Appendix I – Antidegradation Analysis

NORTH VALLEY REGIONAL RECYCLED WATER PROGRAM

Antidegradation Analysis for Proposed Recycled Water Discharge to the Delta-Mendota Canal

prepared by LARRY WALKER ASSOCIATES

Acknowledgements

The contributions of the following Larry Walker Associates staff members, who participated in the preparation of this document, are gratefully acknowledged:

Jenny Bayley

Airy Krich-Brinton

Brian Laurenson

Steve Maricle

Mitch Mysliwiec

Mike Trouchon

~ This Page Intentionally Left Blank ~

Table of Contents

Acknowledgements	i
Table of Contents	iii
List of Tables	v
List of Figures	v
Acronyms and Abbreviations	vii
Executive Summary	I
Background and Project Description	I
Water Quality Impacts of Proposed NVRRWP Discharge	III
Consistency with Antidegradation Policies	IV
Introduction	1
Background	1
Del Puerto Water District	2
South of Delta Refuges	
Recycled Water Sources	
Project Description	
Project Location	
Scope of Evaluation of Project Impacts	
Purpose of Report	
Approach to Analysis	9
Regulatory Requirements	
Application of Laws and Policies	
Federal Antidegradation Policy and Guidance	
State Antidegradation Policy and Guidance	
Resolution 68-16	
1987 Policy Memorandum	
Administrative Procedures Update 90-004	
Applicable Water Quality Standards	
Beneficial Uses	
Water Quality Objectives/Water Quality Criteria	
303(D) Listings	
Additional Water Quality Considerations	

Environmental Setting	21
San Joaquin River Basin	21
San Joaquin River Basin Hydrology	21
State Water Project	22
Central Valley Project	22
California Aqueduct/San Luis Canal	22
Delta-Mendota Canal	23
San Luis Reservoir	23
Assessment of Water Quality Impacts	25
Project Background2	25
Project Description	26
Selection of Water Quality Constituents	30
Selection Criteria	30
Data Sources	30
Water Quality Impacts Methodology	32
Near-Field Water Quality Impacts Methodology	33
Near-Field Impacts Calculations	34
Near-Field Analysis and Results	36
Far-Field Water Quality Impacts Methodology	43
Far-Field Impact Calculations	45
Far-Field Analysis and Results	46
Summary of Water Quality Impacts	49
Evaluation of Consistency with Antidegradation Policy5	51
Benefits of Proposed Project	51
Consistency with Antidegradation Policies	51
References	53
Appendix A: U.S. Bureau of Reclamation Water Quality Standards for Acceptance of Groundwater Pumped into the Upper Delta-Mendota Canal	55
Appendix B: City of Turlock Tertiary Effluent Monitoring Data Used to Characterize City's Contribution to Effluent Quality of Proposed NVRRWP Discharge	58
Appendix C: City of Modesto Tertiary Effluent Monitoring Data Used to Characterize City's Contribution to Effluent Quality of Proposed NVRRWP Discharge	13
Appendix D: Delta-Mendota Canal Water Quality Monitoring Data Used to Characterize Upstream Receiving Water Quality for Proposed NVRRWP Discharge	

Appendix E:	Calculations for Length to Complete Mixing	237
Appendix F:	Supplemental Discussion of Far-Field Impacts Calculations	239

List of Tables

Table 1: Beneficial Uses Designated for the Delta-Mendota Canal. 15
Table 2: Applicable Water Quality Objectives and/or Criteria for the Delta-Mendota Canal 16
Table 3: 2010 Clean Water Act Section 303(d) Listed Constituents, Potential Sources, and TMDL Adoption Dates as They Pertain to Listed Water Bodies in the Far-Field Impact Area of the NVRRWP Project.18
Table 4: USBR's Maximum Allowable Concentration of Seven Constituents in the Upper Delta- Mendota Canal through its Delta-Mendota Canal Pump-in Program
Table 5: Recycled Water Availability at Buildout of Modesto and Turlock Wastewater Treatment Facilities. 26
Table 6: Water Quality Constituents and their Data Sources Identified for Near-Field Water Quality Impacts Analyses. 31
Table 7: Summary Statistics for City of Turlock Tertiary Effluent Quality, City of ModestoTertiary Effluent Quality, and Delta Mendota Canal Receiving Water Quality Upstream ofProposed NVRRWP Discharge Used in the Estimation of Near-Field Water QualityImpacts.38
Table 8: Estimated Near-Field Downstream (D/S) Water Quality Impacts, on a ConcentrationBasis, of the Proposed NVRRWP Discharge at the Projected Buildout Discharge Rate of52.7 mgd.39
Table 9: Estimated Near-Field Downstream (D/S) Water Quality Impacts, on a Mass Loading Basis, of the Proposed NVRRWP Discharge at the Proposed Buildout Discharge Rate of 52.7 mgd.42
Table 10: Estimated, Downstream Far-Field Percentages of the Proposed NVRRWP DischargeProjected to Exit O'Neill Forebay at a Project Discharge Rate of 52.7 mgd.46
Table 11: Estimated, Downstream Far-Field Percentages of the Proposed NVRRWP DischargeProjected to Exit San Luis Reservoir at a Project Discharge Rate of 52.7 mgd.47
Table 12: Estimated, Downstream Far-Field Concentration of EC (µmhos/cm) at Water Project Export Locations for the Proposed NVRRWP Project at a Discharge Rate of 52.7 mgd 48
Table 13: Estimated, Downstream Far-Field Concentrations of Nitrate + Nitrite (mg/L as N) at Water Project Export Locations for the Proposed NVRRWP Project at a Discharge Rate of 52.7 mgd.52.7 mgd.

List of Figures

Figure ES-1: Proposed NVRRWP Project Area Showing Del Puerto Water District Service Area and Wildlife Refuges Proposed to Receive Project Water......ES-II

Figure 1: Historical CVP Allocations Delivered to DPWD since 19902
Figure 2: Overview of Proposed Project Area from the State (Banks) and Federal (Jones) Pumping Plants to the San Luis Joint-Use Complex (San Luis Reservoir and O'Neill Forebay)
Figure 3: Overview of Proposed Project Area from the San Luis Joint-Use Complex (San Luis Reservoir and O'Neill Forebay) to the Mendota Pool
Figure 4: Pipeline Alignment of Proposed Combined Alignment Alternative that Features a Single NVRRWP Discharge to the Delta-Mendota Canal near the Intersection of Raines Road and Zacharias Road
Figure 5: Proposed Location of NVRRWP Outfall on the East Bank of the Delta-Mendota Canal and Upstream Ambient Water Quality Monitoring Site
Figure 6: Proposed Project Area Showing Location of Proposed NVRRWP Discharge Site in Relation to San Luis Joint-Use Complex (San Luis Reservoir and O'Neill Forebay)

Acronyms and Abbreviations

°C	Degrees Celsius
°F	Degrees Fahrenheit
µg/L	Micrograms per liter
µmhos/cm	Micromhos per centimeter (equivalent to μ S/cm)
µS/cm	Microsiemens per centimeter (equivalent to µmhos/cm)
AF	Acre-feet
AFY	Acre-feet per year
CCC	Criterion Continuous Concentration
CCR	California Code of Regulations
CDFW	California Department of Fish and Wildlife
CEQA	California Environmental Quality Act
CFR	Code of Federal Regulations
cfs	Cubic feet per second
CTR	California Toxics Rule
CVP	Central Valley Project
CVPIA	Central Valley Project Improvement Act
CVRWQCB	Central Valley Regional Water Quality Control Board
CVRWQCB CWA	
	Central Valley Regional Water Quality Control Board
CWA	Central Valley Regional Water Quality Control Board Clean Water Act
CWA D/S	Central Valley Regional Water Quality Control Board Clean Water Act Downstream
CWA D/S DMC	Central Valley Regional Water Quality Control Board Clean Water Act Downstream Delta-Mendota Canal
CWA D/S DMC DPWD	Central Valley Regional Water Quality Control Board Clean Water Act Downstream Delta-Mendota Canal Del Puerto Water District
CWA D/S DMC DPWD DWR	Central Valley Regional Water Quality Control Board Clean Water Act Downstream Delta-Mendota Canal Del Puerto Water District Department of Water Resources
CWA D/S DMC DPWD DWR EC	Central Valley Regional Water Quality Control Board Clean Water Act Downstream Delta-Mendota Canal Del Puerto Water District Department of Water Resources Electrical conductivity
CWA D/S DMC DPWD DWR EC EIR	Central Valley Regional Water Quality Control Board Clean Water Act Downstream Delta-Mendota Canal Del Puerto Water District Department of Water Resources Electrical conductivity Environmental Impact Report
CWA D/S DMC DPWD DWR EC EIR EIS	Central Valley Regional Water Quality Control Board Clean Water Act Downstream Delta-Mendota Canal Del Puerto Water District Department of Water Resources Electrical conductivity Environmental Impact Report Environmental Impact Statement
CWA D/S DMC DPWD DWR EC EIR EIS EPA	Central Valley Regional Water Quality Control Board Clean Water Act Downstream Delta-Mendota Canal Del Puerto Water District Department of Water Resources Electrical conductivity Environmental Impact Report Environmental Impact Statement (United States) Environmental Protection Agency
CWA D/S DMC DPWD DWR EC EIR EIS EPA GWD	Central Valley Regional Water Quality Control Board Clean Water Act Downstream Delta-Mendota Canal Del Puerto Water District Department of Water Resources Electrical conductivity Environmental Impact Report Environmental Impact Statement (United States) Environmental Protection Agency Grassland Water District
CWA D/S DMC DPWD DWR EC EIR EIS EPA GWD Ibs	Central Valley Regional Water Quality Control Board Clean Water Act Downstream Delta-Mendota Canal Del Puerto Water District Department of Water Resources Electrical conductivity Environmental Impact Report Environmental Impact Statement (United States) Environmental Protection Agency Grassland Water District Pounds

mgd	Millions of gallons per day
MOU	Memorandum of Understanding
MPN	Most probable number
NPDES	National Pollutant Discharge Elimination System
NTR	National Toxics Rule
NTU	Nephelometric turbidity unit
NWR	National Wildlife Refuge
NVRRWP	North Valley Regional Recycled Water Program
PS	Pump station
RWQCF	(Turlock) Regional Water Quality Control Facility
SOD	South of Delta
SWA	State Wildlife Area
SWRCB	State Water Resources Control Board
SWP	State Water Project
TDS	Total dissolved solids
TMDL	Total Maximum Daily Load
TRC	Total Residual Chlorine
USBR	United States Bureau of Reclamation
WQCF	(Modesto) Water Quality Control Facility

BACKGROUND AND PROJECT DESCRIPTION

The North Valley Regional Recycled Water Program (NVRRWP) began in 2010 as a collaborative partnership that includes the Cities of Modesto, Turlock, Ceres, Del Puerto Water District (DPWD or District), and Stanislaus County. The Partner Agencies for the NVRRWP – those agencies that have signed a memorandum of understanding (MOU) to share costs for the program's implementation – include the Cities of Modesto and Turlock and DPWD. The proposed NVRRWP is being developed as a regional solution to address the growth of Delta water supply shortages and reliability concerns by utilizing recycled water for beneficial uses. The Partner Agencies for the NVRRWP are proposing to provide recycled water from the Cities of Modesto and Turlock to the DPWD to address water supply shortages within the District's service area on the west side of the San Joaquin River in San Joaquin, Stanislaus and Merced Counties, south of the Sacramento-San Joaquin River Delta (Delta), and south of Delta (SOD) Central Valley Project Improvement Act (CVPIA)-designated Refuges.

Specifically, the project proposes to introduce and convey, on a space available basis, up to 59,000 AFY (52.7 mgd) of blended, recycled water produced by the Cities of Modesto and Turlock directly into the Delta-Mendota Canal (DMC), which is owned by the U.S. Department of Interior, Bureau of Reclamation (USBR or Reclamation). The recycled water will be blended with Central Valley Project (CVP) water conveyed by the DMC. The blended, recycled water would then be conveyed directly to DPWD customers or stored within Reclamation's SOD CVP system for storage during low water demand periods. In addition to uses within DPWD's service area, the project also proposes to provide water to CVPIA-designated National Wildlife Refuges and wildlife areas (collectively referred to as "refuges") located south of the Delta to maintain and improve habitat areas. These particular federal and state wildlife refuges support a variety of fish and wildlife species and are an important part of the Pacific Flyway, a major migration route for migratory birds. As a result of the project, blended, recycled water from the Cities of Modesto and Turlock will be available to DPWD to provide an additional source of water south of the Delta, which can be used to meet both agricultural and wildlife needs. The overall objective of the proposed project is to maximize beneficial use of a sustainable, alternative water supply within the region, which would address reductions in water supplies from CVP and reduce the reliance on groundwater use.

DPWD and the Cities of Modesto and Turlock are proposing to discharge high quality, Title 22 recycled water produced by each city's wastewater reclamation facility to the DMC at a location northwest of the City of Patterson (see **Figure ES-1**). The recycled water proposed for discharge to the DMC will be diverted as blended water by DPWD at various turnouts along the canal for use by farmers in its service area and for the refuges. To accommodate the proposed, new discharge to the DMC, the City of Modesto would cease its current discharge of disinfected, secondary treated wastewater to the San Joaquin River and both cities would instead pump disinfected, tertiary treated effluent to a new side bank outfall that would be constructed on the DMC for the purpose of the NVRRWP discharge. Pipelines and pump stations will also need to be constructed to convey the recycled water from the treatment facilities to the DMC.

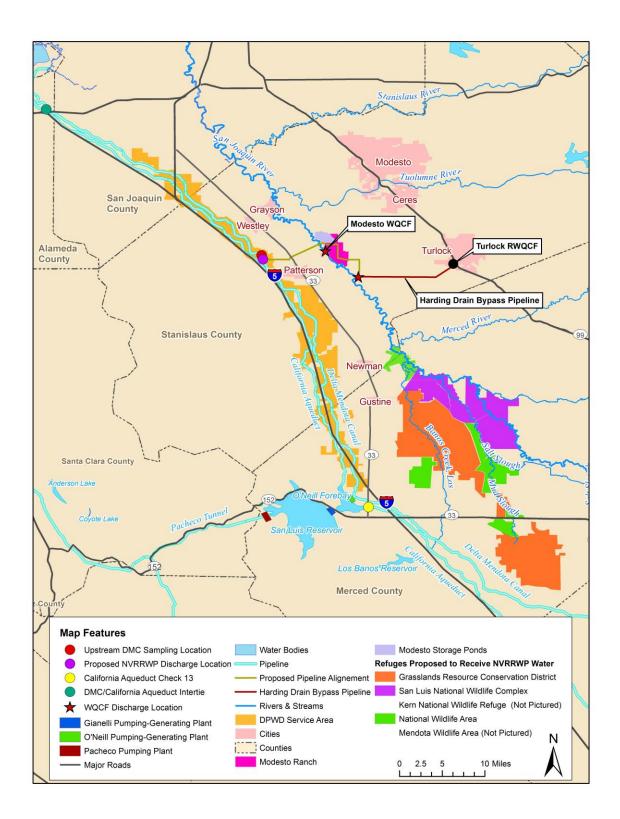


Figure ES-1: Proposed NVRRWP Project Area Showing Del Puerto Water District Service Area and Wildlife Refuges Proposed to Receive Project Water. As required by the Clean Water Act, the discharge of any pollutant or combination of pollutants to surface waters that are deemed waters of the United States, as is the DMC, must be regulated by a National Pollutant Discharge Elimination System (NPDES) permit. Because the commingled discharges of the Cities of Modesto and Turlock constitute a new discharge to a surface water of the U.S., a NPDES permit governing the proposed discharge must be requested from the Central Valley Regional Water Quality Control Board (CVRWQCB or Central Valley Water Board). Under state and federal antidegradation policies, the Central Valley Water Board is required to make a finding regarding the satisfaction of the policies as they pertain to a surface water discharge for which the Board issues a NPDES permit.

State antidegradation policy, which incorporates federal antidegradation policy, seeks to maintain the existing high quality of water to the maximum extent possible, and only allows a lowering of water quality if:

- Changes in water quality are consistent with maximum benefit to the people of the state, will not unreasonably affect present and potential beneficial uses, and will not result in water quality lower than applicable standards, and
- Waste discharge requirements for a proposed discharge will result in the best practicable treatment or control of the discharge necessary to assure:
 - \circ No pollution or nuisance
 - \circ Highest water quality consistent with maximum benefit to the people of the state

This antidegradation analysis for the proposed NVRRWP discharge is prepared for the Central Valley Water Board to provide the information needed to determine whether the proposed discharge to the DMC is consistent with state and federal antidegradation policies.

WATER QUALITY IMPACTS OF PROPOSED NVRRWP DISCHARGE

The near-field and far-field water quality impacts assessments performed as part of this antidegradation analysis reveal that the discharge of Title 22 recycled water to the DMC at a discharge rate of 52.7 mgd is estimated to produce very minor changes in downstream water quality. The near-field water quality impacts assessment shows that incremental concentration changes to DMC water quality downstream of the proposed NVRRWP discharge are projected to be very minor for most constituents evaluated, ranging from <0.0002 μ g/L (chlorpyrifos) to 12 mg/L (total dissolved solids), along with an estimated 17 μ mhos/cm average increase for electrical conductivity. Moreover, the proposed project is estimated to produce no changes in water quality for total mercury and total selenium downstream of the discharge, and result in a slight decrease in downstream receiving water concentrations for total iron, total manganese, and diazinon. Furthermore, the estimated, average, downstream receiving water concentration resulting from the proposed discharge is lower than the corresponding most stringent water quality objective or criterion for each constituent evaluated.

Under DPWD's operations plan for the proposed project, the District will typically divert water from the DMC at rates that match the proposed project's discharge rates, thus removing a significant amount of mass from the canal when it provides agricultural supply water to farmers and wetlands supply water to refuges. Under the scenario where DPWD diverts all water that the proposed project discharges to the DMC, incremental concentration changes in water quality downstream of any District diversions would be the same as those described above. It would be only during times of no water demand that the District would not divert any water from the DMC to its customers, thus resulting in the full estimated incremental mass loading increases to the DMC reaching the state and federal water projects.

During periods when the District might elect to not divert any water from the DMC due to low water demand in its service area, the far-field water quality impacts assessment in this report estimate the proposed NVRRWP discharge to constitute no more than 2.0% of the water available for export from the O'Neill Forebay to the California Aqueduct and no more than 2.3% of the water available for export from the San Luis Reservoir to the Pacheco Tunnel, on an average annual basis at the proposed buildout discharge rate of 52.7 mgd. The maximum percentage of the NVRRWP discharge available for export at these two location decreases to 1.8% when considering average monthly contributions. The results of this far-field assessment reveal that the proposed project will have minimal water quality impacts on water resources used for drinking water uses downstream of the San Luis Joint-Use Complex, the location where the proposed project's recycled water would come into contact with State Water Project (SWP) water supplies.

Overall, the very minor changes in water quality identified with implementation of the proposed project are expected to result in the following outcomes:

- Project would not be expected to cause, or increase the frequency of, exceedances of applicable criteria/objectives in the DMC or downstream receiving waters, would not cause nuisance conditions;
- Project would not adversely affect beneficial uses in the DMC or downstream waters; and
- Project would not result in water quality less than that prescribed in state or federal policies.

CONSISTENCY WITH ANTIDEGRADATION POLICIES

The proposed project, the discharge of up to 52.7 mgd of Title 22 recycled water to the DMC by the year 2045, is determined to comprise best practicable treatment or control and is consistent with federal and state antidegradation policies for the follow reasons:

- The proposed NVRRWP discharge to the DMC will not adversely affect existing or probable beneficial uses of the DMC or downstream receiving waters, nor will it cause water quality to not meet applicable water quality objectives.
- Overall, the proposed NVRRWP discharge is estimated to have a very minor impact on DMC water quality downstream of the discharge point, both in the near-field and the far-field. The proposed project is estimated to cause very minor increases in downstream water quality concentrations for some constituents (EC, TDS, total aluminum, total copper, ammonia, nitrate, nitrite, bis(2-ethylhexyl)phthalate, carbon tetrachloride, dibromochloromethane, dichlorobromomethane, and chlorpyrifos), produce very minor decreases in downstream concentrations for others (total iron, total manganese, and diazinon), and result in no change in downstream concentrations for two parameters (total mercury and total selenium), as compared to existing receiving water conditions.

- Based on the above, the request to permit a new discharge to the DMC is consistent with federal and state antidegradation policies in that the minor lowering of water quality for several pollutants is necessary to accommodate important economic or social development, will not unreasonably affect beneficial uses, will not cause further exceedances of applicable water quality objectives, and is consistent with the maximum benefit to the people of the State.
- Based on the above, the request to permit a new discharge to the DMC is consistent with the Porter-Cologne Act in that the resulting water quality will constitute the highest water quality that is reasonable, considering all demands placed on the waters, economic and social considerations, and other public interest factors.

The proposed discharge of Title 22 recycled water to the DMC also fully supports California's *Recycled Water Policy* (SWRCB, 2013) in that it would result in an increased use of recycled water from municipal wastewater sources, would incrementally reduce reliance on the vagaries of annual precipitation, and would assist in the sustainable management of surface and groundwater resources.

~ This Page Intentionally Left Blank ~

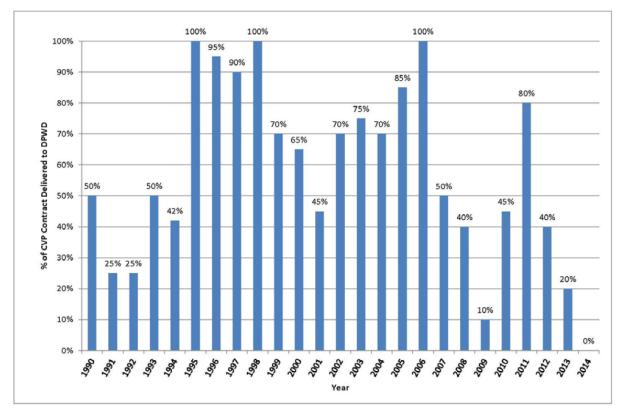
Introduction

BACKGROUND

The Del Puerto Water District (DPWD or District) and the Cities of Modesto and Turlock are proposing to discharge high quality, Title 22 recycled water produced by each city's wastewater reclamation facility to the Delta-Mendota Canal (DMC) at a location northwest of the City of Patterson. The recycled water will be blended with Central Valley Project (CVP) water conveyed by the DMC. The recycled water proposed for discharge to the DMC will be diverted as blended water by DPWD at various turnouts along the canal for use by farmers in its service area. While most of the diverted water will be used to supplement agricultural irrigation supplies that are no longer regularly met through deliveries from the Central Valley Project, water diverted by DPWD will also be sent to state and federal wildlife refuges. To accommodate the proposed new discharge to the DMC, the City of Modesto would cease its current discharge of disinfected, secondary treated wastewater to the San Joaquin River and both cities would instead pump disinfected, tertiary treated effluent to a new side bank outfall that would be constructed on the DMC for the purpose of the NVRRWP discharge.

As required by the Clean Water Act, the discharge of any pollutant or combination of pollutants to surface waters that are deemed waters of the United States, as is the DMC, must be regulated by a National Pollutant Discharge Elimination System (NPDES) permit. Because the commingled discharges of the Cities of Modesto and Turlock constitute a new discharge to a surface water of the U.S., a NPDES permit governing the proposed discharge must be requested from the Central Valley Regional Water Quality Control Board (CVRWQCB or Central Valley Water Board). Under state and federal antidegradation policies, the Central Valley Water Board is required to make a finding regarding the satisfaction of the policies as they pertain to a surface water discharge for which the Board issues a NPDES permit.

State antidegradation policy, which incorporates federal antidegradation policy, seeks to maintain the existing high quality of water to the maximum extent possible, and only allows a lowering of water quality if:


- Changes in water quality are consistent with maximum benefit to the people of the state, will not unreasonably affect present and potential beneficial uses, and will not result in water quality lower than applicable standards, and
- Waste discharge requirements for a proposed discharge will result in the best practicable treatment or control of the discharge necessary to assure:
 - No pollution or nuisance
 - Highest water quality consistent with maximum benefit to the people of the state

This antidegradation analysis for the proposed NVRRWP discharge is prepared for the Central Valley Water Board to provide the information needed to determine whether the proposed discharge to the DMC is consistent with state and federal antidegradation policies. This antidegradation analysis includes assessments of near-field and far-field water quality impacts estimated to result from the proposed project; an evaluation of how these estimated changes in water quality compare to applicable water quality objectives and relevant water quality criteria,

and how they may affect existing or probable beneficial uses; and a finding of consistency with antidegradation policies.

Del Puerto Water District

The District provides agricultural irrigation water to approximately 45,000 acres of productive farmland in Stanislaus, San Joaquin, and Merced Counties, which generates \$130 million of gross revenue annually. Currently, DPWD primarily receives water from the United States Bureau of Reclamation (Reclamation or USBR) through a contract for the annual delivery of up to 140,210 acre-feet (AF) of CVP water. In recent years, DPWD's CVP water allocations have been significantly reduced from historical amounts due to multiple factors, including Sacramento-San Joaquin River Delta (Delta) pumping restrictions, drought conditions, and climate change. For instance, in 2009, DPWD received only 10 percent (i.e., 14,000 acre-feet per year (AFY)) of its contract allocation. Furthermore, DPWD's contract supply for 2013 was 20 percent of its contracted allocation (28,000 AFY), while the 2014 allocation is 0 percent. **Figure 1** shows the historical CVP allocations delivered to DPWD since 1990.

Source: DPWD 2014, Del Puerto Water District Historical Water Service Allocations and Rates

Figure 1: Historical CVP Allocations Delivered to DPWD since 1990.

While future contract water deliveries to DPWD are uncertain, it is anticipated that restrictions on CVP operations will result in the District receiving an average of 35 percent of its contract allocation (i.e., 49,000 AFY) on an annual basis under normal hydrologic conditions (i.e. non-drought conditions) (USBR, 2015).

Shortages in water deliveries from Reclamation and the lack of water supply reliability that DPWD has experienced have resulted in economic hardships on DPWD and its customers, especially on growers and irrigators within DPWD's service area. As a result, DPWD must secure alternate water supplies to supplement its CVP deliveries. While water transfers from other agencies and the use of groundwater have been effective temporary methods to meet DPWD's water demands, these activities do not provide a reliable, sustainable, or affordable long-term solution. For instance, groundwater is typically blended with CVP water to improve water quality prior to irrigation. Therefore, the quality and quantity of groundwater available is adequate only as a supplemental source and cannot be relied upon as a primary source of water. As such, an alternative water supply is needed to offset anticipated effects (e.g., overdraft, subsidence, water quality issues) that have occurred and will likely continue to occur with the absence of a different alternative water supply.

South of Delta Refuges

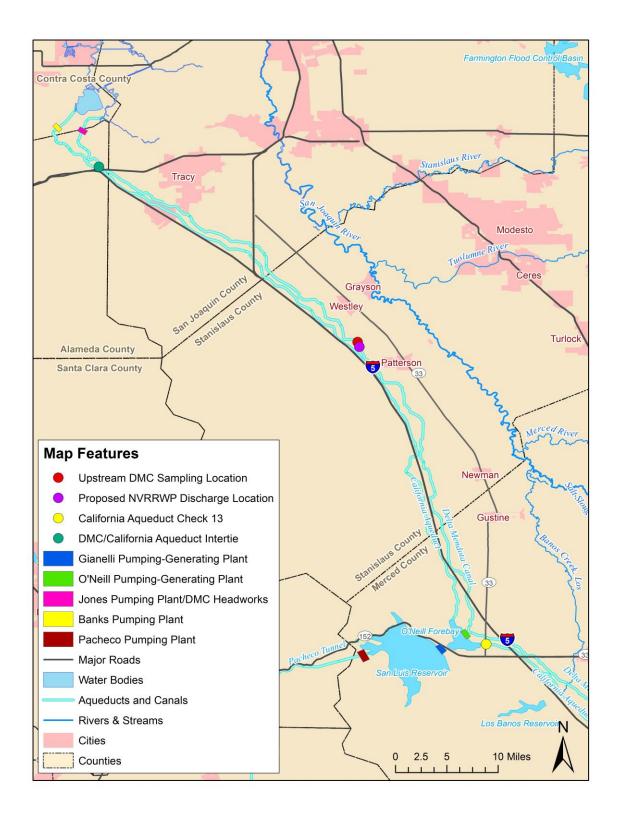
In addition to provision of water to the DPWD service area, the NVRRWP would make recycled water available to certain SOD CVPIA-designated federal National Wildlife Refuges (NWRs), State Wildlife Areas (SWAs), and the privately-managed wetlands of the Grassland Resource Conservation District, collectively referred to herein as "refuges". Reclamation has a legislative obligation under the CVPIA, in cooperation with the USFWS, the California Department of Fish and Wildlife (CDFW), the Grassland Water District (GWD), and the Central Valley Joint Venture (CVJV) to provide firm, average annual historical water deliveries of suitable quality to maintain the refuges' habitat areas. Provision of adequate and reliable water for the refuges to meet the CVPIA-mandated water levels has not been achieved. Based on information provided by Reclamation, an annual allocation of 376,514 AF is required for delivery to the SOD refuges. In the 2012 – 2013 time period, Reclamation delivered 333,527 AF of supplemental water. The NVRRWP could not serve the full demand for supplemental water, but could help reduce the shortfall.

Recycled Water Sources

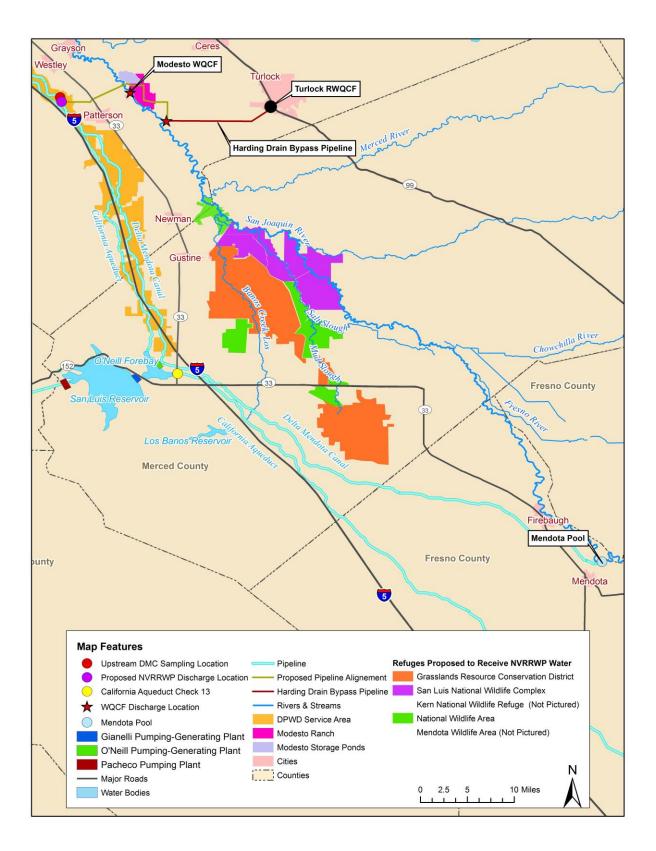
DPWD is located in close proximity to the City of Modesto's (Modesto) and the City of Turlock's (Turlock) wastewater treatment facilities. Specifically, DPWD's service area is located a little over five miles from Modesto's Water Quality Control Facility (WQCF) and less than five miles from the end of Turlock's Harding Drain Bypass Pipeline, which currently conveys flows from the Turlock Regional Water Quality Control Facility (RWQCF) to an outfall located on the San Joaquin River. As a result of upgrades to the treatment facilities and increases in flows due to projected population growth, it is estimated that Modesto and Turlock will produce up to 59,000 AFY of recycled water by 2045 (USBR, 2015) that meets the California Code of Regulations (CCR), Title 22, Division 4 (Title 22) requirements for unrestricted reuse. The supply of recycled water from Modesto and Turlock could provide a long-term, reliable water supply for the District and its customers that would serve to augment DPWD's CVP supply. Concurrent with DPWD's ongoing CVP shortages, the Cities of Turlock and Modesto are facing more restrictive regulatory requirements for wastewater discharges to the San Joaquin River (NVRRWP, 2013).

PROJECT DESCRIPTION

The North Valley Regional Recycled Water Program (NVRRWP) began in 2010 as a collaborative partnership that includes the Cities of Modesto, Turlock, Ceres, DPWD, and Stanislaus County. The Partner Agencies for the NVRRWP – those agencies that have signed a memorandum of understanding (MOU) to share costs for the program's implementation – include the Cities of Modesto and Turlock and DPWD. The proposed NVRRWP is being developed as a regional solution to address the growth of Delta water supply shortages and reliability concerns by utilizing recycled water for beneficial uses. The Partner Agencies for the NVRRWP are proposing to provide recycled water from the Cities of Modesto and Turlock to the DPWD as blended water to address water supply shortages within the District's service area on the west side of the San Joaquin River in San Joaquin, Stanislaus and Merced Counties, south of the Sacramento-San Joaquin River Delta (Delta), and south of Delta (SOD) Central Valley Project Improvement Act (CVPIA)-designated Refuges.


Specifically, the project proposes to introduce and convey, on a space available basis, up to 59,000 AFY of recycled water produced by the Cities of Modesto and Turlock directly into the DMC, which is owned by Reclamation. The recycled water will be blended with CVP water conveyed by the DMC. The blended water would then be conveyed directly to DPWD customers or stored within Reclamation's SOD CVP system for storage during low water demand periods. In addition to uses within DPWD's service area, the project also proposes to provide water to CVPIA-designated National Wildlife Refuges and wildlife areas (collectively referred to as "refuges") located south of the Delta to maintain and improve habitat areas. These particular federal and state wildlife refuges support a variety of fish and wildlife species and are an important part of the Pacific Flyway, a major migration route for migratory birds. As a result of the project, recycled water from the Cities of Modesto and Turlock will be available to DPWD as blended water to provide an additional source of water south of the Delta, which can be used to meet both agricultural and wildlife needs. The overall objective of the proposed project is to maximize beneficial use of a sustainable, alternative water supply within the region, which would address reductions in water supplies from CVP and reduce the reliance on groundwater use.

PROJECT LOCATION


The proposed project is located within San Joaquin, Stanislaus and Merced Counties in the San Joaquin Valley of Central California, as shown in **Figure 2** and **Figure 3**. The proposed project facilities, mainly consisting of pipelines and pump stations, would be located west of the Cities of Modesto and Turlock, in Stanislaus County. Recycled water produced by the two cities would be blended with CVP water conveyed in the DMC prior to being delivered directly to DPWD customers via the DMC or stored within Reclamation's SOD CVP system for storage during low water demand periods. Water will also be conveyed to federal and state wildlife refuges located south of the Delta. With regard to potential water quality changes that may occur with the discharge of Title 22 recycled water to the DMC, the focus of the current antidegradation analysis is in the near-field impacts area and the far-field impacts area of the proposed NVRRWP discharge.

The near-field impacts area of the proposed NVRRWP discharge is the length of the DMC from the point of discharge to some distance downstream where effluent and ambient water are reasonably well-mixed. The distance downstream to where the proposed discharge and receiving

water are reasonably well-mixed depends on the flow rate of both the discharge and the receiving water. The far-field impacts area of the proposed NVRRWP discharge is considered to be in the general location of the San Luis Joint-Use Complex, approximately 32.7 miles downstream of the proposed NVRRWP discharge. This is the location where the proposed project's recycled water would come into contact with SWP water supplies. The San Luis Joint-Use Complex serves the SWP and the federal CVP. The complex is operated and maintained by DWR. The Joint-Use Complex includes the O'Neill Dam and Forebay, Sisk Dam, San Luis Reservoir, Gianelli Pumping-Generating Plant, Dos Amigos Pumping Plant, and a 103-mile portion of the California Aqueduct. The Mendota Pool, a small reservoir located at the terminus of the 117-mile long DMC, would also be considered to reside in the far-field impacts area of the proposed project.

Figure 2: Overview of Proposed Project Area from the State (Banks) and Federal (Jones) Pumping Plants to the San Luis Joint-Use Complex (San Luis Reservoir and O'Neill Forebay).

Figure 3: Overview of Proposed Project Area from the San Luis Joint-Use Complex (San Luis Reservoir and O'Neill Forebay) to the Mendota Pool.

SCOPE OF EVALUATION OF PROJECT IMPACTS

This antidegradation analysis evaluates the near- and far-field water quality impacts of the proposed project to the DMC and downstream receiving waters, respectively. This analysis does not specifically evaluate the removal of discharges to the San Joaquin River from the Cities of Modesto and Turlock. Other analyses performed in support of the Draft Environmental Impact Report/Environmental Impact Statement (DEIR/EIS) prepared for the project by the Partner Agencies have demonstrated that the impact of the removal of the flows currently discharged to the San Joaquin River by the two cities is negligible. The existing discharges from the two water quality control facilities represent a small portion of the total flow in the San Joaquin River, and recent modeling efforts show that redirection of the recycled water flows to the DMC would reduce average annual flows observed in the San Joaquin River at Vernalis by approximately 0.5% (USBR, 2015). Additionally, the CalSim II model developed by the California Department of Water Resources (DWR) to model State Water Project (SWP) operations was used to simulate potential impacts to Delta exports at the Banks Pumping Plant (part of the SWP) and Jones Pumping Plant (part of the CVP) with and without discharges of recycled water to the San Joaquin River by the Cities of Modesto and Turlock. Modeling results showed that the very small reduction in San Joaquin River flows at Vernalis due to the delivery of recycled water to the DMC would have a negligible effect on the availability of Delta water for export at the SWP and CVP pumps near Tracy (USBR, 2015).

The Cities of Modesto and Turlock may transition discharge from the San Joaquin River to the DMC over multiple NPDES permit terms; however, the total discharge for the proposed project would not exceed the currently permitted amounts in both city's NPDES permits. Any impacts of this project on the DMC and far-field areas are conservative in that they do not consider the removal of the San Joaquin discharge; that is, San Joaquin River contributions from the Cities of Modesto and Turlock that are observed at Jones Pumping Plant conservatively were not subtracted from ambient concentrations upstream of the proposed NVRRWP discharge in the current analysis as a means to reduce the overall project impacts to the DMC (i.e., incrementally increase assimilative capacity in the DMC upstream of the proposed discharge). This antidegradation analysis then addresses the water quality impacts of both the buildout project whereby all discharge is to the DMC, and the transition period before buildout when some discharge to the San Joaquin River is maintained.

PURPOSE OF REPORT

The purpose of this report is to document the Partner Agencies' antidegradation analysis for the proposed discharge of Title 22 recycled water to the DMC and the potential minimization and/or elimination of recycled water discharges to the San Joaquin River.¹ The information contained in this analysis provides the Central Valley Water Board with the information needed to determine whether the proposed discharge to the DMC is consistent with state and federal antidegradation policies.

¹ The Cities of Modesto and Turlock are pursuing revised NPDES permits to allow relocation of their respective discharges from the San Joaquin River to the DMC. Both cities would retain their authorizations to discharge treated and disinfected effluent to the San Joaquin River at their existing outfalls. However, under the proposed project, tertiary treated effluent would not be discharged to the river under normal circumstances.

APPROACH TO ANALYSIS

The antidegradation analysis described in this report follows the guidance provided by the State Water Resources Control Board (SWRCB or State Water Board) regarding the implementation of the antidegradation policy in NPDES permits (Administrative Procedures Update (APU) 90-004). Pursuant to the guidelines, this analysis follows the provisions for a "simple analysis" and evaluates whether changes in water quality resulting from the proposed discharge of Title 22 recycled water to the DMC are "consistent with maximum benefit to the people of the state, will not unreasonably affect uses and will not cause water quality to be less than water quality objectives and that the discharge provides protection for existing in-stream beneficial uses and water quality necessary to protect those uses."

The simple analysis includes a comparison of the projected receiving water quality to the water quality objectives and/or criteria used to protect designated beneficial uses.

The following items are addressed in the simple antidegradation analysis:

- 1. Determine if there are measurable water quality impacts and, if so, whether beneficial uses are impacted. This is accomplished, in part, by comparing estimated resulting receiving water quality to the water quality objectives and/or criteria used to protect designated beneficial uses.
- 2. Evaluate incremental loading increases and their impacts.
- 3. Balance the proposed project against the public interest.

These items are addressed in the following sections of this report:

- Regulatory requirements
- Applicable water quality objectives and commonly used water quality criteria
- Environmental setting
- Assessment of water quality impacts
- Consistency with antidegradation policies

Regulatory Requirements

APPLICATION OF LAWS AND POLICIES

The federal Clean Water Act (CWA) requires states to adopt water quality standards applicable to all intrastate waters (33 U.S.C. § 1313) with approval from the United States Environmental Protection Agency (U.S. EPA). U.S. EPA regulations also require state water quality standard submittals to include an antidegradation policy to protect beneficial uses and prevent further degradation of high quality waters (33 U.S.C. § 1313(d)(4)(B); 40 C.F.R. § 131.12). Antidegradation policies have been adopted at both the federal and state level. The State's antidegradation policy is embodied in SWRCB Resolution No. 68-16. The proposed discharge of Title 22 recycled water to the DMC requires the application of water quality objectives contained in the Water Quality Control Plan for the Sacramento-San Joaquin River Basins (Basin Plan), as well as criteria promulgated by the U.S. EPA for California waters. Both the federal and state antidegradation policies apply to the proposed discharge of Title 22 recycled water to the DMC.

FEDERAL ANTIDEGRADATION POLICY AND GUIDANCE

The federal policy, originally adopted in 1975, is expressed as a regulation in Title 40 of the Code of Federal Regulations (CFR) §131.12. The federal regulation is designed to protect existing uses and the level of water quality necessary to protect existing uses, and provide protection for higher quality and outstanding national water resources. More specifically, the federal regulation requires the states to develop and adopt a statewide antidegradation policy and identify the methods for implementing such policy. The antidegradation policy and implementation methods shall, at a minimum, be consistent with ensuring that existing water uses and the level of water quality necessary to protect these uses shall be maintained and protected. Where the quality of water is better than that necessary to support beneficial uses, measures shall be taken to ensure that water quality is maintained and protected unless the state finds that allowing lower water quality is necessary to accommodate important economic or social development in the area in which the water body is located. The federal policy directs states to adopt a statewide policy that includes the following primary provisions (40 C.F.R. § 131.12).

- (1) Existing in-stream water uses and the level of water quality necessary to protect the existing uses shall be maintained and protected.
- (2) Where the quality of waters exceeds levels necessary to support propagation of fish, shellfish, and wildlife and recreation in and on the water, that quality shall be maintained and protected unless the State finds, after the full satisfaction of the intergovernmental coordination and public participation provisions of the State's continuing planning process, that allowing lower water quality is necessary to accommodate important economic or social development in the area in which the waters are located. In allowing such degradation or lower water quality, the State shall assure water quality adequate to protect existing uses fully. Further, the State shall assure that there shall be achieved the highest statutory and regulatory requirements for all new and existing point sources and all cost-effective and reasonable best management practices for nonpoint source control.

- (3) Where high quality waters constitute an outstanding National resource, such as water of National and State parks and wildlife refuges and waters of exceptional recreational or ecological significance, that water quality shall be maintained and protected.
- (4) In those cases where potential water quality impairment associated with a thermal discharge is involved, the antidegradation policy and implementing method shall be consistent with Section 316 of the Act.

Based on guidance developed by the U.S. EPA, Region 9 (*Guidance on Implementing the Antidegradation Provisions of 40 C.F.R. § 131.12* (U.S. EPA, 1987)) and guidance issued by the State Water Resources Control Board (SWRCB) with regard to application of the Federal Antidegradation Policy (Memorandum from William R. Attwater to Regional Board Executive Officers Federal Antidegradation Policy (Oct. 1987)), application of the federal antidegradation policy is triggered by a lowering, or potential lowering, of surface water quality.

For a water body where water quality is not significantly better than needed to meet designated uses, either because it does not meet or it just meets applicable water quality objectives or criteria to protect beneficial uses, the proposed discharge cannot cause further impairment.

For waters with water quality that is better than necessary to support beneficial uses, the proposed permitted discharge may not lower water quality unless such lowering is necessary to accommodate important economic or social development. In August 2005, the U.S. EPA issued a memorandum discussing antidegradation reviews and significance thresholds (Memorandum from Ephraim S. King, Director, Office of Science and Technology, U.S. EPA, Office of Water to Water Management Division Directors, Regions 1-10 (August 2005)). As discussed in the memorandum, an intent of the policy "is to maintain and protect high quality waters and not to allow for any degradation beyond a *de minimis* level without having made a demonstration, with opportunity for public input, that such lowering is necessary and important." (Memorandum at p. 1). U.S. EPA has determined that the significance threshold of a 10% reduction in available assimilative capacity is "workable and protective in identifying those significant lowerings of water quality that should receive a full … antidegradation review, including public participation." (U.S. EPA, 2005). This determined to be of significant interest in the antidegradation analysis.

STATE ANTIDEGRADATION POLICY AND GUIDANCE

Resolution 68-16

The state policy to protect and maintain existing water quality in California was adopted in 1968 as a resolution of the State Water Board (Resolution No. 68-16). The state policy is interpreted to incorporate the federal antidegradation policy and satisfies the federal regulation requiring states to adopt their own antidegradation policies. Furthermore, the state policy requires that changes in water quality not unreasonably affect beneficial uses. Resolution No. 68-16 states, in part:

(1) Whenever the existing quality of water is better than the quality established in policies as of the date on which such policies become effective, such existing high

quality will be maintained until it has been demonstrated to the State that any change will be consistent with maximum benefit to the people of the State, will not unreasonably affect present and anticipated beneficial uses of such water and will not result in water quality less than that prescribed in the policies.

(2) Any activity which produces or may produce a waste or increased volume or concentration of waste and which discharges or proposes to discharge to existing high quality water will be required to meet waste discharge requirements which will result in the best practicable treatment or control of the discharge necessary to assure that (a) a pollution or nuisance will not occur and (b) the highest water quality consistent with maximum benefit to the people of the State will be maintained.

1987 Policy Memorandum

In 1987, SWRCB issued a policy memorandum to the Regional Water Quality Control Boards (Regional Water Boards) to provide guidance on the application of the federal antidegradation policy for State and Regional Water Board actions, including establishing water quality objectives, issuing NPDES permits, and adopting waivers and exceptions to water quality objectives or control measures (Attwater, 1987). In conducting these actions, the Regional Water Boards must assure protection of existing in-stream beneficial uses, that significant lowering of water quality is necessary to accommodate important economic or social development, and that outstanding national resource waters be maintained and protected. The 2005 U.S. EPA guidance referenced above is useful in determining whether changes in water quality that may result from a proposed action are significant.

Administrative Procedures Update 90-004

In 1990, the SWRCB issued guidance (APU 90-004) to all Regional Water Boards regarding the implementation of state and federal antidegradation policies in NPDES permits. By using this guidance, Regional Water Boards are to determine if a proposed discharge is consistent with the intent and purpose of the state and federal antidegradation policies. APU 90-004 provides Regional Water Boards with guidance on the appropriate level of analysis that may be necessary, distinguishing between the need for a simple antidegradation analysis and a complete antidegradation analysis. If it is determined that a simple analysis is not appropriate based on the estimated level of impact of the new discharge, then a more rigorous analysis – a complete analysis – is appropriate. A primary focus of the complete analysis is the determination of whether, and the degree to which, water quality is lowered. This determination greatly influences the level of analysis required and the level of scrutiny applied to the "balancing test" – that is, whether the discharge is necessary to accommodate important economic and social development, and whether a water quality change is consistent with the maximum benefit to the people of the State.

A simple antidegradation analysis addresses the following questions stated in SWRCB APU 90-004 to maintain consistency with state and federal antidegradation policies:

• Whether a reduction in water quality will be spatially localized or limited with respect to the water body; e.g., confined to the mixing zone;

- Whether the proposed discharge of treated effluent will produce minor effects which will not result in a significant reduction of water quality;
- Whether the proposed discharge of treated effluent has been approved in a General Plan, or similar growth and development policy document, and has been adequately subjected to the environmental analysis required in an environmental impact report (EIR) required under the California Environmental Quality Act (CEQA); and
- Whether the proposed project is consistent with maximum benefit to the people of the state.

In addition, the following items are to be addressed in a complete antidegradation analysis:

- A comparison of the projected receiving water quality to the water quality objectives and/or criteria used to protect designated beneficial uses, and
- A socioeconomic analysis to establish the balance between the proposed action and the public interest.

Factors to be considered in determining whether a proposed discharge is necessary to accommodate important economic and social development and is consistent with maximum benefit to the people of the state include:

- Past, present, and probable future beneficial uses.
- Economic costs to maintain water quality compared to the benefits.
- Environmental aspects of the proposed discharge.
- Consideration of feasible alternative control measures which might reduce, eliminate, or compensate for negative impacts of the proposed discharge.

The Partner Agencies have followed the procedures outlined in the guidance for conducting a simple antidegradation analysis to provide the Central Valley Water Board with the maximum amount of information available.

The antidegradation analysis described in this report follows the guidance provided by the SWRCB regarding the implementation of the antidegradation policy in NPDES permits (APU 90-004; SWRCB, 1990). This analysis evaluates whether changes in water quality resulting from the proposed discharge are consistent with maximum benefit to the people of the state, will not unreasonably affect actual or potential beneficial uses, and will not cause water quality to be less than water quality objectives and makes sure that the discharge provides protection of existing in-stream beneficial uses and water quality necessary to protect those uses.

The following items are addressed in the antidegradation analysis described in this report:

- 1. Determination of whether there are measurable water quality impacts and, if so, whether beneficial uses are impacted. This is accomplished by comparing receiving water quality to the water quality objectives and/or criteria established to protect designated beneficial uses.
- 2. Evaluation of incremental loading increases and their impacts.

3. A balancing of the proposed project against the public interest.

Applicable Water Quality Standards

BENEFICIAL USES

The *Water Quality Control Plan for the Sacramento-San Joaquin River Basins* (Basin Plan), originally adopted by the Central Valley Water Board in 1975 and amended regularly, contains descriptions of the legal, technical, and programmatic bases for water quality regulation in the region. The Basin Plan (CVRWQCB, 2011) describes the beneficial uses of major surface waters and their tributaries and the corresponding water quality objectives put into effect to protect these beneficial uses. **Table 1** presents the existing beneficial uses designated for the Delta-Mendota Canal.

Beneficial Uses for Surface Water as defined in the Basin Plan	Delta-Mendota Canal
Municipal and Domestic Supply (MUN)	Yes
Agricultural Supply: Irrigation (AGR)	Yes
Agricultural Supply: Stock Watering (AGR)	Yes
Industrial Process Supply (PROC)	No
Industrial Service Supply (IND)	No
Industrial Power Supply (POW)	No
Water Contact Recreation: Contact Recreation (REC 1)	Yes
Water Contact Recreation: Canoeing and Rafting (REC 1)	No
Non-Contact Water Recreation (REC 2)	Yes
Warm Freshwater Habitat (WARM)	Yes
Cold Freshwater Habitat (COLD)	No
Migration of Aquatic Organisms: Warm Water (MIGR)	No
Migration of Aquatic Organisms: Cold Water (MIGR)	No
Fish Spawning, Warm Water (SPWN)	No
Fish Spawning, Cold Water (SPWN)	No
Wildlife Habitat (WILD)	Yes
Navigation (NAV)	No

Table 1: Beneficial Uses Designated for the Delta-Mendota Canal.

Source: Water Quality Control Plan for the Sacramento River Basin and San Joaquin River Basin, Fourth Edition, Revised October 2011 (CVRWQCB, 2011).

WATER QUALITY OBJECTIVES/WATER QUALITY CRITERIA

To protect the designated beneficial uses, the Central Valley Water Board applies water quality objectives contained in the Basin Plan (CVRWQCB, 2011) and criteria adopted in the California Toxics Rule (CTR) and the National Toxics Rule (NTR) to the receiving water, the DMC, and

downstream receiving waters. The Central Valley Water Board uses these standards to determine if the proposed project will cause or contribute to impairments of beneficial uses. **Table 2** presents the most conservative water quality criteria used to protect the most sensitive beneficial uses that apply to the DMC for select constituents. Parameters included in **Table 2** are those for which Modesto's WQCF discharge and Turlock's RWQCF have adopted tertiary effluent limits, those identified by the Central Valley Water Board as pollutants of particular concern, and parameters for which a Total Maximum Daily Load (TMDL) exists. Water quality criteria for toxic constituents are based on criteria specified in the CTR, as promulgated by the United States Environmental Protection Agency (U.S. EPA) in 40 CFR §131.38.

	Most Stringent Water Quality Objective or Criterion		Reference for Most - Stringent Water Quality	
Classification	Constituent	Value	Unit	Objective or Criterion
Pastorialogical	Fecal Coliform	200/100 mL	MPN	Basin Plan
Bacteriological	Total Coliform	N/A	N/A	N/A
	BOD	N/A	N/A	N/A
	Chloride	230	mg/L	U.S. EPA Recommended Ambient Water Quality Criteria (freshwater aquatic life, 4-day average)
	Chlorine Residual	0.011	mg/L	Draft TRC Policy of CA ⁽¹⁾
	Dissolved Oxygen	5.0	mg/L	Basin Plan
	EC	1000	µmhos/cm	Basin Plan
Conventional	рН	6.5 ≤ pH ≤ 8.5	std. units	Basin Plan
	Sulfate	250	mg/L	Title 22 MCL (Secondary)/ Basin Plan ⁽²⁾
	Temperature	Narrative	°F	Basin Plan
	Total Dissolved Solids	500 ⁽³⁾	mg/L	Title 22 MCL (Secondary)/ Basin Plan ⁽²⁾
	Total Suspended Solids	Narrative		Basin Plan
_	Turbidity	20% increase	NTU	Basin Plan
Metal	Aluminum, Total	200	μg/L	Title 22 MCL (Secondary)/ Basin Plan ^{(2),(4)}
	Boron, Total (Mar. 15 – Sep. 15)	800	μg/L	Basin Plan, Table III-1 monthly mean
	Boron, Total (Sep. 16 – Mar. 14)	1000, 1300*	μg/L	Basin Plan, Table III-1 monthly mean *critical water year type
	Copper, Dissolved	9.7 ⁽⁵⁾	μg/L	California Toxics Rule, Freshwater Aquatic Life, (Chronic 4-day average)

Table 2: Applicable Water Qual	tv Objectives and/or	r Criteria for the Delta-Mendota Cana	al.

		Most Stringent Water Quality Objective or Criterion		Reference for Most
Classification	Constituent	Value	Unit	Stringent Water Quality Objective or Criterion
	Iron, Dissolved	300	μ g/L	Title 22 MCL (Secondary)/ Basin Plan ⁽²⁾
	Manganese, Dissolved	50	μ g/L	Title 22 MCL (Secondary)/ Basin Plan ⁽²⁾
Metal	Mercury, Total	0.050	μg/L	California Toxics Rule, Human Health, Water & Organisms
	Molybdenum, Total	10	μg/L	Basin Plan, Table III-1 monthly mean
	Selenium, Total	5	μg/L	Basin Plan, Table III-1 4-day average
Nutrient	Ammonia	0.73 ⁽⁶⁾	mg/L (as N)	Basin Plan, U.S. EPA 2013 Aquatic Life Ambient Water Quality Criteria for Ammonia – Freshwater, (Chronic 30-day average)
	Nitrate	10	mg/L (as N)	Title 22 MCL (Primary)/ Basin Plan ⁽²⁾
	Nitrite	1	mg/L (as N)	Title 22 MCL (Primary)/ Basin Plan ⁽²⁾
	Nitrate + Nitrite	10	mg/L (as N)	Title 22 MCL (Primary)/ Basin Plan ⁽²⁾
	Bis(2-ethylhexyl)phthalate	1.8	μg/L	California Toxics Rule, Human Health, Water & Organisms
Organic	Carbon Tetrachloride	0.25	μg/L	California Toxics Rule, Human Health, Water & Organisms
	Dibromochloromethane	0.41	μg/L	California Toxics Rule, Human Health, Water & Organisms
	Dichlorobromomethane	0.56	μg/L	California Toxics Rule, Human Health, Water & Organisms
Dootioido	Chlorpyrifos	0.014	μg/L	CDFW, CCC, 4-day average
Pesticide	Diazinon	0.05	μg/L	CDFW, CCC, 4-day average

Table 2: Applicable Water Quality Objectives and/or Criteria for the Delta-Mendota Canal (continued).

References:

(1) Draft Total Residual Chlorine and Chlorine-Produced Oxidants Policy of California, June 2006.

(2) Maximum contaminant levels (MCLs) incorporated into the Basin Plan by reference (CVRWQCB, 2011).

(3) 500 mg/L is the low end of the acceptable Title 22 Secondary MCL range for total dissolved solids.

(4) The Secondary MCL for aluminum has been determined to be the controlling water quality objective for the discharge to the Delta-Mendota Canal. This determination is made through the evaluation of aluminum toxicity bioassay results performed in the Central Valley (e.g., City of Manteca, City of Yuba City, and City of Modesto) which resulted in adjusted chronic criteria more than an order of magnitude greater than the 1988 U.S. EPA ambient water quality chronic criterion of 87 μ g/L (U.S. EPA, 1988), and greatly exceeding the Secondary MCL concentration of 200 μ g/L.

(5) The average ambient Delta-Mendota Canal hardness of 110 mg/L was used to adjust the hardness-based CTR criterion for the ambient comparison.

(6) The numeric criterion used to interpret the Basin Plan narrative toxicity objective is based on an average pH of 8.0 standard units and an average temperature of 21.5 °C as measured in the Delta-Mendota Canal.

303(D) LISTINGS

Section 303(d) of the Clear Water Act requires states to develop lists of water bodies (or segments of water bodies) that will not attain water quality standards after implementation of minimum required levels of treatment by point-source dischargers (i.e., municipalities and industries). Section 303(d) requires states to develop a TMDL for each of the listed pollutant and water body combinations for which there is impairment. A TMDL is the amount of loading that the water body can receive and still meet water quality standards for that pollutant. The TMDL must include an allocation of allowable loadings for both point and non-point sources, with consideration of background loadings and a margin of safety. NPDES permit limitations for listed pollutants must be consistent with allocations identified in adopted TMDLs.

The U.S. EPA finalized approval of California's 2010 Section 303(d) List on October 11, 2011. This list represents the most current listing of impaired water bodies in the project area and downstream areas. The DMC is not included in California's 2010 Section 303(d) List of impaired water bodies. However, San Luis Reservoir, a 2 million-acre-feet joint use facility used for storage of SWP and CVP water, is listed for mercury and indirectly receives flows from the DMC. Additionally, the Mendota Pool, a small reservoir located at the terminus of the 117-mile long DMC, is listed as impaired for mercury and selenium. Both San Luis Reservoir and Mendota Pool would receive a minor fraction of the NVRRWP discharge over the course of any given water year depending on flow conditions and hydraulic operations of the state and federal water projects. San Luis Reservoir and Mendota Pool exist in the far-field impact area of the proposed project. Potential far-field water quality impacts of the proposed project are addressed in the Far-Field Water Quality Impacts Methodology section of this report. **Table 3** lists the constituents identified in the 2010 303(d) list for San Luis Reservoir and Mendota Pool, and their potential sources and proposed TMDL completion dates.

Table 3: 2010 Clean Water Act Section 303(d) Listed Constituents, Potential Sources, and TMDL
Adoption Dates as They Pertain to Listed Water Bodies in the Far-Field Impact Area of the
NVRRWP Project.

Water Body	Pollutant/Stressor	Potential Sources	TMDL Adoption ⁽¹⁾
San Luis Reservoir	Mercury	Source Unknown	2021
Mendota Pool	Mercury	Resource Extraction	2021
	Selenium	Agriculture, Agricultural Return Flows, Groundwater Withdrawal, Other	2019

(1) Proposed year of TMDL adoption.

ADDITIONAL WATER QUALITY CONSIDERATIONS

Reclamation maintains its own standards for "non-project water" that is conveyed in the DMC. Non-project water is groundwater and surface water that has not been appropriated by USBR for purposes of the CVP, but is used to supplement the supply of CVP water to assist farmers in delivering enough water to irrigate and sustain valuable permanent crops like grapes, citrus, and deciduous fruit, and to sustain the local multibillion dollar farming economy (USBR, 2014). Due to drought and restrictions on pumping from the Delta at the Jones Pumping Plant, Reclamation has entered into temporary contracts with water districts to convey groundwater that is pumped into the DMC for delivery to farmers and refuges. USBR is authorized under the Warren Act of 1911 to enter into such temporary contracts. With respect to groundwater that is pumped into the DMC, Reclamation operates a water quality monitoring program ("Groundwater Pump-in Program") to ensure that local groundwater discharged to the canal won't significantly degrade the ambient water quality and impact downstream beneficial uses.

Reclamation has developed a set of standards for the acceptance of non-project water in the DMC based on the requirements of downstream water users. USBR's water quality standards for acceptance of groundwater discharged to the upper DMC – that section of the canal from Jones Pumping Plant to DMC Check 13 (O'Neill Forebay) – are provided in **Appendix A**. Before local groundwater can be pumped into the DMC, it must be analyzed to determine if it meets these water quality standards. USBR requires that these standards be met at the point of discharge before approval will be granted to pump water into the canal. Additionally, Reclamation implements a real-time monitoring program that measures water quality at various locations along the DMC to determine if CVP water is impacted as a result of groundwater into the upper DMC if the ambient concentration of any one of seven target constituents exceeds a maximum concentration (see **Table 4**) (USBR, 2014). The maximum allowable concentrations determined by Reclamation can change from year to year as ambient water quality conditions change in CVP facilities.

A review of the quality of the Title 22 recycled water proposed for discharge to the DMC by the Partner Agencies shows that all detected constituent concentrations of arsenic, boron², and sulfates are below those 2014 Groundwater Pump-in Program maximum concentrations shown in **Table 4**. Estimated average NVRRWP effluent concentrations of nitrates (nitrate plus nitrite), selenium, EC, and TDS are also below the maximum concentrations provided in **Table 4**. However, maximum effluent concentrations could at times exceed maximum allowable pump-in concentrations. Additionally, based on both cities' tertiary effluent quality data used for this analysis, the concentrations of other constituents³ in the proposed NVRRWP discharge for which USBR has established water quality standards for the acceptance of groundwater pumped into

² The City of Modesto is not required to monitor for boron in its tertiary effluent. However, boron concentrations in the City's secondary effluent (Feb. 2010 – Mar. 2015; average = 0.247 mg/L) all exist below the Primary MCL for boron of 0.7 mg/L. Tertiary effluent concentrations of boron are expected to be the same or lower than secondary effluent concentrations.

³ The following constituents were not compared to the MCLs presented in Appendix A due to absence of data: sodium (City of Modesto); gross alpha radioactivity (cities of Modesto and Turlock); and dibromochloropropane, ethylene dibromide, atrazine, simazine, bentazon, 2,4,5-TP (Silvex), 2,4-D, molinate, thiobencarb, carbofuran, and glyphosate (City of Turlock).

the upper DMC are below the MCLs presented in **Appendix A** with the exception of sodium concentrations measured in Turlock's tertiary effluent.

Table 4: USBR's Maximum Allowable Concentration of Seven Constituents in the Upper Delta-
Mendota Canal through its Delta-Mendota Canal Pump-in Program.

Constituent (Units)	Monitoring Location	Maximum Concentration in the Upper DMC
Arsenic (µg/L)	DMC at McCabe Road	10
Boron (mg/L)	DMC at McCabe Road	0.7
Nitrates (mg/L a N)	DMC at McCabe Road	10
Selenium (µg/L)	DMC Check 13	1
Specific Conductance (EC) (µS/cm)	DMC Check 13	800
Sulfates (mg/L)	DMC at McCabe Road	250
Total Dissolved Solids ⁽¹⁾ (mg/L)	DMC Check 13	510

(1) Calculation: TDS (mg/L) = EC (μ S/cm) x 0.618 + 16

SAN JOAQUIN RIVER BASIN

The San Joaquin River Basin covers 15,880 square miles and includes the entire San Joaquin River drainage area, extending south from the southern boundaries of the Delta to include the headwaters of the San Joaquin River in Madera County and its southern drainage in Fresno County. Agriculture is the major economic and land use activity in the basin, and the San Joaquin Valley is recognized as one of the most important agricultural regions in California. The San Joaquin River Basin is bounded on the west by the coastal mountains of the Diablo Range and on the east by the Sierra Nevada mountain range. The Tulare Lake Basin to the south is normally considered a separate drainage basin, but has contributed occasional flood flows and subsurface flows to the San Joaquin River during wet years. The principal streams in the basin are the San Joaquin River and its larger tributaries: the Cosumnes, Mokelumne, Calaveras, Stanislaus, Tuolumne, Merced, Chowchilla, and Fresno rivers. Major reservoirs and lakes include Pardee, New Hogan, Millerton, McClure, Don Pedro, and New Melones. The San Joaquin River flows through portions of Fresno, Madera, Merced, Stanislaus, San Joaquin, Contra Costa, and Sacramento counties. At roughly 300 miles long, the San Joaquin River is one of the state's longest rivers. The headwaters of the San Joaquin River begin near the 14,000-foot crest of the Sierra Nevada. The river flows from the western slope of the Sierra Nevada and turns northwestward on the San Joaquin Valley floor toward the Delta where it meets the Sacramento River. The two rivers converge in the Delta, which encompasses an area of more than 1,300 square miles. The Delta is a series of islands formed by a maze of channels receiving freshwater inflow from its major tributaries, smaller streams, and the Cosumnes, Mokelumne, and Calaveras Rivers. Historically, more than 40 percent of the state's annual runoff flowed to the Delta via the Sacramento, San Joaquin, and Mokelumne rivers (DWR, 2013a).

SAN JOAQUIN RIVER BASIN HYDROLOGY

San Joaquin River Basin hydrology is predominantly influenced by tributary inflows, agricultural diversions and return flows, and tidal flows. The Lower San Joaquin River can be divided into two main sections based on the presence or absence of tidal flows. The Lower San Joaquin River from Mendota Pool to Vernalis receives inflow from a variety of sources including east-side tributaries, dominated by reservoir releases; west-side tributaries, dominated by agricultural return flows; groundwater recharge; and discharges from wetlands and publicly owned wastewater treatment facilities. Diversions can remove a significant amount of San Joaquin River is not typically affected by tidal flows due to its location sufficiently upstream of the Pacific Ocean's tidal influence.

The second main section of the Lower San Joaquin River is the tidally influenced reach from Vernalis to its confluence with the Sacramento River near Collinsville. Major tributary inputs to this section are provided by the Cosumnes and Mokelumne rivers where their commingled flows enter the central Delta near Webb Tract. Significant non-tributary inflows are provided from irrigation return flows that are pumped from adjacent agricultural lands into the San Joaquin River. The major diversion of San Joaquin River water occurs at the junction of Old River, where, depending on Delta hydraulics, up to 50% of San Joaquin River flows may be diverted to the south Delta (Quinn and Tulloch, 2002).

STATE WATER PROJECT

The California State Water Project (SWP), operated and maintained by the California Department of Water Resources (DWR), is the nation's largest state-built water and power development and conveyance system (DWR, 2013b). The SWP is a water storage and delivery system of reservoirs, aqueducts, power plants, and pumping plants. Specifically, the SWP includes 34 storage facilities, reservoirs and lakes; 20 pumping plants; 4 pumping-generating plants; 5 hydroelectric power plants; and approximately 700 miles of open canals, tunnels, and pipelines (DWR, 2010). The main purpose of the system is to store water and distribute it to 29 urban and agricultural water suppliers in Northern California. Of the contracted water supply, approximately 70 percent is provided to urban users and 30 percent to agricultural users. Other SWP purposes include flood control, power generation, recreation, fish and wildlife enhancement, and water quality improvement in the Delta (DWR, 2015).

CENTRAL VALLEY PROJECT

The U.S. Department of the Interior, Bureau of Reclamation manages the Central Valley Project (CVP), a complex network of reservoirs and canals across northern and central California that serve the Central Valley and portions of the San Francisco Bay Area and Central Coast of California (USBR, 2014). More specifically, the CVP operates 18 dams and reservoirs, 11 power plants, and 500 miles of canals and other facilities between the Cascade Range near Redding and the Tehachapi Mountains near Bakersfield. Rain and melting snow in the Sierra Nevada mountain range primarily supply the CVP and releases from reservoirs flow through rivers and canals to the Central Valley and enter the Delta. At the Delta's southern end, the C.W. Bill Jones Pumping Plant (formerly named the Tracy Pumping Plant) moves CVP water supplies to SOD contractors and wildlife refuges. CVP water supply is allocated for agricultural, municipal, industrial, and environmental needs. For instance, in an average year, the CVP delivers approximately seven million acre-feet of water for agricultural lands and supplying water for nearly 1 million households (USBR, 2009; DWR, 2013a). The total water year 2012 deliveries for the CVP are estimated at 5.7 million acre-feet (DWR, 2013a).

CALIFORNIA AQUEDUCT/SAN LUIS CANAL

In the southern Delta, near Byron, the SWP diverts water into Clifton Court Forebay for delivery south of the Delta. Harvey O. Banks Pumping Plant lifts water from Clifton Court Forebay into the California Aqueduct, which flows to Bethany reservoir. From Bethany Reservoir, the South Bay Pumping Plant lifts water into the South Bay Aqueduct to supply Alameda and Santa Clara counties. Most of the water delivered to Bethany Reservoir from Banks Pumping Plant flows into the California Aqueduct, a 444-mile long main aqueduct that conveys water to the agricultural lands of the San Joaquin Valley and to the urban regions of Southern California. The California Aqueduct/San Luis Canal, a joint federal-state project, is operated and maintained by the DWR. Water in the mainstem of the California Aqueduct flows south by gravity into the San Luis Joint-Use Complex. The San Luis Joint-Use Complex includes the O'Neill Dam and Forebay, Sisk Dam, San Luis Canal. This section of the California Aqueduct serves both the SWP and the federal CVP. The O'Neill Forebay is the location where the proposed project's

recycled water would come into contact with SWP water supplies. Water not stored in San Luis Reservoir in the Joint-Use Complex flows south through the San Luis Canal, a portion of the California Aqueduct jointly owned by DWR and Reclamation. As water flows through the central San Joaquin Valley, numerous turnouts convey water to farmlands within the service areas of the SWP and CVP before it splits south of Kettleman City into the Coastal Branch Aqueduct, completed in 1997, to serve San Luis Obispo and Santa Barbara counties. Pumping plants, including Buena Vista, Teerink, and Chrisman, lift the remaining water in the mainstem more than 1,000 feet before reaching the foot of the Tehachapi Mountains. Motor-pump units at Edmonston Pumping Plant move water nearly 2,000 feet up and over the Tehachapi Mountains. As the water reaches the bottom of the mountain, it bifurcates (splits) into two branches: the West Branch and the East Branch. Water in the West Branch flows through Oso Pumping Plant, Quail Lake, and then from the Peace Valley Pipeline through Warne Power Plant into Pyramid Lake in Los Angeles County. From there, water moves through the Angeles Tunnel, Castaic Powerplant, Elderberry Forebay, and into Castaic Lake, terminus of the West Branch. Water flowing down the East Branch is carried through Alamo Powerplant, Pearblossom Pumping Plant, and the Mojave Siphon Powerplant, which discharges the water into Lake Silverwood in the San Bernardino Mountains. From Silverwood Lake, water flows through the San Bernardino Tunnel to Devil Canyon Powerplant. The 28-mile-long Santa Ana Pipeline then takes the water underground to Lake Perris, the southernmost SWP reservoir (DWR, 2013b).

DELTA-MENDOTA CANAL

The Delta-Mendota Canal (DMC) is a CVP facility operated and maintained by the San Luis and Delta-Mendota Water Authority under contract with the U.S. Department of the Interior, Bureau of Reclamation. The water body is also considered a waters of the State and is listed in the Basin Plan as having those beneficial uses listed in **Table 1** (CVRWQCB, 2011). The DMC, completed in 1951, is a 117-mile concrete-lined aqueduct that serves as the main conveyance facility for SOD deliveries. The canal extends approximately 70 miles from the Delta to the O'Neill Forebay and then 46 miles to the Mendota Pool on the San Joaquin River, about 30 miles west of Fresno. The DMC carries CVP water southeasterly from the C.W. "Bill" Jones Pumping Plant along the west side of the San Joaquin Valley and provides water for irrigation supply and wildlife refuges en route. The canal runs south along the western edge of the San Joaquin Valley, parallel to the California Aqueduct for much of its length, but diverges to the east after passing San Luis Reservoir, which receives a portion of its water from the DMC (the remaining portion of water flowing into San Luis Reservoir is brought by the California Aqueduct). Midway along the length of the canal, water is pumped from the canal into O'Neill Forebay and then into the San Luis Reservoir by the Gianelli Pumping-Generating Plant. Occasionally, water from O'Neill Forebay is released into the canal. The DMC concludes at the Mendota Pool, a small reservoir created by the Mendota Dam on the San Joaquin River near the town of Mendota. In addition, the DMC is hydraulically connected with the SWP California Aqueduct via an intertie with a pumping station and two 108-inch diameter pipes west of the City of Tracy (DWR 2013).

SAN LUIS RESERVOIR

Midway along the length of the canal, the DMC is connected to the San Luis Reservoir via the O'Neill Forebay. The San Luis Reservoir, a 2 million-acre-feet artificial lake on San Luis Creek in the eastern slopes of the Diablo Mountain Range of Merced County, is jointly owned and

operated by Reclamation and DWR. It is one of California's largest reservoirs (SCVWD, 2013) and one of the nation's largest off-stream reservoirs, meaning a reservoir filled with water pumped from a source other than its natural watershed. As part of the San Luis Joint-Use Complex, the reservoir holds water diverted from the Delta for subsequent delivery to the Silicon Valley, San Joaquin Valley, Central Coast, and Southern California⁴. Generally, water is pumped into San Luis Reservoir from late fall through early spring, where it is temporarily stored for release back to the California Aqueduct to meet summertime peaking demands of SWP and CVP water contractors. When Delta flows are insufficient to supply state and federal water project needs, water is released back into the O'Neill Forebay for delivery by the two projects.

⁴ California Department of Water Resources (DWR). "San Luis Joint-Use Complex." [Brochure]. http://www.water.ca.gov/pubs/swp/san luis joint-use complex brochure/sanluis joint use brochure.pdf

PROJECT BACKGROUND

Shortages in water deliveries and the lack of water supply reliability that DPWD has experienced from Reclamation have resulted in economic hardships on DPWD and its customers. As a result, DPWD must secure alternate water supplies to supplement its CVP deliveries. While water transfers from other agencies and the use of groundwater have been effective temporary methods to meet DPWD's water demands, these alternatives do not provide a reliable, sustainable, or affordable long-term solution. In addition, Reclamation has not been able to provide secure firm, reliable water supplies to SOD refuges. CVPIA Section 3406(d)(2) directs Reclamation to acquire and provide supplemental water to all CVPIA-designated wildlife refuges in the Central Valley.

DPWD is located in close proximity to Modesto's and Turlock's wastewater treatment facilities, which discharge directly to the San Joaquin River.⁵ Specifically, DPWD's service area is located a little over five miles from Modesto's WQCF and less than five miles from the end of Turlock's Harding Drain Bypass Pipeline, which currently conveys flows from Turlock's RWQCF to a surface outfall located on the San Joaquin River. CVPIA refuges are located both west and southwest of DPWD, and are able to obtain water from the DMC. Concurrent with DPWD's ongoing CVP shortages, the Cities of Turlock and Modesto are facing more restrictive regulatory requirements for wastewater discharges to the San Joaquin River, and both cities have constructed tertiary treatment facilities to comply with more stringent NPDES permits (NVRRWP, 2013).

As a result of upgrades to the treatment facilities and increases in flows due to projected population growth, it is estimated that Modesto and Turlock will produce up to 59,000 AFY of recycled water by 2045 (USBR, 2015). The rates of recycled water production for each city at buildout of their respective wastewater treatment facilities are shown in **Table 5**. It is important to note that recycled water would be provided incrementally over a period of years for discharge to the DMC as the cities' treatment facilities are expanded and flows increase from projected population growth (USBR, 2015). The commingled Modesto and Turlock disinfected, tertiary treated effluents will comprise the NVRRWP discharge proposed for discharge to the DMC. Tertiary treated recycled water from the NVRRWP is required to meet the stringent requirements established in Title 22 of the California Code of Regulations, and is suitable for a wide variety of

⁵ The City of Modesto is permitted to discharge up to 70.0 mgd of disinfected, secondary treated effluent to the San Joaquin River from October 1 to May 31 when flows provide a minimum 20:1 river:effluent dilution. Modesto's discharge of disinfected, secondary treated effluent varies from year to year depending upon San Joaquin River hydrology and available capacity in Modesto's 7,800 AF of effluent storage ponds. Since completion of Phase 1 tertiary treatment facilities in July 2010, Modesto has been permitted to discharge up to 2.3 mgd of disinfected, tertiary treated effluent to the river on a year-round basis, but has yet to discharge tertiary treated effluent to the river. Additionally, the City has been permitted to discharge up to 12.6 mgd of disinfected, tertiary treated effluent to the river on a year-round basis once its Phase 2 facilities are completed (expected in 2016).

Prior to November 2014, the City of Turlock discharged an average annual flow of 10 mgd to the San Joaquin River via the Harding Drain. Turlock completed construction of the Harding Drain Bypass Pump Station and Pipeline Project in July 2014 to bypass the Harding Drain and discharge directly to the San Joaquin River. Discharge via the Harding Drain Bypass Pipeline began in November 2014, consistent with the city's NPDES permit requirements.

non-potable uses. The supply of recycled water from Modesto and Turlock could provide a long-term, reliable water supply for the District and its customers that would serve to augment DPWD's CVP supply.

