4.5	4.8	4.5	4.0	4.2	4.5	4.6	4.4	4.1
90\%	3.8	3.8	4.2	4.3	4.5	4.0	3.8	4.0	4.3	4.5	4.3	4.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	4.2	4.8	6.6	8.1	9.4	8.1	6.1	5.6	5.2	5.3	4.7	4.5
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	4.4	5.5	9.6	12.1	13.4	11.6	8.8	7.8	6.0	5.6	4.9	4.8
Above Normal (16\%)	4.1	5.0	6.7	9.8	11.5	10.4	6.5	5.4	5.1	5.9	5.0	4.6
Below Normal (13\%)	4.3	4.6	5.0	5.6	8.2	5.4	4.5	4.7	5.2	5.8	4.8	4.5
Dry (24\%)	4.0	4.2	4.6	5.2	6.4	5.9	4.6	4.4	4.8	4.9	4.4	4.3
Critical (15\%)	4.0	4.0	4.5	4.8	4.9	4.3	4.0	4.0	4.4	4.5	4.3	4.1

No Action Alternative

Statistic	Monthly Averaged Daily Maximum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	4.6	6.2	12.0	14.9	16.2	14.5	11.3	9.6	5.7	6.5	5.2	7.5
20\%	4.5	5.5	8.3	12.7	14.5	12.2	8.3	6.7	5.0	6.4	5.1	7.3
30\%	4.4	5.2	5.9	9.6	12.0	9.2	6.0	5.0	4.7	6.1	5.0	6.2
40\%	4.3	4.9	5.2	6.7	10.5	7.5	5.4	4.6	4.7	5.8	4.9	5.7
50\%	4.1	4.6	4.9	5.9	8.2	6.4	4.6	4.5	4.6	5.5	4.9	4.7
60\%	4.0	4.4	4.8	5.3	6.4	5.6	4.3	4.3	4.5	5.3	4.7	4.4
70\%	4.0	4.1	4.6	4.8	5.4	5.2	4.1	4.2	4.5	5.1	4.5	4.3
80\%	3.9	4.0	4.3	4.5	4.8	4.4	4.0	4.1	4.3	4.9	4.4	4.2
90\%	3.7	3.9	4.2	4.3	4.5	4.0	3.8	4.0	4.2	4.6	4.2	4.0

Full Simulation Period ${ }^{\text {b }}$	4.2	5.0	6.5	8.0	9.3	8.0	6.1	5.5	5.0	5.6	4.8	5.4
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	4.5	5.9	9.2	11.8	13.3	11.5	8.8	7.8	5.9	5.8	5.0	7.3
Above Normal (16\%)	4.1	5.4	6.8	9.6	11.3	10.0	6.5	5.2	4.7	6.2	5.1	5.7
Below Normal (13\%)	4.3	4.9	5.0	5.5	7.8	5.2	4.5	4.5	4.6	6.0	5.0	4.5
Dry (24\%)	4.1	4.4	4.7	5.3	6.4	5.8	4.6	4.3	4.6	5.2	4.4	4.2
Critical (15\%)	4.0	4.1	4.5	4.8	4.9	4.3	4.0	4.0	4.3	4.6	4.3	4.1

No Action Alternative minus Second Basis of Comparison

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.0	0.1	-1.1	-0.3	0.0	-0.3	0.0	0.0	-0.2	0.3	0.1	2.6
20\%	0.1	0.8	-0.5	-0.8	-0.1	-0.1	0.0	-0.5	-0.4	0.5	0.1	2.6
30\%	0.1	0.7	-0.1	-0.6	-0.4	-1.0	0.0	-0.1	-0.5	0.4	0.1	1.6
40\%	0.1	0.5	-0.1	-0.4	-0.6	-0.2	0.0	-0.1	-0.4	0.2	0.1	1.1
50\%	0.0	0.3	0.0	-0.3	-0.1	0.0	0.0	-0.1	-0.3	0.1	0.2	0.2
60\%	0.0	0.2	0.1	0.1	0.0	0.0	0.0	-0.2	-0.2	0.1	0.1	0.1
70\%	0.0	0.1	0.1	0.0	-0.2	0.0	0.0	-0.1	-0.1	0.4	0.1	0.1
80\%	0.0	0.0	0.1	0.0	0.0	0.0	0.0	-0.1	-0.1	0.3	0.0	0.0
90\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	0.1	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.0	0.3	-0.1	-0.1	-0.1	-0.1	0.0	-0.1	-0.2	0.2	0.1	1.0
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.1	0.3	-0.5	-0.2	-0.1	-0.1	0.0	0.0	-0.1	0.2	0.1	2.5
Above Normal (16\%)	0.0	0.3	0.1	-0.2	-0.2	-0.4	0.0	-0.2	-0.4	0.2	0.1	1.1
Below Normal (13\%)	0.1	0.3	0.0	-0.1	-0.3	-0.2	0.0	-0.3	-0.6	0.3	0.2	0.0
Dry (24\%)	0.0	0.3	0.0	0.0	-0.1	0.0	0.0	-0.1	-0.2	0.3	0.0	0.0
Critical (15\%)	-0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	0.1	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year
b Based on the 82 -year simulation period.
C As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same,
therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and $N o$ Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-43-1-5. Sacramento River at Freeport, Monthly Averaged Daily Maximum Elevation

Statistic	Monthly Averaged Daily Maximum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	4.6	6.1	13.0	15.2	16.2	14.8	11.3	9.6	5.9	6.2	5.1	4.9
20\%	4.4	4.7	8.8	13.4	14.6	12.3	8.3	7.2	5.4	5.9	5.0	4.7
30\%	4.3	4.6	6.1	10.2	12.4	10.3	6.0	5.2	5.2	5.7	4.9	4.6
40\%	4.2	4.4	5.3	7.1	11.1	7.6	5.4	4.7	5.0	5.6	4.8	4.6
50\%	4.1	4.2	4.9	6.2	8.4	6.5	4.7	4.6	4.9	5.4	4.7	4.5
60\%	4.1	4.2	4.7	5.3	6.5	5.6	4.3	4.5	4.7	5.2	4.6	4.3
70\%	4.0	4.1	4.5	4.8	5.6	5.2	4.2	4.3	4.6	4.8	4.4	4.2
80\%	3.9	4.0	4.3	4.5	4.8	4.5	4.0	4.2	4.5	4.6	4.4	4.1
90\%	3.8	3.8	4.2	4.3	4.5	4.0	3.8	4.0	4.3	4.5	4.3	4.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	4.2	4.8	6.6	8.1	9.4	8.1	6.1	5.6	5.2	5.3	4.7	4.5
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	4.4	5.5	9.6	12.1	13.4	11.6	8.8	7.8	6.0	5.6	4.9	4.8
Above Normal (16\%)	4.1	5.0	6.7	9.8	11.5	10.4	6.5	5.4	5.1	5.9	5.0	4.6
Below Normal (13\%)	4.3	4.6	5.0	5.6	8.2	5.4	4.5	4.7	5.2	5.8	4.8	4.5
Dry (24\%)	4.0	4.2	4.6	5.2	6.4	5.9	4.6	4.4	4.8	4.9	4.4	4.3
Critical (15\%)	4.0	4.0	4.5	4.8	4.9	4.3	4.0	4.0	4.4	4.5	4.3	4.1

Alternative 3

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	4.5	6.1	13.0	15.1	16.2	14.8	11.3	9.6	5.7	6.4	5.1	4.8
20\%	4.4	4.8	8.9	13.3	14.6	12.3	8.3	6.9	5.3	6.3	5.0	4.7
30\%	4.3	4.5	6.1	10.2	12.4	9.7	6.0	5.2	5.1	6.1	4.9	4.6
40\%	4.2	4.3	5.3	7.0	11.0	7.6	5.4	4.7	5.0	5.8	4.9	4.6
50\%	4.1	4.2	4.9	6.1	8.4	6.5	4.7	4.6	4.8	5.6	4.7	4.5
60\%	4.0	4.2	4.7	5.3	6.5	5.7	4.3	4.4	4.8	5.3	4.6	4.4
70\%	3.9	4.1	4.5	4.8	5.7	5.2	4.2	4.3	4.7	5.0	4.5	4.2
80\%	3.9	4.0	4.3	4.5	4.8	4.5	4.0	4.2	4.5	4.7	4.4	4.2
90\%	3.7	3.8	4.2	4.3	4.6	4.0	3.8	4.0	4.3	4.5	4.3	4.1

Full Simulation Period ${ }^{\text {b }}$	4.2	4.8	6.6	8.1	9.4	8.1	6.1	5.6	5.2	5.5	4.7	4.5
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	4.4	5.5	9.6	12.1	13.4	11.5	8.8	7.9	6.1	5.7	4.9	4.8
Above Normal (16\%)	4.1	5.1	6.7	9.7	11.5	10.3	6.5	5.4	5.0	6.1	5.0	4.6
Below Normal (13\%)	4.2	4.6	5.0	5.7	8.2	5.4	4.5	4.6	4.9	6.1	5.0	4.6
Dry (24\%)	4.0	4.2	4.6	5.2	6.4	5.8	4.6	4.4	4.8	5.1	4.4	4.2
Critical (15\%)	4.0	4.0	4.5	4.8	5.0	4.3	4.0	4.0	4.4	4.5	4.3	4.1

Alternative 3 minus Second Basis of Comparison

Statistic	Monthly Averaged Daily Maximum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.0	0.1	0.0	-0.1	0.0	0.0	0.0	0.0	-0.2	0.2	0.0	0.0
20\%	0.0	0.1	0.2	-0.1	0.0	0.0	0.0	-0.3	-0.1	0.4	0.1	0.0
30\%	0.0	0.0	0.0	0.0	0.0	-0.5	0.0	0.0	-0.1	0.4	0.1	0.0
40\%	0.0	0.0	0.0	0.0	-0.1	0.0	0.0	0.0	-0.1	0.2	0.1	0.0
50\%	0.0	0.0	0.0	-0.1	0.0	0.0	0.0	0.0	-0.1	0.2	0.1	0.0
60\%	-0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
70\%	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.1	0.2	0.1	0.0
80\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0
90\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.0	0.0
Above Normal (16\%)	0.0	0.0	0.0	-0.1	0.0	-0.1	0.0	0.0	-0.1	0.2	0.0	0.0
Below Normal (13\%)	0.0	-0.1	0.0	0.0	0.0	0.0	0.0	-0.1	-0.4	0.4	0.3	0.1
Dry (24\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0
Critical (15\%)	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year
b Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text

Table C-43-1-6. Sacramento River at Freeport, Monthly Averaged Daily Maximum Elevation

Statistic	Monthly Averaged Daily Maximum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	4.6	6.1	13.0	15.2	16.2	14.8	11.3	9.6	5.9	6.2	5.1	4.9
20\%	4.4	4.7	8.8	13.4	14.6	12.3	8.3	7.2	5.4	5.9	5.0	4.7
30\%	4.3	4.6	6.1	10.2	12.4	10.3	6.0	5.2	5.2	5.7	4.9	4.6
40\%	4.2	4.4	5.3	7.1	11.1	7.6	5.4	4.7	5.0	5.6	4.8	4.6
50\%	4.1	4.2	4.9	6.2	8.4	6.5	4.7	4.6	4.9	5.4	4.7	4.5
60\%	4.1	4.2	4.7	5.3	6.5	5.6	4.3	4.5	4.7	5.2	4.6	4.3
70\%	4.0	4.1	4.5	4.8	5.6	5.2	4.2	4.3	4.6	4.8	4.4	4.2
80\%	3.9	4.0	4.3	4.5	4.8	4.5	4.0	4.2	4.5	4.6	4.4	4.1
90\%	3.8	3.8	4.2	4.3	4.5	4.0	3.8	4.0	4.3	4.5	4.3	4.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	4.2	4.8	6.6	8.1	9.4	8.1	6.1	5.6	5.2	5.3	4.7	4.5
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	4.4	5.5	9.6	12.1	13.4	11.6	8.8	7.8	6.0	5.6	4.9	4.8
Above Normal (16\%)	4.1	5.0	6.7	9.8	11.5	10.4	6.5	5.4	5.1	5.9	5.0	4.6
Below Normal (13\%)	4.3	4.6	5.0	5.6	8.2	5.4	4.5	4.7	5.2	5.8	4.8	4.5
Dry (24\%)	4.0	4.2	4.6	5.2	6.4	5.9	4.6	4.4	4.8	4.9	4.4	4.3
Critical (15\%)	4.0	4.0	4.5	4.8	4.9	4.3	4.0	4.0	4.4	4.5	4.3	4.1

Alternative 5

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	4.6	6.2	12.0	14.9	16.2	14.5	11.3	9.6	5.7	6.5	5.2	7.5
20\%	4.5	5.5	8.3	12.6	14.5	12.2	8.3	6.7	5.0	6.4	5.1	7.3
30\%	4.4	5.3	5.9	9.6	12.0	9.2	6.0	5.0	4.8	6.2	5.0	6.2
40\%	4.3	4.9	5.2	6.6	10.5	7.5	5.4	4.5	4.7	5.8	5.0	5.7
50\%	4.1	4.6	4.9	5.9	8.3	6.4	4.6	4.4	4.6	5.6	4.9	4.7
60\%	4.0	4.3	4.8	5.3	6.4	5.6	4.3	4.3	4.5	5.4	4.8	4.5
70\%	4.0	4.2	4.6	4.8	5.4	5.2	4.1	4.2	4.5	5.2	4.5	4.3
80\%	3.9	4.0	4.3	4.5	4.8	4.4	3.9	4.1	4.3	5.1	4.4	4.2
90\%	3.7	3.9	4.2	4.3	4.5	4.0	3.8	3.9	4.2	4.6	4.3	4.0

Full Simulation Period ${ }^{\text {b }}$	4.2	5.1	6.5	8.0	9.3	8.0	6.1	5.5	5.0	5.6	4.8	5.4
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	4.5	5.9	9.2	11.9	13.3	11.5	8.8	7.8	5.9	5.9	5.0	7.2
Above Normal (16\%)	4.1	5.4	6.8	9.6	11.3	10.0	6.5	5.2	4.7	6.2	5.1	5.7
Below Normal (13\%)	4.3	4.9	5.0	5.5	7.8	5.2	4.5	4.4	4.6	6.1	5.0	4.5
Dry (24\%)	4.1	4.4	4.7	5.3	6.4	5.8	4.6	4.2	4.6	5.3	4.5	4.2
Critical (15\%)	4.0	4.1	4.5	4.8	4.9	4.3	3.9	4.0	4.3	4.6	4.3	4.1

Alternative 5 minus Second Basis of Comparison

Statistic	Monthly Averaged Daily Maximum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.0	0.1	-1.1	-0.3	0.0	-0.3	0.0	0.0	-0.2	0.3	0.1	2.6
20\%	0.1	0.8	-0.5	-0.8	-0.1	-0.1	0.0	-0.5	-0.5	0.5	0.1	2.6
30\%	0.1	0.7	-0.1	-0.6	-0.4	-1.0	0.0	-0.1	-0.5	0.5	0.1	1.6
40\%	0.1	0.5	-0.1	-0.4	-0.6	-0.2	0.0	-0.1	-0.4	0.2	0.2	1.1
50\%	0.0	0.3	0.0	-0.3	-0.1	-0.1	0.0	-0.2	-0.3	0.2	0.2	0.2
60\%	0.0	0.2	0.1	0.0	0.0	-0.1	0.0	-0.2	-0.2	0.2	0.2	0.1
70\%	0.0	0.1	0.1	0.0	-0.2	0.0	0.0	-0.1	-0.1	0.4	0.1	0.1
80\%	0.0	0.0	0.1	0.0	0.0	0.0	0.0	-0.1	-0.2	0.4	0.0	0.0
90\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	-0.1	0.1	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.0	0.3	-0.1	-0.1	-0.1	-0.1	0.0	-0.1	-0.2	0.3	0.1	1.0
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.1	0.3	-0.5	-0.2	-0.1	-0.1	0.0	0.0	-0.1	0.3	0.1	2.5
Above Normal (16\%)	0.0	0.3	0.1	-0.2	-0.2	-0.4	0.0	-0.2	-0.4	0.2	0.1	1.1
Below Normal (13\%)	0.0	0.3	0.0	-0.1	-0.3	-0.2	0.0	-0.3	-0.7	0.3	0.2	0.0
Dry (24\%)	0.0	0.3	0.0	0.0	-0.1	0.0	0.0	-0.2	-0.2	0.4	0.0	0.0
Critical (15\%)	-0.1	0.0	0.0	0.0	0.0	0.0	-0.1	0.0	-0.1	0.1	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year
b Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and $N o$ Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-43-2-1. Sacramento River at Freeport, Monthly Averaged Daily Minimum Elevation, October

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-43-2-2. Sacramento River at Freeport, Monthly Averaged Daily Minimum Elevation, November

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-43-2-3. Sacramento River at Freeport, Monthly Averaged Daily Minimum Elevation, December

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-43-2-4. Sacramento River at Freeport, Monthly Averaged Daily Minimum Elevation, January

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-43-2-5. Sacramento River at Freeport, Monthly Averaged Daily Minimum Elevation, February

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-43-2-6. Sacramento River at Freeport, Monthly Averaged Daily Minimum Elevation, March

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-43-2-7. Sacramento River at Freeport, Monthly Averaged Daily Minimum Elevation, April

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-43-2-8. Sacramento River at Freeport, Monthly Averaged Daily Minimum Elevation, May

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-43-2-9. Sacramento River at Freeport, Monthly Averaged Daily Minimum Elevation, June

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-43-2-10. Sacramento River at Freeport, Monthly Averaged Daily Minimum Elevation, July

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-43-2-11. Sacramento River at Freeport, Monthly Averaged Daily Minimum Elevation, August

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-43-2-12. Sacramento River at Freeport, Monthly Averaged Daily Minimum Elevation, September

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-43-2-1. Sacramento River at Freeport, Monthly Averaged Daily Minimum Elevation

Statistic	Monthly Averaged Daily Minimum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.2	5.1	11.4	14.5	15.8	14.2	10.9	9.0	4.3	5.4	3.7	6.8
20\%	3.0	4.1	7.6	12.3	14.1	11.9	7.7	5.9	3.4	5.2	3.6	6.7
30\%	2.8	4.0	4.8	9.0	11.5	8.7	5.2	3.6	2.9	4.9	3.5	5.0
40\%	2.5	3.6	4.0	5.7	10.0	6.8	4.4	2.9	2.7	4.5	3.4	4.7
50\%	2.3	3.1	3.4	4.8	7.6	5.6	3.3	2.6	2.7	4.0	3.2	3.1
60\%	1.9	2.7	3.1	4.0	5.6	4.6	2.7	2.4	2.6	3.8	2.9	2.7
70\%	1.8	2.0	2.8	3.2	4.3	4.1	2.3	2.3	2.5	3.6	2.4	2.2
80\%	1.6	1.8	2.2	2.9	3.5	3.1	2.2	2.1	2.2	3.1	2.0	1.9
90\%	1.4	1.4	1.9	2.4	3.0	2.3	1.9	1.8	1.9	2.4	1.9	1.7
Long Term												
Full Simulation Period ${ }^{\text {b }}$	2.3	3.4	5.0	6.9	8.5	7.1	4.9	4.0	3.1	4.1	2.9	3.9
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	2.8	4.5	8.3	11.2	12.9	11.0	8.0	6.9	4.4	4.4	3.4	6.5
Above Normal (16\%)	2.1	3.8	5.5	8.9	10.7	9.4	5.4	3.7	2.8	5.0	3.6	4.6
Below Normal (13\%)	2.5	3.4	3.4	4.1	6.9	4.1	3.0	2.7	2.6	4.8	3.3	2.6
Dry (24\%)	2.1	2.6	2.9	3.8	5.3	4.8	3.2	2.5	2.6	3.6	2.3	2.2
Critical (15\%)	1.7	1.7	2.4	3.1	3.5	2.7	2.1	1.7	1.9	2.3	1.9	1.7

Alternative 1

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.0	5.0	12.6	14.8	15.9	14.4	10.9	9.0	4.6	5.0	3.6	3.2
20\%	2.8	3.2	8.0	13.0	14.2	12.0	7.6	6.4	4.0	4.6	3.4	3.1
30\%	2.6	2.9	4.9	9.7	12.0	9.8	5.2	3.8	3.8	4.4	3.3	3.1
40\%	2.3	2.7	3.9	6.1	10.7	7.0	4.4	3.2	3.5	4.1	3.1	3.0
50\%	2.2	2.4	3.3	5.1	7.8	5.7	3.4	2.9	3.2	3.9	2.9	2.9
60\%	2.0	2.2	3.0	3.9	5.6	4.7	2.7	2.7	3.0	3.6	2.6	2.6
70\%	1.8	2.0	2.5	3.2	4.4	4.2	2.4	2.5	2.6	3.1	2.3	2.1
80\%	1.7	1.7	2.1	2.8	3.6	3.2	2.3	2.2	2.5	2.7	2.1	2.0
90\%	1.5	1.4	1.9	2.4	3.1	2.4	2.0	1.8	2.3	2.2	1.9	1.7

Full Simulation Period ${ }^{\text {b }}$	2.3	3.0	5.1	7.0	8.6	7.2	4.9	4.1	3.6	3.7	2.8	2.6
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	2.7	4.0	8.8	11.5	13.0	11.1	8.0	6.9	4.6	4.1	3.2	3.2
Above Normal (16\%)	2.1	3.3	5.3	9.1	10.9	9.9	5.5	4.0	3.4	4.7	3.4	3.0
Below Normal (13\%)	2.5	3.0	3.3	4.3	7.2	4.3	3.1	3.1	3.7	4.4	3.0	2.6
Dry (24\%)	2.1	2.2	2.8	3.8	5.4	4.8	3.2	2.6	3.0	3.1	2.3	2.2
Critical (15\%)	1.8	1.7	2.4	3.1	3.4	2.7	2.1	1.7	2.2	2.1	1.9	1.7

Alternative 1 minus No Action Alternative

Statistic	Monthly Averaged Daily Minimum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{a}$												
10\%	-0.1	-0.2	1.1	0.3	0.0	0.2	0.0	0.0	0.2	-0.4	-0.1	-3.6
20\%	-0.1	-1.0	0.5	0.7	0.1	0.1	0.0	0.5	0.6	-0.6	-0.1	-3.5
30\%	-0.2	-1.2	0.1	0.7	0.5	1.1	0.0	0.2	0.9	-0.5	-0.2	-1.9
40\%	-0.2	-0.9	0.0	0.4	0.6	0.2	0.0	0.3	0.7	-0.4	-0.3	-1.7
50\%	0.0	-0.7	-0.1	0.4	0.2	0.1	0.1	0.2	0.5	-0.1	-0.3	-0.2
60\%	0.1	-0.5	-0.1	0.0	0.0	0.1	0.0	0.3	0.5	-0.2	-0.4	0.0
70\%	0.1	0.0	-0.4	0.0	0.1	0.1	0.0	0.2	0.2	-0.6	0.0	0.0
80\%	0.1	0.0	-0.1	0.0	0.1	0.1	0.1	0.1	0.3	-0.5	0.1	0.0
90\%	0.1	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.4	-0.2	0.1	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.0	-0.4	0.1	0.1	0.1	0.1	0.0	0.2	0.4	-0.4	-0.1	-1.3
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	-0.1	-0.5	0.5	0.3	0.1	0.1	0.0	0.0	0.2	-0.3	-0.2	-3.3
Above Normal (16\%)	0.0	-0.5	-0.2	0.3	0.3	0.4	0.1	0.3	0.6	-0.3	-0.2	-1.6
Below Normal (13\%)	0.0	-0.4	-0.1	0.2	0.4	0.2	0.1	0.5	1.1	-0.4	-0.3	0.0
Dry (24\%)	0.0	-0.4	0.0	0.0	0.1	0.0	0.0	0.2	0.4	-0.5	0.0	0.0
Critical (15\%)	0.1	0.0	0.0	0.0	-0.1	0.1	0.1	0.0	0.2	-0.3	0.1	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Second Basis of Comparison and Alternative 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-43-2-2. Sacramento River at Freeport, Monthly Averaged Daily Minimum Elevation