The NVRRWP will utilize available recycled water to augment existing supplies and provide a more reliable supply of irrigation water to the region. The Partner Agencies propose to provide recycled water from the Cities of Modesto and Turlock to DPWD to address water supply shortages within DPWD's service area on the west side of the San Joaquin River in San Joaquin, Stanislaus and Merced counties, south of the Delta, and to south of Delta CVPIA-designated Refuges. A number of alternatives for conveying the recycled water to DPWD and CVPIA refuges were evaluated, and the use of the DMC as a means of conveyance and delivery was determined to be the most cost-effective option while providing the greatest number of benefits (RMC, 2013). Utilizing the DMC not only provides for the delivery of much-needed irrigation water for local agriculture, but during the non-irrigation season, also provides for the temporary storage of the water for later delivery. In addition to reducing DPWD's reliance on Delta conveyance for its water supplies, the NVRRWP will reduce DPWD growers' dependence on the local groundwater resource. With the development of conveyance capability, the project proposes to introduce and convey, on a space available basis, up to 59,000 AFY of Title 22 recycled water produced by the Cities of Ceres, Modesto, and Turlock directly into the DMC, which is owned by Reclamation. The recycled water will be blended with CVP water conveyed by the DMC. The blended water would then be conveyed directly to DPWD customers and CVPIA refuges or stored within Reclamation's SOD CVP system for storage during low water demand periods. Additionally, the project also allows for the possibility of providing some water supply benefits to others, including neighboring water districts and state and federal wildlife refuges.

Agency	Recycled Water (AFY)	Recycled Water (mgd)	Buildout Year
City of Modesto	30,600	27.3	2040
City of Turlock	28,400	25.4	2045
Total	59,000	52.7	

 Table 5: Recycled Water Availability at Buildout of Modesto and Turlock Wastewater Treatment

 Facilities.

PROJECT DESCRIPTION

The DEIR/EIS prepared by the Partner Agencies evaluated three alternatives for delivering recycled water to DPWD's service area and CVPIA wildlife refuges: (1) a combined pipeline alignment alternative that features a single discharge point to the DMC (Alternative 1); (2) a separate pipeline alignment that features two discharge points to the DMC (Alternative 2); and (3) continued discharge to the San Joaquin River by the Cities of Modesto and Turlock with diversion and delivery to the DMC via an expanded Patterson Irrigation District diversion and delivery system (Alternative 3) (USBR, 2015). This antidegradation analysis only evaluates the potential water quality impacts of a single, proposed NVRRWP discharge to the DMC as described by Alternative 1 in the DEIR/EIS.

The Combined Alignment Alternative (Alternative 1), as it is described in the DEIR/EIS, would require the construction of a new pump station (PS) and pipeline from Turlock's Harding Drain

Bypass Pipeline to Modesto's Jennings Secondary Treatment Facility (Jennings Plant) pump station. Effluent flows from the Harding Drain Bypass Pipeline would be conveyed by gravity to the Jennings Plant. The Jennings Plant pump station would be modified to accept Turlock's disinfected, tertiary treated effluent. The two disinfected, tertiary treated effluent streams would be combined at the modified pump station and conveyed in a single pipeline to the DMC for discharge (USBR, 2015). The pipeline alignment of this alternative is shown in **Figure 4**. Both Modesto and Turlock intend to maintain the ability to discharge disinfected, tertiary treated effluent to the San Joaquin River, as needed, in order to retain operation flexibility in managing their respective wastewater discharges. However, their primary point of discharge will be the DMC. It should also be noted that the Cities of Modesto and Turlock will need to gain approval from the State Water Resources Control Board, Division of Water Rights, to legally change their points of discharge from the San Joaquin River to the DMC.

The location of the proposed NVRRWP side bank outfall on the east bank of the DMC is shown in **Figure 5**, along with the location where most water quality samples were collected to characterize upstream DMC receiving water quality for this antidegradation analysis. The outfall structure would consist of a reinforced concrete, open-ended rectangular box, situated below and above grade. The box would contain a fixed-point, sharp-crested weir for hydraulic stability. Downstream of the weir, the water would flow over the discharge structure concrete bottom slab and into the DMC. The facility would also include metering in a concrete vault structure and telemetry devices for communicating flow and water quality data and remote monitoring of the discharge facility (USBR, 2015).

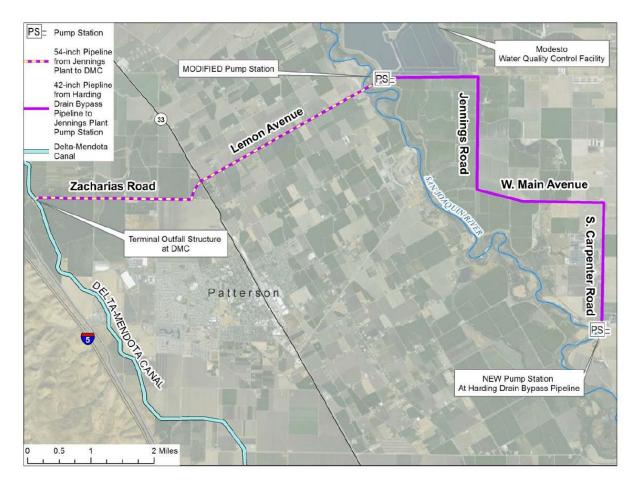


Figure 4: Pipeline Alignment of Proposed Combined Alignment Alternative that Features a Single NVRRWP Discharge to the Delta-Mendota Canal near the Intersection of Raines Road and Zacharias Road.

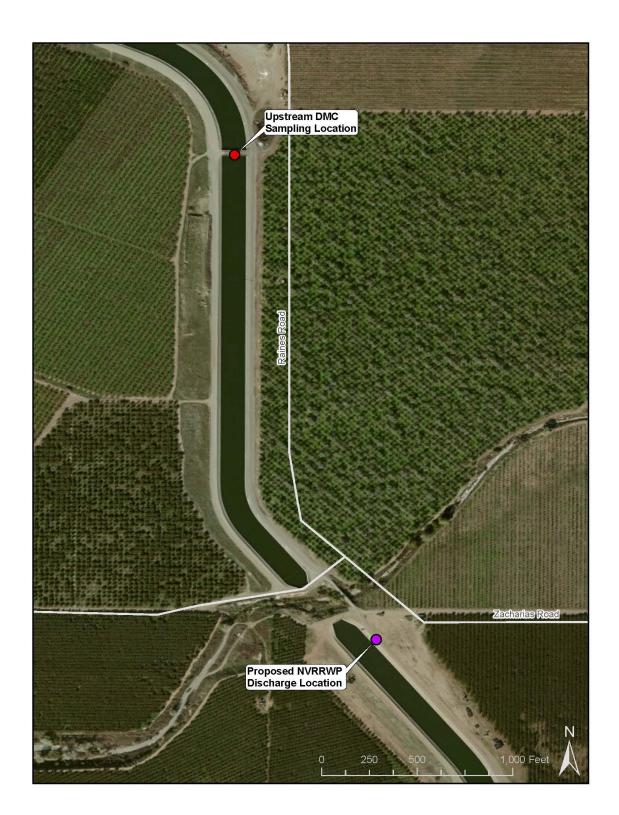


Figure 5: Proposed Location of NVRRWP Outfall on the East Bank of the Delta-Mendota Canal and Upstream Ambient Water Quality Monitoring Site.

SELECTION OF WATER QUALITY CONSTITUENTS

Selection Criteria

Water quality constituents were selected for quantitative near-field analyses based on two or more of the following conditions being satisfied:

- 1. Modesto WQCF received a limitation for a particular constituent for discharge of tertiary treated effluent in Order No. R5-2012-0031;
- 2. Turlock RWQCF received a limitation for a particular constituent for discharge of tertiary treated effluent in Tentative Draft Order No. R5-2015-XXXX;
- 3. Constituent was identified as a pollutant/stressor on the 2010 Clean Water Act Section 303(d) list for a water body downstream of the proposed NVRRWP discharge;
- 4. Constituent for which an adopted TMDL exists in a water body downstream of the proposed NVRRWP discharge;
- 5. Constituent is a known water quality concern of the Central Valley Water Board; and
- 6. Constituent has a water quality objective or criteria applicable to the DMC and/or downstream water body.

As described in the previous section, near-field water quality impacts of the proposed NVRRWP discharge were estimated using (1) average Modesto WQCF tertiary effluent quality, (2) average Turlock RWQCF tertiary effluent quality, (3) average DMC ambient water quality upstream of the location of the proposed NVRRWP discharge, (4) Modesto and Turlock effluent flows, and (5) DMC flows. Twenty water quality parameters were initially identified for evaluation based on the six criteria listed above. Seventeen parameters were ultimately selected for near-field analyses (see constituents in bold typeface presented in **Table 6** based on availability of data.

Data Sources

The analyses for the near-field water quality impacts assessment require high quality effluent and receiving water data. The monitoring and reporting programs operated by both cities in support of their respective NPDES permits provided the necessary effluent quality data required by the near-field analyses. Turlock's effluent quality data were collected pursuant to the monitoring and reporting program requirements specified in its current NPDES permit (Order No. R5-2010-0002-01) and generally span the period January 2010 through April 2014, with the exception of data sets for ammonia, EC, pH, and total dissolved solids (TDS). The ammonia data set covers the period January 2009 through October 2014, and the EC, pH, and TDS data sets extends from June 2010 through October 2014 (see **Appendix B**). Because Modesto has yet to discharge its disinfected, tertiary treated effluent to the San Joaquin River, the City had not routinely monitored its tertiary effluent prior to the need for such water quality data required by this antidegradation analysis. To this end, Modesto WQCF staff monitored the City's disinfected, tertiary treated effluent on August 13 and October 30, 2014, for the purpose of characterizing the quality of the effluent it will contribute to the proposed NVRRWP discharge (see **Appendix C** for water quality data compilation).

Data Source Upstream DMC Turlock Modesto RWQCF Receiving Selected for Water⁽¹⁾ Constituent WQCF Effluent Effluent Analysis No, non-**Total Coliform** Data available Data available No data conservative parameter⁽²⁾ Data available **Electrical Conductivity** Data available Data available Yes **Total Dissolved Solids** Data available Data available Data available Yes Aluminum, Total Data available Data available Data available Yes No data⁽³⁾ Boron, Total Data available No data No, insufficient data Copper, Total Data available Data available Yes Data available Iron, Total Data available Data available Data available Yes Manganese, Total Data available Data available Data available Yes Mercury, Total Data available Data available Data available Yes Molybdenum, Total Data available⁽⁴⁾ Data available⁽⁴⁾ No data No, insufficient data Selenium, Total Data available Data available Data available Yes Data available Data available Yes Ammonia Data available Yes Nitrate Data available Data available Data available Nitrite Data available Data available Data available Yes Bis(2-Data available Data available Data available Yes ethylhexyl)phthalate Data available Data available **Carbon Tetrachloride** Data available Yes Yes Dibromochloromethane Data available Data available Data available Dichlorobromomethane Data available Data available Data available Yes Data available Chlorpyrifos Data available Data available Yes Diazinon Data available Data available Data available Yes

 Table 6: Water Quality Constituents and their Data Sources Identified for Near-Field Water Quality

 Impacts Analyses.

(1) With the exception of TDS data, which represent daily average concentrations calculated by USBR, all other receiving water data except for EC were derived from two grab samples collected by LWA staff in September and October 2014 just upstream of the proposed NVRRWP discharge to the DMC. Daily average EC levels were calculated from USBR daily average TDS concentrations.

(2) Constituent is considered a non-conservative parameter and is, therefore, inappropriate for the calculation of blended effluent-DMC concentrations in the near-field. Future NVRRWP discharge concentrations of total coliform will be limited to those allowed by Title 22 Code of Regulations Water Recycling Criteria for disinfected, tertiary recycled water.

(3) The City of Modesto is not required to analyze boron as part of its current NPDES monitoring and reporting program for its tertiary discharge and therefore, tertiary effluent data are not available for this parameter. However, boron concentrations in Modesto's secondary effluent (Feb. 2010 – Mar. 2015; average = 0.247 mg/L) all exist below the Primary MCL for boron of 0.7 mg/L. Modesto's tertiary effluent concentrations of boron are expected to be the same or lower than its secondary effluent concentrations. All boron concentrations measured in Turlock's tertiary effluent exist below the parameter's Primary MCL.

(4) All molybdenum concentrations measured in the tertiary effluents of both the Cities of Modesto and Turlock exist below the Secondary MCL for molybdenum of 10 mg/L.

With the exception of data for EC and TDS, DMC receiving water quality data were collected by Larry Walker Associations (LWA) staff on September 30 and October 14, 2014, from a bridge that crosses the canal upstream of the proposed NVRRWP discharge location (see **Figure 5**; see **Appendix D** for water quality data compilation). A long-term data set (January 2000 – October 2014) for TDS collected by USBR at the DMC Headworks, Jones Pumping Plant (located approximately 33.7 miles upstream of the proposed NVRRWP discharge location; see **Figure 2**), was used in the near-field assessment. A data set of average daily EC levels was calculated from the TDS data set using the following equation recommended by Reclamation: EC (μ mhos/cm) = TDS (mg/L) – 16/0.618 (USBR, 2014).

Effluent quality data from both cities were collected and analyzed according to monitoring and reporting program requirements contained in each discharger's NPDES permit. With the exception of EC and TDS data, DMC receiving water quality data were collected and analyzed according to a sample collection and analysis work plan that was provided to the Central Valley Water Board for its approval (LWA, 2014b). The constituents evaluated in the DMC were analyzed using either the same analytical methods or methods comparable to those used by the cities and featuring low method detection limits (MDL) to better quantify concentrations below relevant water quality objectives or criteria. Daily average EC and TDS data at the DMC Headworks from January 2000 through October 2014 were obtained online from USBR's Central Valley Operations Office Water Quality Reports⁶ and used in the near-field water quality impacts analysis.

WATER QUALITY IMPACTS METHODOLOGY

The water quality impacts assessment is an evaluation of the potential effects from the proposed NVRRWP discharge on the DMC and downstream receiving waters. The assessment evaluates the discharge of commingled, disinfected, tertiary treated, Title 22 effluent from the Cities of Modesto and Turlock on DMC water quality downstream of the proposed discharge location. Near-field effects on DMC water quality are likely to occur between the point of discharge and some distance downstream of the NVRRWP discharge where effluent and ambient water are reasonably well-mixed. "Mixing zones" of different length can be calculated depending on the receiving water flow considered. For a number of parameters evaluated in the current analysis, the 7Q10⁷ flow is appropriate for estimating downstream water quality impacts. This critical low flow condition is used in the projection of water quality impacts for pollutants with chronicexposure-based objectives during low flow periods, such as summer or fall, when minimum ambient pollutant concentrations are observed and, thus, a receiving water is more sensitive to additional pollutant loading. For a small number of parameters that are determined to show long-term water quality impacts, including salt (EC and TDS), mercury, and some organic compounds detected in the proposed discharge, the harmonic mean flow⁸ is appropriate for estimating the harmonic mean mixing zone. Use of a long-term harmonic mean flow to

⁶ USBR Central Valley Operations Office water quality reports are available at <u>http://www.usbr.gov/mp/cvo/wqrpt.html</u>

⁷ The 7Q10 flow refers to the lowest 7-day average daily flow that will statistically occur once in ten years.

⁸ The harmonic mean flow is calculated by dividing the total number of flow measurements by the sum of the reciprocals of each flow measurement.

represent critical conditions in the DMC is consistent with the necessary characterization of "worst-case" conditions used to determine attainment of human health-based water quality criteria. Although these two mixing zones will be appropriate for evaluating the water quality impacts of most constituents, smaller mixing zones or "no dilution" scenarios also may apply to other parameters. However, because the proposed project will be designed and operated to meet effluent limitations at the point of discharge, the analysis here quantifies relative changes to loads and concentrations in the well-mixed cross section of the DMC at either the 7Q10 or harmonic mean flow condition.

Near-field water quality impacts of the proposed NVRRWP discharge were estimated using (1) average Modesto WQCF tertiary effluent quality; (2) average Turlock RWQCF tertiary effluent quality; (3) average ambient DMC concentrations; (4) projected NVRRWP discharge rates; and either (5) the 7Q10 flow (397 cfs) or the harmonic mean flow (2,153 cfs) calculated from DMC flow data measured at the Jones Pumping Plant during the years 1994 – 2013 (LWA, 2014a). According to the State Implementation Plan (SWRCB, 2005), the 7Q10 flow is used to calculate "dilution" credit when assessing "reasonable potential" for exceeding chronic (4-day) water quality objectives, and the harmonic mean river flow is similarly used when making comparisons to human health objectives or for those pollutants shown to have long-term impacts on water quality, such as salinity. The harmonic mean flow of 2,153 cfs only was used when estimating water quality impacts of pollutants with human health-based objectives (i.e., mercury and some organic compounds) and constituents of salt (EC and TDS). Projected impacts of all other pollutants were made using the 7Q10 flow of 397 cfs. Estimated water quality conditions were then compared to existing water quality objectives or commonly used criteria to assess the impact of the proposed NVRRWP discharge on DMC water quality. With the exception of data for EC and TDS, the upstream DMC monitoring location (see Figure 5) provided ambient data used in the near-field water quality impacts analysis. Ambient EC and TDS data used in the analysis were collected at the DMC Headworks, Jones Pumping Plant (see Figure 2).

The far-field water quality impacts assessment evaluates the effects of the proposed NVRRWP discharge on water quality at two locations near the San Luis Joint-Use Complex where surface water is diverted for eventual use as drinking water. The O'Neill Forebay is the location where the proposed project's recycled water would come into contact with SWP water supplies. Far-field water quality impacts were evaluated in a qualitative manner by estimating the percent change in the portion of water of DMC origin in a unit volume of water at a far-field location of interest with and without the proposed NVRRWP discharge. This analysis was carried out for the irrigation season when DPWD's water demands are high, as well as for the non-irrigation season when demands are low. This evaluation is described in the Far-Field Water Quality Impacts Methodology section of this report.

Near-Field Water Quality Impacts Methodology

The near-field water quality impacts assessment is an evaluation of the potential effects from the proposed NVRRWP discharge on downstream water quality of the DMC, which is a water body designated as having a variety of beneficial uses as listed in **Table 1**. The near-field assessment evaluates the DMC water quality at a location downstream of the proposed discharge location by incorporating the estimated quality and projected flow rates of the commingled, disinfected, tertiary treated, Title 22 effluent from the Cities of Modesto and Turlock. Near-field effects on DMC water quality are likely to occur between the point of discharge and where effluent and

ambient water are reasonably well-mixed. This distance is estimated to be approximately 0.5 miles downstream of the NVRRWP discharge under 7Q10 flow conditions, and approximately 3 miles downstream under harmonic mean flows (see **Appendix E** – calculations for length to complete mixing). Although the latter "mixing zone" is only appropriate for constituents of salinity (EC and TDS) and those showing human health risks, including mercury and some organic compounds detected in the proposed discharge, smaller mixing zones or "no dilution" scenarios also may apply to other parameters. However, because the proposed project will be designed and operated to meet effluent limitations at the point of discharge, the analysis here quantifies relative changes to loads and concentrations in the well-mixed cross section of the DMC.

The 7Q10 flow was selected as the appropriate flow condition to consider for constituents other than salinity and those having human health criteria because the flow nominally represents the "worst-case" condition where the proposed NVRRWP discharge would comprise the largest percentage of the total flow (effluent plus receiving water) downstream of the proposed discharge. Similar to the selection of the 7Q10 flow in the receiving water, the near-field discharge scenario considered in this analysis utilized the estimated NVRRWP discharge rate of 52.7 mgd at project buildout (projected to occur in 2045) to represent future, worst-case conditions. It is important to note that recycled water would be provided incrementally for discharge to the DMC over a period of years as the cities' treatment facilities are expanded and flows increase from projected population growth. Using average tertiary effluent quality from Modesto and Turlock and available ambient DMC water quality, along with projected NVRRWP discharge rate and DMC flows, a mass balance was performed to assess the effect of the proposed NVRRWP discharge on downstream concentrations and mass loadings of the seventeen constituents specified in **Table 6**. The estimated downstream water quality concentrations were then compared to existing water quality objectives or commonly used criteria to assess the impact of the proposed NVRRWP discharge on DMC water quality.

Near-Field Impacts Calculations

Near-field water quality impacts of the proposed NVRRWP discharge were estimated using the following information:

- Average Modesto WQCF tertiary effluent quality calculated from data collected on August 13 and October 30, 2014;
- Average Turlock RWQCF tertiary effluent quality calculated from data collected from January 2010 through April 2014 (exceptions include ammonia: January 2009 through October 2014, and TDS: June 2010 through October 2014);
- Average ambient DMC concentrations calculated from data collected on September 30 and October 14, 2014, for all parameters except EC and TDS. Average concentrations of TDS were calculated using data collected at the DMC Headworks from January 2000 through October 2014. Average EC levels were calculated from measured TDS concentrations using the following equation: EC (µmhos/cm) = TDS (mg/L) 16/0.618;
- Projected NVRRWP discharge rate of 52.7 mgd based on the sum of the flows projected for the Cities of Modesto and Turlock by the year 2045 (see **Table 5**); and

Either the 7Q10 flow (397 cfs) or the harmonic mean flow (2,153 cfs) calculated from DMC flow data measured at the Jones Pumping Plant during the years 1994 – 2013 (LWA, 2014a).

According to the State Implementation Plan (SIP; SWRCB, 2005), the 7Q10 flow is used to calculate "dilution" credit when assessing "reasonable potential" for exceeding chronic (4-day) water quality objectives, and the harmonic mean river flow is similarly used when making comparisons to human health objectives. The harmonic mean flow of 2,153 cfs for the DMC was used only when estimating water quality impacts of salinity and pollutants with human health-based objectives (i.e., mercury and some organic compounds). Projected impacts of all other pollutants were made using the 7Q10 flow of 397 cfs.

The estimated, near-field, concentration-based water quality impacts were calculated using the following mass balance equation:

$$C_{downstream} = \frac{\left(\left((C_{upstream})(Q_{upstream})\right) + \left((C_{Meff})(Q_{Meff} \times 1.55)\right) + \left((C_{Teff})(Q_{Teff} \times 1.55)\right)\right)}{\left(Q_{upstream} + \left((Q_{Meff} + Q_{Teff})(1.55)\right)\right)}$$

Where $C_{downstream} = DMC$ concentration, downstream of discharge at well-mixed conditions

Cupstream = DMC concentration, upstream of proposed NVRRWP discharge

 C_{Meff} = Modesto average tertiary effluent concentration

C_{Teff} = Turlock average tertiary effluent concentration

Qupstream = DMC flow (cfs), upstream of the proposed NVRRWP discharge

 Q_{Meff} = Modesto tertiary effluent flow (mgd), estimated at buildout

Q_{Teff} = Turlock tertiary effluent flow (mgd), estimated at buildout

1.55 is the flow conversion factor for converting mgd to cfs

The estimated, near-field, mass-based water quality impacts were calculated using the following mass load equations:

 $M (lbs/day) = Q (mgd) \times C (mg/L) \times CF$

Where M = Mass Load (lbs/day)

Q =Flow (mgd)

C =Concentration (mg/l or μ g/L)

CF = Conversion factor for converting mg/L to lbs/day (8.34) or μ g/L to lbs/day (0.00834)

Baseline (current) mass loading in the DMC was estimated using the following mass load equation:

 $M_{upstream} = Q_{upstream} \times C_{upstream} \times CF$

Where $M_{upstream} = DMC$ mass load, upstream of the proposed NVRRWP discharge

Q_{upstream} = DMC flow (cfs), upstream of the proposed NVRRWP discharge

Cupstream = DMC concentration, upstream of the proposed NVRRWP discharge

Mass loading to the DMC estimated for the proposed NVRRWP discharge was estimated using the following mass load equation:

$$M_{NVRRWP} = \left[\left(Q_{Meff} \times C_{Meff} \times CF \right) + \left(Q_{Teff} \times C_{Teff} \times CF \right) \right]$$

Where M_{NVRRWP} = Mass load produced by the proposed NVRRWP discharge

 Q_{Meff} = Modesto tertiary effluent flow (mgd), estimated at buildout

 $C_{\text{Meff}} = Modesto \ average \ tertiary \ effluent \ concentration$

 Q_{Teff} = Turlock tertiary effluent flow (mgd), estimated at buildout

 C_{Teff} = Turlock average tertiary effluent concentration

The extremely low flow condition for the DMC represented by the 7Q10 flow of 397 cfs that was used in the projection of water quality impacts for pollutants with chronic-exposure-based objectives characterizes a surface water sensitive to additional pollutant loading. The projection of water quality impacts for salinity and pollutants with human health-based objectives uses the DMC harmonic mean flow of 2,153 cfs. Both flows were calculated from DMC flow data measured at the Jones Pumping Plant during the years 1994 - 2013 (LWA, 2014a). Use of a harmonic mean flow to represent long-term conditions in the DMC is consistent with the necessary characterization of worst-case conditions used to determine attainment of human health-based water quality criteria based on long-term exposures.

The use of a central tendency statistic, such as the average, characterizes commonly observed water quality conditions that occur under a wide range of environmental and hydrologic conditions. While ambient surface water concentrations and NVRRWP loadings for individual pollutants would be somewhat variable over time, central tendency concentration statistics are representative of frequently occurring conditions during the beneficial use exposure period. Moreover, critical flow and concentration conditions do not necessarily occur at the same time. Even though the use of a pollutant concentration characteristic of worst case conditions would provide insight into the greatest water quality impact that could occur, this worst case condition would not be representative of typical water quality conditions in terms of both magnitude of the impact and its frequency of occurrence.

Near-Field Analysis and Results

Estimated near-field water quality impacts in the DMC downstream of the proposed NVRRWP discharge were calculated for each constituent selected for analysis (see **Table 6**) using the mass balance equation described above. Summary statistic for Turlock tertiary effluent quality, Modesto tertiary effluent quality, and DMC receiving water quality upstream of the proposed NVRRWP discharge are shown in **Table 7**. These summary statistics were used in the estimation of near-field water quality concentrations and mass loadings with implementation of the proposed project that are provided in **Table 8** and **Table 9**, respectively. The data presented

in **Table 8** and **Table 9** provide estimates of downstream water quality impacts under wellmixed conditions, which were determined to occur approximately 0.5 miles downstream of the proposed NVRRWP discharge under 7Q10 flow conditions, and approximately 3 miles downstream of the discharge under harmonic mean flow conditions. The most stringent water quality objective or criterion (see **Table 2**) is provided for comparison to the estimated downstream water quality concentration. Note that mass loadings were not estimated for electrical conductivity.

The concentration-based results presented in **Table 8** show that implementation of the proposed NVRRWP project is estimated to produce no changes in water quality for total mercury and total selenium downstream of the discharge, and very minor increases in average downstream receiving water concentrations for most parameters evaluated. These minor, incremental increases in average concentration range from <0.0002 μ g/L (chlorpyrifos) to 12 mg/L (TDS), along with an estimated 17 μ mhos/cm average increase for EC. It also is estimated that discharge of the high quality Title 22 recycled water to the DMC by the proposed project will result in a slight lowering in downstream receiving water concentrations for total iron, total manganese, and diazinon. The estimated, average, downstream receiving water concentration concentration resulting from the proposed 52.7 mgd NVRRWP discharge to the DMC (see Future Condition column in **Table 8**) is lower than the corresponding most stringent water quality objective or criterion for each constituent evaluated. The estimated downstream concentrations are also lower than Reclamation's water quality standards for acceptance of groundwater pumped into the upper DMC (see **Appendix A**).

The mass loading increases shown in **Table 9** demonstrate the estimated load increases resulting from the proposed NVRRWP discharge. Because DPWD will typically operate its DMC diversion rates to match the proposed project's discharge rates, the District will remove a significant amount of mass from the canal when it provides agricultural supply water to farmers and wetlands supply water to refuges. Under the scenario where DPWD diverts all water that the proposed project discharges to the DMC, incremental concentration changes in water quality downstream of any District diversions would be the same as those presented in **Table 8**. It would be only during times of no water demand that the District would not divert any water from the DMC to its customers, thus resulting in the full estimated incremental mass loading increases to the DMC shown in **Table 9**.

	Ter	City of Turlock: Tertiary Effluent Quality			City of Modesto: Tertiary Effluent Quality			Delta Mendota Canal: receiving water quality just upstream of proposed NVRRWP discharge				
Constituent (units)	n	% Det.	Avg.	Max. Det.	n	% Det.	Avg.	Max. Det.	n	% Det.	Avg.	Max. Det.
Electrical Conductivity (µmhos/cm)	263	100	968	1325	2	100	903	1020	5359 ⁽¹⁾	100 ⁽¹⁾	457 ⁽¹⁾	1173 ⁽¹⁾
Total Dissolved Solids (mg/L)	235	100	605	810	2	100	659	728	5359	100	299	741
Aluminum, Total (µg/L)	67	100	202	607	2	100	25	29	2	100	99	130
Copper, Total (µg/L)	54	96.3	4.8	9.9	2	100	2.9	3.1	2	100	1.75	1.90
Iron, Total (μg/L)	30	100	202	480	2	100	55	67	2	100	130	180
Manganese, Total (µg/L)	26	88.5	11	47	2	100	11.7	19	2	100	25.5	36.0
Mercury, Total (µg/L)	49	93.9	0.0032	0.0130	2	100	0.00085	0.00106	2	100	0.0011	0.0013
Selenium, Total (μg/L)	55	92.7	0.31	1.3	2	100	0.81	0.89	2	100	0.60	0.72
Ammonia (mg/L as N)	321	3.4	<1	4.4	2	50	0.035	0.04	2	50	0.059	0.077
Nitrate (mg/L as N)	51	100	16.3	20.8	2	50	3.48	6.87	2	100	0.30	0.46
Nitrite (mg/L as N)	4	0	<0.1	<0.1	2	100	0.01	0.01	2	0	<0.005	<0.005
Bis(2-ethylhexyl)phthalate (µg/L)	28	50	1.25	6.60	2	0	<0.83	<0.83	2	0	<0.1	<0.1
Carbon Tetrachloride (µg/L)	52	13.5	<0.2	0.5	2	0	<0.4	<0.4	2	0	<0.16	<0.16
Dibromochloromethane (µg/L)	52	100	6.76	12.8	2	0	<0.4	<0.4	2	0	<0.03	<0.03
Dichlorobromomethane (µg/L)	52	100	22.7	41.9	2	0	<0.4	<0.4	2	0	<0.03	<0.03
Chlorpyrifos (µg/L)	17	0	<0.01	<0.01	2	0	<0.0029	<0.0029	2	0	<0.005	<0.005
Diazinon (µg/L)	17	0	<0.01	<0.01	2	0	<0.0036	<0.0036	2	0	<0.007	<0.007

 Table 7: Summary Statistics for City of Turlock Tertiary Effluent Quality, City of Modesto Tertiary Effluent Quality, and Delta Mendota

 Canal Receiving Water Quality Upstream of Proposed NVRRWP Discharge Used in the Estimation of Near-Field Water Quality Impacts.

(1) DMC EC levels were calculated from TDS concentrations measured at Jones Pumping Plant using the following equation: EC (μ mhos/cm) = TDS (mg/L) - 16/0.618. Table 8: Estimated Near-Field Downstream (D/S) Water Quality Impacts, on a Concentration Basis, of the Proposed NVRRWP Discharge at the Projected Buildout Discharge Rate of 52.7 mgd.

		Baseline DMC Condition	Projected Effluent Quality	Future DMC Condition		Most Stringent	
Constituent	Units	Average Upstream DMC	Average Commingled Effluent ⁽¹⁾	Estimated Average D/S at 52.7 mgd	Incremental Change	Water Quality Objective or Criterion	Reference for Most Stringent Water Quality Objective or Criterion
Electrical Conductivity	µmhos/cm	457	934	474	17	1,000	Basin Plan
Total Dissolved Solids	mg/L	299	633	311	12	500 ⁽³⁾	Title 22 MCL (Secondary)/ Basin Plan ⁽²⁾
Aluminum, Total	μg/L	99	110	101	2	200	Title 22 MCL (Secondary)/ Basin Plan ^{(2),(34)}
Copper, Total	μg/L	1.75	3.8	2.1	0.4	9.7 ^{(5),(6)}	CTR, FW Aquatic Life, (Chronic 4-day average)
Iron, Total	μg/L	130	126	129	-1	300	Title 22 MCL (Secondary)/ Basin Plan ⁽²⁾
Manganese, Total	μg/L	25.5	11.4	23.1	-2.4	50	Title 22 MCL (Secondary)/ Basin Plan ⁽²⁾
Mercury, Total	μg/L	0.0011	0.0020	0.0011	0.0	0.050	CTR, Human Health, Water & Organisms
Selenium, Total	μg/L	0.6	0.6	0.6	0.0	5	Basin Plan, Table III- 1, monthly mean

 Table 8: Estimated Near-Field Downstream (D/S) Water Quality Impacts, on a Concentration Basis, of the Proposed NVRRWP Discharge at the Proposed Buildout Discharge Rate of 52.7 mgd (Continued).

		Baseline DMC Condition	Projected Effluent Quality	Future DMC Condition		Most Stringent	
Constituent	Units	Average Upstream DMC	Jpstream Commingled D/S at 52.7		Incremental Change	Water Quality Objective or Criterion	Reference for Most Stringent Water Quality Objective or Criterion
Ammonia	mg/L (as N)	0.059	<0.500	<0.134	<0.075	0.73 ⁽⁷⁾	Basin Plan, U.S. EPA 2013 Aquatic Life Water Quality Criteria for Ammonia, FW (Chronic 30-day average)
Nitrate	mg/L (as N)	0.3	9.66	1.9	1.6	10	Title 22 MCL (Primary)/Basin Plan ⁽²⁾
Nitrite	mg/L (as N)	<0.005	<0.05	<0.01	<0.01	1	Title 22 MCL (Primary)/Basin Plan ⁽²⁾
Bis(2- ethylhexyl)phthalate	μg/L	<0.1	<1.03	<0.13	<0.03	1.8	CTR, Human Health, Water & Organisms
Carbon Tetrachloride	μg/L	<0.16	<0.30	<0.17	<0.01	0.25	CTR, Human Health, Water & Organisms
Dibromochloromethane	μg/L	<0.03	<3.47	<0.16	<0.13	0.41	CTR, Human Health, Water & Organisms
Dichlorobromomethane	μg/L	<0.03	<11.15	<0.44	<0.41	0.56	CTR, Human Health, Water & Organisms
Chlorpyrifos	μg/L	<0.005	<0.0063	<0.0052	<0.0002	0.014	CDFW, CCC, 4-day average
Diazinon	μg/L	<0.007	<0.0067	<0.0069	≥-0.0001	0.05	CDFW, CCC, 4-day average

Table 8: Estimated Near-Field Downstream (D/S) Water Quality Impacts, on a Concentration Basis, of the Proposed NVRRWP Discharge at the Proposed Buildout Discharge Rate of 52.7 mgd (Continued).

	Baseline DMC Condition	Projected Effluent Quality	Future DMC Condition	_	Most Stringent	
Constituent Units	Average Upstream DMC	Average Commingled Effluent ⁽¹⁾	Estimated Average D/S at 52.7 mgd	Incremental Change	Water Quality Objective or Criterion	Reference for Most Stringent Water Quality Objective or Criterion

References:

(1) Blended Modesto and Turlock effluents are described as commingled effluent and its average concentration was calculated using the discharge rates (in mgd) for each city at project buildout, as presented in **Table 5**.

(2) Incorporated into the Basin Plan by reference (CVRWQCB, 2011).

(3) 500 mg/L is the low end of the acceptable Title 22 Secondary MCL range for total dissolved solids.

(4) The Secondary MCL for aluminum has been determined to be the controlling water quality objective for the discharge to the Delta-Mendota Canal. This determination is made through the evaluation of aluminum toxicity bioassay results performed in the Central Valley (e.g., City of Manteca, City of Yuba City, and City of Modesto) which resulted in adjusted chronic criteria more than an order of magnitude greater than the 1988 U.S. EPA ambient water quality chronic criterion of 87 µg/L (U.S. EPA, 1988), and greatly exceeding the Secondary MCL concentration of 200 µg/L.

(5) Dissolved fraction of metal used in comparison to water quality objective.

(6) The average ambient Delta-Mendota Canal hardness of 110 mg/L was used to adjust the hardness-based CTR criterion for the ambient comparison.

(7) The numeric criterion used to interpret the Basin Plan narrative toxicity objective is based on an average pH of 8.0 standard units and an average temperature of 21.5 °C as measured in the Delta-Mendota Canal.

Constituent	DMC Flow Condition Used in Mass Loading Calculation: 7Q10 (397 cfs) or Harmonic Mean (2,153 cfs)	Baseline Condition: Existing Upstream Mass Loading (Ibs/day) in DMC at Specified Flow	Future Condition: Estimated Downstream Mass Loading (Ibs/day) in DMC at NVRRWP Discharge Rate of 52.7 mgd at Specified Flow	Incremental Change (Ibs/day)
Total Dissolved Solids	Harmonic Mean	3,469,796	3,748,000	278,203
Aluminum, Total	7Q10	212	260	48
Copper, Total	7Q10	3.7	5.4	1.7
Iron, Total	7Q10	278	333	55
Manganese, Total	7Q10	54.6	59.6	5.0
Mercury, Total	Harmonic Mean	4.659 ⁽¹⁾	4.977 ⁽¹⁾	0.318 ⁽¹⁾
Selenium, Total	7Q10	1.28	1.53	0.25
Ammonia	7Q10	126	<346	<220
Nitrate	7Q10	642	4,887	4,245
Nitrite	7Q10	<10.7	<34.2	<23.5
Bis(2-ethylhexyl)phthalate	Harmonic Mean	<1.16	<1.61	<0.45
Carbon Tetrachloride	Harmonic Mean	<1.86	<1.99	<0.13
Dibromochloromethane	Harmonic Mean	<0.35	<1.87	<1.52
Dichlorobromomethane	Harmonic Mean	<0.35	<5.25	<4.90
Chlorpyrifos	7Q10	<0.0107	<0.0135	<0.0028
Diazinon	7Q10	<0.0150	<0.0179	<0.0029

 Table 9: Estimated Near-Field Downstream (D/S) Water Quality Impacts, on a Mass Loading Basis, of the Proposed NVRRWP Discharge at the Proposed Buildout Discharge Rate of 52.7 mgd.

(1) Mass loading estimates for total mercury are presented in lbs/year.

Far-Field Water Quality Impacts Methodology

The far-field water quality impacts assessment evaluates the potential effects of the proposed NVRRWP discharge on water quality at two locations near the San Luis Joint-Use Complex, approximately 32.7 miles downstream of the discharge, where surface water is diverted for eventual use as drinking water. As part of the San Luis Joint-Use Complex, the San Luis Reservoir holds water diverted from the Delta for subsequent delivery to the Silicon Valley, San Joaquin Valley, Central Coast, and Southern California. The DMC is connected to the San Luis Reservoir via the O'Neill Forebay, as shown in **Figure 6**. Generally, water is pumped into San Luis Reservoir from late fall through early spring, where it is temporarily stored for release back to the California Aqueduct to meet summertime peaking demands of SWP and CVP water contractors. When Delta flows are insufficient to supply state and federal water project needs, water is released back into the O'Neill Forebay for delivery by the two projects.

DWR monitors and reports the water and energy operations of the SWP facilities, including endof-month storage for the San Luis Reservoir and the O'Neill Forebay. Furthermore, DWR considers the inflows, outflows and deliveries of the San Luis Joint-Use Complex to estimate storage shares between the state and federal projects within the complex. The far-field assessment used the historical operational data to estimate the federal share in two of the complex outflows that provide for water as an eventual downstream drinking water source.

The far-field water quality impacts scenario considered in this analysis utilized the estimated NVRRWP discharge rate of 52.7 mgd at project buildout (projected to occur in 2045) to represent future, worst-case conditions. This worst-case condition would only occur during times when DPWD made zero diversions of NVRRWP project water from the DMC as a result of its users having zero demand for water, most likely to occur during the non-irrigation season. It is important to note that the use of the projected discharge rate at project buildout provides a conservative approach as recycled water will be produced incrementally for discharge to the DMC over a period of years as the result of treatment facility upgrades and increase in flows due to population growth. The harmonic mean flow was selected as the appropriate flow condition to consider because it best represents the long-term water quality impacts the proposed NVRRWP discharge potentially could have on far-field water quality conditions in the DMC.

The far-field water quality impacts were evaluated in a qualitative manner by estimating the percent change in the portion of water of DMC origin in a unit volume of water at two far-field locations of interest – the O'Neill Forebay outflow to the California Aqueduct and the San Luis Reservoir outflow to the Pacheco Tunnel – with the proposed project operating at a discharge rate of 52.7 mgd. Using the average of available federal storage data in the San Luis Joint-Use Complex along with projected NVRRWP discharge rate and DMC flows, the percentage of the portion of water of DMC origin, and thus containing the proposed NVRRWP discharge, was estimated for two outflows from the complex that provide water for eventual drinking water uses.

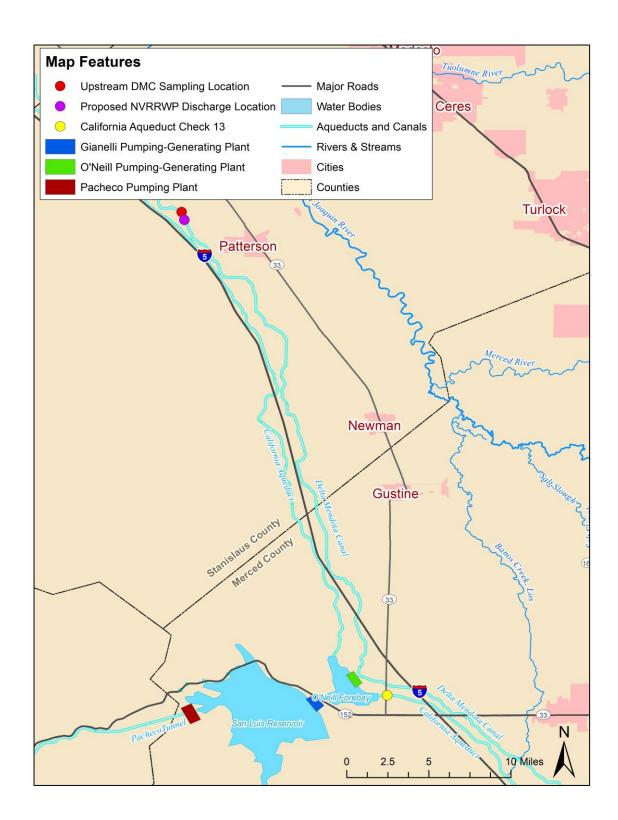


Figure 6: Proposed Project Area Showing Location of Proposed NVRRWP Discharge Site in Relation to San Luis Joint-Use Complex (San Luis Reservoir and O'Neill Forebay).

During the irrigation season when DPWD's water demands are high, the amount of the proposed NVRRWP discharge that enters the San Luis Joint-Use Complex will be significantly reduced typically zero – as compared to that during the non-irrigation season due to diversions made to DPWD's customers between the point of discharge and the O'Neill Pumping-Generating Plant. While future contract water deliveries to DPWD are uncertain, it is anticipated that restrictions on CVP operations will result in the District receiving an average of 35 percent of its contract allocation (i.e., 49,000 AFY) on an annual basis under normal hydrologic conditions (i.e., nondrought conditions) (USBR, 2015). Given that DPWD received only 10 percent (14,000 AFY) of its contracted allocation in 2009, 20 percent (28,000 AFY) of its contracted allocation in 2013, and 0 percent of its allocation in 2014 (refer to Figure 1), it is very likely that future, reduced CVP water allocations to the District will result in the entire amount of recycled water produced by the proposed NVRRWP project and discharged to the DMC northwest of the City of Patterson being diverted as blended water to DPWD customers prior to being pumped into the San Luis Joint-Use Complex by the O'Neill Pumping-Generating Plant. As such, the potential water quality impacts estimated to occur during the irrigation season are best represented by the near-field methodology and estimated near-field water quality impacts of the proposed project.

Far-Field Impact Calculations

In order to provide an estimate of the far-field water quality impacts of the proposed project, the fraction or percentage of the proposed NVRRWP discharge present in the outflows from the O'Neill Forebay and San Luis Reservoir, were estimated.

The far-field water quality impacts of the proposed NVRRWP discharge were estimated using the following information:

- Average storage (over the entire period evaluated) and average end-of-month storage in the O'Neill Forebay based on daily data from January 1980 through September 2012 provided by DWR (Smith, 2015);
- Average storage (over the entire period evaluated) and average end-of-month storage in the San Luis Reservoir based on monthly data from January 1980 through September 2012 (DWR, 2014);
- Projected NVRRWP discharge rate of 52.7 mgd based on the sum of the flows projected for the Cities of Modesto and Turlock by the year 2045 (see **Table 5**); and
- Harmonic mean flow (2,153 cfs) calculated from DMC flow data measured at the Jones Pumping Plant during the years 1994 2013 (LWA, 2014a).

With the assumption that the federal share of the storage facilities (O'Neill Forebay and San Luis Reservoir) within the complex is an estimation based on calculations of inflows, outflows and deliveries under well-mixed conditions, the fraction of federal project water exiting the complex was approximated. Since the DMC supplies the entirety of the federal project water to the complex (the California Aqueduct provides the state project water), the portion of federal water exiting the complex is of DMC origin. The fraction of proposed NVRRWP discharge exiting either O'Neill Forebay or San Luis Reservoir is estimated as a percentage of the DMC flow.

Far-Field Analysis and Results

Using the projected NVRRWP discharge rate at project buildout (52.7 mgd), it was estimated that the discharge would amount to 3.65% of the DMC flow under the harmonic mean flow condition. As such, the fraction of the proposed NVRRWP discharge exiting the O'Neill Forebay via the California Aqueduct or the San Luis Reservoir through the Pacheco Tunnel was estimated from the percentage of the DMC flow (3.65%) and the average share of the federal water project storage volume contained in each reservoir. These estimated percentages of the NVRRWP discharge under well-mixed conditions projected to be present at the San Luis Joint-Use Complex export locations are provided in **Table 10** for O'Neill Forebay and in **Table 11** for San Luis Reservoir. Monthly averages were calculated by averaging all data from a particular month (January, for example) across all years, whereas annual averages were calculated from daily (O'Neill Forebay) and monthly (San Luis Reservoir) data for a particular year.

		O'Neill Forebay Storage					
Ave	raging Period	Overall Percent (%) Federal (DMC) Water	Percent (%) NVRRWP Water Based on Harmonic Mean Flow				
Average (Jan. 1	980 – Oct. 2012)	48.33	1.76				
	Estimated Minimum	45.26	1.65				
Average by Month ⁽¹⁾	Estimated Maximum	49.62	1.81				
Month	Range		1.65 – 1.81				
	Estimated Minimum	36.63	1.34				
Average by Year ⁽²⁾	Estimated Maximum	53.32	1.95				
	Range		1.34 – 1.95				

Table 10: Estimated, Downstream Far-Field Percentages of the Proposed NVRRWP Discharge
Projected to Exit O'Neill Forebay at a Project Discharge Rate of 52.7 mgd.

(1) The estimated minimum and maximum federal share of the O'Neill Forebay storage calculated as a monthly average occurred during February and August, respectively.

(2) The estimated minimum and maximum federal share of the O'Neill Forebay storage calculated as an annual average occurred during 2009 and 1984, respectively.

The percent of NVRRWP discharge at O'Neill Forebay results presented in **Table 10** show that on average future flows exported from the forebay are estimated to contain no more than 1.95% (estimated maximum annual average) NVRRWP recycled water under long-term, harmonic mean flow conditions at a project discharge rate of 52.7 mgd. The estimated maximum monthly average is slightly lower at 1.81%, and is projected to occur in the month of August if future Complex operations are similar to historic operations. The percent of NVRRWP discharge calculated at San Luis Reservoir (see **Table 11**) is similar in magnitude as that estimated for the forebay. The reservoir is estimated to contain no more than 2.27% (estimated maximum annual average) NVRRWP recycled water under long-term, harmonic mean flow conditions at project buildout. The estimated maximum monthly average for the reservoir is slightly lower at 1.78%, and is projected to occur in the month of December if future Complex operations are similar to historic operations.

	San Luis Reservoir Storage						
aging Period	Overall Percent (%) Federal (DMC) Water	Percent (%) NVRRWP Water Based on Harmonic Mean Flow					
80 – Oct. 2012)	42.18	1.54					
Estimated Minimum	27.70	1.01					
Estimated Maximum	48.83	1.78					
Range		1.01 – 1.78					
Estimated Minimum	31.53	1.15					
Estimated Maximum	62.29	2.27					
Range		1.15 – 2.27					
	80 – Oct. 2012) Estimated Minimum Estimated Maximum Range Estimated Minimum Estimated Maximum	aging PeriodFederal (DMC) Water80 – Oct. 2012)42.18Estimated Minimum27.70Estimated Maximum48.83RangeEstimated MinimumEstimated Minimum31.53Estimated Maximum62.29					

Table 11: Estimated, Downstream Far-Field Percentages of the Proposed NVRRWP DischargeProjected to Exit San Luis Reservoir at a Project Discharge Rate of 52.7 mgd.

(1) The estimated minimum and maximum federal share of the San Luis Reservoir storage calculated as a monthly average occurred during August and December, respectively.

(2) The estimated minimum and maximum federal share of the San Luis Reservoir storage calculated as an annual average occurred during 1984 and 1990, respectively.

It is important to note that the above-described far-field water quality impacts scenario evaluated for the non-irrigation season would occur only when DPWD's water demand was essentially non-existent and the District made no diversions of blended, NVRRWP project water from the DMC. Even minor diversions of DMC water to the DPWD service area would result in percentages of NVRRWP recycled water at Complex export locations less than those presented in Table 10 and Table 11. Based on the minor, downstream, incremental water quality changes estimated in the near-field for the proposed discharge (see Table 8), the incremental impact of NVRRWP recycled water at downstream far-field locations on a concentration basis would be even less due to the dilution provided by SWP water once DMC flows are commingled with SWP flows in the O'Neill Forebay approximately 33 miles downstream from the point of the proposed discharge. Moreover, water of NVRRWP origin would be further diluted as it travels south in the California Aqueduct and west in the Santa Clara Tunnel to locations where it is diverted to drinking water treatment facilities in preparation for delivery to consumers. To this end, it is anticipated that the proposed NVRRWP discharge would have minimal impact on drinking water beneficial uses downstream of the proposed project. For further discussion of the calculations used to develop the information presented in Table 10 and Table 11, refer to Appendix F.

The percent contribution of NVRRWP recycled water at the export points for O'Neill Forebay (California Aqueduct) and San Luis Reservoir (Pacheco Tunnel) is 1.95% and 2.27%, respectively, under the most conservative assumptions. The relative impact of the proposed NVRRWP discharge on water quality at these locations is *de minimis* for those constituents where concentrations in the proposed discharge are similar to ambient concentrations. For constituents with potentially larger differences in water quality between NVRRWP discharge concentrations and existing ambient concentrations (e.g., EC, nitrate + nitrite⁹; refer to **Table 8**),

⁹ The average concentration of nitrate + nitrite in the commingled effluent was calculated by summing the average concentration of nitrate plus the average concentration of nitrite, as presented in **Table 8**: 9.66 mg/L as N (nitrate) + 0.05 mg/L as N (nitrite) = 9.71 mg/L as N (nitrate + nitrite).

the estimated, incremental water quality impacts on downstream, far-field concentrations are still relatively small, as shown in **Table 12** for EC and **Table 13** for nitrate plus nitrite.

	Discharge		
Monitoring Location	Baseline Condition: No NVRRWP Discharge	Future Condition: NVRRWP Discharge at 52.7 mgd	Estimated Incremental Change
California Aqueduct at Check 13 (O'Neill Forebay) ⁽¹⁾			
NVRRWP % Contribution	0	1.95	
Est. Average Ambient Water Quality	475 ⁽²⁾	484 ⁽⁴⁾	9.0
San Luis Reservoir at Pacheco Pumping Plant			
NVRRWP % Contribution	0	2.27	
Est. Average Ambient Water Quality	516 ⁽³⁾	525 ⁽⁴⁾	9.5

Table 12: Estimated, Downstream Far-Field Concentration of EC (μmhos/cm) at Water Project Export Locations for the Proposed NVRRWP Project at a Discharge Rate of 52.7 mgd.

(1) DWR describes this monitoring location as the O'Neill Forebay Outlet (DWR, 2009), but it is the same location as California Aqueduct Check 13 (see **Figure 6**).

(2) Long-term average of average daily EC measured in the California Aqueduct at Check 13: Jan. 1990 – Dec. 2014. Data obtained online from DWR California Data Exchange Center: <u>http://cdec.water.ca.gov/cgi-progs/selectQuery</u>

(3) Long-term average of average daily EC measured at Pacheco Pumping Plant: Jan. 1990 – Dec. 2014. Data obtained online from DWR California Data Exchange Center.

(4) Estimated average EC at far-field locations based on a NVRRWP commingled effluent quality for EC of 934 μ mhos/cm (see **Table 8**).

Estimated EC levels (see **Table 12**) in the two reservoirs under the projected NVRRWP discharge rate at project buildout (52.7 mgd) would be significantly below the 1,000 µmhos/cm objective specified for the DMC in the Basin Plan (see **Table 2**). Similarly, estimated nitrate plus nitrite concentrations (see **Table 13**) in the two reservoirs at buildout of the proposed project would exist well below the Title 22 Primary MCL of 10 mg/L as N (see **Table 2**) that is incorporated into the Basin Plan by reference for the protection of drinking water.

	Discharge Scenario		
Monitoring Location	Baseline Condition: No NVRRWP Discharge	ondition: NVRRWP NVRRWP Discharge	Estimated Incremental Change
California Aqueduct at Check 13 (O'Neill Forebay) ⁽¹⁾			
NVRRWP % Contribution	0	1.95	
Est. Average Ambient Water Quality	0.60 ⁽²⁾	0.78 ⁽⁴⁾	0.18
San Luis Reservoir at Pacheco Pumping Plant			
NVRRWP % Contribution	0	2.27	
Est. Average Ambient Water Quality	0.80 ⁽³⁾	1.00 ⁽⁴⁾	0.20

Table 13: Estimated, Downstream Far-Field Concentrations of Nitrate + Nitrite (mg/L as N) atWater Project Export Locations for the Proposed NVRRWP Project at a Discharge Rate of52.7 mgd.

(1) DWR describes this monitoring location as the O'Neill Forebay Outlet (DWR, 2009), but it is the same location as California Aqueduct Check 13 (see **Figure 6**).

(2) Median nitrate + nitrite measured at O'Neill Forebay outlet: Jan. 2004 – Dec. 2005 (DWR, 2009).

(3) Median nitrate + nitrite measured at Pacheco Pumping Plant: Jan. 2004 – Dec. 2005 (DWR, 2009).

(4) Estimated average nitrate + nitrite at far-field locations based on a NVRRWP commingled effluent quality for nitrate + nitrite of 9.71 mg/L as N.

SUMMARY OF WATER QUALITY IMPACTS

The advanced wastewater treatment processes employed by the Cities of Modesto and Turlock produce a very high quality effluent for recycled water uses with respect to nutrients, metals, pathogens, organic compounds, and various other general water quality constituents. The vast majority of Title 22 water proposed for discharge to the DMC northwest of the City of Patterson would be diverted by DPWD at various turnouts along the canal for use by agriculture and refuges. These diversions will remove a significant portion of the mass loadings contributed to the canal by the proposed project. Incremental concentration changes to DMC water quality downstream of the proposed NVRRWP discharge were found to be very minor for most constituents evaluated in the near-field water quality impacts assessment of this report. For instance, the proposed project is estimated to produce no changes in water quality for total mercury and total selenium downstream of the discharge, and result in a slight lowering in downstream receiving water concentrations for total iron, total manganese, and diazinon. Furthermore, the estimated, average, downstream receiving water concentration resulting from the proposed 52.7 mgd NVRRWP discharge to the DMC (see **Table 8**) is lower than the corresponding most stringent water quality objective or criterion for each constituent evaluated. Additionally, estimated downstream concentrations are lower than Reclamation's water quality standards for acceptance of groundwater pumped into the upper DMC (see Appendix A).

During periods when DPWD might elect to not divert any water from the DMC due to low water demand in its service area, the far-field water quality impacts assessment of this report estimated the proposed NVRRWP discharge to constitute no more than 1.95% of the water available for export from the O'Neill Forebay to the California Aqueduct, and no more than 2.27% of the water available for export from the San Luis Reservoir to the Santa Clara Tunnel, on an average

annual basis at the proposed buildout discharge rate of 52.7 mgd. The maximum percentage of the NVRRWP discharge available for export at these two location decreases to approximately 1.8% when considering average monthly contributions. The results of this far-field assessment reveal that the proposed project will have very minor water quality impacts on water resources used for drinking water uses downstream of the San Luis Joint-Use Complex. Additionally, with regard to the two parameters evaluated in the far-field analysis, EC and nitrate plus nitrite, estimated concentrations of both constituents at the two San Luis Joint-Use Complex export locations are projected to exist well below relevant water quality standards used to protect the most sensitive beneficial uses of the water.

The very minor changes in water quality identified with implementation of the proposed project would not be expected to cause, or increase the frequency of, exceedances of applicable criteria/objectives in the DMC or downstream receiving waters, would not cause nuisance conditions, would not adversely affect beneficial uses in the DMC or downstream waters, and would not result in water quality less than that prescribed in state or federal policies.

Evaluation of Consistency with Antidegradation Policy

The guidelines set by the State Water Board for the antidegradation analysis (APU 90-004) provide direction on evaluating the proposed NVRRWP discharge to the DMC by focusing on whether and the degree that water quality is lowered and by considering whether or not the assumed water quality change is consistent with the maximum benefit to the people of the State. In developing the antidegradation analysis, the DMC beneficial uses and relevant water quality objectives and commonly used criteria were considered.

BENEFITS OF PROPOSED PROJECT

The proposed NVRRWP discharge to the DMC maximizes the use of a sustainable, alternative water supply within the region through the reuse of highly treated wastewater produced by the Cities of Modesto and Turlock for the beneficial uses of agricultural irrigation and wetlands management. The Title 22 recycled water proposed for conveyance in the DMC will be diverted by DPWD to growers within the District's service area, as well as provided to federal and state wildlife refuges. This new source of surface water within the project area will provide benefits such as a reduced need for growers to pump groundwater for the irrigation of their crops and an augmented water supply available to refuges for wetlands management. Substituting high quality surface water for low quality groundwater will allow greater flexibility in the types of crops that can be grown in the project area and will potentially enhance the yields of those crops. Reduced pumping of groundwater will also improve the quality of agricultural drainage, which has the potential to impact nearby surface waters, and mitigate land subsidence caused by over extraction of groundwater resources. Furthermore, the proposed project will help to reduce overall uncertainties in water supply that growers have historically experienced due to shortages in CVP deliveries. Providing a sufficient supply of high quality water for growers in the DPWD service area will help to maintain the agricultural economy in the region, and avoid the conversion of agricultural lands to non-agricultural uses in the absence of such a supply.

CONSISTENCY WITH ANTIDEGRADATION POLICIES

The proposed project, the discharge of up to 52.7 mgd of Title 22 recycled water to the DMC by the year 2045, is determined to comprise best practicable treatment or control and is consistent with federal and state antidegradation policies for the follow reasons:

- The proposed NVRRWP discharge to the DMC will not adversely affect existing or probable beneficial uses of the DMC or downstream receiving waters, nor will it cause water quality to not meet applicable water quality objectives.
- Overall, the proposed NVRRWP discharge is estimated to have a very minor impact on DMC water quality downstream of the discharge point, both in the near-field and the far-field. The proposed project is estimated to cause very minor increases in downstream water quality concentrations for some constituents (EC, TDS, total aluminum, total copper, ammonia, nitrate, nitrite, bis(2-ethylhexyl)phthalate, carbon tetrachloride, dibromochloromethane, dichlorobromomethane, and chlorpyrifos), produce very minor decreases in downstream concentrations for others (total iron, total manganese, and

diazinon), and result in no change in downstream concentrations for two parameters (total mercury and total selenium), as compared to existing receiving water conditions.

- Based on the above, the request to permit a new discharge to the DMC is consistent with federal and state antidegradation policies in that the minor lowering of water quality for several pollutants is necessary to accommodate important economic or social development, will not unreasonably affect beneficial uses, will not cause further exceedances of applicable water quality objectives, and is consistent with the maximum benefit to the people of the State.
- Based on the above, the request to permit a new discharge to the DMC is consistent with the Porter-Cologne Act in that the resulting water quality will constitute the highest water quality that is reasonable, considering all demands placed on the waters, economic and social considerations, and other public interest factors.

The proposed discharge of Title 22 recycled water to the DMC also fully supports California's *Recycled Water Policy* (SWRCB, 2013) in that it would result in an increased use of recycled water from municipal wastewater sources, would incrementally reduce reliance on the vagaries of annual precipitation, and would assist in the sustainable management of surface and groundwater resources.

References

- Attwater, W. R., 1987. *Federal Antidegradation Policy*. Memorandum to Regional Board Executive Officers. October 7.
- California Department of Water Resources (DWR), 2005. State Water Project Annual Report of Operations 2001. April 25, 2005. http://www.water.ca.gov/swp/operationscontrol/annual.cfm
- California Department of Water Resources (DWR), 2009. Water Quality in the State Water Project, 2004 and 2005. April.
- California Department of Water Resources (DWR), 2010. *State Water Project.* "California State Water Project Overview." Last updated 8/11/2010. <u>http://www.water.ca.gov/swp/</u>
- California Department of Water Resources (DWR), 2013a. *California Water Plan Update 2013*. *Public Review Draft*. <u>http://www.waterplan.water.ca.gov/cwpu2013/prd/</u>
- California Department of Water Resources (DWR), 2013b. *Management of the California State Water Project.* [Bulletin 132-11]. December.
- California Department of Water Resources (DWR), 2014. San Luis Reservoir data obtained from California Data Exchange Center. Available at: <u>http://cdec.water.ca.gov/cgi-progs/stationInfo?station_id=SNL</u>
- California Department of Water Resources (DWR), 2015. California State Water Project Overview. <u>http://www.water.ca.gov/swp/</u>
- California Regional Water Quality Control Board, Central Valley Region (CVRWQCB), 2011. *The Water Quality Control Plan (Basin Plan) for the California Regional Water Quality Control Board: Central Valley Region, the Sacramento River Basin and the San Joaquin River Basin* (Fourth Edition, Revised). October.
- California State Water Resources Control Board (SWRCB), 2005. Policy for Implementation of Toxic Standards for Inland Surface Waters, Enclosed Bays, and Estuaries of California. 2005.
- California State Water Resources Control Board (SWRCB), 2010. 2010 Integrated Report (Clean Water Act Section 303(d) List / 305(b) Report) – Statewide. Available at: <u>http://www.waterboards.ca.gov/water_issues/programs/tmdl/integrated2010.shtml?wbid</u> <u>=CAR5440000020021002100850</u>
- California State Water Resources Control Board (SWRCB), 2013. Policy for Water Quality Control for Recycled Water (Recycled Water Policy). Revised January 22, 2013.
- Fischer, H.B., E.J. List, R.C.Y. Koh, J. Imberger, and N.H. Brooks, 1979. *Mixing in Inland and Coastal Waters*. Academic Press.
- Larry Walker Associates (LWA), 2014a. *Technical Memorandum: Preliminary Evaluation of Flow, Dilution, and Assimilative Capacity for Trihalomethanes in the City of Turlock North Valley Regional Recycled Water Project.* March 18.

- Larry Walker Associates (LWA), 2014b. North Valley Regional Recycled Water Program: Sample Collection and Analysis Work Plan for Proposed Discharge to the Delta-Mendota Canal. September 19.
- North Valley Regional Recycled Water Program (NVRRWP), 2013. North Valley Regional Recycled Water Project 2013 Update. <u>http://www.nvr-recycledwater.org/documents.asp</u>
- Quinn N.W.T., and A.T. Tulloch, 2002. San Joaquin River Diversion Data Assimilation, Drainage Estimation and Installation of Diversion Monitoring Stations. Final report. CALFED Bay-Delta Program, Sacramento, California. 211 pp.
- RMC Water and Environment (RMC). 2013. North Valley Regional Recycled Water Program Feasibility Study. December.
- Santa Clara Valley Water District (SCVWD), 2013. San Luis Reservoir Low Point Improvement. Available at: http://www.valleywater.org/Services/SanLuisReservoirLowPointImprovement.aspx
- Smith, E. (2015). Personal communication with California Department of Water Resources Research Analyst II, email communication, January 28, 2015.
- U.S. Bureau of Reclamation (USBR), 2009. "Reclamation Announces Initial 2009 Central Valley Project Water Supply Allocation." [News release.] February.
- U.S. Bureau of Reclamation (USBR), 2014. 2014 Delta-Mendota Canal Groundwater Pump-In Program Water Quality Monitoring Plan. United States Department of the Interior, Bureau of Reclamation, Mid-Pacific Region, South-Central California Area Office. Fresno, CA. January.
- U.S. Bureau of Reclamation (USBR) and the City of Modesto, 2015. *North Valley Regional Recycled Water Program Draft Environmental Impact Report/Environmental Impact Statement*. United States Department of the Interior, Bureau of Reclamation, Mid-Pacific Region, South-Central California Area Office and the City of Modesto: Fresno, CA, and Modesto, CA. January.
- United States Environmental Protection Agency (U.S. EPA), 1987. Guidance on implementing the antidegradation provisions of 40 C.F.R. § 131.12. June 3.
- United States Environmental Protection Agency (U.S. EPA), 2005. *Memorandum to Water Management Division Directors, Regions 1-10, regarding Tier 2 Antidegradation Reviews and Significance Thresholds*. Washington, D.C.: King, Ephram S., Director, Office of Science and Technology. August 10.

Appendix A: U.S. Bureau of Reclamation Water Quality Standards for Acceptance of Groundwater Pumped into the Upper Delta-Mendota Canal

The water quality standards (maximum contaminant levels (MCLs)) listed in the table below are used by Reclamation to control the quality of groundwater pumped into the upper DMC – the portion of the canal that extends from the Jones Pumping Plant to DMC Check 13 (O'Neill Forebay). (USBR, 2014)

Constituent	Units	Maximum Contaminant Level (MCL)	Source
Aluminum	mg/L	1	(1)
Antimony	mg/L	0.006	(1)
Arsenic	mg/L	0.01	(1)
Barium	mg/L	1	(1)
Beryllium	mg/L	0.004	(1)
Boron	mg/L	0.7	(13)
Cadmium	mg/L	0.005	(1)
Chromium, Total	mg/L	0.05	(1)
Lead	mg/L	0.015	(9)
Mercury	mg/L	0.002	(1)
Nickel	mg/L	0.1	(1)
Nitrate	mg/L as N	10	(1)
Nitrate + Nitrite	mg/L as N	10	(1)
Nitrite	mg/L as N	1	(1)
Selenium	mg/L	0.002	(10)
Thallium	mg/L	0.002	(1)
Chloride	mg/L	250	(7)
Copper	mg/L	1	(10)
Iron	mg/L	0.3	(6)
Manganese	mg/L	0.05	(6)
Molybdenum	mg/L	0.01	(11)
Silver	mg/L	0.1	(6)
Sodium	mg/L	69	(12)
Specific Conductance	μS/cm	2,200	(7)
Sulfate	mg/L	250	(7)
Total Dissolved Solids	mg/L	1,500	(7)
Zinc	mg/L	5	(6)
Gross Alpha	pCi/L	15	(3)
Dibromochloropropane (DBCP)	μg/L	1	(4)

Constituent	Units	Maximum Contaminant Level (MCL)	Source
Ethylene Dibromide (EDB)	μg/L	18	(4)
Chlordane	μg/L	18	(4)
Endrin	μg/L	0.1	(4)
Heptachlor	μg/L	25	(4)
Heptachlor Epoxide	μg/L	70	(4)
Lindane	μg/L	160	(4)
Methoxychlor	μg/L	0.2	(4)
Toxaphene	μg/L	2	(4)
Diazinon	μg/L	0.16	(11)
Atrazine	μg/L	700	(4)
Simazine	μg/L	0.01	(4)
Bentazon	μg/L	0.01	(4)
2,4,5-TP (Silvex)	μg/L	30	(4)
2,4-D	μg/L	0.2	(4)
Molinate	μg/L	20	(4)
Thiobencarb	μg/L	50	(4)
Carbofuran	μg/L	4	(4)
Glyphosate	μg/L	70	(4)
Chlorpyrifos	μg/L	0.025	(11)

Sources:

Title 22. The Domestic Water Quality and Monitoring Regulations specified by the State of California Health and Safety Code (Sections 4010-4037), and Administrative Code (Sections 64401 et seq.), as amended.

(1) Title 22. Table 64431-A MCLs, Inorganic Chemicals

(3) Title 22. Table 64442 Radionuclide Maximum Contaminant Levels (MCLs) and Detection Levels for Purposes of Reporting

(4) Title 22. Table 64444-A MCLs, Organic Chemicals

(6) Title 22. Table 64449-A Secondary MCLs "Consumer Acceptance Contaminant Levels"

(7) Title 22. Table 64449-B Secondary MCLs "Consumer Acceptance Contaminant Level Ranges"

(9) Title 22. Section 64678 (d) Lead Action Level

2013 California Drinking Water Regulations:

http://www.cdph.ca.gov/certlic/drinkingwater/Pages/Lawbook.aspx http://www.cdph.ca.gov/certlic/drinkingwater/Documents/Lawbook/dwregulations-2013-07-01.pdf

California Regional Water Quality Control Board, Central Valley Region, Fourth Edition of the Water Quality Control Plan for the Sacramento River and San Joaquin River Basins.

(10) Basin Plan, Table III-1 (μ g/L) (selenium in Grasslands water supply channels)

(11) Basin Plan, Table III-2A (μ g/L) (chlorpyrifos & diazinon in San Joaquin River from Mendota to Vernalis)

Sacramento & San Joaquin River Basin Plan 2009

http://www.waterboards.ca.gov/centralvalley/water_issues/basin_plans/sacsjr.pdf

Constituent Units Maximum Contaminant Level (MCL) Source

Sources: Continued

Ayers, R.S. and D.W. Westcott, Water Quality for Agriculture, Food and Agriculture Organization of the United States – Irrigation and Drainage Paper No. 29, Rev. 1, Rome (1985).

(12) Ayers, Table 1 (mg/L) (sodium)

(13) Ayers, Table 21 (mg/L) (boron)

Water Quality Standards for Agriculture 1985

http://www.fao.org/docrep/003/T0234E/T0234E00.HTM

Appendix B: City of Turlock Tertiary Effluent Monitoring Data Used to Characterize City's Contribution to Effluent Quality of Proposed NVRRWP Discharge

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	1/12/2010	1,1,1-Trichloroethane	8260B	ND	0.3	ug/L			Grab
EFF-001	2/2/2010	1,1,1-Trichloroethane	8260B	ND	0.3	ug/L			Grab
EFF-001	4/16/2012	1,1,1-Trichloroethane	8260B	ND	0.1	ug/L			Comp/ Grab
EFF-001	5/14/2012	1,1,1-Trichloroethane	8260B	ND	0.1	ug/L			Grab
EFF-001	6/11/2012	1,1,1-Trichloroethane	8260B	ND	0.1	ug/L			Grab
EFF-001	7/9/2012	1,1,1-Trichloroethane	8260B	ND	0.1	ug/L			Grab
EFF-001	8/13/2012	1,1,1-Trichloroethane	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	9/10/2012	1,1,1-Trichloroethane	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	10/8/2012	1,1,1-Trichloroethane	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	11/5/2012	1,1,1-Trichloroethane	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	12/3/2012	1,1,1-Trichloroethane	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	1/14/2013	1,1,1-Trichloroethane	8260B/624	ND	0.1	ug/L		0.1	Comp/Grab
EFF-001	2/4/2013	1,1,1-Trichloroethane	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	3/11/2013	1,1,1-Trichloroethane	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	1/12/2010	1,1,2,2-Tetrachloroethane	8260B	ND	0.4	ug/L			Grab
EFF-001	2/2/2010	1,1,2,2-Tetrachloroethane	8260B	ND	0.4	ug/L			Grab
EFF-001	4/16/2012	1,1,2,2-Tetrachloroethane	8260B	ND	0.2	ug/L			Comp/ Grab
EFF-001	5/14/2012	1,1,2,2-Tetrachloroethane	8260B	ND	0.2	ug/L			Grab
EFF-001	6/11/2012	1,1,2,2-Tetrachloroethane	8260B	ND	0.2	ug/L			Grab
EFF-001	7/9/2012	1,1,2,2-Tetrachloroethane	8260B	ND	0.2	ug/L			Grab
EFF-001	8/13/2012	1,1,2,2-Tetrachloroethane	8260B/624	ND	0.2	ug/L		0.2	Grab
EFF-001	9/10/2012	1,1,2,2-Tetrachloroethane	8260B/624	ND	0.2	ug/L		0.2	Grab
EFF-001	10/8/2012	1,1,2,2-Tetrachloroethane	8260B/624	ND	0.2	ug/L		0.2	Grab
EFF-001	11/5/2012	1,1,2,2-Tetrachloroethane	8260B/624	ND	0.2	ug/L		0.2	Grab
EFF-001	12/3/2012	1,1,2,2-Tetrachloroethane	8260B/624	ND	0.2	ug/L		0.2	Grab

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	1/14/2013	1,1,2,2-Tetrachloroethane	8260B/624	ND	0.2	ug/L		0.2	
EFF-001	2/4/2013	1,1,2,2-Tetrachloroethane	8260B/624	ND	0.2	ug/L		0.2	Grab
EFF-001	3/11/2013	1,1,2,2-Tetrachloroethane	8260B/624	ND	0.2	ug/L		0.2	Grab
EFF-001	1/12/2010	1,1,2-Trichloroethane	8260B	ND	0.4	ug/L			Grab
EFF-001	2/2/2010	1,1,2-Trichloroethane	8260B	ND	0.4	ug/L			Grab
EFF-001	4/16/2012	1,1,2-Trichloroethane	8260B	ND	0.1	ug/L			Comp/ Grab
EFF-001	5/14/2012	1,1,2-Trichloroethane	8260B	ND	0.1	ug/L			Grab
EFF-001	6/11/2012	1,1,2-Trichloroethane	8260B	ND	0.1	ug/L			Grab
EFF-001	7/9/2012	1,1,2-Trichloroethane	8260B	ND	0.1	ug/L			Grab
EFF-001	8/13/2012	1,1,2-Trichloroethane	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	9/10/2012	1,1,2-Trichloroethane	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	10/8/2012	1,1,2-Trichloroethane	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	11/5/2012	1,1,2-Trichloroethane	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	12/3/2012	1,1,2-Trichloroethane	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	1/14/2013	1,1,2-Trichloroethane	8260B/624	ND	0.1	ug/L		0.1	Comp/Grab
EFF-001	2/4/2013	1,1,2-Trichloroethane	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	3/11/2013	1,1,2-Trichloroethane	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	1/12/2010	1,1-Dichloroethane	8260B	ND	0.3	ug/L			Grab
EFF-001	2/2/2010	1,1-Dichloroethane	8260B	ND	0.3	ug/L			Grab
EFF-001	4/16/2012	1,1-Dichloroethane	8260B	ND	0.08	ug/L			Comp/ Grab
EFF-001	5/14/2012	1,1-Dichloroethane	8260B	ND	0.08	ug/L			Grab
EFF-001	6/11/2012	1,1-Dichloroethane	8260B	ND	0.08	ug/L			Grab
EFF-001	7/9/2012	1,1-Dichloroethane	8260B	ND	0.08	ug/L			Grab
EFF-001	8/13/2012	1,1-Dichloroethane	8260B/624	ND	0.08	ug/L		0.08	Grab
EFF-001	9/10/2012	1,1-Dichloroethane	8260B/624	ND	0.08	ug/L		0.08	Grab
EFF-001	10/8/2012	1,1-Dichloroethane	8260B/624	ND	0.08	ug/L		0.08	Grab
EFF-001	11/5/2012	1,1-Dichloroethane	8260B/624	ND	0.08	ug/L		0.08	Grab
EFF-001	12/3/2012	1,1-Dichloroethane	8260B/624	ND	0.08	ug/L		0.08	Grab
EFF-001	1/14/2013	1,1-Dichloroethane	8260B/624	ND	0.08	ug/L		0.08	Comp/Grab
EFF-001	2/4/2013	1,1-Dichloroethane	8260B/624	ND	0.08	ug/L		0.08	Grab
EFF-001	3/11/2013	1,1-Dichloroethane	8260B/624	ND	0.08	ug/L		0.08	Grab

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	1/12/2010	1,1-Dichloroethene	8260B	ND	0.5	ug/L			Grab
EFF-001	2/2/2010	1,1-Dichloroethene	8260B	ND	0.5	ug/L			Grab
EFF-001	4/16/2012	1,1-Dichloroethene	8260B	ND	0.08	ug/L			Comp/ Grab
EFF-001	5/14/2012	1,1-Dichloroethene	8260B	ND	0.08	ug/L			Grab
EFF-001	6/11/2012	1,1-Dichloroethene	8260B	ND	0.08	ug/L			Grab
EFF-001	7/9/2012	1,1-Dichloroethene	8260B	ND	0.08	ug/L			Grab
EFF-001	8/13/2012	1,1-Dichloroethene	8260B/624	ND	0.08	ug/L		0.08	Grab
EFF-001	9/10/2012	1,1-Dichloroethene	8260B/624	ND	0.08	ug/L		0.08	Grab
EFF-001	10/8/2012	1,1-Dichloroethene	8260B/624	ND	0.08	ug/L		0.08	Grab
EFF-001	11/5/2012	1,1-Dichloroethene	8260B/624	ND	0.08	ug/L		0.08	Grab
EFF-001	12/3/2012	1,1-Dichloroethene	8260B/624	ND	0.08	ug/L		0.08	Grab
EFF-001	1/14/2013	1,1-Dichloroethene	8260B/624	ND	0.08	ug/L		0.08	Comp/Grab
EFF-001	2/4/2013	1,1-Dichloroethene	8260B/624	ND	0.08	ug/L		0.08	Grab
EFF-001	3/11/2013	1,1-Dichloroethene	8260B/624	ND	0.08	ug/L		0.08	Grab
EFF-001	1/12/2010	1,2,4-Trichlorobenzene	8260B	ND	1.2	ug/L			Grab
EFF-001	2/2/2010	1,2,4-Trichlorobenzene	8260B	ND	1.2	ug/L			Grab
EFF-001	4/16/2012	1,2,4-Trichlorobenzene	625	ND	0.08	ug/L			Comp/ Grab
EFF-001	5/14/2012	1,2,4-Trichlorobenzene	625	ND	0.08	ug/L			Grab
EFF-001	1/12/2010	1,2-Dichlorobenzene	8260B	ND	0.3	ug/L			Grab
EFF-001	2/2/2010	1,2-Dichlorobenzene	8260B	ND	0.3	ug/L			Grab
EFF-001	4/16/2012	1,2-Dichlorobenzene	8260B	ND	0.1	ug/L			Comp/ Grab
EFF-001	5/14/2012	1,2-Dichlorobenzene	8260B	ND	0.1	ug/L			Grab
EFF-001	6/11/2012	1,2-Dichlorobenzene	8260B	ND	0.1	ug/L			Grab
EFF-001	7/9/2012	1,2-Dichlorobenzene	8260B	ND	0.1	ug/L			Grab
EFF-001	8/13/2012	1,2-Dichlorobenzene	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	9/10/2012	1,2-Dichlorobenzene	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	10/8/2012	1,2-Dichlorobenzene	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	11/5/2012	1,2-Dichlorobenzene	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	12/3/2012	1,2-Dichlorobenzene	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	1/14/2013	1,2-Dichlorobenzene	8260B/624	ND	0.1	ug/L		0.1	Comp/Grab
EFF-001	2/4/2013	1,2-Dichlorobenzene	8260B/624	ND	0.1	ug/L		0.1	Grab

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	3/11/2013	1,2-Dichlorobenzene	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	1/12/2010	1,2-Dichloroethane	8260B	ND	0.3	ug/L			Grab
EFF-001	2/2/2010	1,2-Dichloroethane	8260B	ND	0.3	ug/L			Grab
EFF-001	4/16/2012	1,2-Dichloroethane	8260B	ND	0.2	ug/L			Comp/ Grab
EFF-001	5/14/2012	1,2-Dichloroethane	8260B	ND	0.2	ug/L			Grab
EFF-001	6/11/2012	1,2-Dichloroethane	8260B	ND	0.2	ug/L			Grab
EFF-001	7/9/2012	1,2-Dichloroethane	8260B	ND	0.2	ug/L			Grab
EFF-001	8/13/2012	1,2-Dichloroethane	8260B/624	ND	0.2	ug/L		0.2	Grab
EFF-001	9/10/2012	1,2-Dichloroethane	8260B/624	ND	0.2	ug/L		0.2	Grab
EFF-001	10/8/2012	1,2-Dichloroethane	8260B/624	ND	0.2	ug/L		0.2	Grab
EFF-001	11/5/2012	1,2-Dichloroethane	8260B/624	ND	0.2	ug/L		0.2	Grab
EFF-001	12/3/2012	1,2-Dichloroethane	8260B/624	ND	0.2	ug/L		0.2	Grab
EFF-001	1/14/2013	1,2-Dichloroethane	8260B/624	ND	0.2	ug/L		0.2	Comp/Grab
EFF-001	2/4/2013	1,2-Dichloroethane	8260B/624	ND	0.2	ug/L		0.2	Grab
EFF-001	3/11/2013	1,2-Dichloroethane	8260B/624	ND	0.2	ug/L		0.2	Grab
EFF-001	1/12/2010	1,2-Dichloropropane	8260B	ND	0.2	ug/L			Grab
EFF-001	2/2/2010	1,2-Dichloropropane	8260B	ND	0.2	ug/L			Grab
EFF-001	4/16/2012	1,2-Dichloropropane	8260B	ND	0.1	ug/L			Comp/ Grab
EFF-001	5/14/2012	1,2-Dichloropropane	8260B	ND	0.1	ug/L			Grab
EFF-001	6/11/2012	1,2-Dichloropropane	8260B	ND	0.1	ug/L			Grab
EFF-001	7/9/2012	1,2-Dichloropropane	8260B	ND	0.1	ug/L			Grab
EFF-001	8/13/2012	1,2-Dichloropropane	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	9/10/2012	1,2-Dichloropropane	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	10/8/2012	1,2-Dichloropropane	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	11/5/2012	1,2-Dichloropropane	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	12/3/2012	1,2-Dichloropropane	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	1/14/2013	1,2-Dichloropropane	8260B/624	ND	0.1	ug/L		0.1	Comp/Grab
EFF-001	2/4/2013	1,2-Dichloropropane	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	3/11/2013	1,2-Dichloropropane	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	1/14/2010	1,2-Diphenylhydrazine	8270C	ND	1	ug/L			Comp
EFF-001	4/16/2012	1,2-Diphenylhydrazine	8270C	ND	0.7	ug/L			Comp/ Grab

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	5/13/2012	1,2-Diphenylhydrazine	8270C	ND	0.7	ug/L			Comp
EFF-001	6/10/2012	1,2-Diphenylhydrazine	8270C	ND	0.7	ug/L			Comp
EFF-001	7/8/2012	1,2-Diphenylhydrazine	8270C	ND	0.7	ug/L			Comp
EFF-001	8/12/2012	1,2-Diphenylhydrazine	8270C	ND	0.7	ug/L		0.7	Comp
EFF-001	9/9/2012	1,2-Diphenylhydrazine	8270C	ND	0.7	ug/L		0.7	Comp
EFF-001	10/7/2012	1,2-Diphenylhydrazine	8270C	ND	0.7	ug/L		0.7	Comp
EFF-001	11/4/2012	1,2-Diphenylhydrazine	8270C	ND	0.7	ug/L		0.7	comp
EFF-001	12/2/2012	1,2-Diphenylhydrazine	8270C	ND	0.7	ug/L		0.7	Comp
EFF-001	1/13/2013	1,2-Diphenylhydrazine	8270C	ND	0.7	ug/L		0.7	Comp
EFF-001	2/3/2013	1,2-Diphenylhydrazine	8270C	ND	0.7	ug/L		0.7	Comp
EFF-001	3/10/2013	1,2-Diphenylhydrazine	8270C	ND	0.7	ug/L		0.7	Comp
EFF-001	1/12/2010	1,3-Dichlorobenzene	8260B	ND	0.3	ug/L			Grab
EFF-001	2/2/2010	1,3-Dichlorobenzene	8260B	ND	0.3	ug/L			Grab
EFF-001	4/16/2012	1,3-Dichlorobenzene	8260B	ND	0.1	ug/L			Comp/ Grab
EFF-001	5/14/2012	1,3-Dichlorobenzene	8260B	ND	0.1	ug/L			Grab
EFF-001	6/11/2012	1,3-Dichlorobenzene	8260B	ND	0.1	ug/L			Grab
EFF-001	7/9/2012	1,3-Dichlorobenzene	8260B	ND	0.1	ug/L			Grab
EFF-001	8/13/2012	1,3-Dichlorobenzene	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	9/10/2012	1,3-Dichlorobenzene	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	10/8/2012	1,3-Dichlorobenzene	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	11/5/2012	1,3-Dichlorobenzene	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	12/3/2012	1,3-Dichlorobenzene	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	1/14/2013	1,3-Dichlorobenzene	8260B/624	ND	0.1	ug/L		0.1	Comp/Grab
EFF-001	2/4/2013	1,3-Dichlorobenzene	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	3/11/2013	1,3-Dichlorobenzene	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	1/12/2010	1,3-Dichloropropene	8260B	ND	0.4	ug/L			Grab
EFF-001	2/2/2010	1,3-Dichloropropene	8260B	ND	0.4	ug/L			Grab
EFF-001	4/16/2012	1,3-Dichloropropene	8260B	ND	0.1	ug/L			Comp/ Grab
EFF-001	5/14/2012	1,3-Dichloropropene	8260B	ND	0.1	ug/L			Grab
EFF-001	6/11/2012	1,3-Dichloropropene	8260B	ND	0.1	ug/L			Grab
EFF-001	7/9/2012	1,3-Dichloropropene	8260B	ND	0.1	ug/L			Grab

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	8/13/2012	1,3-Dichloropropene	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	9/10/2012	1,3-Dichloropropene	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	10/8/2012	1,3-Dichloropropene	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	11/5/2012	1,3-Dichloropropene	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	12/3/2012	1,3-Dichloropropene	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	1/14/2013	1,3-Dichloropropene	8260B/624	ND	0.1	ug/L		0.1	Comp/Grab
EFF-001	2/4/2013	1,3-Dichloropropene	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	3/11/2013	1,3-Dichloropropene	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	1/12/2010	1,4-Dichlorobenzene	8260B	ND	0.3	ug/L			Grab
EFF-001	2/2/2010	1,4-Dichlorobenzene	8260B	ND	0.3	ug/L			Grab
EFF-001	4/16/2012	1,4-Dichlorobenzene	8260B	ND	0.07	ug/L			Comp/ Grab
EFF-001	5/14/2012	1,4-Dichlorobenzene	8260B	ND	0.07	ug/L			Grab
EFF-001	6/11/2012	1,4-Dichlorobenzene	8260B	ND	0.07	ug/L			Grab
EFF-001	7/9/2012	1,4-Dichlorobenzene	8260B	ND	0.07	ug/L			Grab
EFF-001	8/13/2012	1,4-Dichlorobenzene	8260B/624	ND	0.07	ug/L		0.07	Grab
EFF-001	9/10/2012	1,4-Dichlorobenzene	8260B/624	ND	0.07	ug/L		0.07	Grab
EFF-001	10/8/2012	1,4-Dichlorobenzene	8260B/624	ND	0.07	ug/L		0.07	Grab
EFF-001	11/5/2012	1,4-Dichlorobenzene	8260B/624	ND	0.07	ug/L		0.07	Grab
EFF-001	12/3/2012	1,4-Dichlorobenzene	8260B/624	ND	0.07	ug/L		0.07	Grab
EFF-001	1/14/2013	1,4-Dichlorobenzene	8260B/624	ND	0.07	ug/L		0.07	Comp/Grab
EFF-001	2/4/2013	1.4-Dichlorobenzene	8260B/624	ND	0.07	ug/L		0.07	Grab
EFF-001	3/11/2013	1.4-Dichlorobenzene	8260B/624	ND	0.07	ug/L		0.07	Grab
EFF-001	1/13/2010	2,3,7,8-TCDD	SW846 8290	ND	2.1	pg/L			Comp
EFF-001	4/3/2012	2,3,7,8-TCDD	SW846 8290	ND	11	pg/L	11		Comp
EFF-001	5/14/2012	2,3,7,8-TCDD	SW846 8290	ND	4	pg/L	4		Comp
EFF-001	6/11/2012	2,3,7,8-TCDD	SW846 8290	ND		pg/L			Grab
EFF-001	7/8/2012	2,3,7,8-TCDD	SW846 8290	ND		pg/L			Comp
EFF-001	1/14/2010	2,4,6-Trichlorophenol	8270C	ND	0.2	ug/L			Comp
EFF-001	4/16/2012	2,4,6-Trichlorophenol	8270C	ND	0.2	ug/L			Comp/ Grab
EFF-001	5/13/2012	2,4,6-Trichlorophenol	8270C	ND	0.2	ug/L			Comp
EFF-001	6/10/2012	2,4,6-Trichlorophenol	8270C	ND	0.2	ug/L			Comp

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	7/8/2012	2,4,6-Trichlorophenol	8270C	ND	0.2	ug/L			Comp
EFF-001	8/12/2012	2,4,6-Trichlorophenol	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	9/9/2012	2,4,6-Trichlorophenol	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	10/7/2012	2,4,6-Trichlorophenol	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	11/4/2012	2,4,6-Trichlorophenol	8270C	ND	0.2	ug/L		0.2	comp
EFF-001	12/2/2012	2,4,6-Trichlorophenol	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	1/13/2013	2,4,6-Trichlorophenol	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	2/3/2013	2,4,6-Trichlorophenol	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	3/10/2013	2,4,6-Trichlorophenol	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	1/14/2010	2,4-Dichlorophenol	8270C	ND	0.2	ug/L			Comp
EFF-001	4/16/2012	2,4-Dichlorophenol	8270C	ND	0.2	ug/L			Comp/ Grab
EFF-001	5/13/2012	2,4-Dichlorophenol	8270C	ND	0.2	ug/L			Comp
EFF-001	6/10/2012	2,4-Dichlorophenol	8270C	ND	0.2	ug/L			Comp
EFF-001	7/8/2012	2,4-Dichlorophenol	8270C	ND	0.2	ug/L			Comp
EFF-001	8/12/2012	2,4-Dichlorophenol	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	9/9/2012	2,4-Dichlorophenol	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	10/7/2012	2,4-Dichlorophenol	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	11/4/2012	2,4-Dichlorophenol	8270C	ND	0.2	ug/L		0.2	comp
EFF-001	12/2/2012	2,4-Dichlorophenol	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	1/13/2013	2,4-Dichlorophenol	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	2/3/2013	2,4-Dichlorophenol	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	3/10/2013	2,4-Dichlorophenol	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	1/14/2010	2,4-Dimethylphenol	8270C	ND	0.2	ug/L			Comp
EFF-001	4/16/2012	2,4-Dimethylphenol	8270C	ND	0.2	ug/L			Comp/ Grab
EFF-001	5/13/2012	2,4-Dimethylphenol	8270C	ND	0.2	ug/L			Comp
EFF-001	6/10/2012	2,4-Dimethylphenol	8270C	ND	0.2	ug/L			Comp
EFF-001	7/8/2012	2,4-Dimethylphenol	8270C	ND	0.2	ug/L			Comp
EFF-001	8/12/2012	2,4-Dimethylphenol	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001		2,4-Dimethylphenol	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	10/7/2012	2,4-Dimethylphenol	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	11/4/2012	2,4-Dimethylphenol	8270C	ND	0.2	ug/L		0.2	comp

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	12/2/2012	2,4-Dimethylphenol	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	1/13/2013	2,4-Dimethylphenol	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	2/3/2013	2,4-Dimethylphenol	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	3/10/2013	2,4-Dimethylphenol	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	1/14/2010	2,4-Dinitrophenol	8270C	ND	0.3	ug/L			Comp
EFF-001	4/16/2012	2,4-Dinitrophenol	8270C	ND	0.3	ug/L			Comp/ Grab
EFF-001	5/13/2012	2,4-Dinitrophenol	8270C	ND	0.3	ug/L			Comp
EFF-001	6/10/2012	2,4-Dinitrophenol	8270C	ND	0.3	ug/L			Comp
EFF-001	7/8/2012	2,4-Dinitrophenol	8270C	ND	0.3	ug/L			Comp
EFF-001	8/12/2012	2,4-Dinitrophenol	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	9/9/2012	2,4-Dinitrophenol	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	10/7/2012	2,4-Dinitrophenol	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	11/4/2012	2,4-Dinitrophenol	8270C	ND	0.3	ug/L		0.3	comp
EFF-001	12/2/2012	2,4-Dinitrophenol	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	1/13/2013	2,4-Dinitrophenol	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	2/3/2013	2,4-Dinitrophenol	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	3/10/2013	2,4-Dinitrophenol	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	1/14/2010	2,4-Dinitrotoluene	8270C	ND	0.3	ug/L			Comp
EFF-001	4/16/2012	2,4-Dinitrotoluene	8270C	ND	0.3	ug/L			Comp/ Grab
EFF-001	5/13/2012	2,4-Dinitrotoluene	8270C	ND	0.3	ug/L			Comp
EFF-001	6/10/2012	2,4-Dinitrotoluene	8270C	ND	0.3	ug/L			Comp
EFF-001	7/8/2012	2,4-Dinitrotoluene	8270C	ND	0.3	ug/L			Comp
EFF-001	8/12/2012	2,4-Dinitrotoluene	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	9/9/2012	2,4-Dinitrotoluene	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	10/7/2012	2,4-Dinitrotoluene	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	11/4/2012	2,4-Dinitrotoluene	8270C	ND	0.3	ug/L		0.3	comp
EFF-001	12/2/2012	2,4-Dinitrotoluene	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	1/13/2013	2,4-Dinitrotoluene	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	2/3/2013	2,4-Dinitrotoluene	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	3/10/2013	2,4-Dinitrotoluene	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	1/14/2010	2,6-Dinitrotoluene	8270C	ND	0.3	ug/L			Comp

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	4/16/2012	2,6-Dinitrotoluene	8270C	ND	0.4	ug/L			Comp/ Grab
EFF-001	5/13/2012	2,6-Dinitrotoluene	8270C	ND	0.4	ug/L			Comp
EFF-001	6/10/2012	2,6-Dinitrotoluene	8270C	ND	0.4	ug/L			Comp
EFF-001	7/8/2012	2,6-Dinitrotoluene	8270C	ND	0.4	ug/L			Comp
EFF-001	8/12/2012	2,6-Dinitrotoluene	8270C	ND	0.4	ug/L		0.4	Comp
EFF-001	9/9/2012	2,6-Dinitrotoluene	8270C	ND	0.4	ug/L		0.4	Comp
EFF-001	10/7/2012	2,6-Dinitrotoluene	8270C	ND	0.4	ug/L		0.4	Comp
EFF-001	11/4/2012	2,6-Dinitrotoluene	8270C	ND	0.4	ug/L		0.4	comp
EFF-001	12/2/2012	2,6-Dinitrotoluene	8270C	ND	0.4	ug/L		0.4	Comp
EFF-001	1/13/2013	2,6-Dinitrotoluene	8270C	ND	0.4	ug/L		0.4	Comp
EFF-001	2/3/2013	2,6-Dinitrotoluene	8270C	ND	0.4	ug/L		0.4	Comp
EFF-001	3/10/2013	2,6-Dinitrotoluene	8270C	ND	0.4	ug/L		0.4	Comp
EFF-001	1/12/2010	2-Chloroethylvinyl Ether	8260B	ND	0.7	ug/L			Grab
EFF-001	2/2/2010	2-Chloroethylvinyl Ether	8260B	ND	0.7	ug/L			Grab
EFF-001	4/16/2012	2-Chloroethylvinyl Ether	8260B	ND	0.7	ug/L			Comp/ Grab
EFF-001	5/14/2012	2-Chloroethylvinyl Ether	8260B	ND	0.7	ug/L			Grab
EFF-001	6/11/2012	2-Chloroethylvinyl Ether	8260B	ND	0.7	ug/L			Grab
EFF-001	7/9/2012	2-Chloroethylvinyl Ether	8260B	ND	0.7	ug/L			Grab
EFF-001	8/13/2012	2-Chloroethylvinyl Ether	8260B/624	ND	0.7	ug/L		0.7	Grab
EFF-001	9/10/2012	2-Chloroethylvinyl Ether	8260B/624	ND	0.7	ug/L		0.7	Grab
EFF-001	10/8/2012	2-Chloroethylvinyl Ether	8260B/624	ND	0.7	ug/L		0.7	Grab
EFF-001	11/5/2012	2-Chloroethylvinyl Ether	8260B/624	ND	0.7	ug/L		0.7	Grab
EFF-001	12/3/2012	2-Chloroethylvinyl Ether	8260B/624	ND	0.7	ug/L		0.7	Grab
EFF-001	1/14/2013	2-Chloroethylvinyl Ether	8260B/624	ND	0.7	ug/L		0.7	Comp/Grab
EFF-001	2/4/2013	2-Chloroethylvinyl Ether	8260B/624	ND	0.7	ug/L		0.7	Grab
EFF-001	3/11/2013	2-Chloroethylvinyl Ether	8260B/624	ND	0.7	ug/L		0.7	Grab
EFF-001	1/14/2010	2-Chloronaphthalene	8270C	ND	0.1	ug/L			Comp
EFF-001	4/16/2012	2-Chloronaphthalene	8270C	ND	0.09	ug/L			Comp/ Grab
EFF-001	5/13/2012	2-Chloronaphthalene	8270C	ND	0.09	ug/L			Comp
EFF-001	6/10/2012	2-Chloronaphthalene	8270C	ND	0.09	ug/L			Comp
EFF-001	7/8/2012	2-Chloronaphthalene	8270C	ND	0.09	ug/L			Comp

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	8/12/2012	2-Chloronaphthalene	8270C	ND	0.09	ug/L		0.09	
EFF-001	9/9/2012	2-Chloronaphthalene	8270C	ND	0.09	ug/L		0.09	Comp
EFF-001	10/7/2012	2-Chloronaphthalene	8270C	ND	0.09	ug/L		0.09	Comp
EFF-001	11/4/2012	2-Chloronaphthalene	8270C	ND	0.09	ug/L		0.09	comp
EFF-001	12/2/2012	2-Chloronaphthalene	8270C	ND	0.09	ug/L		0.09	Comp
EFF-001	1/13/2013	2-Chloronaphthalene	8270C	ND	0.09	ug/L		0.09	Comp
EFF-001	2/3/2013	2-Chloronaphthalene	8270C	ND	0.09	ug/L		0.09	Comp
EFF-001	3/10/2013	2-Chloronaphthalene	8270C	ND	0.09	ug/L		0.09	Comp
EFF-001	1/14/2010	2-Chlorophenol	8270C	ND	0.1	ug/L			Comp
EFF-001	4/16/2012	2-Chlorophenol	8270C	ND	0.1	ug/L			Comp/ Grab
EFF-001	5/13/2012	2-Chlorophenol	8270C	ND	0.1	ug/L			Comp
EFF-001	6/10/2012	2-Chlorophenol	8270C	ND	0.1	ug/L			Comp
EFF-001	7/8/2012	2-Chlorophenol	8270C	ND	0.1	ug/L			Comp
EFF-001	8/12/2012	2-Chlorophenol	8270C	J	1	ug/L			Comp
EFF-001	9/9/2012	2-Chlorophenol	8270C	ND	0.1	ug/L		0.1	Comp
EFF-001	10/7/2012	2-Chlorophenol	8270C	ND	0.1	ug/L		0.1	Comp
EFF-001	11/4/2012	2-Chlorophenol	8270C	ND	0.1	ug/L		0.1	comp
EFF-001	12/2/2012	2-Chlorophenol	8270C	ND	0.1	ug/L		0.1	Comp
EFF-001	1/13/2013	2-Chlorophenol	8270C	ND	0.1	ug/L		0.1	Comp
EFF-001	2/3/2013	2-Chlorophenol	8270C	ND	0.1	ug/L		0.1	Comp
EFF-001	3/10/2013	2-Chlorophenol	8270C	ND	0.1	ug/L		0.1	Comp
EFF-001	1/14/2010	2-Nitrophenol	8270C	ND	0.3	ug/L			Comp
EFF-001	4/16/2012	2-Nitrophenol	8270C	ND	0.3	ug/L			Comp/ Grab
EFF-001	5/13/2012	2-Nitrophenol	8270C	ND	0.3	ug/L			Comp
EFF-001	6/10/2012	2-Nitrophenol	8270C	ND	0.3	ug/L			Comp
EFF-001	7/8/2012	2-Nitrophenol	8270C	ND	0.3	ug/L			Comp
EFF-001	8/12/2012	2-Nitrophenol	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	9/9/2012	2-Nitrophenol	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001		2-Nitrophenol	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	11/4/2012	2-Nitrophenol	8270C	ND	0.3	ug/L		0.3	comp
EFF-001	12/2/2012	2-Nitrophenol	8270C	ND	0.3	ug/L		0.3	Comp

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	1/13/2013	2-Nitrophenol	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	2/3/2013	2-Nitrophenol	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	3/10/2013	2-Nitrophenol	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	1/14/2010	3,3'-Dichlorobenzidine	8270C	ND	0.3	ug/L			Comp
EFF-001	4/16/2012	3,3'-Dichlorobenzidine	8270C	ND	0.3	ug/L			Comp/ Grab
EFF-001	5/13/2012	3,3'-Dichlorobenzidine	8270C	ND	0.3	ug/L			Comp
EFF-001	6/10/2012	3,3'-Dichlorobenzidine	8270C	ND	0.3	ug/L			Comp
EFF-001	7/8/2012	3,3'-Dichlorobenzidine	8270C	ND	0.3	ug/L			Comp
EFF-001	8/12/2012	3,3'-Dichlorobenzidine	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	9/9/2012	3,3'-Dichlorobenzidine	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	10/7/2012	3,3'-Dichlorobenzidine	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	11/4/2012	3,3'-Dichlorobenzidine	8270C	ND	0.3	ug/L		0.3	comp
EFF-001	12/2/2012	3,3'-Dichlorobenzidine	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	1/13/2013	3,3'-Dichlorobenzidine	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	2/3/2013	3,3'-Dichlorobenzidine	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	3/10/2013	3,3'-Dichlorobenzidine	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	1/14/2010	4,4'-DDD	8081A/608	ND	0.08	ug/L			Comp
EFF-001	4/16/2012	4,4'-DDD	8081A/608	ND	0.1	ug/L			Comp/ Grab
EFF-001	5/13/2012	4,4'-DDD	8081A/608	ND	0.05	ug/L			Comp
EFF-001	6/10/2012	4,4'-DDD	8081A/608	ND	0.1	ug/L			Comp
EFF-001	7/8/2012	4,4'-DDD	8081A/608	ND	0.1	ug/L			Comp
EFF-001	1/14/2010	4,4'-DDE	8081A/608	ND	0.08	ug/L			Comp
EFF-001	4/16/2012	4,4'-DDE	8081A/608	ND	0.1	ug/L			Comp/ Grab
EFF-001	5/13/2012	4,4'-DDE	8081A/608	ND	0.05	ug/L			Comp
EFF-001	6/10/2012	4,4'-DDE	8081A/608	ND	0.1	ug/L			Comp
EFF-001	7/8/2012	4,4'-DDE	8081A/608	ND	0.1	ug/L			Comp
EFF-001	1/14/2010	4,4'-DDT	8081A/608	ND	0.08	ug/L			Comp
EFF-001	4/16/2012	4,4'-DDT	8081A/608	ND	0.5	ug/L			Comp/ Grab
EFF-001	5/13/2012	4,4'-DDT	8081A/608	ND	0.05	ug/L			Comp
EFF-001	6/10/2012	4,4'-DDT	8081A/608	ND	0.5	ug/L			Comp
EFF-001	7/8/2012	4,4'-DDT	8081A/608	ND	0.5	ug/L			Comp

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	1/14/2010	4,6-Dinitro-2-methylphenol	8270C	ND	0.3	ug/L			Comp
EFF-001	4/16/2012	4,6-Dinitro-2-methylphenol	8270C	ND	2	ug/L			Comp/ Grab
EFF-001	5/13/2012	4,6-Dinitro-2-methylphenol	8270C	ND	2	ug/L			Comp
EFF-001	6/10/2012	4,6-Dinitro-2-methylphenol	8270C	ND	2	ug/L			Comp
EFF-001	7/8/2012	4,6-Dinitro-2-methylphenol	8270C	ND	2	ug/L			Comp
EFF-001	8/12/2012	4,6-Dinitro-2-methylphenol	8270C	ND	2	ug/L		2	Comp
EFF-001	9/9/2012	4,6-Dinitro-2-methylphenol	8270C	ND	2	ug/L		2	Comp
EFF-001	10/7/2012	4,6-Dinitro-2-methylphenol	8270C	ND	2	ug/L		2	Comp
EFF-001	11/4/2012	4,6-Dinitro-2-methylphenol	8270C	ND	2	ug/L		2	comp
EFF-001	12/2/2012	4,6-Dinitro-2-methylphenol	8270C	ND	2	ug/L		2	Comp
EFF-001	1/13/2013	4,6-Dinitro-2-methylphenol	8270C	ND	2	ug/L		2	Comp
EFF-001	2/3/2013	4,6-Dinitro-2-methylphenol	8270C	ND	2	ug/L		2	Comp
EFF-001	3/10/2013	4,6-Dinitro-2-methylphenol	8270C	ND	2	ug/L		2	Comp
EFF-001	1/14/2010	4-Bromophenyl phenyl ether	8270C	ND	0.4	ug/L			Comp
EFF-001	4/16/2012	4-Bromophenyl phenyl ether	8270C	ND	0.4	ug/L			Comp/ Grab
EFF-001	5/13/2012	4-Bromophenyl phenyl ether	8270C	ND	0.4	ug/L			Comp
EFF-001	6/10/2012	4-Bromophenyl phenyl ether	8270C	ND	0.4	ug/L			Comp
EFF-001	7/8/2012	4-Bromophenyl phenyl ether	8270C	ND	0.4	ug/L			Comp
EFF-001	8/12/2012	4-Bromophenyl phenyl ether	8270C	ND	0.4	ug/L		0.4	Comp
EFF-001	9/9/2012	4-Bromophenyl phenyl ether	8270C	ND	0.4	ug/L		0.4	Comp
EFF-001	10/7/2012	4-Bromophenyl phenyl ether	8270C	ND	0.4	ug/L		0.4	Comp
EFF-001	11/4/2012	4-Bromophenyl phenyl ether	8270C	ND	0.4	ug/L		0.4	comp
EFF-001	12/2/2012	4-Bromophenyl phenyl ether	8270C	ND	0.4	ug/L		0.4	Comp
EFF-001	1/13/2013	4-Bromophenyl phenyl ether	8270C	ND	0.4	ug/L		0.4	Comp
EFF-001	2/3/2013	4-Bromophenyl phenyl ether	8270C	ND	0.4	ug/L		0.4	Comp
EFF-001	3/10/2013	4-Bromophenyl phenyl ether	8270C	ND	0.4	ug/L		0.4	Comp
EFF-001	1/14/2010	4-Chloro-3-methylphenol	8270C	ND	0.2	ug/L			Comp
EFF-001	4/16/2012	4-Chloro-3-methylphenol	8270C	ND	0.09	ug/L			Comp/ Grab
EFF-001	5/13/2012	4-Chloro-3-methylphenol	8270C	ND	0.09	ug/L			Comp
EFF-001	6/10/2012	4-Chloro-3-methylphenol	8270C	ND	0.09	ug/L			Comp
EFF-001	7/8/2012	4-Chloro-3-methylphenol	8270C	ND	0.09	ug/L			Comp

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	8/12/2012	4-Chloro-3-methylphenol	8270C	J	0.7	ug/L			Comp
EFF-001	9/9/2012	4-Chloro-3-methylphenol	8270C	ND	0.09	ug/L		0.09	Comp
EFF-001	10/7/2012	4-Chloro-3-methylphenol	8270C	ND	0.09	ug/L		0.09	Comp
EFF-001	11/4/2012	4-Chloro-3-methylphenol	8270C	ND	0.09	ug/L		0.09	comp
EFF-001	12/2/2012	4-Chloro-3-methylphenol	8270C	ND	0.09	ug/L		0.09	Comp
EFF-001	1/13/2013	4-Chloro-3-methylphenol	8270C	ND	0.09	ug/L		0.09	Comp
EFF-001	2/3/2013	4-Chloro-3-methylphenol	8270C	ND	0.09	ug/L		0.09	Comp
EFF-001	3/10/2013	4-Chloro-3-methylphenol	8270C	ND	0.09	ug/L		0.09	Comp
EFF-001	1/14/2010	4-Chlorophenyl phenyl ether	8270C	ND	1.2	ug/L			Comp
EFF-001	4/16/2012	4-Chlorophenyl phenyl ether	8270C	ND	0.2	ug/L			Comp/ Grab
EFF-001	5/13/2012	4-Chlorophenyl phenyl ether	8270C	ND	0.2	ug/L			Comp
EFF-001	6/10/2012	4-Chlorophenyl phenyl ether	8270C	ND	0.2	ug/L			Comp
EFF-001	7/8/2012	4-Chlorophenyl phenyl ether	8270C	ND	0.2	ug/L			Comp
EFF-001	8/12/2012	4-Chlorophenyl phenyl ether	8270C	ND	1	ug/L		1	Comp
EFF-001	9/9/2012	4-Chlorophenyl phenyl ether	8270C	ND	1	ug/L		1	Comp
EFF-001	10/7/2012	4-Chlorophenyl phenyl ether	8270C	ND	1	ug/L		1	Comp
EFF-001	11/4/2012	4-Chlorophenyl phenyl ether	8270C	ND	1	ug/L		1	comp
EFF-001	12/2/2012	4-Chlorophenyl phenyl ether	8270C	ND	1	ug/L		1	Comp
EFF-001	1/13/2013	4-Chlorophenyl phenyl ether	8270C	ND	1	ug/L		1	Comp
EFF-001	2/3/2013	4-Chlorophenyl phenyl ether	8270C	ND	1	ug/L		1	Comp
EFF-001	3/10/2013	4-Chlorophenyl phenyl ether	8270C	ND	1	ug/L		1	Comp
EFF-001	1/14/2010	4-Nitrophenol	8270C	ND	0.4	ug/L			Comp
EFF-001	4/16/2012	4-Nitrophenol	8270C	ND	0.4	ug/L			Comp/ Grab
EFF-001	5/13/2012	4-Nitrophenol	8270C	ND	0.4	ug/L			Comp
EFF-001	6/10/2012	4-Nitrophenol	8270C	ND	0.4	ug/L			Comp
EFF-001	7/8/2012	4-Nitrophenol	8270C	ND	0.4	ug/L			Comp
EFF-001	8/12/2012	4-Nitrophenol	8270C	ND	0.4	ug/L		0.4	Comp
EFF-001	9/9/2012	4-Nitrophenol	8270C	ND	0.4	ug/L		0.4	Comp
EFF-001	10/7/2012	4-Nitrophenol	8270C	ND	0.4	ug/L		0.4	Comp
EFF-001	11/4/2012	4-Nitrophenol	8270C	ND	0.4	ug/L		0.4	comp
EFF-001	12/2/2012	4-Nitrophenol	8270C	ND	0.4	ug/L		0.4	Comp

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	1/13/2013	4-Nitrophenol	8270C	ND	0.4	ug/L		0.4	
EFF-001	2/3/2013	4-Nitrophenol	8270C	ND	0.4	ug/L		0.4	Comp
EFF-001	3/10/2013	4-Nitrophenol	8270C	ND	0.4	ug/L		0.4	Comp
EFF-001	1/14/2010	Acenaphthene	8270C	ND	0.3	ug/L			Comp
EFF-001	4/16/2012	Acenaphthene	8270C	ND	0.3	ug/L			Comp/ Grab
EFF-001	5/13/2012	Acenaphthene	8270C	ND	0.3	ug/L			Comp
EFF-001	6/10/2012	Acenaphthene	8270C	ND	0.3	ug/L			Comp
EFF-001	7/8/2012	Acenaphthene	8270C	ND	0.3	ug/L			Comp
EFF-001	8/12/2012	Acenaphthene	8270C	J	0.6	ug/L			Comp
EFF-001	9/9/2012	Acenaphthene	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	10/7/2012	Acenaphthene	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	11/4/2012	Acenaphthene	8270C	ND	0.3	ug/L		0.3	comp
EFF-001	12/2/2012	Acenaphthene	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	1/13/2013	Acenaphthene	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	2/3/2013	Acenaphthene	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	3/10/2013	Acenaphthene	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	1/14/2010	Acenaphthylene	8270C	ND	0.2	ug/L			Comp
EFF-001	4/16/2012	Acenaphthylene	8270C	ND	0.2	ug/L			Comp/ Grab
EFF-001	5/13/2012	Acenaphthylene	8270C	ND	0.2	ug/L			Comp
EFF-001	6/10/2012	Acenaphthylene	8270C	ND	0.2	ug/L			Comp
EFF-001	7/8/2012	Acenaphthylene	8270C	ND	0.2	ug/L			Comp
EFF-001	8/12/2012	Acenaphthylene	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	9/9/2012	Acenaphthylene	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	10/7/2012	Acenaphthylene	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	11/4/2012	Acenaphthylene	8270C	ND	0.2	ug/L		0.2	comp
EFF-001	12/2/2012	Acenaphthylene	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001		Acenaphthylene	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	2/3/2013	Acenaphthylene	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	3/10/2013	Acenaphthylene	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	1/12/2010	Acrolein	8260B	ND	2.3	ug/L			Grab
EFF-001	2/2/2010	Acrolein	8260B	ND	2.3	ug/L			Grab

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	4/16/2012	Acrolein	8260B/624	ND	2.3	ug/L			Comp/ Grab
EFF-001	5/14/2012	Acrolein	8260B	ND	2.3	ug/L			Grab
EFF-001	6/11/2012	Acrolein	8260B/624	ND	2.3	ug/L			Grab
EFF-001	7/9/2012	Acrolein	8260B/624	ND	2.3	ug/L			Grab
EFF-001	8/13/2012	Acrolein	8260B/624	ND	2.3	ug/L		2.3	Grab
EFF-001	9/10/2012	Acrolein	8260B/624	ND	2.3	ug/L		2.3	Grab
EFF-001	10/8/2012	Acrolein	8260B/624	ND	2.3	ug/L		2.3	Grab
EFF-001	11/5/2012	Acrolein	8260B/624	ND	2.3	ug/L		2.3	Grab
EFF-001	12/3/2012	Acrolein	8260B/624	ND	2.3	ug/L		2.3	Grab
EFF-001	1/14/2013	Acrolein	8260B/624	ND	2.3	ug/L		2.3	Comp/Grab
EFF-001	2/4/2013	Acrolein	8260B/624	ND	2.3	ug/L		2.3	Grab
EFF-001	3/11/2013	Acrolein	8260B/624	ND	2.3	ug/L		2.3	Grab
EFF-001	1/12/2010	Acrylonitrile	8260B	ND	2	ug/L			Grab
EFF-001	2/2/2010	Acrylonitrile	8260B	ND	2	ug/L			Grab
EFF-001	4/16/2012	Acrylonitrile	8260B	ND	2	ug/L			Comp/ Grab
EFF-001	5/14/2012	Acrylonitrile	8260B	ND	2	ug/L			Grab
EFF-001	6/11/2012	Acrylonitrile	8260B	ND	2	ug/L			Grab
EFF-001	7/9/2012	Acrylonitrile	8260B	ND	2	ug/L			Grab
EFF-001	8/13/2012	Acrylonitrile	8260B/624	ND	2	ug/L		2	Grab
EFF-001	9/10/2012	Acrylonitrile	8260B/624	ND	2	ug/L		2	Grab
EFF-001	10/8/2012	Acrylonitrile	8260B/624	ND	2	ug/L		2	Grab
EFF-001	11/5/2012	Acrylonitrile	8260B/624	ND	2	ug/L		2	Grab
EFF-001	12/3/2012	Acrylonitrile	8260B/624	ND	2	ug/L		2	Grab
EFF-001	1/14/2013	Acrylonitrile	8260B/624	ND	2	ug/L		2	Comp/Grab
EFF-001	2/4/2013	Acrylonitrile	8260B/624	ND	2	ug/L		2	Grab
EFF-001	3/11/2013	Acrylonitrile	8260B/624	ND	2	ug/L		2	Grab
EFF-001	1/14/2010	Aldrin	8081A/608	ND	0.09	ug/L			Comp
EFF-001	4/16/2012	Aldrin	8081A/608	ND	0.1	ug/L			Comp/ Grab
EFF-001	5/13/2012		8081A/608	ND	0.005	ug/L			Comp
EFF-001	6/10/2012	Aldrin	8081A/608	ND	0.1	ug/L			Comp
EFF-001	7/8/2012	Aldrin	8081A/608	ND	0.1	ug/L			Comp

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	1/14/2010	Alpha-BHC	8081A/608	ND	0.09	ug/L			Comp
EFF-001	4/16/2012	Alpha-BHC	8081A/608	ND	0.1	ug/L			Comp/ Grab
EFF-001	5/13/2012	Alpha-BHC	8081A/608	ND	0.1	ug/L			Comp
EFF-001	6/10/2012	Alpha-BHC	8081A/608	ND	0.1	ug/L			Comp
EFF-001	7/8/2012	Alpha-BHC	8081A/608	ND	0.1	ug/L			Comp
EFF-001	1/14/2010	alpha-Endosulfan	8081A/608	ND	0.09	ug/L			Comp
EFF-001	4/16/2012	alpha-Endosulfan	8081A/608	ND	0.5	ug/L			Comp/ Grab
EFF-001	5/13/2012	alpha-Endosulfan	8081A/608	ND	0.02	ug/L			Comp
EFF-001	6/10/2012	alpha-Endosulfan	8081A/608	ND	0.5	ug/L			Comp
EFF-001	7/8/2012	alpha-Endosulfan	8081A/608	ND	0.5	ug/L			Comp
EFF-001	1/14/2010	Aluminum (Total)	200.7/200.8		88	ug/L			Comp
EFF-001	2/8/2010	Aluminum (Total)	200.7/200.8	l	37	ug/L			Comp
EFF-001	3/16/2010	Aluminum (Total)	200.7/200.8		222	ug/L			comp
EFF-001	4/6/2010	Aluminum (Total)	200.7/200.8		52	ug/L			Comp
EFF-001	5/3/2010	Aluminum (Total)	200.7/200.8		150	ug/L			Comp
EFF-001	6/1/2010	Aluminum (Total)	200.7/200.8		120	ug/L			Comp
EFF-001	7/6/2010	Aluminum (Total)	200.7/200.8		54	ug/L			Comp
EFF-001	8/2/2010	Aluminum (Total)	200.7/200.8		58	ug/L			Comp
EFF-001	8/3/2010	Aluminum (Total)	200.7/200.8		45	ug/L			comp
EFF-001	9/7/2010	Aluminum (Total)	200.7/200.8		230	ug/L			comp
EFF-001	9/20/2010	Aluminum (Total)	200.7/200.8		55	ug/L			Comp
EFF-001	10/3/2010	Aluminum (Total)	200.7/200.8		117	ug/L			comp
EFF-001	11/1/2010	Aluminum (Total)	200.7/200.8		110	ug/L			Comp
EFF-001	12/5/2010	Aluminum (Total)	200.7/200.8		127	ug/L			comp
EFF-001	1/17/2011	Aluminum (Total)	200.7/200.8		315	ug/L			Comp
EFF-001	2/6/2011	Aluminum (Total)	200.7/200.8		330	ug/L			Comp
EFF-001	2/17/2011	Aluminum (Total)	200.7/200.8		40	ug/L			Comp
EFF-001	2/22/2011	Aluminum (Total)	200.7/200.8		83	ug/L			Comp
EFF-001	3/6/2011	Aluminum (Total)	200.7/200.8		29	ug/L			Comp
EFF-001	4/3/2011	Aluminum (Total)	200.7/200.8		205	ug/L			comp
EFF-001	4/25/2011	Aluminum (Total)	200.7/200.8		60	ug/L			Grab

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	5/8/2011	Aluminum (Total)	200.7/200.8		88	ug/L			Comp
EFF-001	6/12/2011	Aluminum (Total)	200.7/200.8		70	ug/L			comp
EFF-001	7/10/2011	Aluminum (Total)	200.7/200.8	J	41	ug/L			Comp
EFF-001	8/8/2011	Aluminum (Total)	200.7/200.8		132	ug/L			Comp
EFF-001	8/8/2011	Aluminum (Total)	200.7/200.8		154	ug/L			Grab/Comp
EFF-001	9/5/2011	Aluminum (Total)	200.7/200.8	J	31	ug/L			comp
EFF-001	10/9/2011	Aluminum (Total)	200.7/200.8		142	ug/L			Comp
EFF-001	12/4/2011	Aluminum (Total)	200.7/200.8		70	ug/L			Comp
EFF-001	1/8/2012	Aluminum (Total)	200.7/200.8		96	ug/L			Composite
EFF-001	2/5/2012	Aluminum (Total)	200.7/200.8		76	ug/L			Comp
EFF-001	4/16/2012	Aluminum (Total)	200.7/200.8	J	47	ug/L			Comp/ Grab
EFF-001	5/13/2012	Aluminum (Total)	200.7/200.8		77	ug/L			Comp
EFF-001	6/10/2012	Aluminum (Total)	200.7/200.8		140	ug/L			Comp
EFF-001	7/8/2012	Aluminum (Total)	200.7/200.8		144	ug/L			Comp
EFF-001	8/12/2012	Aluminum (Total)	200.7/200.8		246	ug/L			Comp
EFF-001	9/9/2012	Aluminum (Total)	200.7/200.8		80	ug/L			Comp
EFF-001	10/7/2012	Aluminum (Total)	200.7/200.8		50	ug/L			Comp
EFF-001	11/4/2012	Aluminum (Total)	200.7/200.8		129	ug/L			comp
EFF-001	12/2/2012	Aluminum (Total)	200.7/200.8		120	ug/L			Comp
EFF-001	1/13/2013	Aluminum (Total)	200.7/200.8		252	ug/L			Comp
EFF-001	2/3/2013	Aluminum (Total)	200.7/200.8		439	ug/L			Comp
EFF-001	3/10/2013	Aluminum (Total)	200.7/200.8		259	ug/L			Comp
EFF-001	4/7/2013	Aluminum (Total)	200.7/200.8		313	ug/L			Comp
EFF-001	5/5/2013	Aluminum (Total)	200.7/200.8		338	ug/L			Comp
EFF-001	6/3/2013	Aluminum (Total)	200.7/200.8		281	ug/L			Comp
EFF-001	6/5/2013	Aluminum (Total)	200.7/200.8		170	ug/L			Comp
EFF-001	6/23/2013	Aluminum (Total)	200.7/200.8		228	ug/L			Comp
EFF-001	6/30/2013	Aluminum (Total)	200.7/200.8		63	ug/L			Comp
EFF-001	7/1/2013	Aluminum (Total)	200.7/200.8	J	49	ug/L			Comp
EFF-001	8/12/2013	Aluminum (Total)	200.7/200.8		182	ug/L			Comp
EFF-001	9/9/2013	Aluminum (Total)	200.7/200.8		223	ug/L			Comp

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	10/6/2013	Aluminum (Total)	200.7/200.8		324	ug/L			Comp
EFF-001	10/14/2013	Aluminum (Total)	200.7/200.8		240	ug/L			Comp
EFF-001	11/3/2013	Aluminum (Total)	200.7/200.8		590	ug/L			Comp
EFF-001	11/13/2013	Aluminum (Total)	200.7/200.8		488	ug/L			Comp
EFF-001	11/17/2013	Aluminum (Total)	200.7/200.8		555	ug/L			Comp
EFF-001	11/29/2013	Aluminum (Total)	200.7/200.8		69	ug/L			Comp
EFF-001	11/30/2013	Aluminum (Total)	200.7/200.8	l	38	ug/L			Comp
EFF-001	12/1/2013	Aluminum (Total)	200.7/200.8		126	ug/L			Comp
EFF-001	1/20/2014	Aluminum (Total)	200.7/200.8		528	ug/L			Comp
EFF-001	2/17/2014	Aluminum (Total)	200.7/200.8		601	ug/L			Comp
EFF-001	2/26/2014	Aluminum (Total)	200.7/200.8		433	ug/L			Comp
EFF-001	2/27/2014	Aluminum (Total)	200.7/200.8		568	ug/L			Comp
EFF-001	2/28/2014	Aluminum (Total)	200.7/200.8		607	ug/L			Comp
EFF-001	3/3/2014	Aluminum (Total)	200.7/200.8		557	ug/L			Comp
EFF-001	4/6/2014	Aluminum (Total)	200.7/200.8		544	ug/L			Comp
EFF-001	1/7/2009	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	1/14/2009	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	1/21/2009	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	1/28/2009	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	2/4/2009	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	2/11/2009	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	2/18/2009	Ammonia-N	SM4500-NH3		1.6	mg/L			Grab
EFF-001	2/25/2009	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	3/4/2009	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	3/11/2009	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	3/18/2009	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	3/25/2009	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	4/1/2009	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	4/8/2009	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	4/15/2009	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	4/20/2009	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	4/29/2009	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	5/6/2009	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	5/13/2009	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	5/20/2009	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	5/27/2009	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	6/3/2009	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	6/10/2009	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	6/17/2009	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	6/24/2009	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	7/1/2009	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	7/8/2009	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	7/15/2009	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	7/22/2009	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	7/29/2009	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	8/5/2009	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	8/12/2009	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	8/19/2009	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	8/26/2009	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	9/2/2009	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	9/9/2009	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	9/16/2009	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	9/23/2009	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	9/30/2009	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	10/7/2009	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	10/14/2009	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	10/21/2009	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	10/28/2009	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	11/4/2009	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	11/12/2009	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	11/18/2009	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	11/25/2009	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	12/2/2009	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	12/9/2009	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	12/16/2009	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	12/23/2009	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	12/30/2009	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	1/6/2010	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	1/13/2010	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	1/20/2010	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	1/27/2010	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	2/3/2010	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	2/10/2010	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	2/17/2010	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	2/24/2010	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	3/3/2010	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	3/10/2010	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	3/17/2010	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	3/24/2010	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	3/31/2010	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	4/7/2010	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	4/14/2010	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	4/21/2010	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	4/28/2010	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	5/5/2010	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	5/12/2010	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	5/19/2010	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	5/26/2010	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	6/1/2010	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	6/8/2010	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	6/14/2010	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	6/21/2010	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	6/28/2010	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	7/1/2010	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	7/6/2010	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	7/12/2010	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	7/19/2010	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	7/26/2010	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	8/2/2010	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	8/9/2010	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	8/16/2010	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	8/23/2010	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	8/30/2010	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	9/1/2010	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	9/8/2010	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	9/15/2010	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	9/22/2010	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	9/29/2010	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	10/1/2010	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	10/8/2010	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	10/14/2010	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	10/22/2010	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	10/29/2010	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	11/1/2010	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	11/8/2010	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	11/15/2010	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	11/22/2010	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	11/29/2010	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	12/1/2010	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	12/6/2010	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	12/13/2010	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	12/20/2010	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	12/27/2010	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	1/3/2011	Ammonia-N	SM4500-NH3		1.1	mg/L			Grab

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	1/10/2011	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	1/18/2011	Ammonia-N	SM4500-NH3		1.1	mg/L			Grab
EFF-001	1/24/2011	Ammonia-N	SM4500-NH3	J	0.8	mg/L			Grab
EFF-001	1/31/2011	Ammonia-N	SM4500-NH3	J	0.9	mg/L			Grab
EFF-001	2/7/2011	Ammonia-N	SM4500-NH3		0.6	mg/L			Grab
EFF-001	2/14/2011	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	2/22/2011	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	2/28/2011	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	3/7/2011	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	3/14/2011	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	3/21/2011	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	3/28/2011	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	4/4/2011	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	4/11/2011	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	4/18/2011	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	4/25/2011	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	5/2/2011	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	5/9/2011	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	5/16/2011	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	5/23/2011	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	5/31/2011	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	6/6/2011	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	6/13/2011	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	6/20/2011	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	6/27/2011	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	7/5/2011	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	7/11/2011	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	7/18/2011	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	7/25/2011	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	8/1/2011	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	8/8/2011	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	8/15/2011	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	8/22/2011	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	8/29/2011	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	9/6/2011	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	9/12/2011	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	9/19/2011	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	9/26/2011	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	10/3/2011	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	10/10/2011	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	10/17/2011	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	10/24/2011	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	10/31/2011	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	11/1/2011	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	11/7/2011	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	11/14/2011	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	11/21/2011	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	11/28/2011	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	12/5/2011	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	12/12/2011	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	12/19/2011	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	12/27/2011	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	1/3/2012	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	1/9/2012	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	1/17/2012	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	1/23/2012	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	1/30/2012	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	2/6/2012	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	2/13/2012	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	2/21/2012	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	2/27/2012	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	3/5/2012	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	3/12/2012	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	3/19/2012	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	3/26/2012	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	4/2/2012	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	4/9/2012	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	4/16/2012	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	4/23/2012	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	4/30/2012	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	5/7/2012	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	5/14/2012	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	5/21/2012	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	5/29/2012	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	6/4/2012	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	6/11/2012	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	6/18/2012	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	6/25/2012	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	7/2/2012	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	7/9/2012	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	7/16/2012	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	7/23/2012	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	7/30/2012	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	8/6/2012	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	8/13/2012	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	8/20/2012	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	8/27/2012	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	9/4/2012	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	9/10/2012	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	9/17/2012	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	9/24/2012	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	10/1/2012	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	10/8/2012	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	10/15/2012	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	10/22/2012	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	10/29/2012	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	11/5/2012	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	11/13/2012	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	11/19/2012	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	11/26/2012	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	12/3/2012	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	12/10/2012	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	12/17/2012	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	12/24/2012	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	1/2/2013	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	1/7/2013	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	1/14/2013	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	1/22/2013	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	1/28/2013	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	2/4/2013	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	2/11/2013	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	2/19/2013	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	2/25/2013	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	3/6/2013	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	3/10/2013	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	3/11/2013	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	3/18/2013	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	3/25/2013	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	4/1/2013	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	4/8/2013	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	4/15/2013	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	4/22/2013	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	4/29/2013	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	5/6/2013	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	5/13/2013	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	5/20/2013	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	5/28/2013	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	6/3/2013	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	6/10/2013	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	6/18/2013	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	6/24/2013	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	7/1/2013	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	7/8/2013	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	7/15/2013	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	7/22/2013	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	7/29/2013	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	8/5/2013	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	8/12/2013	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	8/19/2013	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	8/26/2013	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	9/3/2013	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	9/9/2013	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	9/16/2013	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	9/23/2013	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	9/30/2013	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	10/7/2013	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	10/14/2013	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	10/21/2013	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	10/28/2013	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	11/4/2013	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	11/12/2013	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	11/18/2013	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	11/25/2013	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	12/2/2013	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	12/9/2013	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	12/16/2013	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	12/23/2013	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	12/30/2013	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	1/6/2014	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	1/13/2014	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	1/21/2014	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	1/28/2014	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	2/5/2014	Ammonia-N	SM4500-NH3		4.4	mg/L			Grab
EFF-001	2/10/2014	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	2/11/2014	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	2/12/2014	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	2/13/2014	Ammonia-N	SM4500-NH3		1.8	mg/L			Grab
EFF-001	2/14/2014	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	2/18/2014	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	2/24/2014	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	3/3/2014	Ammonia-N	SM4500-NH3		3.5	mg/L			Grab
EFF-001	3/5/2014	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	3/6/2014	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	3/17/2014	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	3/24/2014	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	3/31/2014	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	4/1/2014	Ammonia-N	SM4500-NH3		1.8	mg/L			Grab
EFF-001	4/2/2014	Ammonia-N	SM4500-NH3		2	mg/L			Grab
EFF-001	4/3/2014	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	4/4/2014	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	4/7/2014	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	4/14/2014	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	4/16/2014	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	4/17/2014	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	4/22/2014	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	4/28/2014	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	5/5/2014	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	5/12/2014	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	5/19/2014	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	5/27/2014	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	6/2/2014	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	6/9/2014	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	6/16/2014	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	6/23/2014	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	6/30/2014	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	7/7/2014	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	7/14/2014	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	7/21/2014	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	7/28/2014	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	8/4/2014	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	8/11/2014	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	8/18/2014	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	8/25/2014	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	9/2/2014	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	9/8/2014	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	9/15/2014	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	9/22/2014	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	9/29/2014	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	10/6/2014	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	10/13/2014	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	10/20/2014	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	10/27/2014	Ammonia-N	SM4500-NH3	ND	1	mg/L			Grab
EFF-001	1/14/2010	Anthracene	8270C	ND	0.6	ug/L			Comp
EFF-001	4/16/2012	Anthracene	8270C	ND	0.5	ug/L			Comp/ Grab
EFF-001	5/13/2012	Anthracene	8270C	ND	0.5	ug/L			Comp
EFF-001	6/10/2012	Anthracene	8270C	ND	0.5	ug/L			Comp
EFF-001	7/8/2012	Anthracene	8270C	ND	0.5	ug/L			Comp

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	8/12/2012	Anthracene	8270C	ND	0.5	ug/L		0.5	Comp
EFF-001	9/9/2012	Anthracene	8270C	ND	0.5	ug/L		0.5	Comp
EFF-001	10/7/2012	Anthracene	8270C	ND	0.5	ug/L		0.5	Comp
EFF-001	11/4/2012	Anthracene	8270C	ND	0.5	ug/L		0.5	comp
EFF-001	12/2/2012	Anthracene	8270C	ND	0.5	ug/L		0.5	Comp
EFF-001	1/13/2013	Anthracene	8270C	ND	0.5	ug/L		0.5	Comp
EFF-001	2/3/2013	Anthracene	8270C	ND	0.5	ug/L		0.5	Comp
EFF-001	3/10/2013	Anthracene	8270C	ND	0.5	ug/L		0.5	Comp
EFF-001	1/14/2010	Antimony	200.8		1.4	ug/L			Comp
EFF-001	2/8/2010	Antimony	200.8		1.4	ug/L			Comp
EFF-001	3/16/2010	Antimony	200.8	ND	0.5	ug/L			comp
EFF-001	4/6/2010	Antimony	200.8		1.3	ug/L			Comp
EFF-001	8/3/2010	Antimony	200.8		30	ug/L			comp
EFF-001	8/8/2011	Antimony	200.8		4.4	ug/L			Comp
EFF-001	4/16/2012	Antimony	200.8	ND	1	ug/L			Comp/ Grab
EFF-001	5/13/2012	Antimony	200.8		2.1	ug/L			Comp
EFF-001	6/10/2012	Antimony	200.8	ND	0.5	ug/L			Comp
EFF-001	7/8/2012	Antimony	200.8	ND	0.5	ug/L			Comp
EFF-001	8/12/2012	Antimony	200.8	ND	0.5	ug/L		0.5	Comp
EFF-001	9/9/2012	Antimony	200.8	ND	0.5	ug/L		0.5	Comp
EFF-001	10/7/2012	Antimony	200.8		1.5	ug/L			Comp
EFF-001	11/4/2012	Antimony	200.8		1.0	ug/L			comp
EFF-001	12/2/2012	Antimony	200.8	ND	0.5	ug/L		0.5	Comp
EFF-001	1/13/2013	Antimony	200.8	ND	0.5	ug/L		0.5	Comp
EFF-001	2/3/2013	Antimony	200.8		1	ug/L			Comp
EFF-001	3/10/2013	Antimony	200.8		1.0	ug/L			Comp
EFF-001	1/14/2010	Arochlor 1016	8082	ND	0.05	ug/L			Comp
EFF-001	4/16/2012	Arochlor 1016	608	ND	0.5	ug/L			Comp/ Grab
EFF-001	5/13/2012	Arochlor 1016	8082	ND	0.05	ug/L			Comp
EFF-001	6/10/2012	Arochlor 1016	608	ND	0.5	ug/L			Comp
EFF-001	7/8/2012	Arochlor 1016	608	ND	0.5	ug/L			Comp

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	1/14/2010	Arochlor 1221	8082	ND	0.1	ug/L			Comp
EFF-001	4/16/2012	Arochlor 1221	8082	ND	0.5	ug/L			Comp/ Grab
EFF-001	5/13/2012	Arochlor 1221	8082	ND	0.14	ug/L			Comp
EFF-001	6/10/2012	Arochlor 1221	8082	ND	0.5	ug/L			Comp
EFF-001	7/8/2012	Arochlor 1221	8082	ND	0.5	ug/L			Comp
EFF-001	1/14/2010	Arochlor 1232	8082	ND	0.09	ug/L			Comp
EFF-001	4/16/2012	Arochlor 1232	8082	ND	0.5	ug/L			Comp/ Grab
EFF-001	5/13/2012	Arochlor 1232	8082	ND	0.09	ug/L			Comp
EFF-001	6/10/2012	Arochlor 1232	8082	ND	0.5	ug/L			Comp
EFF-001	7/8/2012	Arochlor 1232	8082	ND	0.5	ug/L			Comp
EFF-001	1/14/2010	Arochlor 1242	8082	ND	0.06	ug/L			Comp
EFF-001	4/16/2012	Arochlor 1242	8082	ND	0.5	ug/L			Comp/ Grab
EFF-001	5/13/2012	Arochlor 1242	8082	ND	0.06	ug/L			Comp
EFF-001	6/10/2012	Arochlor 1242	8082	ND	0.5	ug/L			Comp
EFF-001	7/8/2012	Arochlor 1242	8082	ND	0.5	ug/L			Comp
EFF-001	1/14/2010	Arochlor 1248	8082	ND	0.2	ug/L			Comp
EFF-001	4/16/2012	Arochlor 1248	8082	ND	0.5	ug/L			Comp/ Grab
EFF-001	5/13/2012	Arochlor 1248	8082	ND	0.15	ug/L			Comp
EFF-001	6/10/2012	Arochlor 1248	8082	ND	0.5	ug/L			Comp
EFF-001	7/8/2012	Arochlor 1248	8082	ND	0.5	ug/L			Comp
EFF-001	1/14/2010	Arochlor 1254	8082	ND	0.06	ug/L			Comp
EFF-001	4/16/2012	Arochlor 1254	8082	ND	0.5	ug/L			Comp/ Grab
EFF-001	5/13/2012	Arochlor 1254	8082	ND	0.06	ug/L			Comp
EFF-001	6/10/2012	Arochlor 1254	8082	ND	0.5	ug/L			Comp
EFF-001	7/8/2012	Arochlor 1254	8082	ND	0.5	ug/L			Comp
EFF-001	1/14/2010	Arochlor 1260	8082	ND	0.2	ug/L			Comp
EFF-001	4/16/2012	Arochlor 1260	8082	ND	0.5	ug/L			Comp/ Grab
EFF-001	5/13/2012	Arochlor 1260	8082	ND	0.22	ug/L			Comp
EFF-001	6/10/2012	Arochlor 1260	8082	ND	0.5	ug/L			Comp
EFF-001	7/8/2012	Arochlor 1260	8082	ND	0.5	ug/L			Comp
EFF-001	1/14/2010	Arsenic (Total)	200.8/1632		6.8	ug/L			Comp

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	2/8/2010	Arsenic (Total)	200.8/1632		8	ug/L			Comp
EFF-001	3/16/2010	Arsenic (Total)	200.8/1632		7	ug/L			comp
EFF-001	4/6/2010	Arsenic (Total)	200.8/1632		8.7	ug/L			Comp
EFF-001	8/2/2010	Arsenic (Total)	200.8/1632		5.7	ug/L			Comp
EFF-001	8/3/2010	Arsenic (Total)	200.8/1632		9.5	ug/L			comp
EFF-001	8/8/2011	Arsenic (Total)	200.8/1632		5.38	ug/L			Comp
EFF-001	2/5/2012	Arsenic (Total)	200.8/1632		5.5	ug/L			Comp
EFF-001	4/16/2012	Arsenic (Total)	200.8/1632		6.1	ug/L			Comp/ Grab
EFF-001	5/13/2012	Arsenic (Total)	200.8/1632		7	ug/L			Comp
EFF-001	6/10/2012	Arsenic (Total)	200.8/1632		9.7	ug/L			Comp
EFF-001	7/8/2012	Arsenic (Total)	200.8/1632		5.5	ug/L			Comp
EFF-001	8/12/2012	Arsenic (Total)	200.8/1632		6.3	ug/L			Comp
EFF-001	9/9/2012	Arsenic (Total)	200.8/1632		5.9	ug/L			Comp
EFF-001	10/7/2012	Arsenic (Total)	200.8/1632		6.8	ug/L			Comp
EFF-001	11/4/2012	Arsenic (Total)	200.8/1632		6.08	ug/L			comp
EFF-001	12/2/2012	Arsenic (Total)	200.8/1632		6.6	ug/L			Comp
EFF-001	1/13/2013	Arsenic (Total)	200.8/1632		5	ug/L			Comp
EFF-001	2/3/2013	Arsenic (Total)	200.8/1632		5.4	ug/L			Comp
EFF-001	3/10/2013	Arsenic (Total)	200.8/1632		5.40	ug/L			Comp
EFF-001	1/12/2010	Asbestos	600/R-94/134-(100.2)	ND		MFL			Grab
EFF-001	4/3/2012	Asbestos	600/R-94/134-(100.2)	ND		MFL			Comp
EFF-001	5/14/2012	Asbestos	600/R-94/134-(100.2)	ND		MFL			Grab
EFF-001	6/11/2012	Asbestos	600/R-94/134-(100.2)	ND		MFL			Grab
EFF-001	7/9/2012	Asbestos	600/R-94/134-(100.2)	ND		MFL			Grab
EFF-001	1/14/2010	Barium (Total)	200.8		60.1	ug/L			Comp
EFF-001	2/8/2010	Barium (Total)	200.8		55	ug/L			Comp
EFF-001	3/16/2010	Barium (Total)	200.8		48	ug/L			comp
EFF-001	4/6/2010	Barium (Total)	200.8		45	ug/L			Comp
EFF-001	8/2/2010	Barium (Total)	200.8		65	ug/L			Comp
EFF-001	8/3/2010	Barium (Total)	200.8		65	ug/L			comp
EFF-001	8/8/2011	Barium (Total)	200.8		55.4	ug/L			Comp

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	2/5/2012	Barium (Total)	200.8		54	ug/L			Comp
EFF-001	4/16/2012	Barium (Total)	200.8		54	ug/L			Comp/ Grab
EFF-001	1/12/2010	Benzene	8260B	ND	0.3	ug/L			Grab
EFF-001	2/2/2010	Benzene	8260B	ND	0.3	ug/L			Grab
EFF-001	4/16/2012	Benzene	8260B	ND	0.1	ug/L			Comp/ Grab
EFF-001	5/14/2012	Benzene	8260B	ND	0.1	ug/L			Grab
EFF-001	6/11/2012	Benzene	8260B	ND	0.1	ug/L			Grab
EFF-001	7/9/2012	Benzene	8260B	ND	0.1	ug/L			Grab
EFF-001	8/13/2012	Benzene	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	9/10/2012	Benzene	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	10/8/2012	Benzene	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	11/5/2012	Benzene	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	12/3/2012	Benzene	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	1/14/2013	Benzene	8260B/624	ND	0.1	ug/L		0.1	Comp/Grab
EFF-001	2/4/2013	Benzene	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	3/11/2013	Benzene	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	1/14/2010	Benzidine	8270C	ND	2.5	ug/L			Comp
EFF-001	4/16/2012	Benzidine	8270C	ND	2.5	ug/L			Comp/ Grab
EFF-001	5/13/2012	Benzidine	8270C	ND	2.5	ug/L			Comp
EFF-001	6/10/2012	Benzidine	8270C	ND	2.5	ug/L			Comp
EFF-001	7/8/2012	Benzidine	8270C	ND	2.5	ug/L			Comp
EFF-001	8/12/2012	Benzidine	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	9/9/2012	Benzidine	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	10/7/2012	Benzidine	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	11/4/2012	Benzidine	8270C	ND	0.2	ug/L		0.2	comp
EFF-001	12/2/2012	Benzidine	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	1/13/2013	Benzidine	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	2/3/2013	Benzidine	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	3/10/2013	Benzidine	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	1/14/2010	Benzo(a)anthracene	8270C	ND	1.3	ug/L			Comp
EFF-001	4/16/2012	Benzo(a)anthracene	8270C	ND	1	ug/L			Comp/ Grab

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	5/13/2012	Benzo(a)anthracene	8270C	ND	1	ug/L			Comp
EFF-001	6/10/2012	Benzo(a)anthracene	8270C	ND	1	ug/L			Comp
EFF-001	7/8/2012	Benzo(a)anthracene	8270C	ND	1	ug/L			Comp
EFF-001	8/12/2012	Benzo(a)anthracene	8270C	ND	1	ug/L		1	Comp
EFF-001	9/9/2012	Benzo(a)anthracene	8270C	ND	1	ug/L		1	Comp
EFF-001	10/7/2012	Benzo(a)anthracene	8270C	ND	1	ug/L		1	Comp
EFF-001	11/4/2012	Benzo(a)anthracene	8270C	ND	1	ug/L		1	comp
EFF-001	12/2/2012	Benzo(a)anthracene	8270C	ND	1	ug/L		1	Comp
EFF-001	1/13/2013	Benzo(a)anthracene	8270C	ND	1	ug/L		1	Comp
EFF-001	2/3/2013	Benzo(a)anthracene	8270C	ND	1	ug/L		1	Comp
EFF-001	3/10/2013	Benzo(a)anthracene	8270C	ND	1	ug/L		1	Comp
EFF-001	1/14/2010	Benzo(a)pyrene	8270C	ND	0.2	ug/L			Comp
EFF-001	4/16/2012	Benzo(a)pyrene	8270C	ND	0.2	ug/L			Comp/ Grab
EFF-001	5/13/2012	Benzo(a)pyrene	8270C	ND	0.2	ug/L			Comp
EFF-001	6/10/2012	Benzo(a)pyrene	8270C	ND	0.2	ug/L			Comp
EFF-001	7/8/2012	Benzo(a)pyrene	8270C	ND	0.2	ug/L			Comp
EFF-001	8/12/2012	Benzo(a)pyrene	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	9/9/2012	Benzo(a)pyrene	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	10/7/2012	Benzo(a)pyrene	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	11/4/2012	Benzo(a)pyrene	8270C	ND	0.2	ug/L		0.2	comp
EFF-001	12/2/2012	Benzo(a)pyrene	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	1/13/2013	Benzo(a)pyrene	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	2/3/2013	Benzo(a)pyrene	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	3/10/2013	Benzo(a)pyrene	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	1/14/2010	Benzo(g,h,I)perylene	8270C	ND	0.3	ug/L			Comp
EFF-001	4/16/2012	Benzo(g,h,I)perylene	8270C	ND	0.3	ug/L			Comp/ Grab
EFF-001	5/13/2012	Benzo(g,h,I)perylene	8270C	ND	0.3	ug/L			Comp
EFF-001	6/10/2012	Benzo(g,h,I)perylene	8270C	ND	0.3	ug/L			Comp
EFF-001	7/8/2012	Benzo(g,h,I)perylene	8270C	ND	0.3	ug/L			Comp
EFF-001	8/12/2012	Benzo(g,h,I)perylene	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	9/9/2012	Benzo(g,h,I)perylene	8270C	ND	0.3	ug/L		0.3	Comp

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	10/7/2012	Benzo(g,h,I)perylene	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	11/4/2012	Benzo(g,h,I)perylene	8270C	ND	0.3	ug/L		0.3	comp
EFF-001	12/2/2012	Benzo(g,h,I)perylene	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	1/13/2013	Benzo(g,h,I)perylene	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	2/3/2013	Benzo(g,h,I)perylene	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	3/10/2013	Benzo(g,h,I)perylene	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	1/14/2010	Benzo(k)fluoranthene	8270C	ND	0.7	ug/L			Comp
EFF-001	4/16/2012	Benzo(k)fluoranthene	8270C	ND	0.7	ug/L			Comp/ Grab
EFF-001	5/13/2012	Benzo(k)fluoranthene	8270C	ND	0.7	ug/L			Comp
EFF-001	6/10/2012	Benzo(k)fluoranthene	8270C	ND	0.7	ug/L			Comp
EFF-001	7/8/2012	Benzo(k)fluoranthene	8270C	ND	0.7	ug/L			Comp
EFF-001	8/12/2012	Benzo(k)fluoranthene	8270C	ND	0.7	ug/L		0.7	Comp
EFF-001	9/9/2012	Benzo(k)fluoranthene	8270C	ND	0.7	ug/L		0.7	Comp
EFF-001	10/7/2012	Benzo(k)fluoranthene	8270C	ND	0.7	ug/L		0.7	Comp
EFF-001	11/4/2012	Benzo(k)fluoranthene	8270C	ND	0.7	ug/L		0.7	comp
EFF-001	12/2/2012	Benzo(k)fluoranthene	8270C	ND	0.7	ug/L		0.7	Comp
EFF-001	1/13/2013	Benzo(k)fluoranthene	8270C	ND	0.7	ug/L		0.7	Comp
EFF-001	2/3/2013	Benzo(k)fluoranthene	8270C	ND	0.7	ug/L		0.7	Comp
EFF-001	3/10/2013	Benzo(k)fluoranthene	8270C	ND	0.7	ug/L		0.7	Comp
EFF-001	1/14/2010	Beryllium (Total)	200.8	J	0.03	ug/L			Comp
EFF-001	2/8/2010	Beryllium (Total)	200.8	ND	0.02	ug/L			Comp
EFF-001	3/16/2010	Beryllium (Total)	200.8	ND	0.02	ug/L			comp
EFF-001	4/6/2010	Beryllium (Total)	200.8	ND	0.02	ug/L			Comp
EFF-001	8/3/2010	Beryllium (Total)	200.8	ND	0.02	ug/L			comp
EFF-001	8/8/2011	Beryllium (Total)	200.8	J	0.02	ug/L			Comp
EFF-001	2/5/2012	Beryllium (Total)	200.8	ND	0.02	ug/L			Comp
EFF-001	4/16/2012	Beryllium (Total)	200.8	ND	0.1	ug/L			Comp/ Grab
EFF-001	5/13/2012	Beryllium (Total)	200.8	ND	0.02	ug/L			Comp
EFF-001	6/10/2012	Beryllium (Total)	200.8	ND	0.02	ug/L			Comp
EFF-001	7/8/2012	Beryllium (Total)	200.8	ND	0.02	ug/L			Comp
EFF-001	8/12/2012	Beryllium (Total)	200.8	ND	0.02	ug/L		0.02	Comp

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	9/9/2012	Beryllium (Total)	200.8	ND	0.02	ug/L		0.02	Comp
EFF-001	10/7/2012	Beryllium (Total)	200.8	ND	0.02	ug/L		0.02	Comp
EFF-001	11/4/2012	Beryllium (Total)	200.8	ND	0.02	ug/L		0.02	comp
EFF-001	12/2/2012	Beryllium (Total)	200.8	ND	0.02	ug/L		0.02	Comp
EFF-001	1/13/2013	Beryllium (Total)	200.8	ND	0.02	ug/L		0.02	Comp
EFF-001	2/3/2013	Beryllium (Total)	200.8	ND	0.02	ug/L		0.02	Comp
EFF-001	3/10/2013	Beryllium (Total)	200.8	ND	0.02	ug/L		0.02	Comp
EFF-001	1/14/2010	Beta-BHC	8081A/608	ND	0.08	ug/L			Comp
EFF-001	4/16/2012	Beta-BHC	8081A/608	ND	0.1	ug/L			Comp/ Grab
EFF-001	5/13/2012	Beta-BHC	8081A/608	ND	0.005	ug/L			Comp
EFF-001	6/10/2012	Beta-BHC	8081A/608	ND	0.1	ug/L			Comp
EFF-001	7/8/2012	Beta-BHC	8081A/608	ND	0.1	ug/L			Comp
EFF-001	1/14/2010	beta-Endosulfan	8081A/608	ND	0.05	ug/L			Comp
EFF-001	4/16/2012	beta-Endosulfan	8081A/608	ND	0.5	ug/L			Comp/ Grab
EFF-001	5/13/2012	beta-Endosulfan	8081A/608	ND	0.01	ug/L			Comp
EFF-001	6/10/2012	beta-Endosulfan	8081A/608	ND	0.5	ug/L			Comp
EFF-001	7/8/2012	beta-Endosulfan	8081A/608	ND	0.5	ug/L			Comp
EFF-001	5/3/2010	Bicarbonate	SM2320B		95	mg/L			Comp
EFF-001	2/21/2011	Bicarbonate	SM2320B		96.5	mg/L			comp
EFF-001	8/8/2011	Bicarbonate	SM2320B		101	mg/L			Comp
EFF-001	2/5/2012	Bicarbonate	SM2320B		110	mg/L			Comp
EFF-001	8/7/2012	Bicarbonate	SM2320B		126	mg/L			Comp
EFF-001	1/14/2010	Bis(2-chloroethoxy)methane	8270C	ND	0.2	ug/L			Comp
EFF-001	4/16/2012	Bis(2-chloroethoxy)methane	8270C	ND	0.2	ug/L			Comp/ Grab
EFF-001	5/13/2012	Bis(2-chloroethoxy)methane	8270C	ND	0.2	ug/L			Comp
EFF-001	6/10/2012	Bis(2-chloroethoxy)methane	8270C	ND	0.2	ug/L			Comp
EFF-001	7/8/2012	Bis(2-chloroethoxy)methane	8270C	ND	0.2	ug/L			Comp
EFF-001	8/12/2012	Bis(2-chloroethoxy)methane	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	9/9/2012	Bis(2-chloroethoxy)methane	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	10/7/2012	Bis(2-chloroethoxy)methane	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	11/4/2012	Bis(2-chloroethoxy)methane	8270C	ND	0.2	ug/L		0.2	comp

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	12/2/2012	Bis(2-chloroethoxy)methane	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	1/13/2013	Bis(2-chloroethoxy)methane	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	2/3/2013	Bis(2-chloroethoxy)methane	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	3/10/2013	Bis(2-chloroethoxy)methane	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	1/14/2010	Bis (2-chloroethyl) Ether	8270C	ND	0.2	ug/L			Comp
EFF-001	4/16/2012	Bis (2-chloroethyl) Ether	8270C	ND	0.2	ug/L			Comp/ Grab
EFF-001	5/13/2012	Bis (2-chloroethyl) Ether	8270C	ND	0.2	ug/L			Comp
EFF-001	6/10/2012	Bis (2-chloroethyl) Ether	8270C	ND	0.2	ug/L			Comp
EFF-001	7/8/2012	Bis (2-chloroethyl) Ether	8270C	ND	0.2	ug/L			Comp
EFF-001	8/12/2012	Bis (2-chloroethyl) Ether	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	9/9/2012	Bis (2-chloroethyl) Ether	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	10/7/2012	Bis (2-chloroethyl) Ether	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	11/4/2012	Bis (2-chloroethyl) Ether	8270C	ND	0.2	ug/L		0.2	comp
EFF-001	12/2/2012	Bis (2-chloroethyl) Ether	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	1/13/2013	Bis (2-chloroethyl) Ether	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	2/3/2013	Bis (2-chloroethyl) Ether	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	3/10/2013	Bis (2-chloroethyl) Ether	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	1/14/2010	Bis (2-chlorois opropyl) Ether	8270C	ND	0.2	ug/L			Comp
EFF-001	4/16/2012	Bis (2-chlorois opropyl) Ether	8270C	ND	0.2	ug/L			Comp/ Grab
EFF-001	5/13/2012	Bis (2-chlorois opropyl) Ether	8270C	ND	0.2	ug/L			Comp
EFF-001	6/10/2012	Bis (2-chlorois opropyl) Ether	8270C	ND	0.2	ug/L			Comp
EFF-001	7/8/2012	Bis (2-chlorois opropyl) Ether	8270C	ND	0.2	ug/L			Comp
EFF-001	8/12/2012	Bis (2-chlorois opropyl) Ether	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	9/9/2012	Bis (2-chlorois opropyl) Ether	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	10/7/2012	Bis (2-chlorois opropyl) Ether	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	11/4/2012	Bis (2-chlorois opropyl) Ether	8270C	ND	0.3	ug/L		0.3	comp
EFF-001	12/2/2012	Bis (2-chlorois opropyl) Ether	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	1/13/2013	Bis (2-chlorois opropyl) Ether	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	2/3/2013	Bis (2-chlorois opropyl) Ether	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	3/10/2013	Bis (2-chlorois opropyl) Ether	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	1/14/2010	Bis(2-ethylhexyl)phthalate	8270C		2.3	ug/L			Comp