Statistic	Monthly Averaged Daily Minimum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.2	5.1	11.4	14.5	15.8	14.2	10.9	9.0	4.3	5.4	3.7	6.8
20\%	3.0	4.1	7.6	12.3	14.1	11.9	7.7	5.9	3.4	5.2	3.6	6.7
30\%	2.8	4.0	4.8	9.0	11.5	8.7	5.2	3.6	2.9	4.9	3.5	5.0
40\%	2.5	3.6	4.0	5.7	10.0	6.8	4.4	2.9	2.7	4.5	3.4	4.7
50\%	2.3	3.1	3.4	4.8	7.6	5.6	3.3	2.6	2.7	4.0	3.2	3.1
60\%	1.9	2.7	3.1	4.0	5.6	4.6	2.7	2.4	2.6	3.8	2.9	2.7
70\%	1.8	2.0	2.8	3.2	4.3	4.1	2.3	2.3	2.5	3.6	2.4	2.2
80\%	1.6	1.8	2.2	2.9	3.5	3.1	2.2	2.1	2.2	3.1	2.0	1.9
90\%	1.4	1.4	1.9	2.4	3.0	2.3	1.9	1.8	1.9	2.4	1.9	1.7
Long Term												
Full Simulation Period ${ }^{\text {b }}$	2.3	3.4	5.0	6.9	8.5	7.1	4.9	4.0	3.1	4.1	2.9	3.9
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	2.8	4.5	8.3	11.2	12.9	11.0	8.0	6.9	4.4	4.4	3.4	6.5
Above Normal (16\%)	2.1	3.8	5.5	8.9	10.7	9.4	5.4	3.7	2.8	5.0	3.6	4.6
Below Normal (13\%)	2.5	3.4	3.4	4.1	6.9	4.1	3.0	2.7	2.6	4.8	3.3	2.6
Dry (24\%)	2.1	2.6	2.9	3.8	5.3	4.8	3.2	2.5	2.6	3.6	2.3	2.2
Critical (15\%)	1.7	1.7	2.4	3.1	3.5	2.7	2.1	1.7	1.9	2.3	1.9	1.7

Alternative 3

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.1	5.0	12.6	14.7	15.9	14.5	10.9	9.0	4.3	5.3	3.7	3.3
20\%	2.8	3.2	8.2	12.9	14.2	12.0	7.6	6.1	3.9	5.1	3.5	3.2
30\%	2.6	2.9	5.0	9.7	12.0	9.3	5.2	3.8	3.5	5.0	3.3	3.0
40\%	2.4	2.7	4.0	6.1	10.6	7.0	4.4	3.2	3.3	4.5	3.2	2.9
50\%	2.2	2.4	3.2	4.9	7.7	5.7	3.4	2.9	3.1	4.2	3.1	2.8
60\%	1.9	2.2	3.0	3.9	5.6	4.7	2.7	2.6	3.0	3.8	2.9	2.7
70\%	1.8	2.0	2.7	3.1	4.6	4.2	2.4	2.4	2.8	3.2	2.4	2.2
80\%	1.6	1.7	2.2	2.8	3.5	3.2	2.3	2.3	2.6	2.8	2.1	1.9
90\%	1.4	1.4	1.8	2.3	3.1	2.3	2.0	1.8	2.3	2.2	1.8	1.6

Full Simulation Period ${ }^{\text {b }}$	2.3	3.0	5.1	7.0	8.6	7.2	4.9	4.1	3.5	4.0	2.9	2.6
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	2.7	4.0	8.8	11.5	13.0	11.0	8.0	6.9	4.7	4.3	3.2	3.2
Above Normal (16\%)	2.1	3.4	5.3	9.0	10.9	9.8	5.5	4.0	3.3	4.9	3.5	3.0
Below Normal (13\%)	2.4	2.9	3.4	4.3	7.2	4.3	3.1	3.0	3.2	4.9	3.4	2.8
Dry (24\%)	2.1	2.2	2.8	3.7	5.4	4.8	3.2	2.6	3.1	3.5	2.3	2.2
Critical (15\%)	1.8	1.6	2.3	3.0	3.5	2.7	2.1	1.7	2.2	2.1	1.9	1.7

Alternative 3 minus No Action Alternative

Statistic	Monthly Averaged Daily Minimum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	-0.1	-0.1	1.1	0.2	0.0	0.3	0.0	0.0	-0.1	-0.1	0.0	-3.5
20\%	-0.1	-1.0	0.6	0.6	0.1	0.1	0.0	0.2	0.5	-0.1	-0.1	-3.5
30\%	-0.2	-1.1	0.2	0.7	0.5	0.6	0.0	0.2	0.6	0.1	-0.1	-1.9
40\%	-0.2	-0.9	0.0	0.4	0.5	0.2	0.0	0.3	0.6	0.0	-0.1	-1.7
50\%	-0.1	-0.7	-0.1	0.1	0.2	0.1	0.1	0.2	0.5	0.2	-0.1	-0.2
60\%	0.0	-0.5	-0.2	0.0	0.1	0.1	0.0	0.2	0.5	0.0	-0.1	0.0
70\%	0.0	0.0	-0.1	-0.1	0.3	0.1	0.1	0.2	0.3	-0.4	0.1	0.0
80\%	0.0	0.0	-0.1	-0.1	0.0	0.1	0.1	0.1	0.4	-0.4	0.1	0.0
90\%	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.3	-0.2	0.0	-0.1
Long Term												
Full Simulation Period ${ }^{\text {b }}$	-0.1	-0.4	0.1	0.1	0.1	0.1	0.0	0.2	0.4	-0.1	-0.1	-1.3
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	-0.2	-0.5	0.5	0.3	0.1	0.1	0.0	0.1	0.3	-0.1	-0.2	-3.4
Above Normal (16\%)	-0.1	-0.5	-0.2	0.1	0.2	0.3	0.0	0.3	0.5	-0.1	-0.1	-1.6
Below Normal (13\%)	-0.1	-0.5	-0.1	0.2	0.4	0.2	0.1	0.3	0.5	0.1	0.1	0.2
Dry (24\%)	0.0	-0.5	-0.1	0.0	0.1	0.0	0.0	0.2	0.4	-0.1	0.0	0.0
Critical (15\%)	0.0	-0.1	-0.1	0.0	0.0	0.0	0.0	0.0	0.2	-0.2	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-43-2-3. Sacramento River at Freeport, Monthly Averaged Daily Minimum Elevation

Statistic	Monthly Averaged Daily Minimum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.2	5.1	11.4	14.5	15.8	14.2	10.9	9.0	4.3	5.4	3.7	6.8
20\%	3.0	4.1	7.6	12.3	14.1	11.9	7.7	5.9	3.4	5.2	3.6	6.7
30\%	2.8	4.0	4.8	9.0	11.5	8.7	5.2	3.6	2.9	4.9	3.5	5.0
40\%	2.5	3.6	4.0	5.7	10.0	6.8	4.4	2.9	2.7	4.5	3.4	4.7
50\%	2.3	3.1	3.4	4.8	7.6	5.6	3.3	2.6	2.7	4.0	3.2	3.1
60\%	1.9	2.7	3.1	4.0	5.6	4.6	2.7	2.4	2.6	3.8	2.9	2.7
70\%	1.8	2.0	2.8	3.2	4.3	4.1	2.3	2.3	2.5	3.6	2.4	2.2
80\%	1.6	1.8	2.2	2.9	3.5	3.1	2.2	2.1	2.2	3.1	2.0	1.9
90\%	1.4	1.4	1.9	2.4	3.0	2.3	1.9	1.8	1.9	2.4	1.9	1.7
Long Term												
Full Simulation Period ${ }^{\text {b }}$	2.3	3.4	5.0	6.9	8.5	7.1	4.9	4.0	3.1	4.1	2.9	3.9
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	2.8	4.5	8.3	11.2	12.9	11.0	8.0	6.9	4.4	4.4	3.4	6.5
Above Normal (16\%)	2.1	3.8	5.5	8.9	10.7	9.4	5.4	3.7	2.8	5.0	3.6	4.6
Below Normal (13\%)	2.5	3.4	3.4	4.1	6.9	4.1	3.0	2.7	2.6	4.8	3.3	2.6
Dry (24\%)	2.1	2.6	2.9	3.8	5.3	4.8	3.2	2.5	2.6	3.6	2.3	2.2
Critical (15\%)	1.7	1.7	2.4	3.1	3.5	2.7	2.1	1.7	1.9	2.3	1.9	1.7

Alternative 5

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.2	5.1	11.4	14.5	15.8	14.2	10.9	9.0	4.4	5.4	3.7	6.8
20\%	2.9	4.2	7.6	12.3	14.1	11.9	7.7	5.9	3.3	5.2	3.6	6.6
30\%	2.8	4.1	4.8	9.0	11.5	8.7	5.2	3.6	2.9	5.0	3.5	5.0
40\%	2.5	3.6	3.9	5.7	10.0	6.8	4.4	2.7	2.7	4.6	3.4	4.6
50\%	2.3	3.1	3.4	4.8	7.6	5.6	3.3	2.5	2.7	4.2	3.3	3.2
60\%	1.9	2.7	3.1	4.0	5.6	4.6	2.6	2.3	2.6	3.9	3.1	2.8
70\%	1.7	2.0	2.8	3.2	4.3	4.1	2.4	2.1	2.5	3.7	2.4	2.2
80\%	1.6	1.8	2.2	2.9	3.5	3.1	2.1	1.9	2.1	3.4	2.1	1.9
90\%	1.4	1.4	1.8	2.4	3.0	2.3	1.9	1.6	1.9	2.5	2.0	1.7

Full Simulation Period ${ }^{\text {b }}$	2.3	3.4	5.0	6.9	8.5	7.1	4.9	3.9	3.1	4.1	3.0	3.9
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	2.8	4.6	8.3	11.2	12.9	11.0	8.0	6.9	4.4	4.5	3.5	6.5
Above Normal (16\%)	2.2	3.8	5.5	8.9	10.7	9.4	5.4	3.7	2.8	5.0	3.6	4.6
Below Normal (13\%)	2.5	3.4	3.4	4.1	6.9	4.1	3.0	2.6	2.6	4.8	3.4	2.7
Dry (24\%)	2.1	2.6	2.9	3.8	5.3	4.8	3.2	2.3	2.6	3.7	2.4	2.2
Critical (15\%)	1.7	1.7	2.4	3.1	3.5	2.7	2.0	1.6	2.0	2.4	2.0	1.7

Alternative 5 minus No Action Alternative

Statistic	Monthly Averaged Daily Minimum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
20\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
30\%	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.1	0.0	0.0
40\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	0.0	0.0	0.0	0.0
50\%	0.0	0.0	0.0	0.0	0.1	0.0	0.0	-0.1	0.0	0.1	0.1	0.1
60\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	0.0	0.1	0.2	0.1
70\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.2	0.0	0.1	0.1	0.0
80\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.2	-0.1	0.2	0.1	0.0
90\%	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	-0.2	0.0	0.1	0.1	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	0.0	0.1	0.1	0.0
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0
Above Normal (16\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Below Normal (13\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	0.0	0.0	0.0	0.1
Dry (24\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.2	0.0	0.1	0.1	0.0
Critical (15\%)	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	-0.1	0.0	0.1	0.1	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year
b Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-43-2-4. Sacramento River at Freeport, Monthly Averaged Daily Minimum Elevation

Statistic	Monthly Averaged Daily Minimum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.0	5.0	12.6	14.8	15.9	14.4	10.9	9.0	4.6	5.0	3.6	3.2
20\%	2.8	3.2	8.0	13.0	14.2	12.0	7.6	6.4	4.0	4.6	3.4	3.1
30\%	2.6	2.9	4.9	9.7	12.0	9.8	5.2	3.8	3.8	4.4	3.3	3.1
40\%	2.3	2.7	3.9	6.1	10.7	7.0	4.4	3.2	3.5	4.1	3.1	3.0
50\%	2.2	2.4	3.3	5.1	7.8	5.7	3.4	2.9	3.2	3.9	2.9	2.9
60\%	2.0	2.2	3.0	3.9	5.6	4.7	2.7	2.7	3.0	3.6	2.6	2.6
70\%	1.8	2.0	2.5	3.2	4.4	4.2	2.4	2.5	2.6	3.1	2.3	2.1
80\%	1.7	1.7	2.1	2.8	3.6	3.2	2.3	2.2	2.5	2.7	2.1	2.0
90\%	1.5	1.4	1.9	2.4	3.1	2.4	2.0	1.8	2.3	2.2	1.9	1.7
Long Term												
Full Simulation Period ${ }^{\text {b }}$	2.3	3.0	5.1	7.0	8.6	7.2	4.9	4.1	3.6	3.7	2.8	2.6
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	2.7	4.0	8.8	11.5	13.0	11.1	8.0	6.9	4.6	4.1	3.2	3.2
Above Normal (16\%)	2.1	3.3	5.3	9.1	10.9	9.9	5.5	4.0	3.4	4.7	3.4	3.0
Below Normal (13\%)	2.5	3.0	3.3	4.3	7.2	4.3	3.1	3.1	3.7	4.4	3.0	2.6
Dry (24\%)	2.1	2.2	2.8	3.8	5.4	4.8	3.2	2.6	3.0	3.1	2.3	2.2
Critical (15\%)	1.8	1.7	2.4	3.1	3.4	2.7	2.1	1.7	2.2	2.1	1.9	1.7

Statistic	Monthly Averaged Daily Minimum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.2	5.1	11.4	14.5	15.8	14.2	10.9	9.0	4.3	5.4	3.7	6.8
20\%	3.0	4.1	7.6	12.3	14.1	11.9	7.7	5.9	3.4	5.2	3.6	6.7
30\%	2.8	4.0	4.8	9.0	11.5	8.7	5.2	3.6	2.9	4.9	3.5	5.0
40\%	2.5	3.6	4.0	5.7	10.0	6.8	4.4	2.9	2.7	4.5	3.4	4.7
50\%	2.3	3.1	3.4	4.8	7.6	5.6	3.3	2.6	2.7	4.0	3.2	3.1
60\%	1.9	2.7	3.1	4.0	5.6	4.6	2.7	2.4	2.6	3.8	2.9	2.7
70\%	1.8	2.0	2.8	3.2	4.3	4.1	2.3	2.3	2.5	3.6	2.4	2.2
80\%	1.6	1.8	2.2	2.9	3.5	3.1	2.2	2.1	2.2	3.1	2.0	1.9
90\%	1.4	1.4	1.9	2.4	3.0	2.3	1.9	1.8	1.9	2.4	1.9	1.7
Long Term												
Full Simulation Period ${ }^{\text {b }}$	2.3	3.4	5.0	6.9	8.5	7.1	4.9	4.0	3.1	4.1	2.9	3.9
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	2.8	4.5	8.3	11.2	12.9	11.0	8.0	6.9	4.4	4.4	3.4	6.5
Above Normal (16\%)	2.1	3.8	5.5	8.9	10.7	9.4	5.4	3.7	2.8	5.0	3.6	4.6
Below Normal (13\%)	2.5	3.4	3.4	4.1	6.9	4.1	3.0	2.7	2.6	4.8	3.3	2.6
Dry (24\%)	2.1	2.6	2.9	3.8	5.3	4.8	3.2	2.5	2.6	3.6	2.3	2.2
Critical (15\%)	1.7	1.7	2.4	3.1	3.5	2.7	2.1	1.7	1.9	2.3	1.9	1.7

No Action Alternative minus Second Basis of Comparison

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.1	0.2	-1.1	-0.3	0.0	-0.2	0.0	0.0	-0.2	0.4	0.1	3.6
20\%	0.1	1.0	-0.5	-0.7	-0.1	-0.1	0.0	-0.5	-0.6	0.6	0.1	3.5
30\%	0.2	1.2	-0.1	-0.7	-0.5	-1.1	0.0	-0.2	-0.9	0.5	0.2	1.9
40\%	0.2	0.9	0.0	-0.4	-0.6	-0.2	0.0	-0.3	-0.7	0.4	0.3	1.7
50\%	0.0	0.7	0.1	-0.4	-0.2	-0.1	-0.1	-0.2	-0.5	0.1	0.3	0.2
60\%	-0.1	0.5	0.1	0.0	0.0	-0.1	0.0	-0.3	-0.5	0.2	0.4	0.0
70\%	-0.1	0.0	0.4	0.0	-0.1	-0.1	0.0	-0.2	-0.2	0.6	0.0	0.0
80\%	-0.1	0.0	0.1	0.0	-0.1	-0.1	-0.1	-0.1	-0.3	0.5	-0.1	0.0
90\%	-0.1	0.0	0.0	0.0	0.0	-0.1	0.0	0.0	-0.4	0.2	-0.1	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.0	0.4	-0.1	-0.1	-0.1	-0.1	0.0	-0.2	-0.4	0.4	0.1	1.3
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.1	0.5	-0.5	-0.3	-0.1	-0.1	0.0	0.0	-0.2	0.3	0.2	3.3
Above Normal (16\%)	0.0	0.5	0.2	-0.3	-0.3	-0.4	-0.1	-0.3	-0.6	0.3	0.2	1.6
Below Normal (13\%)	0.0	0.4	0.1	-0.2	-0.4	-0.2	-0.1	-0.5	-1.1	0.4	0.3	0.0
Dry (24\%)	0.0	0.4	0.0	0.0	-0.1	0.0	0.0	-0.2	-0.4	0.5	0.0	0.0
Critical (15\%)	-0.1	0.0	0.0	0.0	0.1	-0.1	-0.1	0.0	-0.2	0.3	-0.1	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year
b Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030,
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same,
therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and N No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-43-2-5. Sacramento River at Freeport, Monthly Averaged Daily Minimum Elevation

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.0	5.0	12.6	14.8	15.9	14.4	10.9	9.0	4.6	5.0	3.6	3.2
20\%	2.8	3.2	8.0	13.0	14.2	12.0	7.6	6.4	4.0	4.6	3.4	3.1
30\%	2.6	2.9	4.9	9.7	12.0	9.8	5.2	3.8	3.8	4.4	3.3	3.1
40\%	2.3	2.7	3.9	6.1	10.7	7.0	4.4	3.2	3.5	4.1	3.1	3.0
50\%	2.2	2.4	3.3	5.1	7.8	5.7	3.4	2.9	3.2	3.9	2.9	2.9
60\%	2.0	2.2	3.0	3.9	5.6	4.7	2.7	2.7	3.0	3.6	2.6	2.6
70\%	1.8	2.0	2.5	3.2	4.4	4.2	2.4	2.5	2.6	3.1	2.3	2.1
80\%	1.7	1.7	2.1	2.8	3.6	3.2	2.3	2.2	2.5	2.7	2.1	2.0
90\%	1.5	1.4	1.9	2.4	3.1	2.4	2.0	1.8	2.3	2.2	1.9	1.7
Long Term												
Full Simulation Period ${ }^{\text {b }}$	2.3	3.0	5.1	7.0	8.6	7.2	4.9	4.1	3.6	3.7	2.8	2.6
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	2.7	4.0	8.8	11.5	13.0	11.1	8.0	6.9	4.6	4.1	3.2	3.2
Above Normal (16\%)	2.1	3.3	5.3	9.1	10.9	9.9	5.5	4.0	3.4	4.7	3.4	3.0
Below Normal (13\%)	2.5	3.0	3.3	4.3	7.2	4.3	3.1	3.1	3.7	4.4	3.0	2.6
Dry (24\%)	2.1	2.2	2.8	3.8	5.4	4.8	3.2	2.6	3.0	3.1	2.3	2.2
Critical (15\%)	1.8	1.7	2.4	3.1	3.4	2.7	2.1	1.7	2.2	2.1	1.9	1.7

Alternative 3

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.1	5.0	12.6	14.7	15.9	14.5	10.9	9.0	4.3	5.3	3.7	3.3
20\%	2.8	3.2	8.2	12.9	14.2	12.0	7.6	6.1	3.9	5.1	3.5	3.2
30\%	2.6	2.9	5.0	9.7	12.0	9.3	5.2	3.8	3.5	5.0	3.3	3.0
40\%	2.4	2.7	4.0	6.1	10.6	7.0	4.4	3.2	3.3	4.5	3.2	2.9
50\%	2.2	2.4	3.2	4.9	7.7	5.7	3.4	2.9	3.1	4.2	3.1	2.8
60\%	1.9	2.2	3.0	3.9	5.6	4.7	2.7	2.6	3.0	3.8	2.9	2.7
70\%	1.8	2.0	2.7	3.1	4.6	4.2	2.4	2.4	2.8	3.2	2.4	2.2
80\%	1.6	1.7	2.2	2.8	3.5	3.2	2.3	2.3	2.6	2.8	2.1	1.9
90\%	1.4	1.4	1.8	2.3	3.1	2.3	2.0	1.8	2.3	2.2	1.8	1.6

Full Simulation Period ${ }^{\text {b }}$	2.3	3.0	5.1	7.0	8.6	7.2	4.9	4.1	3.5	4.0	2.9	2.6
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	2.7	4.0	8.8	11.5	13.0	11.0	8.0	6.9	4.7	4.3	3.2	3.2
Above Normal (16\%)	2.1	3.4	5.3	9.0	10.9	9.8	5.5	4.0	3.3	4.9	3.5	3.0
Below Normal (13\%)	2.4	2.9	3.4	4.3	7.2	4.3	3.1	3.0	3.2	4.9	3.4	2.8
Dry (24\%)	2.1	2.2	2.8	3.7	5.4	4.8	3.2	2.6	3.1	3.5	2.3	2.2
Critical (15\%)	1.8	1.6	2.3	3.0	3.5	2.7	2.1	1.7	2.2	2.1	1.9	1.7