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	3/15/2010	Bis(2-ethylhexyl)phthalate	8270C	J	0.9	ug/L			Grab
EFF-001	4/7/2010	Bis(2-ethylhexyl)phthalate	8270C		2.2	ug/L			Grab
EFF-001	7/7/2010	Bis(2-ethylhexyl)phthalate	8270C	ND	0.2	ug/L			Grab
EFF-001	10/1/2010	Bis(2-ethylhexyl)phthalate	8270C	ND	0.2	ug/L			Grab
EFF-001	1/18/2011	Bis(2-ethylhexyl)phthalate	8270C	ND	0.2	ug/L			Grab
EFF-001	4/4/2011	Bis(2-ethylhexyl)phthalate	8270C		1	ug/L			Grab
EFF-001	7/11/2011	Bis(2-ethylhexyl)phthalate	8270C	ND	0.17	ug/L			grab
EFF-001	10/10/2011	Bis(2-ethylhexyl)phthalate	8270C	ND	0.17	ug/L			grab
EFF-001	1/9/2012	Bis(2-ethylhexyl)phthalate	8270C	ND	0.2	ug/L			grab
EFF-001	4/16/2012	Bis(2-ethylhexyl)phthalate	8270C	ND	0.2	ug/L			Comp/ Grab
EFF-001	5/13/2012	Bis(2-ethylhexyl)phthalate	8270C		2.5	ug/L			Comp
EFF-001	5/14/2012	Bis(2-ethylhexyl)phthalate	8270C	ND	0.2	ug/L			Grab
EFF-001	6/10/2012	Bis(2-ethylhexyl)phthalate	8270C		2.5	ug/L			Comp
EFF-001	6/11/2012	Bis(2-ethylhexyl)phthalate	8270C		3	ug/L			Grab
EFF-001	7/9/2012	Bis(2-ethylhexyl)phthalate	8270C	J	1.4	ug/L			Grab
EFF-001	8/13/2012	Bis(2-ethylhexyl)phthalate	8270C		2.2	ug/L			Grab
EFF-001	9/10/2012	Bis(2-ethylhexyl)phthalate	8270C	ND	0.2	ug/L		0.2	Grab
EFF-001	10/8/2012	Bis(2-ethylhexyl)phthalate	8270C	ND	0.2	ug/L		0.2	Grab
EFF-001	11/5/2012	Bis(2-ethylhexyl)phthalate	625	J	0.8	ug/L			Grab
EFF-001	12/3/2012	Bis(2-ethylhexyl)phthalate	8270C	ND	0.2	ug/L		0.2	Grab
EFF-001	1/14/2013	Bis(2-ethylhexyl)phthalate	8270C	ND	0.2	ug/L		0.2	Comp/Grab
EFF-001	2/4/2013	Bis(2-ethylhexyl)phthalate	8270C		0.9	ug/L			Grab
EFF-001	3/11/2013	Bis(2-ethylhexyl)phthalate	8270C		2.0	ug/L			Grab
EFF-001	5/6/2013	Bis(2-ethylhexyl)phthalate	8270C		1.3	ug/L			Grab
EFF-001	8/5/2013	Bis(2-ethylhexyl)phthalate	8270C		6.6	ug/L			Grab
EFF-001	10/7/2013	Bis(2-ethylhexyl)phthalate	8270C	ND	0.2	ug/L		0.2	Grab
EFF-001	3/4/2014	Bis(2-ethylhexyl)phthalate	8270C	ND	0.3	ug/L		0.3	Grab
EFF-001	1/14/2010	Boron	200.8		208	ug/L			Comp
EFF-001	2/8/2010	Boron	200.8		238	ug/L			Comp
EFF-001	3/16/2010	Boron	200.8		260	ug/L			comp
EFF-001	4/6/2010	Boron	200.8		196	ug/L			Comp

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	5/3/2010	Boron	200.8		294	ug/L			Comp
EFF-001	5/3/2010	Boron	200.8		316	ug/L			Comp
EFF-001	6/1/2010	Boron	200.8		208	ug/L			Comp
EFF-001	7/6/2010	Boron	200.8		269	ug/L			Comp
EFF-001	8/3/2010	Boron	200.8		279	ug/L			comp
EFF-001	9/7/2010	Boron	200.8		193	ug/L			comp
EFF-001	10/3/2010	Boron	200.8		226	ug/L			comp
EFF-001	11/1/2010	Boron	200.8		220	ug/L			Comp
EFF-001	12/5/2010	Boron	200.8		231	ug/L			comp
EFF-001	1/17/2011	Boron	200.8		194	ug/L			Comp
EFF-001	2/6/2011	Boron	200.8		255	ug/L			Comp
EFF-001	2/21/2011	Boron	200.8		173	ug/L			comp
EFF-001	3/6/2011	Boron	200.8		170	ug/L			Comp
EFF-001	4/3/2011	Boron	200.8		169	ug/L			comp
EFF-001	5/8/2011	Boron	200.8		210	ug/L			Comp
EFF-001	6/12/2011	Boron	200.8		203	ug/L			comp
EFF-001	7/10/2011	Boron	200.8		197	ug/L			Comp
EFF-001	8/8/2011	Boron	200.8		240	ug/L			Comp
EFF-001	8/8/2011	Boron	200.8		232	ug/L			Grab/Comp
EFF-001	9/5/2011	Boron	200.8		175	ug/L			comp
EFF-001	10/9/2011	Boron	200.8		212	ug/L			Comp
EFF-001	11/7/2011	Boron	200.8		152	ug/L			comp
EFF-001	12/4/2011	Boron	200.8		173	ug/L			Comp
EFF-001	1/8/2012	Boron	200.8		165	ug/L			Composite
EFF-001	2/5/2012	Boron	200.8		190	ug/L			Comp
EFF-001	3/11/2012	Boron	200.8		158	ug/L			Comp
EFF-001	4/16/2012	Boron	200.8		157	ug/L			Comp/ Grab
EFF-001	5/13/2012	Boron	200.8		223	ug/L			Comp
EFF-001	6/10/2012	Boron	200.8		173	ug/L			Comp
EFF-001	7/8/2012	Boron	200.8		204	ug/L			Comp
EFF-001	8/7/2012	Boron	200.8		245	ug/L			Comp

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	8/7/2012	Boron	200.8		245	ug/L			Comp
EFF-001	8/12/2012	Boron	200.8		224	ug/L			Comp
EFF-001	9/9/2012	Boron	200.8		200	ug/L			Comp
EFF-001	10/7/2012	Boron	200.8		164	ug/L			Comp
EFF-001	11/4/2012	Boron	200.8		175	ug/L			comp
EFF-001	12/2/2012	Boron	200.8		155	ug/L			Comp
EFF-001	1/13/2013	Boron	200.8		155	ug/L			Comp
EFF-001	2/3/2013	Boron	200.8		180	ug/L			Comp
EFF-001	3/10/2013	Boron	200.8		155	ug/L			Comp
EFF-001	4/7/2013	Boron	200.8		175	ug/L			Comp
EFF-001	5/5/2013	Boron	200.8		178	ug/L			Comp
EFF-001	6/3/2013	Boron	200.8		186	ug/L			Comp
EFF-001	7/7/2013	Boron	200.8		178	ug/L			Comp
EFF-001	8/4/2013	Boron	200.8		190	ug/L			Comp
EFF-001	9/9/2013	Boron	200.8		204	ug/L			Comp
EFF-001	10/6/2013	Boron	200.8		200	ug/L			Comp
EFF-001	11/3/2013	Boron	200.8		157	ug/L			Comp
EFF-001	12/1/2013	Boron	200.8		164	ug/L			Comp
EFF-001	1/20/2014	Boron	200.8		162	ug/L			Comp
EFF-001	2/17/2014	Boron	200.8		203	ug/L			Comp
EFF-001	3/3/2014	Boron	200.8		147	ug/L			Comp
EFF-001	4/6/2014	Boron	200.8		193	ug/L			Comp
EFF-001	1/12/2010	Bromoform	8260B	ND	0.3	ug/L			Grab
EFF-001	2/2/2010	Bromoform	8260B	ND	0.3	ug/L			Grab
EFF-001	6/13/2011	Bromoform	8260B	ND	0.21	ug/L			grab
EFF-001	7/11/2011	Bromoform	8260B	ND	0.21	ug/L			grab
EFF-001	4/16/2012	Bromoform	8260B	ND	0.2	ug/L			Comp/ Grab
EFF-001	5/14/2012	Bromoform	8260B	J	0.3	ug/L			Grab
EFF-001		Bromoform	8260B	J	0.4	ug/L			Grab
EFF-001		Bromoform	8260B	J	0.4	ug/L			Grab
EFF-001	8/13/2012	Bromoform	8260B/624	J	0.5	ug/L			Grab

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	9/10/2012	Bromoform	8260B/624	ND	0.2	ug/L		0.2	Grab
EFF-001	10/8/2012	Bromoform	8260B/624	J	0.4	ug/L			Grab
EFF-001	11/5/2012	Bromoform	8260B/624	J	0.3	ug/L			Grab
EFF-001	12/3/2012	Bromoform	8260B/624	ND	0.2	ug/L		0.2	Grab
EFF-001	1/14/2013	Bromoform	8260B/624	ND	0.2	ug/L		0.2	Comp/Grab
EFF-001	2/4/2013	Bromoform	8260B/624	ND	0.2	ug/L		0.2	Grab
EFF-001	3/11/2013	Bromoform	8260B/624	ND	2	ug/L		2	Grab
EFF-001	8/13/2012	Bromomethane	8260B/624	ND	0.4	ug/L		0.4	Grab
EFF-001	9/10/2012	Bromomethane	8260B/624	ND	0.4	ug/L		0.4	Grab
EFF-001	10/8/2012	Bromomethane	8260B/624	ND	0.4	ug/L		0.4	Grab
EFF-001	11/5/2012	Bromomethane	8260B/624	ND	0.4	ug/L		0.4	Grab
EFF-001	12/3/2012	Bromomethane	8260B/624	ND	0.4	ug/L		0.4	Grab
EFF-001	1/14/2013	Bromomethane	8260B/624	ND	0.4	ug/L		0.4	Comp/Grab
EFF-001	2/4/2013	Bromomethane	8260B/624	ND	0.4	ug/L		0.4	Grab
EFF-001	3/11/2013	Bromomethane	8260B/624	ND	0.4	ug/L		0.4	Grab
EFF-001	1/14/2010	Butylbenzyl phthalate	8270C	ND	0.5	ug/L			Comp
EFF-001	4/16/2012	Butylbenzyl phthalate	8270C	ND	0.5	ug/L			Comp/ Grab
EFF-001	5/13/2012	Butylbenzyl phthalate	8270C	ND	0.5	ug/L			Comp
EFF-001	6/10/2012	Butylbenzyl phthalate	8270C	ND	0.5	ug/L			Comp
EFF-001	7/8/2012	Butylbenzyl phthalate	8270C	ND	0.5	ug/L			Comp
EFF-001	8/12/2012	Butylbenzylphthalate	8270C	ND	0.5	ug/L		0.5	Comp
EFF-001	9/9/2012	Butylbenzylphthalate	8270C	ND	0.5	ug/L		0.5	Comp
EFF-001	10/7/2012	Butylbenzylphthalate	8270C	ND	0.5	ug/L		0.5	Comp
EFF-001	11/4/2012	Butylbenzylphthalate	8270C	ND	0.5	ug/L		0.5	comp
EFF-001	12/2/2012	Butylbenzylphthalate	8270C	ND	0.5	ug/L		0.5	Comp
EFF-001	1/13/2013	Butylbenzylphthalate	8270C	ND	0.5	ug/L		0.5	Comp
EFF-001	2/3/2013	Butylbenzylphthalate	8270C	ND	0.5	ug/L		0.5	Comp
EFF-001	3/10/2013	Butylbenzylphthalate	8270C	ND	0.5	ug/L		0.5	Comp
EFF-001	1/14/2010	Cadmium (Total)	200.8		0.1	ug/L			Comp
EFF-001	2/8/2010	Cadmium (Total)	200.8	ND	0.04	ug/L			Comp
EFF-001	3/16/2010	Cadmium (Total)	200.8	ND	0.04	ug/L			comp

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	4/6/2010	Cadmium (Total)	200.8	ND	0.04	ug/L			Comp
EFF-001	5/3/2010	Cadmium (Total)	200.7		28.6	mg/L			Comp
EFF-001	8/2/2010	Cadmium (Total)	200.8	ND	0.04	ug/L			Comp
EFF-001	8/2/2010	Cadmium (Total)	200.7		30.9	mg/L			Comp
EFF-001	8/3/2010	Cadmium (Total)	200.8	ND	0.04	ug/L			comp
EFF-001	2/21/2011	Cadmium (Total)	200.7		31.7	mg/L			comp
EFF-001	8/8/2011	Cadmium (Total)	200.8	J	0.08	ug/L			Comp
EFF-001	8/8/2011	Cadmium (Total)	200.7		32.7	mg/L			Comp
EFF-001	2/5/2012	Cadmium (Total)	200.8	ND	0.04	ug/L			Comp
EFF-001	2/5/2012	Cadmium (Total)	200.7		26.3	mg/L			Comp
EFF-001	4/16/2012	Cadmium (Total)	200.8	ND	0.1	ug/L			Comp/ Grab
EFF-001	5/13/2012	Cadmium (Total)	200.8	ND	0.04	ug/L			Comp
EFF-001	6/10/2012	Cadmium (Total)	200.8	ND	0.04	ug/L			Comp
EFF-001	7/8/2012	Cadmium (Total)	200.8	ND	0.04	ug/L			Comp
EFF-001	8/7/2012	Cadmium (Total)	200.7		32.6	mg/L			Comp
EFF-001	8/12/2012	Cadmium (Total)	200.8	ND	0.04	ug/L		0.04	Comp
EFF-001	9/9/2012	Cadmium (Total)	200.8	ND	0.04	ug/L		0.04	Comp
EFF-001	10/7/2012	Cadmium (Total)	200.8	ND	0.04	ug/L		0.04	Comp
EFF-001	11/4/2012	Cadmium (Total)	200.8	ND	0.04	ug/L		0.04	comp
EFF-001	12/2/2012	Cadmium (Total)	200.8	ND	0.04	ug/L		0.04	Comp
EFF-001	1/13/2013	Cadmium (Total)	200.8	ND	0.04	ug/L		0.04	Comp
EFF-001	2/3/2013	Cadmium (Total)	200.8	ND	0.04	ug/L		0.04	Comp
EFF-001	3/10/2013	Cadmium (Total)	200.8	ND	0.04	ug/L		0.04	Comp
EFF-001	1/12/2010	Carbon Tetrachloride	8260B	ND	0.2	ug/L			Grab
EFF-001	2/2/2010	Carbon Tetrachloride	8260B	ND	0.2	ug/L			Grab
EFF-001	3/10/2010	Carbon Tetrachloride	8260B	J	0.39	ug/L			Grab
EFF-001	4/7/2010	Carbon Tetrachloride	8260B	ND	0.2	ug/L			Grab
EFF-001	5/4/2010	Carbon Tetrachloride	8260B	ND	0.2	ug/L			Grab
EFF-001	6/2/2010	Carbon Tetrachloride	8260B	J	0.4	ug/L			Grab
EFF-001	7/7/2010	Carbon Tetrachloride	8260B	ND	0.2	ug/L			Grab
EFF-001	8/2/2010	Carbon Tetrachloride	8260B	ND	0.2	ug/L			Grab

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	9/8/2010	Carbon Tetrachloride	8260B	ND	0.2	ug/L			Grab
EFF-001	10/1/2010	Carbon Tetrachloride	8260B	J	0.3	ug/L			Grab
EFF-001	11/2/2010	Carbon Tetrachloride	8260B	ND	0.2	ug/L			Grab
EFF-001	12/6/2010	Carbon Tetrachloride	8260B		0.5	ug/L			Grab
EFF-001	1/18/2011	Carbon Tetrachloride	8260B	ND	0.2	ug/L			Grab
EFF-001	2/7/2011	Carbon Tetrachloride	8260B	ND	0.2	ug/L			Grab
EFF-001	3/7/2011	Carbon Tetrachloride	8260B	J	0.23	ug/L			Grab
EFF-001	4/4/2011	Carbon Tetrachloride	8260B		0.5	ug/L			Grab
EFF-001	5/9/2011	Carbon Tetrachloride	8260B	ND	0.2	ug/L			Grab
EFF-001	6/13/2011	Carbon Tetrachloride	8260B	ND	0.2	ug/L			grab
EFF-001	7/11/2011	Carbon Tetrachloride	8260B	ND	0.2	ug/L			grab
EFF-001	8/9/2011	Carbon Tetrachloride	8260B	ND	0.2	ug/L			Grab
EFF-001	9/6/2011	Carbon Tetrachloride	8260B	ND	0.2	ug/L			Grab
EFF-001	10/10/2011	Carbon Tetrachloride	8260B	ND	0.2	ug/L			grab
EFF-001	11/8/2011	Carbon Tetrachloride	8260B	ND	0.2	ug/L			grab
EFF-001	12/5/2011	Carbon Tetrachloride	8260B	ND	0.2	ug/L			Grab
EFF-001	1/9/2012	Carbon Tetrachloride	8260B	ND	0.2	ug/L			grab
EFF-001	2/6/2012	Carbon Tetrachloride	8260B	ND	0.2	ug/L			Grab
EFF-001	3/12/2012	Carbon Tetrachloride	8260B	ND	0.2	ug/L			Grab
EFF-001	4/16/2012	Carbon Tetrachloride	8260B	ND	0.2	ug/L			Comp/ Grab
EFF-001	5/14/2012	Carbon Tetrachloride	8260B	ND	0.2	ug/L			Grab
EFF-001	6/11/2012	Carbon Tetrachloride	8260B	ND	0.2	ug/L			Grab
EFF-001	7/9/2012	Carbon Tetrachloride	8260B	ND	0.2	ug/L			Grab
EFF-001	8/13/2012	Carbon Tetrachloride	8260B/624	ND	0.2	ug/L		0.2	Grab
EFF-001	9/10/2012	Carbon Tetrachloride	8260B/624	ND	0.2	ug/L		0.2	Grab
EFF-001	10/8/2012	Carbon Tetrachloride	8260B/624	ND	0.2	ug/L		0.2	Grab
EFF-001	11/5/2012	Carbon Tetrachloride	8260B/624	ND	0.2	ug/L		0.2	Grab
EFF-001	12/3/2012	Carbon Tetrachloride	8260B/624	ND	0.2	ug/L		0.2	Grab
EFF-001	1/14/2013	Carbon Tetrachloride	8260B/624	ND	0.2	ug/L		0.2	Comp/Grab
EFF-001	2/4/2013	Carbon Tetrachloride	8260B/624	ND	0.2	ug/L		0.2	Grab
EFF-001	3/11/2013	Carbon Tetrachloride	8260B/624	ND	0.2	ug/L		0.2	Grab

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	4/8/2013	Carbon Tetrachloride	8260B/624	ND	0.2	ug/L		0.2	Grab
EFF-001	5/6/2013	Carbon Tetrachloride	8260B/624	ND	0.2	ug/L		0.2	Grab
EFF-001	6/4/2013	Carbon Tetrachloride	8260B/624	ND	0.2	ug/L		0.2	Grab
EFF-001	7/8/2013	Carbon Tetrachloride	8260B/624	ND	0.2	ug/L		0.2	Grab
EFF-001	8/5/2013	Carbon Tetrachloride	8260B/624	ND	0.2	ug/L		0.2	Grab
EFF-001	9/10/2013	Carbon Tetrachloride	8260B/624	ND	0.2	ug/L		0.2	Grab
EFF-001	10/7/2013	Carbon Tetrachloride	8260B/624	ND	0.2	ug/L		0.2	Grab
EFF-001	11/4/2013	Carbon Tetrachloride	8260B/624	J	0.24	ug/L			Grab
EFF-001	12/2/2013	Carbon Tetrachloride	8260B/624	ND	0.2	ug/L		0.2	Grab
EFF-001	1/21/2014	Carbon Tetrachloride	8260B/624	ND	0.2	ug/L		0.2	Grab
EFF-001	2/18/2014	Carbon Tetrachloride	8260B/624	ND	0.2	ug/L		0.2	Grab
EFF-001	3/4/2014	Carbon Tetrachloride	8260B/624	ND	0.2	ug/L		0.2	Grab
EFF-001	4/7/2014	Carbon Tetrachloride	8260B/624	ND	0.2	ug/L		0.2	Grab
EFF-001	5/3/2010	Carbonate	SM2320B	ND		mg/L			Comp
EFF-001	2/21/2011	Carbonate	SM2320B	ND	1	mg/L			comp
EFF-001	8/8/2011	Carbonate	SM2320B	ND	1	mg/L			Comp
EFF-001	2/5/2012	Carbonate	SM2320B	ND	1	mg/L			Comp
EFF-001	8/7/2012	Carbonate	SM2320B	ND	0.6	mg/L		0.6	Comp
EFF-001	5/3/2010	Cation-Anion Balance	SM1030E		6.69	% Diff			Comp
EFF-001	2/21/2011	Cation-Anion Balance	SM1030E		2.4	% Diff			comp
EFF-001	8/7/2012	Cation-Anion Balance	SM1030E		2.69	% Diff			Comp
EFF-001	1/14/2010	Chlordane	8081A/608	ND	0.5	ug/L			Comp
EFF-001	4/16/2012	Chlordane	8081A/608	ND	1	ug/L			Comp/ Grab
EFF-001	5/13/2012	Chlordane	8081A/608	ND	0.1	ug/L			Comp
EFF-001	6/10/2012	Chlordane	8081A/608	ND	1	ug/L			Comp
EFF-001	7/8/2012	Chlordane	8081A/608	ND	1	ug/L			Comp
EFF-001	1/12/2010	Chloride	300.0		104	mg/L			Grab
EFF-001	2/2/2010	Chloride	300.0		100	mg/L			Grab
EFF-001	3/10/2010	Chloride	300.0		119	mg/L			Grab
EFF-001	4/7/2010	Chloride	300.0		66.3	mg/L			Grab
EFF-001	5/3/2010	Chloride	300.0		116	mg/L		1	Comp

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	5/4/2010	Chloride	300.0		115	mg/L			Grab
EFF-001	6/2/2010	Chloride	300.0		120	mg/L			Grab
EFF-001	7/7/2010	Chloride	300.0		109	mg/L			Grab
EFF-001	8/2/2010	Chloride	300.0		113	mg/L			Comp
EFF-001	8/2/2010	Chloride	300.0		110	mg/L			Grab
EFF-001	9/7/2010	Chloride	300.0		121	mg/L			comp
EFF-001	10/1/2010	Chloride	300.0		109	mg/L			Grab
EFF-001	11/2/2010	Chloride	300.0		129	mg/L			Grab
EFF-001	12/6/2010	Chloride	300.0		111	mg/L			Grab
EFF-001	1/18/2011	Chloride	300.0		128	mg/L			Grab
EFF-001	2/7/2011	Chloride	300.0		126	mg/L			Grab
EFF-001	2/21/2011	Chloride	300.0		93.1	mg/L		1	comp
EFF-001	3/7/2011	Chloride	300.0		108	mg/L			Grab
EFF-001	4/4/2011	Chloride	300.0		114	mg/L			Grab
EFF-001	5/9/2011	Chloride	300.0		119	mg/L			Grab
EFF-001	6/13/2011	Chloride	300.0		107	mg/L			grab
EFF-001	7/11/2011	Chloride	300.0		125	mg/L			grab
EFF-001	8/8/2011	Chloride	300.0		136	mg/L			Comp
EFF-001	8/8/2011	Chloride	300.0		120	mg/L			Grab/Comp
EFF-001	9/6/2011	Chloride	300.0		107	mg/L			Grab
EFF-001	10/10/2011	Chloride	300.0		123	mg/L			grab
EFF-001	11/8/2011	Chloride	300.0		143	mg/L			grab
EFF-001	12/5/2011	Chloride	300.0		127	mg/L			Grab
EFF-001	1/9/2012	Chloride	300.0		145	mg/L			grab
EFF-001	2/5/2012	Chloride	300.0		142	mg/L			Comp
EFF-001	2/6/2012	Chloride	300.0		125	mg/L			Grab
EFF-001	3/12/2012	Chloride	300.0		115	mg/L			Grab
EFF-001	4/16/2012	Chloride	300.0		111	mg/L			Comp/ Grab
EFF-001	5/14/2012	Chloride	300.0		121	mg/L			Grab
EFF-001	6/11/2012	Chloride	300.0		124	mg/L			Grab
EFF-001	7/9/2012	Chloride	300.0		121	mg/L			Grab

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	8/7/2012	Chloride	300.0		119	ug/L			Comp
EFF-001	8/13/2012	Chloride	300.0		127	mg/L			Grab
EFF-001	9/10/2012	Chloride	300.0		118	mg/L			Grab
EFF-001	10/8/2012	Chloride	300.0		183	mg/L			Grab
EFF-001	11/5/2012	Chloride	300.0		124	mg/L			Grab
EFF-001	12/3/2012	Chloride	300.0		85.6	mg/L			Grab
EFF-001	1/14/2013	Chloride	300.0		126	mg/L			Comp/Grab
EFF-001	2/4/2013	Chloride	300.0		110	mg/L			Grab
EFF-001	3/11/2013	Chloride	300.0		110	mg/L			Grab
EFF-001	4/8/2013	Chloride	300.0		118	mg/L			Grab
EFF-001	5/6/2013	Chloride	300.0		117	mg/L			Grab
EFF-001	6/4/2013	Chloride	300.0		116	mg/L			Grab
EFF-001	7/8/2013	Chloride	300.0		117	mg/L			Grab
EFF-001	8/5/2013	Chloride	300.0		116	mg/L			Grab
EFF-001	9/10/2013	Chloride	300.0		118	mg/L			Grab
EFF-001	10/7/2013	Chloride	300.0		124	mg/L			Grab
EFF-001	11/4/2013	Chloride	300.0		162	mg/L			Grab
EFF-001	12/2/2013	Chloride	300.0		120	mg/L			Grab
EFF-001	1/21/2014	Chloride	300.0		133	mg/L			Grab
EFF-001	2/18/2014	Chloride	300.0		125	mg/L			Grab
EFF-001	4/7/2014	Chloride	300.0		141	mg/L			Grab
EFF-001	1/12/2010	chlorobenzene	8260B	ND	0.2	ug/L			Grab
EFF-001	2/2/2010	chlorobenzene	8260B	ND	0.2	ug/L			Grab
EFF-001	4/16/2012	chlorobenzene	8260B	ND	0.09	ug/L			Comp/ Grab
EFF-001	5/14/2012	chlorobenzene	8260B	ND	0.09	ug/L			Grab
EFF-001	6/11/2012	chlorobenzene	8260B	ND	0.09	ug/L			Grab
EFF-001	7/9/2012	chlorobenzene	8260B	ND	0.09	ug/L			Grab
EFF-001	1/12/2010	Chloroethane	8260B	ND	0.2	ug/L			Grab
EFF-001	2/2/2010	Chloroethane	8260B	ND	0.2	ug/L			Grab
EFF-001	4/16/2012	Chloroethane	8260B	ND	0.2	ug/L			Comp/ Grab
EFF-001	5/14/2012	Chloroethane	8260B	ND	0.2	ug/L			Grab

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	6/11/2012	Chloroethane	8260B	ND	0.2	ug/L			Grab
EFF-001	7/9/2012	Chloroethane	8260B	ND	0.2	ug/L			Grab
EFF-001	8/13/2012	Chloroethane	8260B/624	ND	0.2	ug/L		0.2	Grab
EFF-001	9/10/2012	Chloroethane	8260B/624	ND	0.2	ug/L		0.2	Grab
EFF-001	10/8/2012	Chloroethane	8260B/624	ND	0.2	ug/L		0.2	Grab
EFF-001	11/5/2012	Chloroethane	8260B/624	ND	0.2	ug/L		0.2	Grab
EFF-001	12/3/2012	Chloroethane	8260B/624	ND	0.2	ug/L		0.2	Grab
EFF-001	1/14/2013	Chloroethane	8260B/624	ND	0.2	ug/L		0.2	Comp/Grab
EFF-001	2/4/2013	Chloroethane	8260B/624	ND	0.2	ug/L		0.2	Grab
EFF-001	3/11/2013	Chloroethane	8260B/624	ND	0.2	ug/L		0.2	Grab
EFF-001	1/12/2010	Chloroform	8260B		22	ug/L			Grab
EFF-001	2/2/2010	Chloroform	8260B		29.6	ug/L			Grab
EFF-001	6/13/2011	Chloroform	8260B		40	ug/L			grab
EFF-001	7/11/2011	Chloroform	8260B		78.5	ug/L			grab
EFF-001	4/16/2012	Chloroform	8260B		48.8	ug/L			Comp/ Grab
EFF-001	5/14/2012	Chloroform	8260B		53.4	ug/L			Grab
EFF-001	6/11/2012	Chloroform	8260B		51.8	ug/L			Grab
EFF-001	7/9/2012	Chloroform	8260B		63.9	ug/L			Grab
EFF-001	8/13/2012	Chloroform	8260B/624		64.4	ug/L			Grab
EFF-001	9/10/2012	Chloroform	8260B/624		67.9	ug/L			Grab
EFF-001	10/8/2012	Chloroform	8260B/624		50.6	ug/L			Grab
EFF-001	11/5/2012	Chloroform	8260B/624		49.7	ug/L			Grab
EFF-001	12/3/2012	Chloroform	8260B/624		34.0	ug/L			Grab
EFF-001	1/14/2013	Chloroform	8260B/624		27.8	ug/L			Comp/Grab
EFF-001	2/4/2013	Chloroform	8260B/624		33.4	ug/L			Grab
EFF-001	3/11/2013	Chloroform	8260B/624		48	ug/L			Grab
EFF-001	1/14/2010	Chlorpyrifos	8141	ND	0.01	ug/L			Comp
EFF-001	4/6/2010	Chlorpyrifos	8141	ND	0.01	ug/L			Comp
EFF-001	7/6/2010	Chlorpyrifos	8141	ND	0.01	ug/L			Comp
EFF-001	10/3/2010	Chlorpyrifos	8141	ND	0.02	ug/L			comp
EFF-001	1/17/2011	Chlorpyrifos	8141	ND	0.01	ug/L			Comp

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	4/3/2011	Chlorpyrifos	8141	ND	0.01	ug/L			comp
EFF-001	7/10/2011	Chlorpyrifos	8141	ND	0.02	ug/L			Comp
EFF-001	10/9/2011	Chlorpyrifos	8141	ND	0.01	ug/L			Comp
EFF-001	1/8/2012	Chlorpyrifos	8141	ND	0.01	ug/L			Composite
EFF-001	4/4/2012	Chlorpyrifos	8141	ND	0.01	ug/L			Comp
EFF-001	7/8/2012	Chlorpyrifos	8141	ND	0.01	ug/L			comp
EFF-001	10/7/2012	Chlorpyrifos	8141	ND	0.01	ug/L		0.01	Comp
EFF-001	3/10/2013	Chlorpyrifos	8141	ND	0.01	ug/L		0.01	Comp
EFF-001	5/5/2013	Chlorpyrifos	8141	ND	0.01	ug/L		0.01	Comp
EFF-001	8/4/2013	Chlorpyrifos	8141	ND	0.01	ug/L		0.01	Comp
EFF-001	10/6/2013	Chlorpyrifos	8141	ND	0.01	ug/L		0.01	Comp
EFF-001	3/3/2014	Chlorpyrifos	8141	ND	0.01	ug/L		0.01	Comp
EFF-001	1/14/2010	Chromium (Total)	200.8		6.9	ug/L			Comp
EFF-001	2/8/2010	Chromium (Total)	200.8		4.7	ug/L			Comp
EFF-001	3/16/2010	Chromium (Total)	200.8		3.5	ug/L			comp
EFF-001	4/6/2010	Chromium (Total)	200.8		3.5	ug/L			Comp
EFF-001	8/2/2010	Chromium (Total)	200.8		2.2	ug/L			Comp
EFF-001	8/3/2010	Chromium (Total)	200.8		3.9	ug/L			comp
EFF-001	8/8/2011	Chromium (Total)	200.8		2.59	ug/L			Comp
EFF-001	2/5/2012	Chromium (Total)	200.8		2.4	ug/L			Comp
EFF-001	4/16/2012	Chromium (Total)	200.8		2.6	ug/L			Comp/ Grab
EFF-001	4/16/2012	Chromium (Total)	200.8		2.3	ug/L			Comp/ Grab
EFF-001	5/13/2012	Chromium (Total)	200.8		3.7	ug/L			Comp
EFF-001	5/13/2012	Chromium (Total)	200.8		3.2	ug/L			Comp
EFF-001	6/10/2012	Chromium (Total)	200.8		3	ug/L			Comp
EFF-001	6/10/2012	Chromium (Total)	200.8		2.7	ug/L			Comp
EFF-001	7/8/2012	Chromium (Total)	200.8		1.9	ug/L			Comp
EFF-001	7/8/2012	Chromium (Total)	200.8		1.5	ug/L			Comp
EFF-001	7/9/2012	Chromium (Total)	200.8		1.5	ug/L			Grab
EFF-001		Chromium (Total)	200.8		2.3	ug/L			Comp
EFF-001	8/12/2012	Chromium (Total)	200.8		1.8	ug/L			Comp

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	9/9/2012	Chromium (Total)	200.8		1.6	ug/L			Comp
EFF-001	9/9/2012	Chromium (Total)	200.8		1.26	ug/L			Comp
EFF-001	10/7/2012	Chromium (Total)	200.8		3.00	ug/L			Comp
EFF-001	10/7/2012	Chromium (Total)	200.8		2.43	ug/L			Comp
EFF-001	11/4/2012	Chromium (Total)	200.8		2.65	ug/L			comp
EFF-001	11/4/2012	Chromium (Total)	200.8		2.13	ug/L			comp
EFF-001	12/2/2012	Chromium (Total)	200.8		3.5	ug/L			Comp
EFF-001	12/2/2012	Chromium (Total)	200.8		3.17	ug/L			Comp
EFF-001	1/13/2013	Chromium (Total)	200.8		3	ug/L			Comp
EFF-001	1/13/2013	Chromium (Total)	200.8		2.7	ug/L			Comp
EFF-001	2/3/2013	Chromium (Total)	200.8		3.3	ug/L			Comp
EFF-001	2/3/2013	Chromium (Total)	200.8		2.95	ug/L			Comp
EFF-001	3/10/2013	Chromium (Total)	200.8	ND	0.08	ug/L		0.08	Comp
EFF-001	4/16/2012	Chromium (VI)	200.8	J	0.31	ug/L			Comp/ Grab
EFF-001	5/13/2012	Chromium (VI)	200.8		0.52	ug/L			Comp
EFF-001	6/10/2012	Chromium (VI)	200.8	J	0.34	ug/L			Comp
EFF-001	7/8/2012	Chromium (VI)	200.8	J	0.41	ug/L			Comp
EFF-001	7/9/2012	Chromium (VI)	200.8	J	0.41	ug/L			Grab
EFF-001	8/12/2012	Chromium (VI)	200.8	J	0.47	ug/L			Comp
EFF-001	9/9/2012	Chromium (VI)	200.8	J	0.34	ug/L			Comp
EFF-001	10/7/2012	Chromium (VI)	200.8		0.57	ug/L			Comp
EFF-001	11/4/2012	Chromium (VI)	200.8		0.52	ug/L			comp
EFF-001	12/2/2012	Chromium (VI)	200.8	J	0.33	ug/L			Comp
EFF-001	1/13/2013	Chromium (VI)	200.8	J	0.3	ug/L			Comp
EFF-001	2/3/2013	Chromium (VI)	200.8	J	0.35	ug/L			Comp
EFF-001	3/10/2013	Chromium (VI)	200.8	J	0.4	ug/L			Comp
EFF-001	1/14/2010	Chrysene	8270C	ND	0.2	ug/L			Comp
EFF-001	4/16/2012	Chrysene	8270C	ND	0.2	ug/L			Comp/ Grab
EFF-001	5/13/2012	Chrysene	8270C	ND	0.2	ug/L			Comp
EFF-001	6/10/2012		8270C	ND	0.2	ug/L			Comp
EFF-001	7/8/2012	Chrysene	8270C	ND	0.2	ug/L			Comp

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	8/12/2012	Chrysene	8270C	ND	0.2	ug/L		0.2	
EFF-001	9/9/2012	Chrysene	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	10/7/2012	Chrysene	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	11/4/2012	Chrysene	8270C	ND	0.2	ug/L		0.2	comp
EFF-001	12/2/2012	Chrysene	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	1/13/2013	Chrysene	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	2/3/2013	Chrysene	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	3/10/2013	Chrysene	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	1/14/2010	Copper (Dissolved)	200.8		5.14	ug/L			Comp
EFF-001	2/8/2010	Copper (Dissolved)	200.8		4.8	ug/L			Comp
EFF-001	3/16/2010	Copper (Dissolved)	200.8		2	ug/L			comp
EFF-001	1/14/2010	Copper (Total)	200.8		6.86	ug/L			Comp
EFF-001	2/8/2010	Copper (Total)	200.8		6	ug/L			Comp
EFF-001	3/16/2010	Copper (Total)	200.8		2	ug/L			comp
EFF-001	4/6/2010	Copper (Total)	200.8		4.2	ug/L			Comp
EFF-001	5/3/2010	Copper (Total)	200.8		2.9	ug/L			Comp
EFF-001	6/1/2010	Copper (Total)	200.8		3.7	ug/L			Comp
EFF-001	7/6/2010	Copper (Total)	200.8		3.1	ug/L			Comp
EFF-001	8/2/2010	Copper (Total)	200.8		9.9	ug/L			Comp
EFF-001	8/3/2010	Copper (Total)	200.8		7.2	ug/L			comp
EFF-001	9/7/2010	Copper (Total)	200.8		3	ug/L			comp
EFF-001	10/3/2010	Copper (Total)	200.8		2.8	ug/L			comp
EFF-001		Copper (Total)	200.8		4	ug/L			Comp
EFF-001	12/5/2010	Copper (Total)	200.8		3.2	ug/L			comp
EFF-001	1/17/2011	Copper (Total)	200.8		6.5	ug/L			Comp
EFF-001	2/6/2011	Copper (Total)	200.8		5.9	ug/L			Comp
EFF-001	3/6/2011	Copper (Total)	200.8		4.3	ug/L			Comp
EFF-001	4/3/2011	Copper (Total)	200.8		5.3	ug/L			comp
EFF-001	5/8/2011	Copper (Total)	200.8	ND	0.29	ug/L			Comp
EFF-001		Copper (Total)	200.8		3.5	ug/L			comp
EFF-001	7/10/2011	Copper (Total)	200.8		4.5	ug/L			Comp

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	8/8/2011	Copper (Total)	200.8		5.36	ug/L			Comp
EFF-001	8/8/2011	Copper (Total)	200.8		5.44	ug/L			Grab/Comp
EFF-001	9/5/2011	Copper (Total)	200.8		5.4	ug/L			comp
EFF-001	10/9/2011	Copper (Total)	200.8		4	ug/L			Comp
EFF-001	11/7/2011	Copper (Total)	200.8		5	ug/L			comp
EFF-001	12/4/2011	Copper (Total)	200.8		3.91	ug/L			Comp
EFF-001	1/8/2012	Copper (Total)	200.8		4.6	ug/L			Composite
EFF-001	2/5/2012	Copper (Total)	200.8		7	ug/L			Comp
EFF-001	3/11/2012	Copper (Total)	200.8		8.5	ug/L			Comp
EFF-001	4/16/2012	Copper (Total)	200.8		4	ug/L			Comp/ Grab
EFF-001	5/13/2012	Copper (Total)	200.8		4.5	ug/L			Comp
EFF-001	6/10/2012	Copper (Total)	200.8		4.7	ug/L			Comp
EFF-001	7/8/2012	Copper (Total)	200.8		3.7	ug/L			Comp
EFF-001	8/12/2012	Copper (Total)	200.8		5	ug/L			Comp
EFF-001	9/9/2012	Copper (Total)	200.8		4.2	ug/L			Comp
EFF-001	10/7/2012	Copper (Total)	200.8		3.70	ug/L			Comp
EFF-001	11/4/2012	Copper (Total)	200.8		6.04	ug/L			comp
EFF-001	12/2/2012	Copper (Total)	200.8		4.5	ug/L			Comp
EFF-001	1/13/2013	Copper (Total)	200.8		4.8	ug/L			Comp
EFF-001	2/3/2013	Copper (Total)	200.8		6	ug/L			Comp
EFF-001	3/10/2013	Copper (Total)	200.8		6.00	ug/L			Comp
EFF-001	4/7/2013	Copper (Total)	200.8		5.0	ug/L			Comp
EFF-001	5/5/2013	Copper (Total)	200.8	ND	0.29	ug/L		0.29	Comp
EFF-001	6/3/2013	Copper (Total)	200.8		5.9	ug/L			Comp
EFF-001	7/7/2013	Copper (Total)	200.8		6.00	ug/L			Comp
EFF-001	8/4/2013	Copper (Total)	200.8		4.00	ug/L			Comp
EFF-001	9/9/2013	Copper (Total)	200.8		5.00	ug/L			Comp
EFF-001	10/6/2013	Copper (Total)	200.8		4.8	ug/L			Comp
EFF-001	11/3/2013	Copper (Total)	200.8		8.10	ug/L			Comp
EFF-001	12/1/2013	Copper (Total)	200.8		4.9	ug/L			Comp
EFF-001	1/20/2014	Copper (Total)	200.8		3.7	ug/L			Comp

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	2/17/2014	Copper (Total)	200.8		4.4	ug/L			Comp
EFF-001	3/3/2014	Copper (Total)	200.8		4.4	ug/L			Comp
EFF-001	4/6/2014	Copper (Total)	200.8		4.5	ug/L			Comp
EFF-001	1/14/2010	Cyanide	335.2/9014	ND	5	ug/L	5	10	Comp
EFF-001	2/8/2010	Cyanide	335.2/9014	ND	5	ug/L	5	10	Comp
EFF-001	3/16/2010	Cyanide	335.2/9014	ND	5	ug/L	5	10	comp
EFF-001	8/8/2011	Cyanide	335.2/9014	ND	5	ug/L	5	10	Comp
EFF-001	2/5/2012	Cyanide	335.2/9014	ND	5	ug/L	5	10	Comp
EFF-001	4/16/2012	Cyanide	335.2/9014	ND	5	ug/L	5	10	Comp/ Grab
EFF-001	5/13/2012	Cyanide	335.2/9014	ND	5	ug/L	5	10	Comp
EFF-001	6/10/2012	Cyanide	335.2/9014		10	ug/L	5	10	Comp
EFF-001	7/8/2012	Cyanide	335.2/9014	ND	5	ug/L	5	10	Comp
EFF-001	8/12/2012	Cyanide	335.2/9014	ND	10	ug/L		10	Comp
EFF-001	9/9/2012	Cyanide	335.2/9014	ND	10	ug/L		10	Comp
EFF-001	10/7/2012	Cyanide	335.2/9014	ND	10	ug/L		10	Comp
EFF-001	11/4/2012	Cyanide	335.2/9014	ND	10	ug/L		10	comp
EFF-001	12/2/2012	Cyanide	335.2/9014	ND	10	ug/L		10	Comp
EFF-001	1/13/2013	Cyanide	335.2/9014	ND	10	ug/L		10	Comp
EFF-001	2/3/2013	Cyanide	335.2/9014	ND	10	ug/L		10	Comp
EFF-001	3/10/2013	Cyanide	335.2/9014	ND	10	ug/L		10	Comp
EFF-001	1/14/2010	Delta-BHC	8081A/608	ND	0.13	ug/L			Comp
EFF-001	4/16/2012	Delta-BHC	8081A/608	ND	0.1	ug/L			Comp/ Grab
EFF-001	5/13/2012	Delta-BHC	8081A/608	ND	0.005	ug/L			Comp
EFF-001	6/10/2012	Delta-BHC	8081A/608	ND	0.1	ug/L			Comp
EFF-001	7/8/2012	Delta-BHC	8081A/608	ND	0.1	ug/L			Comp
EFF-001	1/14/2010	Diazinon	8141	ND	0.02	ug/L			Comp
EFF-001	4/6/2010	Diazinon	8141	ND	0.02	ug/L			Comp
EFF-001	7/6/2010	Diazinon	8141	ND	0.02	ug/L			Comp
EFF-001	10/3/2010	Diazinon	8141	ND	0.01	ug/L			comp
EFF-001	1/17/2011	Diazinon	8141	ND	0.02	ug/L			Comp
EFF-001	4/3/2011	Diazinon	8141	ND	0.02	ug/L			comp

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	7/10/2011	Diazinon	8141	ND	0.01	ug/L			Comp
EFF-001	10/9/2011	Diazinon	8141	ND	0.02	ug/L			Comp
EFF-001	1/8/2012	Diazinon	8141	ND	0.02	ug/L			Composite
EFF-001	4/4/2012	Diazinon	8141	ND	0.02	ug/L			Comp
EFF-001	7/8/2012	Diazinon	8141	ND	0.2	ug/L			comp
EFF-001	10/7/2012	Diazinon	8141	ND	0.02	ug/L		0.02	Comp
EFF-001	3/10/2013	Diazinon	8141	ND	0.02	ug/L		0.02	Comp
EFF-001	5/5/2013	Diazinon	8141	ND	0.02	ug/L		0.02	Comp
EFF-001	8/4/2013	Diazinon	8141	ND	0.02	ug/L		0.02	Comp
EFF-001	10/6/2013	Diazinon	8141	ND	0.02	ug/L		0.02	Comp
EFF-001	3/3/2014	Diazinon	8141	ND	0.02	ug/L		0.02	Comp
EFF-001	1/14/2010	Dibenzo(a,h)anthracene	8270C	ND	0.3	ug/L			Comp
EFF-001	4/16/2012	Dibenzo(a,h)anthracene	8270C	ND	0.3	ug/L			Comp/ Grab
EFF-001	5/13/2012	Dibenzo(a,h)anthracene	8270C	ND	0.3	ug/L			Comp
EFF-001	6/10/2012	Dibenzo(a,h)anthracene	8270C	ND	0.3	ug/L			Comp
EFF-001	7/8/2012	Dibenzo(a,h)anthracene	8270C	ND	0.3	ug/L			Comp
EFF-001	8/12/2012	Dibenzo(a,h)anthracene	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	9/9/2012	Dibenzo(a,h)anthracene	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	10/7/2012	Dibenzo(a,h)anthracene	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	11/4/2012	Dibenzo(a,h)anthracene	8270C	ND	0.3	ug/L		0.3	comp
EFF-001	12/2/2012	Dibenzo(a,h)anthracene	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	1/13/2013	Dibenzo(a,h)anthracene	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	2/3/2013	Dibenzo(a,h)anthracene	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	3/10/2013	Dibenzo(a,h)anthracene	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	1/12/2010	Dibromochloromethane	8260B		4.8	ug/L			Grab
EFF-001	2/2/2010	Dibromochloromethane	8260B		4.4	ug/L			Grab
EFF-001	3/10/2010	Dibromochloromethane	8260B		5.19	ug/L			Grab
EFF-001	4/7/2010	Dibromochloromethane	8260B		5	ug/L			Grab
EFF-001	5/4/2010	Dibromochloromethane	8260B		6.92	ug/L			Grab
EFF-001	6/2/2010	Dibromochloromethane	8260B		6	ug/L			Grab
EFF-001	7/7/2010	Dibromochloromethane	8260B		8.7	ug/L			Grab

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	8/2/2010	Dibromochloromethane	8260B		10.9	ug/L			Grab
EFF-001	9/8/2010	Dibromochloromethane	8260B		10.4	ug/L			Grab
EFF-001	10/1/2010	Dibromochloromethane	8260B		10.3	ug/L			Grab
EFF-001	11/2/2010	Dibromochloromethane	8260B		7.9	ug/L			Grab
EFF-001	12/6/2010	Dibromochloromethane	8260B		4.6	ug/L			Grab
EFF-001	1/18/2011	Dibromochloromethane	8260B		1.2	ug/L			Grab
EFF-001	2/7/2011	Dibromochloromethane	8260B		1.5	ug/L			Grab
EFF-001	3/7/2011	Dibromochloromethane	8260B		5.23	ug/L			Grab
EFF-001	4/4/2011	Dibromochloromethane	8260B		5.1	ug/L			Grab
EFF-001	5/9/2011	Dibromochloromethane	8260B		5.5	ug/L			Grab
EFF-001	6/13/2011	Dibromochloromethane	8260B		6.91	ug/L			grab
EFF-001	7/11/2011	Dibromochloromethane	8260B		11.7	ug/L			grab
EFF-001	8/9/2011	Dibromochloromethane	8260B		10.8	ug/L			Grab
EFF-001	9/6/2011	Dibromochloromethane	8260B		8.9	ug/L			Grab
EFF-001	10/10/2011	Dibromochloromethane	8260B		7.6	ug/L			grab
EFF-001	11/8/2011	Dibromochloromethane	8260B		4.4	ug/L			grab
EFF-001	12/5/2011	Dibromochloromethane	8260B		5.4	ug/L			Grab
EFF-001	1/9/2012	Dibromochloromethane	8260B		6.7	ug/L			grab
EFF-001	2/6/2012	Dibromochloromethane	8260B		5	ug/L			Grab
EFF-001	3/12/2012	Dibromochloromethane	8260B		4.8	ug/L			Grab
EFF-001	4/16/2012	Dibromochloromethane	8260B		5.6	ug/L			Comp/ Grab
EFF-001	5/14/2012	Dibromochloromethane	8260B		7.9	ug/L			Grab
EFF-001	6/11/2012	Dibromochloromethane	8260B		9.6	ug/L			Grab
EFF-001	7/9/2012	Dibromochloromethane	8260B		10.5	ug/L			Grab
EFF-001	8/13/2012	Dibromochloromethane	8260B/624		12.8	ug/L			Grab
EFF-001	9/10/2012	Dibromochloromethane	8260B/624		6.7	ug/L			Grab
EFF-001	10/8/2012	Dibromochloromethane	8260B/624		8.3	ug/L			Grab
EFF-001	11/5/2012	Dibromochloromethane	8260B/624		7.8	ug/L			Grab
EFF-001	12/3/2012	Dibromochloromethane	8260B/624		3.8	ug/L			Grab
EFF-001	1/14/2013	Dibromochloromethane	8260B/624		5.2	ug/L			Comp/Grab
EFF-001	2/4/2013	Dibromochloromethane	8260B/624		3.8	ug/L			Grab

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	3/11/2013	Dibromochloromethane	8260B/624		4.5	ug/L			Grab
EFF-001	4/8/2013	Dibromochloromethane	8260B/624		5.98	ug/L			Grab
EFF-001	5/6/2013	Dibromochloromethane	8260B/624		7.29	ug/L			Grab
EFF-001	6/4/2013	Dibromochloromethane	8260B/624		6.75	ug/L			Grab
EFF-001	7/8/2013	Dibromochloromethane	8260B/624		12	ug/L			Grab
EFF-001	8/5/2013	Dibromochloromethane	8260B/624		10.2	ug/L			Grab
EFF-001	9/10/2013	Dibromochloromethane	8260B/624		8.95	ug/L			Grab
EFF-001	10/7/2013	Dibromochloromethane	8260B/624		7.71	ug/L			Grab
EFF-001	11/4/2013	Dibromochloromethane	8260B/624		5.55	ug/L			Grab
EFF-001	12/2/2013	Dibromochloromethane	8260B/624		5.28	ug/L			Grab
EFF-001	1/21/2014	Dibromochloromethane	8260B/624		5.19	ug/L			Grab
EFF-001	2/18/2014	Dibromochloromethane	8260B/624		4.35	ug/L			Grab
EFF-001	3/4/2014	Dibromochloromethane	8260B/624		1.16	ug/L			Grab
EFF-001	4/7/2014	Dibromochloromethane	8260B/624		8.59	ug/L			Grab
EFF-001	1/12/2010	Dichlorobromomethane	8260B		13.7	ug/L			Grab
EFF-001	2/2/2010	Dichlorobromomethane	8260B		15.9	ug/L			Grab
EFF-001	3/10/2010	Dichlorobromomethane	8260B		17.5	ug/L			Grab
EFF-001	4/7/2010	Dichlorobromomethane	8260B		25.9	ug/L			Grab
EFF-001	5/4/2010	Dichlorobromomethane	8260B		20.7	ug/L			Grab
EFF-001	6/2/2010	Dichlorobromomethane	8260B		18.8	ug/L			Grab
EFF-001	7/7/2010	Dichlorobromomethane	8260B		18.3	ug/L			Grab
EFF-001	8/2/2010	Dichlorobromomethane	8260B		27.9	ug/L			Grab
EFF-001	9/8/2010	Dichlorobromomethane	8260B		29.7	ug/L			Grab
EFF-001	10/1/2010	Dichlorobromomethane	8260B		33	ug/L			Grab
EFF-001	11/2/2010	Dichlorobromomethane	8260B		23.4	ug/L			Grab
EFF-001	12/6/2010	Dichlorobromomethane	8260B		17	ug/L			Grab
EFF-001	1/18/2011	Dichlorobromomethane	8260B		5.4	ug/L			Grab
EFF-001	2/7/2011	Dichlorobromomethane	8260B		6.3	ug/L			Grab
EFF-001	3/7/2011	Dichlorobromomethane	8260B		17.5	ug/L			Grab
EFF-001	4/4/2011	Dichlorobromomethane	8260B		18	ug/L			Grab
EFF-001	5/9/2011	Dichlorobromomethane	8260B		22.2	ug/L			Grab

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	6/13/2011	Dichlorobromomethane	8260B		20.1	ug/L			grab
EFF-001	7/11/2011	Dichlorobromomethane	8260B		40.6	ug/L			grab
EFF-001	8/9/2011	Dichlorobromomethane	8260B		33.4	ug/L			Grab
EFF-001	9/6/2011	Dichlorobromomethane	8260B		28.9	ug/L			Grab
EFF-001	10/10/2011	Dichlorobromomethane	8260B		28.6	ug/L			grab
EFF-001	11/8/2011	Dichlorobromomethane	8260B		19.7	ug/L			grab
EFF-001	12/5/2011	Dichlorobromomethane	8260B		26.7	ug/L			Grab
EFF-001	1/9/2012	Dichlorobromomethane	8260B		16.7	ug/L			grab
EFF-001	2/6/2012	Dichlorobromomethane	8260B		15.8	ug/L			Grab
EFF-001	3/12/2012	Dichlorobromomethane	8260B		19.2	ug/L			Grab
EFF-001	4/16/2012	Dichlorobromomethane	8260B		22.3	ug/L			Comp/ Grab
EFF-001	5/14/2012	Dichlorobromomethane	8260B		27.8	ug/L			Grab
EFF-001	6/11/2012	Dichlorobromomethane	8260B		31.4	ug/L			Grab
EFF-001	7/9/2012	Dichlorobromomethane	8260B		33.4	ug/L			Grab
EFF-001	8/13/2012	Dichlorobromomethane	8260B/624		36.3	ug/L			Grab
EFF-001	9/10/2012	Dichlorobromomethane	8260B/624		34	ug/L			Grab
EFF-001	10/8/2012	Dichlorobromomethane	8260B/624		26.2	ug/L			Grab
EFF-001	11/5/2012	Dichlorobromomethane	8260B/624		24.3	ug/L			Grab
EFF-001	12/3/2012	Dichlorobromomethane	8260B/624		13.9	ug/L			Grab
EFF-001	1/14/2013	Dichlorobromomethane	8260B/624		15.6	ug/L			Comp/Grab
EFF-001	2/4/2013	Dichlorobromomethane	8260B/624		14.5	ug/L			Grab
EFF-001	3/11/2013	Dichlorobromomethane	8260B/624		21	ug/L			Grab
EFF-001	4/8/2013	Dichlorobromomethane	8260B/624		20.8	ug/L			Grab
EFF-001	5/6/2013	Dichlorobromomethane	8260B/624		21.5	ug/L			Grab
EFF-001	6/4/2013	Dichlorobromomethane	8260B/624		27.2	ug/L			Grab
EFF-001	7/8/2013	Dichlorobromomethane	8260B/624		41.9	ug/L			Grab
EFF-001	8/5/2013	Dichlorobromomethane	8260B/624		30.0	ug/L			Grab
EFF-001	9/10/2013	Dichlorobromomethane	8260B/624		25.8	ug/L			Grab
EFF-001	10/7/2013	Dichlorobromomethane	8260B/624		25.1	ug/L			Grab
EFF-001	11/4/2013	Dichlorobromomethane	8260B/624		19.3	ug/L			Grab
EFF-001	12/2/2013	Dichlorobromomethane	8260B/624		23.7	ug/L			Grab

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	1/21/2014	Dichlorobromomethane	8260B/624		14.7	ug/L			Grab
EFF-001	2/18/2014	Dichlorobromomethane	8260B/624		12.8	ug/L			Grab
EFF-001	3/4/2014	Dichlorobromomethane	8260B/624		5.33	ug/L			Grab
EFF-001	4/7/2014	Dichlorobromomethane	8260B/624		29.1	ug/L			Grab
EFF-001	8/13/2012	Dichloromethane	8260B/624	ND	0.4	ug/L		0.4	Grab
EFF-001	9/10/2012	Dichloromethane	8260B/624	ND	0.4	ug/L		0.4	Grab
EFF-001	10/8/2012	Dichloromethane	8260B/624	ND	0.4	ug/L		0.4	Grab
EFF-001	11/5/2012	Dichloromethane	8260B/624	ND	0.4	ug/L		0.4	Grab
EFF-001	12/3/2012	Dichloromethane	8260B/624	ND	0.4	ug/L		0.4	Grab
EFF-001	1/14/2013	Dichloromethane	8260B/624	ND	0.4	ug/L		0.4	Comp/Grab
EFF-001	2/4/2013	Dichloromethane	8260B/624	ND	0.4	ug/L		0.4	Grab
EFF-001	3/11/2013	Dichloromethane	8260B/624	ND	0.4	ug/L		0.4	Grab
EFF-001	1/14/2010	Dieldrin	8081A/608	ND	0.08	ug/L			Comp
EFF-001	4/16/2012	Dieldrin	8081A/608	ND	0.1	ug/L			Comp/ Grab
EFF-001	5/13/2012	Dieldrin	8081A/608	ND	0.01	ug/L			Comp
EFF-001	6/10/2012	Dieldrin	8081A/608	ND	0.1	ug/L			Comp
EFF-001	7/8/2012	Dieldrin	8081A/608	ND	0.1	ug/L			Comp
EFF-001	1/14/2010	Diethyl phthalate	8270C	ND	0.2	ug/L			Comp
EFF-001	4/16/2012	Diethyl phthalate	8270C		6.7	ug/L			Comp/ Grab
EFF-001	5/13/2012	Diethyl phthalate	8270C		2.6	ug/L			Comp
EFF-001	6/10/2012	Diethyl phthalate	8270C	l	1	ug/L			Comp
EFF-001	7/8/2012	Diethyl phthalate	8270C	ND	0.2	ug/L			Comp
EFF-001	8/12/2012	Diethyl phthalate	8270C	l	1.0	ug/L			Comp
EFF-001	9/9/2012	Diethyl phthalate	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	10/7/2012	Diethyl phthalate	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	11/4/2012	Diethyl phthalate	8270C	l	0.6	ug/L			comp
EFF-001	12/2/2012	Diethyl phthalate	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	1/13/2013	Diethyl phthalate	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	2/3/2013	Diethyl phthalate	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	3/10/2013	Diethyl phthalate	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	1/14/2010	Dimethyl Phthalate	8270C	ND	1.8	ug/L			Comp

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	4/16/2012	Dimethyl Phthalate	8270C	ND	0.8	ug/L			Comp/ Grab
EFF-001	5/13/2012	Dimethyl Phthalate	8270C	ND	0.8	ug/L			Comp
EFF-001	6/10/2012	Dimethyl Phthalate	8270C	ND	0.8	ug/L			Comp
EFF-001	7/8/2012	Dimethyl Phthalate	8270C	ND	0.8	ug/L			Comp
EFF-001	8/12/2012	Dimethyl Phthalate	8270C	ND	0.8	ug/L		0.8	Comp
EFF-001	9/9/2012	Dimethyl Phthalate	8270C	ND	0.8	ug/L		0.8	Comp
EFF-001	10/7/2012	Dimethyl Phthalate	8270C	ND	0.8	ug/L		0.8	Comp
EFF-001	11/4/2012	Dimethyl Phthalate	8270C	ND	0.8	ug/L		0.8	comp
EFF-001	12/2/2012	Dimethyl Phthalate	8270C	ND	0.8	ug/L		0.8	Comp
EFF-001	1/13/2013	Dimethyl Phthalate	8270C	ND	0.8	ug/L		0.8	Comp
EFF-001	2/3/2013	Dimethyl Phthalate	8270C	ND	0.8	ug/L		0.8	Comp
EFF-001	3/10/2013	Dimethyl Phthalate	8270C	ND	0.8	ug/L		0.8	Comp
EFF-001	1/14/2010	Di-n-butylphthalate	8270C	ND	0.4	ug/L			Comp
EFF-001	4/16/2012	Di-n-butylphthalate	8270C	ND	0.4	ug/L			Comp/ Grab
EFF-001	5/13/2012	Di-n-butylphthalate	8270C	J	0.9	ug/L			Comp
EFF-001	6/10/2012	Di-n-butylphthalate	8270C	J	0.5	ug/L			Comp
EFF-001	7/8/2012	Di-n-butylphthalate	8270C	ND	0.4	ug/L			Comp
EFF-001	8/12/2012	Di-n-butylphthalate	8270C	ND	0.4	ug/L		0.4	Comp
EFF-001	9/9/2012	Di-n-butylphthalate	8270C	ND	0.4	ug/L		0.4	Comp
EFF-001	10/7/2012	Di-n-butylphthalate	8270C	ND	0.4	ug/L		0.4	Comp
EFF-001	11/4/2012	Di-n-butylphthalate	8270C	J	0.8	ug/L			comp
EFF-001	12/2/2012	Di-n-butylphthalate	8270C	ND	0.4	ug/L		0.4	Comp
EFF-001	1/13/2013	Di-n-butylphthalate	8270C	ND	0.4	ug/L		0.4	Comp
EFF-001	2/3/2013	Di-n-butylphthalate	8270C	J	1	ug/L			Comp
EFF-001	3/10/2013	Di-n-butylphthalate	8270C	ND	0.4	ug/L		0.4	Comp
EFF-001	1/14/2010	Di-n-octylphthalate	8270C	ND	0.4	ug/L			Comp
EFF-001	4/16/2012	Di-n-octylphthalate	8270C	ND	0.4	ug/L			Comp/ Grab
EFF-001	5/13/2012	Di-n-octylphthalate	8270C	ND	0.4	ug/L			Comp
EFF-001	6/10/2012	Di-n-octylphthalate	8270C	ND	0.4	ug/L			Comp
EFF-001	7/8/2012	Di-n-octylphthalate	8270C	ND	0.4	ug/L			Comp
EFF-001	8/12/2012	Di-n-octylphthalate	8270C	ND	0.4	ug/L		0.4	Comp

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	9/9/2012	Di-n-octylphthalate	8270C	ND	0.4	ug/L		0.4	
EFF-001	10/7/2012	Di-n-octylphthalate	8270C	ND	0.4	ug/L		0.4	Comp
EFF-001	11/4/2012	Di-n-octylphthalate	8270C	ND	0.4	ug/L		0.4	comp
EFF-001	12/2/2012	Di-n-octylphthalate	8270C	ND	0.4	ug/L		0.4	Comp
EFF-001	1/13/2013	Di-n-octylphthalate	8270C	ND	0.4	ug/L		0.4	Comp
EFF-001	2/3/2013	Di-n-octylphthalate	8270C	ND	0.4	ug/L		0.4	Comp
EFF-001	3/10/2013	Di-n-octylphthalate	8270C	ND	0.4	ug/L		0.4	Comp
EFF-001	6/1/2010	Electrical Conductivity @ 25 Deg. C	SM2510B		852	umhos/cm			Grab
EFF-001	6/7/2010	Electrical Conductivity @ 25 Deg. C	SM2510B		893	umhos/cm			Grab
EFF-001	6/15/2010	Electrical Conductivity @ 25 Deg. C	SM2510B		922	umhos/cm			Grab
EFF-001	6/21/2010	Electrical Conductivity @ 25 Deg. C	SM2510B		1004	umhos/cm			Grab
EFF-001	6/28/2010	Electrical Conductivity @ 25 Deg. C	SM2510B		1047	umhos/cm			Grab
EFF-001	7/1/2010	Electrical Conductivity @ 25 Deg. C	SM2510B		960	umhos/cm			Grab
EFF-001	7/8/2010	Electrical Conductivity @ 25 Deg. C	SM2510B		958	umhos/cm			Grab
EFF-001	7/15/2010	Electrical Conductivity @ 25 Deg. C	SM2510B		1028	umhos/cm			Grab
EFF-001	7/22/2010	Electrical Conductivity @ 25 Deg. C	SM2510B		1031	umhos/cm			Grab
EFF-001	7/29/2010	Electrical Conductivity @ 25 Deg. C	SM2510B		898	umhos/cm			Grab
EFF-001	8/2/2010	Electrical Conductivity @ 25 Deg. C	SM2510B		917	umhos/cm			Grab
EFF-001	8/9/2010	Electrical Conductivity @ 25 Deg. C	SM2510B		985	umhos/cm			Grab
EFF-001	8/16/2010	Electrical Conductivity @ 25 Deg. C	SM2510B		897	umhos/cm			Grab
EFF-001	8/23/2010	Electrical Conductivity @ 25 Deg. C	SM2510B		1001	umhos/cm			Grab
EFF-001	8/30/2010	Electrical Conductivity @ 25 Deg. C	SM2510B		1018	umhos/cm			Grab
EFF-001	9/7/2010	Electrical Conductivity @ 25 Deg. C	SM2510B		920	umhos/cm			Grab
EFF-001	9/13/2010	Electrical Conductivity @ 25 Deg. C	SM2510B		944	umhos/cm			Grab
EFF-001	9/20/2010	Electrical Conductivity @ 25 Deg. C	SM2510B		1042	umhos/cm			Grab
EFF-001	9/27/2010	Electrical Conductivity @ 25 Deg. C	SM2510B		907	umhos/cm			Grab
EFF-001	10/4/2010	Electrical Conductivity @ 25 Deg. C	SM2510B		880	umhos/cm			Grab
EFF-001	10/11/2010	Electrical Conductivity @ 25 Deg. C	SM2510B		989	umhos/cm			Grab
EFF-001	10/18/2010	Electrical Conductivity @ 25 Deg. C	SM2510B		878	umhos/cm			Grab
EFF-001	10/25/2010	Electrical Conductivity @ 25 Deg. C	SM2510B		811	umhos/cm			Grab
EFF-001	11/1/2010	Electrical Conductivity @ 25 Deg. C	SM2510B		945	umhos/cm			Grab

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	11/8/2010	Electrical Conductivity @ 25 Deg. C	SM2510B		952	umhos/cm			Grab
EFF-001	11/15/2010	Electrical Conductivity @ 25 Deg. C	SM2510B		874	umhos/cm			Grab
EFF-001	11/22/2010	Electrical Conductivity @ 25 Deg. C	SM2510B		803	umhos/cm			Grab
EFF-001	11/29/2010	Electrical Conductivity @ 25 Deg. C	SM2510B		941	umhos/cm			Grab
EFF-001	12/6/2010	Electrical Conductivity @ 25 Deg. C	SM2510B		950	umhos/cm			Grab
EFF-001	12/13/2010	Electrical Conductivity @ 25 Deg. C	SM2510B		981	umhos/cm			Grab
EFF-001	12/20/2010	Electrical Conductivity @ 25 Deg. C	SM2510B		770	umhos/cm			Grab
EFF-001	12/27/2010	Electrical Conductivity @ 25 Deg. C	SM2510B		901	umhos/cm			Grab
EFF-001	1/3/2011	Electrical Conductivity @ 25 Deg. C	SM2510B		774	umhos/cm			Grab
EFF-001	1/10/2011	Electrical Conductivity @ 25 Deg. C	SM2510B		833	umhos/cm			Grab
EFF-001	1/18/2011	Electrical Conductivity @ 25 Deg. C	SM2510B		918	umhos/cm			Grab
EFF-001	1/24/2011	Electrical Conductivity @ 25 Deg. C	SM2510B		915	umhos/cm			Grab
EFF-001	1/31/2011	Electrical Conductivity @ 25 Deg. C	SM2510B		934	umhos/cm			Grab
EFF-001	2/7/2011	Electrical Conductivity @ 25 Deg. C	SM2510B		903	umhos/cm			Grab
EFF-001	2/14/2011	Electrical Conductivity @ 25 Deg. C	SM2510B		867	umhos/cm			Grab
EFF-001	2/22/2011	Electrical Conductivity @ 25 Deg. C	SM2510B		774	umhos/cm			Grab
EFF-001	2/28/2011	Electrical Conductivity @ 25 Deg. C	SM2510B		799	umhos/cm			Grab
EFF-001	3/7/2011	Electrical Conductivity @ 25 Deg. C	SM2510B		858	umhos/cm			Grab
EFF-001	3/14/2011	Electrical Conductivity @ 25 Deg. C	SM2510B		905	umhos/cm			Grab
EFF-001	3/21/2011	Electrical Conductivity @ 25 Deg. C	SM2510B		705	umhos/cm			Grab
EFF-001	3/28/2011	Electrical Conductivity @ 25 Deg. C	SM2510B		681	umhos/cm			Grab
EFF-001	4/4/2011	Electrical Conductivity @ 25 Deg. C	SM2510B		835	umhos/cm			Grab
EFF-001	4/11/2011	Electrical Conductivity @ 25 Deg. C	SM2510B		916	umhos/cm			Grab
EFF-001	4/18/2011	Electrical Conductivity @ 25 Deg. C	SM2510B		944	umhos/cm			Grab
EFF-001	4/25/2011	Electrical Conductivity @ 25 Deg. C	SM2510B		902	umhos/cm			Grab
EFF-001	5/2/2011	Electrical Conductivity @ 25 Deg. C	SM2510B		946	umhos/cm			Grab
EFF-001	5/9/2011	Electrical Conductivity @ 25 Deg. C	SM2510B		962	umhos/cm			Grab
EFF-001	5/16/2011	Electrical Conductivity @ 25 Deg. C	SM2510B		856	umhos/cm			Grab
EFF-001	5/23/2011	Electrical Conductivity @ 25 Deg. C	SM2510B		949	umhos/cm			Grab
EFF-001	5/31/2011	Electrical Conductivity @ 25 Deg. C	SM2510B		863	umhos/cm			Grab
EFF-001	6/6/2011	Electrical Conductivity @ 25 Deg. C	SM2510B		846	umhos/cm			Grab

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	6/13/2011	Electrical Conductivity @ 25 Deg. C	SM2510B		899	umhos/cm			Grab
EFF-001	6/20/2011	Electrical Conductivity @ 25 Deg. C	SM2510B			umhos/cm			Grab
EFF-001	6/27/2011	Electrical Conductivity @ 25 Deg. C	SM2510B		940	umhos/cm			Grab
EFF-001	7/5/2011	Electrical Conductivity @ 25 Deg. C	SM2510B		950	umhos/cm			Grab
EFF-001	7/11/2011	Electrical Conductivity @ 25 Deg. C	SM2510B		942	umhos/cm			Grab
EFF-001	7/18/2011	Electrical Conductivity @ 25 Deg. C	SM2510B		1028	umhos/cm			Grab
EFF-001	7/25/2011	Electrical Conductivity @ 25 Deg. C	SM2510B		1021	umhos/cm			Grab
EFF-001	8/1/2011	Electrical Conductivity @ 25 Deg. C	SM2510B		906	umhos/cm			Grab
EFF-001	8/8/2011	Electrical Conductivity @ 25 Deg. C	SM2510B		932	umhos/cm			Grab
EFF-001	8/15/2011	Electrical Conductivity @ 25 Deg. C	SM2510B		727	umhos/cm			Grab
EFF-001	8/22/2011	Electrical Conductivity @ 25 Deg. C	SM2510B		920	umhos/cm			Grab
EFF-001	8/29/2011	Electrical Conductivity @ 25 Deg. C	SM2510B		907	umhos/cm			Grab
EFF-001	9/6/2011	Electrical Conductivity @ 25 Deg. C	SM2510B		817	umhos/cm			Grab
EFF-001	9/12/2011	Electrical Conductivity @ 25 Deg. C	SM2510B		874	umhos/cm			Grab
EFF-001	9/19/2011	Electrical Conductivity @ 25 Deg. C	SM2510B		880	umhos/cm			Grab
EFF-001	9/26/2011	Electrical Conductivity @ 25 Deg. C	SM2510B		978	umhos/cm			Grab
EFF-001	10/3/2011	Electrical Conductivity @ 25 Deg. C	SM2510B		975	umhos/cm			Grab
EFF-001	10/10/2011	Electrical Conductivity @ 25 Deg. C	SM2510B		971	umhos/cm			Grab
EFF-001	10/17/2011	Electrical Conductivity @ 25 Deg. C	SM2510B		938	umhos/cm			Grab
EFF-001	10/24/2011	Electrical Conductivity @ 25 Deg. C	SM2510B		1012	umhos/cm			Grab
EFF-001	10/31/2011	Electrical Conductivity @ 25 Deg. C	SM2510B		857	umhos/cm			Grab
EFF-001	11/7/2011	Electrical Conductivity @ 25 Deg. C	SM2510B		941	umhos/cm			Grab
EFF-001	11/14/2011	Electrical Conductivity @ 25 Deg. C	SM2510B		962	umhos/cm			Grab
EFF-001	11/21/2011	Electrical Conductivity @ 25 Deg. C	SM2510B		891	umhos/cm			Grab
EFF-001	11/28/2011	Electrical Conductivity @ 25 Deg. C	SM2510B		813	umhos/cm			Grab
EFF-001	12/5/2011	Electrical Conductivity @ 25 Deg. C	SM2510B		911	umhos/cm			Grab
EFF-001	12/12/2011	Electrical Conductivity @ 25 Deg. C	SM2510B		933	umhos/cm			Grab
EFF-001	12/19/2011	Electrical Conductivity @ 25 Deg. C	SM2510B		893	umhos/cm			Grab
EFF-001	12/27/2011	Electrical Conductivity @ 25 Deg. C	SM2510B		823	umhos/cm			Grab
EFF-001	1/3/2012	Electrical Conductivity @ 25 Deg. C	SM2510B		876	umhos/cm			Grab
EFF-001	1/9/2012	Electrical Conductivity @ 25 Deg. C	SM2510B		964	umhos/cm			Grab

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	1/17/2012	Electrical Conductivity @ 25 Deg. C	SM2510B		924	umhos/cm			Grab
EFF-001	1/23/2012	Electrical Conductivity @ 25 Deg. C	SM2510B			umhos/cm			Grab
EFF-001	1/30/2012	Electrical Conductivity @ 25 Deg. C	SM2510B		879	umhos/cm			Grab
EFF-001	2/6/2012	Electrical Conductivity @ 25 Deg. C	SM2510B		953	umhos/cm			Grab
EFF-001	2/13/2012	Electrical Conductivity @ 25 Deg. C	SM2510B		867	umhos/cm			Grab
EFF-001	2/21/2012	Electrical Conductivity @ 25 Deg. C	SM2510B		877	umhos/cm			Grab
EFF-001	2/27/2012	Electrical Conductivity @ 25 Deg. C	SM2510B		853	umhos/cm			Grab
EFF-001	3/5/2012	Electrical Conductivity @ 25 Deg. C	SM2510B		876	umhos/cm			Grab
EFF-001	3/12/2012	Electrical Conductivity @ 25 Deg. C	SM2510B		924	umhos/cm			Grab
EFF-001	3/19/2012	Electrical Conductivity @ 25 Deg. C	SM2510B		796	umhos/cm			Grab
EFF-001	3/26/2012	Electrical Conductivity @ 25 Deg. C	SM2510B		891	umhos/cm			Grab
EFF-001	4/2/2012	Electrical Conductivity @ 25 Deg. C	SM2510B		890	umhos/cm			Grab
EFF-001	4/9/2012	Electrical Conductivity @ 25 Deg. C	SM2510B		910	umhos/cm			Grab
EFF-001	4/16/2012	Electrical Conductivity @ 25 Deg. C	SM2510B		930	umhos/cm			Grab
EFF-001	4/23/2012	Electrical Conductivity @ 25 Deg. C	SM2510B		920	umhos/cm			Grab
EFF-001	4/30/2012	Electrical Conductivity @ 25 Deg. C	SM2510B		835	umhos/cm			Grab
EFF-001	5/7/2012	Electrical Conductivity @ 25 Deg. C	SM2510B		901	umhos/cm			Grab
EFF-001	5/14/2012	Electrical Conductivity @ 25 Deg. C	SM2510B		877	umhos/cm			Grab
EFF-001	5/21/2012	Electrical Conductivity @ 25 Deg. C	SM2510B		957	umhos/cm			Grab
EFF-001	5/29/2012	Electrical Conductivity @ 25 Deg. C	SM2510B		912	umhos/cm			Grab
EFF-001	6/4/2012	Electrical Conductivity @ 25 Deg. C	SM2510B		948	umhos/cm			Grab
EFF-001	6/11/2012	Electrical Conductivity @ 25 Deg. C	SM2510B		946	umhos/cm			Grab
EFF-001	6/18/2012	Electrical Conductivity @ 25 Deg. C	SM2510B		935	umhos/cm			Grab
EFF-001	6/25/2012	Electrical Conductivity @ 25 Deg. C	SM2510B		960	umhos/cm			Grab
EFF-001	7/2/2012	Electrical Conductivity @ 25 Deg. C	SM2510B		908	umhos/cm			Grab
EFF-001	7/9/2012	Electrical Conductivity @ 25 Deg. C	SM2510B		920	umhos/cm			Grab
EFF-001	7/16/2012	Electrical Conductivity @ 25 Deg. C	SM2510B		956	umhos/cm			Grab
EFF-001	7/23/2012	Electrical Conductivity @ 25 Deg. C	SM2510B		929	umhos/cm			Grab
EFF-001	7/30/2012	Electrical Conductivity @ 25 Deg. C	SM2510B		963	umhos/cm			Grab
EFF-001	8/6/2012	Electrical Conductivity @ 25 Deg. C	SM2510B		870	umhos/cm			Grab
EFF-001	8/13/2012	Electrical Conductivity @ 25 Deg. C	SM2510B		934	umhos/cm			Grab

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	8/20/2012	Electrical Conductivity @ 25 Deg. C	SM2510B		941	umhos/cm			Grab
EFF-001	8/27/2012	Electrical Conductivity @ 25 Deg. C	SM2510B		911	umhos/cm			Grab
EFF-001	9/4/2012	Electrical Conductivity @ 25 Deg. C	SM2510B		962	umhos/cm			Grab
EFF-001	9/10/2012	Electrical Conductivity @ 25 Deg. C	SM2510B		932	umhos/cm			Grab
EFF-001	9/17/2012	Electrical Conductivity @ 25 Deg. C	SM2510B		1017	umhos/cm			Grab
EFF-001	9/24/2012	Electrical Conductivity @ 25 Deg. C	SM2510B		1050	umhos/cm			Grab
EFF-001	10/1/2012	Electrical Conductivity @ 25 Deg. C	SM2510B		987	umhos/cm			Grab
EFF-001	10/8/2012	Electrical Conductivity @ 25 Deg. C	SM2510B		899	umhos/cm			Grab
EFF-001	10/15/2012	Electrical Conductivity @ 25 Deg. C	SM2510B		951	umhos/cm			Grab
EFF-001	10/22/2012	Electrical Conductivity @ 25 Deg. C	SM2510B		947	umhos/cm			Grab
EFF-001	10/29/2012	Electrical Conductivity @ 25 Deg. C	SM2510B		1012	umhos/cm			Grab
EFF-001	11/5/2012	Electrical Conductivity @ 25 Deg. C	SM2510B		960	umhos/cm			Grab
EFF-001	11/13/2012	Electrical Conductivity @ 25 Deg. C	SM2510B		991	umhos/cm			Grab
EFF-001	11/19/2012	Electrical Conductivity @ 25 Deg. C	SM2510B		892	umhos/cm			Grab
EFF-001	11/26/2012	Electrical Conductivity @ 25 Deg. C	SM2510B		928	umhos/cm			Grab
EFF-001	12/3/2012	Electrical Conductivity @ 25 Deg. C	SM2510B		982	umhos/cm			Grab
EFF-001	12/10/2012	Electrical Conductivity @ 25 Deg. C	SM2510B		929	umhos/cm			Grab
EFF-001	12/17/2012	Electrical Conductivity @ 25 Deg. C	SM2510B		926	umhos/cm			Grab
EFF-001	12/24/2012	Electrical Conductivity @ 25 Deg. C	SM2510B		987	umhos/cm			Grab
EFF-001	1/2/2013	Electrical Conductivity @ 25 Deg. C	SM2510B		1008	umhos/cm			Grab
EFF-001	1/7/2013	Electrical Conductivity @ 25 Deg. C	SM2510B		852	umhos/cm			Grab
EFF-001	1/14/2013	Electrical Conductivity @ 25 Deg. C	SM2510B		925	umhos/cm			Grab
EFF-001	1/22/2013	Electrical Conductivity @ 25 Deg. C	SM2510B		888	umhos/cm			Grab
EFF-001	1/28/2013	Electrical Conductivity @ 25 Deg. C	SM2510B		890	umhos/cm			Grab
EFF-001	2/4/2013	Electrical Conductivity @ 25 Deg. C	SM2510B		904	umhos/cm			Grab
EFF-001	2/11/2013	Electrical Conductivity @ 25 Deg. C	SM2510B		912	umhos/cm			Grab
EFF-001	2/19/2013	Electrical Conductivity @ 25 Deg. C	SM2510B		882	umhos/cm			Grab
EFF-001	2/25/2013	Electrical Conductivity @ 25 Deg. C	SM2510B		891	umhos/cm			Grab
EFF-001	3/6/2013	Electrical Conductivity @ 25 Deg. C	SM2510B		916	umhos/cm			Grab
EFF-001	3/11/2013	Electrical Conductivity @ 25 Deg. C	SM2510B		890	umhos/cm			Grab
EFF-001	3/18/2013	Electrical Conductivity @ 25 Deg. C	SM2510B		965	umhos/cm			Grab

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	3/25/2013	Electrical Conductivity @ 25 Deg. C	SM2510B		981	umhos/cm			Grab
EFF-001	4/1/2013	Electrical Conductivity @ 25 Deg. C	SM2510B		844	umhos/cm			Grab
EFF-001	4/8/2013	Electrical Conductivity @ 25 Deg. C	SM2510B		933	umhos/cm			Grab
EFF-001	4/15/2013	Electrical Conductivity @ 25 Deg. C	SM2510B		925	umhos/cm			Grab
EFF-001	4/22/2013	Electrical Conductivity @ 25 Deg. C	SM2510B		918	umhos/cm			Grab
EFF-001	4/29/2013	Electrical Conductivity @ 25 Deg. C	SM2510B		946	umhos/cm			Grab
EFF-001	5/6/2013	Electrical Conductivity @ 25 Deg. C	SM2510B		975	umhos/cm			Grab
EFF-001	5/13/2013	Electrical Conductivity @ 25 Deg. C	SM2510B		890	umhos/cm			Grab
EFF-001	5/20/2013	Electrical Conductivity @ 25 Deg. C	SM2510B		964	umhos/cm			Grab
EFF-001	5/28/2013	Electrical Conductivity @ 25 Deg. C	SM2510B		940	umhos/cm			Grab
EFF-001	6/3/2013	Electrical Conductivity @ 25 Deg. C	SM2510B		950	umhos/cm			Grab
EFF-001	6/10/2013	Electrical Conductivity @ 25 Deg. C	SM2510B		934	umhos/cm			Grab
EFF-001	6/17/2013	Electrical Conductivity @ 25 Deg. C	SM2510B		1040	umhos/cm			Grab
EFF-001	6/24/2013	Electrical Conductivity @ 25 Deg. C	SM2510B		985	umhos/cm			Grab
EFF-001	7/1/2013	Electrical Conductivity @ 25 Deg. C	SM2510B		971	umhos/cm			Grab
EFF-001	7/8/2013	Electrical Conductivity @ 25 Deg. C	SM2510B		1018	umhos/cm			Grab
EFF-001	7/15/2013	Electrical Conductivity @ 25 Deg. C	SM2510B		983	umhos/cm			Grab
EFF-001	7/22/2013	Electrical Conductivity @ 25 Deg. C	SM2510B		1004	umhos/cm			Grab
EFF-001	7/29/2013	Electrical Conductivity @ 25 Deg. C	SM2510B		998	umhos/cm			Grab
EFF-001	8/5/2013	Electrical Conductivity @ 25 Deg. C	SM2510B		939	umhos/cm			Grab
EFF-001	8/12/2013	Electrical Conductivity @ 25 Deg. C	SM2510B		993	umhos/cm			Grab
EFF-001	8/19/2013	Electrical Conductivity @ 25 Deg. C	SM2510B		997	umhos/cm			Grab
EFF-001	8/26/2013	Electrical Conductivity @ 25 Deg. C	SM2510B		985	umhos/cm			Grab
EFF-001	9/3/2013	Electrical Conductivity @ 25 Deg. C	SM2510B		997	umhos/cm			Grab
EFF-001	9/9/2013	Electrical Conductivity @ 25 Deg. C	SM2510B		977	umhos/cm			Grab
EFF-001	9/16/2013	Electrical Conductivity @ 25 Deg. C	SM2510B		1020	umhos/cm			Grab
EFF-001	9/23/2013	Electrical Conductivity @ 25 Deg. C	SM2510B		997	umhos/cm			Grab
EFF-001	9/30/2013	Electrical Conductivity @ 25 Deg. C	SM2510B		1016	umhos/cm			Grab
EFF-001	10/7/2013	Electrical Conductivity @ 25 Deg. C	SM2510B		1018	umhos/cm			Grab
EFF-001	10/14/2013	Electrical Conductivity @ 25 Deg. C	SM2510B		976	umhos/cm			Grab
EFF-001	10/21/2013	Electrical Conductivity @ 25 Deg. C	SM2510B		939	umhos/cm			Grab

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	10/28/2013	Electrical Conductivity @ 25 Deg. C	SM2510B		1007	umhos/cm			Grab
EFF-001	11/4/2013	Electrical Conductivity @ 25 Deg. C	SM2510B		1077	umhos/cm			Grab
EFF-001	11/12/2013	Electrical Conductivity @ 25 Deg. C	SM2510B		990	umhos/cm			Grab
EFF-001	11/18/2013	Electrical Conductivity @ 25 Deg. C	SM2510B		983	umhos/cm			Grab
EFF-001	11/25/2013	Electrical Conductivity @ 25 Deg. C	SM2510B		1040	umhos/cm			Grab
EFF-001	12/2/2013	Electrical Conductivity @ 25 Deg. C	SM2510B		981	umhos/cm			Grab
EFF-001	12/9/2013	Electrical Conductivity @ 25 Deg. C	SM2510B		951	umhos/cm			Grab
EFF-001	12/16/2013	Electrical Conductivity @ 25 Deg. C	SM2510B		1010	umhos/cm			Grab
EFF-001	12/23/2013	Electrical Conductivity @ 25 Deg. C	SM2510B		1001	umhos/cm			Grab
EFF-001	12/30/2013	Electrical Conductivity @ 25 Deg. C	SM2510B		1004	umhos/cm			Grab
EFF-001	1/6/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		1078	umhos/cm			Grab
EFF-001	1/13/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		991	umhos/cm			Grab
EFF-001	1/21/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		928	umhos/cm			Grab
EFF-001	1/27/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		993	umhos/cm			Grab
EFF-001	2/3/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		1033	umhos/cm			Grab
EFF-001	2/10/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		1000	umhos/cm			Grab
EFF-001	2/18/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		972	umhos/cm			Grab
EFF-001	2/24/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		980	umhos/cm			Grab
EFF-001	3/3/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		879	umhos/cm			Grab
EFF-001	3/10/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		1023	umhos/cm			Grab
EFF-001	3/17/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		978	umhos/cm			Grab
EFF-001	3/18/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		959	umhos/cm			Grab
EFF-001	3/24/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		1031	umhos/cm			Grab
EFF-001	3/31/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		883	umhos/cm			Grab
EFF-001	4/7/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		994	umhos/cm			Grab
EFF-001	4/14/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		1010	umhos/cm			Grab
EFF-001	4/21/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		1036	umhos/cm			Grab
EFF-001	4/28/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		1014	umhos/cm			Grab
EFF-001	5/5/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		985	umhos/cm			Grab
EFF-001		Electrical Conductivity @ 25 Deg. C	SM2510B			umhos/cm			Grab
EFF-001	5/19/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		1099	umhos/cm			Grab

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	5/28/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		995	umhos/cm			Grab
EFF-001	6/2/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		1035	umhos/cm			Grab
EFF-001	6/9/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		1100	umhos/cm			Grab
EFF-001	6/16/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		1043	umhos/cm			Grab
EFF-001	6/23/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		1047	umhos/cm			Grab
EFF-001	6/30/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		1190	umhos/cm			Grab
EFF-001	7/7/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		1040	umhos/cm			Grab
EFF-001	7/14/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		1083	umhos/cm			Grab
EFF-001	7/21/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		1138	umhos/cm			Grab
EFF-001	7/28/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		1150	umhos/cm			Grab
EFF-001	8/4/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		1196	umhos/cm			Grab
EFF-001	8/11/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		1199	umhos/cm			Grab
EFF-001	8/18/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		1020	umhos/cm			Grab
EFF-001	8/25/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		1072	umhos/cm			Grab
EFF-001	8/27/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		1111	umhos/cm			Grab
EFF-001	8/28/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		1095	umhos/cm			Grab
EFF-001	8/29/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		1116	umhos/cm			Grab
EFF-001	8/30/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		1107	umhos/cm			Grab
EFF-001	8/31/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		1080	umhos/cm			Grab
EFF-001	9/1/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		1110	umhos/cm			Grab
EFF-001	9/2/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		1033	umhos/cm			Grab
EFF-001	9/3/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		1007	umhos/cm			Grab
EFF-001	9/4/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		1040	umhos/cm			Grab
EFF-001	9/5/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		1099	umhos/cm			Grab
EFF-001	9/6/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		1052	umhos/cm			Grab
EFF-001	9/7/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		1132	umhos/cm			Grab
EFF-001	9/8/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		1106	umhos/cm			Grab
EFF-001	9/9/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		1040	umhos/cm			Grab
EFF-001	9/10/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		1073	umhos/cm			Grab
EFF-001		Electrical Conductivity @ 25 Deg. C	SM2510B		1134	umhos/cm			Grab
EFF-001	9/12/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		1214	umhos/cm			Grab

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	9/13/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		1148	umhos/cm			Grab
EFF-001	9/14/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		1105	umhos/cm			Grab
EFF-001	9/15/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		1100	umhos/cm			Grab
EFF-001	9/16/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		1050	umhos/cm			Grab
EFF-001	9/17/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		1073	umhos/cm			Grab
EFF-001	9/18/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		1140	umhos/cm			Grab
EFF-001	9/19/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		1059	umhos/cm			Grab
EFF-001	9/20/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		1041	umhos/cm			Grab
EFF-001	9/21/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		1160	umhos/cm			Grab
EFF-001	9/22/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		1060	umhos/cm			Grab
EFF-001	9/23/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		1032	umhos/cm			Grab
EFF-001	9/24/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		1132	umhos/cm			Grab
EFF-001	9/25/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		1123	umhos/cm			Grab
EFF-001	9/26/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		1111	umhos/cm			Grab
EFF-001	9/27/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		1141	umhos/cm			Grab
EFF-001	9/28/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		1325	umhos/cm			Grab
EFF-001	9/29/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		1154	umhos/cm			Grab
EFF-001	9/30/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		1076	umhos/cm			Grab
EFF-001	10/6/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		1077	umhos/cm			Grab
EFF-001	10/13/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		1083	umhos/cm			Grab
EFF-001	10/20/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		1047	umhos/cm			Grab
EFF-001	10/27/2014	Electrical Conductivity @ 25 Deg. C	SM2510B		1055	umhos/cm			Grab
EFF-001	1/14/2010	Endosulfan Sulfate	8081A/608	ND	0.22	ug/L			Comp
EFF-001	4/16/2012	Endosulfan Sulfate	8081A/608	ND	1	ug/L			Comp/ Grab
EFF-001	5/13/2012	Endosulfan Sulfate	8081A/608	ND	0.05	ug/L			Comp
EFF-001	6/10/2012	Endosulfan Sulfate	8081A/608	ND	1	ug/L			Comp
EFF-001	7/8/2012	Endosulfan Sulfate	8081A/608	ND	1	ug/L			Comp
EFF-001	1/14/2010	Endrin	8081A/608	ND	0.09	ug/L			Comp
EFF-001	4/16/2012	Endrin	8081A/608	ND	0.1	ug/L			Comp/ Grab
EFF-001	5/13/2012	Endrin	8081A/608	ND	0.01	ug/L			Comp
EFF-001	6/10/2012	Endrin	8081A/608	ND	0.1	ug/L			Comp

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	7/8/2012	Endrin	8081A/608	ND	0.1	ug/L			Comp
EFF-001	1/14/2010	Endrin Aldehyde	8081A/608	ND	0.07	ug/L			Comp
EFF-001	4/16/2012	Endrin Aldehyde	8081A/608	ND	0.5	ug/L			Comp/ Grab
EFF-001	5/13/2012	Endrin Aldehyde	8081A/608	ND	0.01	ug/L			Comp
EFF-001	6/10/2012	Endrin Aldehyde	8081A/608	ND	0.5	ug/L			Comp
EFF-001	7/8/2012	Endrin Aldehyde	8081A/608	ND	0.5	ug/L			Comp
EFF-001	1/12/2010	Ethylbenzene	8260B	ND	0.3	ug/L			Grab
EFF-001	2/2/2010	Ethylbenzene	8260B	ND	0.3	ug/L			Grab
EFF-001	4/16/2012	Ethylbenzene	8260B	ND	0.1	ug/L			Comp/ Grab
EFF-001	5/14/2012	Ethylbenzene	8260B	ND	0.1	ug/L			Grab
EFF-001	6/11/2012	Ethylbenzene	8260B	ND	0.1	ug/L			Grab
EFF-001	7/9/2012	Ethylbenzene	8260B	ND	0.1	ug/L			Grab
EFF-001	8/13/2012	Ethylbenzene	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	9/10/2012	Ethylbenzene	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	10/8/2012	Ethylbenzene	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	11/5/2012	Ethylbenzene	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	12/3/2012	Ethylbenzene	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	1/14/2013	Ethylbenzene	8260B/624	ND	0.1	ug/L		0.1	Comp/Grab
EFF-001	2/4/2013	Ethylbenzene	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	3/11/2013	Ethylbenzene	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	1/14/2010	Fluoranthene	8270C	ND	0.4	ug/L			Comp
EFF-001	4/16/2012	Fluoranthene	8270C	ND	0.2	ug/L			Comp/ Grab
EFF-001	5/13/2012	Fluoranthene	8270C	ND	0.2	ug/L			Comp
EFF-001	6/10/2012	Fluoranthene	8270C	ND	0.2	ug/L			Comp
EFF-001	7/8/2012	Fluoranthene	8270C	ND	0.2	ug/L			Comp
EFF-001	8/12/2012	Fluoranthene	8270C	ND	0.4	ug/L		0.4	Comp
EFF-001	9/9/2012	Fluoranthene	8270C	ND	0.4	ug/L		0.4	Comp
EFF-001	10/7/2012	Fluoranthene	8270C	ND	0.4	ug/L		0.4	Comp
EFF-001		Fluoranthene	8270C	ND	0.4	ug/L		0.4	comp
EFF-001	12/2/2012	Fluoranthene	8270C	ND	0.4	ug/L		0.4	Comp
EFF-001	1/13/2013	Fluoranthene	8270C	ND	0.4	ug/L		0.4	Comp

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	2/3/2013	Fluoranthene	8270C	ND	0.4	ug/L		0.4	
EFF-001	3/10/2013	Fluoranthene	8270C	ND	0.4	ug/L		0.4	Comp
EFF-001	1/14/2010	Fluorene	8270C	ND	0.2	ug/L			Comp
EFF-001	4/16/2012	Fluorene	8270C	ND	0.2	ug/L			Comp/ Grab
EFF-001	5/13/2012	Fluorene	8270C	ND	0.2	ug/L			Comp
EFF-001	6/10/2012	Fluorene	8270C	ND	0.2	ug/L			Comp
EFF-001	7/8/2012	Fluorene	8270C	ND	0.2	ug/L			Comp
EFF-001	8/12/2012	Fluorene	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	9/9/2012	Fluorene	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	10/7/2012	Fluorene	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	11/4/2012	Fluorene	8270C	ND	0.2	ug/L		0.2	comp
EFF-001	12/2/2012	Fluorene	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	1/13/2013	Fluorene	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	2/3/2013	Fluorene	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	3/10/2013	Fluorene	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	5/3/2010	Fluoride	SM4500-FC		0.18	mg/L			Comp
EFF-001	8/2/2010	Fluoride	SM4500-F C		0.13	mg/L			Comp
EFF-001	2/21/2011	Fluoride	SM4500-FC		0.13	mg/L			comp
EFF-001	8/8/2011	Fluoride	SM4500-FC		0.11	mg/L			Comp
EFF-001	2/5/2012	Fluoride	SM4500-FC		0.13	mg/L			Comp
EFF-001	8/7/2012	Fluoride	SM4500-FC		0.12	mg/L			Comp
EFF-001	1/14/2010	Gamma-BHC	8081A/608	ND	0.11	ug/L			Comp
EFF-001	4/16/2012	Gamma-BHC	8081A/608	ND	0.1	ug/L			Comp/ Grab
EFF-001	5/13/2012	Gamma-BHC	8081A/608	ND	0.2	ug/L			Comp
EFF-001	6/10/2012	Gamma-BHC	8081A/608	ND	0.1	ug/L			Comp
EFF-001	7/8/2012	Gamma-BHC	8081A/608	ND	0.1	ug/L			Comp
EFF-001	1/12/2010	Hardness (as CaCO3)	200.7		88.2	mg/L			Grab
EFF-001	1/14/2010	Hardness (as CaCO3)	200.7		95.3	mg/L			Comp
EFF-001	2/8/2010	Hardness (as CaCO3)	200.7		95.9	mg/L			Comp
EFF-001	3/16/2010	Hardness (as CaCO3)	200.7		98.7	mg/L			comp
EFF-001	4/6/2010	Hardness (as CaCO3)	200.7		98.1	mg/L			Comp

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	5/3/2010	Hardness (as CaCO3)	200.7		104	mg/L			Comp
EFF-001	5/3/2010	Hardness (as CaCO3)	200.7		102	mg/L			Comp
EFF-001	6/1/2010	Hardness (as CaCO3)	200.7		110	mg/L			Comp
EFF-001	7/6/2010	Hardness (as CaCO3)	200.7		111	mg/L			Comp
EFF-001	8/2/2010	Hardness (as CaCO3)	200.7		110	mg/L			Comp
EFF-001	8/3/2010	Hardness (as CaCO3)	200.7		114	mg/L			comp
EFF-001	9/7/2010	Hardness (as CaCO3)	200.7		103	mg/L			comp
EFF-001	10/3/2010	Hardness (as CaCO3)	200.7		110	mg/L			comp
EFF-001	11/1/2010	Hardness (as CaCO3)	200.7		119	mg/L			Comp
EFF-001	12/5/2010	Hardness (as CaCO3)	200.7		112	mg/L			comp
EFF-001	1/17/2011	Hardness (as CaCO3)	200.7		109	mg/L			Comp
EFF-001	2/6/2011	Hardness (as CaCO3)	200.7		120	mg/L			Comp
EFF-001	2/21/2011	Hardness (as CaCO3)	200.7		111	mg/L			comp
EFF-001	3/6/2011	Hardness (as CaCO3)	200.7		123	mg/L			Comp
EFF-001	4/3/2011	Hardness (as CaCO3)	200.7		119	mg/L			comp
EFF-001	5/8/2011	Hardness (as CaCO3)	200.7		115	mg/L			Comp
EFF-001	6/12/2011	Hardness (as CaCO3)	200.7		110	mg/L			comp
EFF-001	7/10/2011	Hardness (as CaCO3)	200.7		117	mg/L			Comp
EFF-001	8/8/2011	Hardness (as CaCO3)	200.7		117	mg/L			Comp
EFF-001	9/5/2011	Hardness (as CaCO3)	200.7		105	mg/L			comp
EFF-001	10/9/2011	Hardness (as CaCO3)	200.7		109	mg/L			Comp
EFF-001	11/7/2011	Hardness (as CaCO3)	200.7		106	mg/L			comp
EFF-001	12/4/2011	Hardness (as CaCO3)	200.7		106	mg/L			Comp
EFF-001	1/8/2012	Hardness (as CaCO3)	200.7		112	mg/L			Composite
EFF-001	2/5/2012	Hardness (as CaCO3)	200.7		92.9	mg/L			Comp
EFF-001	3/11/2012	Hardness (as CaCO3)	200.7		107	mg/L			Comp
EFF-001	4/4/2012	Hardness (as CaCO3)	200.7		120	mg/L			Comp
EFF-001	5/13/2012	Hardness (as CaCO3)	200.7		109	mg/L			Comp
EFF-001	6/10/2012	Hardness (as CaCO3)	200.7		111	mg/L			Comp
EFF-001	7/8/2012	Hardness (as CaCO3)	200.7		110	mg/L			Comp
EFF-001	8/7/2012	Hardness (as CaCO3)	200.7		116	mg/L			Comp

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	8/12/2012	Hardness (as CaCO3)	200.7		115	mg/L			Comp
EFF-001	9/9/2012	Hardness (as CaCO3)	200.7		106	mg/L			Comp
EFF-001	10/7/2012	Hardness (as CaCO3)	200.7		119	mg/L			Comp
EFF-001	11/4/2012	Hardness (as CaCO3)	200.7		119	mg/L			comp
EFF-001	12/2/2012	Hardness (as CaCO3)	200.7		104	mg/L			Comp
EFF-001	1/13/2013	Hardness (as CaCO3)	200.7		116	mg/L			Comp
EFF-001	2/3/2013	Hardness (as CaCO3)	200.7		115	mg/L			Comp
EFF-001	3/10/2013	Hardness (as CaCO3)	200.7		129	mg/L			Comp
EFF-001	4/7/2013	Hardness (as CaCO3)	200.7		120	mg/L			Comp
EFF-001	5/5/2013	Hardness (as CaCO3)	200.7		114	mg/L			Comp
EFF-001	6/3/2013	Hardness (as CaCO3)	200.7		120	mg/L			Comp
EFF-001	7/7/2013	Hardness (as CaCO3)	200.7		127	mg/L			Comp
EFF-001	8/4/2013	Hardness (as CaCO3)	200.7		129	mg/L			Comp
EFF-001	9/9/2013	Hardness (as CaCO3)	200.7		124	mg/L			Comp
EFF-001	10/6/2013	Hardness (as CaCO3)	200.7		122	mg/L			Comp
EFF-001	11/3/2013	Hardness (as CaCO3)	200.7		110	mg/L			Comp
EFF-001	12/1/2013	Hardness (as CaCO3)	200.7		119	mg/L			Comp
EFF-001	1/20/2014	Hardness (as CaCO3)	200.7		125	mg/L			Comp
EFF-001	2/17/2014	Hardness (as CaCO3)	200.7		116	mg/L			Comp
EFF-001	3/3/2014	Hardness (as CaCO3)	200.7		115	mg/L			Comp
EFF-001	4/6/2014	Hardness (as CaCO3)	200.7		118	mg/L			Comp
EFF-001	1/14/2010	Heptachlor	8081A/608	ND	0.1	ug/L			Comp
EFF-001	4/16/2012	Heptachlor	8081A/608	ND	0.1	ug/L			Comp/ Grab
EFF-001	5/13/2012	Heptachlor	8081A/608	ND	0.1	ug/L			Comp
EFF-001	6/10/2012	Heptachlor	8081A/608	ND	0.1	ug/L			Comp
EFF-001	7/8/2012	Heptachlor	8081A/608	ND	0.1	ug/L			Comp
EFF-001	1/14/2010	Heptachlor Epoxide	8081A/608	ND	0.1	ug/L			Comp
EFF-001	4/16/2012	Heptachlor Epoxide	8081A/608	ND	0.1	ug/L			Comp/ Grab
EFF-001	5/13/2012	Heptachlor Epoxide	8081A/608	ND	0.01	ug/L			Comp
EFF-001	6/10/2012	Heptachlor Epoxide	8081A/608	ND	0.1	ug/L			Comp
EFF-001	7/8/2012	Heptachlor Epoxide	8081A/608	ND	0.1	ug/L			Comp

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	1/14/2010	Hexachlorobenzene	8270C	ND	0.5	ug/L			Comp
EFF-001	4/16/2012	Hexachlorobenzene	8270C	ND	0.5	ug/L			Comp/ Grab
EFF-001	5/13/2012	Hexachlorobenzene	8270C	ND	0.5	ug/L			Comp
EFF-001	6/10/2012	Hexachlorobenzene	8270C	ND	0.5	ug/L			Comp
EFF-001	7/8/2012	Hexachlorobenzene	8270C	ND	0.5	ug/L			Comp
EFF-001	8/12/2012	Hexachlorobenzene	8270C	ND	0.5	ug/L		0.5	Comp
EFF-001	9/9/2012	Hexachlorobenzene	8270C	ND	0.5	ug/L		0.5	Comp
EFF-001	10/7/2012	Hexachlorobenzene	8270C	ND	0.5	ug/L		0.5	Comp
EFF-001	11/4/2012	Hexachlorobenzene	8270C	ND	0.5	ug/L		0.5	comp
EFF-001	12/2/2012	Hexachlorobenzene	8270C	ND	0.5	ug/L		0.5	Comp
EFF-001	1/13/2013	Hexachlorobenzene	8270C	ND	0.5	ug/L		0.5	Comp
EFF-001	2/3/2013	Hexachlorobenzene	8270C	ND	0.5	ug/L		0.5	Comp
EFF-001	3/10/2013	Hexachlorobenzene	8270C	ND	0.5	ug/L		0.5	Comp
EFF-001	1/12/2010	Hexachlorobutadiene	8260B	ND	0.1	ug/L			Grab
EFF-001	2/2/2010	Hexachlorobutadiene	8260B	ND	0.1	ug/L			Grab
EFF-001	4/16/2012	Hexachlorobutadiene	625	ND	0.09	ug/L			Comp/ Grab
EFF-001	5/14/2012	Hexachlorobutadiene	625	ND	0.09	ug/L			Grab
EFF-001	1/14/2010	Hexachlorocyclopentadiene	8270C	ND	0.1	ug/L			Comp
EFF-001	4/16/2012	Hexachlorocyclopentadiene	8270C	ND	0.1	ug/L			Comp/ Grab
EFF-001	5/13/2012	Hexachlorocyclopentadiene	8270C	ND	0.1	ug/L			Comp
EFF-001	6/10/2012	Hexachlorocyclopentadiene	8270C	ND	0.1	ug/L			Comp
EFF-001	7/8/2012	Hexachlorocyclopentadiene	8270C	ND	0.1	ug/L			Comp
EFF-001	8/12/2012	Hexachlorocyclopentadiene	8270C	ND	0.1	ug/L		0.1	Comp
EFF-001	9/9/2012	Hexachlorocyclopentadiene	8270C	ND	0.1	ug/L		0.1	Comp
EFF-001	10/7/2012	Hexachlorocyclopentadiene	8270C	ND	0.1	ug/L		0.1	Comp
EFF-001	11/4/2012	Hexachlorocyclopentadiene	8270C	ND	0.1	ug/L		0.1	comp
EFF-001	12/2/2012	Hexachlorocyclopentadiene	8270C	ND	0.1	ug/L		0.1	Comp
EFF-001	1/13/2013	Hexachlorocyclopentadiene	8270C	ND	0.1	ug/L		0.1	Comp
EFF-001		Hexachlorocyclopentadiene	8270C	ND	0.1	ug/L		0.1	Comp
EFF-001	3/10/2013	Hexachlorocyclopentadiene	8270C	ND	0.1	ug/L		0.1	Comp
EFF-001	1/12/2010	Hexachloroethane	8260B	ND	0.5	ug/L			Grab

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	1/14/2010	Hexachloroethane	8270C	ND	0.8	ug/L			Comp
EFF-001	2/2/2010	Hexachloroethane	8260B	ND	0.5	ug/L			Grab
EFF-001	4/16/2012	Hexachloroethane	8260B	ND	0.8	ug/L			Comp/ Grab
EFF-001	4/16/2012	Hexachloroethane	8270C	ND	0.8	ug/L			Comp/ Grab
EFF-001	5/13/2012	Hexachloroethane	8270C	ND	0.8	ug/L			Comp
EFF-001	5/14/2012	Hexachloroethane	8260B	ND	0.8	ug/L			Grab
EFF-001	6/10/2012	Hexachloroethane	8270C	ND	0.8	ug/L			Comp
EFF-001	7/8/2012	Hexachloroethane	8270C	ND	0.8	ug/L			Comp
EFF-001	8/12/2012	Hexachloroethane	8270C	ND	0.8	ug/L		0.8	Comp
EFF-001	9/9/2012	Hexachloroethane	8270C	ND	0.8	ug/L		0.8	Comp
EFF-001	10/7/2012	Hexachloroethane	8270C	ND	0.8	ug/L		0.8	Comp
EFF-001	11/4/2012	Hexachloroethane	8270C	ND	0.8	ug/L		0.8	comp
EFF-001	12/2/2012	Hexachloroethane	8270C	ND	0.8	ug/L		0.8	Comp
EFF-001	1/13/2013	Hexachloroethane	8270C	ND	0.8	ug/L		0.8	Comp
EFF-001	2/3/2013	Hexachloroethane	8270C	ND	0.8	ug/L		0.8	Comp
EFF-001	3/10/2013	Hexachloroethane	8270C	ND	0.8	ug/L		0.8	Comp
EFF-001	1/14/2010	Indeno(1,2,3-cd)pyrene	8270C	ND	0.4	ug/L			Comp
EFF-001	4/16/2012	Indeno(1,2,3-cd)pyrene	8270C	ND	0.4	ug/L			Comp/ Grab
EFF-001	5/13/2012	Indeno(1,2,3-cd)pyrene	8270C	ND	0.4	ug/L			Comp
EFF-001	6/10/2012	Indeno(1,2,3-cd)pyrene	8270C	ND	0.4	ug/L			Comp
EFF-001	7/8/2012	Indeno(1,2,3-cd)pyrene	8270C	ND	0.4	ug/L			Comp
EFF-001	8/12/2012	Indeno(1,2,3-cd)pyrene	8270C	ND	0.4	ug/L		0.4	Comp
EFF-001	9/9/2012	Indeno(1,2,3-cd)pyrene	8270C	ND	0.4	ug/L		0.4	Comp
EFF-001	10/7/2012	Indeno(1,2,3-cd)pyrene	8270C	ND	0.4	ug/L		0.4	Comp
EFF-001	11/4/2012	Indeno(1,2,3-cd)pyrene	8270C	ND	0.4	ug/L		0.4	comp
EFF-001	12/2/2012	Indeno(1,2,3-cd)pyrene	8270C	ND	0.4	ug/L		0.4	Comp
EFF-001	1/13/2013	Indeno(1,2,3-cd)pyrene	8270C	ND	0.4	ug/L		0.4	Comp
EFF-001	2/3/2013	Indeno(1,2,3-cd)pyrene	8270C	ND	0.4	ug/L		0.4	Comp
EFF-001	3/10/2013	Indeno(1,2,3-cd)pyrene	8270C	ND	0.4	ug/L		0.4	Comp
EFF-001	1/14/2010	Iron (Total)	200.7		193	ug/L			Comp
EFF-001	2/8/2010	Iron (Total)	200.7		305	ug/L			Comp

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	3/16/2010	Iron (Total)	200.7		117	ug/L			comp
EFF-001	4/6/2010	Iron (Total)	200.7		156	ug/L			Comp
EFF-001	5/3/2010	Iron (Total)	200.8		144	ug/L			Comp
EFF-001	7/6/2010	Iron (Total)	200.7		266	ug/L			Comp
EFF-001	8/2/2010	Iron (Total)	200.7		368	ug/L			Comp
EFF-001	8/3/2010	Iron (Total)	200.7		356	ug/L			comp
EFF-001	10/3/2010	Iron (Total)	200.7		220	ug/L			comp
EFF-001	12/5/2010	Iron (Total)	200.7		148	ug/L			comp
EFF-001	1/17/2011	Iron (Total)	200.7		250	ug/L			Comp
EFF-001	2/6/2011	Iron (Total)	200.7		400	ug/L			Comp
EFF-001	2/21/2011	Iron (Total)	200.8		480	ug/L			comp
EFF-001	4/3/2011	Iron (Total)	200.7		147	ug/L			comp
EFF-001	7/10/2011	Iron (Total)	200.7		140	ug/L			Comp
EFF-001	8/8/2011	Iron (Total)	200.7		170	ug/L			Comp
EFF-001	10/9/2011	Iron (Total)	200.7		184	ug/L			Comp
EFF-001	11/7/2011	Iron (Total)	200.7		373	ug/L			comp
EFF-001	1/8/2012	Iron (Total)	200.7		167	ug/L			comp
EFF-001	2/5/2012	Iron (Total)	200.8		213	ug/L			Comp
EFF-001	2/5/2012	Iron (Total)	200.7		213	ug/L			Comp
EFF-001	4/16/2012	Iron (Total)	200.7		119	ug/L			Comp/ Grab
EFF-001	7/8/2012	Iron (Total)	200.7		182	ug/L			Comp
EFF-001	8/7/2012	Iron (Total)	200.8		210	ug/L			Comp
EFF-001	10/7/2012	Iron (Total)	200.7		112	ug/L			Comp
EFF-001	3/10/2013	Iron (Total)	200.7		222	ug/L			Comp
EFF-001	5/5/2013	Iron (Total)	200.7		57.0	ug/L			Comp
EFF-001	8/4/2013	Iron (Total)	200.7		56.0	ug/L			Comp
EFF-001	10/6/2013	Iron (Total)	200.7		54.0	ug/L			Comp
EFF-001	3/3/2014	Iron (Total)	200.7	J	41	ug/L			Comp
EFF-001	1/14/2010	Isophorone	8270C	ND	0.2	ug/L			Comp
EFF-001	4/16/2012	Isophorone	8270C	ND	0.2	ug/L			Comp/ Grab
EFF-001	5/13/2012	Isophorone	8270C	ND	0.2	ug/L			Comp

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	6/10/2012	Isophorone	8270C	ND	0.2	ug/L			Comp
EFF-001	7/8/2012	Isophorone	8270C	ND	0.2	ug/L			Comp
EFF-001	8/12/2012	Isophorone	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	9/9/2012	Isophorone	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	10/7/2012	Isophorone	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	11/4/2012	Isophorone	8270C	ND	0.2	ug/L		0.2	comp
EFF-001	12/2/2012	Isophorone	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	1/13/2013	Isophorone	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	2/3/2013	Isophorone	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	3/10/2013	Isophorone	8270C	ND	0.2	ug/L		0.2	Comp
EFF-001	1/14/2010	Lead (Total)	200.8		0.5	ug/L			Comp
EFF-001	2/8/2010	Lead (Total)	200.8	ND	0.5	ug/L			Comp
EFF-001	3/16/2010	Lead (Total)	200.8	ND	0.5	ug/L			comp
EFF-001	4/6/2010	Lead (Total)	200.8	ND	0.17	ug/L			Comp
EFF-001	6/1/2010	Lead (Total)	200.8		0.51	ug/L			Comp
EFF-001	7/6/2010	Lead (Total)	200.8	ND	0.17	ug/L			Comp
EFF-001	8/2/2010	Lead (Total)	200.8	ND	0.5	ug/L			Comp
EFF-001	8/3/2010	Lead (Total)	200.8	ND	0.17	ug/L			comp
EFF-001	9/7/2010	Lead (Total)	200.8	ND	0.5	ug/L			comp
EFF-001	10/3/2010	Lead (Total)	200.8	ND	0.17	ug/L			comp
EFF-001	11/1/2010	Lead (Total)	200.8	ND	0.17	ug/L			Comp
EFF-001	12/5/2010	Lead (Total)	200.8	ND	0.17	ug/L			comp
EFF-001	1/17/2011	Lead (Total)	200.8	ND	0.17	ug/L			Comp
EFF-001	2/6/2011	Lead (Total)	200.8	ND	0.17	ug/L			Comp
EFF-001	4/3/2011	Lead (Total)	200.8	ND	0.17	ug/L			comp
EFF-001	8/8/2011	Lead (Total)	200.8	J	0.7	ug/L			Comp
EFF-001	9/5/2011	Lead (Total)	200.8	ND	0.17	ug/L			comp
EFF-001	10/9/2011	Lead (Total)	200.8	ND	0.17	ug/L			Comp
EFF-001	11/7/2011	Lead (Total)	200.8	ND	2.3	ug/L			comp
EFF-001	1/8/2012	Lead (Total)	200.8		1.6	ug/L			comp
EFF-001	2/5/2012	Lead (Total)	200.8		1.8	ug/L			Comp

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	3/11/2012	Lead (Total)	200.8		1.2	ug/L			Comp
EFF-001	4/16/2012	Lead (Total)	200.8	ND	0.5	ug/L			Comp/ Grab
EFF-001	5/13/2012	Lead (Total)	200.8	ND	0.5	ug/L			Comp
EFF-001	6/10/2012	Lead (Total)	200.8	ND	0.17	ug/L			Comp
EFF-001	7/8/2012	Lead (Total)	200.8	ND	0.5	ug/L			Comp
EFF-001	8/12/2012	Lead (Total)	200.8	ND	0.5	ug/L		0.5	Comp
EFF-001	9/9/2012	Lead (Total)	200.8	ND	0.5	ug/L		0.5	Comp
EFF-001	10/7/2012	Lead (Total)	200.8	ND	0.5	ug/L		0.5	Comp
EFF-001	11/4/2012	Lead (Total)	200.8	ND	0.5	ug/L		0.5	comp
EFF-001	12/2/2012	Lead (Total)	200.8	ND	0.17	ug/L		0.17	Comp
EFF-001	1/13/2013	Lead (Total)	200.8	ND	0.17	ug/L		0.17	Comp
EFF-001	2/3/2013	Lead (Total)	200.8	ND	0.17	ug/L		0.17	Comp
EFF-001	3/10/2013	Lead (Total)	200.8	ND	0.5	ug/L		0.5	Comp
EFF-001	1/14/2010	Magnesium	200.7		6.91	mg/l			Comp
EFF-001	2/8/2010	Magnesium	200.7		6.76	mg/l			Comp
EFF-001	3/16/2010	Magnesium	200.7		7	mg/l			comp
EFF-001	4/6/2010	Magnesium	200.7		6.99	mg/l			Comp
EFF-001	5/3/2010	Magnesium	200.7		7.54	mg/L			Comp
EFF-001	8/2/2010	Magnesium	200.7		7.9	mg/L			Comp
EFF-001	8/3/2010	Magnesium	200.7		8.39	mg/l			comp
EFF-001	2/21/2011	Magnesium	200.7		7.84	mg/L			comp
EFF-001	8/8/2011	Magnesium	200.7		8.66	mg/l			Comp
EFF-001	8/8/2011	Magnesium	200.7		8.66	mg/L			Comp
EFF-001	2/5/2012	Magnesium	200.7		6.61	mg/l			Comp
EFF-001	4/16/2012	Magnesium	200.7		7.18	mg/l			Comp/ Grab
EFF-001	7/8/2012	Magnesium	200.7		7.8	mg/l			Comp
EFF-001	8/7/2012	Magnesium	200.7		8.38	mg/L			Comp
EFF-001	10/7/2012	Magnesium	200.7		8.43	mg/l			Comp
EFF-001	1/14/2010	Manganese (Total)	200.8		13	ug/L			Comp
EFF-001	2/8/2010	Manganese (Total)	200.8	J	6	ug/L			Comp
EFF-001	3/16/2010	Manganese (Total)	200.8		12	ug/L			comp

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	4/6/2010	Manganese (Total)	200.8	J	8.8	ug/L			Comp
EFF-001	7/6/2010	Manganese (Total)	200.8	J	7.3	ug/L			Comp
EFF-001	8/2/2010	Manganese (Total)	200.8	J	7.1	ug/L			Comp
EFF-001	8/3/2010	Manganese (Total)	200.8	J	6.6	ug/L			comp
EFF-001	10/3/2010	Manganese (Total)	200.8		11	ug/L			comp
EFF-001	12/5/2010	Manganese (Total)	200.8		12	ug/L			comp
EFF-001	1/17/2011	Manganese (Total)	200.8		19	ug/L			Comp
EFF-001	4/3/2011	Manganese (Total)	200.8		47	ug/L			comp
EFF-001	7/10/2011	Manganese (Total)	200.8		19	ug/L			Comp
EFF-001	8/8/2011	Manganese (Total)	200.8		10.4	ug/L			Comp
EFF-001	10/9/2011	Manganese (Total)	200.8		11	ug/L			Comp
EFF-001	1/8/2012	Manganese (Total)	200.8	ND	1	ug/L			Comp
EFF-001	2/5/2012	Manganese (Total)	200.8		11	ug/L			Comp
EFF-001	4/16/2012	Manganese (Total)	200.8	1	4.6	ug/L			Comp/ Grab
EFF-001	7/8/2012	Manganese (Total)	200.8	l	9	ug/L			Comp
EFF-001	8/7/2012	Manganese (Total)	200.8	ND	1	ug/L		1	Comp
EFF-001	10/7/2012	Manganese (Total)	200.8	l	6	ug/L			Comp
EFF-001	2/3/2013	Manganese (Total)	200.8	J	6.9	ug/L			Comp
EFF-001	3/10/2013	Manganese (Total)	200.8	J	5.4	ug/L			Comp
EFF-001	5/5/2013	Manganese (Total)	200.8	ND	1	ug/L		1	Comp
EFF-001	8/4/2013	Manganese (Total)	200.8		13.0	ug/L			Comp
EFF-001	10/6/2013	Manganese (Total)	200.8		11.0	ug/L			Comp
EFF-001	3/3/2014	Manganese (Total)	200.8		19	ug/L			Comp
EFF-001	1/12/2010	MBAS	SM5540C	J	0.04	mg/L			Grab
EFF-001	1/26/2010	MBAS	SM5540C	J	0.03	mg/L			Grab
EFF-001	2/2/2010	MBAS	SM5540C	J	0.03	mg/L			Grab
EFF-001	2/17/2010	MBAS	SM5540C		0.05	mg/L			Grab
EFF-001	3/15/2010	MBAS	SM5540C		0.06	mg/L			Grab
EFF-001	8/2/2010	MBAS	SM5540C	J	0.04	mg/L			Comp
EFF-001	8/8/2011	MBAS	SM5540C	J	0.03	mg/L			Comp
EFF-001	2/5/2012	MBAS	SM5540C	J	0.02	mg/L			Comp

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	6/4/2013	MBAS	SM5540C		0.06	mg/L			Grab
EFF-001	6/5/2013	MBAS	SM5540C		0.05	mg/L			Grab
EFF-001	7/8/2013	MBAS	SM5540C		0.06	mg/L			Grab
EFF-001	11/4/2013	MBAS	SM5540C		0.05	mg/L			Grab
EFF-001	12/2/2013	MBAS	SM5540C	J	0.04	mg/L			Grab
EFF-001	1/21/2014	MBAS	SM5540C		0.06	mg/L			Grab
EFF-001	2/18/2014	MBAS	SM5540C	J	0.04	mg/L			Grab
EFF-001	3/4/2014	MBAS	SM5540C		0.08	mg/L			Grab
EFF-001	4/7/2014	MBAS	SM5540C		0.05	mg/L			Grab
EFF-001	8/2/2010	Mercury (Total)	1631	ND	0.3	ug/L			Comp
EFF-001	8/8/2011	Mercury (Total)	1631		1.31	ug/L			Comp
EFF-001	2/5/2012	Mercury (Total)	1631	ND	0.3	ug/L			Comp
EFF-001	1/13/2010	Mercury (Total), low level	1631		0.00525	ug/L			Grab
EFF-001	2/8/2010	Mercury (Total), low level	1631		0.0037	ug/L			Grab
EFF-001	3/16/2010	Mercury (Total), low level	1631		0.0014	ug/L			Grab
EFF-001	4/7/2010	Mercury (Total), low level	1631		0.0023	ug/L			Grab
EFF-001		Mercury (Total), low level	1631		0.0023	ug/L			Grab
EFF-001	6/2/2010	Mercury (Total), low level	1631		0.0023	ug/L			Grab
EFF-001	7/6/2010	Mercury (Total), low level	1631		0.0043	ug/L			Grab
EFF-001	8/2/2010	Mercury (Total), low level	1631		0.003	ug/L			Grab
EFF-001	9/8/2010	Mercury (Total), low level	1631		0.0025	ug/L			Grab
EFF-001	10/3/2010	Mercury (Total), low level	1631		0.0035	ug/L			Grab
EFF-001	11/2/2010	Mercury (Total), low level	1631		0.0025	ug/L			Grab
EFF-001	12/6/2010	Mercury (Total), low level	1631	ND	0.0002	ug/L			Grab
EFF-001	1/17/2011	Mercury (Total), low level	1631		0.0032	ug/L			Grab
EFF-001	2/6/2011	Mercury (Total), low level	1631		0.0025	ug/L			Grab
EFF-001	3/7/2011	Mercury (Total), low level	1631		0.003	ug/L			Grab
EFF-001	4/4/2011	Mercury (Total), low level	1631		0.0017	ug/L			Grab
EFF-001	5/9/2011	Mercury (Total), low level	1631		0.002	ug/L			Grab
EFF-001	6/13/2011	Mercury (Total), low level	1631		0.0029	ug/L			Grab
EFF-001	7/11/2011	Mercury (Total), low level	1631	ND	0.0002	ug/L			Grab

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	8/7/2011	Mercury (Total), low level	1631		0.0026	ug/L			Grab
EFF-001	9/5/2011	Mercury (Total), low level	1631		0.0021	ug/L			Grab
EFF-001	12/4/2011	Mercury (Total), low level	1631		0.0024	ug/L			Grab
EFF-001	1/9/2012	Mercury (Total), low level	1631		0.0024	ug/L			Grab
EFF-001	2/5/2012	Mercury (Total), low level	1631		0.0024	ug/L			Grab
EFF-001	3/11/2012	Mercury (Total), low level	1631	ND	0.0002	ug/L			Grab
EFF-001	4/16/2012	Mercury (Total), low level	1631		0.0025	ug/L			Grab
EFF-001	5/14/2012	Mercury (Total), low level	1631		0.0028	ug/L			Grab
EFF-001	6/11/2012	Mercury (Total), low level	1631		0.0045	ug/L			Grab
EFF-001	7/8/2012	Mercury (Total), low level	1631		0.0029	ug/L			Comp/Grab
EFF-001	8/12/2012	Mercury (Total), low level	1631		0.0041	ug/L			Comp/Grab
EFF-001	9/9/2012	Mercury (Total), low level	1631		0.0040	ug/L			Comp/Grab
EFF-001	10/8/2012	Mercury (Total), low level	1631		0.0033	ug/L			Comp/Grab
EFF-001	11/4/2012	Mercury (Total), low level	1631		0.003	ug/L			Comp/Grab
EFF-001	12/2/2012	Mercury (Total), low level	1631		0.0028	ug/L			Comp/Grab
EFF-001	1/13/2013	Mercury (Total), low level	1631		0.0015	ug/L			Comp/Grab
EFF-001	2/3/2013	Mercury (Total), low level	1631		0.0029	ug/L			comp/Grab
EFF-001	3/10/2013	Mercury (Total), low level	1631		0.0022	ug/L			Grab
EFF-001	4/7/2013	Mercury (Total), low level	1631		0.0017	ug/L			Comp/Grab
EFF-001	5/6/2013	Mercury (Total), low level	1631		0.0028	ug/L			Grab
EFF-001	6/3/2013	Mercury (Total), low level	1631		0.0033	ug/L			Comp
EFF-001	7/7/2013	Mercury (Total), low level	1631		0.0028	ug/L			Comp/Grab
EFF-001	8/5/2013	Mercury (Total), low level	1631		0.0065	ug/L			Comp/Grab
EFF-001	9/9/2013	Mercury (Total), low level	1631		0.013	ug/L			Comp/Grab
EFF-001	10/7/2013	Mercury (Total), low level	1631		0.0054	ug/L			Comp/Grab
EFF-001	11/3/2013	Mercury (Total), low level	1631		0.0043	ug/L			Comp/Grab
EFF-001	12/2/2013	Mercury (Total), low level	1631		0.0032	ug/L			Grab
EFF-001	1/21/2014	Mercury (Total), low level	1631		0.0028	ug/L			Grab
EFF-001	2/17/2014	Mercury (Total), low level	1631		0.0065	ug/L			Comp
EFF-001	3/4/2014	Mercury (Total), low level	1631		0.0023	ug/L			Comp/Grab
EFF-001	1/14/2010	Methoxychlor	8081A/608	ND	0.31	ug/L			Comp

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	4/16/2012	Methoxychlor	8081A/608	ND	1	ug/L			Comp/Grab
EFF-001	5/13/2012	Methoxychlor	8081A/608	ND	1	ug/L			Comp
EFF-001	6/10/2012	Methoxychlor	8081A/608	ND	1	ug/L			Comp
EFF-001	7/8/2012	Methoxychlor	8081A/608	ND	1	ug/L			Comp
EFF-001	1/12/2010	Methyl bromide	8260B	ND	1.6	ug/L			Grab
EFF-001	2/2/2010	Methyl bromide	8260B	ND	1.6	ug/L			Grab
EFF-001	4/16/2012	Methyl bromide	8260B	ND	0.4	ug/L			Comp/Grab
EFF-001	5/14/2012	Methyl bromide	8260B	ND	0.4	ug/L			Grab
EFF-001	6/11/2012	Methyl bromide	8260B	ND	0.4	ug/L			Grab
EFF-001	7/9/2012	Methyl bromide	8260B	ND	0.4	ug/L			Grab
EFF-001	1/12/2010	Methyl chloride	8260B	ND	0.6	ug/L			Grab
EFF-001	2/2/2010	Methyl chloride	8260B	ND	0.6	ug/L			Grab
EFF-001	4/16/2012	Methyl chloride	8260B	ND	0.3	ug/L			Comp/Grab
EFF-001	5/14/2012	Methyl chloride	8260B	ND	0.3	ug/L			Grab
EFF-001	6/11/2012	Methyl chloride	8260B	ND	0.3	ug/L			Grab
EFF-001	7/9/2012	Methyl chloride	8260B	ND	0.3	ug/L			Grab
EFF-001	1/12/2010	Methylene chloride	8260B	ND	0.06	ug/L			Grab
EFF-001	2/2/2010	Methylene chloride	8260B	ND	0.06	ug/L			Grab
EFF-001	4/16/2012	Methylene chloride	8260B	ND	0.4	ug/L			Comp/Grab
EFF-001	5/14/2012	Methylene chloride	8260B	ND	0.4	ug/L			Grab
EFF-001	6/11/2012	Methylene chloride	8260B	ND	0.4	ug/L			Grab
EFF-001	7/9/2012	Methylene chloride	8260B	ND	0.4	ug/L			Grab
EFF-001	8/13/2012	Methylene chloride	8260B/624	ND	0.3	ug/L		0.3	Grab
EFF-001	9/10/2012	Methylene chloride	8260B/624	ND	0.3	ug/L		0.3	Grab
EFF-001	10/8/2012	Methylene chloride	8260B/624	ND	0.3	ug/L		0.3	Grab
EFF-001	11/5/2012	Methylene chloride	8260B/624	ND	0.3	ug/L		0.3	Grab
EFF-001	12/3/2012	Methylene chloride	8260B/624	ND	0.3	ug/L		0.3	Grab
EFF-001	1/14/2013	Methylene chloride	8260B/624	ND	0.3	ug/L		0.3	Comp/Grab
EFF-001	2/4/2013	Methylene chloride	8260B/624	ND	0.3	ug/L		0.3	Grab
EFF-001	3/11/2013	Methylene chloride	8260B/624	ND	0.3	ug/L		0.3	Grab
EFF-001	2/8/2010	Methylmercury	1631		0.085	ng/L			Grab

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	3/16/2010	Methylmercury	1631	J	0.0283	ng/L			Grab
EFF-001	4/7/2010	Methylmercury	1631	ND	0.02	ng/L			Grab
EFF-001	5/3/2010	Methylmercury	1631	ND	0.02	ng/L	0.02	0.05	Grab
EFF-001	6/2/2010	Methylmercury	1631	J	0.0356	ng/L			Grab
EFF-001	7/6/2010	Methylmercury	1631	J	0.047	ng/L			Grab
EFF-001	8/2/2010	Methylmercury	1631		0.0653	ng/L			Grab
EFF-001	9/8/2010	Methylmercury	1631		0.0561	ng/L			Grab
EFF-001	10/3/2010	Methylmercury	1631		0.0565	ng/L			Grab
EFF-001	11/2/2010	Methylmercury	1631	J	0.0248	ng/L			Grab
EFF-001	12/6/2010	Methylmercury	1631	J	0.0353	ng/L			Grab
EFF-001	1/17/2011	Methylmercury	1631		0.0652	ng/L			Grab
EFF-001	2/6/2011	Methylmercury	1631		0.05	ng/L			Grab
EFF-001	3/7/2011	Methylmercury	1631		0.06	ng/L			Grab
EFF-001	4/4/2011	Methylmercury	1631	ND	0.02	ng/L			Grab
EFF-001	5/9/2011	Methylmercury	1631	J	0.03	ng/L			Grab
EFF-001	6/13/2011	Methylmercury	1631	J	0.03	ng/L			Grab
EFF-001	7/11/2011	Methylmercury	1631	J	0.04	ng/L			Grab
EFF-001	8/7/2011	Methylmercury	1631	J	0.04	ng/L			Grab
EFF-001	9/5/2011	Methylmercury	1631	J	0.04	ng/L			Grab
EFF-001	12/4/2011	Methylmercury	1631	J	0.04	ng/L			Grab
EFF-001	1/9/2012	Methylmercury	1631		0.06	ng/L			Grab
EFF-001	2/5/2012	Methylmercury	1631	J	0.02	ng/L			Grab
EFF-001	3/11/2012	Methylmercury	1631	J	0.02	ng/L			Grab
EFF-001	4/16/2012	Methylmercury	1631	ND	0.02	ng/L			Grab
EFF-001	5/14/2012	Methylmercury	1631	J	0.04	ng/L			Grab
EFF-001	6/11/2012	Methylmercury	1631	J	0.04	ng/L			Grab
EFF-001	7/8/2012	Methylmercury	1631		0.06	ng/L			Comp/Grab
EFF-001	8/12/2012	Methylmercury	1631	J	0.03	ng/L			Comp/Grab
EFF-001	9/9/2012	Methylmercury	1631		0.07	ng/L			Comp/Grab
EFF-001	10/8/2012	Methylmercury	1631	J	0.05	ng/L			Comp/Grab
EFF-001	11/4/2012	Methylmercury	1631		0.0495	ng/L			Comp/Grab

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	12/2/2012	Methylmercury	1631		0.06	ng/L			Comp/Grab
EFF-001	1/13/2013	Methylmercury	1631	J	0.04	ng/L			Comp/Grab
EFF-001	2/3/2013	Methylmercury	1631	J	0.04	ng/L			comp/Grab
EFF-001	3/10/2013	Methylmercury	1631	ND	0.02	ng/L		0.02	Grab
EFF-001	4/7/2013	Methylmercury	1631	ND	0.02	ng/L		0.02	Comp/Grab
EFF-001	5/6/2013	Methylmercury	1631		0.07	ng/L			Grab
EFF-001	6/3/2013	Methylmercury	1631		0.05	ng/L			Comp
EFF-001	7/7/2013	Methylmercury	1631	J	0.04	ng/L			Comp/Grab
EFF-001	8/5/2013	Methylmercury	1631	J	0.05	ng/L			Comp/Grab
EFF-001	9/9/2013	Methylmercury	1631		0.21	ng/L			Comp/Grab
EFF-001	10/7/2013	Methylmercury	1631		0.08	ng/L			Comp/Grab
EFF-001	11/3/2013	Methylmercury	1631		0.08	ng/L			Comp/Grab
EFF-001	12/2/2013	Methylmercury	1631	ND	0.02	ng/L		0.02	Grab
EFF-001	1/21/2014	Methylmercury	1631	ND	0.02	ng/L		0.02	Grab
EFF-001	2/17/2014	Methylmercury	1631		0.2	ng/L			Comp
EFF-001	3/4/2014	Methylmercury	1631	J	0.04	ng/L			Comp/Grab
EFF-001	1/14/2010	Molybdenum (Total)	200.8	J	3.5	ug/L			Comp
EFF-001	2/8/2010	Molybdenum (Total)	200.8	J	3	ug/L			Comp
EFF-001	3/16/2010	Molybdenum (Total)	200.8	J	3.4	ug/L			comp
EFF-001	4/6/2010	Molybdenum (Total)	200.8	J	3.2	ug/L			Comp
EFF-001	8/3/2010	Molybdenum (Total)	200.8	J	5.7	ug/L			comp
EFF-001	8/8/2011	Molybdenum (Total)	200.8		7.4	ug/L			Comp
EFF-001	4/16/2012	Molybdenum (Total)	200.8	J	3.3	ug/L			Comp/Grab
EFF-001	7/8/2012	Molybdenum (Total)	200.8	J	5.3	ug/L			Comp
EFF-001	10/7/2012	Molybdenum (Total)	200.8	J	3.8	ug/L			Comp
EFF-001	2/3/2013	Molybdenum (Total)	200.8	J	3.8	ug/L			Comp
EFF-001	8/13/2012	Monochlorobenzene	8260B/624	ND	0.09	ug/L		0.09	Grab
EFF-001	9/10/2012	Monochlorobenzene	8260B/624	ND	0.09	ug/L		0.09	Grab
EFF-001	10/8/2012	Monochlorobenzene	8260B/624	ND	0.09	ug/L		0.09	Grab
EFF-001	11/5/2012	Monochlorobenzene	8260B/624	ND	0.09	ug/L		0.09	Grab
EFF-001	12/3/2012	Monochlorobenzene	8260B/624	ND	0.09	ug/L		0.09	Grab

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	1/14/2013	Monochlorobenzene	8260B/624	ND	0.09	ug/L		0.09	Comp/Grab
EFF-001	2/4/2013	Monochlorobenzene	8260B/624	ND	0.09	ug/L		0.09	Grab
EFF-001	3/11/2013	Monochlorobenzene	8260B/624	ND	0.09	ug/L		0.09	Grab
EFF-001	1/12/2010	Naphthalene	8260B	ND	0.2	ug/L			Grab
EFF-001	2/2/2010	Naphthalene	8260B	ND	0.2	ug/L			Grab
EFF-001	4/16/2012	Naphthalene	625	ND	0.4	ug/L			Comp/Grab
EFF-001	5/14/2012	Naphthalene	625	ND	0.4	ug/L			Grab
EFF-001	1/14/2010	Nickel (Total)	200.8		2.7	ug/L			Comp
EFF-001	2/8/2010	Nickel (Total)	200.8		4.2	ug/L			Comp
EFF-001	3/16/2010	Nickel (Total)	200.8		1.6	ug/L			comp
EFF-001	4/6/2010	Nickel (Total)	200.8		1.9	ug/L			Comp
EFF-001	8/3/2010	Nickel (Total)	200.8		8.6	ug/L			comp
EFF-001	8/8/2011	Nickel (Total)	200.8		1.7	ug/L			Comp
EFF-001	4/16/2012	Nickel (Total)	200.8		1.4	ug/L			Comp/Grab
EFF-001	5/13/2012	Nickel (Total)	200.8		5	ug/L			Comp
EFF-001	6/10/2012	Nickel (Total)	200.8		3.2	ug/L			Comp
EFF-001	7/8/2012	Nickel (Total)	200.8		3.2	ug/L			Comp
EFF-001	8/7/2012	Nickel (Total)	200.8		3.7	ug/L			Comp
EFF-001	8/12/2012	Nickel (Total)	200.8		3.8	ug/L			Comp
EFF-001	9/9/2012	Nickel (Total)	200.8		2.3	ug/L			Comp
EFF-001	10/7/2012	Nickel (Total)	200.8		1.5	ug/L			Comp
EFF-001	11/4/2012	Nickel (Total)	200.8		1.8	ug/L			comp
EFF-001	12/2/2012	Nickel (Total)	200.8		2.0	ug/L			Comp
EFF-001	1/13/2013	Nickel (Total)	200.8		2.0	ug/L			Comp
EFF-001	2/3/2013	Nickel (Total)	200.8		2.1	ug/L			Comp
EFF-001	3/10/2013	Nickel (Total)	200.8		2.0	ug/L			Comp
EFF-001	1/14/2010	Nitrate (NO3-N)	300.0		12.9	mg/L			Comp
EFF-001	2/8/2010	Nitrate (NO3-N)	300.0		17.1	mg/L			Comp
EFF-001	3/16/2010	Nitrate (NO3-N)	300.0		17.3	mg/L			comp
EFF-001	4/6/2010	Nitrate (NO3-N)	300.0		14.5	mg/L			Comp
EFF-001	5/3/2010	Nitrate (NO3-N)	300.0		16.6	mg/L			Comp

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	6/1/2010	Nitrate (NO3-N)	300.0		13.7	mg/L			Comp
EFF-001	7/6/2010	Nitrate (NO3-N)	300.0		12.9	mg/L			Comp
EFF-001	8/3/2010	Nitrate (NO3-N)	300.0		11.7	mg/L			comp
EFF-001	9/7/2010	Nitrate (NO3-N)	300.0		14.8	mg/L			comp
EFF-001	10/3/2010	Nitrate (NO3-N)	300.0		15	mg/L			comp
EFF-001	11/1/2010	Nitrate (NO3-N)	300.0		17.7	mg/L			Comp
EFF-001	12/5/2010	Nitrate (NO3-N)	300.0		18.4	mg/L			comp
EFF-001	1/17/2011	Nitrate (NO3-N)	300.0		17.8	mg/L			Comp
EFF-001	2/6/2011	Nitrate (NO3-N)	300.0		17.1	mg/L			Comp
EFF-001	3/6/2011	Nitrate (NO3-N)	300.0		19.5	mg/L			Comp
EFF-001	4/3/2011	Nitrate (NO3-N)	300.0		20.8	mg/L			comp
EFF-001	5/8/2011	Nitrate (NO3-N)	300.0		19	mg/L			Comp
EFF-001	6/12/2011	Nitrate (NO3-N)	300.0		18.8	mg/L			comp
EFF-001	7/10/2011	Nitrate (NO3-N)	300.0		16.2	mg/L			Comp
EFF-001	8/8/2011	Nitrate (NO3-N)	300.0		16.4	mg/L			Comp
EFF-001	8/8/2011	Nitrate (NO3-N)	300.0		16.5	mg/L			Comp/Grab
EFF-001	9/5/2011	Nitrate (NO3-N)	300.0		15.4	mg/L			comp
EFF-001	10/9/2011	Nitrate (NO3-N)	300.0		17.1	mg/L			Comp
EFF-001	11/7/2011	Nitrate (NO3-N)	300.0		17.5	mg/L			comp
EFF-001	12/4/2011	Nitrate (NO3-N)	300.0		18.4	mg/L			Comp
EFF-001	1/8/2012	Nitrate (NO3-N)	300.0		19.4	mg/L			Comp
EFF-001	2/5/2012	Nitrate (NO3-N)	300.0		18.6	mg/L			Comp
EFF-001	3/11/2012	Nitrate (NO3-N)	300.0		17.4	mg/L			Comp
EFF-001	4/16/2012	Nitrate (NO3-N)	300.0		18.4	mg/L			Comp/Grab
EFF-001	7/8/2012	Nitrate (NO3-N)	300.0		14.1	mg/L			Comp
EFF-001	8/12/2012	Nitrate (NO3-N)	300.0		16.9	mg/L			Comp
EFF-001	9/9/2012	Nitrate (NO3-N)	300.0		15.8	mg/L			Comp
EFF-001	10/7/2012	Nitrate (NO3-N)	300.0		13.3	mg/L			Comp
EFF-001	11/4/2012	Nitrate (NO3-N)	300.0		15.7	mg/L			comp
EFF-001		Nitrate (NO3-N)	300.0		14.2	mg/L			Comp
EFF-001	1/13/2013	Nitrate (NO3-N)	300.0		18.0	mg/L			Comp

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	2/3/2013	Nitrate (NO3-N)	300.0		19.1	mg/L			Comp
EFF-001	3/10/2013	Nitrate (NO3-N)	300.0		15.7	mg/L			Comp
EFF-001	4/7/2013	Nitrate (NO3-N)	300.0		16.2	mg/L			Comp
EFF-001	5/5/2013	Nitrate (NO3-N)	300.0		15.1	mg/L			Comp
EFF-001	6/3/2013	Nitrate (NO3-N)	300.0		16.6	mg/L			Comp
EFF-001	7/7/2013	Nitrate (NO3-N)	300.0		16.5	mg/L			Comp
EFF-001	8/4/2013	Nitrate (NO3-N)	300.0		15.5	mg/L			Comp
EFF-001	9/9/2013	Nitrate (NO3-N)	300.0		11.5	mg/L			Comp
EFF-001	10/6/2013	Nitrate (NO3-N)	300.0		13.8	mg/L			Comp
EFF-001	11/3/2013	Nitrate (NO3-N)	300.0		19.7	mg/L			Comp
EFF-001	12/1/2013	Nitrate (NO3-N)	300.0		17.6	mg/L			Comp
EFF-001	1/20/2014	Nitrate (NO3-N)	300.0		15.6	mg/L			Comp
EFF-001	2/17/2014	Nitrate (NO3-N)	300.0		14.7	mg/L			Comp
EFF-001	3/3/2014	Nitrate (NO3-N)	300.0		12.4	mg/L			Comp
EFF-001	4/6/2014	Nitrate (NO3-N)	300.0		16.7	mg/L			Comp
EFF-001	1/14/2010	Nitrite (NO2-N)	300.0	ND	0.1	mg/L			Comp
EFF-001	12/5/2010	Nitrite (NO2-N)	300.0	ND	0.4	mg/L			comp
EFF-001	5/8/2011	Nitrite (NO2-N)	300.0	ND	0.1	mg/L	0.1		Comp
EFF-001	6/12/2011	Nitrite (NO2-N)	300.0	ND	0.1	mg/L			comp
EFF-001	1/14/2010	Nitrobenzene	8270C	ND	0.3	ug/L			Comp
EFF-001	4/16/2012	Nitrobenzene	8270C	ND	1	ug/L			Comp/Grab
EFF-001	5/13/2012	Nitrobenzene	8270C	ND	1	ug/L			Comp
EFF-001	6/10/2012	Nitrobenzene	8270C	ND	1	ug/L			Comp
EFF-001	7/8/2012	Nitrobenzene	8270C	ND	1	ug/L			Comp
EFF-001	8/12/2012	Nitrobenzene	8270C	ND	1	ug/L		1	Comp
EFF-001	9/9/2012	Nitrobenzene	8270C	ND	1	ug/L		1	Comp
EFF-001	10/7/2012	Nitrobenzene	8270C	ND	1	ug/L		1	Comp
EFF-001	11/4/2012	Nitrobenzene	8270C	ND	1	ug/L		1	comp
EFF-001	12/2/2012	Nitrobenzene	8270C	ND	1	ug/L		1	Comp
EFF-001	1/13/2013	Nitrobenzene	8270C	ND	1	ug/L		1	Comp
EFF-001	2/3/2013	Nitrobenzene	8270C	ND	1	ug/L		1	Comp

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	3/10/2013	Nitrobenzene	8270C	ND	1	ug/L		1	Comp
EFF-001	1/14/2010	N-Nitrosodimethylamine	8270C	ND	2.1	ug/L			Comp
EFF-001	4/16/2012	N-Nitrosodimethylamine	8270C	ND	2.1	ug/L			Comp/Grab
EFF-001	5/13/2012	N-Nitrosodimethylamine	8270C	ND	2.1	ug/L			Comp
EFF-001	6/10/2012	N-Nitrosodimethylamine	8270C	ND	2.1	ug/L			Comp
EFF-001	7/8/2012	N-Nitrosodimethylamine	8270C	ND	2.1	ug/L			Comp
EFF-001	8/12/2012	N-Nitrosodimethylamine	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	9/9/2012	N-Nitrosodimethylamine	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	10/7/2012	N-Nitrosodimethylamine	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	11/4/2012	N-Nitrosodimethylamine	8270C	ND	0.3	ug/L		0.3	comp
EFF-001	12/2/2012	N-Nitrosodimethylamine	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	1/13/2013	N-Nitrosodimethylamine	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	2/3/2013	N-Nitrosodimethylamine	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	3/10/2013	N-Nitrosodimethylamine	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	1/14/2010	N-Nitrosodi-n-propylamine	8270C	ND	0.3	ug/L			Comp
EFF-001	4/16/2012	N-Nitrosodi-n-propylamine	8270C	ND	0.3	ug/L			Comp/Grab
EFF-001	5/13/2012	N-Nitrosodi-n-propylamine	8270C	ND	0.3	ug/L			Comp
EFF-001	6/10/2012	N-Nitrosodi-n-propylamine	8270C	ND	0.3	ug/L			Comp
EFF-001	7/8/2012	N-Nitrosodi-n-propylamine	8270C	ND	0.3	ug/L			Comp
EFF-001	8/12/2012	N-Nitrosodi-n-propylamine	8270C	J	0.7	ug/L			Comp
EFF-001	9/9/2012	N-Nitrosodi-n-propylamine	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	10/7/2012	N-Nitrosodi-n-propylamine	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	11/4/2012	N-Nitrosodi-n-propylamine	8270C	ND	0.3	ug/L		0.3	comp
EFF-001	12/2/2012	N-Nitrosodi-n-propylamine	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	1/13/2013	N-Nitrosodi-n-propylamine	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	2/3/2013	N-Nitrosodi-n-propylamine	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	3/10/2013	N-Nitrosodi-n-propylamine	8270C	ND	0.3	ug/L		0.3	Comp
EFF-001	1/14/2010	N-Nitrosodiphenylamine	8270C	ND	0.2	ug/L			Comp
EFF-001	4/16/2012	N-Nitrosodiphenylamine	8270C	ND	2.1	ug/L			Comp/Grab
EFF-001	5/13/2012	N-Nitrosodiphenylamine	8270C	ND	2.1	ug/L			Comp
EFF-001	6/10/2012	N-Nitrosodiphenylamine	8270C	ND	2.1	ug/L			Comp

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	7/8/2012	N-Nitrosodiphenylamine	8270C	ND	2.1	ug/L			Comp
EFF-001	8/12/2012	N-Nitrosodiphenylamine	8270C	ND	0.1	ug/L		0.1	Comp
EFF-001	9/9/2012	N-Nitrosodiphenylamine	8270C	ND	0.1	ug/L		0.1	Comp
EFF-001	10/7/2012	N-Nitrosodiphenylamine	8270C	ND	0.1	ug/L		0.1	Comp
EFF-001	11/4/2012	N-Nitrosodiphenylamine	8270C	ND	0.1	ug/L		0.1	comp
EFF-001	12/2/2012	N-Nitrosodiphenylamine	8270C	ND	0.1	ug/L		0.1	Comp
EFF-001	1/13/2013	N-Nitrosodiphenylamine	8270C	ND	0.1	ug/L		0.1	Comp
EFF-001	2/3/2013	N-Nitrosodiphenylamine	8270C	ND	0.1	ug/L		0.1	Comp
EFF-001	3/10/2013	N-Nitrosodiphenylamine	8270C	ND	0.1	ug/L		0.1	Comp
EFF-001	1/14/2010	Pentachlorophenol	8270C	ND	0.4	ug/L			Comp
EFF-001	4/16/2012	Pentachlorophenol	8270C	ND	0.4	ug/L			Comp/Grab
EFF-001	5/13/2012	Pentachlorophenol	8270C	ND	0.4	ug/L			Comp
EFF-001	6/10/2012	Pentachlorophenol	8270C	ND	0.4	ug/L			Comp
EFF-001	7/8/2012	Pentachlorophenol	8270C	ND	0.4	ug/L			Comp
EFF-001	8/12/2012	Pentachlorophenol	8270C	ND	0.4	ug/L		0.4	Comp
EFF-001	9/9/2012	Pentachlorophenol	8270C	ND	0.4	ug/L		0.4	Comp
EFF-001	10/7/2012	Pentachlorophenol	8270C	ND	0.4	ug/L		0.4	Comp
EFF-001	11/4/2012	Pentachlorophenol	8270C	ND	0.4	ug/L		0.4	comp
EFF-001	12/2/2012	Pentachlorophenol	8270C	ND	0.4	ug/L		0.4	Comp
EFF-001	1/13/2013	Pentachlorophenol	8270C	ND	0.4	ug/L		0.4	Comp
EFF-001	2/3/2013	Pentachlorophenol	8270C	ND	0.4	ug/L		0.4	Comp
EFF-001	3/10/2013	Pentachlorophenol	8270C	ND	0.4	ug/L		0.4	Comp
EFF-001	6/1/2010	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	6/2/2010	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	6/3/2010	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	6/4/2010	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	6/5/2010	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	6/6/2010	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	6/7/2010	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	6/8/2010	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	6/9/2010	pH, daily average	SM4500-H+		7.3	SU			continuous

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	6/10/2010	pH, daily average	SM4500-H+		7.3	SU			continuous
EFF-001	6/11/2010	pH, daily average	SM4500-H+		7.3	SU			continuous
EFF-001	6/12/2010	pH, daily average	SM4500-H+		7.3	SU			continuous
EFF-001	6/13/2010	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	6/14/2010	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	6/15/2010	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	6/16/2010	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	6/17/2010	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	6/18/2010	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	6/19/2010	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	6/20/2010	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	6/21/2010	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	6/22/2010	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	6/23/2010	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	6/24/2010	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	6/25/2010	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	6/26/2010	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	6/27/2010	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	6/28/2010	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	6/29/2010	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	6/30/2010	pH, daily average	SM4500-H+		7.3	SU			continuous
EFF-001	7/1/2010	pH, daily average	SM4500-H+		7.3	SU			continuous
EFF-001	7/2/2010	pH, daily average	SM4500-H+		7.3	SU			continuous
EFF-001	7/3/2010	pH, daily average	SM4500-H+		7.3	SU			continuous
EFF-001	7/4/2010	pH, daily average	SM4500-H+		7.3	SU			continuous
EFF-001	7/5/2010	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001		pH, daily average	SM4500-H+		7.3	SU			continuous
EFF-001	7/7/2010	pH, daily average	SM4500-H+		7.3	SU			continuous
EFF-001	7/8/2010	pH, daily average	SM4500-H+		7.3	SU			continuous
EFF-001	7/9/2010	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	7/10/2010	pH, daily average	SM4500-H+		7	SU			continuous