Alternative 3 minus Second Basis of Comparison

Statistic	Monthly Averaged Daily Minimum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.0	0.1	0.0	-0.1	0.0	0.1	0.0	0.0	-0.3	0.3	0.1	0.1
20\%	0.0	0.0	0.2	-0.1	0.0	0.0	0.0	-0.3	-0.1	0.5	0.1	0.0
30\%	0.0	0.0	0.1	0.0	0.0	-0.5	0.0	0.0	-0.3	0.6	0.1	0.0
40\%	0.0	0.0	0.0	0.0	-0.1	0.0	0.0	0.0	-0.1	0.4	0.1	0.0
50\%	0.0	0.0	-0.1	-0.2	0.0	0.0	0.0	0.0	0.0	0.3	0.2	0.0
60\%	-0.1	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	0.0	0.2	0.3	0.1
70\%	-0.1	-0.1	0.2	-0.1	0.1	0.0	0.0	-0.1	0.2	0.2	0.1	0.0
80\%	-0.1	0.0	0.0	0.0	-0.1	0.0	0.0	0.0	0.1	0.1	0.0	0.0
90\%	-0.1	0.0	0.0	0.0	0.0	-0.1	0.0	0.0	0.0	0.0	-0.1	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.1	0.0
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.2	0.0	0.0
Above Normal (16\%)	0.0	0.1	0.1	-0.1	0.0	-0.1	0.0	0.0	-0.1	0.2	0.1	0.0
Below Normal (13\%)	-0.1	-0.1	0.0	0.0	0.0	0.0	0.0	-0.1	-0.6	0.5	0.5	0.2
Dry (24\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.4	0.0	0.0
Critical (15\%)	-0.1	-0.1	-0.1	-0.1	0.1	0.0	0.0	0.0	0.0	0.1	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-43-2-6. Sacramento River at Freeport, Monthly Averaged Daily Minimum Elevation

Statistic	Monthly Averaged Daily Minimum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.0	5.0	12.6	14.8	15.9	14.4	10.9	9.0	4.6	5.0	3.6	3.2
20\%	2.8	3.2	8.0	13.0	14.2	12.0	7.6	6.4	4.0	4.6	3.4	3.1
30\%	2.6	2.9	4.9	9.7	12.0	9.8	5.2	3.8	3.8	4.4	3.3	3.1
40\%	2.3	2.7	3.9	6.1	10.7	7.0	4.4	3.2	3.5	4.1	3.1	3.0
50\%	2.2	2.4	3.3	5.1	7.8	5.7	3.4	2.9	3.2	3.9	2.9	2.9
60\%	2.0	2.2	3.0	3.9	5.6	4.7	2.7	2.7	3.0	3.6	2.6	2.6
70\%	1.8	2.0	2.5	3.2	4.4	4.2	2.4	2.5	2.6	3.1	2.3	2.1
80\%	1.7	1.7	2.1	2.8	3.6	3.2	2.3	2.2	2.5	2.7	2.1	2.0
90\%	1.5	1.4	1.9	2.4	3.1	2.4	2.0	1.8	2.3	2.2	1.9	1.7
Long Term												
Full Simulation Period ${ }^{\text {b }}$	2.3	3.0	5.1	7.0	8.6	7.2	4.9	4.1	3.6	3.7	2.8	2.6
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	2.7	4.0	8.8	11.5	13.0	11.1	8.0	6.9	4.6	4.1	3.2	3.2
Above Normal (16\%)	2.1	3.3	5.3	9.1	10.9	9.9	5.5	4.0	3.4	4.7	3.4	3.0
Below Normal (13\%)	2.5	3.0	3.3	4.3	7.2	4.3	3.1	3.1	3.7	4.4	3.0	2.6
Dry (24\%)	2.1	2.2	2.8	3.8	5.4	4.8	3.2	2.6	3.0	3.1	2.3	2.2
Critical (15\%)	1.8	1.7	2.4	3.1	3.4	2.7	2.1	1.7	2.2	2.1	1.9	1.7

Alternative 5

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.2	5.1	11.4	14.5	15.8	14.2	10.9	9.0	4.4	5.4	3.7	6.8
20\%	2.9	4.2	7.6	12.3	14.1	11.9	7.7	5.9	3.3	5.2	3.6	6.6
30\%	2.8	4.1	4.8	9.0	11.5	8.7	5.2	3.6	2.9	5.0	3.5	5.0
40\%	2.5	3.6	3.9	5.7	10.0	6.8	4.4	2.7	2.7	4.6	3.4	4.6
50\%	2.3	3.1	3.4	4.8	7.6	5.6	3.3	2.5	2.7	4.2	3.3	3.2
60\%	1.9	2.7	3.1	4.0	5.6	4.6	2.6	2.3	2.6	3.9	3.1	2.8
70\%	1.7	2.0	2.8	3.2	4.3	4.1	2.4	2.1	2.5	3.7	2.4	2.2
80\%	1.6	1.8	2.2	2.9	3.5	3.1	2.1	1.9	2.1	3.4	2.1	1.9
90\%	1.4	1.4	1.8	2.4	3.0	2.3	1.9	1.6	1.9	2.5	2.0	1.7

Full Simulation Period ${ }^{\text {b }}$	2.3	3.4	5.0	6.9	8.5	7.1	4.9	3.9	3.1	4.1	3.0	3.9
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	2.8	4.6	8.3	11.2	12.9	11.0	8.0	6.9	4.4	4.5	3.5	6.5
Above Normal (16\%)	2.2	3.8	5.5	8.9	10.7	9.4	5.4	3.7	2.8	5.0	3.6	4.6
Below Normal (13\%)	2.5	3.4	3.4	4.1	6.9	4.1	3.0	2.6	2.6	4.8	3.4	2.7
Dry (24\%)	2.1	2.6	2.9	3.8	5.3	4.8	3.2	2.3	2.6	3.7	2.4	2.2
Critical (15\%)	1.7	1.7	2.4	3.1	3.5	2.7	2.0	1.6	2.0	2.4	2.0	1.7

Alternative 5 minus Second Basis of Comparison

Statistic	Monthly Averaged Daily Minimum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.1	0.2	-1.1	-0.3	0.0	-0.2	0.0	0.0	-0.2	0.4	0.1	3.6
20\%	0.1	1.0	-0.5	-0.7	-0.1	-0.1	0.0	-0.6	-0.6	0.6	0.1	3.5
30\%	0.1	1.2	-0.1	-0.7	-0.4	-1.1	0.0	-0.2	-0.9	0.6	0.2	1.9
40\%	0.2	0.9	0.0	-0.4	-0.6	-0.2	0.0	-0.4	-0.7	0.4	0.3	1.7
50\%	0.1	0.7	0.1	-0.3	-0.1	-0.1	-0.1	-0.4	-0.5	0.2	0.4	0.3
60\%	-0.1	0.5	0.1	0.0	0.0	-0.1	0.0	-0.4	-0.5	0.3	0.5	0.2
70\%	-0.1	0.0	0.4	0.0	-0.1	-0.1	0.0	-0.4	-0.2	0.7	0.1	0.0
80\%	-0.1	0.0	0.1	0.0	-0.1	-0.1	-0.2	-0.4	-0.4	0.7	0.0	0.0
90\%	-0.1	0.0	-0.1	0.0	0.0	-0.1	-0.1	-0.2	-0.4	0.3	0.0	0.1
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.0	0.4	-0.1	-0.1	-0.1	-0.1	-0.1	-0.2	-0.4	0.4	0.2	1.3
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.1	0.6	-0.5	-0.2	-0.1	-0.1	0.0	0.0	-0.2	0.4	0.2	3.3
Above Normal (16\%)	0.1	0.5	0.2	-0.3	-0.3	-0.4	-0.1	-0.3	-0.7	0.3	0.2	1.6
Below Normal (13\%)	0.0	0.4	0.1	-0.2	-0.4	-0.2	-0.1	-0.6	-1.1	0.4	0.4	0.1
Dry (24\%)	0.0	0.4	0.0	0.0	-0.1	0.0	0.0	-0.4	-0.4	0.6	0.1	0.0
Critical (15\%)	-0.1	0.0	0.0	0.0	0.1	-0.1	-0.1	-0.1	-0.2	0.3	0.1	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

1 C.44. Sacramento River downstream of Delta Cross Channel Water Surface Elevation

Figure C-44-1-1. Sacramento River d/s of Delta Cross Channel, Monthly Averaged Daily Maximum Elevation, October

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-44-1-2. Sacramento River d/s of Delta Cross Channel, Monthly Averaged Daily Maximum Elevation, November

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-44-1-3. Sacramento River d/s of Delta Cross Channel, Monthly Averaged Daily Maximum Elevation, December

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-44-1-4. Sacramento River d/s of Delta Cross Channel, Monthly Averaged Daily Maximum Elevation, January

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-44-1-5. Sacramento River d/s of Delta Cross Channel, Monthly Averaged Daily Maximum Elevation, February

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-44-1-6. Sacramento River d/s of Delta Cross Channel, Monthly Averaged Daily Maximum Elevation, March

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-44-1-7. Sacramento River d/s of Delta Cross Channel, Monthly Averaged Daily Maximum Elevation, April

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-44-1-8. Sacramento River d/s of Delta Cross Channel, Monthly Averaged Daily Maximum Elevation, May

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-44-1-9. Sacramento River d/s of Delta Cross Channel, Monthly Averaged Daily Maximum Elevation, June

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-44-1-10. Sacramento River d/s of Delta Cross Channel, Monthly Averaged Daily Maximum Elevation, July

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-44-1-11. Sacramento River d/s of Delta Cross Channel, Monthly Averaged Daily Maximum Elevation, August

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-44-1-12. Sacramento River d/s of Delta Cross Channel, Monthly Averaged Daily Maximum Elevation, September

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-44-1-1. Sacramento River d/s of Delta Cross Channel, Monthly Averaged Daily Maximum Elevation

No Action Alternative

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	4.0	4.5	6.6	8.1	8.7	7.9	6.3	5.4	4.5	4.6	4.3	4.8
20\%	3.9	4.3	5.2	6.9	7.8	6.6	5.0	4.5	4.3	4.5	4.3	4.7
30\%	3.8	4.2	4.5	5.6	6.6	5.2	4.2	4.2	4.2	4.5	4.3	4.4
40\%	3.7	4.0	4.3	4.7	5.9	4.6	4.0	4.0	4.2	4.4	4.2	4.2
50\%	3.7	3.9	4.2	4.5	5.1	4.3	3.8	3.9	4.1	4.4	4.1	4.1
60\%	3.6	3.8	4.1	4.2	4.4	4.1	3.7	3.8	4.0	4.4	4.1	3.9
70\%	3.6	3.7	3.9	4.1	4.2	3.9	3.6	3.8	4.0	4.3	4.0	3.9
80\%	3.5	3.6	3.8	4.0	4.1	3.7	3.5	3.7	3.9	4.2	3.9	3.8
90\%	3.4	3.5	3.7	3.8	3.9	3.6	3.4	3.6	3.8	4.1	3.9	3.6
Long Term												
Full Simulation Period ${ }^{\text {b }}$	3.7	4.0	4.6	5.3	5.7	5.0	4.3	4.2	4.2	4.4	4.1	4.2
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	3.9	4.4	5.7	6.8	7.3	6.5	5.3	5.0	4.5	4.5	4.2	4.7
Above Normal (16\%)	3.7	4.1	4.8	5.8	6.5	5.7	4.4	4.2	4.1	4.5	4.2	4.2
Below Normal (13\%)	3.7	4.0	4.2	4.3	5.0	3.9	3.7	3.8	4.1	4.5	4.2	4.0
Dry (24\%)	3.6	3.8	3.9	4.2	4.4	4.2	3.7	3.8	4.0	4.3	4.0	3.8
Critical (15\%)	3.6	3.6	3.9	4.0	4.1	3.7	3.5	3.6	3.9	4.1	3.9	3.7

Alternative 1

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.9	4.4	7.1	8.2	8.8	7.9	6.3	5.4	4.6	4.5	4.3	4.2
20\%	3.8	4.1	5.4	7.3	7.9	6.6	5.0	4.6	4.4	4.5	4.2	4.1
30\%	3.8	3.9	4.5	5.7	6.7	5.7	4.2	4.2	4.3	4.5	4.2	4.1
40\%	3.7	3.8	4.2	4.7	6.1	4.6	4.0	4.0	4.2	4.4	4.2	4.0
50\%	3.7	3.8	4.1	4.4	5.1	4.3	3.8	4.0	4.2	4.4	4.1	3.9
60\%	3.6	3.7	4.0	4.2	4.4	4.1	3.8	3.9	4.1	4.3	4.1	3.8
70\%	3.6	3.6	3.9	4.1	4.3	3.9	3.7	3.8	4.1	4.2	4.0	3.8
80\%	3.5	3.6	3.8	3.9	4.0	3.8	3.5	3.7	4.0	4.2	4.0	3.8
90\%	3.4	3.4	3.7	3.8	3.9	3.6	3.4	3.6	3.9	4.1	3.9	3.6
Long Term												
Full Simulation Period ${ }^{\text {b }}$	3.7	3.9	4.7	5.3	5.8	5.1	4.3	4.3	4.3	4.3	4.1	3.9
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	3.8	4.2	5.8	6.9	7.4	6.5	5.3	5.0	4.5	4.4	4.2	4.1
Above Normal (16\%)	3.7	4.0	4.7	5.8	6.6	5.8	4.4	4.2	4.2	4.5	4.2	4.0
Below Normal (13\%)	3.7	3.9	4.1	4.3	5.2	3.9	3.7	4.0	4.2	4.4	4.2	4.0
Dry (24\%)	3.6	3.7	3.9	4.2	4.4	4.2	3.7	3.9	4.1	4.2	4.0	3.8
Critical (15\%)	3.6	3.6	3.9	4.0	4.0	3.7	3.6	3.6	3.9	4.1	3.9	3.7

Alternative 1 minus No Action Alternative

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	-0.1	0.0	0.5	0.1	0.0	0.0	0.0	0.0	0.1	-0.1	0.0	-0.6
20\%	-0.1	-0.1	0.2	0.4	0.0	0.0	0.0	0.0	0.1	0.0	-0.1	-0.6
30\%	-0.1	-0.2	0.0	0.2	0.1	0.5	0.0	0.1	0.1	-0.1	-0.1	-0.3
40\%	0.0	-0.2	0.0	0.0	0.2	0.0	0.0	0.0	0.1	0.0	0.0	-0.2
50\%	0.0	-0.1	-0.1	-0.1	0.0	0.0	0.0	0.0	0.1	0.0	0.0	-0.1
60\%	0.0	-0.1	0.0	0.0	0.0	0.0	0.0	0.1	0.1	-0.1	0.0	-0.1
70\%	0.0	-0.1	0.0	0.0	0.0	0.0	0.0	0.1	0.1	-0.1	0.0	-0.1
80\%	0.0	0.0	0.0	-0.1	-0.1	0.0	0.1	0.1	0.1	0.0	0.0	0.0
90\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	-0.1	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.0	-0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	-0.2
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	-0.1	-0.1	0.2	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.6
Above Normal (16\%)	0.0	-0.1	-0.1	0.0	0.1	0.2	0.0	0.1	0.1	0.0	0.0	-0.2
Below Normal (13\%)	0.0	-0.1	0.0	0.0	0.1	0.0	0.0	0.1	0.2	0.0	-0.1	0.0
Dry (24\%)	0.0	-0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.1	-0.1	0.0	0.0
Critical (15\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	-0.1	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year
b Based on the 82 -year simulation period.
C As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All atternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same,
therefore Second Basis of Comparison and Alternative 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-44-1-2. Sacramento River d/s of Delta Cross Channel, Monthly Averaged Daily Maximum Elevation

No Action Alternative

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	4.0	4.5	6.6	8.1	8.7	7.9	6.3	5.4	4.5	4.6	4.3	4.8
20\%	3.9	4.3	5.2	6.9	7.8	6.6	5.0	4.5	4.3	4.5	4.3	4.7
30\%	3.8	4.2	4.5	5.6	6.6	5.2	4.2	4.2	4.2	4.5	4.3	4.4
40\%	3.7	4.0	4.3	4.7	5.9	4.6	4.0	4.0	4.2	4.4	4.2	4.2
50\%	3.7	3.9	4.2	4.5	5.1	4.3	3.8	3.9	4.1	4.4	4.1	4.1
60\%	3.6	3.8	4.1	4.2	4.4	4.1	3.7	3.8	4.0	4.4	4.1	3.9
70\%	3.6	3.7	3.9	4.1	4.2	3.9	3.6	3.8	4.0	4.3	4.0	3.9
80\%	3.5	3.6	3.8	4.0	4.1	3.7	3.5	3.7	3.9	4.2	3.9	3.8
90\%	3.4	3.5	3.7	3.8	3.9	3.6	3.4	3.6	3.8	4.1	3.9	3.6
Long Term												
Full Simulation Period ${ }^{\text {b }}$	3.7	4.0	4.6	5.3	5.7	5.0	4.3	4.2	4.2	4.4	4.1	4.2
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	3.9	4.4	5.7	6.8	7.3	6.5	5.3	5.0	4.5	4.5	4.2	4.7
Above Normal (16\%)	3.7	4.1	4.8	5.8	6.5	5.7	4.4	4.2	4.1	4.5	4.2	4.2
Below Normal (13\%)	3.7	4.0	4.2	4.3	5.0	3.9	3.7	3.8	4.1	4.5	4.2	4.0
Dry (24\%)	3.6	3.8	3.9	4.2	4.4	4.2	3.7	3.8	4.0	4.3	4.0	3.8
Critical (15\%)	3.6	3.6	3.9	4.0	4.1	3.7	3.5	3.6	3.9	4.1	3.9	3.7

Alternative 3

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.9	4.4	7.1	8.2	8.8	7.9	6.3	5.4	4.5	4.6	4.3	4.2
20\%	3.8	4.1	5.4	7.3	7.9	6.6	5.0	4.5	4.3	4.5	4.3	4.1
30\%	3.8	3.9	4.5	5.7	6.7	5.4	4.2	4.2	4.3	4.5	4.2	4.0
40\%	3.7	3.8	4.2	4.7	6.1	4.6	4.0	4.1	4.2	4.4	4.2	4.0
50\%	3.7	3.7	4.1	4.4	5.1	4.3	3.8	4.0	4.2	4.4	4.1	3.9
60\%	3.6	3.7	4.0	4.2	4.3	4.1	3.7	3.9	4.1	4.3	4.1	3.9
70\%	3.6	3.6	3.9	4.1	4.3	3.9	3.7	3.8	4.0	4.3	4.0	3.8
80\%	3.5	3.6	3.8	4.0	4.0	3.8	3.5	3.7	4.0	4.2	3.9	3.8
90\%	3.4	3.4	3.7	3.8	3.9	3.6	3.4	3.6	3.9	4.1	3.9	3.7
Long Term												
Full Simulation Period ${ }^{\text {b }}$	3.7	3.9	4.7	5.3	5.8	5.1	4.3	4.2	4.3	4.4	4.1	3.9
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	3.8	4.2	5.8	6.9	7.4	6.5	5.3	5.0	4.6	4.5	4.2	4.1
Above Normal (16\%)	3.6	4.0	4.7	5.8	6.6	5.8	4.4	4.2	4.2	4.5	4.2	4.0
Below Normal (13\%)	3.7	3.9	4.1	4.3	5.2	3.9	3.7	3.9	4.2	4.5	4.2	4.0
Dry (24\%)	3.6	3.7	3.9	4.2	4.4	4.2	3.7	3.9	4.1	4.3	4.0	3.8
Critical (15\%)	3.6	3.6	3.9	4.0	4.1	3.7	3.6	3.6	3.9	4.1	3.9	3.7

Alternative 3 minus No Action Alternative

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	-0.1	-0.1	0.5	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.6
20\%	-0.1	-0.1	0.3	0.4	0.0	0.0	0.0	0.0	0.1	0.0	0.0	-0.6
30\%	-0.1	-0.3	0.0	0.2	0.1	0.3	0.0	0.0	0.1	0.0	0.0	-0.4
40\%	0.0	-0.2	0.0	0.0	0.2	0.0	0.0	0.0	0.1	0.0	0.0	-0.2
50\%	0.0	-0.2	-0.1	0.0	0.0	0.0	0.0	0.1	0.1	0.0	0.0	-0.1
60\%	0.0	-0.1	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.0	0.0	-0.1
70\%	0.0	-0.1	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.0	0.0	-0.1
80\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.0	0.0	0.0
90\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.0	-0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	-0.2
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	-0.1	-0.1	0.2	0.1	0.0	0.0	0.0	0.0	0.1	0.0	0.0	-0.6
Above Normal (16\%)	0.0	-0.1	-0.1	0.0	0.1	0.1	0.0	0.0	0.1	0.0	0.0	-0.2
Below Normal (13\%)	-0.1	-0.1	0.0	0.0	0.1	0.0	0.0	0.1	0.1	0.0	0.0	0.0
Dry (24\%)	0.0	-0.1	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.0	0.0	0.0
Critical (15\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year
b Based on the 82 -year simulation period
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030,
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same,
therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and $N o$ Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-44-1-3. Sacramento River d/s of Delta Cross Channel, Monthly Averaged Daily Maximum Elevation

No Action Alternative

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	4.0	4.5	6.6	8.1	8.7	7.9	6.3	5.4	4.5	4.6	4.3	4.8
20\%	3.9	4.3	5.2	6.9	7.8	6.6	5.0	4.5	4.3	4.5	4.3	4.7
30\%	3.8	4.2	4.5	5.6	6.6	5.2	4.2	4.2	4.2	4.5	4.3	4.4
40\%	3.7	4.0	4.3	4.7	5.9	4.6	4.0	4.0	4.2	4.4	4.2	4.2
50\%	3.7	3.9	4.2	4.5	5.1	4.3	3.8	3.9	4.1	4.4	4.1	4.1
60\%	3.6	3.8	4.1	4.2	4.4	4.1	3.7	3.8	4.0	4.4	4.1	3.9
70\%	3.6	3.7	3.9	4.1	4.2	3.9	3.6	3.8	4.0	4.3	4.0	3.9
80\%	3.5	3.6	3.8	4.0	4.1	3.7	3.5	3.7	3.9	4.2	3.9	3.8
90\%	3.4	3.5	3.7	3.8	3.9	3.6	3.4	3.6	3.8	4.1	3.9	3.6
Long Term												
Full Simulation Period ${ }^{\text {b }}$	3.7	4.0	4.6	5.3	5.7	5.0	4.3	4.2	4.2	4.4	4.1	4.2
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	3.9	4.4	5.7	6.8	7.3	6.5	5.3	5.0	4.5	4.5	4.2	4.7
Above Normal (16\%)	3.7	4.1	4.8	5.8	6.5	5.7	4.4	4.2	4.1	4.5	4.2	4.2
Below Normal (13\%)	3.7	4.0	4.2	4.3	5.0	3.9	3.7	3.8	4.1	4.5	4.2	4.0
Dry (24\%)	3.6	3.8	3.9	4.2	4.4	4.2	3.7	3.8	4.0	4.3	4.0	3.8
Critical (15\%)	3.6	3.6	3.9	4.0	4.1	3.7	3.5	3.6	3.9	4.1	3.9	3.7