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	7/11/2010	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	7/12/2010	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	7/13/2010	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	7/14/2010	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	7/15/2010	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	7/16/2010	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	7/17/2010	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	7/18/2010	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	7/19/2010	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	7/20/2010	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	7/21/2010	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	7/22/2010	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	7/23/2010	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	7/24/2010	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	7/25/2010	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	7/26/2010	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	7/27/2010	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	7/28/2010	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	7/29/2010	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	7/30/2010	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	7/31/2010	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	8/1/2010	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	8/2/2010	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	8/3/2010	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	8/4/2010	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	8/5/2010	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001		pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	8/7/2010	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	8/8/2010	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	8/9/2010	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	8/10/2010	pH, daily average	SM4500-H+		7.2	SU			continuous

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	8/11/2010	pH, daily average	SM4500-H+		7.3	SU			continuous
EFF-001	8/12/2010	pH, daily average	SM4500-H+		7.3	SU			continuous
EFF-001	8/13/2010	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	8/14/2010	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	8/15/2010	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	8/16/2010	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	8/17/2010	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	8/18/2010	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	8/19/2010	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	8/20/2010	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	8/21/2010	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	8/22/2010	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	8/23/2010	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	8/24/2010	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	8/25/2010	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	8/26/2010	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	8/27/2010	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	8/28/2010	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	8/29/2010	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	8/30/2010	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	8/31/2010	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	9/1/2010	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	9/2/2010	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	9/3/2010	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	9/4/2010	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	9/5/2010	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001		pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	9/7/2010	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	9/8/2010	pH, daily average	SM4500-H+		7.3	SU			continuous
EFF-001	9/9/2010	pH, daily average	SM4500-H+		7.3	SU			continuous
EFF-001	9/10/2010	pH, daily average	SM4500-H+		7.3	SU			continuous

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	9/11/2010	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	9/12/2010	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	9/13/2010	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	9/14/2010	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	9/15/2010	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	9/16/2010	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	9/17/2010	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	9/18/2010	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	9/19/2010	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	9/20/2010	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	9/21/2010	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	9/22/2010	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	9/23/2010	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	9/24/2010	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	9/25/2010	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	9/26/2010	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	9/27/2010	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	9/28/2010	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	9/29/2010	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	9/30/2010	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	10/1/2010	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	10/2/2010	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	10/3/2010	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	10/4/2010	pH, daily average	SM4500-H+		7.3	SU			continuous
EFF-001	10/5/2010	pH, daily average	SM4500-H+		7.3	SU			continuous
EFF-001	10/6/2010	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001		pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	10/8/2010	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	10/9/2010	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	10/10/2010	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	10/11/2010	pH, daily average	SM4500-H+		6.8	SU			continuous

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	10/12/2010	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	10/13/2010	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	10/14/2010	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	10/15/2010	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	10/16/2010	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	10/17/2010	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	10/18/2010	pH, daily average	SM4500-H+		7.3	SU			continuous
EFF-001	10/19/2010	pH, daily average	SM4500-H+		7.3	SU			continuous
EFF-001	10/20/2010	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	10/21/2010	pH, daily average	SM4500-H+		7.3	SU			continuous
EFF-001	10/22/2010	pH, daily average	SM4500-H+		7.3	SU			continuous
EFF-001	10/23/2010	pH, daily average	SM4500-H+		7.3	SU			continuous
EFF-001	10/24/2010	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	10/25/2010	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	10/26/2010	pH, daily average	SM4500-H+		7.4	SU			continuous
EFF-001	10/27/2010	pH, daily average	SM4500-H+		7.4	SU			continuous
EFF-001	10/28/2010	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	10/29/2010	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	10/30/2010	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	10/31/2010	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	11/1/2010	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	11/2/2010	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	11/3/2010	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	11/4/2010	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	11/5/2010	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	11/6/2010	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001		pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	11/8/2010	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	11/9/2010	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	11/10/2010	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	11/11/2010	pH, daily average	SM4500-H+		7.2	SU			continuous

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	11/12/2010	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	11/13/2010	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	11/14/2010	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	11/15/2010	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	11/16/2010	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	11/17/2010	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	11/18/2010	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	11/19/2010	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	11/20/2010	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	11/21/2010	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	11/22/2010	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	11/23/2010	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	11/24/2010	pH, daily average	SM4500-H+		7.4	SU			continuous
EFF-001	11/25/2010	pH, daily average	SM4500-H+		7.3	SU			continuous
EFF-001	11/26/2010	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	11/27/2010	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	11/28/2010	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	11/29/2010	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	11/30/2010	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	12/1/2010	pH, daily average	SM4500-H+		7.3	SU			continuous
EFF-001	12/2/2010	pH, daily average	SM4500-H+		7.3	SU			continuous
EFF-001	12/3/2010	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	12/4/2010	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	12/5/2010	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	12/6/2010	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	12/7/2010	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001		pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	12/9/2010	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	12/10/2010	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	12/11/2010	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	12/12/2010	pH, daily average	SM4500-H+		7.2	SU			continuous

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	12/13/2010	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	12/14/2010	pH, daily average	SM4500-H+		7.3	SU			continuous
EFF-001	12/15/2010	pH, daily average	SM4500-H+		7.3	SU			continuous
EFF-001	12/16/2010	pH, daily average	SM4500-H+		7.3	SU			continuous
EFF-001	12/17/2010	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	12/18/2010	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	12/19/2010	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	12/20/2010	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	12/21/2010	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	12/22/2010	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	12/23/2010	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	12/24/2010	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	12/25/2010	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	12/26/2010	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	12/27/2010	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	12/28/2010	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	12/29/2010	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	12/30/2010	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	12/31/2010	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	1/1/2011	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	1/2/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	1/3/2011	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	1/4/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	1/5/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	1/6/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	1/7/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	1/8/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	1/9/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	1/10/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	1/11/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	1/12/2011	pH, daily average	SM4500-H+		7.1	SU			continuous

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	1/13/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	1/14/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	1/15/2011	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	1/16/2011	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	1/17/2011	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	1/18/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	1/19/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	1/20/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	1/21/2011	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	1/22/2011	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	1/23/2011	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	1/24/2011	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	1/25/2011	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	1/26/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	1/27/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	1/28/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	1/29/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	1/30/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	1/31/2011	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	2/1/2011	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	2/2/2011	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	2/3/2011	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	2/4/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	2/5/2011	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	2/6/2011	pH, daily average	SM4500-H+		6.7	SU			continuous
EFF-001	2/7/2011	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	2/8/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	2/9/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	2/10/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	2/11/2011	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	2/12/2011	pH, daily average	SM4500-H+		6.9	SU			continuous

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	2/13/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	2/14/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	2/15/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	2/16/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	2/17/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	2/18/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	2/19/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	2/20/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	2/21/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001		pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	2/23/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	2/24/2011	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	2/25/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	2/26/2011	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	2/27/2011	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	2/28/2011	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	3/1/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	3/2/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	3/3/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	3/4/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	3/5/2011	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	3/6/2011	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	3/7/2011	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	3/8/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	3/9/2011	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	3/10/2011	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001		pH, daily average	SM4500-H+		6.9	SU		Ì	continuous
EFF-001	3/12/2011	pH, daily average	SM4500-H+		6.9	SU		Ì	continuous
EFF-001	3/13/2011	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	3/14/2011	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	3/15/2011	pH, daily average	SM4500-H+		6.8	SU		Ì	continuous

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	3/16/2011	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	3/17/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	3/18/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	3/19/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	3/20/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	3/21/2011	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	3/22/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	3/23/2011	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	3/24/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	3/25/2011	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	3/26/2011	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	3/27/2011	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	3/28/2011	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	3/29/2011	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	3/30/2011	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	3/31/2011	pH, daily average	SM4500-H+		6.7	SU			continuous
EFF-001	4/1/2011	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	4/2/2011	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	4/3/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	4/4/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	4/5/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	4/6/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	4/7/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	4/8/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	4/9/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	4/10/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001		pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	4/12/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	4/13/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	4/14/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	4/15/2011	pH, daily average	SM4500-H+		7.2	SU			continuous

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	4/16/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	4/17/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	4/18/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	4/19/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	4/20/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	4/21/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	4/22/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	4/23/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	4/24/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	4/25/2011	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	4/26/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	4/27/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	4/28/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	4/29/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	4/30/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	5/1/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	5/2/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	5/3/2011	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	5/4/2011	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	5/5/2011	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	5/6/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	5/7/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	5/8/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	5/9/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	5/10/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	5/11/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001		pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	5/13/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	5/14/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	5/15/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	5/16/2011	pH, daily average	SM4500-H+		7	SU			continuous

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	5/17/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	5/18/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	5/19/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	5/20/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	5/21/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	5/22/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	5/23/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	5/24/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	5/25/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	5/26/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	5/27/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	5/28/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	5/29/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	5/30/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	5/31/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	6/1/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	6/2/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	6/3/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	6/4/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	6/5/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	6/6/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	6/7/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	6/8/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	6/9/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	6/10/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	6/11/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001		pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	6/13/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	6/14/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	6/15/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	6/16/2011	pH, daily average	SM4500-H+		7.1	SU			continuous

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	6/17/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	6/18/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	6/19/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	6/20/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	6/21/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	6/22/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	6/23/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	6/24/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	6/25/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	6/26/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	6/27/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	6/28/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	6/29/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	6/30/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	7/1/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	7/2/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	7/3/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	7/4/2011	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	7/5/2011	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	7/6/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	7/7/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	7/8/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	7/9/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	7/10/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	7/11/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	7/12/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	7/13/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	7/14/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	7/15/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	7/16/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	7/17/2011	pH, daily average	SM4500-H+		7	SU			continuous

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	7/18/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	7/19/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	7/20/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	7/21/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	7/22/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	7/23/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	7/24/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	7/25/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	7/26/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	7/27/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	7/28/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	7/29/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	7/30/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	7/31/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	8/1/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	8/2/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	8/3/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	8/4/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	8/5/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	8/6/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	8/7/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	8/8/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	8/9/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	8/10/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	8/11/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	8/12/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	8/13/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	8/14/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	8/15/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	8/16/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	8/17/2011	pH, daily average	SM4500-H+		7.1	SU			continuous

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	8/18/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	8/19/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	8/20/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	8/21/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	8/22/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	8/23/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	8/24/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	8/25/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	8/26/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	8/27/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	8/28/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	8/29/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	8/30/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	8/31/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	9/1/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	9/2/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	9/3/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	9/4/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	9/5/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	9/6/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	9/7/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	9/8/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	9/9/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	9/10/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	9/11/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	9/12/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	9/13/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	9/14/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	9/15/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	9/16/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	9/17/2011	pH, daily average	SM4500-H+		7.2	SU			continuous

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	9/18/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	9/19/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	9/20/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	9/21/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	9/22/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	9/23/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	9/24/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	9/25/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	9/26/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	9/27/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	9/28/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	9/29/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	9/30/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	10/1/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	10/2/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	10/3/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	10/4/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	10/5/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	10/6/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	10/7/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	10/8/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	10/9/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	10/10/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	10/11/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	10/12/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	10/13/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	10/14/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	10/15/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	10/16/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	10/17/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	10/18/2011	pH, daily average	SM4500-H+		7.1	SU			continuous

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	10/19/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	10/20/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	10/21/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	10/22/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	10/23/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	10/24/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	10/25/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	10/26/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	10/27/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	10/28/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	10/29/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	10/30/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	10/31/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	11/1/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	11/2/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	11/3/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	11/4/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	11/5/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	11/6/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	11/7/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	11/8/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	11/9/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	11/10/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	11/11/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	11/12/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	11/13/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	11/14/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	11/15/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	11/16/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	11/17/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	11/18/2011	pH, daily average	SM4500-H+		7.1	SU			continuous

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	11/19/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	11/20/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	11/21/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	11/22/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	11/23/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	11/24/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	11/25/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	11/26/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	11/27/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	11/28/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	11/29/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	11/30/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	12/1/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	12/2/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	12/3/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	12/4/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	12/5/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	12/6/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	12/7/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	12/8/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	12/9/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	12/10/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	12/11/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	12/12/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	12/13/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	12/14/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	12/15/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	12/16/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	12/17/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	12/18/2011	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	12/19/2011	pH, daily average	SM4500-H+		7.1	SU			continuous

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	12/20/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	12/21/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	12/22/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	12/23/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	12/24/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	12/25/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	12/26/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	12/27/2011	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	12/28/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	12/29/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	12/30/2011	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	12/31/2011	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	1/1/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	1/2/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	1/3/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	1/4/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	1/5/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	1/6/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	1/7/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	1/8/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	1/9/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	1/10/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	1/11/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	1/12/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	1/13/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	1/14/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	1/15/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	1/16/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	1/17/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	1/18/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	1/19/2012	pH, daily average	SM4500-H+		7.1	SU			continuous

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	1/20/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	1/21/2012	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	1/22/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	1/23/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	1/24/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	1/25/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	1/26/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	1/27/2012	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	1/28/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	1/29/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	1/30/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	1/31/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	2/1/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	2/2/2012	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	2/3/2012	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	2/4/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	2/5/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	2/6/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	2/7/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	2/8/2012	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	2/9/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	2/10/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	2/11/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	2/12/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	2/13/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	2/14/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	2/15/2012	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	2/16/2012	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	2/17/2012	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	2/18/2012	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	2/19/2012	pH, daily average	SM4500-H+		7.1	SU			continuous

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	2/20/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	2/21/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	2/22/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	2/23/2012	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	2/24/2012	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	2/25/2012	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	2/26/2012	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	2/27/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	2/28/2012	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	2/29/2012	pH, daily average	SM4500-H+		7.3	SU			continuous
EFF-001	3/1/2012	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	3/2/2012	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	3/3/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	3/4/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	3/5/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	3/6/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	3/7/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	3/8/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	3/9/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	3/10/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	3/11/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	3/12/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	3/13/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	3/14/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	3/15/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	3/16/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	3/17/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	3/18/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	3/19/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	3/20/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	3/21/2012	pH, daily average	SM4500-H+		7	SU			continuous

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	3/22/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	3/23/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	3/24/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	3/25/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	3/26/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	3/27/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	3/28/2012	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	3/29/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	3/30/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	3/31/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	4/1/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	4/2/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	4/3/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	4/4/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	4/5/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	4/6/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	4/7/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	4/8/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	4/9/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	4/10/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	4/11/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	4/12/2012	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	4/13/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	4/14/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	4/15/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	4/16/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	4/17/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	4/18/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	4/19/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	4/20/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	4/21/2012	pH, daily average	SM4500-H+		6.9	SU			continuous

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	4/22/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	4/23/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	4/24/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	4/25/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	4/26/2012	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	4/27/2012	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	4/28/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	4/29/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	4/30/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	5/1/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	5/2/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	5/3/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	5/4/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	5/5/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	5/6/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	5/7/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	5/8/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	5/9/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	5/10/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	5/11/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	5/12/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	5/13/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	5/14/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	5/15/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	5/16/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	5/17/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001		pH, daily average	SM4500-H+		7	SU		Ì	continuous
EFF-001	5/19/2012	pH, daily average	SM4500-H+		7	SU		Ì	continuous
EFF-001		pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	5/21/2012	pH, daily average	SM4500-H+		7	SU		Ì	continuous
EFF-001	5/22/2012	pH, daily average	SM4500-H+		7	SU		Ì	continuous

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	5/23/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	5/24/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	5/25/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	5/26/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	5/27/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	5/28/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	5/29/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	5/30/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	5/31/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	6/1/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	6/2/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	6/3/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	6/4/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	6/5/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	6/6/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	6/7/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	6/8/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	6/9/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	6/10/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	6/11/2012	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	6/12/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	6/13/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	6/14/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	6/15/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	6/16/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	6/17/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	6/18/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	6/19/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	6/20/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	6/21/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	6/22/2012	pH, daily average	SM4500-H+		7	SU			continuous

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	6/23/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	6/24/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	6/25/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	6/26/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	6/27/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	6/28/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	6/29/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	6/30/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	7/1/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	7/2/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	7/3/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	7/4/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	7/5/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	7/6/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	7/7/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	7/8/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	7/9/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	7/10/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	7/11/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	7/12/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	7/13/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	7/14/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	7/15/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	7/16/2012	pH, daily average	SM4500-H+		6.7	SU			continuous
EFF-001	7/17/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	7/18/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	7/19/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	7/20/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	7/21/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	7/22/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	7/23/2012	pH, daily average	SM4500-H+		6.9	SU			continuous

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	7/24/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	7/25/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	7/26/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	7/27/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	7/28/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	7/29/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	7/30/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	7/31/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	8/1/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	8/2/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	8/3/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	8/4/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	8/5/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	8/6/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	8/7/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	8/8/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	8/9/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	8/10/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	8/11/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	8/12/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	8/13/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	8/14/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	8/15/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	8/16/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	8/17/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	8/18/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	8/19/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	8/20/2012	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	8/21/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	8/22/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	8/23/2012	pH, daily average	SM4500-H+		7	SU			continuous

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	8/24/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	8/25/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	8/26/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	8/27/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	8/28/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	8/29/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	8/30/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	8/31/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	9/1/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	9/2/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	9/3/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	9/4/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	9/5/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	9/6/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	9/7/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	9/8/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	9/9/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	9/10/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	9/11/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	9/12/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	9/13/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	9/14/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	9/15/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	9/16/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	9/17/2012	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	9/18/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001		pH, daily average	SM4500-H+		7	SU		Ì	continuous
EFF-001	9/20/2012	pH, daily average	SM4500-H+		7	SU		Ì	continuous
EFF-001	9/21/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	9/22/2012	pH, daily average	SM4500-H+		7	SU		Ì	continuous
EFF-001	9/23/2012	pH, daily average	SM4500-H+		7	SU		Ì	continuous

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	9/24/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	9/25/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	9/26/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	9/27/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	9/28/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	9/29/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	9/30/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	10/1/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	10/2/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	10/3/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	10/4/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	10/5/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	10/6/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	10/7/2012	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	10/8/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	10/9/2012	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	10/10/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	10/11/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	10/12/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	10/13/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	10/14/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	10/15/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	10/16/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	10/17/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	10/18/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	10/19/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	10/20/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	10/21/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	10/22/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	10/23/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	10/24/2012	pH, daily average	SM4500-H+		7	SU			continuous

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	10/25/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	10/26/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	10/27/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	10/28/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	10/29/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	10/30/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	10/31/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	11/1/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	11/2/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	11/3/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	11/4/2012	pH, daily average	SM4500-H+		7.7	SU			continuous
EFF-001	11/5/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	11/6/2012	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	11/7/2012	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	11/8/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	11/9/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	11/10/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	11/11/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	11/12/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	11/13/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	11/14/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	11/15/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	11/16/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	11/17/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	11/18/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	11/19/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	11/20/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	11/21/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	11/22/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	11/23/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	11/24/2012	pH, daily average	SM4500-H+		7	SU			continuous

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	11/25/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	11/26/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	11/27/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	11/28/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	11/29/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	11/30/2012	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	12/1/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	12/2/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	12/3/2012	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	12/4/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	12/5/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	12/6/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	12/7/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	12/8/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	12/9/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	12/10/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	12/11/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	12/12/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	12/13/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	12/14/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	12/15/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	12/16/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	12/17/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	12/18/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	12/19/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	12/20/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	12/21/2012	pH, daily average	SM4500-H+		7	SU		Ì	continuous
EFF-001	12/22/2012	pH, daily average	SM4500-H+		7	SU		Ì	continuous
EFF-001		pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	12/24/2012	pH, daily average	SM4500-H+		6.8	SU		Ì	continuous
EFF-001	12/25/2012	pH, daily average	SM4500-H+		6.9	SU		Ì	continuous

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	12/26/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	12/27/2012	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	12/28/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	12/29/2012	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	12/30/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	12/31/2012	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	1/1/2013	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	1/2/2013	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	1/3/2013	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	1/4/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	1/5/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	1/6/2013	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	1/7/2013	pH, daily average	SM4500-H+		6.7	SU			continuous
EFF-001	1/8/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	1/9/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	1/10/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	1/11/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	1/12/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	1/13/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	1/14/2013	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	1/15/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	1/16/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	1/17/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	1/18/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	1/19/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	1/20/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	1/21/2013	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	1/22/2013	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	1/23/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	1/24/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	1/25/2013	pH, daily average	SM4500-H+		6.9	SU			continuous

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	1/26/2013	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	1/27/2013	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	1/28/2013	pH, daily average	SM4500-H+		6.7	SU			continuous
EFF-001	1/29/2013	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	1/30/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	1/31/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	2/1/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	2/2/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	2/3/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	2/4/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	2/5/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	2/6/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	2/7/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	2/8/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	2/9/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	2/10/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	2/11/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	2/12/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	2/13/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	2/14/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	2/15/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	2/16/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	2/17/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	2/18/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	2/19/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	2/20/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001		pH, daily average	SM4500-H+		7	SU	1		continuous
EFF-001	2/22/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001		pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	2/24/2013	pH, daily average	SM4500-H+		6.9	SU	1		continuous
EFF-001	2/25/2013	pH, daily average	SM4500-H+		6.9	SU			continuous

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	2/26/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	2/27/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	2/28/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	3/1/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	3/2/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	3/3/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	3/5/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	3/6/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	3/7/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	3/8/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	3/9/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	3/10/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	3/11/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	3/12/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	3/13/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	3/14/2013	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	3/15/2013	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	3/16/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	3/17/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	3/18/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	3/19/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	3/20/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	3/21/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	3/22/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	3/23/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	3/24/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001		pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	3/26/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001		pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	3/28/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	3/29/2013	pH, daily average	SM4500-H+		7	SU			continuous

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	3/30/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	3/31/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	4/1/2013	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	4/2/2013	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	4/3/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	4/4/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	4/5/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	4/6/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	4/7/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	4/8/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	4/9/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	4/10/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	4/11/2013	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	4/12/2013	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	4/13/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	4/14/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	4/15/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	4/16/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	4/17/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	4/18/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	4/19/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	4/20/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	4/21/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	4/22/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	4/23/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	4/24/2013	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001		pH, daily average	SM4500-H+		6.8	SU		Ì	continuous
EFF-001	4/26/2013	pH, daily average	SM4500-H+		6.8	SU		Ì	continuous
EFF-001		pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	4/28/2013	pH, daily average	SM4500-H+		7	SU		Ì	continuous
EFF-001	4/29/2013	pH, daily average	SM4500-H+		7	SU		Ì	continuous

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	4/30/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	5/1/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	5/2/2013	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	5/3/2013	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	5/4/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	5/5/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	5/6/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	5/7/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	5/8/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	5/9/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	5/10/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	5/11/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	5/12/2013	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	5/13/2013	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	5/14/2013	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	5/15/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	5/16/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	5/17/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	5/18/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	5/19/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	5/20/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	5/21/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	5/22/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	5/23/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	5/24/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	5/25/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001		pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	5/27/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	5/28/2013	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	5/29/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	5/30/2013	pH, daily average	SM4500-H+		6.8	SU			continuous

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	5/31/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	6/1/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	6/2/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	6/3/2013	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	6/4/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	6/5/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	6/6/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	6/7/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	6/8/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	6/9/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	6/10/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	6/11/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	6/12/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	6/13/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	6/14/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	6/15/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	6/16/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	6/17/2013	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	6/18/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	6/19/2013	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	6/20/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	6/21/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	6/22/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	6/23/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	6/24/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001		pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001		pH, daily average	SM4500-H+		6.9	SU		Ì	continuous
EFF-001	6/27/2013	pH, daily average	SM4500-H+		6.9	SU		Ì	continuous
EFF-001		pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	6/29/2013	pH, daily average	SM4500-H+		6.9	SU		Ì	continuous
EFF-001	6/30/2013	pH, daily average	SM4500-H+		6.9	SU		Ì	continuous

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	7/1/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	7/2/2013	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	7/3/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	7/4/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	7/5/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	7/6/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	7/7/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	7/8/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	7/9/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	7/10/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	7/11/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	7/12/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	7/13/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	7/14/2013	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	7/15/2013	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	7/16/2013	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	7/17/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	7/18/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	7/19/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	7/20/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	7/21/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	7/22/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	7/23/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	7/24/2013	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	7/25/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	7/26/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	7/27/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	7/28/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	7/29/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	7/30/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	7/31/2013	pH, daily average	SM4500-H+		7.1	SU			continuous

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	8/1/2013	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	8/2/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	8/3/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	8/4/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	8/5/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	8/6/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	8/7/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	8/8/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	8/9/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	8/10/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	8/11/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	8/12/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	8/13/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	8/14/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	8/15/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	8/16/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	8/17/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	8/18/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	8/19/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	8/20/2013	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	8/21/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	8/22/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	8/23/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	8/24/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	8/25/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	8/26/2013	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001		pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	8/28/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	8/29/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	8/30/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	8/31/2013	pH, daily average	SM4500-H+		6.8	SU			continuous

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	9/1/2013	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	9/2/2013	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	9/3/2013	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	9/4/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	9/5/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	9/6/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	9/7/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	9/8/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	9/9/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	9/10/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	9/11/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	9/12/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	9/13/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	9/14/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	9/15/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	9/16/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	9/17/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	9/18/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	9/19/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	9/20/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	9/21/2013	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	9/22/2013	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	9/23/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	9/24/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	9/25/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	9/26/2013	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	9/27/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	9/28/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	9/29/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	9/30/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	10/1/2013	pH, daily average	SM4500-H+		7	SU			continuous

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	10/2/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	10/3/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	10/4/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	10/5/2013	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	10/6/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	10/7/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	10/8/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	10/9/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	10/10/2013	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	10/11/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	10/12/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	10/13/2013	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	10/14/2013	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	10/15/2013	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	10/16/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	10/17/2013	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	10/18/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	10/19/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	10/20/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	10/21/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	10/22/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	10/23/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	10/24/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	10/25/2013	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	10/26/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	10/27/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	10/28/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	10/29/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001		pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	10/31/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	11/1/2013	pH, daily average	SM4500-H+		6.8	SU	1		continuous

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	11/2/2013	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	11/3/2013	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	11/4/2013	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	11/5/2013	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	11/6/2013	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	11/7/2013	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	11/8/2013	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	11/9/2013	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	11/10/2013	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	11/11/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	11/12/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	11/13/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	11/14/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	11/15/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	11/16/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	11/17/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	11/18/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	11/19/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	11/20/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	11/21/2013	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	11/22/2013	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	11/23/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	11/24/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	11/25/2013	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	11/26/2013	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	11/27/2013	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001		pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	11/29/2013	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	11/30/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	12/1/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	12/2/2013	pH, daily average	SM4500-H+		7	SU			continuous

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	12/3/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	12/4/2013	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	12/5/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	12/6/2013	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	12/7/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	12/8/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	12/9/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	12/10/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	12/11/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	12/12/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	12/13/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	12/14/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	12/15/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	12/16/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	12/17/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	12/18/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	12/19/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	12/20/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	12/21/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	12/22/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	12/23/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	12/24/2013	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	12/25/2013	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	12/26/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	12/27/2013	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	12/28/2013	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	12/29/2013	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	12/30/2013	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	12/31/2013	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	1/1/2014	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	1/2/2014	pH, daily average	SM4500-H+		7.2	SU			continuous

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	1/3/2014	pH, daily average	SM4500-H+		7.3	SU			continuous
EFF-001	1/4/2014	pH, daily average	SM4500-H+		7.3	SU			continuous
EFF-001	1/5/2014	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	1/6/2014	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	1/7/2014	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	1/8/2014	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	1/9/2014	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	1/10/2014	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	1/11/2014	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	1/12/2014	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	1/13/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	1/14/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	1/15/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	1/16/2014	pH, daily average	SM4500-H+		6.7	SU			continuous
EFF-001	1/17/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	1/18/2014	pH, daily average	SM4500-H+		6.7	SU			continuous
EFF-001	1/19/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	1/20/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	1/21/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	1/22/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	1/23/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	1/24/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	1/25/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	1/26/2014	pH, daily average	SM4500-H+		6.7	SU			continuous
EFF-001	1/27/2014	pH, daily average	SM4500-H+		6.7	SU			continuous
EFF-001	1/28/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	1/29/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	1/30/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	1/31/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	2/1/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	2/2/2014	pH, daily average	SM4500-H+		6.9	SU			continuous

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	2/3/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	2/4/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	2/5/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	2/6/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	2/7/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	2/8/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	2/9/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	2/10/2014	pH, daily average	SM4500-H+		6.7	SU			continuous
EFF-001	2/11/2014	pH, daily average	SM4500-H+		6.6	SU			continuous
EFF-001	2/12/2014	pH, daily average	SM4500-H+		6.7	SU			continuous
EFF-001	2/13/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	2/14/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	2/15/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	2/16/2014	pH, daily average	SM4500-H+		6.7	SU			continuous
EFF-001	2/17/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	2/18/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	2/19/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	2/20/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	2/21/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	2/22/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	2/23/2014	pH, daily average	SM4500-H+		6.7	SU			continuous
EFF-001	2/24/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	2/25/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	2/26/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	2/27/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	2/28/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	3/1/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	3/2/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	3/3/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	3/4/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	3/5/2014	pH, daily average	SM4500-H+		6.9	SU			continuous

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	3/6/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	3/7/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	3/8/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	3/9/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	3/10/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	3/11/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	3/12/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	3/13/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	3/14/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	3/15/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	3/16/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	3/17/2014	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	3/18/2014	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	3/19/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	3/20/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	3/21/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	3/22/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	3/23/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	3/24/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	3/25/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	3/26/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	3/27/2014	pH, daily average	SM4500-H+		6.7	SU			continuous
EFF-001	3/28/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	3/29/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	3/30/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	3/31/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	4/1/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	4/2/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	4/3/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	4/4/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	4/5/2014	pH, daily average	SM4500-H+		7	SU			continuous

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	4/6/2014	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	4/7/2014	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	4/8/2014	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	4/9/2014	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	4/10/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	4/11/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	4/12/2014	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	4/13/2014	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	4/14/2014	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	4/15/2014	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	4/16/2014	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	4/17/2014	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	4/18/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	4/19/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	4/20/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	4/21/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	4/22/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	4/23/2014	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	4/24/2014	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	4/25/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	4/26/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	4/27/2014	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	4/28/2014	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	4/29/2014	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	4/30/2014	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	5/1/2014	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	5/2/2014	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	5/3/2014	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	5/4/2014	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	5/5/2014	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	5/6/2014	pH, daily average	SM4500-H+		7.1	SU			continuous

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	5/7/2014	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	5/8/2014	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	5/9/2014	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	5/10/2014	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	5/11/2014	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	5/12/2014	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	5/13/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	5/14/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	5/15/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	5/16/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	5/17/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	5/18/2014	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	5/19/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	5/20/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	5/21/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	5/22/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	5/23/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001		pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	5/25/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	5/26/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	5/27/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	5/28/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	5/29/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	5/30/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	5/31/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	6/1/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001		pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	6/3/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001		pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	6/5/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	6/6/2014	pH, daily average	SM4500-H+		6.9	SU			continuous

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	6/7/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	6/8/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	6/9/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	6/10/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	6/11/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	6/12/2014	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	6/13/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	6/14/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	6/15/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	6/16/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	6/17/2014	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	6/18/2014	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	6/19/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	6/20/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	6/21/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	6/22/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	6/23/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	6/24/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	6/25/2014	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	6/26/2014	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	6/27/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	6/28/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	6/29/2014	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	6/30/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	7/1/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	7/2/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	7/3/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	7/4/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	7/5/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	7/6/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	7/7/2014	pH, daily average	SM4500-H+		6.9	SU			continuous

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	7/8/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	7/9/2014	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	7/10/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	7/11/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	7/12/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	7/13/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	7/14/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	7/15/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	7/16/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	7/17/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	7/18/2014	pH, daily average	SM4500-H+		6.7	SU			continuous
EFF-001	7/19/2014	pH, daily average	SM4500-H+		6.7	SU			continuous
EFF-001	7/20/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	7/21/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	7/22/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	7/23/2014	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	7/24/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	7/25/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	7/26/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	7/27/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	7/28/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	7/29/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	7/30/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	7/31/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	8/1/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	8/2/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001		pH, daily average	SM4500-H+		6.9	SU		Ì	continuous
EFF-001	8/4/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	8/5/2014	pH, daily average	SM4500-H+		7	SU		Ì	continuous
EFF-001		pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	8/7/2014	pH, daily average	SM4500-H+		6.9	SU			continuous

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	8/8/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	8/9/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	8/10/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	8/11/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	8/12/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	8/13/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	8/14/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	8/15/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	8/16/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	8/17/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	8/18/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	8/19/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	8/20/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	8/21/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	8/22/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	8/23/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	8/24/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	8/25/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	8/26/2014	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	8/27/2014	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	8/28/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	8/29/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	8/30/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	8/31/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	9/1/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	9/2/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	9/3/2014	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	9/4/2014	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	9/5/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	9/6/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	9/7/2014	pH, daily average	SM4500-H+		7	SU			continuous

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	9/8/2014	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	9/9/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	9/10/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	9/11/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	9/12/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	9/13/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	9/14/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	9/15/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	9/16/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	9/17/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	9/18/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	9/19/2014	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	9/20/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	9/21/2014	pH, daily average	SM4500-H+		6.7	SU			continuous
EFF-001	9/22/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	9/23/2014	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	9/24/2014	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	9/25/2014	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	9/26/2014	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	9/27/2014	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	9/28/2014	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	9/29/2014	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	9/30/2014	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	10/1/2014	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	10/2/2014	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	10/3/2014	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001		pH, daily average	SM4500-H+		6.9	SU		T	continuous
EFF-001	10/5/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	10/6/2014	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	10/7/2014	pH, daily average	SM4500-H+		6.9	SU		T	continuous
EFF-001	10/8/2014	pH, daily average	SM4500-H+		7	SU			continuous

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	10/9/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	10/10/2014	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	10/11/2014	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	10/12/2014	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	10/13/2014	pH, daily average	SM4500-H+		7.2	SU			continuous
EFF-001	10/14/2014	pH, daily average	SM4500-H+		7.3	SU			continuous
EFF-001	10/15/2014	pH, daily average	SM4500-H+		7.3	SU			continuous
EFF-001	10/16/2014	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	10/17/2014	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	10/18/2014	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	10/19/2014	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	10/20/2014	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	10/21/2014	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	10/22/2014	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	10/23/2014	pH, daily average	SM4500-H+		6.8	SU			continuous
EFF-001	10/24/2014	pH, daily average	SM4500-H+		6.7	SU			continuous
EFF-001	10/25/2014	pH, daily average	SM4500-H+		6.7	SU			continuous
EFF-001	10/26/2014	pH, daily average	SM4500-H+		6.9	SU			continuous
EFF-001	10/27/2014	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	10/28/2014	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	10/29/2014	pH, daily average	SM4500-H+		7.1	SU			continuous
EFF-001	10/30/2014	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	10/31/2014	pH, daily average	SM4500-H+		7	SU			continuous
EFF-001	1/14/2010	Phenanthrene	8270C	ND	0.6	ug/L			Comp
EFF-001	4/16/2012	Phenanthrene	8270C	ND	0.5	ug/L			Comp/Grab
EFF-001	5/13/2012	Phenanthrene	8270C	ND	0.5	ug/L			Comp
EFF-001	6/10/2012	Phenanthrene	8270C	ND	0.5	ug/L			Comp
EFF-001	7/8/2012	Phenanthrene	8270C	ND	0.5	ug/L			Comp
EFF-001	8/12/2012	Phenanthrene	8270C	ND	0.5	ug/L		0.5	Comp
EFF-001	9/9/2012	Phenanthrene	8270C	ND	0.5	ug/L		0.5	Comp
EFF-001	10/7/2012	Phenanthrene	8270C	ND	0.5	ug/L		0.5	Comp

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	11/4/2012	Phenanthrene	8270C	ND	0.5	ug/L		0.5	comp
EFF-001	12/2/2012	Phenanthrene	8270C	ND	0.5	ug/L		0.5	Comp
EFF-001	1/13/2013	Phenanthrene	8270C	ND	0.5	ug/L		0.5	Comp
EFF-001	2/3/2013	Phenanthrene	8270C	ND	0.5	ug/L		0.5	Comp
EFF-001	3/10/2013	Phenanthrene	8270C	ND	0.5	ug/L		0.5	Comp
EFF-001	1/14/2010	Phenol	8270C	ND	0.2	ug/L			Comp
EFF-001	4/16/2012	Phenol	625	ND	0.3	ug/L			Comp/Grab
EFF-001	5/13/2012	Phenol	8270C	ND	0.3	ug/L			Comp
EFF-001	6/10/2012	Phenol	625	ND	0.3	ug/L			Comp
EFF-001	7/8/2012	Phenol	625	ND	0.3	ug/L			Comp
EFF-001	8/12/2012	Phenol	625	ND	0.3	ug/L		0.3	Comp
EFF-001	9/9/2012	Phenol	625	ND	0.3	ug/L		0.3	Comp
EFF-001	10/7/2012	Phenol	625	ND	0.3	ug/L		0.3	Comp
EFF-001	11/4/2012	Phenol	8270C/625	ND	0.3	ug/L		0.3	comp
EFF-001	12/2/2012	Phenol	625	ND	0.3	ug/L		0.3	Comp
EFF-001	1/13/2013	Phenol	625	ND	0.3	ug/L		0.3	Comp
EFF-001	2/3/2013	Phenol	625	ND	0.3	ug/L		0.3	Comp
EFF-001	3/10/2013	Phenol	8270C/625	ND	0.3	ug/L		0.3	Comp
EFF-001	5/3/2010	Phosphorous (Total)	365.2		1.85	mg/L			Comp
EFF-001	2/21/2011	Phosphorous (Total)	365.2		5.35	mg/L			comp
EFF-001	8/7/2012	Phosphorous (Total)	365.2		5.9	mg/L			Comp
EFF-001	5/3/2010	Potassium	200.7		16.1	mg/L			Comp
EFF-001	8/2/2010	Potassium	200.7		16.2	mg/L			Comp
EFF-001	2/21/2011	Potassium	200.7		15.3	mg/L			comp
EFF-001	8/8/2011	Potassium	200.7		20.2	mg/L			Comp
EFF-001	2/5/2012	Potassium	200.7		18.3	mg/L			Comp
EFF-001	8/7/2012	Potassium	200.7		20.3	mg/L			Comp
EFF-001	1/14/2010	Pyrene	8270C	ND	0.7	ug/L			Comp
EFF-001	4/16/2012	Pyrene	8270C	ND	0.6	ug/L			Comp/Grab
EFF-001	5/13/2012	Pyrene	8270C	ND	0.6	ug/L			Comp
EFF-001	6/10/2012	Pyrene	8270C	ND	0.6	ug/L			Comp

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	7/8/2012	Pyrene	8270C	ND	0.6	ug/L			Comp
EFF-001	8/12/2012	Pyrene	8270C	ND	0.6	ug/L		0.6	Comp
EFF-001	9/9/2012	Pyrene	8270C	ND	0.6	ug/L		0.6	Comp
EFF-001	10/7/2012	Pyrene	8270C	ND	0.6	ug/L		0.6	Comp
EFF-001	11/4/2012	Pyrene	8270C	ND	0.6	ug/L		0.6	comp
EFF-001	12/2/2012	Pyrene	8270C	ND	0.6	ug/L		0.6	Comp
EFF-001	1/13/2013	Pyrene	8270C	ND	0.6	ug/L		0.6	Comp
EFF-001	2/3/2013	Pyrene	8270C	ND	0.6	ug/L		0.6	Comp
EFF-001	3/10/2013	Pyrene	8270C	ND	0.6	ug/L		0.6	Comp
EFF-001	1/14/2010	Selenium (Total)	200.8		1.2	ug/L			Comp
EFF-001	2/8/2010	Selenium (Total)	200.8		1	ug/L			Comp
EFF-001	2/8/2010	Selenium (Total)	200.8	J	0.32	ug/L			comp
EFF-001	3/16/2010	Selenium (Total)	200.8	J	0.26	ug/L			comp
EFF-001	3/16/2010	Selenium (Total)	200.8	ND	0.5	ug/L			comp
EFF-001	4/6/2010	Selenium (Total)	200.8	J	0.23	ug/L			Comp
EFF-001	5/3/2010	Selenium (Total)	200.8	J	0.24	ug/L	0.06	1	Comp/Grab
EFF-001	6/1/2010	Selenium (Total)	200.8	J	0.22	ug/L			Comp
EFF-001	7/6/2010	Selenium (Total)	200.8	J	0.25	ug/L			Comp/Grab
EFF-001	8/2/2010	Selenium (Total)	200.8	ND	0.5	ug/L			Comp
EFF-001	8/3/2010	Selenium (Total)	200.8	J	0.24	ug/L			Comp
EFF-001	9/7/2010	Selenium (Total)	200.8	J	0.27	ug/L			Comp
EFF-001	10/3/2010	Selenium (Total)	200.8	J	0.28	ug/L			Comp
EFF-001	11/2/2010	Selenium (Total)	200.8	J	0.25	ug/L			Comp
EFF-001	12/6/2010	Selenium (Total)	200.8	J	0.25	ug/L			Grab
EFF-001	1/17/2011	Selenium (Total)	200.8	J	0.31	ug/L			Comp
EFF-001	2/6/2011	Selenium (Total)	200.8	J	0.32	ug/L			Comp
EFF-001	3/7/2011	Selenium (Total)	200.8	J	0.29	ug/L			Grab
EFF-001	4/3/2011	Selenium (Total)	200.8	J	0.29	ug/L			comp
EFF-001	5/9/2011	Selenium (Total)	200.8	J	0.27	ug/L			grab
EFF-001		Selenium (Total)	200.8	J	0.23	ug/L			comp
EFF-001	7/10/2011	Selenium (Total)	200.8	J	0.28	ug/L			Comp

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	8/7/2011	Selenium (Total)	200.8	J	0.28	ug/L			Comp
EFF-001	8/8/2011	Selenium (Total)	200.8	ND	0.5	ug/L			Comp
EFF-001	9/5/2011	Selenium (Total)	200.8	J	0.25	ug/L			Comp/Grab
EFF-001	12/4/2011	Selenium (Total)	200.8	J	0.23	ug/L			Comp/Grab
EFF-001	1/9/2012	Selenium (Total)	200.8	J	0.24	ug/L			Comp/Grab
EFF-001	2/5/2012	Selenium (Total)	200.8	ND	0.5	ug/L			Comp
EFF-001	2/5/2012	Selenium (Total)	200.8	J	0.24	ug/L			comp
EFF-001	3/11/2012	Selenium (Total)	200.8	J	0.24	ug/L			Comp/Grab
EFF-001	4/16/2012	Selenium (Total)	200.8	J	0.24	ug/L			Comp/Grab
EFF-001	4/16/2012	Selenium (Total)	200.8		1.3	ug/L			Comp/Grab
EFF-001	5/14/2012	Selenium (Total)	200.8	J	0.27	ug/L			Comp/Grab
EFF-001	6/11/2012	Selenium (Total)	200.8	J	0.2	ug/L			Comp/Grab
EFF-001	7/8/2012	Selenium (Total)	200.8	J	0.24	ug/L			Comp/Grab
EFF-001	8/12/2012	Selenium (Total)	200.8	J	0.3	ug/L			Comp/Grab
EFF-001	9/9/2012	Selenium (Total)	200.8	J	0.26	ug/L			Comp/Grab
EFF-001	10/8/2012	Selenium (Total)	200.8	J	0.22	ug/L			Comp/Grab
EFF-001	11/4/2012	Selenium (Total)	200.8	J	0.24	ug/L			Comp/Grab
EFF-001	12/2/2012	Selenium (Total)	200.8	J	0.25	ug/L			Comp/Grab
EFF-001	1/13/2013	Selenium (Total)	200.8	J	0.3	ug/L			Comp/Grab
EFF-001	2/3/2013	Selenium (Total)	200.8	J	0.24	ug/L			comp/Grab
EFF-001	3/10/2013	Selenium (Total)	200.8	J	0.3	ug/L			Comp
EFF-001	4/7/2013	Selenium (Total)	200.8	J	0.27	ug/L			Comp/Grab
EFF-001	5/5/2013	Selenium (Total)	200.8	J	0.25	ug/L			Comp
EFF-001	6/3/2013	Selenium (Total)	200.8	J	0.28	ug/L			Comp
EFF-001	7/7/2013	Selenium (Total)	200.8	J	0.26	ug/L			Comp/Grab
EFF-001	8/5/2013	Selenium (Total)	200.8	J	0.43	ug/L			Comp/Grab
EFF-001	9/9/2013	Selenium (Total)	200.8	J	0.26	ug/L			Comp/Grab
EFF-001	10/7/2013	Selenium (Total)	200.8	J	0.25	ug/L			Comp/Grab
EFF-001	11/3/2013	Selenium (Total)	200.8	J	0.27	ug/L			Comp/Grab
EFF-001	12/2/2013	Selenium (Total)	200.8	J	0.24	ug/L			Grab
EFF-001	1/20/2014	Selenium (Total)	200.8	J	0.24	ug/L			Comp

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	2/17/2014	Selenium (Total)	200.8	J	0.16	ug/L			Comp
EFF-001	3/4/2014	Selenium (Total)	200.8	J	0.2	ug/L			Comp/Grab
EFF-001	5/3/2010	Silica as SiO ₂	200.7		51.1	mg/L			Comp
EFF-001	2/21/2011	Silica as SiO ₂	200.7		42.9	mg/L			comp
EFF-001	8/7/2012	Silica as SiO ₂	200.7		51	mg/L			Comp
EFF-001	1/14/2010	Silver (Total)	200.8		2	ug/L			Comp
EFF-001	2/8/2010	Silver (Total)	200.8		0.6	ug/L			Comp
EFF-001	2/8/2010	Silver (Total)	200.8	ND	0.063	ug/L			comp
EFF-001	3/16/2010	Silver (Total)	200.8	ND	0.063	ug/L			comp
EFF-001	3/16/2010	Silver (Total)	200.8	ND	0.6	ug/L			comp
EFF-001	4/6/2010	Silver (Total)	200.8	J	0.01	ug/L			Comp
EFF-001	5/3/2010	Silver (Total)	200.8	J	0.01	ug/L	0.009	0.1	Comp/Grab
EFF-001	6/1/2010	Silver (Total)	200.8	ND	0.063	ug/L			Comp
EFF-001	7/6/2010	Silver (Total)	200.8	ND	0.063	ug/L			Comp/Grab
EFF-001	8/2/2010	Silver (Total)	200.8	ND	0.6	ug/L			Comp
EFF-001	8/3/2010	Silver (Total)	200.8	ND	0.063	ug/L			Comp
EFF-001	9/7/2010	Silver (Total)	200.8	l	0.03	ug/L			Comp
EFF-001	10/3/2010	Silver (Total)	200.8	ND	0.063	ug/L			Comp
EFF-001	11/2/2010	Silver (Total)	200.8	J	0.02	ug/L			Comp
EFF-001	12/6/2010	Silver (Total)	200.8	ND	0.063	ug/L			Grab
EFF-001	1/17/2011	Silver (Total)	200.8	ND	0.063	ug/L			Comp
EFF-001	2/6/2011	Silver (Total)	200.8	ND	0.063	ug/L			Comp
EFF-001	3/7/2011	Silver (Total)	200.8	ND	0.063	ug/L			Grab
EFF-001	4/3/2011	Silver (Total)	200.8	J	0.02	ug/L			comp
EFF-001	5/9/2011	Silver (Total)	200.8	ND	0.02	ug/L			grab
EFF-001	6/12/2011	Silver (Total)	200.8	ND	0.02	ug/L			comp
EFF-001	7/10/2011	Silver (Total)	200.8	ND	0.02	ug/L			Comp
EFF-001	8/7/2011	Silver (Total)	200.8	ND	0.02	ug/L			Comp
EFF-001	8/8/2011	Silver (Total)	200.8	ND	0.6	ug/L			Comp
EFF-001	9/5/2011	Silver (Total)	200.8	ND	0.02	ug/L			Comp/Grab
EFF-001	12/4/2011	Silver (Total)	200.8	ND	0.02	ug/L			Comp/Grab

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	1/9/2012	Silver (Total)	200.8	ND	0.02	ug/L			Comp/Grab
EFF-001	2/5/2012	Silver (Total)	200.8	ND	0.6	ug/L			Comp
EFF-001	2/5/2012	Silver (Total)	200.8	ND	0.02	ug/L			comp
EFF-001	3/11/2012	Silver (Total)	200.8	ND	0.02	ug/L			Comp/Grab
EFF-001	4/16/2012	Silver (Total)	200.8	ND	0.02	ug/L			Comp/Grab
EFF-001	4/16/2012	Silver (Total)	200.8	ND	2	ug/L			Comp/Grab
EFF-001	5/14/2012	Silver (Total)	200.8	ND	0.02	ug/L			Comp/Grab
EFF-001	6/11/2012	Silver (Total)	200.8	ND	0.02	ug/L			Comp/Grab
EFF-001	7/8/2012	Silver (Total)	200.8	ND	0.02	ug/L		0.02	Comp/Grab
EFF-001	8/12/2012	Silver (Total)	200.8	ND	0.02	ug/L		0.02	Comp/Grab
EFF-001	9/9/2012	Silver (Total)	200.8	ND	0.02	ug/L		0.02	Comp/Grab
EFF-001	10/8/2012	Silver (Total)	200.8	ND	0.02	ug/L		0.02	Comp/Grab
EFF-001	11/4/2012	Silver (Total)	200.8	ND	0.02	ug/L		0.02	Comp/Grab
EFF-001	12/2/2012	Silver (Total)	200.8	ND	0.02	ug/L		0.02	Comp/Grab
EFF-001	1/13/2013	Silver (Total)	200.8	ND	0.02	ug/L		0.02	Comp/Grab
EFF-001	2/3/2013	Silver (Total)	200.8	ND	0.02	ug/L		0.02	comp/Grab
EFF-001	3/10/2013	Silver (Total)	200.8	ND	0.02	ug/L		0.02	Comp
EFF-001	4/7/2013	Silver (Total)	200.8	ND	0.02	ug/L		0.02	Comp/Grab
EFF-001	5/5/2013	Silver (Total)	200.8	ND	0.02	ug/L		0.02	Comp
EFF-001	6/3/2013	Silver (Total)	200.8	ND	0.02	ug/L		0.02	Comp
EFF-001	7/7/2013	Silver (Total)	200.8	ND	0.1	ug/L		0.1	Comp/Grab
EFF-001	8/5/2013	Silver (Total)	200.8	ND	0.02	ug/L		0.02	Comp/Grab
EFF-001	9/9/2013	Silver (Total)	200.8	ND	0.02	ug/L		0.02	Comp/Grab
EFF-001	10/7/2013	Silver (Total)	200.8	ND	0.02	ug/L		0.02	Comp/Grab
EFF-001	11/3/2013	Silver (Total)	200.8	ND	0.02	ug/L		0.02	Comp/Grab
EFF-001	12/2/2013	Silver (Total)	200.8	ND	0.02	ug/L		0.02	Grab
EFF-001	1/20/2014	Silver (Total)	200.8	ND	0.02	ug/L		0.02	Comp
EFF-001	2/17/2014	Silver (Total)	200.8	ND	0.02	ug/L		0.02	Comp
EFF-001	3/4/2014	Silver (Total)	200.8	ND	0.02	ug/L		0.02	Comp/Grab
EFF-001	5/3/2010	Sodium	200.7		109	ug/L			Comp
EFF-001	8/2/2010	Sodium	200.7		105	ug/L			Comp

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	2/21/2011	Sodium	200.7		92.3	ug/L			comp
EFF-001	8/8/2011	Sodium	200.7		124	ug/L			Comp
EFF-001	2/5/2012	Sodium	200.7		134	ug/L			Comp
EFF-001	8/7/2012	Sodium	200.7		116	mg/L			Comp
EFF-001	5/3/2010	Sulfate as SO4	300.0		90.4	mg/L			Comp
EFF-001	8/2/2010	Sulfate as SO4	300.0		65	mg/L			Comp
EFF-001	2/21/2011	Sulfate as SO4	300.0		54.1	mg/L			comp
EFF-001	8/8/2011	Sulfate as SO4	300.0		69.9	mg/L			Comp
EFF-001	2/5/2012	Sulfate as SO4	300.0		83.8	mg/L			Comp
EFF-001	8/7/2012	Sulfate as SO4	300.0		76.7	mg/L			Comp
EFF-001	1/12/2010	Tetrachloroethylene	8260B	ND	0.09	ug/L			Grab
EFF-001	2/2/2010	Tetrachloroethylene	8260B	ND	0.09	ug/L			Grab
EFF-001	4/16/2012	Tetrachloroethylene	8260B	ND	0.2	ug/L			Comp/Grab
EFF-001	5/14/2012	Tetrachloroethylene	8260B	ND	0.2	ug/L			Grab
EFF-001	6/11/2012	Tetrachloroethylene	8260B	ND	0.2	ug/L			Grab
EFF-001	7/9/2012	Tetrachloroethylene	8260B	ND	0.2	ug/L			Grab
EFF-001	8/13/2012	Tetrachloroethylene	8260B/624	ND	0.2	ug/L		0.2	Grab
EFF-001	9/10/2012	Tetrachloroethylene	8260B/624	ND	0.2	ug/L		0.2	Grab
EFF-001	10/8/2012	Tetrachloroethylene	8260B/624	ND	0.2	ug/L		0.2	Grab
EFF-001	11/5/2012	Tetrachloroethylene	8260B/624	ND	0.2	ug/L		0.2	Grab
EFF-001	12/3/2012	Tetrachloroethylene	8260B/624	ND	0.2	ug/L		0.2	Grab
EFF-001	1/14/2013	Tetrachloroethylene	8260B/624	ND	0.2	ug/L		0.2	Comp/Grab
EFF-001	2/4/2013	Tetrachloroethylene	8260B/624	ND	0.2	ug/L		0.2	Grab
EFF-001		Tetrachloroethylene	8260B/624	ND	0.2	ug/L		0.2	Grab
EFF-001	1/14/2010	Thallium (Total)	200.8	ND	0.5	ug/L			Comp
EFF-001	2/8/2010	Thallium (Total)	200.8		0.5	ug/L			Comp
EFF-001	3/16/2010	Thallium (Total)	200.8	ND	0.5	ug/L			comp
EFF-001		Thallium (Total)	200.8	ND	0.5	ug/L			Comp
EFF-001	8/3/2010	Thallium (Total)	200.8	ND	0.5	ug/L			comp
EFF-001		Thallium (Total)	200.8	ND	0.5	ug/L			Comp
EFF-001	2/5/2012	Thallium (Total)	200.8	ND	0.5	ug/L			Comp

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	4/16/2012	Thallium (Total)	200.8	ND	1	ug/L			Comp/Grab
EFF-001	5/13/2012	Thallium (Total)	200.8	ND	0.5	ug/L			Comp
EFF-001	6/10/2012	Thallium (Total)	200.8	ND	0.5	ug/L			Comp
EFF-001	8/12/2012	Thallium (Total)	200.8	ND	0.5	ug/L		0.5	Comp
EFF-001	9/9/2012	Thallium (Total)	200.8	ND	0.5	ug/L		0.5	Comp
EFF-001	10/7/2012	Thallium (Total)	200.8	ND	0.5	ug/L		0.5	Comp
EFF-001	11/4/2012	Thallium (Total)	200.8	ND	0.5	ug/L		0.5	comp
EFF-001	12/2/2012	Thallium (Total)	200.8	ND	0.5	ug/L		0.5	Comp
EFF-001	1/13/2013	Thallium (Total)	200.8	ND	0.5	ug/L		0.5	Comp
EFF-001	2/3/2013	Thallium (Total)	200.8	ND	0.5	ug/L		0.5	Comp
EFF-001	3/10/2013	Thallium (Total)	200.8	ND	0.5	ug/L		0.5	Comp
EFF-001	1/12/2010	Toluene	8260B	ND	0.3	ug/L			Grab
EFF-001	2/2/2010	Toluene	8260B	ND	0.3	ug/L			Grab
EFF-001	4/16/2012	Toluene	8260B	J	1.2	ug/L			Comp/Grab
EFF-001	5/14/2012	Toluene	8260B	J	0.2	ug/L			Grab
EFF-001	6/11/2012	Toluene	8260B	J	0.6	ug/L			Grab
EFF-001	7/9/2012	Toluene	8260B	ND	0.05	ug/L			Grab
EFF-001	8/13/2012	Toluene	8260B/624	ND	0.05	ug/L		0.05	Grab
EFF-001	9/10/2012	Toluene	8260B/624	ND	0.05	ug/L		0.05	Grab
EFF-001	10/8/2012	Toluene	8260B/624	ND	0.05	ug/L		0.05	Grab
EFF-001	11/5/2012	Toluene	8260B/624	ND	0.05	ug/L		0.05	Grab
EFF-001	12/3/2012	Toluene	8260B/624	J	0.3	ug/L			Grab
EFF-001	1/14/2013	Toluene	8260B/624	J	0.4	ug/L			Comp/Grab
EFF-001	2/4/2013	Toluene	8260B/624	J	0.5	ug/L			Grab
EFF-001	3/11/2013	Toluene	8260B/624	ND	0.05	ug/L		0.05	Grab
EFF-001	1/31/2010	Total Alkalinity as CaCO3	SM2320B		5.5	mg/L			Comp
EFF-001	2/8/2010	Total Alkalinity as CaCO3	SM2320B		3.8	mg/L			Comp
EFF-001	8/2/2010	Total Alkalinity as CaCO3	SM2320B		135	mg/L			Comp
EFF-001	2/21/2011	Total Alkalinity as CaCO3	SM2320B		96.5	mg/L			comp
EFF-001	8/8/2011	Total Alkalinity as CaCO3	SM2320B		101	mg/L			Comp
EFF-001	2/5/2012	Total Alkalinity as CaCO3	SM2320B		110	mg/L			Comp

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	8/7/2012	Total Alkalinity as CaCO3	SM2320B		103	mg/L			Comp
EFF-001	6/1/2010	Total Dissolved Solids	SM2540C		622	mg/L			Grab
EFF-001	6/7/2010	Total Dissolved Solids	SM2540C		524	mg/L			Grab
EFF-001	6/15/2010	Total Dissolved Solids	SM2540C		488	mg/L			Grab
EFF-001	6/21/2010	Total Dissolved Solids	SM2540C		554	mg/L			Grab
EFF-001	6/28/2010	Total Dissolved Solids	SM2540C		660	mg/L			Grab
EFF-001	7/6/2010	Total Dissolved Solids	SM2540C		582	mg/L			Grab
EFF-001	7/12/2010	Total Dissolved Solids	SM2540C		676	mg/L			Grab
EFF-001	7/19/2010	Total Dissolved Solids	SM2540C		422	mg/L			Grab
EFF-001	7/26/2010	Total Dissolved Solids	SM2540C		646	mg/L			Grab
EFF-001	8/2/2010	Total Dissolved Solids	SM2540C		642	mg/L			Grab
EFF-001	8/2/2010	Total Dissolved Solids	160.1		568	mg/L			Comp
EFF-001	8/9/2010	Total Dissolved Solids	SM2540C		570	mg/L			Grab
EFF-001	8/16/2010	Total Dissolved Solids	SM2540C		576	mg/L			Grab
EFF-001	8/23/2010	Total Dissolved Solids	SM2540C		512	mg/L			Grab
EFF-001	8/30/2010	Total Dissolved Solids	SM2540C		590	mg/L			Grab
EFF-001	9/7/2010	Total Dissolved Solids	SM2540C		532	mg/L			Grab
EFF-001	9/13/2010	Total Dissolved Solids	SM2540C		628	mg/L			Grab
EFF-001	9/20/2010	Total Dissolved Solids	SM2540C		722	mg/L			Grab
EFF-001	9/27/2010	Total Dissolved Solids	SM2540C		642	mg/L			Grab
EFF-001	10/4/2010	Total Dissolved Solids	SM2540C		594	mg/L			Grab
EFF-001	10/11/2010	Total Dissolved Solids	SM2540C		702	mg/L			Grab
EFF-001	10/18/2010	Total Dissolved Solids	SM2540C		624	mg/L			Grab
EFF-001	10/25/2010	Total Dissolved Solids	SM2540C		504	mg/L			Grab
EFF-001	11/1/2010	Total Dissolved Solids	SM2540C		652	mg/L			Grab
EFF-001	11/8/2010	Total Dissolved Solids	SM2540C		434	mg/L			Grab
EFF-001	11/15/2010	Total Dissolved Solids	SM2540C		586	mg/L			Grab
EFF-001	11/22/2010	Total Dissolved Solids	SM2540C		562	mg/L			Grab
EFF-001	11/29/2010	Total Dissolved Solids	SM2540C		608	mg/L			Grab
EFF-001	12/6/2010	Total Dissolved Solids	SM2540C		632	mg/L			Grab
EFF-001	12/13/2010	Total Dissolved Solids	SM2540C		624	mg/L			Grab

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	12/20/2010	Total Dissolved Solids	SM2540C		540	mg/L			Grab
EFF-001	12/27/2010	Total Dissolved Solids	SM2540C		549	mg/L			Grab
EFF-001	1/3/2011	Total Dissolved Solids	SM2540C		502	mg/L			Grab
EFF-001	1/10/2011	Total Dissolved Solids	SM2540C		514	mg/L			Grab
EFF-001	1/18/2011	Total Dissolved Solids	SM2540C		584	mg/L			Grab
EFF-001	1/24/2011	Total Dissolved Solids	SM2540C		494	mg/L			Grab
EFF-001	1/31/2011	Total Dissolved Solids	SM2540C		602	mg/L			Grab
EFF-001	2/7/2011	Total Dissolved Solids	SM2540C		650	mg/L			Grab
EFF-001	2/14/2011	Total Dissolved Solids	SM2540C		654	mg/L			Grab
EFF-001	2/21/2011	Total Dissolved Solids	160.1		612	mg/L			comp
EFF-001	2/22/2011	Total Dissolved Solids	SM2540C		612	mg/L			Grab
EFF-001	2/28/2011	Total Dissolved Solids	SM2540C		520	mg/L			Grab
EFF-001	3/7/2011	Total Dissolved Solids	SM2540C		546	mg/L			Grab
EFF-001	3/14/2011	Total Dissolved Solids	SM2540C		582	mg/L			Grab
EFF-001	3/21/2011	Total Dissolved Solids	SM2540C		444	mg/L			Grab
EFF-001	3/28/2011	Total Dissolved Solids	SM2540C		496	mg/L			Grab
EFF-001	4/4/2011	Total Dissolved Solids	SM2540C		592	mg/L			Grab
EFF-001	4/11/2011	Total Dissolved Solids	SM2540C		648	mg/L			Grab
EFF-001	4/18/2011	Total Dissolved Solids	SM2540C		644	mg/L			Grab
EFF-001	4/25/2011	Total Dissolved Solids	SM2540C		612	mg/L			Grab
EFF-001	5/2/2011	Total Dissolved Solids	SM2540C		612	mg/L			Grab
EFF-001	5/9/2011	Total Dissolved Solids	SM2540C		598	mg/L			Grab
EFF-001	5/16/2011	Total Dissolved Solids	SM2540C		536	mg/L			Grab
EFF-001	5/23/2011	Total Dissolved Solids	SM2540C		568	mg/L			Grab
EFF-001	5/31/2011	Total Dissolved Solids	SM2540C		574	mg/L			Grab
EFF-001	6/6/2011	Total Dissolved Solids	SM2540C		530	mg/L			Grab
EFF-001	6/13/2011	Total Dissolved Solids	SM2540C		794	mg/L			Grab
EFF-001	6/20/2011	Total Dissolved Solids	SM2540C		616	mg/L			Grab
EFF-001	6/27/2011	Total Dissolved Solids	SM2540C		626	mg/L			Grab
EFF-001	7/5/2011	Total Dissolved Solids	SM2540C		678	mg/L			Grab
EFF-001	7/11/2011	Total Dissolved Solids	SM2540C		594	mg/L			Grab

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	7/18/2011	Total Dissolved Solids	SM2540C		660	mg/L			Grab
EFF-001	7/25/2011	Total Dissolved Solids	SM2540C		640	mg/L			Grab
EFF-001	8/1/2011	Total Dissolved Solids	SM2540C		586	mg/L			Grab
EFF-001	8/8/2011	Total Dissolved Solids	SM2540C		580	mg/L			Grab
EFF-001	8/8/2011	Total Dissolved Solids	160.1		602	mg/L			Comp
EFF-001	8/15/2011	Total Dissolved Solids	SM2540C		616	mg/L			Grab
EFF-001	8/22/2011	Total Dissolved Solids	SM2540C		566	mg/L			Grab
EFF-001	8/29/2011	Total Dissolved Solids	SM2540C		570	mg/L			Grab
EFF-001	9/6/2011	Total Dissolved Solids	SM2540C		556	mg/L			Grab
EFF-001	9/12/2011	Total Dissolved Solids	SM2540C		602	mg/L			Grab
EFF-001	9/19/2011	Total Dissolved Solids	SM2540C		582	mg/L			Grab
EFF-001	9/26/2011	Total Dissolved Solids	SM2540C		520	mg/L			Grab
EFF-001	10/3/2011	Total Dissolved Solids	SM2540C		631	mg/L			Grab
EFF-001	10/10/2011	Total Dissolved Solids	SM2540C		610	mg/L			Grab
EFF-001	10/17/2011	Total Dissolved Solids	SM2540C		554	mg/L			Grab
EFF-001	10/24/2011	Total Dissolved Solids	SM2540C		516	mg/L			Grab
EFF-001	10/31/2011	Total Dissolved Solids	SM2540C		612	mg/L			Grab
EFF-001	11/7/2011	Total Dissolved Solids	SM2540C		604	mg/L			Grab
EFF-001	11/14/2011	Total Dissolved Solids	SM2540C		688	mg/L			Grab
EFF-001	11/21/2011	Total Dissolved Solids	SM2540C		558	mg/L			Grab
EFF-001	11/28/2011	Total Dissolved Solids	SM2540C		494	mg/L			Grab
EFF-001	12/5/2011	Total Dissolved Solids	SM2540C		598	mg/L			Grab
EFF-001	12/12/2011	Total Dissolved Solids	SM2540C		628	mg/L			Grab
EFF-001	12/19/2011	Total Dissolved Solids	SM2540C		514	mg/L			Grab
EFF-001	12/27/2011	Total Dissolved Solids	SM2540C		572	mg/L			Grab
EFF-001	1/3/2012	Total Dissolved Solids	SM2540C		544	mg/L			Grab
EFF-001	1/9/2012	Total Dissolved Solids	SM2540C		598	mg/L			Grab
EFF-001	1/17/2012	Total Dissolved Solids	SM2540C		588	mg/L			Grab
EFF-001	1/23/2012	Total Dissolved Solids	SM2540C		562	mg/L			Grab
EFF-001	1/30/2012	Total Dissolved Solids	SM2540C		614	mg/L			Grab
EFF-001	2/5/2012	Total Dissolved Solids	160.1		645	mg/L			Comp

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	2/6/2012	Total Dissolved Solids	SM2540C		560	mg/L			Grab
EFF-001	2/13/2012	Total Dissolved Solids	SM2540C		586	mg/L			Grab
EFF-001	2/21/2012	Total Dissolved Solids	SM2540C		566	mg/L			Grab
EFF-001	2/27/2012	Total Dissolved Solids	SM2540C		540	mg/L			Grab
EFF-001	3/5/2012	Total Dissolved Solids	SM2540C		524	mg/L			Grab
EFF-001	3/12/2012	Total Dissolved Solids	SM2540C		636	mg/L			Grab
EFF-001	3/19/2012	Total Dissolved Solids	SM2540C		496	mg/L			Grab
EFF-001	3/26/2012	Total Dissolved Solids	SM2540C		578	mg/L			Grab
EFF-001	4/2/2012	Total Dissolved Solids	SM2540C		550	mg/L			Grab
EFF-001	4/9/2012	Total Dissolved Solids	SM2540C		516	mg/L			Grab
EFF-001	4/16/2012	Total Dissolved Solids	SM2540C		506	mg/L			Grab
EFF-001	4/23/2012	Total Dissolved Solids	SM2540C		600	mg/L			Grab
EFF-001	4/30/2012	Total Dissolved Solids	SM2540C		584	mg/L			Grab
EFF-001	5/7/2012	Total Dissolved Solids	SM2540C		618	mg/L			Grab
EFF-001	5/14/2012	Total Dissolved Solids	SM2540C		528	mg/L			Grab
EFF-001	5/21/2012	Total Dissolved Solids	SM2540C		608	mg/L			Grab
EFF-001	5/29/2012	Total Dissolved Solids	SM2540C		613	mg/L			Grab
EFF-001	6/4/2012	Total Dissolved Solids	SM2540C		593	mg/L			Grab
EFF-001	6/11/2012	Total Dissolved Solids	SM2540C		572	mg/L			Grab
EFF-001	6/18/2012	Total Dissolved Solids	SM2540C		642	mg/L			Grab
EFF-001	6/25/2012	Total Dissolved Solids	SM2540C		570	mg/L			Grab
EFF-001	7/2/2012	Total Dissolved Solids	SM2540C		524	mg/L			Grab
EFF-001	7/9/2012	Total Dissolved Solids	SM2540C		562	mg/L			Grab
EFF-001	7/16/2012	Total Dissolved Solids	SM2540C		606	mg/L			Grab
EFF-001	7/23/2012	Total Dissolved Solids	SM2540C		606	mg/L			Grab
EFF-001	7/30/2012	Total Dissolved Solids	SM2540C		574	mg/L			Grab
EFF-001	8/6/2012	Total Dissolved Solids	SM2540C		620	mg/L			Grab
EFF-001	8/13/2012	Total Dissolved Solids	SM2540C		580	mg/L			Grab
EFF-001	8/20/2012	Total Dissolved Solids	SM2540C		676	mg/L			Grab
EFF-001	8/27/2012	Total Dissolved Solids	SM2540C		566	mg/L			Grab
EFF-001	9/4/2012	Total Dissolved Solids	SM2540C		572	mg/L			Grab

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	9/10/2012	Total Dissolved Solids	SM2540C		604	mg/L			Grab
EFF-001	9/17/2012	Total Dissolved Solids	SM2540C		606	mg/L			Grab
EFF-001	9/24/2012	Total Dissolved Solids	SM2540C		600	mg/L			Grab
EFF-001	10/1/2012	Total Dissolved Solids	SM2540C		598	mg/L			Grab
EFF-001	10/8/2012	Total Dissolved Solids	SM2540C		500	mg/L			Grab
EFF-001	10/15/2012	Total Dissolved Solids	SM2540C		568	mg/L			Grab
EFF-001	10/22/2012	Total Dissolved Solids	SM2540C		580	mg/L			Grab
EFF-001	10/29/2012	Total Dissolved Solids	SM2540C		642	mg/L			Grab
EFF-001	11/5/2012	Total Dissolved Solids	SM2540C		666	mg/L			Grab
EFF-001	11/13/2012	Total Dissolved Solids	SM2540C		586	mg/L			Grab
EFF-001	11/19/2012	Total Dissolved Solids	SM2540C		580	mg/L			Grab
EFF-001	11/26/2012	Total Dissolved Solids	SM2540C		612	mg/L			Grab
EFF-001	12/3/2012	Total Dissolved Solids	SM2540C		572	mg/L			Grab
EFF-001	12/10/2012	Total Dissolved Solids	SM2540C		532	mg/L			Grab
EFF-001	12/17/2012	Total Dissolved Solids	SM2540C		612	mg/L			Grab
EFF-001	12/24/2012	Total Dissolved Solids	SM2540C		390	mg/L			Grab
EFF-001	1/2/2013	Total Dissolved Solids	SM2540C		564	mg/L			Grab
EFF-001	1/7/2013	Total Dissolved Solids	SM2540C		500	mg/L			Grab
EFF-001	1/14/2013	Total Dissolved Solids	SM2540C		528	mg/L			Grab
EFF-001	1/22/2013	Total Dissolved Solids	SM2540C		500	mg/L			Grab
EFF-001	1/28/2013	Total Dissolved Solids	SM2540C		724	mg/L			Grab
EFF-001	2/4/2013	Total Dissolved Solids	SM2540C		634	mg/L			Grab
EFF-001	2/11/2013	Total Dissolved Solids	SM2540C		522	mg/L			Grab
EFF-001	2/19/2013	Total Dissolved Solids	SM2540C		552	mg/L			Grab
EFF-001	2/25/2013	Total Dissolved Solids	SM2540C		584	mg/L			Grab
EFF-001	3/6/2013	Total Dissolved Solids	SM2540C		551	mg/L			Grab
EFF-001	3/11/2013	Total Dissolved Solids	SM2540C		592	mg/L			Grab
EFF-001	3/18/2013	Total Dissolved Solids	SM2540C		692	mg/L			Grab
EFF-001	3/25/2013	Total Dissolved Solids	SM2540C		596	mg/L			Grab
EFF-001	4/1/2013	Total Dissolved Solids	SM2540C		558	mg/L			Grab
EFF-001	4/8/2013	Total Dissolved Solids	SM2540C		562	mg/L			Grab

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	4/15/2013	Total Dissolved Solids	SM2540C		554	mg/L			Grab
EFF-001	4/22/2013	Total Dissolved Solids	SM2540C		594	mg/L			Grab
EFF-001	4/29/2013	Total Dissolved Solids	SM2540C		732	mg/L			Grab
EFF-001	5/6/2013	Total Dissolved Solids	SM2540C		606	mg/L			Grab
EFF-001	5/13/2013	Total Dissolved Solids	SM2540C		602	mg/L			Grab
EFF-001	5/20/2013	Total Dissolved Solids	SM2540C		648	mg/L			Grab
EFF-001	5/28/2013	Total Dissolved Solids	SM2540C		638	mg/L			Grab
EFF-001	6/3/2013	Total Dissolved Solids	SM2540C		692	mg/L			Grab
EFF-001	6/10/2013	Total Dissolved Solids	SM2540C		606	mg/L			Grab
EFF-001	6/17/2013	Total Dissolved Solids	SM2540C		538	mg/L			Grab
EFF-001	6/24/2013	Total Dissolved Solids	SM2540C		604	mg/L			Grab
EFF-001	7/1/2013	Total Dissolved Solids	SM2540C		656	mg/L			Grab
EFF-001	7/8/2013	Total Dissolved Solids	SM2540C		566	mg/L			Grab
EFF-001	7/15/2013	Total Dissolved Solids	SM2540C		614	mg/L			Grab
EFF-001	7/22/2013	Total Dissolved Solids	SM2540C		644	mg/L			Grab
EFF-001	7/29/2013	Total Dissolved Solids	SM2540C		636	mg/L			Grab
EFF-001	8/5/2013	Total Dissolved Solids	SM2540C		596	mg/L			Grab
EFF-001	8/12/2013	Total Dissolved Solids	SM2540C		662	mg/L			Grab
EFF-001	8/19/2013	Total Dissolved Solids	SM2540C		570	mg/L			Grab
EFF-001	8/26/2013	Total Dissolved Solids	SM2540C		600	mg/L			Grab
EFF-001	9/3/2013	Total Dissolved Solids	SM2540C		574	mg/L			Grab
EFF-001	9/9/2013	Total Dissolved Solids	SM2540C		620	mg/L			Grab
EFF-001	9/16/2013	Total Dissolved Solids	SM2540C		622	mg/L			Grab
EFF-001	9/23/2013	Total Dissolved Solids	SM2540C		604	mg/L			Grab
EFF-001	9/30/2013	Total Dissolved Solids	SM2540C		600	mg/L			Grab
EFF-001	10/7/2013	Total Dissolved Solids	SM2540C		662	mg/L			Grab
EFF-001	10/14/2013	Total Dissolved Solids	SM2540C		568	mg/L			Grab
EFF-001	10/21/2013	Total Dissolved Solids	SM2540C		588	mg/L			Grab
EFF-001	10/28/2013	Total Dissolved Solids	SM2540C		648	mg/L			Grab
EFF-001	11/4/2013	Total Dissolved Solids	SM2540C		642	mg/L			Grab
EFF-001	11/12/2013	Total Dissolved Solids	SM2540C		642	mg/L			Grab

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	11/18/2013	Total Dissolved Solids	SM2540C		674	mg/L			Grab
EFF-001	11/25/2013	Total Dissolved Solids	SM2540C		668	mg/L			Grab
EFF-001	12/2/2013	Total Dissolved Solids	SM2540C		646	mg/L			Grab
EFF-001	12/9/2013	Total Dissolved Solids	SM2540C		564	mg/L			Grab
EFF-001	12/16/2013	Total Dissolved Solids	SM2540C		554	mg/L			Grab
EFF-001	12/23/2013	Total Dissolved Solids	SM2540C		698	mg/L			Grab
EFF-001	12/30/2013	Total Dissolved Solids	SM2540C		663	mg/L			Grab
EFF-001	1/6/2014	Total Dissolved Solids	SM2540C		593	mg/L			Grab
EFF-001	1/13/2014	Total Dissolved Solids	SM2540C		644	mg/L			Grab
EFF-001	1/21/2014	Total Dissolved Solids	SM2540C		564	mg/L			Grab
EFF-001	1/27/2014	Total Dissolved Solids	SM2540C		669	mg/L			Grab
EFF-001	2/3/2014	Total Dissolved Solids	SM2540C		580	mg/L			Grab
EFF-001	2/10/2014	Total Dissolved Solids	SM2540C		628	mg/L			Grab
EFF-001	2/18/2014	Total Dissolved Solids	SM2540C		624	mg/L			Grab
EFF-001	2/24/2014	Total Dissolved Solids	SM2540C		670	mg/L			Grab
EFF-001	3/3/2014	Total Dissolved Solids	SM2540C		554	mg/L			Grab
EFF-001	3/10/2014	Total Dissolved Solids	SM2540C		628	mg/L			Grab
EFF-001	3/17/2014	Total Dissolved Solids	SM2540C		664	mg/L			Grab
EFF-001	3/24/2014	Total Dissolved Solids	SM2540C		740	mg/L			Grab
EFF-001	3/31/2014	Total Dissolved Solids	SM2540C		502	mg/L			Grab
EFF-001	4/7/2014	Total Dissolved Solids	SM2540C		572	mg/L			Grab
EFF-001	4/14/2014	Total Dissolved Solids	SM2540C		606	mg/L			Grab
EFF-001	4/21/2014	Total Dissolved Solids	SM2540C		654	mg/L			Grab
EFF-001	4/28/2014	Total Dissolved Solids	SM2540C		598	mg/L			Grab
EFF-001	5/5/2014	Total Dissolved Solids	SM2540C		566	mg/L			Grab
EFF-001	5/12/2014	Total Dissolved Solids	SM2540C		692	mg/L			Grab
EFF-001	5/19/2014	Total Dissolved Solids	SM2540C		680	mg/L			Grab
EFF-001	5/28/2014	Total Dissolved Solids	SM2540C		750	mg/L			Grab
EFF-001	6/2/2014	Total Dissolved Solids	SM2540C		596	mg/L			Grab
EFF-001	6/9/2014	Total Dissolved Solids	SM2540C		678	mg/L			Grab
EFF-001	6/16/2014	Total Dissolved Solids	SM2540C		716	mg/L			Grab