Alternative 5

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	4.0	4.5	6.6	8.1	8.7	7.9	6.3	5.4	4.5	4.6	4.3	4.8
20\%	3.9	4.3	5.2	6.9	7.8	6.6	5.0	4.5	4.3	4.5	4.3	4.7
30\%	3.8	4.2	4.5	5.6	6.6	5.2	4.2	4.1	4.2	4.5	4.3	4.4
40\%	3.7	4.0	4.3	4.7	5.9	4.6	4.0	4.0	4.1	4.4	4.2	4.2
50\%	3.7	3.9	4.1	4.5	5.1	4.3	3.8	3.9	4.1	4.4	4.1	4.1
60\%	3.7	3.8	4.1	4.2	4.4	4.1	3.7	3.8	4.1	4.4	4.1	4.0
70\%	3.6	3.7	3.9	4.1	4.2	3.9	3.6	3.7	3.9	4.3	4.1	3.9
80\%	3.5	3.6	3.8	4.0	4.1	3.7	3.5	3.6	3.9	4.2	3.9	3.8
90\%	3.4	3.5	3.7	3.8	3.9	3.6	3.4	3.5	3.8	4.2	3.9	3.6
Long Term												
Full Simulation Period ${ }^{\text {b }}$	3.7	4.0	4.6	5.3	5.7	5.0	4.3	4.2	4.2	4.4	4.1	4.2
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	3.9	4.4	5.7	6.8	7.3	6.5	5.3	5.0	4.5	4.5	4.2	4.7
Above Normal (16\%)	3.7	4.1	4.8	5.8	6.5	5.7	4.4	4.2	4.1	4.5	4.2	4.2
Below Normal (13\%)	3.7	4.0	4.2	4.3	5.0	3.9	3.7	3.8	4.1	4.5	4.2	4.0
Dry (24\%)	3.6	3.8	3.9	4.2	4.4	4.2	3.7	3.8	4.0	4.3	4.0	3.8
Critical (15\%)	3.6	3.6	3.9	4.0	4.1	3.7	3.5	3.5	3.9	4.1	3.9	3.7

Alternative 5 minus No Action Alternative

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
20\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
30\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
40\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
50\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
60\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
70\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
80\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	0.0	0.1	0.0	0.0
90\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	0.0	0.0	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Above Normal (16\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Below Normal (13\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dry (24\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	0.0	0.0	0.0	0.0
Critical (15\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year
b Based on the 82 -year simulation period
C As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All atternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same, therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and $N o$ Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-44-1-4. Sacramento River d/s of Delta Cross Channel, Monthly Averaged Daily Maximum Elevation

Second Basis of Comparison

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.9	4.4	7.1	8.2	8.8	7.9	6.3	5.4	4.6	4.5	4.3	4.2
20\%	3.8	4.1	5.4	7.3	7.9	6.6	5.0	4.6	4.4	4.5	4.2	4.1
30\%	3.8	3.9	4.5	5.7	6.7	5.7	4.2	4.2	4.3	4.5	4.2	4.1
40\%	3.7	3.8	4.2	4.7	6.1	4.6	4.0	4.0	4.2	4.4	4.2	4.0
50\%	3.7	3.8	4.1	4.4	5.1	4.3	3.8	4.0	4.2	4.4	4.1	3.9
60\%	3.6	3.7	4.0	4.2	4.4	4.1	3.8	3.9	4.1	4.3	4.1	3.8
70\%	3.6	3.6	3.9	4.1	4.3	3.9	3.7	3.8	4.1	4.2	4.0	3.8
80\%	3.5	3.6	3.8	3.9	4.0	3.8	3.5	3.7	4.0	4.2	4.0	3.8
90\%	3.4	3.4	3.7	3.8	3.9	3.6	3.4	3.6	3.9	4.1	3.9	3.6
Long Term												
Full Simulation Period ${ }^{\text {b }}$	3.7	3.9	4.7	5.3	5.8	5.1	4.3	4.3	4.3	4.3	4.1	3.9
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	3.8	4.2	5.8	6.9	7.4	6.5	5.3	5.0	4.5	4.4	4.2	4.1
Above Normal (16\%)	3.7	4.0	4.7	5.8	6.6	5.8	4.4	4.2	4.2	4.5	4.2	4.0
Below Normal (13\%)	3.7	3.9	4.1	4.3	5.2	3.9	3.7	4.0	4.2	4.4	4.2	4.0
Dry (24\%)	3.6	3.7	3.9	4.2	4.4	4.2	3.7	3.9	4.1	4.2	4.0	3.8
Critical (15\%)	3.6	3.6	3.9	4.0	4.0	3.7	3.6	3.6	3.9	4.1	3.9	3.7

No Action Alternative

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	4.0	4.5	6.6	8.1	8.7	7.9	6.3	5.4	4.5	4.6	4.3	4.8
20\%	3.9	4.3	5.2	6.9	7.8	6.6	5.0	4.5	4.3	4.5	4.3	4.7
30\%	3.8	4.2	4.5	5.6	6.6	5.2	4.2	4.2	4.2	4.5	4.3	4.4
40\%	3.7	4.0	4.3	4.7	5.9	4.6	4.0	4.0	4.2	4.4	4.2	4.2
50\%	3.7	3.9	4.2	4.5	5.1	4.3	3.8	3.9	4.1	4.4	4.1	4.1
60\%	3.6	3.8	4.1	4.2	4.4	4.1	3.7	3.8	4.0	4.4	4.1	3.9
70\%	3.6	3.7	3.9	4.1	4.2	3.9	3.6	3.8	4.0	4.3	4.0	3.9
80\%	3.5	3.6	3.8	4.0	4.1	3.7	3.5	3.7	3.9	4.2	3.9	3.8
90\%	3.4	3.5	3.7	3.8	3.9	3.6	3.4	3.6	3.8	4.1	3.9	3.6
Long Term												
Full Simulation Period ${ }^{\text {b }}$	3.7	4.0	4.6	5.3	5.7	5.0	4.3	4.2	4.2	4.4	4.1	4.2
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	3.9	4.4	5.7	6.8	7.3	6.5	5.3	5.0	4.5	4.5	4.2	4.7
Above Normal (16\%)	3.7	4.1	4.8	5.8	6.5	5.7	4.4	4.2	4.1	4.5	4.2	4.2
Below Normal (13\%)	3.7	4.0	4.2	4.3	5.0	3.9	3.7	3.8	4.1	4.5	4.2	4.0
Dry (24\%)	3.6	3.8	3.9	4.2	4.4	4.2	3.7	3.8	4.0	4.3	4.0	3.8
Critical (15\%)	3.6	3.6	3.9	4.0	4.1	3.7	3.5	3.6	3.9	4.1	3.9	3.7

No Action Alternative minus Second Basis of Comparison

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.1	0.0	-0.5	-0.1	0.0	0.0	0.0	0.0	-0.1	0.1	0.0	0.6
20\%	0.1	0.1	-0.2	-0.4	0.0	0.0	0.0	0.0	-0.1	0.0	0.1	0.6
30\%	0.1	0.2	0.0	-0.2	-0.1	-0.5	0.0	-0.1	-0.1	0.1	0.1	0.3
40\%	0.0	0.2	0.0	0.0	-0.2	0.0	0.0	0.0	-0.1	0.0	0.0	0.2
50\%	0.0	0.1	0.1	0.1	0.0	0.0	0.0	0.0	-0.1	0.0	0.0	0.1
60\%	0.0	0.1	0.0	0.0	0.0	0.0	0.0	-0.1	-0.1	0.1	0.0	0.1
70\%	0.0	0.1	0.0	0.0	0.0	0.0	0.0	-0.1	-0.1	0.1	0.0	0.1
80\%	0.0	0.0	0.0	0.1	0.1	0.0	-0.1	-0.1	-0.1	0.0	0.0	0.0
90\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	0.1	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	0.0	0.0	0.2
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.1	0.1	-0.2	-0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.6
Above Normal (16\%)	0.0	0.1	0.1	0.0	-0.1	-0.2	0.0	-0.1	-0.1	0.0	0.0	0.2
Below Normal (13\%)	0.0	0.1	0.0	0.0	-0.1	0.0	0.0	-0.1	-0.2	0.0	0.1	0.0
Dry (24\%)	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	0.1	0.0	0.0
Critical (15\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	0.1	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period.
C As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same, therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and $N o$ Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-44-1-5. Sacramento River d/s of Delta Cross Channel, Monthly Averaged Daily Maximum Elevation

Second Basis of Comparison

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.9	4.4	7.1	8.2	8.8	7.9	6.3	5.4	4.6	4.5	4.3	4.2
20\%	3.8	4.1	5.4	7.3	7.9	6.6	5.0	4.6	4.4	4.5	4.2	4.1
30\%	3.8	3.9	4.5	5.7	6.7	5.7	4.2	4.2	4.3	4.5	4.2	4.1
40\%	3.7	3.8	4.2	4.7	6.1	4.6	4.0	4.0	4.2	4.4	4.2	4.0
50\%	3.7	3.8	4.1	4.4	5.1	4.3	3.8	4.0	4.2	4.4	4.1	3.9
60\%	3.6	3.7	4.0	4.2	4.4	4.1	3.8	3.9	4.1	4.3	4.1	3.8
70\%	3.6	3.6	3.9	4.1	4.3	3.9	3.7	3.8	4.1	4.2	4.0	3.8
80\%	3.5	3.6	3.8	3.9	4.0	3.8	3.5	3.7	4.0	4.2	4.0	3.8
90\%	3.4	3.4	3.7	3.8	3.9	3.6	3.4	3.6	3.9	4.1	3.9	3.6
Long Term												
Full Simulation Period ${ }^{\text {b }}$	3.7	3.9	4.7	5.3	5.8	5.1	4.3	4.3	4.3	4.3	4.1	3.9
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	3.8	4.2	5.8	6.9	7.4	6.5	5.3	5.0	4.5	4.4	4.2	4.1
Above Normal (16\%)	3.7	4.0	4.7	5.8	6.6	5.8	4.4	4.2	4.2	4.5	4.2	4.0
Below Normal (13\%)	3.7	3.9	4.1	4.3	5.2	3.9	3.7	4.0	4.2	4.4	4.2	4.0
Dry (24\%)	3.6	3.7	3.9	4.2	4.4	4.2	3.7	3.9	4.1	4.2	4.0	3.8
Critical (15\%)	3.6	3.6	3.9	4.0	4.0	3.7	3.6	3.6	3.9	4.1	3.9	3.7

Alternative 3

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.9	4.4	7.1	8.2	8.8	7.9	6.3	5.4	4.5	4.6	4.3	4.2
20\%	3.8	4.1	5.4	7.3	7.9	6.6	5.0	4.5	4.3	4.5	4.3	4.1
30\%	3.8	3.9	4.5	5.7	6.7	5.4	4.2	4.2	4.3	4.5	4.2	4.0
40\%	3.7	3.8	4.2	4.7	6.1	4.6	4.0	4.1	4.2	4.4	4.2	4.0
50\%	3.7	3.7	4.1	4.4	5.1	4.3	3.8	4.0	4.2	4.4	4.1	3.9
60\%	3.6	3.7	4.0	4.2	4.3	4.1	3.7	3.9	4.1	4.3	4.1	3.9
70\%	3.6	3.6	3.9	4.1	4.3	3.9	3.7	3.8	4.0	4.3	4.0	3.8
80\%	3.5	3.6	3.8	4.0	4.0	3.8	3.5	3.7	4.0	4.2	3.9	3.8
90\%	3.4	3.4	3.7	3.8	3.9	3.6	3.4	3.6	3.9	4.1	3.9	3.7
Long Term												
Full Simulation Period ${ }^{\text {b }}$	3.7	3.9	4.7	5.3	5.8	5.1	4.3	4.2	4.3	4.4	4.1	3.9
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	3.8	4.2	5.8	6.9	7.4	6.5	5.3	5.0	4.6	4.5	4.2	4.1
Above Normal (16\%)	3.6	4.0	4.7	5.8	6.6	5.8	4.4	4.2	4.2	4.5	4.2	4.0
Below Normal (13\%)	3.7	3.9	4.1	4.3	5.2	3.9	3.7	3.9	4.2	4.5	4.2	4.0
Dry (24\%)	3.6	3.7	3.9	4.2	4.4	4.2	3.7	3.9	4.1	4.3	4.0	3.8
Critical (15\%)	3.6	3.6	3.9	4.0	4.1	3.7	3.6	3.6	3.9	4.1	3.9	3.7

Alternative 3 minus Second Basis of Comparison

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	0.0	0.0	0.0
20\%	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
30\%	0.0	0.0	0.0	0.0	0.0	-0.2	0.0	-0.1	0.0	0.0	0.0	0.0
40\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
50\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
60\%	0.0	0.0	0.0	0.0	-0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
70\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
80\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
90\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Above Normal (16\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Below Normal (13\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	0.0	0.1	0.0
Dry (24\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0
Critical (15\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030 .
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same, therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and $N o$ Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-44-1-6. Sacramento River d/s of Delta Cross Channel, Monthly Averaged Daily Maximum Elevation

Second Basis of Comparison

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.9	4.4	7.1	8.2	8.8	7.9	6.3	5.4	4.6	4.5	4.3	4.2
20\%	3.8	4.1	5.4	7.3	7.9	6.6	5.0	4.6	4.4	4.5	4.2	4.1
30\%	3.8	3.9	4.5	5.7	6.7	5.7	4.2	4.2	4.3	4.5	4.2	4.1
40\%	3.7	3.8	4.2	4.7	6.1	4.6	4.0	4.0	4.2	4.4	4.2	4.0
50\%	3.7	3.8	4.1	4.4	5.1	4.3	3.8	4.0	4.2	4.4	4.1	3.9
60\%	3.6	3.7	4.0	4.2	4.4	4.1	3.8	3.9	4.1	4.3	4.1	3.8
70\%	3.6	3.6	3.9	4.1	4.3	3.9	3.7	3.8	4.1	4.2	4.0	3.8
80\%	3.5	3.6	3.8	3.9	4.0	3.8	3.5	3.7	4.0	4.2	4.0	3.8
90\%	3.4	3.4	3.7	3.8	3.9	3.6	3.4	3.6	3.9	4.1	3.9	3.6
Long Term												
Full Simulation Period ${ }^{\text {b }}$	3.7	3.9	4.7	5.3	5.8	5.1	4.3	4.3	4.3	4.3	4.1	3.9
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	3.8	4.2	5.8	6.9	7.4	6.5	5.3	5.0	4.5	4.4	4.2	4.1
Above Normal (16\%)	3.7	4.0	4.7	5.8	6.6	5.8	4.4	4.2	4.2	4.5	4.2	4.0
Below Normal (13\%)	3.7	3.9	4.1	4.3	5.2	3.9	3.7	4.0	4.2	4.4	4.2	4.0
Dry (24\%)	3.6	3.7	3.9	4.2	4.4	4.2	3.7	3.9	4.1	4.2	4.0	3.8
Critical (15\%)	3.6	3.6	3.9	4.0	4.0	3.7	3.6	3.6	3.9	4.1	3.9	3.7

Alternative 5

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	4.0	4.5	6.6	8.1	8.7	7.9	6.3	5.4	4.5	4.6	4.3	4.8
20\%	3.9	4.3	5.2	6.9	7.8	6.6	5.0	4.5	4.3	4.5	4.3	4.7
30\%	3.8	4.2	4.5	5.6	6.6	5.2	4.2	4.1	4.2	4.5	4.3	4.4
40\%	3.7	4.0	4.3	4.7	5.9	4.6	4.0	4.0	4.1	4.4	4.2	4.2
50\%	3.7	3.9	4.1	4.5	5.1	4.3	3.8	3.9	4.1	4.4	4.1	4.1
60\%	3.7	3.8	4.1	4.2	4.4	4.1	3.7	3.8	4.1	4.4	4.1	4.0
70\%	3.6	3.7	3.9	4.1	4.2	3.9	3.6	3.7	3.9	4.3	4.1	3.9
80\%	3.5	3.6	3.8	4.0	4.1	3.7	3.5	3.6	3.9	4.2	3.9	3.8
90\%	3.4	3.5	3.7	3.8	3.9	3.6	3.4	3.5	3.8	4.2	3.9	3.6
Long Term												
Full Simulation Period ${ }^{\text {b }}$	3.7	4.0	4.6	5.3	5.7	5.0	4.3	4.2	4.2	4.4	4.1	4.2
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	3.9	4.4	5.7	6.8	7.3	6.5	5.3	5.0	4.5	4.5	4.2	4.7
Above Normal (16\%)	3.7	4.1	4.8	5.8	6.5	5.7	4.4	4.2	4.1	4.5	4.2	4.2
Below Normal (13\%)	3.7	4.0	4.2	4.3	5.0	3.9	3.7	3.8	4.1	4.5	4.2	4.0
Dry (24\%)	3.6	3.8	3.9	4.2	4.4	4.2	3.7	3.8	4.0	4.3	4.0	3.8
Critical (15\%)	3.6	3.6	3.9	4.0	4.1	3.7	3.5	3.5	3.9	4.1	3.9	3.7

Alternative 5 minus Second Basis of Comparison

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.1	0.0	-0.5	-0.1	0.0	0.0	0.0	0.0	-0.1	0.1	0.1	0.6
20\%	0.1	0.2	-0.2	-0.4	0.0	0.0	0.0	0.0	-0.1	0.0	0.1	0.6
30\%	0.1	0.2	0.0	-0.2	-0.1	-0.5	0.0	-0.1	-0.1	0.1	0.1	0.3
40\%	0.0	0.2	0.0	0.0	-0.2	0.0	0.0	0.0	-0.1	0.0	0.0	0.2
50\%	0.0	0.2	0.1	0.1	0.0	0.0	0.0	-0.1	-0.1	0.0	0.0	0.1
60\%	0.0	0.1	0.0	0.0	0.0	0.0	0.0	-0.1	-0.1	0.1	0.0	0.1
70\%	0.0	0.1	0.0	0.0	0.0	0.0	0.0	-0.1	-0.1	0.1	0.1	0.1
80\%	0.0	0.0	0.0	0.1	0.1	0.0	-0.1	-0.1	-0.1	0.1	0.0	0.0
90\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	-0.1	0.1	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.0	0.1	0.0	0.0	0.0	0.0	0.0	-0.1	-0.1	0.1	0.0	0.2
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.1	0.1	-0.2	-0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.6
Above Normal (16\%)	0.0	0.1	0.1	0.0	-0.1	-0.2	0.0	-0.1	-0.1	0.0	0.0	0.2
Below Normal (13\%)	0.0	0.1	0.0	0.0	-0.1	0.0	0.0	-0.2	-0.2	0.0	0.1	0.0
Dry (24\%)	0.0	0.1	0.0	0.0	0.0	0.0	0.0	-0.1	-0.1	0.1	0.0	0.0
Critical (15\%)	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	0.0	-0.1	0.1	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period.
C As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same, therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and $N o$ Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-44-2-1. Sacramento River d/s of Delta Cross Channel, Monthly Averaged Daily Minimum Elevation, October

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-44-2-2. Sacramento River d/s of Delta Cross Channel, Monthly Averaged Daily Minimum Elevation, November

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-44-2-3. Sacramento River d/s of Delta Cross Channel, Monthly Averaged Daily Minimum Elevation, December

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-44-2-4. Sacramento River d/s of Delta Cross Channel, Monthly Averaged Daily Minimum Elevation, January

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-44-2-5. Sacramento River d/s of Delta Cross Channel, Monthly Averaged Daily Minimum Elevation, February

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-44-2-6. Sacramento River d/s of Delta Cross Channel, Monthly Averaged Daily Minimum Elevation, March

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-44-2-7. Sacramento River d/s of Delta Cross Channel, Monthly Averaged Daily Minimum Elevation, April

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-44-2-8. Sacramento River d/s of Delta Cross Channel, Monthly Averaged Daily Minimum Elevation, May

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-44-2-9. Sacramento River d/s of Delta Cross Channel, Monthly Averaged Daily Minimum Elevation, June

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-44-2-10. Sacramento River d/s of Delta Cross Channel, Monthly Averaged Daily Minimum Elevation, July

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-44-2-11. Sacramento River d/s of Delta Cross Channel, Monthly Averaged Daily Minimum Elevation, August

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-44-2-12. Sacramento River d/s of Delta Cross Channel, Monthly Averaged Daily Minimum Elevation, September

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-44-2-1. Sacramento River d/s of Delta Cross Channel, Monthly Averaged Daily Minimum Elevation

No Action Alternative

Statistic	Monthly Averaged Daily Minimum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	1.1	2.0	5.2	7.0	7.9	6.9	5.0	3.8	1.3	1.4	1.0	2.8
20\%	0.9	1.5	3.0	5.6	6.8	5.5	3.3	2.3	0.9	1.3	0.9	2.7
30\%	0.8	1.4	1.9	3.8	5.3	3.7	2.0	1.3	0.7	1.3	0.9	1.5
40\%	0.7	1.2	1.4	2.4	4.4	2.8	1.6	1.0	0.7	1.2	0.9	1.2
50\%	0.6	0.9	1.2	1.9	3.1	2.2	1.1	0.9	0.6	1.1	0.8	0.9
60\%	0.5	0.7	1.0	1.4	2.1	1.8	0.9	0.8	0.6	1.0	0.8	0.7
70\%	0.4	0.6	0.8	1.1	1.6	1.5	0.8	0.7	0.6	0.9	0.7	0.6
80\%	0.4	0.4	0.7	1.0	1.3	1.2	0.7	0.6	0.5	0.8	0.6	0.6
90\%	0.3	0.3	0.5	0.8	1.1	0.7	0.6	0.5	0.4	0.6	0.5	0.5
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.7	1.2	2.0	3.0	3.8	3.1	2.0	1.5	0.9	1.0	0.8	1.4
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.9	1.7	3.6	5.3	6.1	5.1	3.5	2.9	1.5	1.2	0.9	2.6
Above Normal (16\%)	0.6	1.4	2.2	3.9	5.0	4.2	2.2	1.4	0.7	1.3	1.0	1.2
Below Normal (13\%)	0.7	1.1	1.2	1.6	2.9	1.5	1.0	0.9	0.6	1.2	0.9	0.8
Dry (24\%)	0.5	0.8	0.9	1.4	2.1	1.9	1.1	0.8	0.6	0.9	0.6	0.6
Critical (15\%)	0.4	0.4	0.7	1.1	1.3	0.9	0.7	0.5	0.4	0.6	0.5	0.5

Alternative 1

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.8	1.5	5.8	7.1	7.9	7.0	5.0	3.8	1.3	1.3	1.0	1.0
20\%	0.7	0.9	3.3	6.1	6.8	5.5	3.2	2.5	1.0	1.2	0.9	0.9
30\%	0.6	0.8	1.6	4.2	5.4	4.2	2.0	1.4	0.9	1.2	0.9	0.9
40\%	0.6	0.7	1.2	2.5	4.7	2.9	1.6	1.1	0.9	1.1	0.8	0.8
50\%	0.5	0.6	0.9	1.7	3.2	2.2	1.1	1.0	0.8	1.0	0.8	0.8
60\%	0.5	0.5	0.9	1.2	2.2	1.8	0.9	0.9	0.7	0.9	0.7	0.7
70\%	0.4	0.5	0.7	1.0	1.7	1.5	0.8	0.8	0.6	0.8	0.7	0.6
80\%	0.4	0.4	0.6	0.9	1.3	1.2	0.7	0.7	0.6	0.6	0.6	0.5
90\%	0.3	0.2	0.5	0.7	1.1	0.7	0.6	0.6	0.4	0.5	0.5	0.5