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	6/23/2014	Total Dissolved Solids	SM2540C		720	mg/L			Grab
EFF-001	6/30/2014	Total Dissolved Solids	SM2540C		634	mg/L			Grab
EFF-001	7/7/2014	Total Dissolved Solids	SM2540C		736	mg/L			Grab
EFF-001	7/14/2014	Total Dissolved Solids	SM2540C		628	mg/L			Grab
EFF-001	7/21/2014	Total Dissolved Solids	SM2540C		746	mg/L			Grab
EFF-001	7/28/2014	Total Dissolved Solids	SM2540C		800	mg/L			Grab
EFF-001	8/4/2014	Total Dissolved Solids	SM2540C		730	mg/L			Grab
EFF-001	8/11/2014	Total Dissolved Solids	SM2540C		810	mg/L			Grab
EFF-001	8/18/2014	Total Dissolved Solids	SM2540C		690	mg/L			Grab
EFF-001	8/25/2014	Total Dissolved Solids	SM2540C		740	mg/L			Grab
EFF-001	9/2/2014	Total Dissolved Solids	SM2540C		702	mg/L			Grab
EFF-001	9/8/2014	Total Dissolved Solids	SM2540C		698	mg/L			Grab
EFF-001	9/15/2014	Total Dissolved Solids	SM2540C		730	mg/L			Grab
EFF-001	9/22/2014	Total Dissolved Solids	SM2540C		732	mg/L			Grab
EFF-001	9/29/2014	Total Dissolved Solids	SM2540C		645	mg/L			Grab
EFF-001	10/6/2014	Total Dissolved Solids	SM2540C		745	mg/L			Grab
EFF-001	10/13/2014	Total Dissolved Solids	SM2540C		706	mg/L			Grab
EFF-001	10/20/2014	Total Dissolved Solids	SM2540C		755	mg/L			Grab
EFF-001	10/27/2014	Total Dissolved Solids	SM2540C		728	mg/L			Grab
EFF-001	1/14/2010	Toxaphene	8081A/608	ND	0.5	ug/L			Comp
EFF-001	4/16/2012	Toxaphene	8081A/608	ND	1	ug/L			Comp/Grab
EFF-001	5/13/2012	Toxaphene	8081A/608	ND	0.5	ug/L			Comp
EFF-001	6/10/2012	Toxaphene	8081A/608	ND	1	ug/L			Comp
EFF-001	7/8/2012	Toxaphene	8081A/608	ND	1	ug/L			Comp
EFF-001	1/12/2010	trans-1,2-Dichloroethene	8260B	ND	0.2	ug/L			Grab
EFF-001	2/2/2010	trans-1,2-Dichloroethene	8260B	ND	0.2	ug/L			Grab
EFF-001	4/16/2012	trans-1,2-Dichloroethene	8260B	ND	0.1	ug/L			Comp/Grab
EFF-001	5/14/2012	trans-1,2-Dichloroethene	8260B	ND	0.1	ug/L			Grab
EFF-001	6/11/2012	trans-1,2-Dichloroethene	8260B	ND	0.1	ug/L			Grab
EFF-001	7/9/2012	trans-1,2-Dichloroethene	8260B	ND	0.1	ug/L			Grab
EFF-001	8/13/2012	trans-1,2-Dichloroethene	8260B/624	ND	0.1	ug/L		0.1	L Grab

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	9/10/2012	trans-1,2-Dichloroethene	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	10/8/2012	trans-1,2-Dichloroethene	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	11/5/2012	trans-1,2-Dichloroethene	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	12/3/2012	trans-1,2-Dichloroethene	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	1/14/2013	trans-1,2-Dichloroethene	8260B/624	ND	0.1	ug/L		0.1	Comp/Grab
EFF-001	2/4/2013	trans-1,2-Dichloroethene	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	3/11/2013	trans-1,2-Dichloroethene	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	1/31/2010	Tributyltin	GC/FPD		5.5	ng/L			Comp
EFF-001	2/8/2010	Tributyltin	GC/FPD		3.8	ng/L			Comp
EFF-001	1/12/2010	Trichloroethylene	8260B	ND	0.4	ug/L			Grab
EFF-001	2/2/2010	Trichloroethylene	8260B	ND	0.4	ug/L			Grab
EFF-001	4/16/2012	Trichloroethylene	8260B	ND	0.1	ug/L			Comp/Grab
EFF-001	5/14/2012	Trichloroethylene	8260B	ND	0.1	ug/L			Grab
EFF-001	6/11/2012	Trichloroethylene	8260B	ND	0.1	ug/L			Grab
EFF-001	7/9/2012	Trichloroethylene	8260B	ND	0.1	ug/L			Grab
EFF-001	8/13/2012	Trichloroethylene	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	9/10/2012	Trichloroethylene	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	10/8/2012	Trichloroethylene	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	11/5/2012	Trichloroethylene	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	12/3/2012	Trichloroethylene	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	1/14/2013	Trichloroethylene	8260B/624	ND	0.1	ug/L		0.1	Comp/Grab
EFF-001	2/4/2013	Trichloroethylene	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	3/11/2013	Trichloroethylene	8260B/624	ND	0.1	ug/L		0.1	Grab
EFF-001	8/2/2010	Turbidity	180.1		0.7	NTU			Comp
EFF-001	8/8/2011	Turbidity	180.1		1.5	NTU			Comp
EFF-001	2/5/2012	Turbidity	180.1		1.3	NTU			Comp
EFF-001	1/12/2010	Vinyl Chloride	8260B	ND	0.5	ug/L			Grab
EFF-001	2/2/2010	Vinyl Chloride	8260B	ND	0.5	ug/L			Grab
EFF-001	4/16/2012	Vinyl Chloride	8260B	ND	0.3	ug/L			Comp/Grab
EFF-001	5/14/2012	Vinyl Chloride	8260B	ND	0.3	ug/L			Grab
EFF-001	6/11/2012	Vinyl Chloride	8260B	ND	0.3	ug/L			Grab

Monitoring	Sample							RL or	
Location	Date	Analyte Name	Method Name	Qualifier	Result	Unit	MDL	MDL	Sample Type
EFF-001	7/9/2012	Vinyl Chloride	8260B	ND	0.3	ug/L			Grab
EFF-001	8/13/2012	Vinyl Chloride	8260B/624	ND	0.3	ug/L		0.3	Grab
EFF-001	9/10/2012	Vinyl Chloride	8260B/624	ND	0.3	ug/L		0.3	Grab
EFF-001	10/8/2012	Vinyl Chloride	8260B/624	ND	0.3	ug/L		0.3	Grab
EFF-001	11/5/2012	Vinyl Chloride	8260B/624	ND	0.3	ug/L		0.3	Grab
EFF-001	12/3/2012	Vinyl Chloride	8260B/624	ND	0.3	ug/L		0.3	Grab
EFF-001	1/14/2013	Vinyl Chloride	8260B/624	ND	0.3	ug/L		0.3	Comp/Grab
EFF-001	2/4/2013	Vinyl Chloride	8260B/624	ND	0.3	ug/L		0.3	Grab
EFF-001	3/11/2013	Vinyl Chloride	8260B/624	ND	0.3	ug/L		0.3	Grab
EFF-001	1/14/2010	Zinc (Total)	200.8		45	ug/L			Comp
EFF-001	2/8/2010	Zinc (Total)	200.8		41	ug/L			Comp
EFF-001	3/16/2010	Zinc (Total)	200.8		41	ug/L			comp
EFF-001	4/6/2010	Zinc (Total)	200.8		35	ug/L			Comp
EFF-001	8/2/2010	Zinc (Total)	200.8		82	ug/L			Comp
EFF-001	8/3/2010	Zinc (Total)	200.8		54	ug/L			comp
EFF-001	8/8/2011	Zinc (Total)	200.8		52.8	ug/L			Comp
EFF-001	2/5/2012	Zinc (Total)	200.8		92	ug/L			Comp
EFF-001	4/16/2012	Zinc (Total)	200.8		43	ug/L			Comp/Grab
EFF-001	5/13/2012	Zinc (Total)	200.8		42	ug/L			Comp
EFF-001	6/10/2012	Zinc (Total)	200.8		30	ug/L			Comp
EFF-001	7/8/2012	Zinc (Total)	200.8		28	ug/L			Comp
EFF-001	8/12/2012	Zinc (Total)	200.8		31	ug/L			Comp
EFF-001	9/9/2012	Zinc (Total)	200.8		35	ug/L			Comp
EFF-001	10/7/2012	Zinc (Total)	200.8		37.0	ug/L			Comp
EFF-001	11/4/2012	Zinc (Total)	200.8		49.2	ug/L			comp
EFF-001	12/2/2012	Zinc (Total)	200.8		111	ug/L			Comp
EFF-001	1/13/2013	Zinc (Total)	200.8		42	ug/L			Comp
EFF-001	2/3/2013	Zinc (Total)	200.8		41	ug/L			Comp
EFF-001	3/10/2013	Zinc (Total)	200.8		36.0	ug/L			Comp

Appendix C: City of Modesto Tertiary Effluent Monitoring Data Used to Characterize City's Contribution to Effluent Quality of Proposed NVRRWP Discharge

Monitoring	Sample	Sample	Analysis		Fraction							QA	
Location	Date	Time	Date	Analyte Name	Name	Method Name	Qualifier	Result	Unit	MDL	RL	Code	Lab Name
EFF-001B Grab	8/13/2014	9:49	8/20/2014	1,1,1-Trichloroethane	None	EPA 624	ND	0.40	ug/L	0.40	0.50		Alpha
EFF-001B Grab	10/30/2014	9:56		1,1,1-Trichloroethane	None	EPA 624	ND		ug/L	0.40	0.50		Alpha
EFF-001B Grab	8/13/2014	9:49	8/20/2014	1,1,2,2-Tetrachloroethane	None	EPA 624	ND	0.30	ug/L	0.30	0.50		Alpha
EFF-001B Grab	10/30/2014	9:56		1,1,2,2-Tetrachloroethane	None	EPA 624	ND		ug/L	0.30	0.50		Alpha
EFF-001B Grab	8/13/2014	9:49	8/20/2014	1,1,2-Trichloroethane	None	EPA 624	ND		ug/L	0.40	0.50		Alpha
EFF-001B Grab	10/30/2014	9:56	11/5/2014	1,1,2-Trichloroethane	None	EPA 624	ND	0.40	ug/L	0.40	0.50		Alpha
EFF-001B Grab	8/13/2014	9:49	8/20/2014	1,1-Dichloroethane	None	EPA 624	ND	0.50	ug/L	0.50	0.50		Alpha
EFF-001B Grab	10/30/2014	9:56	11/5/2014	1,1-Dichloroethane	None	EPA 624	ND	0.50	ug/L	0.50	0.50		Alpha
EFF-001B Grab	8/13/2014	9:49	8/20/2014	1,1-Dichloroethene	None	EPA 624	ND	0.30	ug/L	0.30	0.50		Alpha
EFF-001B Grab	10/30/2014	9:56	11/5/2014	1,1-Dichloroethene	None	EPA 624	ND	0.30	ug/L	0.30	0.50		Alpha
EFF-001B Comp	8/13/2014	8:47	8/28/2014	1,2,4-Trichlorobenzene	None	EPA 625	ND	0.59	ug/L	0.59	5.0		Alpha
EFF-001B Comp	10/30/2014	9:48	11/13/2014	1,2,4-Trichlorobenzene	None	EPA 625	ND	0.59	ug/L	0.59	5.0		Alpha
EFF-001B Grab	8/13/2014	9:49	8/20/2014	1,2-Dibromo-3-chloropropane	None	EPA 624	ND	0.60	ug/L	0.60	2.0		Alpha
EFF-001B Grab	10/30/2014	9:56	11/5/2014	1,2-Dibromo-3-chloropropane	None	EPA 624	ND	0.60	ug/L	0.60	2.0		Alpha
EFF-001B Grab	8/13/2014	9:49	8/20/2014	1,2-Dibromoethane (EDB)	None	EPA 624	ND	0.40	ug/L	0.40	0.50		Alpha
EFF-001B Grab	10/30/2014	9:56	11/5/2014	1,2-Dibromoethane (EDB)	None	EPA 624	ND	0.40	ug/L	0.40	0.50		Alpha
EFF-001B Grab	8/13/2014	9:49	8/20/2014	1,2-Dichlorobenzene	None	EPA 624	ND	0.40	ug/L	0.40	0.50		Alpha
EFF-001B Grab	10/30/2014	9:56	11/5/2014	1,2-Dichlorobenzene	None	EPA 624	ND	0.40	ug/L	0.40	0.50		Alpha
EFF-001B Grab	8/13/2014	9:49	8/20/2014	1,2-Dichloroethane	None	EPA 624	ND	0.40	ug/L	0.40	0.50		Alpha
EFF-001B Grab	10/30/2014	9:56	11/5/2014	1,2-Dichloroethane	None	EPA 624	ND	0.40	ug/L	0.40	0.50		Alpha
EFF-001B Grab	8/13/2014	9:49	8/20/2014	1,2-Dichloropropane	None	EPA 624	ND	0.40	ug/L	0.40	0.50		Alpha
EFF-001B Grab	10/30/2014	9:56	11/5/2014	1,2-Dichloropropane	None	EPA 624	ND	0.40	ug/L	0.40	0.50		Alpha
EFF-001B Comp	8/13/2014	8:47	8/28/2014	1,2-Diphenylhydrazine	None	EPA 625	ND	0.33	ug/L	0.33	1.0		Alpha
EFF-001B Comp	10/30/2014	9:48	11/13/2014	1,2-Diphenylhydrazine	None	EPA 625	ND	0.33	ug/L	0.33	1.0		Alpha
EFF-001B Grab	8/13/2014	9:49	8/20/2014	1,3-Dichlorobenzene	None	EPA 624	ND	0.40	ug/L	0.40	0.50		Alpha
EFF-001B Grab	10/30/2014	9:56	11/5/2014	1,3-Dichlorobenzene	None	EPA 624	ND	0.40	ug/L	0.40	0.50		Alpha
EFF-001B Grab	8/13/2014	9:49	8/20/2014	1,4-Dichlorobenzene	None	EPA 624	ND	0.30	ug/L	0.30	0.50		Alpha
EFF-001B Grab	10/30/2014	9:56	11/5/2014	1,4-Dichlorobenzene	None	EPA 624	ND	0.30	ug/L	0.30	0.50		Alpha
EFF-001B Grab	8/13/2014	9:27	8/22/2014	2,3,7,8-TCDD	None	EPA 1613B	ND	2.62	pg/L	2.62			Ceres
EFF-001B Grab	10/30/2014	9:56	11/11/2014	2,3,7,8-TCDD	None	EPA 1613B	ND	1.03	pg/L	1.03			Ceres

Monitoring	Sample	Sample	Analysis		Fraction							QA	
Location	Date	Time	Date	Analyte Name	Name	Method Name	Qualifier	Result	Unit	MDL	RL	Code	Lab Name
EFF-001B Comp	8/13/2014	8:47	8/23/2014	2,4,5-T	None	EPA 515.1	ND	0.40	ug/L	0.40	0.50		Alpha
EFF-001B Comp	10/30/2014	9:48	11/8/2014	2,4,5-T	None	EPA 515.1	ND	0.40	ug/L	0.40	0.50		Alpha
EFF-001B Comp	8/13/2014	8:47	8/23/2014	2,4,5-TP (Silvex)	None	EPA 515.1	ND	0.50	ug/L	0.50	1.0		Alpha
EFF-001B Comp	10/30/2014	9:48	11/8/2014	2,4,5-TP (Silvex)	None	EPA 515.1	ND	0.50	ug/L	0.50	1.0		Alpha
EFF-001B Comp	8/13/2014	8:47	8/28/2014	2,4,6-Trichlorophenol	None	EPA 625	ND	0.74	ug/L	0.74	10		Alpha
EFF-001B Comp	10/30/2014	9:48	11/13/2014	2,4,6-Trichlorophenol	None	EPA 625	ND	0.74	ug/L	0.74	10		Alpha
EFF-001B Comp	8/13/2014	8:47	8/23/2014	2,4-D	None	EPA 515.1	ND	0.80	ug/L	0.80	10		Alpha
EFF-001B Comp	10/30/2014	9:48	11/8/2014	2,4-D	None	EPA 515.1	ND	0.80	ug/L	0.80	10		Alpha
EFF-001B Comp	8/13/2014	8:47	8/23/2014	2,4-DB	None	EPA 515.1	ND	4.0	ug/L	4.0	5.0		Alpha
EFF-001B Comp	10/30/2014	9:48	11/8/2014	2,4-DB	None	EPA 515.1	ND	4.0	ug/L	4.0	5.0		Alpha
EFF-001B Comp	8/13/2014	8:47	8/28/2014	2,4-Dichlorophenol	None	EPA 625	ND	0.66	ug/L	0.66	5.0		Alpha
EFF-001B Comp	10/30/2014	9:48	11/13/2014	2,4-Dichlorophenol	None	EPA 625	ND	0.66	ug/L	0.66	5.0		Alpha
EFF-001B Comp	8/13/2014	8:47	8/28/2014	2,4-Dimethylphenol	None	EPA 625	ND	1.2	ug/L	1.2	2.0		Alpha
EFF-001B Comp	10/30/2014	9:48	11/13/2014	2,4-Dimethylphenol	None	EPA 625	ND	1.2	ug/L	1.2	2.0		Alpha
EFF-001B Comp	8/13/2014	8:47	8/28/2014	2,4-Dinitrophenol	None	EPA 625	ND	1.3	ug/L	1.3	5.0		Alpha
EFF-001B Comp	10/30/2014	9:48	11/13/2014	2,4-Dinitrophenol	None	EPA 625	ND	1.3	ug/L	1.3	5.0		Alpha
EFF-001B Comp	8/13/2014	8:47	8/28/2014	2,4-Dinitrotoluene	None	EPA 625	ND	0.68	ug/L	0.68	5.0		Alpha
EFF-001B Comp	10/30/2014	9:48	11/13/2014	2,4-Dinitrotoluene	None	EPA 625	ND	0.68	ug/L	0.68	5.0		Alpha
EFF-001B Comp	8/13/2014	8:47	8/28/2014	2,6-Dinitrotoluene	None	EPA 625	ND	0.54	ug/L	0.54	5.0		Alpha
EFF-001B Comp	10/30/2014	9:48	11/13/2014	2,6-Dinitrotoluene	None	EPA 625	ND	0.54	ug/L	0.54	5.0		Alpha
EFF-001B Grab	8/13/2014	9:49	8/20/2014	2-Chloroethylvinyl ether	None	EPA 624	ND	0.70	ug/L	0.70	1.0		Alpha
EFF-001B Grab	10/30/2014	9:56	10/31/2014	2-Chloroethylvinyl ether	None	EPA 624	ND	0.70	ug/L	0.70	1.0		Alpha
EFF-001B Comp	8/13/2014	8:47	8/28/2014	2-Chloronaphthalene	None	EPA 625	ND	0.57	ug/L	0.57	10		Alpha
EFF-001B Comp	10/30/2014	9:48	11/13/2014	2-Chloronaphthalene	None	EPA 625	ND	0.57	ug/L	0.57	10		Alpha
EFF-001B Comp	8/13/2014	8:47	8/28/2014	2-Chlorophenol	None	EPA 625	ND	0.66	ug/L	0.66	5.0		Alpha
EFF-001B Comp	10/30/2014	9:48	11/13/2014	2-Chlorophenol	None	EPA 625	ND	0.66	ug/L	0.66	5.0		Alpha
EFF-001B Comp	8/13/2014	8:47	8/26/2014	2-Methylnaphthalene	None	EPA 625SIM	ND	0.04	ug/L	0.04	1.0		Alpha
EFF-001B Comp	10/30/2014	9:48	11/19/2014	2-Methylnaphthalene	None	EPA 625SIM	ND	0.04	ug/L	0.04	1.0		Alpha
EFF-001B Comp	8/13/2014	8:47	8/28/2014	2-Nitrophenol	None	EPA 625	ND	0.90	ug/L	0.90	10		Alpha
EFF-001B Comp	10/30/2014	9:48	11/13/2014	2-Nitrophenol	None	EPA 625	ND	0.90	ug/L	0.90	10		Alpha
EFF-001B Comp	8/13/2014	8:47	8/28/2014	3,3´-Dichlorobenzidine	None	EPA 625	ND	2.0	ug/L	2.0	5.0		Alpha
EFF-001B Comp	10/30/2014	9:48	11/13/2014	3,3'-Dichlorobenzidine	None	EPA 625	ND	2.0	ug/L	2.0	5.0		Alpha
EFF-001B Comp	8/13/2014	8:47	8/28/2014	3-Hydroxycarbofuran	None	EPA 531.1	ND	3	ug/L	3			FGL
EFF-001B Comp	10/30/2014	9:48	11/19/2014	3-Hydroxycarbofuran	None	EPA 531.1	ND	3	ug/L	3			FGL
EFF-001B Comp	8/13/2014	8:47	8/25/2014	4,4´-DDD	None	EPA 608	ND	0.02	ug/L	0.02	0.02		Alpha
EFF-001B Comp	10/30/2014	9:48	11/4/2014	4,4'-DDD	None	EPA 608	ND	0.02	ug/L	0.02	0.02		Alpha
EFF-001B Comp	8/13/2014	8:47	8/25/2014	4,4´-DDE	None	EPA 608	ND	0.004	ug/L	0.004	0.02		Alpha
EFF-001B Comp	10/30/2014	9:48	11/4/2014	4,4'-DDE	None	EPA 608	ND	0.004	ug/L	0.004	0.02		Alpha
EFF-001B Comp	8/13/2014	8:47	8/25/2014	4,4´-DDT	None	EPA 608	ND	0.003	ug/L	0.003	0.01		Alpha

Monitoring	Sample	Sample	Analysis		Fraction							QA	
Location	Date	Time	Date	Analyte Name	Name	Method Name	Qualifier	Result	Unit	MDL	RL	Code	Lab Name
EFF-001B Comp	10/30/2014	9:48	11/4/2014	4,4'-DDT	None	EPA 608	ND	0.003	ug/L	0.003	0.01		Alpha
EFF-001B Comp	8/13/2014	8:47	8/28/2014	4,6-Dinitro-2-methylphenol	None	EPA 625	ND	0.75	ug/L	0.75	5.0		Alpha
EFF-001B Comp	10/30/2014	9:48	11/13/2014	4,6-Dinitro-2-methylphenol	None	EPA 625	ND	0.75	ug/L	0.75	5.0		Alpha
EFF-001B Comp	8/13/2014	8:47	8/28/2014	4-Bromophenyl phenyl ether	None	EPA 625	ND	0.43	ug/L	0.43	5.0		Alpha
EFF-001B Comp	10/30/2014	9:48	11/13/2014	4-Bromophenyl phenyl ether	None	EPA 625	ND	0.43	ug/L	0.43	5.0		Alpha
EFF-001B Comp	8/13/2014	8:47	8/28/2014	4-Chloro-3-methylphenol	None	EPA 625	ND	0.58	ug/L	0.58	1.0		Alpha
EFF-001B Comp	10/30/2014	9:48	11/13/2014	4-Chloro-3-methylphenol	None	EPA 625	ND	0.58	ug/L	0.58	1.0		Alpha
EFF-001B Comp	8/13/2014	8:47	8/28/2014	4-Chlorophenyl phenyl ether	None	EPA 625	ND	0.93	ug/L	0.93	5.0		Alpha
EFF-001B Comp	10/30/2014	9:48	11/13/2014	4-Chlorophenyl phenyl ether	None	EPA 625	ND	0.93	ug/L	0.93	5.0		Alpha
EFF-001B Comp	8/13/2014	8:47	8/23/2014	4-Nitrophenol	None	EPA 515.1	ND	0.7	ug/L	0.70	5.0		Alpha
EFF-001B Comp	10/30/2014	9:48	11/8/2014	4-Nitrophenol	None	EPA 515.1	ND	0.7	ug/L	0.70	5.0		Alpha
EFF-001B Comp	8/13/2014	8:47	8/26/2014	Acenaphthene	None	EPA 625SIM	ND	0.03	ug/L	0.03	0.20		Alpha
EFF-001B Comp	10/30/2014	9:48	11/19/2014	Acenaphthene	None	EPA 625SIM	ND	0.03	ug/L	0.03	0.20		Alpha
EFF-001B Comp	8/13/2014	8:47	8/26/2014	Acenaphthylene	None	EPA 625SIM	ND	0.03	ug/L	0.03	0.20		Alpha
EFF-001B Comp	10/30/2014	9:48	11/19/2014	Acenaphthylene	None	EPA 625SIM	ND	0.03	ug/L	0.03	0.20		Alpha
EFF-001B Comp	8/13/2014	8:47	8/23/2014	Acifluorfen	None	EPA 515.1	ND	0.50	ug/L	0.50	1.0		Alpha
EFF-001B Comp	10/30/2014	9:48	11/8/2014	Acifluorfen	None	EPA 515.1	ND	0.50	ug/L	0.50	1.0		Alpha
EFF-001B Grab	8/13/2014	9:49	8/14/2014	Acrolein	None	EPA 624	ND	2.0	ug/L	2.0	5.0		Alpha
EFF-001B Grab	10/30/2014	9:56	11/5/2014	Acrolein	None	EPA 624	ND	2.0	ug/L	2.0	5.0		Alpha
EFF-001B Grab	8/13/2014	9:49	8/20/2014	Acrylonitrile	None	EPA 624	ND	0.40	ug/L	0.40	2.0		Alpha
EFF-001B Grab	10/30/2014	9:56	11/5/2014	Acrylonitrile	None	EPA 624	ND	0.40	ug/L	0.40	2.0		Alpha
EFF-001B Comp	8/13/2014	8:47	8/21/2014	Alachlor	None	EPA 507	ND	0.5	ug/L	0.50	1.0		Alpha
EFF-001B Comp	10/30/2014	9:48	11/7/2014	Alachlor	None	EPA 507	ND	0.5	ug/L	0.50	1.0		Alpha
EFF-001B Comp	8/13/2014	8:47	8/28/2014	Aldicarb	None	EPA 531.1	ND	3	ug/L	3			FGL
EFF-001B Comp	10/30/2014	9:48	11/19/2014	Aldicarb	None	EPA 531.1	ND	3	ug/L	3			FGL
EFF-001B Comp	8/13/2014	8:47	8/28/2014	Aldicarb sulfone	None	EPA 531.1	ND	2	ug/L	2			FGL
EFF-001B Comp	10/30/2014	9:48	11/19/2014	Aldicarb sulfone	None	EPA 531.1	ND	2	ug/L	2			FGL
EFF-001B Comp	8/13/2014	8:47	8/28/2014	Aldicarb sulfoxide	None	EPA 531.1	ND	3	ug/L	3			FGL
EFF-001B Comp	10/30/2014	9:48	11/19/2014	Aldicarb sulfoxide	None	EPA 531.1	ND	3	ug/L	3			FGL
EFF-001B Comp	8/13/2014	8:47	8/25/2014	Aldrin	None	EPA 608	ND	0.002	ug/L	0.002	0.005		Alpha
EFF-001B Comp	10/30/2014	9:48	11/4/2014	Aldrin	None	EPA 608	ND	0.002	ug/L	0.002	0.005		Alpha
EFF-001B Comp	8/13/2014	8:47	8/25/2014	alpha-BHC	None	EPA 608	ND	0.004	ug/L	0.004	0.01		Alpha
EFF-001B Comp	10/30/2014	9:48	11/4/2014	alpha-BHC	None	EPA 608	ND	0.004	ug/L	0.004	0.01		Alpha
EFF-001B Comp	8/13/2014	8:47	8/19/2014	Aluminum	Total	EPA 200.8	=	29	ug/L	2.0	10		Alpha
EFF-001B Comp	10/30/2014	9:48	11/4/2014	Aluminum	Total	EPA 200.8	=	21	ug/L	2.0	10		Alpha
EFF-001B Grab	8/13/2014	10:07	8/22/2014	Ammonia-N	None	SM4500-NH3-D	l	0.04	mg/L	0.03			Modesto
EFF-001B Grab	10/27/2014	9:53	11/5/2014	Ammonia-N	None	SM4500-NH3-D	ND	0.03	mg/L	0.03			Modesto
EFF-001B Comp	8/13/2014	8:47	8/26/2014	Anthracene	None	EPA 625SIM	ND	0.03	ug/L	0.03	0.20		Alpha
EFF-001B Comp	10/30/2014	9:48	11/19/2014	Anthracene	None	EPA 625SIM	ND	0.03	ug/L	0.03	0.20		Alpha

Monitoring	Sample	Sample	Analysis		Fraction							QA	
Location	Date	Time	Date	Analyte Name	Name	Method Name	Qualifier	Result	Unit	MDL	RL	Code	Lab Name
EFF-001B Comp	8/13/2014	8:47	8/19/2014	Antimony	Total	EPA 200.8	J	0.48	ug/L	0.02	0.50		Alpha
EFF-001B Comp	10/30/2014	9:48	11/4/2014	Antimony	Total	EPA 200.8	=	0.55	ug/L	0.02	0.50		Alpha
EFF-001B Comp	8/13/2014	8:47	9/4/2014	Arsenic	Total	EPA 1638DRC	=	2.91	ug/L	0.01	0.03		Modesto
EFF-001B Comp	10/30/2014	9:48	11/18/2014	Arsenic	Total	EPA 1638DRC	=	1.18	ug/L	0.01	0.03		Modesto
EFF-001B Grab	8/13/2014	9:28	8/26/2014	Asbestos	None	EPA 100.2	ND	0.20	MFL	0.20			ATEML
EFF-001B Grab	10/30/2014	9:56	11/12/2014	Asbestos	None	EPA 100.2	ND	0.20	MFL	0.20			ATEML
EFF-001B Comp	8/13/2014	8:47	8/21/2014	Atrazine	None	EPA 507	ND	0.30	ug/L	0.30	0.50		Alpha
EFF-001B Comp	10/30/2014	9:48	11/7/2014	Atrazine	None	EPA 507	ND	0.30	ug/L	0.30	0.50		Alpha
EFF-001B Comp	8/13/2014	8:47	8/19/2014	Barium	Total	EPA 200.8	=	70	ug/L	0.03	0.50		Alpha
EFF-001B Comp	10/30/2014	9:48	11/4/2014	Barium	Total	EPA 200.8	=	30	ug/L	0.03	0.50		Alpha
EFF-001B Comp	8/13/2014	8:47	8/23/2014	Bentazon	None	EPA 515.1	ND	0.40	ug/L	0.40	2.0		Alpha
EFF-001B Comp	10/30/2014	9:48	11/8/2014	Bentazon	None	EPA 515.1	ND	0.40	ug/L	0.40	2.0		Alpha
EFF-001B Grab	8/13/2014	9:49	8/20/2014	Benzene	None	EPA 624	ND	0.30	ug/L	0.30	0.30		Alpha
EFF-001B Grab	10/30/2014	9:56	11/5/2014	Benzene	None	EPA 624	ND	0.30	ug/L	0.30	0.30		Alpha
EFF-001B Comp	8/13/2014	8:47	8/28/2014	Benzidine	None	EPA 625	ND	3.4	ug/L	3.4	5.0		Alpha
EFF-001B Comp	10/30/2014	9:48	11/13/2014	Benzidine	None	EPA 625	ND	3.4	ug/L	3.4	5.0		Alpha
EFF-001B Comp	8/13/2014	8:47	8/26/2014	Benzo (a) anthracene	None	EPA 625SIM	ND	0.04	ug/L	0.04	0.20		Alpha
EFF-001B Comp	10/30/2014	9:48	11/19/2014	Benzo (a) anthracene	None	EPA 625SIM	ND	0.04	ug/L	0.04	0.20		Alpha
EFF-001B Comp	8/13/2014	8:47	8/26/2014	Benzo (a) pyrene	None	EPA 625SIM	ND	0.04	ug/L	0.04	0.20		Alpha
EFF-001B Comp	10/30/2014	9:48	11/19/2014	Benzo (a) pyrene	None	EPA 625SIM	ND	0.04	ug/L	0.04	0.20		Alpha
EFF-001B Comp	8/13/2014	8:47	8/26/2014	Benzo (b) fluoranthene	None	EPA 625SIM	ND	0.04	ug/L	0.04	0.20		Alpha
EFF-001B Comp	10/30/2014	9:48	11/19/2014	Benzo (b) fluoranthene	None	EPA 625SIM	ND	0.04	ug/L	0.04	0.20		Alpha
EFF-001B Comp	8/13/2014	8:47	8/26/2014	Benzo (g,h,i) perylene	None	EPA 625SIM	ND	0.04	ug/L	0.04	0.20		Alpha
EFF-001B Comp	10/30/2014	9:48	11/19/2014	Benzo (g,h,i) perylene	None	EPA 625SIM	ND	0.04	ug/L	0.04	0.20		Alpha
EFF-001B Comp	8/13/2014	8:47	8/26/2014	Benzo (k) fluoranthene	None	EPA 625SIM	ND	0.04	ug/L	0.04	0.20		Alpha
EFF-001B Comp	10/30/2014	9:48	11/19/2014	Benzo (k) fluoranthene	None	EPA 625SIM	ND	0.04	ug/L	0.04	0.20		Alpha
EFF-001B Comp	8/13/2014	8:47	8/19/2014	Beryllium	Total	EPA 200.8	ND	0.02	ug/L	0.02	0.10		Alpha
EFF-001B Comp	10/30/2014	9:48	11/4/2014	Beryllium	Total	EPA 200.8	ND	0.02	ug/L	0.02	0.10		Alpha
EFF-001B Comp	8/13/2014	8:47	8/25/2014	beta-BHC	None	EPA 608	ND	0.002	ug/L	0.002	0.005		Alpha
EFF-001B Comp	10/30/2014	9:48	11/4/2014	beta-BHC	None	EPA 608	ND	0.002	ug/L	0.002	0.005		Alpha
EFF-001B Comp	8/13/2014	8:47	8/28/2014	Bis(2-chloroethoxy)methane	None	EPA 625	ND	0.81	ug/L	0.81	5.0		Alpha
EFF-001B Comp	10/30/2014	9:48	11/13/2014	Bis(2-chloroethoxy)methane	None	EPA 625	ND	0.81	ug/L	0.81	5.0		Alpha
EFF-001B Comp	8/13/2014	8:47	8/28/2014	Bis (2-chloroethyl) ether	None	EPA 625	ND	0.14	ug/L	0.14	1.0		Alpha
EFF-001B Comp	10/30/2014	9:48	11/13/2014	Bis(2-chloroethyl)ether	None	EPA 625	ND	0.14	ug/L	0.14	1.0		Alpha
EFF-001B Comp	8/13/2014	8:47	8/28/2014	Bis(2-chloroisopropyl)ether	None	EPA 625	ND	0.41	ug/L	0.41	2.0		Alpha
EFF-001B Comp	10/30/2014	9:48	11/13/2014	Bis(2-chloroisopropyl)ether	None	EPA 625	ND	0.41	ug/L	0.41	2.0		Alpha
EFF-001B Comp	8/13/2014	8:47	8/28/2014	Bis(2-ethylhexyl)phthalate	None	EPA 625	ND	0.83	ug/L	0.83	5.0		Alpha
EFF-001B Comp	10/30/2014	9:48	11/13/2014	Bis(2-ethylhexyl)phthalate	None	EPA 625	ND	0.83	ug/L	0.83	5.0		Alpha
EFF-001B Comp	8/13/2014	8:47	8/23/2014	Bolstar	None	EPA 8270C	ND	0.0035	ug/L	0.0035	0.10		BSK

Monitoring	Sample	Sample	Analysis		Fraction							QA	
Location	Date	Time	Date	Analyte Name	Name	Method Name	Qualifier	Result	Unit	MDL	RL	Code	Lab Name
EFF-001B Comp	8/13/2014	8:47	8/21/2014	Bromacil	None	EPA 507	ND	0.50	ug/L	0.50	10		Alpha
EFF-001B Comp	10/30/2014	9:48	11/7/2014	Bromacil	None	EPA 507	ND	0.50	ug/L	0.50	10		Alpha
EFF-001B Grab	8/13/2014	9:49	8/20/2014	Bromodichloromethane	None	EPA 624	ND	0.40	ug/L	0.40	0.50		Alpha
EFF-001B Grab	10/30/2014	9:56	11/5/2014	Bromodichloromethane	None	EPA 624	ND	0.40	ug/L	0.40	0.50		Alpha
EFF-001B Grab	8/13/2014	9:49	8/20/2014	Bromoform	None	EPA 624	ND	0.30	ug/L	0.30	0.50		Alpha
EFF-001B Grab	10/30/2014	9:56	11/5/2014	Bromoform	None	EPA 624	ND	0.30	ug/L	0.30	0.50		Alpha
EFF-001B Grab	8/13/2014	9:49	8/20/2014	Bromomethane	None	EPA 624	ND	0.40	ug/L	0.40	0.50		Alpha
EFF-001B Grab	10/30/2014	9:56	11/5/2014	Bromomethane	None	EPA 624	ND	0.40	ug/L	0.40	0.50		Alpha
EFF-001B Comp	8/13/2014	8:47	8/28/2014	Butyl benzyl phthalate	None	EPA 625	ND	0.64	ug/L	0.64	10		Alpha
EFF-001B Comp	10/30/2014	9:48	11/13/2014	Butyl benzyl phthalate	None	EPA 625	ND	0.64	ug/L	0.64	10		Alpha
EFF-001B Comp	8/13/2014	8:47	8/19/2014	Cadmium	Total	EPA 200.8	ND	0.02	ug/L	0.02	0.10		Alpha
EFF-001B Comp	10/30/2014	9:48	11/4/2014	Cadmium	Total	EPA 200.8	ND	0.02	ug/L	0.02	0.10		Alpha
EFF-001B Comp	10/30/2014	9:48	11/11/2014	Calcium	None	EPA 200.7	=	47	mg/L	0.01	1.0		Alpha
EFF-001B Comp	8/13/2014	8:47	8/26/2014	Carbaryl	None	EPA 531.1	ND	5	ug/L	5			FGL
EFF-001B Comp	10/30/2014	9:48	11/19/2014	Carbaryl	None	EPA 531.1	ND	5	ug/L	5			FGL
EFF-001B Comp	8/13/2014	8:47	8/28/2014	Carbofuran	None	EPA 531.1	ND	5	ug/L	5			FGL
EFF-001B Comp	10/30/2014	9:48	11/19/2014	Carbofuran	None	EPA 531.1	ND	5	ug/L	5			FGL
EFF-001B Grab	8/13/2014	9:49	8/20/2014	Carbon tetrachloride	None	EPA 624	ND	0.40	ug/L	0.40	0.50		Alpha
EFF-001B Grab	10/30/2014	9:56	11/5/2014	Carbon tetrachloride	None	EPA 624	ND	0.40	ug/L	0.40	0.50		Alpha
EFF-001B Comp	8/13/2014	8:47	8/25/2014	Chlordane (tech)	None	EPA 608	ND	0.04	ug/L	0.04	0.05		Alpha
EFF-001B Comp	10/30/2014	9:48	11/4/2014	Chlordane (tech)	None	EPA 608	ND	0.04	ug/L	0.04	0.05		Alpha
EFF-001B Comp	8/13/2014	8:47	8/25/2014	Chloride	None	SM4500-CI-E	=	186	mg/L	0.55			Modesto
EFF-001B Comp	10/30/2014	9:48	11/18/2014	Chloride	None	SM4500-CI-E	=	192	mg/L	0.55			Modesto
EFF-001B Grab	8/13/2014	9:49	8/20/2014	Chlorobenzene	None	EPA 624	ND	0.3	ug/L	0.30	0.50		Alpha
EFF-001B Grab	10/30/2014	9:56	11/5/2014	Chlorobenzene	None	EPA 624	ND	0.3	ug/L	0.30	0.50		Alpha
EFF-001B Grab	8/13/2014	9:49	8/20/2014	Chloroethane	None	EPA 624	ND	0.4	ug/L	0.40	0.50		Alpha
EFF-001B Grab	10/30/2014	9:56	11/5/2014	Chloroethane	None	EPA 624	ND	0.4	ug/L	0.40	0.50		Alpha
EFF-001B Grab	8/13/2014	9:49	8/20/2014	Chloroform	None	EPA 624	ND	0.4	ug/L	0.40	0.50		Alpha
EFF-001B Grab	10/30/2014	9:56	11/5/2014	Chloroform	None	EPA 624	ND	0.4	ug/L	0.40	0.50		Alpha
EFF-001B Grab	8/13/2014	9:49	8/20/2014	Chloromethane	None	EPA 624	ND	0.4	ug/L	0.40	0.50		Alpha
EFF-001B Grab	10/30/2014	9:56	11/5/2014	Chloromethane	None	EPA 624	ND	0.4	ug/L	0.40	0.50		Alpha
EFF-001B Comp	8/13/2014	8:47	8/23/2014	Chlorpyrifos	None	EPA 8270C	ND	0.0029	ug/L	0.0029	0.01		BSK
EFF-001B Comp	10/30/2014	9:48	11/13/2014	Chlorpyrifos	None	EPA 8270C	ND	0.0029	ug/L	0.0029	0.01		BSK
EFF-001B Comp	8/13/2014	8:47	8/19/2014	Chromium	Total	EPA 200.8	=		ö	0.08	0.50		Alpha
EFF-001B Comp	10/30/2014	9:48	11/4/2014	Chromium	Total	EPA 200.8	=	0.56	ug/L	0.08	0.50		Alpha
EFF-001B Grab	8/13/2014	9:47	8/19/2014	Chromium, hexavalent	Dissolved	EPA 218.6	ND	0.05	ug/L	0.05	0.20		Alpha
EFF-001B Grab	10/30/2014	9:56	11/5/2014	Chromium, hexavalent	Dissolved	EPA 218.6	ND	0.05	ug/L	0.05	0.20		Alpha
EFF-001B Comp	8/13/2014	8:47	8/26/2014	Chrysene	None	EPA 625SIM	ND	0.04	ug/L	0.04	0.20		Alpha
EFF-001B Comp	10/30/2014	9:48	11/19/2014	Chrysene	None	EPA 625SIM	ND	0.04	ug/L	0.04	0.20		Alpha

Monitoring	Sample	Sample	Analysis		Fraction							QA	
Location	Date	Time	Date	Analyte Name	Name	Method Name	Qualifier	Result	Unit	MDL	RL	Code	Lab Name
EFF-001B Grab	8/13/2014	9:49	8/20/2014	cis-1,2-Dichloroethene	None	EPA 624	ND	0.40	ug/L	0.40	0.50		Alpha
EFF-001B Grab	10/30/2014	9:56	11/5/2014	cis-1,2-Dichloroethene	None	EPA 624	ND	0.40	ug/L	0.40	0.50		Alpha
EFF-001B Grab	8/13/2014	9:49	8/20/2014	cis-1,3-Dichloropropene	None	EPA 624	ND	0.40	ug/L	0.40	0.50		Alpha
EFF-001B Grab	10/30/2014	9:56	11/5/2014	cis-1,3-Dichloropropene	None	EPA 624	ND	0.40	ug/L	0.40	0.50		Alpha
EFF-001B Comp	8/13/2014	8:47	8/13/2014	Conductivity	None	SM2510B	=	1020	umhos/cm	1			Modesto
EFF-001B Comp	10/30/2014	9:48	11/7/2014	Conductivity	None	SM2510B	=	786	umhos/cm	1			Modesto
EFF-001B Comp	8/13/2014	8:47	8/19/2014	Copper	Total	EPA 200.8	=	3.1	ug/L	0.04	0.50		Alpha
EFF-001B Comp	10/30/2014	9:48	11/4/2014	Copper	Total	EPA 200.8	=	2.6	ug/L	0.04	0.50		Alpha
EFF-001B Grab	8/13/2014	9:46	8/15/2014	Cyanide (total)	Total	10-204-00-1X	ND	2.0	ug/L	2.0	3.00		Alpha
EFF-001B Grab	10/30/2014	9:56	10/31/2014	Cyanide (total)	Total	10-204-00-1X	ND	2.0	ug/L	2.0	3.00		Alpha
EFF-001B Comp	8/13/2014	8:47	8/23/2014	Dalapon	None	EPA 515.1	ND	6.0	ug/L	6.0	10		Alpha
EFF-001B Comp	10/30/2014	9:48	11/8/2014	Dalapon	None	EPA 515.1	ND	6.0	ug/L	6.0	10		Alpha
EFF-001B Comp	8/13/2014	8:47	8/25/2014	delta-BHC	None	EPA 608	ND	0.002	ug/L	0.002	0.005		Alpha
EFF-001B Comp	10/30/2014	9:48	11/4/2014	delta-BHC	None	EPA 608	ND	0.002	ug/L	0.002	0.005		Alpha
EFF-001B Comp	8/13/2014	8:47	8/23/2014	Demeton O & S	None	EPA 8270C	ND	0.025	ug/L	0.025	0.10		BSK
EFF-001B Comp	8/13/2014	8:47	9/22/2014	Di(2-ethylhexyl)adipate	None	EPA 625	ND	4.0	ug/L	4.0	5.0		Alpha
EFF-001B Comp	10/30/2014	9:48	11/13/2014	Di(2-ethylhexyl)adipate	None	EPA 625	ND	4.0	ug/L	4.0	5.0		Alpha
EFF-001B Comp	8/13/2014	8:47	8/23/2014	Diazinon	None	EPA 8270C	ND	0.0036	ug/L	0.0036	0.05		BSK
EFF-001B Comp	10/30/2014	9:48	11/13/2014	Diazinon	None	EPA 8270C	ND	0.0036	ug/L	0.0036	0.05		BSK
EFF-001B Comp	8/13/2014	8:47	8/26/2014	Dibenz (a,h) anthracene	None	EPA 625SIM	ND	0.08	ug/L	0.08	0.20		Alpha
EFF-001B Comp	10/30/2014	9:48	11/19/2014	Dibenz (a,h) anthracene	None	EPA 625SIM	ND	0.08	ug/L	0.08	0.20		Alpha
EFF-001B Grab	8/13/2014	9:49	8/20/2014	Dibromochloromethane	None	EPA 624	ND	0.40	ug/L	0.40	0.50		Alpha
EFF-001B Grab	10/30/2014	9:56	11/5/2014	Dibromochloromethane	None	EPA 624	ND	0.40	ug/L	0.40	0.50		Alpha
EFF-001B Comp	8/13/2014	8:47	8/20/2014	Dibutyltin	None	GC-FPD	ND	0.007	ug/L	0.01	0.02		Alpha
EFF-001B Comp	8/13/2014	8:47	8/23/2014	Dicamba	None	EPA 515.1	ND	0.40	ug/L	0.40	1.5		Alpha
EFF-001B Comp	10/30/2014	9:48	11/8/2014	Dicamba	None	EPA 515.1	ND	0.40	ug/L	0.40	1.5		Alpha
EFF-001B Comp	8/13/2014	8:47	8/23/2014	Dichlorprop	None	EPA 515.1	ND	1.0	ug/L	1.0	1.0		Alpha
EFF-001B Comp	10/30/2014	9:48	11/8/2014	Dichlorprop	None	EPA 515.1	ND	1.0	ug/L	1.0	1.0		Alpha
EFF-001B Comp	8/13/2014	8:47	8/23/2014	Dichlorvos	None	EPA 8270C	ND	0.0048	ug/L	0.0048	0.15		BSK
EFF-001B Comp	8/13/2014	8:47	8/25/2014	Dieldrin	None	EPA 608	ND	0.005	ug/L	0.005	0.01		Alpha
EFF-001B Comp	10/30/2014	9:48	11/4/2014	Dieldrin	None	EPA 608	ND	0.005	ug/L	0.005	0.01		Alpha
EFF-001B Comp	8/13/2014	8:47	8/28/2014	Diethyl phthalate	None	EPA 625	ND	0.86	ug/L	0.86	2.0		Alpha
EFF-001B Comp	10/30/2014	9:48	11/13/2014	Diethyl phthalate	None	EPA 625	ND	0.86	ug/L	0.86	2.0		Alpha
EFF-001B Comp	8/13/2014	8:47	8/21/2014	Dimethoate	None	EPA 507	ND		ug/L	0.20	1.0		Alpha
EFF-001B Comp	8/13/2014	8:47	8/23/2014	Dimethoate	None	EPA 8270C	ND	0.0075	ug/L	0.0075	0.25		BSK
EFF-001B Comp	10/30/2014	9:48	11/7/2014	Dimethoate	None	EPA 507	ND		ug/L	0.20	1.0		Alpha
EFF-001B Comp	8/13/2014	8:47	8/28/2014	Dimethyl phthalate	None	EPA 625	ND	0.68	ug/L	0.68	2.0		Alpha
EFF-001B Comp	10/30/2014	9:48	11/13/2014	Dimethyl phthalate	None	EPA 625	ND	0.68	ug/L	0.68	2.0		Alpha
EFF-001B Comp	8/13/2014	8:47	8/28/2014	Di-n-butyl phthalate	None	EPA 625	ND	0.91	ug/L	0.91	10		Alpha

Monitoring	Sample	Sample	Analysis		Fraction							QA	
Location	Date	Time	Date	Analyte Name	Name	Method Name	Qualifier	Result	Unit	MDL	RL	Code	Lab Name
EFF-001B Comp	10/30/2014	9:48	11/13/2014	Di-n-butyl phthalate	None	EPA 625	ND	0.91	ug/L	0.91	10		Alpha
EFF-001B Comp	8/13/2014	8:47	8/28/2014	Di-n-octyl phthalate	None	EPA 625	ND	0.65	ug/L	0.65	10		Alpha
EFF-001B Comp	10/30/2014	9:48	11/13/2014	Di-n-octyl phthalate	None	EPA 625	ND	0.65	ug/L	0.65	10		Alpha
EFF-001B Comp	8/13/2014	8:47	8/23/2014	Dinoseb	None	EPA 515.1	ND	0.8	ug/L	0.80	2.0		Alpha
EFF-001B Comp	10/30/2014	9:48	11/8/2014	Dinoseb	None	EPA 515.1	ND	0.8	ug/L	0.80	2.0		Alpha
EFF-001B Comp	8/13/2014	8:47	8/21/2014	Diquat	None	EPA 549.2	ND	2	ug/L	2			FGL
EFF-001B Comp	10/30/2014	9:48	11/6/2014	Diquat	None	EPA 549.2	ND	2	ug/L	2			FGL
EFF-001B Comp	8/13/2014	8:47	8/23/2014	Disulfoton	None	EPA 8270C	ND	0.024	ug/L	0.024	0.10		BSK
EFF-001B Comp	8/13/2014	8:47	8/25/2014	Endosulfan I	None	EPA 608	ND	0.004	ug/L	0.004	0.01		Alpha
EFF-001B Comp	10/30/2014	9:48	11/4/2014	Endosulfan I	None	EPA 608	ND	0.004	ug/L	0.004	0.01		Alpha
EFF-001B Comp	8/13/2014	8:47	8/25/2014	Endosulfan II	None	EPA 608	ND	0.002	ug/L	0.002	0.01		Alpha
EFF-001B Comp	10/30/2014	9:48	11/4/2014	Endosulfan II	None	EPA 608	ND	0.002	ug/L	0.002	0.01		Alpha
EFF-001B Comp	8/13/2014	8:47	8/25/2014	Endosulfan sulfate	None	EPA 608	ND	0.02	ug/L	0.02	0.05		Alpha
EFF-001B Comp	10/30/2014	9:48	11/4/2014	Endosulfan sulfate	None	EPA 608	ND	0.02	ug/L	0.02	0.05		Alpha
EFF-001B Comp	9/4/2014	9:50	9/6/2014	Endothall	None	EPA 548.1	ND	3.7	ug/L	3.7	45		BSK
EFF-001B Comp	10/30/2014	9:48	11/14/2014	Endothall	None	EPA 548.1	ND	40	ug/L	40			FGL
EFF-001B Comp	8/13/2014	8:47	8/25/2014	Endrin	None	EPA 608	ND	0.002	ug/L	0.002	0.01		Alpha
EFF-001B Comp	10/30/2014	9:48	11/4/2014	Endrin	None	EPA 608	ND	0.002	ug/L	0.002	0.01		Alpha
EFF-001B Comp	8/13/2014	8:47	8/25/2014	Endrin aldehyde	None	EPA 608	ND	0.002	ug/L	0.002	0.01		Alpha
EFF-001B Comp	10/30/2014	9:48	11/4/2014	Endrin aldehyde	None	EPA 608	ND	0.002	ug/L	0.002	0.01		Alpha
EFF-001B Comp	8/13/2014	8:47	8/23/2014	Ethion	None	EPA 8270C	ND	0.004	ug/L	0.004	0.10		BSK
EFF-001B Comp	8/13/2014	8:47	8/23/2014	Ethoprop	None	EPA 8270C	ND	0.0042	ug/L	0.0042	0.15		BSK
EFF-001B Grab	8/13/2014	9:49	8/20/2014	Ethylbenzene	None	EPA 624	ND	0.40	ug/L	0.40	0.50		Alpha
EFF-001B Grab	10/30/2014	9:56	11/5/2014	Ethylbenzene	None	EPA 624	ND	0.40	ug/L	0.40	0.50		Alpha
EFF-001B Comp	8/13/2014	8:47	8/23/2014	Fensulfothion	None	EPA 8270C	ND	0.0082	ug/L	0.0082	0.10		BSK
EFF-001B Comp	8/13/2014	8:47	8/23/2014	Fenthion	None	EPA 8270C	ND	0.0029	ug/L	0.0029	0.10		BSK
EFF-001B Comp	8/13/2014	8:47	8/26/2014	Fluoranthene	None	EPA 625SIM	ND	0.03	ug/L	0.03	0.20		Alpha
EFF-001B Comp	10/30/2014	9:48	11/19/2014	Fluoranthene	None	EPA 625SIM	ND	0.03	ug/L	0.03	0.20		Alpha
EFF-001B Comp	8/13/2014	8:47	8/26/2014	Fluorene	None	EPA 625SIM	ND	0.03	ug/L	0.03	0.20		Alpha
EFF-001B Comp	10/30/2014	9:48	11/19/2014	Fluorene	None	EPA 625SIM	ND	0.03	ug/L	0.03	0.20		Alpha
EFF-001B Comp	8/13/2014	8:47	8/16/2014	Fluoride	None	EPA 300.0	ND	0.07	mg/L	0.07	0.10		Alpha
EFF-001B Comp	10/30/2014	9:48	10/31/2014	Fluoride	None	EPA 300.0	J	0.097	mg/L	0.07	0.10		Alpha
EFF-001B Comp	8/13/2014	8:47	8/25/2014	gamma-BHC (Lindane)	None	EPA 608	ND	0.004	ug/L	0.004	0.01		Alpha
EFF-001B Comp	10/30/2014	9:48	11/4/2014	gamma-BHC (Lindane)	None	EPA 608	ND	0.004	ug/L	0.004	0.01		Alpha
EFF-001B Comp	8/13/2014	8:47	8/20/2014	Glyphosate	None	EPA 547	ND	3.0	ug/L	3.0	25		Alpha
EFF-001B Comp	10/30/2014	9:48	11/6/2014	Glyphosate	None	EPA 547	ND	20	ug/L	20			FGL
EFF-001B Comp	8/13/2014	8:47	8/23/2014	Guthion	None	EPA 8270C	ND	0.032	ug/L	0.032	0.15		BSK
EFF-001B Comp	8/13/2014	8:47	8/15/2014	Hardness as CaCO3	Total	SM2340C	=	162	mg/L	2			Modesto
EFF-001B Comp	10/30/2014	9:48	11/11/2014	Hardness, Total	Total	SM2340B	=	165	mg/L	1	5		Alpha

Monitoring	Sample	Sample	Analysis		Fraction							QA	
Location	Date	Time	Date	Analyte Name	Name	Method Name	Qualifier	Result	Unit	MDL	RL	Code	Lab Name
EFF-001B Comp	8/13/2014	8:47	8/25/2014	Heptachlor	None	EPA 608	ND	0.003	ug/L	0.003	0.01		Alpha
EFF-001B Comp	10/30/2014	9:48	11/4/2014	Heptachlor	None	EPA 608	ND	0.003	ug/L	0.003	0.01		Alpha
EFF-001B Comp	8/13/2014	8:47	8/25/2014	Heptachlor epoxide	None	EPA 608	ND	0.009	ug/L	0.009	0.01		Alpha
EFF-001B Comp	10/30/2014	9:48	11/4/2014	Heptachlor epoxide	None	EPA 608	ND	0.009	ug/L	0.009	0.01		Alpha
EFF-001B Comp	8/13/2014	8:47	8/28/2014	Hexachlorobenzene	None	EPA 625	ND	0.89	ug/L	0.89	1.0		Alpha
EFF-001B Comp	10/30/2014	9:48	11/13/2014	Hexachlorobenzene	None	EPA 625	ND	0.89	ug/L	0.89	1.0		Alpha
EFF-001B Comp	8/13/2014	8:47	8/28/2014	Hexachlorobutadiene	None	EPA 625	ND	0.84	ug/L	0.84	1.0		Alpha
EFF-001B Comp	10/30/2014	9:48	11/13/2014	Hexachlorobutadiene	None	EPA 625	ND	0.84	ug/L	0.84	1.0		Alpha
EFF-001B Comp	8/13/2014	8:47	8/28/2014	Hexachlorocyclopentadiene	None	EPA 625	ND	0.45	ug/L	0.45	5.0		Alpha
EFF-001B Comp	10/30/2014	9:48	11/13/2014	Hexachlorocyclopentadiene	None	EPA 625	ND	0.45	ug/L	0.45	5.0		Alpha
EFF-001B Comp	8/13/2014	8:47	8/28/2014	Hexachloroethane	None	EPA 625	ND	0.58	ug/L	0.58	1.0		Alpha
EFF-001B Comp	10/30/2014	9:48	11/13/2014	Hexachloroethane	None	EPA 625	ND	0.58	ug/L	0.58	1.0		Alpha
EFF-001B Comp	8/13/2014	8:47	8/26/2014	Indeno (1,2,3-cd) pyrene	None	EPA 625SIM	ND	0.05	ug/L	0.05	0.20		Alpha
EFF-001B Comp	10/30/2014	9:48	11/19/2014	Indeno (1,2,3-cd) pyrene	None	EPA 625SIM	ND	0.05	ug/L	0.05	0.20		Alpha
EFF-001B Comp	8/13/2014	8:47	8/19/2014	Iron	Total	EPA 200.8	J	43	ug/L	2	50		Alpha
EFF-001B Comp	10/30/2014	9:48	11/4/2014	Iron	Total	EPA 200.8	=	67	ug/L	2	50		Alpha
EFF-001B Comp	8/13/2014	8:47	8/28/2014	Isophorone	None	EPA 625	ND	0.81	ug/L	0.81	1.0		Alpha
EFF-001B Comp	10/30/2014	9:48	11/13/2014	Isophorone	None	EPA 625	ND	0.81	ug/L	0.81	1.0		Alpha
EFF-001B Comp	8/13/2014	8:47	8/19/2014	Lead	Total	EPA 200.8	l	0.088	ug/L	0.02	0.25		Alpha
EFF-001B Comp	10/30/2014	9:48	11/4/2014	Lead	Total	EPA 200.8	l	0.09	ug/L	0.02	0.25		Alpha
EFF-001B Comp	10/30/2014	9:48	11/11/2014	Magnesium	None	EPA 200.7	=	11	mg/L	0.008	1.0		Alpha
EFF-001B Comp	8/13/2014	8:47	8/23/2014	Malathion	None	EPA 8270C	ND	0.0046	ug/L	0.0046	0.25		BSK
EFF-001B Comp	8/13/2014	8:47	8/19/2014	Manganese	Total	EPA 200.8	l	4.4	ug/L	0.03	5.0		Alpha
EFF-001B Comp	10/30/2014	9:48	11/4/2014	Manganese	Total	EPA 200.8	=	19	ug/L	0.03	5.0		Alpha
EFF-001B Comp	10/30/2014	9:48	10/31/2014	MBAS	None	SM5540C	l	0.031	mg/L	0.03	0.05		Alpha
EFF-001B Comp	8/13/2014	8:47	8/26/2014	MBAS, calculated as LAS, mw 340	None	SM5540C	l	0.032	mg/L	0.03	0.05		Alpha
EFF-001B Grab	8/13/2014	9:45	8/26/2014	Mercury	Total	EPA 1631E	=	0.00106	ug/L	0.0002	0.0005		Alpha
EFF-001B Grab	10/30/2014	9:56	11/7/2014	Mercury	Total	EPA 1631E	=	0.000636	ug/L	0.0002	0.0005		Alpha
EFF-001B Comp	8/13/2014	8:47	8/28/2014	Methomyl	None	EPA 531.1	ND	2	ug/L	2			FGL
EFF-001B Comp	10/30/2014	9:48	11/19/2014	Methomyl	None	EPA 531.1	ND	2	ug/L	2			FGL
EFF-001B Comp	8/13/2014	8:47	8/25/2014	Methoxychlor	None	EPA 608	ND	0.006	ug/L	0.006	0.50		Alpha
EFF-001B Comp	10/30/2014	9:48	11/4/2014	Methoxychlor	None	EPA 608	ND	0.006	ug/L	0.006	0.50		Alpha
EFF-001B Grab	8/13/2014	10:00	8/19/2014	Methyl mercury	Total	EPA 1630	l	0.0203	ng/L	0.02	0.05		Alpha
EFF-001B Grab	10/30/2014	9:56	11/11/2014	Methyl mercury	Total	EPA 1630	J	0.0226	ng/L	0.02	0.05		Alpha
EFF-001B Grab	8/13/2014	9:49	8/20/2014	Methyl tert-butyl ether	None	EPA 624	ND	0.50	ug/L	0.50	0.50		Alpha
EFF-001B Grab	10/30/2014	9:56	11/5/2014	Methyl tert-butyl ether	None	EPA 624	ND	0.50	ug/L	0.50	0.50		Alpha
EFF-001B Grab	8/13/2014	9:49	8/20/2014	Methylene chloride	None	EPA 624	ND	0.50	ug/L	0.50	0.50		Alpha
EFF-001B Grab	10/30/2014	9:56	11/5/2014	Methylene chloride	None	EPA 624	ND	0.50	ug/L	0.50	0.50		Alpha
EFF-001B Comp	8/13/2014	8:47	8/21/2014	Metolachlor	None	EPA 507	ND	0.30	ug/L	0.30	0.50		Alpha

Monitoring	Sample	Sample	Analysis		Fraction							QA	
Location	Date	Time	Date	Analyte Name	Name	Method Name	Qualifier	Result	Unit	MDL	RL	Code	Lab Name
EFF-001B Comp	10/30/2014	9:48	11/7/2014	Metolachlor	None	EPA 507	ND	0.30	ug/L	0.30	0.50		Alpha
EFF-001B Comp	8/13/2014	8:47	8/21/2014	Metribuzin	None	EPA 507	ND	0.40	ug/L	0.40	0.50		Alpha
EFF-001B Comp	10/30/2014	9:48	11/7/2014	Metribuzin	None	EPA 507	ND	0.40	ug/L	0.40	0.50		Alpha
EFF-001B Comp	8/13/2014	8:47	8/23/2014	Mevinphos	None	EPA 8270C	ND	0.0052	ug/L	0.0052	0.10		BSK
EFF-001B Comp	8/13/2014	8:47	8/21/2014	Molinate	None	EPA 507	ND	0.2	ug/L	0.20	2.0		Alpha
EFF-001B Comp	10/30/2014	9:48	11/7/2014	Molinate	None	EPA 507	ND	0.2	ug/L	0.20	2.0		Alpha
EFF-001B Comp	8/13/2014	8:47	8/19/2014	Molybdenum	Total	EPA 200.8	=	5.3	ug/L	0.02	0.25		Alpha
EFF-001B Comp	10/30/2014	9:48	11/4/2014	Molybdenum	Total	EPA 200.8	=	2.7	ug/L	0.02	0.25		Alpha
EFF-001B Comp	8/13/2014	8:47	8/20/2014	Monobutyltin	None	GC-FPD	ND	0.012	ug/L	0.012	0.20		Alpha
EFF-001B Comp	8/13/2014	8:47	8/23/2014	Naled	None	EPA 8270C	ND	0.025	ug/L	0.025	0.10		BSK
EFF-001B Comp	8/13/2014	8:47	8/26/2014	Naphthalene	None	EPA 625SIM	ND	0.04	ug/L	0.04	0.20		Alpha
EFF-001B Comp	10/30/2014	9:48	11/19/2014	Naphthalene	None	EPA 625SIM	ND	0.04	ug/L	0.04	0.20		Alpha
EFF-001B Comp	8/13/2014	8:47	8/19/2014	Nickel	Total	EPA 200.8	=	1.4	ug/L	0.06	0.50		Alpha
EFF-001B Comp	10/30/2014	9:48	11/4/2014	Nickel	Total	EPA 200.8	J	2.1	ug/L	0.06	0.50		Alpha
EFF-001B Grab	8/13/2014	10:07	8/13/2014	Nitrate+Nitrite-N	None	SM4500-NO3-F	ND	0.09	mg/L	0.01			Modesto
EFF-001B Grab	10/27/2014	9:53	10/28/2014	Nitrate+Nitrite-N	None	SM4500-NO3-F	=	6.88	mg/L	0.09			Modesto
EFF-001B Grab	8/13/2014	10:07	8/13/2014	Nitrate-N	None	SM4500-NO3-F	ND	0.09	mg/L	0.09			Modesto
EFF-001B Grab	10/27/2014	9:53	10/28/2014	Nitrate-N	None	SM4500-NO3-F	=	6.87	mg/L	0.09			Modesto
EFF-001B Grab	8/13/2014	10:07	8/13/2014	Nitrite-N	None	SM4500-NO3-F	J	0.01	mg/L	0.01			Modesto
EFF-001B Grab	10/27/2014	9:53	10/28/2014	Nitrite-N	None	SM4500-NO3-F	=	0.01	mg/L	0.01			Modesto
EFF-001B Comp	8/13/2014	8:47	8/28/2014	Nitrobenzene	None	EPA 625	ND	0.74	ug/L	0.74	1.0		Alpha
EFF-001B Comp	10/30/2014	9:48	11/13/2014	Nitrobenzene	None	EPA 625	ND	0.74	ug/L	0.74	1.0		Alpha
EFF-001B Comp	8/13/2014	8:47	8/28/2014	N-Nitrosodimethylamine	None	EPA 625	ND	1.1	ug/L	1.1	5.0		Alpha
EFF-001B Comp	10/30/2014	9:48	11/13/2014	N-Nitrosodimethylamine	None	EPA 625	ND	1.1	ug/L	1.1	5.0		Alpha
EFF-001B Comp	8/13/2014	8:47	8/28/2014	N-Nitrosodi-n-propylamine	None	EPA 625	ND	0.85	ug/L	0.85	5.0		Alpha
EFF-001B Comp	10/30/2014	9:48	11/13/2014	N-Nitrosodi-n-propylamine	None	EPA 625	ND	0.85	ug/L	0.85	5.0		Alpha
EFF-001B Comp	8/13/2014	8:47	8/28/2014	N-Nitrosodiphenylamine	None	EPA 625	ND	0.90	ug/L	0.90	1.0		Alpha
EFF-001B Comp	10/30/2014	9:48	11/13/2014	N-Nitrosodiphenylamine	None	EPA 625	ND	0.90	ug/L	0.90	1.0		Alpha
EFF-001B Comp	8/13/2014	8:47	8/28/2014	Oxamyl	None	EPA 531.1	ND	5	ug/L	5			FGL
EFF-001B Comp	10/30/2014	9:48	11/19/2014	Oxamyl	None	EPA 531.1	ND	5	ug/L	5			FGL
EFF-001B Comp	8/13/2014	8:47	8/23/2014	Parathion Ethyl	None	EPA 8270C	ND	0.0029	ug/L	0.00			BSK
EFF-001B Comp	8/13/2014	8:47	8/23/2014	Parathion Methyl	None	EPA 8270C	ND	0.003	ug/L	0.00			BSK
EFF-001B Comp	8/13/2014	8:47	8/25/2014	PCB 1016	None	EPA 608	ND	0.08	ug/L	0.08	0.50		Alpha
EFF-001B Comp	10/30/2014	9:48	11/4/2014	PCB 1016	None	EPA 608	ND	0.08	ug/L	0.08	0.50		Alpha
EFF-001B Comp	8/13/2014	8:47	8/25/2014	PCB 1221	None	EPA 608	ND	0.2	ug/L	0.20	0.50		Alpha
EFF-001B Comp	10/30/2014	9:48	11/4/2014	PCB 1221	None	EPA 608	ND	0.2	ug/L	0.20	0.50		Alpha
EFF-001B Comp	8/13/2014	8:47	8/25/2014	PCB 1232	None	EPA 608	ND	0.1	ug/L	0.10	0.50		Alpha
EFF-001B Comp	10/30/2014	9:48	11/4/2014	PCB 1232	None	EPA 608	ND	0.1	ug/L	0.10	0.50		Alpha
EFF-001B Comp	8/13/2014	8:47	8/25/2014	PCB 1242	None	EPA 608	ND	0.04	ug/L	0.04	0.50		Alpha

Monitoring	Sample	Sample	Analysis		Fraction							QA	
Location	Date	Time	Date	Analyte Name	Name	Method Name	Qualifier	Result	Unit	MDL	RL	Code	Lab Name
EFF-001B Comp	10/30/2014	9:48	11/4/2014	PCB 1242	None	EPA 608	ND	0.04	ug/L	0.04	0.50		Alpha
EFF-001B Comp	8/13/2014	8:47	8/25/2014	PCB 1248	None	EPA 608	ND	0.06	ug/L	0.06	0.50		Alpha
EFF-001B Comp	10/30/2014	9:48	11/4/2014	PCB 1248	None	EPA 608	ND	0.06	ug/L	0.06	0.50		Alpha
EFF-001B Comp	8/13/2014	8:47	8/25/2014	PCB 1254	None	EPA 608	ND	0.04	ug/L	0.04	0.50		Alpha
EFF-001B Comp	10/30/2014	9:48	11/4/2014	PCB 1254	None	EPA 608	ND	0.04	ug/L	0.04	0.50		Alpha
EFF-001B Comp	8/13/2014	8:47	8/25/2014	PCB 1260	None	EPA 608	ND	0.04	ug/L	0.04	0.50		Alpha
EFF-001B Comp	10/30/2014	9:48	11/4/2014	PCB 1260	None	EPA 608	ND	0.04	ug/L	0.04	0.50		Alpha
EFF-001B Comp	8/13/2014	8:47	8/23/2014	Pentachlorophenol	None	EPA 515.1	ND	0.2	ug/L	0.20	0.20		Alpha
EFF-001B Comp	10/30/2014	9:48	11/8/2014	Pentachlorophenol	None	EPA 515.1	ND	0.2	ug/L	0.20	0.20		Alpha
EFF-001B Grab	8/13/2014	10:07	8/13/2014	pH, field	None	SM4500-HB	=	7.86	SU				Modesto
EFF-001B Grab	10/27/2014	9:53	10/27/2014	pH, field	None	SM4500-HB	=	7.41	SU				Modesto
EFF-001B Comp	8/13/2014	8:47	8/26/2014	Phenanthrene	None	EPA 625SIM	ND	0.03	ug/L	0.03	0.20		Alpha
EFF-001B Comp	10/30/2014	9:48	11/19/2014	Phenanthrene	None	EPA 625SIM	ND	0.03	ug/L	0.03	0.20		Alpha
EFF-001B Comp	8/13/2014	8:47	8/28/2014	Phenol	None	EPA 625	ND	0.46	ug/L	0.46	1.0		Alpha
EFF-001B Comp	10/30/2014	9:48	11/13/2014	Phenol	None	EPA 625	ND	0.46	ug/L	0.46	1.0		Alpha
EFF-001B Comp	8/13/2014	8:47	8/23/2014	Phorate	None	EPA 8270C	ND	0.0033	ug/L	0.0033	0.10		BSK
EFF-001B Comp	8/13/2014	8:47	8/23/2014	Phosmet	None	EPA 8270C	ND	0.029	ug/L	0.029	1.0		BSK
EFF-001B Comp	8/13/2014	8:47	8/17/2014	Phosphorus, Total (as P)	Total	SM4500-P-F	=	0.05	mg/L	0.01			Modesto
EFF-001B Comp	10/30/2014	9:48	11/11/2014	Phosphorus, Total (as P)	Total	EPA 200.7	J	0.21	mg/L	0.02	0.50		Alpha
EFF-001B Comp	8/13/2014	8:47	8/23/2014	Picloram	None	EPA 515.1	ND	0.50	ug/L	0.50	1.0		Alpha
EFF-001B Comp	10/30/2014	9:48	11/8/2014	Picloram	None	EPA 515.1	ND	0.50	ug/L	0.50	1.0		Alpha
EFF-001B Comp	8/13/2014	8:47	8/21/2014	Prometryn	None	EPA 507	ND		ug/L	0.50	2.0		Alpha
EFF-001B Comp	10/30/2014	9:48	11/7/2014	Prometryn	None	EPA 507	ND	0.50	ug/L	0.50	2.0		Alpha
EFF-001B Comp	8/13/2014	8:47	8/21/2014	Propachlor	None	EPA 507	ND	0.30	ug/L	0.30	0.50		Alpha
EFF-001B Comp	10/30/2014	9:48	11/7/2014	Propachlor	None	EPA 507	ND	0.30	ug/L	0.30	0.50		Alpha
EFF-001B Comp	8/13/2014	8:47	8/26/2014	Pyrene	None	EPA 625SIM	ND	0.03	ug/L	0.03	0.20		Alpha
EFF-001B Comp	10/30/2014	9:48	11/19/2014	Pyrene	None	EPA 625SIM	ND		ug/L	0.03	0.20		Alpha
EFF-001B Comp	8/13/2014	8:47	8/23/2014	Ronnel	None	EPA 8270C	ND	0.0028	ug/L	0.0028	0.10		BSK
EFF-001B Comp	8/13/2014	8:47	8/19/2014	Selenium	Total	EPA 200.8	J	0.89	ug/L	0.20	2.0		Alpha
EFF-001B Comp	10/30/2014	9:48	11/4/2014	Selenium	Total	EPA 200.8	J	0.72	ug/L	0.20	2.0		Alpha
EFF-001B Comp	8/13/2014	8:47	8/19/2014	Silver	Total	EPA 200.8	ND	0.02	ug/L	0.02	0.10		Alpha
EFF-001B Comp	10/30/2014	9:48	11/4/2014	Silver	Total	EPA 200.8	ND	0.02	ug/L	0.02	0.10		Alpha
EFF-001B Comp	8/13/2014	8:47	8/21/2014	Simazine	None	EPA 507	ND	0.30	ug/L	0.30	1.0		Alpha
EFF-001B Comp	10/30/2014	9:48	11/7/2014	Simazine	None	EPA 507	ND		ug/L	0.30	1.0		Alpha
EFF-001B Comp	8/13/2014	8:47	8/23/2014	Stirophos	None	EPA 8270C	ND	0.014	ug/L	0.014	0.10		BSK
EFF-001B Grab	8/13/2014	9:49	8/20/2014	Styrene	None	EPA 624	ND	0.4	ug/L	0.40	0.50		Alpha
EFF-001B Grab	10/30/2014	9:56	11/5/2014	Styrene	None	EPA 624	ND	0.4	ug/L	0.40	0.50		Alpha
EFF-001B Comp	8/13/2014	8:47	8/16/2014	Sulfate as SO4	None	EPA 300.0	=	40	mg/L	0.09	0.50		Alpha
EFF-001B Comp	10/30/2014	9:48	10/31/2014	Sulfate as SO4	None	EPA 300.0	=	32	mg/L	0.09	0.50		Alpha