Long Term												
Full Simulation Period ${ }^{\mathbf{b}}$	0.6	0.9	1.9	3.0	3.9	3.1	2.0	1.6	1.0	1.0	0.8	0.8
Water Year Types $^{\mathbf{c}}$												
Wet $^{(32 \%)}$)	0.7	1.3	3.8	5.4	6.2	5.2	3.5	2.9	1.6	1.1	0.9	0.9
Above Normal (16\%)	0.5	1.0	2.0	4.0	5.1	4.4	2.2	1.5	0.9	1.2	0.9	0.8
Below Normal (13\%)	0.6	0.8	1.0	1.5	3.1	1.6	1.1	1.1	0.9	1.1	0.8	0.8
Dry (24\%)	0.5	0.5	0.8	1.2	2.1	1.9	1.1	0.9	0.7	0.7	0.6	0.6
Critical (15\%)	0.4	0.4	0.6	1.0	1.3	1.0	0.7	0.5	0.5	0.5	0.5	0.5

Alternative 1 minus No Action Alternative

Statistic	Monthly Averaged Daily Minimum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{a}$												
10\%	-0.2	-0.5	0.6	0.1	0.0	0.0	0.0	0.0	0.0	-0.1	0.0	-1.8
20\%	-0.2	-0.7	0.3	0.4	0.0	0.0	0.0	0.3	0.1	-0.1	0.0	-1.8
30\%	-0.2	-0.6	-0.3	0.3	0.2	0.6	0.0	0.1	0.2	-0.1	-0.1	-0.6
40\%	-0.1	-0.5	-0.3	0.1	0.3	0.1	0.0	0.1	0.2	-0.1	-0.1	-0.4
50\%	-0.1	-0.4	-0.3	-0.2	0.1	0.0	0.0	0.1	0.2	-0.1	-0.1	-0.1
60\%	0.0	-0.2	-0.1	-0.2	0.0	0.0	0.0	0.1	0.1	-0.1	-0.1	0.0
70\%	0.0	-0.1	-0.1	-0.2	0.1	0.0	0.0	0.1	0.1	-0.1	0.0	0.0
80\%	0.0	-0.1	-0.1	-0.2	0.0	0.0	0.0	0.1	0.1	-0.2	0.0	0.0
90\%	0.0	0.0	0.0	-0.1	0.0	0.0	0.0	0.0	0.1	-0.1	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	-0.1	-0.3	0.0	0.0	0.1	0.1	0.0	0.1	0.1	-0.1	0.0	-0.6
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	-0.2	-0.3	0.2	0.1	0.1	0.1	0.0	0.0	0.0	-0.1	0.0	-1.7
Above Normal (16\%)	-0.1	-0.4	-0.2	0.1	0.1	0.2	0.0	0.1	0.2	-0.1	0.0	-0.4
Below Normal (13\%)	-0.1	-0.3	-0.1	-0.1	0.2	0.1	0.0	0.2	0.3	-0.1	-0.1	0.0
Dry (24\%)	0.0	-0.3	-0.1	-0.2	0.0	0.0	0.0	0.1	0.1	-0.1	0.0	0.0
Critical (15\%)	0.0	0.0	-0.1	-0.1	0.0	0.0	0.0	0.0	0.0	-0.1	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year
b Based on the 82 -year simulation period
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same,
therefore Second Basis of Comparison and Alternative 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-44-2-2. Sacramento River d/s of Delta Cross Channel, Monthly Averaged Daily Minimum Elevation

No Action Alternative

Statistic	Monthly Averaged Daily Minimum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	1.1	2.0	5.2	7.0	7.9	6.9	5.0	3.8	1.3	1.4	1.0	2.8
20\%	0.9	1.5	3.0	5.6	6.8	5.5	3.3	2.3	0.9	1.3	0.9	2.7
30\%	0.8	1.4	1.9	3.8	5.3	3.7	2.0	1.3	0.7	1.3	0.9	1.5
40\%	0.7	1.2	1.4	2.4	4.4	2.8	1.6	1.0	0.7	1.2	0.9	1.2
50\%	0.6	0.9	1.2	1.9	3.1	2.2	1.1	0.9	0.6	1.1	0.8	0.9
60\%	0.5	0.7	1.0	1.4	2.1	1.8	0.9	0.8	0.6	1.0	0.8	0.7
70\%	0.4	0.6	0.8	1.1	1.6	1.5	0.8	0.7	0.6	0.9	0.7	0.6
80\%	0.4	0.4	0.7	1.0	1.3	1.2	0.7	0.6	0.5	0.8	0.6	0.6
90\%	0.3	0.3	0.5	0.8	1.1	0.7	0.6	0.5	0.4	0.6	0.5	0.5
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.7	1.2	2.0	3.0	3.8	3.1	2.0	1.5	0.9	1.0	0.8	1.4
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.9	1.7	3.6	5.3	6.1	5.1	3.5	2.9	1.5	1.2	0.9	2.6
Above Normal (16\%)	0.6	1.4	2.2	3.9	5.0	4.2	2.2	1.4	0.7	1.3	1.0	1.2
Below Normal (13\%)	0.7	1.1	1.2	1.6	2.9	1.5	1.0	0.9	0.6	1.2	0.9	0.8
Dry (24\%)	0.5	0.8	0.9	1.4	2.1	1.9	1.1	0.8	0.6	0.9	0.6	0.6
Critical (15\%)	0.4	0.4	0.7	1.1	1.3	0.9	0.7	0.5	0.4	0.6	0.5	0.5

Alternative 3

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.8	1.5	5.7	7.1	7.9	7.0	5.0	3.8	1.2	1.4	1.0	1.0
20\%	0.7	0.9	3.4	6.0	6.8	5.5	3.2	2.3	1.0	1.3	0.9	0.9
30\%	0.6	0.8	1.6	4.2	5.5	3.9	2.0	1.5	0.9	1.3	0.9	0.9
40\%	0.6	0.6	1.2	2.5	4.7	2.9	1.6	1.1	0.8	1.2	0.9	0.8
50\%	0.5	0.6	0.9	1.7	3.2	2.2	1.1	1.0	0.8	1.1	0.8	0.8
60\%	0.5	0.5	0.8	1.3	2.2	1.8	0.9	0.9	0.7	1.0	0.8	0.7
70\%	0.4	0.4	0.7	1.0	1.7	1.5	0.8	0.8	0.7	0.8	0.7	0.6
80\%	0.3	0.3	0.6	0.9	1.3	1.2	0.7	0.7	0.6	0.7	0.6	0.6
90\%	0.3	0.2	0.4	0.7	1.1	0.7	0.6	0.5	0.4	0.6	0.5	0.5

Long Term												
Full Simulation Period ${ }^{\mathbf{b}}$	0.6	0.9	1.9	3.0	3.9	3.1	2.0	1.6	1.0	1.0	0.8	0.8
Water Year Types $^{\mathbf{c}}$												
Wet $^{(32 \%)}$)	0.7	1.3	3.8	5.4	6.2	5.1	3.5	2.9	1.6	1.2	0.9	0.9
Above Normal (16\%)	0.5	1.0	2.0	3.9	5.1	4.3	2.2	1.5	0.8	1.3	0.9	0.8
Below Normal (13\%)	0.6	0.7	1.1	1.5	3.1	1.6	1.1	1.0	0.8	1.3	0.9	0.8
Dry (24\%)	0.5	0.5	0.8	1.3	2.1	1.9	1.1	0.9	0.7	0.8	0.6	0.6
Critical (15\%)	0.4	0.4	0.6	0.9	1.3	0.9	0.7	0.5	0.5	0.5	0.5	0.5

Alternative 3 minus No Action Alternative

Statistic	Monthly Averaged Daily Minimum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	-0.2	-0.4	0.6	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-1.8
20\%	-0.2	-0.7	0.4	0.4	0.0	0.0	0.0	0.0	0.1	0.0	0.0	-1.8
30\%	-0.2	-0.6	-0.3	0.3	0.2	0.3	0.0	0.1	0.2	0.0	0.0	-0.6
40\%	-0.1	-0.5	-0.2	0.1	0.3	0.1	0.0	0.1	0.1	0.0	0.0	-0.4
50\%	-0.1	-0.4	-0.3	-0.2	0.1	0.0	0.0	0.1	0.1	0.0	0.0	-0.1
60\%	0.0	-0.2	-0.1	-0.2	0.1	0.0	0.0	0.1	0.1	0.0	0.0	0.0
70\%	0.0	-0.1	-0.1	-0.2	0.1	0.0	0.0	0.1	0.1	0.0	0.0	0.0
80\%	0.0	-0.1	-0.1	-0.2	0.0	0.0	0.0	0.1	0.1	-0.1	0.1	0.0
90\%	0.0	0.0	0.0	-0.1	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	-0.1	-0.3	0.0	0.0	0.1	0.1	0.0	0.0	0.1	0.0	0.0	-0.6
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	-0.2	-0.3	0.2	0.1	0.0	0.0	0.0	0.0	0.1	0.0	0.0	-1.7
Above Normal (16\%)	-0.1	-0.4	-0.2	0.0	0.1	0.2	0.0	0.1	0.1	0.0	0.0	-0.4
Below Normal (13\%)	-0.2	-0.4	-0.1	0.0	0.2	0.1	0.0	0.1	0.1	0.0	0.0	0.0
Dry (24\%)	0.0	-0.3	-0.1	-0.2	0.0	0.0	0.0	0.1	0.1	0.0	0.0	0.0
Critical (15\%)	0.0	-0.1	-0.1	-0.2	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year
b Based on the 82 -year simulation period
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-44-2-3. Sacramento River d/s of Delta Cross Channel, Monthly Averaged Daily Minimum Elevation

No Action Alternative

Statistic	Monthly Averaged Daily Minimum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	1.1	2.0	5.2	7.0	7.9	6.9	5.0	3.8	1.3	1.4	1.0	2.8
20\%	0.9	1.5	3.0	5.6	6.8	5.5	3.3	2.3	0.9	1.3	0.9	2.7
30\%	0.8	1.4	1.9	3.8	5.3	3.7	2.0	1.3	0.7	1.3	0.9	1.5
40\%	0.7	1.2	1.4	2.4	4.4	2.8	1.6	1.0	0.7	1.2	0.9	1.2
50\%	0.6	0.9	1.2	1.9	3.1	2.2	1.1	0.9	0.6	1.1	0.8	0.9
60\%	0.5	0.7	1.0	1.4	2.1	1.8	0.9	0.8	0.6	1.0	0.8	0.7
70\%	0.4	0.6	0.8	1.1	1.6	1.5	0.8	0.7	0.6	0.9	0.7	0.6
80\%	0.4	0.4	0.7	1.0	1.3	1.2	0.7	0.6	0.5	0.8	0.6	0.6
90\%	0.3	0.3	0.5	0.8	1.1	0.7	0.6	0.5	0.4	0.6	0.5	0.5
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.7	1.2	2.0	3.0	3.8	3.1	2.0	1.5	0.9	1.0	0.8	1.4
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.9	1.7	3.6	5.3	6.1	5.1	3.5	2.9	1.5	1.2	0.9	2.6
Above Normal (16\%)	0.6	1.4	2.2	3.9	5.0	4.2	2.2	1.4	0.7	1.3	1.0	1.2
Below Normal (13\%)	0.7	1.1	1.2	1.6	2.9	1.5	1.0	0.9	0.6	1.2	0.9	0.8
Dry (24\%)	0.5	0.8	0.9	1.4	2.1	1.9	1.1	0.8	0.6	0.9	0.6	0.6
Critical (15\%)	0.4	0.4	0.7	1.1	1.3	0.9	0.7	0.5	0.4	0.6	0.5	0.5

Alternative 5

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	1.1	2.0	5.2	7.0	7.9	6.9	5.0	3.8	1.3	1.4	1.0	2.8
20\%	0.9	1.5	3.0	5.6	6.8	5.5	3.3	2.3	0.9	1.3	1.0	2.7
30\%	0.8	1.4	1.9	3.8	5.3	3.7	2.0	1.3	0.8	1.3	0.9	1.5
40\%	0.7	1.2	1.4	2.3	4.4	2.8	1.6	1.0	0.7	1.2	0.9	1.2
50\%	0.6	0.9	1.2	1.9	3.1	2.2	1.1	0.9	0.6	1.1	0.9	0.9
60\%	0.5	0.7	1.0	1.4	2.1	1.8	0.9	0.8	0.6	1.0	0.8	0.8
70\%	0.4	0.6	0.8	1.1	1.6	1.5	0.8	0.7	0.6	0.9	0.7	0.6
80\%	0.4	0.4	0.7	1.0	1.3	1.2	0.7	0.6	0.5	0.8	0.6	0.6
90\%	0.3	0.3	0.5	0.8	1.1	0.7	0.5	0.5	0.4	0.6	0.5	0.5
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.7	1.2	2.0	3.0	3.8	3.1	2.0	1.5	0.9	1.1	0.8	1.3
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.9	1.7	3.6	5.3	6.1	5.1	3.5	2.9	1.5	1.2	0.9	2.6
Above Normal (16\%)	0.6	1.4	2.2	3.9	5.0	4.2	2.2	1.4	0.7	1.3	1.0	1.2
Below Normal (13\%)	0.7	1.1	1.2	1.6	2.9	1.5	1.0	0.9	0.6	1.2	0.9	0.8
Dry (24\%)	0.5	0.8	0.9	1.4	2.1	1.9	1.1	0.8	0.6	0.9	0.6	0.6
Critical (15\%)	0.4	0.4	0.7	1.1	1.3	0.9	0.6	0.5	0.4	0.6	0.5	0.5

Statistic	Monthly Averaged Daily Minimum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
20\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
30\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
40\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
50\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	0.0	0.0	0.0	0.0
60\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	0.0	0.0	0.0	0.0
70\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	0.0	0.0	0.0	0.0
80\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
90\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Above Normal (16\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Below Normal (13\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dry (24\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1	0.0	0.0	0.0	0.0
Critical (15\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year
b Based on the 82 -year simulation period
C As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All atternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same, therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and $N \mathrm{No}$ Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-44-2-4. Sacramento River d/s of Delta Cross Channel, Monthly Averaged Daily Minimum Elevation

Second Basis of Comparison

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.8	1.5	5.8	7.1	7.9	7.0	5.0	3.8	1.3	1.3	1.0	1.0
20\%	0.7	0.9	3.3	6.1	6.8	5.5	3.2	2.5	1.0	1.2	0.9	0.9
30\%	0.6	0.8	1.6	4.2	5.4	4.2	2.0	1.4	0.9	1.2	0.9	0.9
40\%	0.6	0.7	1.2	2.5	4.7	2.9	1.6	1.1	0.9	1.1	0.8	0.8
50\%	0.5	0.6	0.9	1.7	3.2	2.2	1.1	1.0	0.8	1.0	0.8	0.8
60\%	0.5	0.5	0.9	1.2	2.2	1.8	0.9	0.9	0.7	0.9	0.7	0.7
70\%	0.4	0.5	0.7	1.0	1.7	1.5	0.8	0.8	0.6	0.8	0.7	0.6
80\%	0.4	0.4	0.6	0.9	1.3	1.2	0.7	0.7	0.6	0.6	0.6	0.5
90\%	0.3	0.2	0.5	0.7	1.1	0.7	0.6	0.6	0.4	0.5	0.5	0.5
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.6	0.9	1.9	3.0	3.9	3.1	2.0	1.6	1.0	1.0	0.8	0.8
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.7	1.3	3.8	5.4	6.2	5.2	3.5	2.9	1.6	1.1	0.9	0.9
Above Normal (16\%)	0.5	1.0	2.0	4.0	5.1	4.4	2.2	1.5	0.9	1.2	0.9	0.8
Below Normal (13\%)	0.6	0.8	1.0	1.5	3.1	1.6	1.1	1.1	0.9	1.1	0.8	0.8
Dry (24\%)	0.5	0.5	0.8	1.2	2.1	1.9	1.1	0.9	0.7	0.7	0.6	0.6
Critical (15\%)	0.4	0.4	0.6	1.0	1.3	1.0	0.7	0.5	0.5	0.5	0.5	0.5

Statistic	Monthly Averaged Daily Minimum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	1.1	2.0	5.2	7.0	7.9	6.9	5.0	3.8	1.3	1.4	1.0	2.8
20\%	0.9	1.5	3.0	5.6	6.8	5.5	3.3	2.3	0.9	1.3	0.9	2.7
30\%	0.8	1.4	1.9	3.8	5.3	3.7	2.0	1.3	0.7	1.3	0.9	1.5
40\%	0.7	1.2	1.4	2.4	4.4	2.8	1.6	1.0	0.7	1.2	0.9	1.2
50\%	0.6	0.9	1.2	1.9	3.1	2.2	1.1	0.9	0.6	1.1	0.8	0.9
60\%	0.5	0.7	1.0	1.4	2.1	1.8	0.9	0.8	0.6	1.0	0.8	0.7
70\%	0.4	0.6	0.8	1.1	1.6	1.5	0.8	0.7	0.6	0.9	0.7	0.6
80\%	0.4	0.4	0.7	1.0	1.3	1.2	0.7	0.6	0.5	0.8	0.6	0.6
90\%	0.3	0.3	0.5	0.8	1.1	0.7	0.6	0.5	0.4	0.6	0.5	0.5
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.7	1.2	2.0	3.0	3.8	3.1	2.0	1.5	0.9	1.0	0.8	1.4
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.9	1.7	3.6	5.3	6.1	5.1	3.5	2.9	1.5	1.2	0.9	2.6
Above Normal (16\%)	0.6	1.4	2.2	3.9	5.0	4.2	2.2	1.4	0.7	1.3	1.0	1.2
Below Normal (13\%)	0.7	1.1	1.2	1.6	2.9	1.5	1.0	0.9	0.6	1.2	0.9	0.8
Dry (24\%)	0.5	0.8	0.9	1.4	2.1	1.9	1.1	0.8	0.6	0.9	0.6	0.6
Critical (15\%)	0.4	0.4	0.7	1.1	1.3	0.9	0.7	0.5	0.4	0.6	0.5	0.5

No Action Alternative minus Second Basis of Comparison

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.2	0.5	-0.6	-0.1	0.0	0.0	0.0	0.0	0.0	0.1	0.0	1.8
20\%	0.2	0.7	-0.3	-0.4	0.0	0.0	0.0	-0.3	-0.1	0.1	0.0	1.8
30\%	0.2	0.6	0.3	-0.3	-0.2	-0.6	0.0	-0.1	-0.2	0.1	0.1	0.6
40\%	0.1	0.5	0.3	-0.1	-0.3	-0.1	0.0	-0.1	-0.2	0.1	0.1	0.4
50\%	0.1	0.4	0.3	0.2	-0.1	0.0	0.0	-0.1	-0.2	0.1	0.1	0.1
60\%	0.0	0.2	0.1	0.2	0.0	0.0	0.0	-0.1	-0.1	0.1	0.1	0.0
70\%	0.0	0.1	0.1	0.2	-0.1	0.0	0.0	-0.1	-0.1	0.1	0.0	0.0
80\%	0.0	0.1	0.1	0.2	0.0	0.0	0.0	-0.1	-0.1	0.2	0.0	0.0
90\%	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	-0.1	0.1	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.1	0.3	0.0	0.0	-0.1	-0.1	0.0	-0.1	-0.1	0.1	0.0	0.6
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.2	0.3	-0.2	-0.1	-0.1	-0.1	0.0	0.0	0.0	0.1	0.0	1.7
Above Normal (16\%)	0.1	0.4	0.2	-0.1	-0.1	-0.2	0.0	-0.1	-0.2	0.1	0.0	0.4
Below Normal (13\%)	0.1	0.3	0.1	0.1	-0.2	-0.1	0.0	-0.2	-0.3	0.1	0.1	0.0
Dry (24\%)	0.0	0.3	0.1	0.2	0.0	0.0	0.0	-0.1	-0.1	0.1	0.0	0.0
Critical (15\%)	0.0	0.0	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); ;rojected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same,
therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and N A Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-44-2-5. Sacramento River d/s of Delta Cross Channel, Monthly Averaged Daily Minimum Elevation

Second Basis of Comparison

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.8	1.5	5.8	7.1	7.9	7.0	5.0	3.8	1.3	1.3	1.0	1.0
20\%	0.7	0.9	3.3	6.1	6.8	5.5	3.2	2.5	1.0	1.2	0.9	0.9
30\%	0.6	0.8	1.6	4.2	5.4	4.2	2.0	1.4	0.9	1.2	0.9	0.9
40\%	0.6	0.7	1.2	2.5	4.7	2.9	1.6	1.1	0.9	1.1	0.8	0.8
50\%	0.5	0.6	0.9	1.7	3.2	2.2	1.1	1.0	0.8	1.0	0.8	0.8
60\%	0.5	0.5	0.9	1.2	2.2	1.8	0.9	0.9	0.7	0.9	0.7	0.7
70\%	0.4	0.5	0.7	1.0	1.7	1.5	0.8	0.8	0.6	0.8	0.7	0.6
80\%	0.4	0.4	0.6	0.9	1.3	1.2	0.7	0.7	0.6	0.6	0.6	0.5
90\%	0.3	0.2	0.5	0.7	1.1	0.7	0.6	0.6	0.4	0.5	0.5	0.5
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.6	0.9	1.9	3.0	3.9	3.1	2.0	1.6	1.0	1.0	0.8	0.8
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.7	1.3	3.8	5.4	6.2	5.2	3.5	2.9	1.6	1.1	0.9	0.9
Above Normal (16\%)	0.5	1.0	2.0	4.0	5.1	4.4	2.2	1.5	0.9	1.2	0.9	0.8
Below Normal (13\%)	0.6	0.8	1.0	1.5	3.1	1.6	1.1	1.1	0.9	1.1	0.8	0.8
Dry (24\%)	0.5	0.5	0.8	1.2	2.1	1.9	1.1	0.9	0.7	0.7	0.6	0.6
Critical (15\%)	0.4	0.4	0.6	1.0	1.3	1.0	0.7	0.5	0.5	0.5	0.5	0.5

Alternative 3

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.8	1.5	5.7	7.1	7.9	7.0	5.0	3.8	1.2	1.4	1.0	1.0
20\%	0.7	0.9	3.4	6.0	6.8	5.5	3.2	2.3	1.0	1.3	0.9	0.9
30\%	0.6	0.8	1.6	4.2	5.5	3.9	2.0	1.5	0.9	1.3	0.9	0.9
40\%	0.6	0.6	1.2	2.5	4.7	2.9	1.6	1.1	0.8	1.2	0.9	0.8
50\%	0.5	0.6	0.9	1.7	3.2	2.2	1.1	1.0	0.8	1.1	0.8	0.8
60\%	0.5	0.5	0.8	1.3	2.2	1.8	0.9	0.9	0.7	1.0	0.8	0.7
70\%	0.4	0.4	0.7	1.0	1.7	1.5	0.8	0.8	0.7	0.8	0.7	0.6
80\%	0.3	0.3	0.6	0.9	1.3	1.2	0.7	0.7	0.6	0.7	0.6	0.6
90\%	0.3	0.2	0.4	0.7	1.1	0.7	0.6	0.5	0.4	0.6	0.5	0.5

Long Term												
Full Simulation Period ${ }^{\mathrm{b}}$	0.6	0.9	1.9	3.0	3.9	3.1	2.0	1.6	1.0	1.0	0.8	0.8
Water Year Types $^{\mathbf{c}}$												
Wet (32\%)	0.7	1.3	3.8	5.4	6.2	5.1	3.5	2.9	1.6	1.2	0.9	0.9
Above Normal (16\%)	0.5	1.0	2.0	3.9	5.1	4.3	2.2	1.5	0.8	1.3	0.9	0.8
Below Normal (13\%)	0.6	0.7	1.1	1.5	3.1	1.6	1.1	1.0	0.8	1.3	0.9	0.8
Dry (24\%)	0.5	0.5	0.8	1.3	2.1	1.9	1.1	0.9	0.7	0.8	0.6	0.6
Critical (15\%)	0.4	0.4	0.6	0.9	1.3	0.9	0.7	0.5	0.5	0.5	0.5	0.5

Alternative 3 minus Second Basis of Comparison

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0
20\%	0.0	0.0	0.1	0.0	0.0	0.0	0.0	-0.2	0.0	0.1	0.0	0.0
30\%	0.0	0.0	0.0	0.0	0.0	-0.3	0.0	0.1	0.0	0.1	0.0	0.0
40\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0
50\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0
60\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0
70\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
80\%	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0
90\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0
Above Normal (16\%)	0.0	0.0	0.0	-0.1	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0
Below Normal (13\%)	0.0	-0.1	0.0	0.0	0.0	0.0	0.0	0.0	-0.2	0.1	0.1	0.1
Dry (24\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0
Critical (15\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same, therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and $N o$ Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the tex.

Table C-44-2-6. Sacramento River d/s of Delta Cross Channel, Monthly Averaged Daily Minimum Elevation

Second Basis of Comparison

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.8	1.5	5.8	7.1	7.9	7.0	5.0	3.8	1.3	1.3	1.0	1.0
20\%	0.7	0.9	3.3	6.1	6.8	5.5	3.2	2.5	1.0	1.2	0.9	0.9
30\%	0.6	0.8	1.6	4.2	5.4	4.2	2.0	1.4	0.9	1.2	0.9	0.9
40\%	0.6	0.7	1.2	2.5	4.7	2.9	1.6	1.1	0.9	1.1	0.8	0.8
50\%	0.5	0.6	0.9	1.7	3.2	2.2	1.1	1.0	0.8	1.0	0.8	0.8
60\%	0.5	0.5	0.9	1.2	2.2	1.8	0.9	0.9	0.7	0.9	0.7	0.7
70\%	0.4	0.5	0.7	1.0	1.7	1.5	0.8	0.8	0.6	0.8	0.7	0.6
80\%	0.4	0.4	0.6	0.9	1.3	1.2	0.7	0.7	0.6	0.6	0.6	0.5
90\%	0.3	0.2	0.5	0.7	1.1	0.7	0.6	0.6	0.4	0.5	0.5	0.5
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.6	0.9	1.9	3.0	3.9	3.1	2.0	1.6	1.0	1.0	0.8	0.8
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.7	1.3	3.8	5.4	6.2	5.2	3.5	2.9	1.6	1.1	0.9	0.9
Above Normal (16\%)	0.5	1.0	2.0	4.0	5.1	4.4	2.2	1.5	0.9	1.2	0.9	0.8
Below Normal (13\%)	0.6	0.8	1.0	1.5	3.1	1.6	1.1	1.1	0.9	1.1	0.8	0.8
Dry (24\%)	0.5	0.5	0.8	1.2	2.1	1.9	1.1	0.9	0.7	0.7	0.6	0.6
Critical (15\%)	0.4	0.4	0.6	1.0	1.3	1.0	0.7	0.5	0.5	0.5	0.5	0.5

Alternative 5

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	1.1	2.0	5.2	7.0	7.9	6.9	5.0	3.8	1.3	1.4	1.0	2.8
20\%	0.9	1.5	3.0	5.6	6.8	5.5	3.3	2.3	0.9	1.3	1.0	2.7
30\%	0.8	1.4	1.9	3.8	5.3	3.7	2.0	1.3	0.8	1.3	0.9	1.5
40\%	0.7	1.2	1.4	2.3	4.4	2.8	1.6	1.0	0.7	1.2	0.9	1.2
50\%	0.6	0.9	1.2	1.9	3.1	2.2	1.1	0.9	0.6	1.1	0.9	0.9
60\%	0.5	0.7	1.0	1.4	2.1	1.8	0.9	0.8	0.6	1.0	0.8	0.8
70\%	0.4	0.6	0.8	1.1	1.6	1.5	0.8	0.7	0.6	0.9	0.7	0.6
80\%	0.4	0.4	0.7	1.0	1.3	1.2	0.7	0.6	0.5	0.8	0.6	0.6
90\%	0.3	0.3	0.5	0.8	1.1	0.7	0.5	0.5	0.4	0.6	0.5	0.5
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.7	1.2	2.0	3.0	3.8	3.1	2.0	1.5	0.9	1.1	0.8	1.3
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.9	1.7	3.6	5.3	6.1	5.1	3.5	2.9	1.5	1.2	0.9	2.6
Above Normal (16\%)	0.6	1.4	2.2	3.9	5.0	4.2	2.2	1.4	0.7	1.3	1.0	1.2
Below Normal (13\%)	0.7	1.1	1.2	1.6	2.9	1.5	1.0	0.9	0.6	1.2	0.9	0.8
Dry (24\%)	0.5	0.8	0.9	1.4	2.1	1.9	1.1	0.8	0.6	0.9	0.6	0.6
Critical (15\%)	0.4	0.4	0.7	1.1	1.3	0.9	0.6	0.5	0.4	0.6	0.5	0.5

Alternative 5 minus Second Basis of Comparison

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.2	0.5	-0.6	-0.1	0.0	0.0	0.0	0.0	0.0	0.1	0.0	1.8
20\%	0.2	0.7	-0.3	-0.4	-0.1	0.0	0.0	-0.3	-0.2	0.1	0.0	1.8
30\%	0.2	0.7	0.3	-0.3	-0.1	-0.6	0.0	-0.1	-0.2	0.1	0.1	0.6
40\%	0.1	0.5	0.3	-0.1	-0.3	-0.1	0.0	-0.1	-0.2	0.1	0.1	0.4
50\%	0.1	0.4	0.3	0.2	0.0	0.0	0.0	-0.2	-0.1	0.1	0.1	0.1
60\%	0.0	0.2	0.1	0.2	0.0	0.0	0.0	-0.2	-0.1	0.1	0.1	0.0
70\%	0.0	0.1	0.1	0.2	-0.1	0.0	0.0	-0.1	-0.1	0.1	0.0	0.0
80\%	0.0	0.1	0.1	0.2	0.0	0.0	-0.1	-0.1	-0.1	0.2	0.0	0.0
90\%	0.0	0.0	0.0	0.1	0.0	0.0	0.0	-0.1	-0.1	0.1	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.1	0.3	0.0	0.0	-0.1	-0.1	0.0	-0.1	-0.1	0.1	0.0	0.6
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.2	0.4	-0.2	-0.1	0.0	-0.1	0.0	0.0	0.0	0.1	0.1	1.6
Above Normal (16\%)	0.1	0.4	0.2	-0.1	-0.1	-0.2	0.0	-0.1	-0.2	0.1	0.0	0.4
Below Normal (13\%)	0.1	0.3	0.1	0.1	-0.2	-0.1	0.0	-0.2	-0.3	0.1	0.1	0.0
Dry (24\%)	0.0	0.3	0.1	0.2	0.0	0.0	0.0	-0.1	-0.1	0.2	0.0	0.0
Critical (15\%)	0.0	0.0	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030,
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same, therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and $N o$ Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

1 C.45. Sacramento River at Rio Vista Water Surface Elevation

Figure C-45-1-1. Sacramento River at Rio Vista, Monthly Averaged Daily Maximum Elevation, October

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-45-1-2. Sacramento River at Rio Vista, Monthly Averaged Daily Maximum Elevation, November

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-45-1-3. Sacramento River at Rio Vista, Monthly Averaged Daily Maximum Elevation, December

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-45-1-4. Sacramento River at Rio Vista, Monthly Averaged Daily Maximum Elevation, January

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-45-1-5. Sacramento River at Rio Vista, Monthly Averaged Daily Maximum Elevation, February

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-45-1-6. Sacramento River at Rio Vista, Monthly Averaged Daily Maximum Elevation, March

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-45-1-7. Sacramento River at Rio Vista, Monthly Averaged Daily Maximum Elevation, April

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-45-1-8. Sacramento River at Rio Vista, Monthly Averaged Daily Maximum Elevation, May

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-45-1-9. Sacramento River at Rio Vista, Monthly Averaged Daily Maximum Elevation, June

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-45-1-10. Sacramento River at Rio Vista, Monthly Averaged Daily Maximum Elevation, July

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-45-1-11. Sacramento River at Rio Vista, Monthly Averaged Daily Maximum Elevation, August

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-45-1-12. Sacramento River at Rio Vista, Monthly Averaged Daily Maximum Elevation, September

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-45-1-1. Sacramento River at Rio Vista, Monthly Averaged Daily Maximum Elevation

Statistic	Monthly Averaged Daily Maximum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.9	4.0	4.5	4.7	4.7	4.3	4.0	4.1	4.2	4.3	4.1	4.1
20\%	3.8	3.9	4.3	4.5	4.5	4.0	3.8	4.0	4.1	4.2	4.1	4.0
30\%	3.7	3.8	4.1	4.2	4.3	3.9	3.7	3.9	4.1	4.2	4.1	4.0
40\%	3.7	3.8	4.0	4.1	4.1	3.8	3.6	3.8	4.1	4.2	4.0	3.9
50\%	3.6	3.7	3.9	4.0	4.0	3.7	3.6	3.8	4.0	4.2	4.0	3.9
60\%	3.6	3.7	3.9	3.9	3.9	3.6	3.5	3.7	4.0	4.1	4.0	3.8
70\%	3.5	3.6	3.8	3.8	3.8	3.5	3.4	3.7	3.9	4.1	3.9	3.8
80\%	3.5	3.6	3.8	3.7	3.7	3.4	3.4	3.6	3.9	4.1	3.9	3.8
90\%	3.5	3.5	3.6	3.7	3.5	3.3	3.3	3.6	3.8	4.0	3.9	3.7
Long Term												
Full Simulation Period ${ }^{\text {b }}$	3.6	3.8	4.0	4.1	4.1	3.7	3.6	3.8	4.0	4.2	4.0	3.9
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	3.7	3.9	4.3	4.4	4.4	4.0	3.8	4.0	4.1	4.2	4.0	4.1
Above Normal (16\%)	3.6	3.8	4.0	4.2	4.3	3.8	3.6	3.8	4.0	4.2	4.0	3.8
Below Normal (13\%)	3.6	3.7	3.9	3.9	3.9	3.5	3.5	3.7	4.0	4.2	4.0	3.9
Dry (24\%)	3.6	3.6	3.8	3.8	3.8	3.6	3.5	3.7	4.0	4.1	4.0	3.8
Critical (15\%)	3.7	3.7	3.9	3.8	3.8	3.5	3.5	3.7	4.0	4.1	4.0	3.8

Alternative 1

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.9	4.0	4.5	4.7	4.7	4.3	4.0	4.1	4.2	4.2	4.1	4.0
20\%	3.8	3.9	4.4	4.5	4.5	4.0	3.8	4.0	4.1	4.2	4.1	3.9
30\%	3.7	3.8	4.0	4.2	4.3	3.9	3.7	3.9	4.1	4.2	4.1	3.9
40\%	3.7	3.8	4.0	4.0	4.1	3.8	3.6	3.8	4.1	4.2	4.0	3.9
50\%	3.6	3.7	3.9	4.0	4.0	3.7	3.6	3.8	4.0	4.2	4.0	3.8
60\%	3.6	3.7	3.8	3.9	3.9	3.6	3.5	3.7	4.0	4.1	4.0	3.8
70\%	3.5	3.6	3.8	3.8	3.8	3.5	3.4	3.7	3.9	4.1	3.9	3.8
80\%	3.5	3.6	3.7	3.7	3.7	3.4	3.3	3.7	3.9	4.1	3.9	3.7
90\%	3.5	3.5	3.6	3.7	3.5	3.3	3.3	3.6	3.9	4.0	3.9	3.7

Full Simulation Period ${ }^{\text {b }}$	3.6	3.7	4.0	4.1	4.1	3.7	3.6	3.8	4.0	4.1	4.0	3.8
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	3.7	3.8	4.3	4.4	4.4	4.1	3.8	3.9	4.1	4.2	4.0	3.9
Above Normal (16\%)	3.6	3.8	4.0	4.2	4.3	3.8	3.6	3.9	4.0	4.2	4.0	3.8
Below Normal (13\%)	3.6	3.7	3.9	3.9	3.9	3.5	3.5	3.7	4.0	4.1	4.0	3.9
Dry (24\%)	3.6	3.6	3.8	3.8	3.8	3.6	3.5	3.7	4.0	4.1	4.0	3.8
Critical (15\%)	3.7	3.7	3.9	3.8	3.8	3.5	3.5	3.7	4.0	4.1	4.0	3.8

Statistic	Monthly Averaged Daily Maximum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1
20\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1
30\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
40\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
50\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1
60\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
70\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1
80\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
90\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1
Above Normal (16\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1
Below Normal (13\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dry (24\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Critical (15\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year
b Based on the 82 -year simulation period
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same,
therefore Second Basis of Comparison and Alternative 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text

Table C-45-1-2. Sacramento River at Rio Vista, Monthly Averaged Daily Maximum Elevation

Statistic	Monthly Averaged Daily Maximum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.9	4.0	4.5	4.7	4.7	4.3	4.0	4.1	4.2	4.3	4.1	4.1
20\%	3.8	3.9	4.3	4.5	4.5	4.0	3.8	4.0	4.1	4.2	4.1	4.0
30\%	3.7	3.8	4.1	4.2	4.3	3.9	3.7	3.9	4.1	4.2	4.1	4.0
40\%	3.7	3.8	4.0	4.1	4.1	3.8	3.6	3.8	4.1	4.2	4.0	3.9
50\%	3.6	3.7	3.9	4.0	4.0	3.7	3.6	3.8	4.0	4.2	4.0	3.9
60\%	3.6	3.7	3.9	3.9	3.9	3.6	3.5	3.7	4.0	4.1	4.0	3.8
70\%	3.5	3.6	3.8	3.8	3.8	3.5	3.4	3.7	3.9	4.1	3.9	3.8
80\%	3.5	3.6	3.8	3.7	3.7	3.4	3.4	3.6	3.9	4.1	3.9	3.8
90\%	3.5	3.5	3.6	3.7	3.5	3.3	3.3	3.6	3.8	4.0	3.9	3.7
Long Term												
Full Simulation Period ${ }^{\text {b }}$	3.6	3.8	4.0	4.1	4.1	3.7	3.6	3.8	4.0	4.2	4.0	3.9
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	3.7	3.9	4.3	4.4	4.4	4.0	3.8	4.0	4.1	4.2	4.0	4.1
Above Normal (16\%)	3.6	3.8	4.0	4.2	4.3	3.8	3.6	3.8	4.0	4.2	4.0	3.8
Below Normal (13\%)	3.6	3.7	3.9	3.9	3.9	3.5	3.5	3.7	4.0	4.2	4.0	3.9
Dry (24\%)	3.6	3.6	3.8	3.8	3.8	3.6	3.5	3.7	4.0	4.1	4.0	3.8
Critical (15\%)	3.7	3.7	3.9	3.8	3.8	3.5	3.5	3.7	4.0	4.1	4.0	3.8

Alternative 3

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.9	4.0	4.5	4.7	4.7	4.3	4.0	4.1	4.2	4.3	4.1	4.0
20\%	3.8	3.9	4.4	4.5	4.5	4.0	3.8	4.0	4.1	4.2	4.1	3.9
30\%	3.7	3.8	4.1	4.2	4.3	3.9	3.7	3.9	4.1	4.2	4.1	3.9
40\%	3.7	3.8	4.0	4.0	4.1	3.8	3.6	3.8	4.1	4.2	4.0	3.9
50\%	3.6	3.7	3.9	4.0	4.0	3.7	3.5	3.8	4.0	4.2	4.0	3.8
60\%	3.6	3.7	3.8	3.9	3.9	3.6	3.5	3.7	4.0	4.1	4.0	3.8
70\%	3.5	3.6	3.8	3.8	3.8	3.5	3.4	3.7	3.9	4.1	3.9	3.8
80\%	3.5	3.6	3.7	3.7	3.7	3.4	3.3	3.7	3.9	4.1	3.9	3.7
90\%	3.5	3.5	3.6	3.7	3.5	3.3	3.3	3.6	3.9	4.0	3.9	3.7

Long Term										
Full Simulation Period $^{\text {b }}$	3.6	3.7	4.0	4.1	4.1	3.7	3.6	3.8	4.0	4.2
Water Year Types $^{\text {c }}$										
Wet (32\%)	3.7	3.8	4.3	4.5	4.4	4.0	3.8	3.9	4.1	4.2
Above Normal (16\%)	3.6	3.8	4.0	4.2	4.3	3.8	3.6	3.8	4.0	4.2
Below Normal (13\%)	3.6	3.7	3.9	3.9	3.9	3.5	3.5	3.7	4.0	4.2
Dry (24\%)	3.6	3.6	3.8	3.8	3.8	3.6	3.5	3.7	4.0	4.1
Critical (15\%)	3.7	3.7	3.9	3.8	3.8	3.5	3.5	3.7	4.0	4.0

Statistic	Monthly Averaged Daily Maximum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1
20\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1
30\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
40\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
50\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1
60\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
70\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
80\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
90\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.2
Above Normal (16\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1
Below Normal (13\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dry (24\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Critical (15\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year
b Based on the 82 -year simulation period
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same,
therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and $N o$ Action Alternative are the same, herefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-45-1-3. Sacramento River at Rio Vista, Monthly Averaged Daily Maximum Elevation

Statistic	Monthly Averaged Daily Maximum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.9	4.0	4.5	4.7	4.7	4.3	4.0	4.1	4.2	4.3	4.1	4.1
20\%	3.8	3.9	4.3	4.5	4.5	4.0	3.8	4.0	4.1	4.2	4.1	4.0
30\%	3.7	3.8	4.1	4.2	4.3	3.9	3.7	3.9	4.1	4.2	4.1	4.0
40\%	3.7	3.8	4.0	4.1	4.1	3.8	3.6	3.8	4.1	4.2	4.0	3.9
50\%	3.6	3.7	3.9	4.0	4.0	3.7	3.6	3.8	4.0	4.2	4.0	3.9
60\%	3.6	3.7	3.9	3.9	3.9	3.6	3.5	3.7	4.0	4.1	4.0	3.8
70\%	3.5	3.6	3.8	3.8	3.8	3.5	3.4	3.7	3.9	4.1	3.9	3.8
80\%	3.5	3.6	3.8	3.7	3.7	3.4	3.4	3.6	3.9	4.1	3.9	3.8
90\%	3.5	3.5	3.6	3.7	3.5	3.3	3.3	3.6	3.8	4.0	3.9	3.7
Long Term												
Full Simulation Period ${ }^{\text {b }}$	3.6	3.8	4.0	4.1	4.1	3.7	3.6	3.8	4.0	4.2	4.0	3.9
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	3.7	3.9	4.3	4.4	4.4	4.0	3.8	4.0	4.1	4.2	4.0	4.1
Above Normal (16\%)	3.6	3.8	4.0	4.2	4.3	3.8	3.6	3.8	4.0	4.2	4.0	3.8
Below Normal (13\%)	3.6	3.7	3.9	3.9	3.9	3.5	3.5	3.7	4.0	4.2	4.0	3.9
Dry (24\%)	3.6	3.6	3.8	3.8	3.8	3.6	3.5	3.7	4.0	4.1	4.0	3.8
Critical (15\%)	3.7	3.7	3.9	3.8	3.8	3.5	3.5	3.7	4.0	4.1	4.0	3.8

Alternative 5

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.9	4.0	4.5	4.7	4.7	4.3	4.0	4.1	4.2	4.3	4.2	4.1
20\%	3.8	3.9	4.3	4.5	4.5	4.0	3.8	4.0	4.1	4.2	4.1	4.0
30\%	3.7	3.8	4.1	4.2	4.3	3.9	3.7	3.9	4.1	4.2	4.1	4.0
40\%	3.7	3.8	4.0	4.1	4.1	3.8	3.6	3.8	4.1	4.2	4.0	3.9
50\%	3.6	3.7	3.9	4.0	4.0	3.7	3.6	3.8	4.0	4.2	4.0	3.9
60\%	3.6	3.7	3.9	3.9	3.9	3.6	3.5	3.7	4.0	4.1	4.0	3.8
70\%	3.5	3.6	3.8	3.8	3.8	3.5	3.4	3.7	3.9	4.1	3.9	3.8
80\%	3.5	3.6	3.8	3.7	3.7	3.4	3.4	3.6	3.9	4.1	3.9	3.8
90\%	3.5	3.5	3.6	3.7	3.5	3.3	3.3	3.6	3.8	4.0	3.9	3.7
Long Term												
Full Simulation Period ${ }^{\text {b }}$	3.6	3.8	4.0	4.1	4.1	3.7	3.6	3.8	4.0	4.2	4.0	3.9
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	3.7	3.9	4.3	4.4	4.4	4.0	3.8	4.0	4.1	4.2	4.0	4.1
Above Normal (16\%)	3.6	3.8	4.0	4.2	4.3	3.8	3.6	3.8	4.0	4.2	4.0	3.8
Below Normal (13\%)	3.6	3.7	3.9	3.9	3.9	3.5	3.5	3.7	4.0	4.2	4.0	3.9
Dry (24\%)	3.6	3.6	3.8	3.8	3.8	3.6	3.5	3.7	4.0	4.1	4.0	3.8
Critical (15\%)	3.7	3.7	3.9	3.8	3.8	3.5	3.5	3.7	4.0	4.1	4.0	3.8

Alternative 5 minus No Action Alternative

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
20\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
30\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
40\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
50\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
60\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
70\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
80\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
90\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Above Normal (16\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Below Normal (13\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dry (24\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Critical (15\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year
b Based on the 82 -year simulation period.
C As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same,
therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and $N o$ Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-45-1-4. Sacramento River at Rio Vista, Monthly Averaged Daily Maximum Elevation

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.9	4.0	4.5	4.7	4.7	4.3	4.0	4.1	4.2	4.2	4.1	4.0
20\%	3.8	3.9	4.4	4.5	4.5	4.0	3.8	4.0	4.1	4.2	4.1	3.9
30\%	3.7	3.8	4.0	4.2	4.3	3.9	3.7	3.9	4.1	4.2	4.1	3.9
40\%	3.7	3.8	4.0	4.0	4.1	3.8	3.6	3.8	4.1	4.2	4.0	3.9
50\%	3.6	3.7	3.9	4.0	4.0	3.7	3.6	3.8	4.0	4.2	4.0	3.8
60\%	3.6	3.7	3.8	3.9	3.9	3.6	3.5	3.7	4.0	4.1	4.0	3.8
70\%	3.5	3.6	3.8	3.8	3.8	3.5	3.4	3.7	3.9	4.1	3.9	3.8
80\%	3.5	3.6	3.7	3.7	3.7	3.4	3.3	3.7	3.9	4.1	3.9	3.7
90\%	3.5	3.5	3.6	3.7	3.5	3.3	3.3	3.6	3.9	4.0	3.9	3.7
Long Term												
Full Simulation Period ${ }^{\text {b }}$	3.6	3.7	4.0	4.1	4.1	3.7	3.6	3.8	4.0	4.1	4.0	3.8
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	3.7	3.8	4.3	4.4	4.4	4.1	3.8	3.9	4.1	4.2	4.0	3.9
Above Normal (16\%)	3.6	3.8	4.0	4.2	4.3	3.8	3.6	3.9	4.0	4.2	4.0	3.8
Below Normal (13\%)	3.6	3.7	3.9	3.9	3.9	3.5	3.5	3.7	4.0	4.1	4.0	3.9
Dry (24\%)	3.6	3.6	3.8	3.8	3.8	3.6	3.5	3.7	4.0	4.1	4.0	3.8
Critical (15\%)	3.7	3.7	3.9	3.8	3.8	3.5	3.5	3.7	4.0	4.1	4.0	3.8

No Action Alternative

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.9	4.0	4.5	4.7	4.7	4.3	4.0	4.1	4.2	4.3	4.1	4.1
20\%	3.8	3.9	4.3	4.5	4.5	4.0	3.8	4.0	4.1	4.2	4.1	4.0
30\%	3.7	3.8	4.1	4.2	4.3	3.9	3.7	3.9	4.1	4.2	4.1	4.0
40\%	3.7	3.8	4.0	4.1	4.1	3.8	3.6	3.8	4.1	4.2	4.0	3.9
50\%	3.6	3.7	3.9	4.0	4.0	3.7	3.6	3.8	4.0	4.2	4.0	3.9
60\%	3.6	3.7	3.9	3.9	3.9	3.6	3.5	3.7	4.0	4.1	4.0	3.8
70\%	3.5	3.6	3.8	3.8	3.8	3.5	3.4	3.7	3.9	4.1	3.9	3.8
80\%	3.5	3.6	3.8	3.7	3.7	3.4	3.4	3.6	3.9	4.1	3.9	3.8
90\%	3.5	3.5	3.6	3.7	3.5	3.3	3.3	3.6	3.8	4.0	3.9	3.7

Long Term												
Full Simulation Period ${ }^{\mathbf{b}}$	3.6	3.8	4.0	4.1	4.1	3.7	3.6	3.8	4.0	4.2	4.0	3.9
Water Year Types $^{\mathbf{c}}$												
Wet $^{(32 \%)}$)	3.7	3.9	4.3	4.4	4.4	4.0	3.8	4.0	4.1	4.2	4.0	4.1
Above Normal (16\%)	3.6	3.8	4.0	4.2	4.3	3.8	3.6	3.8	4.0	4.2	4.0	3.8
Below Normal (13\%)	3.6	3.7	3.9	3.9	3.9	3.5	3.5	3.7	4.0	4.2	4.0	3.9
Dry (24\%)	3.6	3.6	3.8	3.8	3.8	3.6	3.5	3.7	4.0	4.1	4.0	3.8
Critical (15\%)	3.7	3.7	3.9	3.8	3.8	3.5	3.5	3.7	4.0	4.1	4.0	3.8

No Action Alternative minus Second Basis of Comparison

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
20\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
30\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
40\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
50\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
60\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
70\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
80\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
90\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
Above Normal (16\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
Below Normal (13\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dry (24\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Critical (15\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year
b Based on the 82 -year simulation period.
C As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All atternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same,
therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and $N o$ Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-45-1-5. Sacramento River at Rio Vista, Monthly Averaged Daily Maximum Elevation

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.9	4.0	4.5	4.7	4.7	4.3	4.0	4.1	4.2	4.2	4.1	4.0
20\%	3.8	3.9	4.4	4.5	4.5	4.0	3.8	4.0	4.1	4.2	4.1	3.9
30\%	3.7	3.8	4.0	4.2	4.3	3.9	3.7	3.9	4.1	4.2	4.1	3.9
40\%	3.7	3.8	4.0	4.0	4.1	3.8	3.6	3.8	4.1	4.2	4.0	3.9
50\%	3.6	3.7	3.9	4.0	4.0	3.7	3.6	3.8	4.0	4.2	4.0	3.8
60\%	3.6	3.7	3.8	3.9	3.9	3.6	3.5	3.7	4.0	4.1	4.0	3.8
70\%	3.5	3.6	3.8	3.8	3.8	3.5	3.4	3.7	3.9	4.1	3.9	3.8
80\%	3.5	3.6	3.7	3.7	3.7	3.4	3.3	3.7	3.9	4.1	3.9	3.7
90\%	3.5	3.5	3.6	3.7	3.5	3.3	3.3	3.6	3.9	4.0	3.9	3.7
Long Term												
Full Simulation Period ${ }^{\text {b }}$	3.6	3.7	4.0	4.1	4.1	3.7	3.6	3.8	4.0	4.1	4.0	3.8
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	3.7	3.8	4.3	4.4	4.4	4.1	3.8	3.9	4.1	4.2	4.0	3.9
Above Normal (16\%)	3.6	3.8	4.0	4.2	4.3	3.8	3.6	3.9	4.0	4.2	4.0	3.8
Below Normal (13\%)	3.6	3.7	3.9	3.9	3.9	3.5	3.5	3.7	4.0	4.1	4.0	3.9
Dry (24\%)	3.6	3.6	3.8	3.8	3.8	3.6	3.5	3.7	4.0	4.1	4.0	3.8
Critical (15\%)	3.7	3.7	3.9	3.8	3.8	3.5	3.5	3.7	4.0	4.1	4.0	3.8

Alternative 3

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.9	4.0	4.5	4.7	4.7	4.3	4.0	4.1	4.2	4.3	4.1	4.0
20\%	3.8	3.9	4.4	4.5	4.5	4.0	3.8	4.0	4.1	4.2	4.1	3.9
30\%	3.7	3.8	4.1	4.2	4.3	3.9	3.7	3.9	4.1	4.2	4.1	3.9
40\%	3.7	3.8	4.0	4.0	4.1	3.8	3.6	3.8	4.1	4.2	4.0	3.9
50\%	3.6	3.7	3.9	4.0	4.0	3.7	3.5	3.8	4.0	4.2	4.0	3.8
60\%	3.6	3.7	3.8	3.9	3.9	3.6	3.5	3.7	4.0	4.1	4.0	3.8
70\%	3.5	3.6	3.8	3.8	3.8	3.5	3.4	3.7	3.9	4.1	3.9	3.8
80\%	3.5	3.6	3.7	3.7	3.7	3.4	3.3	3.7	3.9	4.1	3.9	3.7
90\%	3.5	3.5	3.6	3.7	3.5	3.3	3.3	3.6	3.9	4.0	3.9	3.7

Full Simulation Period ${ }^{\text {b }}$	3.6	3.7	4.0	4.1	4.1	3.7	3.6	3.8	4.0	4.2	4.0	3.8
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	3.7	3.8	4.3	4.5	4.4	4.0	3.8	3.9	4.1	4.2	4.0	3.9
Above Normal (16\%)	3.6	3.8	4.0	4.2	4.3	3.8	3.6	3.8	4.0	4.2	4.0	3.8
Below Normal (13\%)	3.6	3.7	3.9	3.9	3.9	3.5	3.5	3.7	4.0	4.2	4.0	3.9
Dry (24\%)	3.6	3.6	3.8	3.8	3.8	3.6	3.5	3.7	4.0	4.1	4.0	3.8
Critical (15\%)	3.7	3.7	3.9	3.8	3.8	3.5	3.5	3.7	4.0	4.1	4.0	3.8

Alternative 3 minus Second Basis of Comparison

Statistic	Monthly Averaged Daily Maximum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
20\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
30\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
40\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
50\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
60\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
70\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
80\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
90\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Above Normal (16\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Below Normal (13\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dry (24\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Critical (15\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year
b Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-45-1-6. Sacramento River at Rio Vista, Monthly Averaged Daily Maximum Elevation

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.9	4.0	4.5	4.7	4.7	4.3	4.0	4.1	4.2	4.2	4.1	4.0
20\%	3.8	3.9	4.4	4.5	4.5	4.0	3.8	4.0	4.1	4.2	4.1	3.9
30\%	3.7	3.8	4.0	4.2	4.3	3.9	3.7	3.9	4.1	4.2	4.1	3.9
40\%	3.7	3.8	4.0	4.0	4.1	3.8	3.6	3.8	4.1	4.2	4.0	3.9
50\%	3.6	3.7	3.9	4.0	4.0	3.7	3.6	3.8	4.0	4.2	4.0	3.8
60\%	3.6	3.7	3.8	3.9	3.9	3.6	3.5	3.7	4.0	4.1	4.0	3.8
70\%	3.5	3.6	3.8	3.8	3.8	3.5	3.4	3.7	3.9	4.1	3.9	3.8
80\%	3.5	3.6	3.7	3.7	3.7	3.4	3.3	3.7	3.9	4.1	3.9	3.7
90\%	3.5	3.5	3.6	3.7	3.5	3.3	3.3	3.6	3.9	4.0	3.9	3.7
Long Term												
Full Simulation Period ${ }^{\text {b }}$	3.6	3.7	4.0	4.1	4.1	3.7	3.6	3.8	4.0	4.1	4.0	3.8
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	3.7	3.8	4.3	4.4	4.4	4.1	3.8	3.9	4.1	4.2	4.0	3.9
Above Normal (16\%)	3.6	3.8	4.0	4.2	4.3	3.8	3.6	3.9	4.0	4.2	4.0	3.8
Below Normal (13\%)	3.6	3.7	3.9	3.9	3.9	3.5	3.5	3.7	4.0	4.1	4.0	3.9
Dry (24\%)	3.6	3.6	3.8	3.8	3.8	3.6	3.5	3.7	4.0	4.1	4.0	3.8
Critical (15\%)	3.7	3.7	3.9	3.8	3.8	3.5	3.5	3.7	4.0	4.1	4.0	3.8

Alternative 5

	Monthly Averaged Daily Maximum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	3.9	4.0	4.5	4.7	4.7	4.3	4.0	4.1	4.2	4.3	4.2	4.1
20\%	3.8	3.9	4.3	4.5	4.5	4.0	3.8	4.0	4.1	4.2	4.1	4.0
30\%	3.7	3.8	4.1	4.2	4.3	3.9	3.7	3.9	4.1	4.2	4.1	4.0
40\%	3.7	3.8	4.0	4.1	4.1	3.8	3.6	3.8	4.1	4.2	4.0	3.9
50\%	3.6	3.7	3.9	4.0	4.0	3.7	3.6	3.8	4.0	4.2	4.0	3.9
60\%	3.6	3.7	3.9	3.9	3.9	3.6	3.5	3.7	4.0	4.1	4.0	3.8
70\%	3.5	3.6	3.8	3.8	3.8	3.5	3.4	3.7	3.9	4.1	3.9	3.8
80\%	3.5	3.6	3.8	3.7	3.7	3.4	3.4	3.6	3.9	4.1	3.9	3.8
90\%	3.5	3.5	3.6	3.7	3.5	3.3	3.3	3.6	3.8	4.0	3.9	3.7

Full Simulation Period ${ }^{\text {b }}$	3.6	3.8	4.0	4.1	4.1	3.7	3.6	3.8	4.0	4.2	4.0	3.9
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	3.7	3.9	4.3	4.4	4.4	4.0	3.8	4.0	4.1	4.2	4.0	4.1
Above Normal (16\%)	3.6	3.8	4.0	4.2	4.3	3.8	3.6	3.8	4.0	4.2	4.0	3.8
Below Normal (13\%)	3.6	3.7	3.9	3.9	3.9	3.5	3.5	3.7	4.0	4.2	4.0	3.9
Dry (24\%)	3.6	3.6	3.8	3.8	3.8	3.6	3.5	3.7	4.0	4.1	4.0	3.8
Critical (15\%)	3.7	3.7	3.9	3.8	3.8	3.5	3.5	3.7	4.0	4.1	4.0	3.8

Alternative 5 minus Second Basis of Comparison

Statistic	Monthly Averaged Daily Maximum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
20\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
30\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
40\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
50\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
60\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
70\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
80\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
90\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
Above Normal (16\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
Below Normal (13\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dry (24\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Critical (15\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year
b Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same,
therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, herefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-45-2-1. Sacramento River at Rio Vista, Monthly Averaged Daily Minimum Elevation, October

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-45-2-2. Sacramento River at Rio Vista, Monthly Averaged Daily Minimum Elevation, November

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-45-2-3. Sacramento River at Rio Vista, Monthly Averaged Daily Minimum Elevation, December

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-45-2-4. Sacramento River at Rio Vista, Monthly Averaged Daily Minimum Elevation, January

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-45-2-5. Sacramento River at Rio Vista, Monthly Averaged Daily Minimum Elevation, February

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-45-2-6. Sacramento River at Rio Vista, Monthly Averaged Daily Minimum Elevation, March

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-45-2-7. Sacramento River at Rio Vista, Monthly Averaged Daily Minimum Elevation, April

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-45-2-8. Sacramento River at Rio Vista, Monthly Averaged Daily Minimum Elevation, May

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-45-2-9. Sacramento River at Rio Vista, Monthly Averaged Daily Minimum Elevation, June

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-45-2-10. Sacramento River at Rio Vista, Monthly Averaged Daily Minimum Elevation, July

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-45-2-11. Sacramento River at Rio Vista, Monthly Averaged Daily Minimum Elevation, August

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure C-45-2-12. Sacramento River at Rio Vista, Monthly Averaged Daily Minimum Elevation, September

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-45-2-1. Sacramento River at Rio Vista, Monthly Averaged Daily Minimum Elevation

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	-0.3	-0.4	0.2	0.8	1.3	0.7	0.1	-0.2	-0.4	-0.2	-0.2	-0.1
20\%	-0.4	-0.5	-0.2	0.3	0.5	0.1	-0.2	-0.4	-0.5	-0.3	-0.3	-0.1
30\%	-0.4	-0.5	-0.5	-0.2	0.3	-0.1	-0.4	-0.5	-0.5	-0.4	-0.3	-0.2
40\%	-0.5	-0.6	-0.6	-0.4	0.1	-0.3	-0.5	-0.6	-0.5	-0.4	-0.3	-0.3
50\%	-0.5	-0.6	-0.6	-0.5	-0.3	-0.4	-0.6	-0.7	-0.6	-0.4	-0.4	-0.3
60\%	-0.6	-0.7	-0.7	-0.6	-0.4	-0.4	-0.7	-0.7	-0.6	-0.5	-0.4	-0.3
70\%	-0.6	-0.7	-0.7	-0.6	-0.5	-0.5	-0.7	-0.7	-0.6	-0.5	-0.4	-0.3
80\%	-0.6	-0.8	-0.8	-0.7	-0.6	-0.7	-0.8	-0.8	-0.7	-0.5	-0.4	-0.4
90\%	-0.7	-0.8	-0.9	-0.8	-0.7	-0.7	-0.8	-0.8	-0.7	-0.6	-0.5	-0.4
Long Term												
Full Simulation Period ${ }^{\text {b }}$	-0.5	-0.6	-0.5	-0.2	0.0	-0.2	-0.5	-0.6	-0.5	-0.4	-0.3	-0.3
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	-0.4	-0.5	-0.2	0.4	0.7	0.4	-0.2	-0.4	-0.4	-0.3	-0.3	-0.1
Above Normal (16\%)	-0.5	-0.6	-0.5	-0.1	0.3	-0.1	-0.5	-0.6	-0.6	-0.4	-0.3	-0.3
Below Normal (13\%)	-0.5	-0.6	-0.6	-0.6	-0.3	-0.6	-0.7	-0.7	-0.6	-0.4	-0.3	-0.3
Dry (24\%)	-0.5	-0.7	-0.8	-0.6	-0.4	-0.4	-0.7	-0.7	-0.6	-0.5	-0.4	-0.4
Critical (15\%)	-0.5	-0.7	-0.7	-0.7	-0.5	-0.6	-0.7	-0.8	-0.7	-0.5	-0.4	-0.4

Alternative 1

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	-0.3	-0.4	0.3	0.8	1.4	0.7	0.0	-0.2	-0.4	-0.3	-0.2	-0.1
20\%	-0.4	-0.5	-0.2	0.3	0.5	0.1	-0.2	-0.4	-0.4	-0.3	-0.3	-0.2
30\%	-0.5	-0.6	-0.5	-0.2	0.3	0.0	-0.4	-0.5	-0.5	-0.4	-0.3	-0.3
40\%	-0.5	-0.6	-0.6	-0.4	0.1	-0.3	-0.6	-0.6	-0.5	-0.4	-0.3	-0.3
50\%	-0.5	-0.7	-0.7	-0.5	-0.3	-0.4	-0.6	-0.7	-0.6	-0.4	-0.4	-0.3
60\%	-0.6	-0.7	-0.7	-0.6	-0.4	-0.4	-0.7	-0.7	-0.6	-0.5	-0.4	-0.3
70\%	-0.6	-0.8	-0.7	-0.7	-0.5	-0.5	-0.8	-0.7	-0.6	-0.5	-0.4	-0.4
80\%	-0.6	-0.8	-0.8	-0.7	-0.6	-0.7	-0.8	-0.8	-0.7	-0.5	-0.4	-0.4
90\%	-0.7	-0.9	-0.9	-0.8	-0.7	-0.7	-0.9	-0.8	-0.7	-0.6	-0.5	-0.5

Full Simulation Period ${ }^{\text {b }}$	-0.5	-0.6	-0.5	-0.2	0.1	-0.2	-0.5	-0.6	-0.5	-0.4	-0.4	-0.3
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	-0.4	-0.5	-0.1	0.4	0.7	0.4	-0.2	-0.4	-0.4	-0.3	-0.3	-0.2
Above Normal (16\%)	-0.5	-0.6	-0.5	-0.1	0.3	0.0	-0.5	-0.6	-0.6	-0.4	-0.3	-0.3
Below Normal (13\%)	-0.5	-0.6	-0.6	-0.6	-0.3	-0.6	-0.7	-0.7	-0.6	-0.4	-0.3	-0.3
Dry (24\%)	-0.5	-0.7	-0.8	-0.7	-0.4	-0.4	-0.7	-0.7	-0.6	-0.5	-0.4	-0.4
Critical (15\%)	-0.5	-0.7	-0.7	-0.7	-0.5	-0.6	-0.7	-0.8	-0.7	-0.5	-0.4	-0.4

Statistic	Monthly Averaged Daily Minimum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.0	0.0	0.1	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
20\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1
30\%	0.0	-0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1
40\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
50\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
60\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
70\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
80\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
90\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1
Above Normal (16\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Below Normal (13\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dry (24\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Critical (15\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year
b Based on the 82 -year simulation period
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same,
therefore Second Basis of Comparison and Alternative 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-45-2-2. Sacramento River at Rio Vista, Monthly Averaged Daily Minimum Elevation

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	-0.3	-0.4	0.2	0.8	1.3	0.7	0.1	-0.2	-0.4	-0.2	-0.2	-0.1
20\%	-0.4	-0.5	-0.2	0.3	0.5	0.1	-0.2	-0.4	-0.5	-0.3	-0.3	-0.1
30\%	-0.4	-0.5	-0.5	-0.2	0.3	-0.1	-0.4	-0.5	-0.5	-0.4	-0.3	-0.2
40\%	-0.5	-0.6	-0.6	-0.4	0.1	-0.3	-0.5	-0.6	-0.5	-0.4	-0.3	-0.3
50\%	-0.5	-0.6	-0.6	-0.5	-0.3	-0.4	-0.6	-0.7	-0.6	-0.4	-0.4	-0.3
60\%	-0.6	-0.7	-0.7	-0.6	-0.4	-0.4	-0.7	-0.7	-0.6	-0.5	-0.4	-0.3
70\%	-0.6	-0.7	-0.7	-0.6	-0.5	-0.5	-0.7	-0.7	-0.6	-0.5	-0.4	-0.3
80\%	-0.6	-0.8	-0.8	-0.7	-0.6	-0.7	-0.8	-0.8	-0.7	-0.5	-0.4	-0.4
90\%	-0.7	-0.8	-0.9	-0.8	-0.7	-0.7	-0.8	-0.8	-0.7	-0.6	-0.5	-0.4
Long Term												
Full Simulation Period ${ }^{\text {b }}$	-0.5	-0.6	-0.5	-0.2	0.0	-0.2	-0.5	-0.6	-0.5	-0.4	-0.3	-0.3
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	-0.4	-0.5	-0.2	0.4	0.7	0.4	-0.2	-0.4	-0.4	-0.3	-0.3	-0.1
Above Normal (16\%)	-0.5	-0.6	-0.5	-0.1	0.3	-0.1	-0.5	-0.6	-0.6	-0.4	-0.3	-0.3
Below Normal (13\%)	-0.5	-0.6	-0.6	-0.6	-0.3	-0.6	-0.7	-0.7	-0.6	-0.4	-0.3	-0.3
Dry (24\%)	-0.5	-0.7	-0.8	-0.6	-0.4	-0.4	-0.7	-0.7	-0.6	-0.5	-0.4	-0.4
Critical (15\%)	-0.5	-0.7	-0.7	-0.7	-0.5	-0.6	-0.7	-0.8	-0.7	-0.5	-0.4	-0.4

Alternative 3

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	-0.3	-0.4	0.3	0.8	1.4	0.7	0.0	-0.2	-0.4	-0.2	-0.2	-0.1
20\%	-0.4	-0.5	-0.2	0.4	0.5	0.1	-0.2	-0.4	-0.5	-0.3	-0.3	-0.2
30\%	-0.5	-0.6	-0.5	-0.2	0.3	-0.1	-0.4	-0.5	-0.5	-0.4	-0.3	-0.3
40\%	-0.5	-0.6	-0.6	-0.4	0.1	-0.3	-0.6	-0.6	-0.5	-0.4	-0.3	-0.3
50\%	-0.5	-0.7	-0.6	-0.5	-0.3	-0.4	-0.6	-0.7	-0.6	-0.4	-0.4	-0.3
60\%	-0.6	-0.7	-0.7	-0.6	-0.4	-0.4	-0.7	-0.7	-0.6	-0.5	-0.4	-0.3
70\%	-0.6	-0.8	-0.7	-0.6	-0.5	-0.5	-0.8	-0.7	-0.6	-0.5	-0.4	-0.4
80\%	-0.6	-0.8	-0.8	-0.7	-0.6	-0.7	-0.8	-0.8	-0.7	-0.5	-0.4	-0.4
90\%	-0.7	-0.9	-0.9	-0.8	-0.7	-0.7	-0.9	-0.8	-0.7	-0.6	-0.5	-0.4

Full Simulation Period ${ }^{\text {b }}$	-0.5	-0.6	-0.5	-0.2	0.1	-0.2	-0.5	-0.6	-0.5	-0.4	-0.4	-0.3
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	-0.4	-0.5	-0.1	0.4	0.7	0.4	-0.2	-0.4	-0.4	-0.3	-0.3	-0.2
Above Normal (16\%)	-0.5	-0.6	-0.5	-0.1	0.3	0.0	-0.5	-0.6	-0.6	-0.4	-0.3	-0.3
Below Normal (13\%)	-0.5	-0.7	-0.6	-0.6	-0.2	-0.6	-0.7	-0.7	-0.6	-0.4	-0.3	-0.3
Dry (24\%)	-0.5	-0.7	-0.8	-0.6	-0.4	-0.4	-0.7	-0.7	-0.6	-0.5	-0.4	-0.4
Critical (15\%)	-0.5	-0.7	-0.7	-0.7	-0.5	-0.6	-0.7	-0.8	-0.7	-0.5	-0.4	-0.4

Alternative 3 minus No Action Alternative

Statistic	Monthly Averaged Daily Minimum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.0	0.0	0.1	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
20\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1
30\%	0.0	-0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1
40\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
50\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
60\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
70\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
80\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
90\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.1
Above Normal (16\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Below Normal (13\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dry (24\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Critical (15\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year
b Based on the 82 -year simulation period
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same,
therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and $N o$ Action Alternative are the same, herefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-45-2-3. Sacramento River at Rio Vista, Monthly Averaged Daily Minimum Elevation

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	-0.3	-0.4	0.2	0.8	1.3	0.7	0.1	-0.2	-0.4	-0.2	-0.2	-0.1
20\%	-0.4	-0.5	-0.2	0.3	0.5	0.1	-0.2	-0.4	-0.5	-0.3	-0.3	-0.1
30\%	-0.4	-0.5	-0.5	-0.2	0.3	-0.1	-0.4	-0.5	-0.5	-0.4	-0.3	-0.2
40\%	-0.5	-0.6	-0.6	-0.4	0.1	-0.3	-0.5	-0.6	-0.5	-0.4	-0.3	-0.3
50\%	-0.5	-0.6	-0.6	-0.5	-0.3	-0.4	-0.6	-0.7	-0.6	-0.4	-0.4	-0.3
60\%	-0.6	-0.7	-0.7	-0.6	-0.4	-0.4	-0.7	-0.7	-0.6	-0.5	-0.4	-0.3
70\%	-0.6	-0.7	-0.7	-0.6	-0.5	-0.5	-0.7	-0.7	-0.6	-0.5	-0.4	-0.3
80\%	-0.6	-0.8	-0.8	-0.7	-0.6	-0.7	-0.8	-0.8	-0.7	-0.5	-0.4	-0.4
90\%	-0.7	-0.8	-0.9	-0.8	-0.7	-0.7	-0.8	-0.8	-0.7	-0.6	-0.5	-0.4
Long Term												
Full Simulation Period ${ }^{\text {b }}$	-0.5	-0.6	-0.5	-0.2	0.0	-0.2	-0.5	-0.6	-0.5	-0.4	-0.3	-0.3
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	-0.4	-0.5	-0.2	0.4	0.7	0.4	-0.2	-0.4	-0.4	-0.3	-0.3	-0.1
Above Normal (16\%)	-0.5	-0.6	-0.5	-0.1	0.3	-0.1	-0.5	-0.6	-0.6	-0.4	-0.3	-0.3
Below Normal (13\%)	-0.5	-0.6	-0.6	-0.6	-0.3	-0.6	-0.7	-0.7	-0.6	-0.4	-0.3	-0.3
Dry (24\%)	-0.5	-0.7	-0.8	-0.6	-0.4	-0.4	-0.7	-0.7	-0.6	-0.5	-0.4	-0.4
Critical (15\%)	-0.5	-0.7	-0.7	-0.7	-0.5	-0.6	-0.7	-0.8	-0.7	-0.5	-0.4	-0.4

Alternative 5

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	-0.3	-0.4	0.2	0.8	1.3	0.7	0.1	-0.2	-0.4	-0.2	-0.2	-0.1
20\%	-0.4	-0.5	-0.2	0.3	0.5	0.1	-0.2	-0.4	-0.5	-0.3	-0.3	-0.1
30\%	-0.4	-0.5	-0.5	-0.2	0.3	-0.1	-0.4	-0.5	-0.5	-0.4	-0.3	-0.2
40\%	-0.5	-0.6	-0.6	-0.4	0.1	-0.3	-0.5	-0.6	-0.5	-0.4	-0.3	-0.3
50\%	-0.5	-0.6	-0.6	-0.5	-0.3	-0.4	-0.6	-0.7	-0.6	-0.4	-0.4	-0.3
60\%	-0.6	-0.7	-0.7	-0.6	-0.4	-0.4	-0.7	-0.7	-0.6	-0.5	-0.4	-0.3
70\%	-0.6	-0.7	-0.7	-0.6	-0.5	-0.5	-0.7	-0.7	-0.6	-0.5	-0.4	-0.3
80\%	-0.6	-0.8	-0.8	-0.7	-0.6	-0.7	-0.8	-0.8	-0.7	-0.5	-0.4	-0.4
90\%	-0.7	-0.8	-0.9	-0.8	-0.7	-0.7	-0.8	-0.8	-0.7	-0.6	-0.5	-0.4
Long Term												
Full Simulation Period ${ }^{\text {b }}$	-0.5	-0.6	-0.5	-0.2	0.0	-0.2	-0.5	-0.6	-0.5	-0.4	-0.3	-0.3
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	-0.4	-0.5	-0.2	0.4	0.7	0.4	-0.2	-0.4	-0.4	-0.3	-0.3	-0.1
Above Normal (16\%)	-0.5	-0.6	-0.5	-0.1	0.3	-0.1	-0.5	-0.6	-0.6	-0.4	-0.3	-0.3
Below Normal (13\%)	-0.5	-0.6	-0.6	-0.6	-0.3	-0.6	-0.7	-0.7	-0.6	-0.4	-0.3	-0.3
Dry (24\%)	-0.5	-0.7	-0.8	-0.6	-0.4	-0.4	-0.7	-0.7	-0.6	-0.5	-0.4	-0.4
Critical (15\%)	-0.5	-0.7	-0.7	-0.7	-0.5	-0.6	-0.7	-0.8	-0.7	-0.5	-0.4	-0.4

Alternative 5 minus No Action Alternative

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
20\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
30\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
40\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
50\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
60\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
70\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
80\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
90\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Above Normal (16\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Below Normal (13\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dry (24\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Critical (15\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year
b Based on the 82 -year simulation period.
C As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same,
therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and $N o$ Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-45-2-4. Sacramento River at Rio Vista, Monthly Averaged Daily Minimum Elevation

Second Basis of Comparison

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	-0.3	-0.4	0.3	0.8	1.4	0.7	0.0	-0.2	-0.4	-0.3	-0.2	-0.1
20\%	-0.4	-0.5	-0.2	0.3	0.5	0.1	-0.2	-0.4	-0.4	-0.3	-0.3	-0.2
30\%	-0.5	-0.6	-0.5	-0.2	0.3	0.0	-0.4	-0.5	-0.5	-0.4	-0.3	-0.3
40\%	-0.5	-0.6	-0.6	-0.4	0.1	-0.3	-0.6	-0.6	-0.5	-0.4	-0.3	-0.3
50\%	-0.5	-0.7	-0.7	-0.5	-0.3	-0.4	-0.6	-0.7	-0.6	-0.4	-0.4	-0.3
60\%	-0.6	-0.7	-0.7	-0.6	-0.4	-0.4	-0.7	-0.7	-0.6	-0.5	-0.4	-0.3
70\%	-0.6	-0.8	-0.7	-0.7	-0.5	-0.5	-0.8	-0.7	-0.6	-0.5	-0.4	-0.4
80\%	-0.6	-0.8	-0.8	-0.7	-0.6	-0.7	-0.8	-0.8	-0.7	-0.5	-0.4	-0.4
90\%	-0.7	-0.9	-0.9	-0.8	-0.7	-0.7	-0.9	-0.8	-0.7	-0.6	-0.5	-0.5
Long Term												
Full Simulation Period ${ }^{\text {b }}$	-0.5	-0.6	-0.5	-0.2	0.1	-0.2	-0.5	-0.6	-0.5	-0.4	-0.4	-0.3
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	-0.4	-0.5	-0.1	0.4	0.7	0.4	-0.2	-0.4	-0.4	-0.3	-0.3	-0.2
Above Normal (16\%)	-0.5	-0.6	-0.5	-0.1	0.3	0.0	-0.5	-0.6	-0.6	-0.4	-0.3	-0.3
Below Normal (13\%)	-0.5	-0.6	-0.6	-0.6	-0.3	-0.6	-0.7	-0.7	-0.6	-0.4	-0.3	-0.3
Dry (24\%)	-0.5	-0.7	-0.8	-0.7	-0.4	-0.4	-0.7	-0.7	-0.6	-0.5	-0.4	-0.4
Critical (15\%)	-0.5	-0.7	-0.7	-0.7	-0.5	-0.6	-0.7	-0.8	-0.7	-0.5	-0.4	-0.4

No Action Alternative

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	-0.3	-0.4	0.2	0.8	1.3	0.7	0.1	-0.2	-0.4	-0.2	-0.2	-0.1
20\%	-0.4	-0.5	-0.2	0.3	0.5	0.1	-0.2	-0.4	-0.5	-0.3	-0.3	-0.1
30\%	-0.4	-0.5	-0.5	-0.2	0.3	-0.1	-0.4	-0.5	-0.5	-0.4	-0.3	-0.2
40\%	-0.5	-0.6	-0.6	-0.4	0.1	-0.3	-0.5	-0.6	-0.5	-0.4	-0.3	-0.3
50\%	-0.5	-0.6	-0.6	-0.5	-0.3	-0.4	-0.6	-0.7	-0.6	-0.4	-0.4	-0.3
60\%	-0.6	-0.7	-0.7	-0.6	-0.4	-0.4	-0.7	-0.7	-0.6	-0.5	-0.4	-0.3
70\%	-0.6	-0.7	-0.7	-0.6	-0.5	-0.5	-0.7	-0.7	-0.6	-0.5	-0.4	-0.3
80\%	-0.6	-0.8	-0.8	-0.7	-0.6	-0.7	-0.8	-0.8	-0.7	-0.5	-0.4	-0.4
90\%	-0.7	-0.8	-0.9	-0.8	-0.7	-0.7	-0.8	-0.8	-0.7	-0.6	-0.5	-0.4
Long Term												
Full Simulation Period ${ }^{\text {b }}$	-0.5	-0.6	-0.5	-0.2	0.0	-0.2	-0.5	-0.6	-0.5	-0.4	-0.3	-0.3
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	-0.4	-0.5	-0.2	0.4	0.7	0.4	-0.2	-0.4	-0.4	-0.3	-0.3	-0.1
Above Normal (16\%)	-0.5	-0.6	-0.5	-0.1	0.3	-0.1	-0.5	-0.6	-0.6	-0.4	-0.3	-0.3
Below Normal (13\%)	-0.5	-0.6	-0.6	-0.6	-0.3	-0.6	-0.7	-0.7	-0.6	-0.4	-0.3	-0.3
Dry (24\%)	-0.5	-0.7	-0.8	-0.6	-0.4	-0.4	-0.7	-0.7	-0.6	-0.5	-0.4	-0.4
Critical (15\%)	-0.5	-0.7	-0.7	-0.7	-0.5	-0.6	-0.7	-0.8	-0.7	-0.5	-0.4	-0.4

No Action Alternative minus Second Basis of Comparison

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.0	0.0	-0.1	0.0	-0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
20\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
30\%	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
40\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
50\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
60\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
70\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
80\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
90\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
Above Normal (16\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Below Normal (13\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dry (24\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Critical (15\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year
b Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same, therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text

Table C-45-2-5. Sacramento River at Rio Vista, Monthly Averaged Daily Minimum Elevation

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	-0.3	-0.4	0.3	0.8	1.4	0.7	0.0	-0.2	-0.4	-0.3	-0.2	-0.1
20\%	-0.4	-0.5	-0.2	0.3	0.5	0.1	-0.2	-0.4	-0.4	-0.3	-0.3	-0.2
30\%	-0.5	-0.6	-0.5	-0.2	0.3	0.0	-0.4	-0.5	-0.5	-0.4	-0.3	-0.3
40\%	-0.5	-0.6	-0.6	-0.4	0.1	-0.3	-0.6	-0.6	-0.5	-0.4	-0.3	-0.3
50\%	-0.5	-0.7	-0.7	-0.5	-0.3	-0.4	-0.6	-0.7	-0.6	-0.4	-0.4	-0.3
60\%	-0.6	-0.7	-0.7	-0.6	-0.4	-0.4	-0.7	-0.7	-0.6	-0.5	-0.4	-0.3
70\%	-0.6	-0.8	-0.7	-0.7	-0.5	-0.5	-0.8	-0.7	-0.6	-0.5	-0.4	-0.4
80\%	-0.6	-0.8	-0.8	-0.7	-0.6	-0.7	-0.8	-0.8	-0.7	-0.5	-0.4	-0.4
90\%	-0.7	-0.9	-0.9	-0.8	-0.7	-0.7	-0.9	-0.8	-0.7	-0.6	-0.5	-0.5
Long Term												
Full Simulation Period ${ }^{\text {b }}$	-0.5	-0.6	-0.5	-0.2	0.1	-0.2	-0.5	-0.6	-0.5	-0.4	-0.4	-0.3
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	-0.4	-0.5	-0.1	0.4	0.7	0.4	-0.2	-0.4	-0.4	-0.3	-0.3	-0.2
Above Normal (16\%)	-0.5	-0.6	-0.5	-0.1	0.3	0.0	-0.5	-0.6	-0.6	-0.4	-0.3	-0.3
Below Normal (13\%)	-0.5	-0.6	-0.6	-0.6	-0.3	-0.6	-0.7	-0.7	-0.6	-0.4	-0.3	-0.3
Dry (24\%)	-0.5	-0.7	-0.8	-0.7	-0.4	-0.4	-0.7	-0.7	-0.6	-0.5	-0.4	-0.4
Critical (15\%)	-0.5	-0.7	-0.7	-0.7	-0.5	-0.6	-0.7	-0.8	-0.7	-0.5	-0.4	-0.4

Alternative 3

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	-0.3	-0.4	0.3	0.8	1.4	0.7	0.0	-0.2	-0.4	-0.2	-0.2	-0.1
20\%	-0.4	-0.5	-0.2	0.4	0.5	0.1	-0.2	-0.4	-0.5	-0.3	-0.3	-0.2
30\%	-0.5	-0.6	-0.5	-0.2	0.3	-0.1	-0.4	-0.5	-0.5	-0.4	-0.3	-0.3
40\%	-0.5	-0.6	-0.6	-0.4	0.1	-0.3	-0.6	-0.6	-0.5	-0.4	-0.3	-0.3
50\%	-0.5	-0.7	-0.6	-0.5	-0.3	-0.4	-0.6	-0.7	-0.6	-0.4	-0.4	-0.3
60\%	-0.6	-0.7	-0.7	-0.6	-0.4	-0.4	-0.7	-0.7	-0.6	-0.5	-0.4	-0.3
70\%	-0.6	-0.8	-0.7	-0.6	-0.5	-0.5	-0.8	-0.7	-0.6	-0.5	-0.4	-0.4
80\%	-0.6	-0.8	-0.8	-0.7	-0.6	-0.7	-0.8	-0.8	-0.7	-0.5	-0.4	-0.4
90\%	-0.7	-0.9	-0.9	-0.8	-0.7	-0.7	-0.9	-0.8	-0.7	-0.6	-0.5	-0.4

Full Simulation Period ${ }^{\text {b }}$	-0.5	-0.6	-0.5	-0.2	0.1	-0.2	-0.5	-0.6	-0.5	-0.4	-0.4	-0.3
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	-0.4	-0.5	-0.1	0.4	0.7	0.4	-0.2	-0.4	-0.4	-0.3	-0.3	-0.2
Above Normal (16\%)	-0.5	-0.6	-0.5	-0.1	0.3	0.0	-0.5	-0.6	-0.6	-0.4	-0.3	-0.3
Below Normal (13\%)	-0.5	-0.7	-0.6	-0.6	-0.2	-0.6	-0.7	-0.7	-0.6	-0.4	-0.3	-0.3
Dry (24\%)	-0.5	-0.7	-0.8	-0.6	-0.4	-0.4	-0.7	-0.7	-0.6	-0.5	-0.4	-0.4
Critical (15\%)	-0.5	-0.7	-0.7	-0.7	-0.5	-0.6	-0.7	-0.8	-0.7	-0.5	-0.4	-0.4

Alternative 3 minus Second Basis of Comparison

Statistic	Monthly Averaged Daily Minimum Elevation (Feet)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
20\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
30\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
40\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
50\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
60\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
70\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
80\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
90\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Above Normal (16\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Below Normal (13\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dry (24\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Critical (15\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year
b Based on the 82 -year simulation period
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table C-45-2-6. Sacramento River at Rio Vista, Monthly Averaged Daily Minimum Elevation

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	-0.3	-0.4	0.3	0.8	1.4	0.7	0.0	-0.2	-0.4	-0.3	-0.2	-0.1
20\%	-0.4	-0.5	-0.2	0.3	0.5	0.1	-0.2	-0.4	-0.4	-0.3	-0.3	-0.2
30\%	-0.5	-0.6	-0.5	-0.2	0.3	0.0	-0.4	-0.5	-0.5	-0.4	-0.3	-0.3
40\%	-0.5	-0.6	-0.6	-0.4	0.1	-0.3	-0.6	-0.6	-0.5	-0.4	-0.3	-0.3
50\%	-0.5	-0.7	-0.7	-0.5	-0.3	-0.4	-0.6	-0.7	-0.6	-0.4	-0.4	-0.3
60\%	-0.6	-0.7	-0.7	-0.6	-0.4	-0.4	-0.7	-0.7	-0.6	-0.5	-0.4	-0.3
70\%	-0.6	-0.8	-0.7	-0.7	-0.5	-0.5	-0.8	-0.7	-0.6	-0.5	-0.4	-0.4
80\%	-0.6	-0.8	-0.8	-0.7	-0.6	-0.7	-0.8	-0.8	-0.7	-0.5	-0.4	-0.4
90\%	-0.7	-0.9	-0.9	-0.8	-0.7	-0.7	-0.9	-0.8	-0.7	-0.6	-0.5	-0.5
Long Term												
Full Simulation Period ${ }^{\text {b }}$	-0.5	-0.6	-0.5	-0.2	0.1	-0.2	-0.5	-0.6	-0.5	-0.4	-0.4	-0.3
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	-0.4	-0.5	-0.1	0.4	0.7	0.4	-0.2	-0.4	-0.4	-0.3	-0.3	-0.2
Above Normal (16\%)	-0.5	-0.6	-0.5	-0.1	0.3	0.0	-0.5	-0.6	-0.6	-0.4	-0.3	-0.3
Below Normal (13\%)	-0.5	-0.6	-0.6	-0.6	-0.3	-0.6	-0.7	-0.7	-0.6	-0.4	-0.3	-0.3
Dry (24\%)	-0.5	-0.7	-0.8	-0.7	-0.4	-0.4	-0.7	-0.7	-0.6	-0.5	-0.4	-0.4
Critical (15\%)	-0.5	-0.7	-0.7	-0.7	-0.5	-0.6	-0.7	-0.8	-0.7	-0.5	-0.4	-0.4

Alternative 5

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	-0.3	-0.4	0.2	0.8	1.3	0.7	0.1	-0.2	-0.4	-0.2	-0.2	-0.1
20\%	-0.4	-0.5	-0.2	0.3	0.5	0.1	-0.2	-0.4	-0.5	-0.3	-0.3	-0.1
30\%	-0.4	-0.5	-0.5	-0.2	0.3	-0.1	-0.4	-0.5	-0.5	-0.4	-0.3	-0.2
40\%	-0.5	-0.6	-0.6	-0.4	0.1	-0.3	-0.5	-0.6	-0.5	-0.4	-0.3	-0.3
50\%	-0.5	-0.6	-0.6	-0.5	-0.3	-0.4	-0.6	-0.7	-0.6	-0.4	-0.4	-0.3
60\%	-0.6	-0.7	-0.7	-0.6	-0.4	-0.4	-0.7	-0.7	-0.6	-0.5	-0.4	-0.3
70\%	-0.6	-0.7	-0.7	-0.6	-0.5	-0.5	-0.7	-0.7	-0.6	-0.5	-0.4	-0.3
80\%	-0.6	-0.8	-0.8	-0.7	-0.6	-0.7	-0.8	-0.8	-0.7	-0.5	-0.4	-0.4
90\%	-0.7	-0.8	-0.9	-0.8	-0.7	-0.7	-0.8	-0.8	-0.7	-0.6	-0.5	-0.4
Long Term												
Full Simulation Period ${ }^{\text {b }}$	-0.5	-0.6	-0.5	-0.2	0.0	-0.2	-0.5	-0.6	-0.5	-0.4	-0.3	-0.3
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	-0.4	-0.5	-0.2	0.4	0.7	0.4	-0.2	-0.4	-0.4	-0.3	-0.3	-0.1
Above Normal (16\%)	-0.5	-0.6	-0.5	-0.1	0.3	-0.1	-0.5	-0.6	-0.6	-0.4	-0.3	-0.3
Below Normal (13\%)	-0.5	-0.6	-0.6	-0.6	-0.3	-0.6	-0.7	-0.7	-0.6	-0.4	-0.3	-0.3
Dry (24\%)	-0.5	-0.7	-0.8	-0.6	-0.4	-0.4	-0.7	-0.7	-0.6	-0.5	-0.4	-0.4
Critical (15\%)	-0.5	-0.7	-0.7	-0.7	-0.5	-0.6	-0.7	-0.8	-0.7	-0.5	-0.4	-0.4

Alternative 5 minus Second Basis of Comparison

	Monthly Averaged Daily Minimum Elevation (Feet)											
Statistic	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Probability of Exceedance ${ }^{\text {a }}$												
10\%	0.0	0.0	-0.1	0.0	-0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
20\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
30\%	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
40\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
50\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
60\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
70\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
80\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
90\%	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Long Term												
Full Simulation Period ${ }^{\text {b }}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Water Year Types ${ }^{\text {c }}$												
Wet (32\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
Above Normal (16\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Below Normal (13\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dry (24\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Critical (15\%)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
b Based on the 82 -year simulation period.
C As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification (SWRCB D-1641, 1999); projected to Year 2030.
Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2) Model results for Alternatives 1,4 , and Second Basis of Comparison are the same, therefore Alternative 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and $N o$ Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

This page left blank intentionally.