Monitoring	Sample	Sample	Analysis		Fraction							QA	
Location	Date	Time	Date	Analyte Name	Name	Method Name	Qualifier	Result	Unit	MDL	RL	Code	Lab Name
EFF-001B Comp	8/13/2014	8:47	8/15/2014	Sulfide	None	SM4500SD	ND	0.02	mg/L	0.02	0.10		Alpha
EFF-001B Comp	10/30/2014	9:48	11/4/2014	Sulfide	None	SM4500SD	ND	0.02	mg/L	0.02	0.10		Alpha
EFF-001B Comp	8/13/2014	9:47	8/14/2014	Sulfite	None	EPA 300.1	ND	0.1	mg/L		0.10		McCampbell
EFF-001B Comp	10/30/2014	9:48	10/31/2014	Sulfite	None	EPA 300.1	ND	0.1	mg/L		0.10		McCampbell
EFF-001B Grab	8/13/2014	10:07	8/13/2014	Temperature, field	None	SM2550-B1	=	26.8	С				Modesto
EFF-001B Grab	10/27/2014	9:53	10/27/2014	Temperature, field	None	SM2550-B1	=	24.9	С				Modesto
EFF-001B Grab	8/13/2014	9:49	8/20/2014	Tetrachloroethene	None	EPA 624	ND	0.40	ug/L	0.40	0.50		Alpha
EFF-001B Grab	10/30/2014	9:56	11/5/2014	Tetrachloroethene	None	EPA 624	ND	0.40	ug/L	0.40	0.50		Alpha
EFF-001B Comp	8/13/2014	8:47	8/19/2014	Thallium	Total	EPA 200.8	ND	0.02	ug/L	0.02	0.10		Alpha
EFF-001B Comp	10/30/2014	9:48	11/4/2014	Thallium	Total	EPA 200.8	ND	0.02	ug/L	0.02	0.10		Alpha
EFF-001B Comp	8/13/2014	8:47	8/21/2014	Thiobencarb	None	EPA 507	ND	0.20	ug/L	0.20	1.0		Alpha
EFF-001B Comp	10/30/2014	9:48	11/7/2014	Thiobencarb	None	EPA 507	ND	0.20	ug/L	0.20	1.0		Alpha
EFF-001B Comp	8/13/2014	8:47	8/23/2014	Tokuthion	None	EPA 8270C	ND	0.0033	ug/L	0.0033	0.10		BSK
EFF-001B Grab	8/13/2014	9:49	8/20/2014	Toluene	None	EPA 624	ND	0.30	ug/L	0.30	0.30		Alpha
EFF-001B Grab	10/30/2014	9:56	11/5/2014	Toluene	None	EPA 624	ND	0.30	ug/L	0.30	0.30		Alpha
EFF-001B Comp	8/13/2014	8:47	8/13/2014	Total Dissolved Solids	Dissolved	SM2540C	=	590	mg/L	25			Modesto
EFF-001B Comp	10/30/2014	9:48	11/7/2014	Total Dissolved Solids	Dissolved	SM2540C	=	728	mg/L	25			Modesto
EFF-001B Comp	8/13/2014	8:47	8/25/2014	Toxaphene	None	EPA 608	ND	0.2	ug/L	0.20	0.50		Alpha
EFF-001B Comp	10/30/2014	9:48	11/4/2014	Toxaphene	None	EPA 608	ND	0.2	ug/L	0.20	0.50		Alpha
EFF-001B Grab	8/13/2014	9:49	8/20/2014	trans-1,2-Dichloroethene	None	EPA 624	ND	0.4	ug/L	0.40	0.50		Alpha
EFF-001B Grab	10/30/2014	9:56	11/5/2014	trans-1,2-Dichloroethene	None	EPA 624	ND	0.4	ug/L	0.40	0.50		Alpha
EFF-001B Grab	8/13/2014	9:49	8/20/2014	trans-1,3-Dichloropropene	None	EPA 624	ND	0.4	ug/L	0.40	0.50		Alpha
EFF-001B Grab	10/30/2014	9:56	11/5/2014	trans-1,3-Dichloropropene	None	EPA 624	ND	0.4	ug/L	0.40	0.50		Alpha
EFF-001B Comp	8/13/2014	8:47	8/20/2014	Tributyltin	None	GC-FPD	ND	0.004	ug/L	0.004	0.005		Alpha
EFF-001B Comp	10/30/2014	9:48	11/7/2014	Tributyltin	None	GC-FPD	ND	0.004	ug/L	0.004	0.005		Alpha
EFF-001B Grab	8/13/2014	9:49	8/20/2014	Trichloroethene	None	EPA 624	ND	0.40	ug/L	0.40	0.50		Alpha
EFF-001B Grab	10/30/2014	9:56	11/5/2014	Trichloroethene	None	EPA 624	ND	0.40	ug/L	0.40	0.50		Alpha
EFF-001B Grab	8/13/2014	9:49	8/20/2014	Trichlorofluoromethane	None	EPA 624	ND	0.50	ug/L	0.50	0.50		Alpha
EFF-001B Grab	10/30/2014	9:56	11/5/2014	Trichlorofluoromethane	None	EPA 624	ND	0.50	ug/L	0.50	0.50		Alpha
EFF-001B Comp	8/13/2014	8:47	8/23/2014	Trichloronate	None	EPA 8270C	ND	0.0041	ug/L	0.0041	0.10		BSK
EFF-001B Grab	8/13/2014	9:49	8/20/2014	Trichlorotrifluoroethane	None	EPA 624	ND	0.50	ug/L	0.50	0.50		Alpha
EFF-001B Grab	10/30/2014	9:56	11/5/2014	Trichlorotrifluoroethane	None	EPA 624	ND		ug/L	0.50	0.50		Alpha
EFF-001B Grab	8/13/2014	9:49	8/20/2014	Trihalomethanes (total)	None	EPA 624	ND		ug/L	0.40	0.50		Alpha
EFF-001B Grab	10/30/2014	9:56	11/5/2014	Trihalomethanes (total)	None	EPA 624	ND	0.40	ug/L	0.40	0.50		Alpha
EFF-001B Grab	8/13/2014	9:49	8/20/2014	Vinyl chloride	None	EPA 624	ND		ug/L	0.40	0.50		Alpha
EFF-001B Grab	10/30/2014	9:56	11/5/2014	Vinyl chloride	None	EPA 624	ND	0.40	ug/L	0.40	0.50		Alpha
EFF-001B Grab	8/13/2014	9:49	8/20/2014	Xylenes (total)	None	EPA 624	ND		ug/L	0.50	0.50		Alpha
EFF-001B Grab	10/30/2014	9:56	11/5/2014	Xylenes (total)	None	EPA 624	ND		ug/L	0.50	0.50		Alpha

Monitoring	Sample	Sample	Analysis		Fraction							QA	
Location	Date	Time	Date	Analyte Name	Name	Method Name	Qualifier	Result	Unit	MDL	RL	Code	Lab Name
EFF-001B Comp	8/13/2014	8:47	8/19/2014	Zinc	Total	EPA 200.8	=	24	ug/L	0.50	5.0		Alpha
EFF-001B Comp	10/30/2014	9:48	11/4/2014	Zinc	Total	EPA 200.8	=	24	ug/L	0.50	5.0		Alpha

Appendix D: Delta-Mendota Canal Water Quality Monitoring Data Used to Characterize Upstream Receiving Water Quality for Proposed NVRRWP Discharge

							1	1					
Monitoring	Sample	Sample			Fraction							QA	
Location	Date	Time	Analysis Date	Analyte Name	Name	Method Name	Qualifier	Result	Unit	MDL	RL	Code	Lab Name
DMC	9/30/2014	13:15		1,1,1-Trichloroethane	None	EPA 624	ND	0.19		0.19	0.5		Caltest
DMC	10/14/2014	11:30		1,1,1-Trichloroethane	None	EPA 624	ND	0.19	5	0.19	0.5		Caltest
DMC	9/30/2014			1,1,2,2-Tetrachloroethane	None	EPA 624	ND		ug/L	0.2	0.5		Caltest
DMC	10/14/2014	11:30		1,1,2,2-Tetrachloroethane	None	EPA 624	ND		ug/L	0.2	0.5		Caltest
DMC	9/30/2014	13:15	, ,	1,1,2-Trichloroethane	None	EPA 624	ND		ug/L	0.16	0.5		Caltest
DMC	10/14/2014	11:30	10/17/14 23:19	1,1,2-Trichloroethane	None	EPA 624	ND	0.16	5	0.16	0.5		Caltest
DMC	9/30/2014	13:15	10/2/14 21:59	1,1-Dichloroethane	None	EPA 624	ND	0.19	ug/L	0.19	0.5		Caltest
DMC	10/14/2014	11:30	10/17/14 23:19	1,1-Dichloroethane	None	EPA 624	ND	0.19	ug/L	0.19	0.5		Caltest
DMC	9/30/2014	13:15	10/2/14 21:59	1,1-Dichloroethene	None	EPA 624	ND	0.21	ug/L	0.21	0.5		Caltest
DMC	10/14/2014	11:30	10/17/14 23:19	1,1-Dichloroethene	None	EPA 624	ND	0.21	ug/L	0.21	0.5		Caltest
DMC	9/30/2014	13:15	10/14/14 19:18	1,2,3,4,6,7,8-HpCDD	None	EPA 1613 D/F	J	5.97	pg/L	0.36			Frontier
DMC	10/14/2014	11:30	10/30/14 17:22	1,2,3,4,6,7,8-HpCDD	None	EPA 1613 D/F	J	14.5	pg/L	0.36			Frontier
DMC	9/30/2014	13:15	10/14/14 19:18	1,2,3,4,6,7,8-HpCDF	None	EPA 1613 D/F	ND	1.23	pg/L	0.197			Frontier
DMC	10/14/2014	11:30	10/30/14 17:22	1,2,3,4,6,7,8-HpCDF	None	EPA 1613 D/F	ND	1.63	pg/L	0.197			Frontier
DMC	9/30/2014	13:15	10/14/14 19:18	1,2,3,4,7,8,9-HpCDF	None	EPA 1613 D/F	ND	1.68	pg/L	0.317			Frontier
DMC	10/14/2014	11:30	10/30/14 17:22	1,2,3,4,7,8,9-HpCDF	None	EPA 1613 D/F	ND	2.33	pg/L	0.317			Frontier
DMC	9/30/2014	13:15	10/14/14 19:18	1,2,3,4,7,8-HxCDD	None	EPA 1613 D/F	ND	1.58	pg/L	0.273			Frontier
DMC	10/14/2014	11:30	10/30/14 17:22	1,2,3,4,7,8-HxCDD	None	EPA 1613 D/F	ND	1.44	pg/L	0.273			Frontier
DMC	9/30/2014	13:15	10/14/14 19:18	1,2,3,4,7,8-HxCDF	None	EPA 1613 D/F	ND	0.575	pg/L	0.168			Frontier
DMC	10/14/2014	11:30	10/30/14 17:22	1,2,3,4,7,8-HxCDF	None	EPA 1613 D/F	ND	1	pg/L	0.168			Frontier
DMC	9/30/2014	13:15	10/14/14 19:18	1,2,3,6,7,8-HxCDD	None	EPA 1613 D/F	ND	1.73	pg/L	0.291			Frontier
DMC	10/14/2014	11:30	10/30/14 17:22	1,2,3,6,7,8-HxCDD	None	EPA 1613 D/F	ND	1.56	pg/L	0.291			Frontier
DMC	9/30/2014	13:15	10/14/14 19:18	1,2,3,6,7,8-HxCDF	None	EPA 1613 D/F	ND	0.528	pg/L	0.173			Frontier
DMC	10/14/2014	11:30	10/30/14 17:22	1,2,3,6,7,8-HxCDF	None	EPA 1613 D/F	ND	0.976		0.173			Frontier
DMC	9/30/2014	13:15	10/14/14 19:18	1,2,3,7,8,9-HxCDD	None	EPA 1613 D/F	ND	1.53	pg/L	0.264			Frontier
DMC	10/14/2014	11:30	10/30/14 17:22	1,2,3,7,8,9-HxCDD	None	EPA 1613 D/F	ND	1.38	pg/L	0.264			Frontier
DMC	9/30/2014	13:15	10/14/14 19:18	1,2,3,7,8,9-HxCDF	None	EPA 1613 D/F	ND	0.674		0.242			Frontier
DMC	10/14/2014	11:30	10/30/14 17:22	1,2,3,7,8,9-HxCDF	None	EPA 1613 D/F	ND	1.3	pg/L	0.242			Frontier
DMC	9/30/2014	13:15	10/14/14 19:18	1,2,3,7,8-PeCDD	None	EPA 1613 D/F	ND	1.07	pg/L	0.205			Frontier
DMC	10/14/2014	11:30	10/30/14 17:22	1,2,3,7,8-PeCDD	None	EPA 1613 D/F	ND	1.64		0.205			Frontier
DMC	9/30/2014	13:15	10/14/14 19:18		None	EPA 1613 D/F	ND	0.689		0.152			Frontier
DMC	10/14/2014	11:30	10/30/14 17:22		None	EPA 1613 D/F	ND	0.675		0.152			Frontier
DMC	9/30/2014	13:15		1,2,4-Trichlorobenzene	None	EPA 624	ND		ug/L	0.19	0.5		Caltest
DMC	10/14/2014	11:30		1,2,4-Trichlorobenzene	None	EPA 624	ND		ug/L	0.19	0.5		Caltest
DMC	9/30/2014	13:15	1 1	1,2-Dichlorobenzene	None	EPA 624	ND		ug/L	0.27	0.5		Caltest

Monitoring	Sample	Sample			Fraction							QA	
Location	Date	Time	Analysis Date	Analyte Name	Name	Method Name	Qualifier	Result	Unit	MDL	RL	Code	Lab Name
DMC	10/14/2014	11:30	10/17/14 23:19	1,2-Dichlorobenzene	None	EPA 624	ND	0.27	ug/L	0.27	0.5		Caltest
DMC	9/30/2014	13:15	10/2/14 21:59	1,2-Dichloroethane	None	EPA 624	ND	0.18	ug/L	0.18	0.5		Caltest
DMC	10/14/2014	11:30	10/17/14 23:19	1,2-Dichloroethane	None	EPA 624	ND	0.18	ug/L	0.18	0.5		Caltest
DMC	9/30/2014	13:15	10/2/14 21:59	1,2-Dichloropropane	None	EPA 624	ND	0.18	ug/L	0.18	0.5		Caltest
DMC	10/14/2014	11:30	10/17/14 23:19	1,2-Dichloropropane	None	EPA 624	ND	0.18	ug/L	0.18	0.5		Caltest
DMC	9/30/2014	12:45	10/15/14 22:45	1,2-Diphenylhydrazine/Azobenzene	None	EPA 625	ND	0.7	ug/L	0.7	1		Caltest
DMC	10/14/2014	11:30	10/17/14 23:19	1,2-Diphenylhydrazine/Azobenzene	None	EPA 625	ND	0.81	ug/L	0.81	1.2		Caltest
DMC	9/30/2014	13:15	10/2/14 21:59	1,3-Dichlorobenzene	None	EPA 624	ND	0.18	ug/L	0.18	0.5		Caltest
DMC	10/14/2014	11:30	10/17/14 23:19	1,3-Dichlorobenzene	None	EPA 624	ND	0.18	ug/L	0.18	0.5		Caltest
DMC	9/30/2014	13:15	10/2/14 21:59	1,4-Dichlorobenzene	None	EPA 624	ND	0.18	ug/L	0.18	0.5		Caltest
DMC	10/14/2014	11:30	10/17/14 23:19	1,4-Dichlorobenzene	None	EPA 624	ND	0.18	ug/L	0.18	0.5		Caltest
DMC	9/30/2014	13:15	10/14/14 19:18	2,3,4,6,7,8-HxCDF	None	EPA 1613 D/F	ND	0.584	pg/L	0.187			Frontier
DMC	10/14/2014	11:30	10/30/14 17:22	2,3,4,6,7,8-HxCDF	None	EPA 1613 D/F	ND	1.07	pg/L	0.187			Frontier
DMC	9/30/2014	13:15	10/14/14 19:18	2,3,4,7,8-PeCDF	None	EPA 1613 D/F	ND	0.729	pg/L	0.151			Frontier
DMC	10/14/2014	11:30	10/30/14 17:22	2,3,4,7,8-PeCDF	None	EPA 1613 D/F	ND	0.728	pg/L	0.151			Frontier
DMC	9/30/2014	13:15	10/14/14 19:18	2,3,7,8-TCDD	None	EPA 1613 D/F	ND	0.455	pg/L	0.151			Frontier
DMC	10/14/2014	11:30	10/30/14 17:22	2,3,7,8-TCDD	None	EPA 1613 D/F	ND	0.559	pg/L	0.151			Frontier
DMC	9/30/2014	13:15	10/14/14 19:18	2,3,7,8-TCDF	None	EPA 1613 D/F	ND	0.654		0.0985			Frontier
DMC	10/14/2014	11:30	10/30/14 17:22	2,3,7,8-TCDF	None	EPA 1613 D/F	ND	0.63	pg/L	0.0985			Frontier
DMC	9/30/2014	13:15	10/7/14 5:32	2,4,5-T	None	EPA 515.4	ND	0.03	ug/L	0.03	0.2		Eurofins
DMC	10/14/2014	11:30	10/21/14 21:51	2,4,5-T	None	EPA 515.4	J	0.037	ug/L	0.03	0.2		Eurofins
DMC	9/30/2014	13:15	10/7/14 5:32	2,4,5-TP	None	EPA 515.4	ND	0.02	ug/L	0.02	0.2		Eurofins
DMC	10/14/2014	11:30	10/21/14 21:51	2,4,5-TP	None	EPA 515.4	ND	0.02	ug/L	0.02	0.2		Eurofins
DMC	9/30/2014	12:45	10/15/14 22:45	2,4,6-Trichlorophenol	None	EPA 625	ND	0.97	ug/L	0.97	5		Caltest
DMC	10/14/2014	11:30	10/28/14 19:20	2,4,6-Trichlorophenol	None	EPA 625	ND	1.1	ug/L	1.1	5		Caltest
DMC	9/30/2014	13:15	10/7/14 5:32	2,4-D	None	EPA 515.4	ND	0.03		0.03	0.1		Eurofins
DMC	10/14/2014	11:30	10/21/14 20:03	2,4-D	None	EPA 515.4	=	0.24	ug/L	0.03	0.1		Eurofins
DMC	9/30/2014	13:15	10/7/14 5:32	2,4-DB	None	EPA 515.4	ND	0.5	ug/L	0.5	2		Eurofins
DMC	10/14/2014	11:30	10/21/14 21:51	2,4-DB	None	EPA 515.4	ND		ug/L	0.5	2		Eurofins
DMC	9/30/2014	12:45	10/15/14 22:45	2,4-Dichlorophenol	None	EPA 625	ND	0.9	ug/L	0.9	1		Caltest
DMC	10/14/2014	11:30	10/28/14 19:20	2,4-Dichlorophenol	None	EPA 625	ND	1	ug/L	1	1.2		Caltest
DMC	9/30/2014	12:45	10/15/14 22:45	2,4-Dimethylphenol	None	EPA 625	ND	0.8	ug/L	0.8	2		Caltest
DMC	10/14/2014	11:30	10/28/14 19:20	2,4-Dimethylphenol	None	EPA 625	ND	0.93	ug/L	0.93	2		Caltest
DMC	9/30/2014	12:45	10/15/14 22:45	2,4-Dinitrophenol	None	EPA 625	ND	0.9	ug/L	0.9	5		Caltest
DMC	10/14/2014	11:30	10/28/14 19:20	2,4-Dinitrophenol	None	EPA 625	ND	1	ug/L	1	5	1	Caltest
DMC	9/30/2014	13:15	10/10/14 1:10	2,4-Dinitrotoluene	None	EPA 525.2	ND	0.01	ug/L	0.01	0.1		Eurofins
DMC	10/14/2014	11:30	10/21/14 19:48	2,4-Dinitrotoluene	None	EPA 525.2	ND	0.01	ug/L	0.01	0.1	ĹШ	Eurofins
DMC	9/30/2014	13:15	10/10/14 1:10	2,6-Dinitrotoluene	None	EPA 525.2	ND	0.04	ug/L	0.04	0.1		Eurofins
DMC	10/14/2014	11:30	10/21/14 19:48	2,6-Dinitrotoluene	None	EPA 525.2	ND	0.04	ug/L	0.04	0.1		Eurofins
DMC	9/30/2014	13:15	10/2/14 21:59	2-Chloroethyl vinyl ether	None	EPA 624	ND	0.28	ug/L	0.28	1		Caltest
DMC	10/14/2014	11:30	10/17/14 23:19	2-Chloroethyl vinyl ether	None	EPA 624	ND		ug/L	0.28	1		Caltest
DMC	9/30/2014	12:45	10/15/14 22:45	2-Chloronaphthalene	None	EPA 625	ND	0.9	ug/L	0.9	5		Caltest
DMC	10/14/2014	11:30	10/28/14 19:20	2-Chloronaphthalene	None	EPA 625	ND	1	ug/L	1	5		Caltest

Monitoring	Sample	Sample			Fraction							QA]
Location	Date	Time	Analysis Date	Analyte Name	Name	Method Name	Qualifier	Result	Unit	MDL	RL	Code	Lab Name
DMC	9/30/2014	12:45	10/15/14 22:45		None	EPA 625	ND		ug/L	0.7	2		Caltest
DMC	10/14/2014	11:30	10/28/14 19:20		None	EPA 625	ND		ug/L	0.81	2.3		Caltest
DMC	9/30/2014	12:45		2-Methyl-4,6-dinitrophenol	None	EPA 625	ND		ug/L	0.6	5		Caltest
DMC	10/14/2014	11:30		2-Methyl-4,6-dinitrophenol	None	EPA 625	ND		ug/L	0.7	5		Caltest
DMC	9/30/2014	12:45	10/15/14 22:45		None	EPA 625	ND		ug/L	0.8	5		Caltest
DMC	10/14/2014	11:30	10/28/14 19:20	•	None	EPA 625	ND		ug/L	0.93	5		Caltest
DMC	9/30/2014	12:45		3,3'-Dichlorobenzidine	None	EPA 625	ND		ug/L	5	5		Caltest
DMC	10/14/2014	11:30	10/28/14 19:20	3,3'-Dichlorobenzidine	None	EPA 625	ND	5.8	ug/L	5.8	5.8		Caltest
DMC	9/30/2014	13:15	10/7/14 5:32	3,5-Dichlorobenzoic acid	None	EPA 515.4	ND	0.07	ug/L	0.07	0.5		Eurofins
DMC	10/14/2014	11:30	10/21/14 21:51	3,5-Dichlorobenzoic acid	None	EPA 515.4	ND	0.07	ug/L	0.07	0.5		Eurofins
DMC	9/30/2014	13:15	10/3/14 7:52	3-Hydroxycarbofuran	None	EPA 531.2	ND		ug/L	0.1	0.5		Eurofins
DMC	10/14/2014	11:30	10/17/14 0:59	3-Hydroxycarbofuran	None	EPA 531.2	ND	0.1	ug/L	0.1	0.5		Eurofins
DMC	9/30/2014	13:15	10/22/14 15:17	4,4'-DDD	None	EPA 608	ND	0.004	ug/L	0.004	0.01		Caltest
DMC	10/14/2014	11:30	10/31/14 11:16	4,4'-DDD	None	EPA 608	ND	0.004	ug/L	0.004	0.01		Caltest
DMC	9/30/2014	13:15	10/22/14 15:17	4,4'-DDE	None	EPA 608	ND	0.003	ug/L	0.003	0.01		Caltest
DMC	10/14/2014	11:30	10/31/14 11:16	4,4'-DDE	None	EPA 608	ND	0.003	ug/L	0.003	0.01		Caltest
DMC	9/30/2014	13:15	10/22/14 15:17	4,4'-DDT	None	EPA 608	ND	0.004	ug/L	0.004	0.01		Caltest
DMC	10/14/2014	11:30	10/31/14 11:16	4,4'-DDT	None	EPA 608	ND	0.004	ug/L	0.004	0.01		Caltest
DMC	9/30/2014	12:45	10/15/14 22:45	4-Bromophenyl phenyl ether	None	EPA 625	ND	0.7	ug/L	0.7	5		Caltest
DMC	10/14/2014	11:30	10/28/14 19:20	4-Bromophenyl phenyl ether	None	EPA 625	ND	0.81	ug/L	0.81	5		Caltest
DMC	9/30/2014	12:45	10/15/14 22:45	4-Chloro-3-methylphenol	None	EPA 625	ND	0.8	ug/L	0.8	1		Caltest
DMC	10/14/2014	11:30	10/28/14 19:20	4-Chloro-3-methylphenol	None	EPA 625	ND	0.93	ug/L	0.93	1.2		Caltest
DMC	9/30/2014	12:45	10/15/14 22:45	4-Chlorophenyl phenyl ether	None	EPA 625	ND	0.9	ug/L	0.9	5		Caltest
DMC	10/14/2014	11:30	10/28/14 19:20	4-Chlorophenyl phenyl ether	None	EPA 625	ND	1	ug/L	1	5		Caltest
DMC	9/30/2014	12:45	10/15/14 22:45	4-Nitrophenol	None	EPA 625	ND	0.5	ug/L	0.5	5		Caltest
DMC	10/14/2014	11:30	10/28/14 19:20	4-Nitrophenol	None	EPA 625	ND	0.58	ug/L	0.58	5		Caltest
DMC	9/30/2014	12:45	10/15/14 22:45	Acenaphthene	None	EPA 625	ND	0.01	ug/L	0.01	0.3		Caltest
DMC	10/14/2014	11:30	10/21/14 0:00	Acenaphthene	None	EPA 625	ND	0.012	ug/L	0.012	0.3		Caltest
DMC	9/30/2014	13:15	10/10/14 1:10	Acenaphthylene	None	EPA 525.2	ND	0.01	ug/L	0.01	0.1		Eurofins
DMC	10/14/2014	11:30	10/21/14 19:48	Acenaphthylene	None	EPA 525.2	ND	0.01	ug/L	0.01	0.1		Eurofins
DMC	9/30/2014	13:15	10/10/14 1:10	Acetochlor	None	EPA 525.2	ND	0.009	ug/L	0.009	0.1		Eurofins
DMC	10/14/2014	11:30	10/21/14 19:48	Acetochlor	None	EPA 525.2	ND	0.009		0.009	0.1		Eurofins
DMC	9/30/2014	13:15	10/7/14 5:32	Acifluorfen	None	EPA 515.4	ND	0.04	ug/L	0.04	0.2		Eurofins
DMC	10/14/2014	11:30	10/21/14 21:51		None	EPA 515.4	ND	0.04	ug/L	0.04	0.2		Eurofins
DMC	9/30/2014	13:15	10/2/14 21:59	Acrolein	None	EPA 624	ND	1.7	ug/L	1.7	5		Caltest
DMC	10/14/2014	11:30	10/17/14 23:19	Acrolein	None	EPA 624	ND	1.7	ug/L	1.7	2		Caltest
DMC	9/30/2014	13:15	10/2/14 21:59	,	None	EPA 624	ND		ug/L	1	2		Caltest
DMC	10/14/2014	11:30	10/17/14 23:19		None	EPA 624	ND		ug/L	1	2		Caltest
DMC	9/30/2014	13:15	10/10/14 1:10		None	EPA 525.2	ND		ug/L	0.02	0.05		Eurofins
DMC	10/14/2014	11:30	10/21/14 19:48		None	EPA 525.2	ND	0.02		0.02	0.05		Eurofins
DMC	9/30/2014	13:15	10/3/14 7:52		None	EPA 531.2	ND		ug/L	0.2	0.5		Eurofins
DMC	10/14/2014	11:30	10/17/14 0:59		None	EPA 531.2	ND		ug/L	0.2	0.5		Eurofins
DMC	9/30/2014	13:15	10/3/14 7:52	Aldicarb sulfone	None	EPA 531.2	ND	0.2	ug/L	0.2	0.5		Eurofins

Monitoring	Sample	Sample			Fraction							QA	
Location	Date	Time	Analysis Date	Analyte Name	Name	Method Name	Qualifier	Result	Unit	MDL	RL	Code	Lab Name
DMC	10/14/2014	11:30		Aldicarb sulfone	None	EPA 531.2	ND		ug/L	0.2	0.5		Eurofins
DMC	9/30/2014	13:15		Aldicarb sulfoxide	None	EPA 531.2	ND		ug/L	0.1	0.5		Eurofins
DMC	10/14/2014	11:30		Aldicarb sulfoxide	None	EPA 531.2	ND		ug/L	0.1	0.5		Eurofins
DMC	9/30/2014	13:15	10/3/14 17:13		None	EPA 505	ND	0.002	5	0.002	0.01		Eurofins
DMC	10/14/2014	11:30	10/18/14 5:36		None	EPA 505	ND	0.002	-	0.002	0.01		Eurofins
DMC	9/30/2014	13:15	10/22/14 15:17		None	EPA 608	ND	0.005		0.005	0.01		Caltest
DMC	10/14/2014	11:30	10/31/14 11:16	alpha-BHC	None	EPA 608	ND	0.005	_	0.005	0.01		Caltest
DMC	9/30/2014	13:15	10/7/14 14:38	Aluminum	Total	EPA 200.8	=	130	ug/L	0.8	10		Caltest
DMC	10/14/2014	11:30	10/23/2014 15:58	Aluminum	Total	EPA 200.8	=	68	ug/L	1.2	10		Caltest
DMC	9/30/2014	13:45	10/28/14 0:00	Ammonia as N	None	SM20-4500-NH3 C	ND	0.04	mg/L	0.04	0.1		Caltest
DMC	10/14/2014	11:30	10/30/2014 0:00	Ammonia as N	None	SM20-4500-NH3 C	J	0.077	mg/L	0.04	0.1		Caltest
DMC	9/30/2014	12:45	10/15/14 22:45	Anthracene	None	EPA 625	ND	0.01	ug/L	0.01	0.3		Caltest
DMC	10/14/2014	11:30	10/28/2014 19:20	Anthracene	None	EPA 625	ND	0.012	ug/L	0.012	0.3		Caltest
DMC	9/30/2014	13:15	10/7/14 14:38	Antimony	Total	EPA 200.8	J	0.11	ug/L	0.02	0.5		Caltest
DMC	10/14/2014	11:30	10/23/2014 15:58	Antimony	Total	EPA 200.8	J	0.12	ug/L	0.05	0.5		Caltest
DMC	9/30/2014	13:15	10/7/14 14:38	Arsenic	Total	EPA 200.8	=	3.4	ug/L	0.2	0.5		Caltest
DMC	10/14/2014	11:30	10/23/2014 15:58	Arsenic	Total	EPA 200.8	=	3.1	ug/L	0.06	0.5		Caltest
DMC	9/30/2014		10/15/14 0:00	Asbestos	None	EPA 600	ND	0.99	MFL	0.99	0.99		EMSL
DMC	10/14/2014	11:30	10/30/14 0:00	Asbestos	None	EPA 600	ND	0.99	MFL	0.99	0.99		EMSL
DMC	9/30/2014	13:15	10/10/14 1:10	Atrazine	None	EPA 525.2	ND	0.05	ug/L	0.05	0.05		Eurofins
DMC	10/14/2014	11:30	10/21/14 19:48	Atrazine	None	EPA 525.2	ND	0.05	ug/L	0.05	0.05		Eurofins
DMC	9/30/2014	13:15	10/22/14 7:54	Azinphos methyl	None	EPA 614	ND	0.04	ug/L	0.04	0.05		Caltest
DMC	10/14/2014	11:30	10/31/2014 3:53	Azinphos methyl	None	EPA 614	ND	0.04	ug/L	0.04	0.05		Caltest
DMC	9/30/2014	13:15	10/7/14 14:38	Barium	Total	EPA 200.8	=	35	ug/L	0.07	0.1		Caltest
DMC	10/14/2014	11:30	10/23/2014 15:58	Barium	Total	EPA 200.8	=	41	ug/L	0.08	0.1		Caltest
DMC	9/30/2014	13:15	10/3/14 7:52	Baygon	None	EPA 531.2	ND	0.2	ug/L	0.2	0.5		Eurofins
DMC	10/14/2014	11:30	10/17/14 0:59	Baygon	None	EPA 531.2	ND	0.2	ug/L	0.2	0.5		Eurofins
DMC	9/30/2014	13:15	10/7/14 5:32	Bentazon	None	EPA 515.4	ND	0.06	ug/L	0.06	0.5		Eurofins
DMC	10/14/2014	11:30	10/21/14 21:51	Bentazon	None	EPA 515.4	ND	0.06	ug/L	0.06	0.5		Eurofins
DMC	9/30/2014	13:15	10/10/14 1:10	Benz(a)anthracene	None	EPA 525.2	ND	0.01	ug/L	0.01	0.05		Eurofins
DMC	10/14/2014	11:30	10/21/14 19:48	Benz(a)anthracene	None	EPA 525.2	ND	0.01	ug/L	0.01	0.05		Eurofins
DMC	9/30/2014	13:15	10/2/14 21:59	Benzene	None	EPA 624	ND	0.18	ug/L	0.18	0.5		Caltest
DMC	10/14/2014	11:30	10/17/2014 23:19	Benzene	None	EPA 624	ND	0.18	.	0.18	0.5		Caltest
DMC	9/30/2014	12:45	10/15/14 22:45		None	EPA 625	ND	5	ug/L	5	5		Caltest
DMC	10/14/2014	11:30	10/28/2014 19:20	Benzidine	None	EPA 625	ND	5.8	ug/L	5.8	5.8		Caltest
DMC	9/30/2014	13:15	10/10/14 1:10	Benzo(a)pyrene	None	EPA 525.2	ND	0.01	5	0.01	0.02		Eurofins
DMC	10/14/2014	11:30	10/21/14 19:48		None	EPA 525.2	ND	0.01		0.01	0.02	VC	Eurofins
DMC	9/30/2014	13:15		Benzo(b)fluoranthene	None	EPA 525.2	ND		· 0/	0.01	0.02		Eurofins
DMC	10/14/2014	11:30		Benzo(b)fluoranthene	None	EPA 525.2	ND	0.01		0.01	0.02		Eurofins
DMC	9/30/2014	13:15		Benzo(g,h,i)perylene	None	EPA 525.2	ND	0.01		0.01	0.05		Eurofins
DMC	10/14/2014	11:30		Benzo (g,h,i)perylene	None	EPA 525.2	ND	0.01		0.01	0.05		Eurofins
DMC	9/30/2014	12:45		Benzo(k)fluoranthene	None	EPA 625	ND	0.01	-	0.01	0.3		Caltest
DMC	10/14/2014	11:30	10/21/14 0:00	Benzo(k)fluoranthene	None	EPA 625	ND	0.012	ug/L	0.012	0.3		Caltest

Monitoring	Sample	Sample			Fraction							QA	
Location	Date	Time	Analysis Date	Analyte Name	Name	Method Name	Qualifier	Result	Unit	MDL	RL	Code	Lab Name
DMC	9/30/2014	12:45		Benzyl butyl phthalate	None	EPA 625	ND		ug/L	0.7	5		Caltest
DMC	10/14/2014			Benzyl butyl phthalate	None	EPA 625	ND	0.81		0.81	5		Caltest
DMC	9/30/2014	13:15	10/7/14 14:38	, , , ,	Total	EPA 200.8	ND			0.02	0.1		Caltest
DMC	10/14/2014		10/23/2014 15:58	,	Total	EPA 200.8	ND	0.09	0	0.09	0.1		Caltest
DMC	9/30/2014	13:15	10/22/14 15:17	•	None	EPA 608	ND	0.004		0.004	0.005		Caltest
DMC	10/14/2014	11:30	10/21/14 0:00		None	EPA 608	ND	0.004		0.004	0.005		Caltest
DMC	9/30/2014	12:45	10/15/14 22:45	Bis(2-chloroethoxy)methane	None	EPA 625	ND		ug/L	0.9	5		Caltest
DMC	10/14/2014	11:30	10/28/2014 19:20	Bis(2-chloroethoxy)methane	None	EPA 625	ND	1	ug/L	1	5		Caltest
DMC	9/30/2014	12:45		Bis(2-chloroethyl)ether	None	EPA 625	ND	0.7	ug/L	0.7	1		Caltest
DMC	10/14/2014	11:30	10/28/2014 19:20	Bis(2-chloroethyl)ether	None	EPA 625	ND	0.81	ug/L	0.81	1.2		Caltest
DMC	9/30/2014	12:45	10/15/14 22:45	Bis(2-chloroisopropyl)ether	None	EPA 625	ND		ug/L	0.6	2		Caltest
DMC	10/14/2014	11:30	10/28/2014 19:20	Bis(2-chloroisopropyl)ether	None	EPA 625	ND	0.7	ug/L	0.7	2		Caltest
DMC	9/30/2014	13:15	10/10/14 1:10	Bis(2-ethylhexyl)adipate	None	EPA 525.2	ND	0.06	ug/L	0.06	0.6		Eurofins
DMC	10/14/2014	11:30	10/21/14 19:48	Bis(2-ethylhexyl)adipate	None	EPA 525.2	ND	0.06	ug/L	0.06	0.6		Eurofins
DMC	9/30/2014	13:15	10/10/14 1:10	Bis(2-ethylhexyl)phthalate	None	EPA 525.2	ND	0.1	ug/L	0.1	0.6		Eurofins
DMC	10/14/2014	11:30	10/21/14 19:48	Bis(2-ethylhexyl)phthalate	None	EPA 525.2	ND	0.1	ug/L	0.1	0.6		Eurofins
DMC	9/30/2014	13:15	10/10/14 1:10	Bromacil	None	EPA 525.2	ND	0.03	ug/L	0.03	0.2		Eurofins
DMC	10/14/2014	11:30	10/21/14 19:48	Bromacil	None	EPA 525.2	ND	0.03	ug/L	0.03	0.2		Eurofins
DMC	9/30/2014	13:15	10/7/14 16:21	Bromodichloromethane	None	EPA 624 (Low Level)	ND	0.03	ug/L	0.03	0.05		Caltest
DMC	10/14/2014	11:30	10/22/2014 19:20	Bromodichloromethane	None	EPA 624 (Low Level)	ND	0.03	ug/L	0.03	0.05		Caltest
DMC	9/30/2014	13:15	10/7/14 16:21	Bromoform	None	EPA 624 (Low Level)	ND	0.04	ug/L	0.04	0.05		Caltest
DMC	10/14/2014	11:30	10/22/2014 19:20	Bromoform	None	EPA 624 (Low Level)	ND	0.04	ug/L	0.04	0.05		Caltest
DMC	9/30/2014	13:15	10/2/14 21:59	Bromomethane	None	EPA 624	ND	0.17	ug/L	0.17	0.5		Caltest
DMC	10/14/2014	11:30	10/17/2014 23:19	Bromomethane	None	EPA 624	ND	0.17	ug/L	0.17	0.5		Caltest
DMC	9/30/2014	13:15	10/10/14 1:10	Butachlor	None	EPA 525.2	ND	0.03	ug/L	0.03	0.05		Eurofins
DMC	10/14/2014	11:30	10/21/14 19:48	Butachlor	None	EPA 525.2	ND	0.03	ug/L	0.03	0.05		Eurofins
DMC	9/30/2014	13:15	10/10/14 1:10	Butyl benzyl phthalate	None	EPA 525.2	ND	0.06	ug/L	0.06	0.5		Eurofins
DMC	10/14/2014	11:30	10/21/14 19:48	Butyl benzyl phthalate	None	EPA 525.2	ND	0.06	ug/L	0.06	0.5		Eurofins
DMC	9/30/2014	13:15	10/7/14 14:38	Cadmium	Total	EPA 200.8	ND	0.05	ug/L	0.05	0.1		Caltest
DMC	10/14/2014	11:30	10/23/2014 15:58	Cadmium	Total	EPA 200.8	ND	0.05	ug/L	0.05	0.1		Caltest
DMC	9/30/2014	13:15	10/10/14 1:10	Caffeine	None	EPA 525.2	ND	0.02	ug/L	0.02	0.05		Eurofins
DMC	10/14/2014	11:30	10/21/14 19:48	Caffeine	None	EPA 525.2	ND	0.02	ug/L	0.02	0.05		Eurofins
DMC	9/30/2014	13:15	10/3/14 7:52	Carbaryl	None	EPA 531.2	ND	0.2	ug/L	0.2	0.5		Eurofins
DMC	10/14/2014	11:30	10/17/14 0:59	Carbaryl	None	EPA 531.2	ND	0.2	ug/L	0.2	0.5		Eurofins
DMC	9/30/2014	13:15	10/3/14 7:52	Carbofuran	None	EPA 531.2	ND	0.1	ug/L	0.1	0.5		Eurofins
DMC	10/14/2014	11:30	10/17/14 0:59	Carbofuran	None	EPA 531.2	ND	0.1	ug/L	0.1	0.5		Eurofins
DMC	9/30/2014	13:15		Carbon tetrachloride	None	EPA 624	ND	0.16	_	0.16	0.5		Caltest
DMC	10/14/2014	11:30		Carbon tetrachloride	None	EPA 624	ND	0.16	.	0.16	0.5		Caltest
DMC	9/30/2014	13:15		Chlordane (technical)	None	EPA 608	ND	0.02		0.02	0.05		Caltest
DMC	10/14/2014			Chlordane (technical)	None	EPA 608	ND	0.02	5	0.02	0.05		Caltest
DMC	9/30/2014	13:45	10/14/14 0:32		None	EPA 300.0	=		mg/L	5	20		Caltest
DMC	10/14/2014		10/15/2014 23:35		None	EPA 300.0	=		mg/L	2	10		Caltest
DMC	9/30/2014	13:15	10/2/14 21:59	Chlorobenzene	None	EPA 624	ND	0.18	ug/L	0.18	0.5		Caltest

Monitoring	Sample	Sample			Fraction							QA	
Location	Date	Time	Analysis Date	Analyte Name	Name	Method Name	Qualifier	Result	Unit	MDL	RL	Code	Lab Name
DMC	10/14/2014	11:30	10/17/2014 23:19	,	None	EPA 624	ND	0.18	ug/L	0.18	0.5		Caltest
DMC	9/30/2014	13:15		Chlorobenzilate	None	EPA 525.2	ND	0.02		0.02	0.1		Eurofins
DMC	10/14/2014	11:30	10/21/14 19:48	Chlorobenzilate	None	EPA 525.2	ND	0.02		0.02	0.1		Eurofins
DMC	9/30/2014	13:15	10/2/14 21:59	Chloroethane	None	EPA 624	ND	0.38		0.38	0.5		Caltest
DMC	10/14/2014	11:30	10/17/2014 23:19	Chloroethane	None	EPA 624	ND	0.38		0.38	0.5		Caltest
DMC	9/30/2014	13:15	10/7/14 16:21	Chloroform	None	EPA 624 (Low Level)	ND	0.02	ug/L	0.02	0.05		Caltest
DMC	10/14/2014	11:30	10/22/2014 19:20	Chloroform	None	EPA 624 (Low Level)	ND	0.02	ug/L	0.02	0.05		Caltest
DMC	9/30/2014	13:15	10/2/14 21:59	Chloromethane	None	EPA 624	ND	0.23	ug/L	0.23	0.5		Caltest
DMC	10/14/2014	11:30	10/17/2014 23:19	Chloromethane	None	EPA 624	ND	0.23	ug/L	0.23	0.5		Caltest
DMC	9/30/2014	13:15	10/10/14 1:10	Chloroneb	None	EPA 525.2	ND	0.02	ug/L	0.02	0.1		Eurofins
DMC	10/14/2014	11:30	10/21/14 19:48	Chloroneb	None	EPA 525.2	ND	0.02	ug/L	0.02	0.1		Eurofins
DMC	9/30/2014	13:15	10/10/14 1:10	Chlorothalonil (Draconil, Bravo)	None	EPA 525.2	ND	0.02	ug/L	0.02	0.1		Eurofins
DMC	10/14/2014	11:30	10/21/14 19:48	Chlorothalonil (Draconil, Bravo)	None	EPA 525.2	ND	0.02	ug/L	0.02	0.1		Eurofins
DMC	9/30/2014	13:15	10/22/14 7:54	Chlorpyrifos	None	EPA 614	ND	0.005	ug/L	0.005	0.01		Caltest
DMC	10/14/2014	11:30	10/31/2014 3:53	Chlorpyrifos	None	EPA 614	ND	0.005	ug/L	0.005	0.01		Caltest
DMC	9/30/2014	13:15	10/7/14 14:38	Chromium	Total	EPA 200.8	=	0.64	ug/L	0.07	0.5		Caltest
DMC	10/14/2014	11:30	10/23/2014 15:58	Chromium	Total	EPA 200.8	=	0.68	ug/L	0.05	0.5		Caltest
DMC	9/30/2014	13:45	10/3/14 12:27	Chromium VI	Dissolved	EPA 218.6	=	0.16	ug/L	0.009	0.02		Eurofins
DMC	10/14/2014	11:30	10/21/14 16:49	Chromium VI	Dissolved	EPA 218.6	=	0.28	ug/L	0.009	0.02		Eurofins
DMC	9/30/2014	13:15	10/10/14 1:10	Chrysene	None	EPA 525.2	ND	0.01	ug/L	0.01	0.02		Eurofins
DMC	10/14/2014	11:30	10/21/14 19:48	Chrysene	None	EPA 525.2	ND	0.01	ug/L	0.01	0.02		Eurofins
DMC	9/30/2014	13:15	10/2/14 21:59	cis-1,2-Dichloroethene	None	EPA 624	ND	0.2	ug/L	0.2	0.5		Caltest
DMC	10/14/2014	11:30	10/17/2014 23:19	cis-1,2-Dichloroethene	None	EPA 624	ND	0.2	ug/L	0.2	0.5		Caltest
DMC	9/30/2014	13:15	10/2/14 21:59	cis-1,3-Dichloropropene	None	EPA 624	ND	0.16	ug/L	0.16	0.5		Caltest
DMC	10/14/2014	11:30		cis-1,3-Dichloropropene	None	EPA 624	ND	0.16	ug/L	0.16	0.5		Caltest
DMC	9/30/2014	13:00	10/2/14 9:49	Conductivity	None	EPA 120.1	=	570	uS/cm	10	10		Caltest
DMC	10/14/2014	11:30	10/14/14 0:00	Conductivity	None	Field Meter	=	669.7	uS/cm				LWA
DMC	9/30/2014	13:15	10/7/14 14:38	Copper	Total	EPA 200.8	=	1.6	ug/L	0.07	0.5		Caltest
DMC	10/14/2014	11:30	10/23/2014 15:58	Copper	Total	EPA 200.8	=	1.9	ug/L	0.15	0.5		Caltest
DMC	9/30/2014	13:45	10/7/14 16:51	Cyanide	Total	SM20-4500-CN C&E	ND	0.9	ug/L	0.9	3		Caltest
DMC	10/14/2014	11:30	10/23/2014 16:39	Cyanide	Total	SM20-4500-CN C&E	ND	0.9	ug/L	0.9	3		Caltest
DMC	9/30/2014	13:15	10/7/14 5:32	Dalapon	None	EPA 515.4	J	0.22	ug/L	0.1	1		Eurofins
DMC	10/14/2014	11:30	, ,	•	None	EPA 515.4	ND		ug/L	0.1	1		Eurofins
DMC	9/30/2014	13:15	10/22/14 15:17	delta-BHC	None	EPA 608	ND	0.004	ug/L	0.004	0.005		Caltest
DMC	10/14/2014		10/31/2014 11:16		None	EPA 608	ND	0.004		0.004	0.005		Caltest
DMC	9/30/2014	13:15		Demeton -O and -S	None	EPA 614	ND	0.09		0.09	0.1		Caltest
DMC	10/14/2014	11:30		Demeton -O and -S	None	EPA 614	ND	0.09		0.09	0.1		Caltest
DMC	9/30/2014	13:15	10/22/14 7:54		None	EPA 614	ND		0.	0.007	0.02		Caltest
DMC	10/14/2014	11:30	, ,		None	EPA 614	ND	0.007		0.007	0.02		Caltest
DMC	9/30/2014	13:15		Dibenz(a,h)anthracene	None	EPA 525.2	ND	0.03	U,	0.03	0.05		Eurofins
DMC	10/14/2014	11:30		Dibenz(a,h)anthracene	None	EPA 525.2	ND	0.03	-	0.03	0.05	R7	Eurofins
DMC	9/30/2014	13:15		Dibromochloromethane	None	EPA 624 (Low Level)	ND	0.03		0.03	0.05		Caltest
DMC	10/14/2014	11:30	10/22/2014 19:20	Dibromochloromethane	None	EPA 624 (Low Level)	ND	0.03	ug/L	0.03	0.05		Caltest

Monitoring	Sample	Sample			Fraction							QA	
Location	Date	Time	Analysis Date	Analyte Name	Name	Method Name	Qualifier	Result	Unit	MDL	RL	Code	Lab Name
DMC	9/30/2014	13:15		Dibromochloropropane (DBCP)	None	EPA 551.1	ND	0.008		0.008	0.01		Eurofins
DMC	10/14/2014	11:30		Dibromochloropropane (DBCP)	None	EPA 551.1	ND	0.008	5	0.008	0.01		Eurofins
DMC	9/30/2014	13:15	10/7/14 5:32		None	EPA 515.4	ND	0.02		0.02	0.1		Eurofins
DMC	10/14/2014	11:30			None	EPA 515.4	ND	0.02		0.02	0.1		Eurofins
DMC	9/30/2014	13:15	, ,	Dichlorodifluoromethane (F-12)	None	EPA 624	ND		ug/L	0.3	0.5		Caltest
DMC	10/14/2014	11:30		Dichlorodifluoromethane (F-12)	None	EPA 624	ND		ug/L	0.3	0.5		Caltest
DMC	9/30/2014	13:15	10/2/14 21:59	Dichlorotrifluoroethane (F123)	None	EPA 624	ND	0.14		0.14	0.5		Caltest
DMC	10/14/2014	11:30	10/17/2014 23:19	Dichlorotrifluoroethane (F123)	None	EPA 624	ND	0.14	-	0.14	0.5		Caltest
DMC	9/30/2014	13:15	10/7/14 5:32		None	EPA 515.4	J	0.26		0.06	0.5		Eurofins
DMC	10/14/2014	11:30	10/21/14 21:51	Dichlorprop	None	EPA 515.4	J	0.12	j.	0.06	0.5		Eurofins
DMC	9/30/2014	13:15	10/10/14 1:10	Dichlorvos	None	EPA 525.2	ND	0.02		0.02	0.05		Eurofins
DMC	10/14/2014	11:30	10/21/14 19:48	Dichlorvos	None	EPA 525.2	ND	0.02	ug/L	0.02	0.05		Eurofins
DMC	9/30/2014	13:15	10/22/14 15:17	Dieldrin	None	EPA 608	ND	0.004	ug/L	0.004	0.01		Caltest
DMC	10/14/2014	11:30	10/31/2014 11:16	Dieldrin	None	EPA 608	ND	0.004	ug/L	0.004	0.01		Caltest
DMC	9/30/2014	13:15	10/10/14 1:10	Diethyl phthalate	None	EPA 525.2	ND	0.05	ug/L	0.05	0.5		Eurofins
DMC	10/14/2014	11:30	10/21/14 19:48	Diethyl phthalate	None	EPA 525.2	ND	0.05	ug/L	0.05	0.5		Eurofins
DMC	9/30/2014	13:15	10/10/14 1:10	Dimethoate	None	EPA 525.2	ND	0.03	ug/L	0.03	0.1		Eurofins
DMC	10/14/2014	11:30	10/21/14 19:48	Dimethoate	None	EPA 525.2	ND	0.03	ug/L	0.03	0.1	LE	Eurofins
DMC	9/30/2014	13:15	10/10/14 1:10	Dimethyl phthalate	None	EPA 525.2	ND	0.04	ug/L	0.04	0.5		Eurofins
DMC	10/14/2014	11:30	10/21/14 19:48	Dimethyl phthalate	None	EPA 525.2	ND	0.04	ug/L	0.04	0.5		Eurofins
DMC	9/30/2014	13:15	10/10/14 1:10	Di-n-butylphthalate	None	EPA 525.2	ND	0.07	ug/L	0.07	1		Eurofins
DMC	10/14/2014	11:30	10/21/14 19:48	Di-n-butylphthalate	None	EPA 525.2	ND	0.07	ug/L	0.07	1		Eurofins
DMC	9/30/2014	13:15	10/10/14 1:10	Di-n-octylphthalate	None	EPA 525.2	ND	0.03	ug/L	0.03	0.1		Eurofins
DMC	10/14/2014	11:30	10/21/14 19:48	Di-n-octylphthalate	None	EPA 525.2	ND	0.03	ug/L	0.03	0.1		Eurofins
DMC	9/30/2014	13:15	10/7/14 5:32	Dinoseb	None	EPA 515.4	ND	0.02	ug/L	0.02	0.2		Eurofins
DMC	10/14/2014	11:30	10/21/14 21:51	Dinoseb	None	EPA 515.4	ND	0.02	ug/L	0.02	0.2		Eurofins
DMC	9/30/2014	13:45	10/3/14 13:35	Diquat	None	EPA 549.2	ND	0.3	ug/L	0.3	0.4		Eurofins
DMC	10/14/2014	11:30	10/17/14 13:48	Diquat	None	EPA 549.2	ND	0.3	ug/L	0.3	0.4		Eurofins
DMC	9/30/2014	13:15	10/22/14 7:54	Disulfoton	None	EPA 614	ND	0.08	ug/L	0.08	0.1		Caltest
DMC	10/14/2014	11:30	10/31/2014 3:53	Disulfoton	None	EPA 614	ND	0.08	ug/L	0.08	0.1		Caltest
DMC	9/30/2014	11:25	9/30/14 0:00	DO	None	Field Meter	=	8	mg/L				LWA
DMC	10/14/2014	11:30	10/14/14 0:00	DO	None	Field Meter	=	8.61	mg/L				LWA
DMC	9/30/2014	13:15	10/22/14 15:17	Endosulfan I	None	EPA 608	ND	0.004	ug/L	0.004	0.01		Caltest
DMC	10/14/2014	11:30	10/31/2014 11:16	Endosulfan I	None	EPA 608	ND	0.004	ug/L	0.004	0.01		Caltest
DMC	9/30/2014	13:15	10/22/14 15:17	Endosulfan II	None	EPA 608	ND	0.005	ug/L	0.005	0.01		Caltest
DMC	10/14/2014	11:30	10/31/2014 11:16	Endosulfan II	None	EPA 608	ND	0.005	ug/L	0.005	0.01		Caltest
DMC	9/30/2014	13:15	10/22/14 15:17	Endosulfan sulfate	None	EPA 608	ND	0.005		0.005	0.01		Caltest
DMC	10/14/2014	11:30	10/31/2014 11:16		None	EPA 608	ND	0.005	ug/L	0.005	0.01		Caltest
DMC	9/30/2014	13:15	10/6/14 12:18	Endothall	None	EPA 548.1	ND	3	ug/L	3	5		Eurofins
DMC	10/14/2014	11:30	10/22/14 13:49		None	EPA 548.1	ND		ug/L	3	5	LK	Eurofins
DMC	9/30/2014	13:15	10/22/14 15:17	Endrin	None	EPA 608	ND	0.005	ug/L	0.005	0.01		Caltest
DMC	10/14/2014		10/31/2014 11:16	Endrin	None	EPA 608	ND	0.005	-	0.005	0.01		Caltest
DMC	9/30/2014	13:15	10/22/14 15:17	Endrin aldehyde	None	EPA 608	ND	0.005	ug/L	0.005	0.01		Caltest

Monitoring	Sample	Sample			Fraction							QA	
Location	Date	Time	Analysis Date	Analyte Name	Name	Method Name	Qualifier	Result	Unit	MDL	RL	Code	Lab Name
DMC	10/14/2014		10/31/2014 11:16	, ,	None	EPA 608	ND	0.005		0.005	0.01		Caltest
DMC	9/30/2014	13:15	10/22/14 15:17		None	EPA 608	ND	0.005		0.005	0.01		Caltest
DMC	10/14/2014	11:30	10/31/2014 11:16		None	EPA 608	ND	0.005		0.005	0.01		Caltest
DMC	9/30/2014	13:15	10/10/14 1:10		None	EPA 525.2	ND	0.01	0,	0.01	0.1		Eurofins
DMC	10/14/2014	11:30	10/21/14 19:48	EPTC	None	EPA 525.2	ND	0.01	ug/L	0.01	0.1		Eurofins
DMC	9/30/2014	13:15	10/22/14 7:54	Ethion	None	EPA 614	ND	0.005	ug/L	0.005	0.02		Caltest
DMC	10/14/2014	11:30	10/31/2014 3:53	Ethion	None	EPA 614	ND	0.005	ug/L	0.005	0.02		Caltest
DMC	9/30/2014	13:15	10/2/14 21:59	Ethylbenzene	None	EPA 624	ND	0.26	ug/L	0.26	0.5		Caltest
DMC	10/14/2014	11:30	10/17/2014 23:19	Ethylbenzene	None	EPA 624	ND	0.26	ug/L	0.26	0.5		Caltest
DMC	9/30/2014	13:15	10/4/14 2:49	Ethylene dibromide (EDB)	None	EPA 551.1	ND	0.006	ug/L	0.006	0.01		Eurofins
DMC	10/14/2014	11:30	10/17/14 2:31	Ethylene dibromide (EDB)	None	EPA 551.1	ND	0.006	ug/L	0.006	0.01		Eurofins
DMC	9/30/2014	13:15	10/10/14 1:10	Fluoranthene	None	EPA 525.2	ND	0.01	ug/L	0.01	0.1		Eurofins
DMC	10/14/2014	11:30	10/21/14 19:48	Fluoranthene	None	EPA 525.2	ND	0.01	ug/L	0.01	0.1		Eurofins
DMC	9/30/2014	13:15	10/10/14 1:10	Fluorene	None	EPA 525.2	ND	0.01	ug/L	0.01	0.05		Eurofins
DMC	10/14/2014	11:30	10/21/14 19:48	Fluorene	None	EPA 525.2	ND	0.01	ug/L	0.01	0.05		Eurofins
DMC	9/30/2014	13:45	10/20/14 22:26	Fluoride	Total	EPA 300.0	J	0.037	mg/L	0.01	0.1		Caltest
DMC	10/14/2014	11:30	11/6/2014 5:28	Fluoride	Total	EPA 300.0	=	0.1	mg/L	0.01	0.1		Caltest
DMC	9/30/2014	13:15	10/22/14 15:17	gamma-BHC (Lindane)	None	EPA 608	ND	0.004	ug/L	0.004	0.01		Caltest
DMC	10/14/2014	11:30	10/31/2014 11:16	gamma-BHC (Lindane)	None	EPA 608	ND	0.004	ug/L	0.004	0.01		Caltest
DMC	9/30/2014	13:15	10/10/14 1:10	gamma-Chlordane	None	EPA 525.2	ND	0.02	ug/L	0.02	0.05		Eurofins
DMC	10/14/2014	11:30	10/21/14 19:48	gamma-Chlordane	None	EPA 525.2	ND	0.02	ug/L	0.02	0.05		Eurofins
DMC	9/30/2014	13:15	10/8/14 16:15	Glyphosate	None	EPA 547	ND	2	ug/L	2	6		Eurofins
DMC	10/14/2014	11:30	10/20/14 0:00	Glyphosate	None	EPA 547	ND	2	ug/L	2	6		Eurofins
DMC	9/30/2014	13:15	10/8/14 11:00	Hardness as CaCO3	Total	SM20-2340 C	=	110	mg/L	1.7	5		Caltest
DMC	10/14/2014	11:30	10/23/2014 14:00	Hardness as CaCO3	Total	SM20-2340 C	=	130	mg/L	1.7	5		Caltest
DMC	9/30/2014	13:15	10/3/14 17:13	Heptachlor	None	EPA 505	ND	0.003		0.003	0.01		Eurofins
DMC	10/14/2014	11:30	10/18/14 5:36	Heptachlor	None	EPA 505	ND	0.003	ug/L	0.003	0.01		Eurofins
DMC	9/30/2014	13:15	10/22/14 15:17	Heptachlor epoxide	None	EPA 608	ND	0.004	ug/L	0.004	0.01		Caltest
DMC	10/14/2014	11:30	10/31/2014 11:16	Heptachlor epoxide	None	EPA 608	ND	0.004	ug/L	0.004	0.01		Caltest
DMC	9/30/2014	13:15	10/10/14 1:10	Hexachlorobenzene	None	EPA 525.2	ND	0.04	ug/L	0.04	0.05		Eurofins
DMC	10/14/2014	11:30	10/21/14 19:48	Hexachlorobenzene	None	EPA 525.2	ND	0.04	ug/L	0.04	0.05		Eurofins
DMC	9/30/2014	12:45	10/15/14 22:45	Hexachlorobutadiene	None	EPA 625	ND	0.6	ug/L	0.6	1		Caltest
DMC	10/14/2014	11:30	10/28/2014 19:20	Hexachlorobutadiene	None	EPA 625	ND	0.7	ug/L	0.7	1.2		Caltest
DMC	9/30/2014	13:15	10/10/14 1:10	Hexachlorocyclopentadiene	None	EPA 525.2	ND	0.04	ug/L	0.04	0.05		Eurofins
DMC	10/14/2014	11:30	10/21/14 19:48	Hexachlorocyclopentadiene	None	EPA 525.2	ND		ug/L	0.04	0.05		Eurofins
DMC	9/30/2014	12:45	10/15/14 22:45	Hexachloroethane	None	EPA 625	ND	0.6	ug/L	0.6	1		Caltest
DMC	10/14/2014		10/28/2014 19:20		None	EPA 625	ND		ug/L	0.7	1.2		Caltest
DMC	9/30/2014	12:45		Indeno(1,2,3-cd)pyrene	None	EPA 625	ND	0.02	.	0.02	0.05		Caltest
DMC	10/14/2014			Indeno(1,2,3-cd)pyrene	None	EPA 625	ND	0.023		0.023	0.06		Caltest
DMC	9/30/2014	13:15	10/6/14 14:52		Total	EPA 200.8	=	0.18	mg/L	0.005	0.05		Caltest
DMC	10/14/2014		10/23/2014 15:58		Total	EPA 200.8	=		mg/L	0.005	0.05		Caltest
DMC	9/30/2014	13:15	10/10/14 1:10	Isophorone	None	EPA 525.2	ND	0.02	ug/L	0.02	0.5		Eurofins
DMC	10/14/2014	11:30	10/21/14 19:48	Isophorone	None	EPA 525.2	ND	0.02	ug/L	0.02	0.5		Eurofins

Monitoring	Sample	Sample			Fraction							QA	
Location	Date	Time	Analysis Date	Analyte Name	Name	Method Name	Qualifier	Result	Unit	MDL	RL	Code	Lab Name
DMC	9/30/2014	13:15	10/7/14 14:38	,	Total	EPA 200.8	J	0.14	ug/L	0.03	0.25		Caltest
DMC	10/14/2014	11:30	10/23/2014 15:58		Total	EPA 200.8	J		ug/L	0.03	0.25		Caltest
DMC	9/30/2014	13:15	10/22/14 7:54	Malathion	None	EPA 614	ND	0.005		0.005	0.05		Caltest
DMC	10/14/2014	11:30	10/31/2014 3:53	Malathion	None	EPA 614	ND	0.005		0.005	0.05		Caltest
DMC	9/30/2014	13:15	10/6/14 14:52	Manganese	Total	EPA 200.8	=	36	ug/L	0.1	0.5		Caltest
DMC	10/14/2014	11:30	10/23/2014 15:58	Manganese	Total	EPA 200.8	=	15	ug/L	0.1	0.5		Caltest
DMC	9/30/2014	13:45	10/1/2014 10:30	MBAS (Surfactants)	None	SM20-5540 C	ND	0.02	mg/L	0.02	0.1		Caltest
DMC	10/14/2014	11:30	10/16/2014 8:36	MBAS (Surfactants)	None	SM20-5540 C	J	0.043	mg/L	0.02	0.1		Caltest
DMC	9/30/2014	12:30	10/7/14 9:03	Mercury	Total	EPA 1631E	=	0.0009	ug/L	0.0002	0.0005		Caltest
DMC	10/14/2014	11:30	10/21/2014 9:00	Mercury	Total	EPA 1631E	=	0.0013	ug/L	0.0002	0.0005		Caltest
DMC	9/30/2014	13:15	10/3/14 7:52	Methiocarb	None	EPA 531.2	ND	0.1	ug/L	0.1	0.5		Eurofins
DMC	10/14/2014	11:30	10/17/14 0:59	Methiocarb	None	EPA 531.2	ND	0.1	ug/L	0.1	0.5		Eurofins
DMC	9/30/2014	13:15	10/3/14 7:52	Methomyl	None	EPA 531.2	ND	0.2	ug/L	0.2	0.5		Eurofins
DMC	10/14/2014	11:30	10/17/14 0:59	Methomyl	None	EPA 531.2	ND	0.2	ug/L	0.2	0.5		Eurofins
DMC	9/30/2014	13:15	10/22/14 15:17	Methoxychlor	None	EPA 608	ND	0.005	ug/L	0.005	0.01		Caltest
DMC	10/14/2014	11:30	10/31/2014 11:16	Methoxychlor	None	EPA 608	ND	0.005	ug/L	0.005	0.01		Caltest
DMC	9/30/2014	13:15	10/2/14 21:59	Methyl tert-butyl ether (MTBE)	None	EPA 624	ND	0.15	ug/L	0.15	0.5		Caltest
DMC	10/14/2014	11:30	10/17/2014 23:19	Methyl tert-butyl ether (MTBE)	None	EPA 624	ND	0.15	ug/L	0.15	0.5		Caltest
DMC	9/30/2014	13:15	10/2/14 21:59	Methylene chloride	None	EPA 624	ND	0.3	ug/L	0.3	0.5		Caltest
DMC	10/14/2014	11:30	10/17/2014 23:19	Methylene chloride	None	EPA 624	ND	0.3	ug/L	0.3	0.5		Caltest
DMC	9/30/2014	13:15	10/10/14 1:10	Metolachlor	None	EPA 525.2	ND	0.02	ug/L	0.02	0.05		Eurofins
DMC	10/14/2014	11:30	10/21/14 19:48	Metolachlor	None	EPA 525.2	ND	0.02	ug/L	0.02	0.05		Eurofins
DMC	9/30/2014	13:15	10/10/14 1:10	Metribuzin	None	EPA 525.2	ND	0.02	ug/L	0.02	0.05		Eurofins
DMC	10/14/2014	11:30	10/21/14 19:48	Metribuzin	None	EPA 525.2	ND	0.02	ug/L	0.02	0.05		Eurofins
DMC	9/30/2014	13:15	10/10/14 1:10	Molinate	None	EPA 525.2	ND	0.02	ug/L	0.02	0.1		Eurofins
DMC	10/14/2014	11:30	10/21/14 19:48	Molinate	None	EPA 525.2	ND	0.02	ug/L	0.02	0.1		Eurofins
DMC	9/30/2014	13:15	10/10/14 1:10	Naphthalene	None	EPA 525.2	ND	0.01	ug/L	0.01	0.3		Eurofins
DMC	10/14/2014	11:30	10/21/14 19:48	Naphthalene	None	EPA 525.2	ND	0.01	ug/L	0.01	0.3		Eurofins
DMC	9/30/2014	13:15	10/7/14 14:38	Nickel	Total	EPA 200.8	=	1.6	ug/L	0.08	0.5		Caltest
DMC	10/14/2014	11:30	10/23/2014 15:58	Nickel	Total	EPA 200.8	=	1.1	ug/L	0.06	0.5		Caltest
DMC	9/30/2014	12:45	10/15/14 22:45	Nitrobenzene	None	EPA 625	ND	0.9	ug/L	0.9	1		Caltest
DMC	10/14/2014	11:30	10/28/2014 19:20	Nitrobenzene	None	EPA 625	ND	1	ug/L	1	1.2		Caltest
DMC	9/30/2014	13:45	10/1/14 14:52	Nitrogen, Nitrate (as N)	None	EPA 300.0	=	0.14	mg/L	0.01	0.1		Caltest
DMC	10/14/2014	11:30	10/15/2014 21:19	Nitrogen, Nitrate (as N)	None	EPA 300.0	=	0.46	mg/L	0.01	0.1		Caltest
DMC	9/30/2014	13:45	10/1/14 10:20	Nitrogen, Nitrite	None	SM20-4500-NO2 B	ND	0.005	mg/L	0.005	0.03		Caltest
DMC	10/14/2014	11:30	10/15/2014 10:18	Nitrogen, Nitrite	None	SM20-4500-NO2 B	ND	0.005	mg/L	0.005	0.03		Caltest
DMC	9/30/2014	12:45	1 1	N-Nitrosodimethylamine	None	EPA 625	ND		ug/L	0.5	5		Caltest
DMC	10/14/2014	11:30	10/28/2014 19:20	N-Nitrosodimethylamine	None	EPA 625	ND	0.58		0.58	5		Caltest
DMC	9/30/2014	12:45	10/15/14 22:45	N-Nitrosodi-N-propylamine	None	EPA 625	ND		ug/L	0.8	5		Caltest
DMC	10/14/2014	11:30	10/28/2014 19:20	N-Nitrosodi-N-propylamine	None	EPA 625	ND	0.93	ug/L	0.93	5		Caltest
DMC	9/30/2014	12:45	1 1	N-Nitrosodiphenylamine	None	EPA 625	ND	0.5	ug/L	0.5	1		Caltest
DMC	10/14/2014	11:30	10/28/2014 19:20	N-Nitrosodiphenylamine	None	EPA 625	ND	0.58		0.58	1.2		Caltest
DMC	9/30/2014	13:15	10/14/14 19:18	OCDD	None	EPA 1613 D/F	=	57.1	pg/L	0.667			Frontier

Monitoring	Sample	Sample			Fraction							QA	
Location	Date	Time	Analysis Date	Analyte Name	Name	Method Name	Qualifier	Result	Unit	MDL	RL	Code	Lab Name
DMC	10/14/2014	11:30	10/30/14 17:22		None	EPA 1613 D/F	=	151	pg/L	0.667			Frontier
DMC	9/30/2014	13:15	10/14/14 19:18		None	EPA 1613 D/F	ND		pg/L	0.481			Frontier
DMC	10/14/2014	11:30	10/30/14 17:22	OCDF	None	EPA 1613 D/F	ND		pg/L	0.481			Frontier
DMC	9/30/2014	13:15	10/3/14 7:52	Oxayml	None	EPA 531.2	ND		ug/L	0.2	0.5		Eurofins
DMC	10/14/2014	11:30	10/17/14 0:59	Oxayml	None	EPA 531.2	ND	0.2	ug/L	0.2	0.5		Eurofins
DMC	9/30/2014	13:15	10/22/14 7:54	Parathion, ethyl	None	EPA 614	ND	0.008	ug/L	0.008	0.05		Caltest
DMC	10/14/2014	11:30	10/31/2014 3:53	Parathion, ethyl	None	EPA 614	ND	0.008	ug/L	0.008	0.05		Caltest
DMC	9/30/2014	13:15	10/22/14 7:54	Parathion, methyl	None	EPA 614	ND	0.08	ug/L	0.08	0.1		Caltest
DMC	10/14/2014	11:30	10/31/2014 3:53	Parathion, methyl	None	EPA 614	ND	0.08	ug/L	0.08	0.1		Caltest
DMC	9/30/2014	13:15	10/3/14 17:13	PCB Aroclor 1016	None	EPA 505	ND	0.02	ug/L	0.02	0.08		Eurofins
DMC	10/14/2014	11:30	10/18/14 5:36	PCB Aroclor 1016	None	EPA 505	ND	0.02	ug/L	0.02	0.08		Eurofins
DMC	9/30/2014	13:15	10/22/14 15:17	PCB Aroclor 1221	None	EPA 608	ND	0.05	ug/L	0.05	0.1		Caltest
DMC	10/14/2014	11:30	10/18/14 0:00	PCB Aroclor 1221	None	EPA 608	ND	0.05	ug/L	0.05	0.1		Caltest
DMC	9/30/2014	13:15	10/22/14 15:17	PCB Aroclor 1232	None	EPA 608	ND	0.05	ug/L	0.05	0.1		Caltest
DMC	10/14/2014	11:30	10/18/14 0:00	PCB Aroclor 1232	None	EPA 608	ND	0.05	ug/L	0.05	0.1		Caltest
DMC	9/30/2014	13:15	10/22/14 15:17	PCB Aroclor 1242	None	EPA 608	ND	0.04	ug/L	0.04	0.1		Caltest
DMC	10/14/2014	11:30	10/18/14 0:00	PCB Aroclor 1242	None	EPA 608	ND	0.04	ug/L	0.04	0.1		Caltest
DMC	9/30/2014	13:15	10/3/14 17:13	PCB Aroclor 1248	None	EPA 505	ND	0.02	ug/L	0.02	0.1		Eurofins
DMC	10/14/2014	11:30	10/18/14 5:36	PCB Aroclor 1248	None	EPA 505	ND	0.02	ug/L	0.02	0.1		Eurofins
DMC	9/30/2014	13:15	10/3/14 17:13	PCB Aroclor 1254	None	EPA 505	ND	0.04	ug/L	0.04	0.1		Eurofins
DMC	10/14/2014	11:30	10/18/14 5:36	PCB Aroclor 1254	None	EPA 505	ND	0.04	ug/L	0.04	0.1		Eurofins
DMC	9/30/2014	13:15	10/3/14 17:13	PCB Aroclor 1260	None	EPA 505	ND	0.03	ug/L	0.03	0.1		Eurofins
DMC	10/14/2014	11:30	10/18/14 5:36	PCB Aroclor 1260	None	EPA 505	ND	0.03	ug/L	0.03	0.1		Eurofins
DMC	9/30/2014	13:15	10/10/14 1:10	Pendimethalin	None	EPA 525.2	ND	0.05	ug/L	0.05	0.1		Eurofins
DMC	10/14/2014	11:30	10/21/14 19:48	Pendimethalin	None	EPA 525.2	ND	0.05	ug/L	0.05	0.1		Eurofins
DMC	9/30/2014	13:15	10/7/14 5:32	Pentachlorophenol	None	EPA 515.4	J	0.014	ug/L	0.005	0.04		Eurofins
DMC	10/14/2014	11:30	10/21/14 21:51	Pentachlorophenol	None	EPA 515.4	ND	0.005	ug/L	0.005	0.04		Eurofins
DMC	9/30/2014	13:15	10/10/14 1:10	Permethrin	None	EPA 525.2	ND	0.04	ug/L	0.04	0.1		Eurofins
DMC	10/14/2014	11:30	10/21/14 19:48	Permethrin	None	EPA 525.2	ND	0.04	ug/L	0.04	0.1	LE	Eurofins
DMC	9/30/2014	11:25	9/30/14 11:25	рН	None	Field Meter	=	8.08	SU				LWA
DMC	10/14/2014	11:30	10/14/14 0:00	рН	None	Field Meter	=	7.87	SU				LWA
DMC	9/30/2014	13:15	10/10/14 1:10		None	EPA 525.2	ND	0.008	ug/L	0.008	0.04		Eurofins
DMC	10/14/2014	11:30	10/21/14 19:48		None	EPA 525.2	ND	0.008	<u>.</u>	0.008	0.04		Eurofins
DMC	9/30/2014	12:45	10/15/2014 22:45	Phenol	None	EPA 625	ND	0.5	ug/L	0.5	1		Caltest
DMC	10/14/2014	11:30	10/28/2014 19:20	Phenol	None	EPA 625	ND	0.58	ug/L	0.58	1.2		Caltest
DMC	9/30/2014	13:15	10/7/14 5:32	Picloram	None	EPA 515.4	ND		ug/L	0.02	0.1		Eurofins
DMC	10/14/2014	11:30	10/21/14 21:51		None	EPA 515.4	ND		ug/L	0.02	0.1		Eurofins
DMC	9/30/2014	13:15	10/10/14 1:10		None	EPA 525.2	ND		ug/L	0.02	0.05		Eurofins
DMC	10/14/2014	11:30	, ,		None	EPA 525.2	ND		ug/L	0.02	0.05	LE	Eurofins
DMC	9/30/2014	13:15	10/10/14 1:10		None	EPA 525.2	ND	0.008		0.008	0.05		Eurofins
DMC	10/14/2014	11:30	10/21/14 19:48		None	EPA 525.2	ND	0.008	-	0.008	0.05		Eurofins
DMC	9/30/2014		10/10/2014 10:44		Total	EPA 200.8	J		ug/L	0.3	1		Caltest
DMC	10/14/2014	11:30	10/23/2014 15:58	Selenium	Total	EPA 200.8	J	0.47	ug/L	0.4	1		Caltest

Monitoring	Sample	Sample			Fraction							QA	
Location	Date	Time	Analysis Date	Analyte Name	Name	Method Name	Qualifier	Result	Unit	MDL	RL	Code	Lab Name
DMC	9/30/2014	13:15		, ,	Total	EPA 200.8	ND		ug/L	0.04	0.1		Caltest
DMC	10/14/2014		10/23/2014 15:58		Total	EPA 200.8	ND		ug/L	0.02	0.1		Caltest
DMC	9/30/2014	13:15	10/10/14 1:10		None	EPA 525.2	ND	0.03		0.03	0.05		Eurofins
DMC	10/14/2014	11:30			None	EPA 525.2	ND		ug/L	0.03	0.05		Eurofins
DMC	9/30/2014	13:15	10/2/2014 21:59	Styrene	None	EPA 624	ND	0.19		0.19	0.5		Caltest
DMC	10/14/2014	11:30	10/17/2014 23:19		None	EPA 624	ND		ug/L	0.19	0.5		Caltest
DMC	9/30/2014	13:45	10/14/2014 0:32	Sulfate (as SO4)	None	EPA 300.0	=		mg/L	2.5	10		Caltest
DMC	10/14/2014	11:30	10/15/2014 23:35	Sulfate (as SO4)	None	EPA 300.0	=	39	mg/L	1	5		Caltest
DMC	9/30/2014	13:15	10/6/2014 10:00	Sulfide	None	SM20-4500-S D	ND		mg/L	0.03	0.1		Caltest
DMC	10/14/2014	11:30	10/21/2014 11:00	Sulfide	None	SM20-4500-S D	ND	0.03	mg/L	0.03	0.1		Caltest
DMC	9/30/2014	13:15	10/3/14 22:10	Sulfite	None	SM 4500-SO3-B	ND	1.33	mg/L	1.33	4		Eurofins
DMC	10/14/2014	11:30	10/16/14 0:00	Sulfite	None	SM 4500-SO3-B	ND	1.33	mg/L	1.33	4		Eurofins
DMC	9/30/2014	11:25	9/30/14 11:25	Temperature	None	Field Meter	=	22	Deg C				LWA
DMC	10/14/2014	11:30	10/14/14 0:00	Temperature	None	Field Meter	=	21.05	Deg C				LWA
DMC	9/30/2014	13:15	10/10/14 1:10	Terbacil	None	EPA 525.2	ND	0.07	ug/L	0.07	0.1		Eurofins
DMC	10/14/2014	11:30	10/21/14 19:48	Terbacil	None	EPA 525.2	ND	0.07	ug/L	0.07	0.1		Eurofins
DMC	9/30/2014	13:15	10/10/14 1:10	Terbuthylazine	None	EPA 525.2	ND	0.02	ug/L	0.02	0.1		Eurofins
DMC	10/14/2014	11:30	10/21/14 19:48	Terbuthylazine	None	EPA 525.2	ND	0.02	ug/L	0.02	0.1		Eurofins
DMC	9/30/2014	13:15	10/2/2014 21:59	Tetrachloroethene	None	EPA 624	ND	0.19	ug/L	0.19	0.5		Caltest
DMC	10/14/2014	11:30	10/17/2014 23:19	Tetrachloroethene	None	EPA 624	ND	0.19	ug/L	0.19	0.5		Caltest
DMC	9/30/2014	13:15	10/7/2014 14:38	Thallium	Total	EPA 200.8	ND	0.1	ug/L	0.1	0.1		Caltest
DMC	10/14/2014	11:30	10/23/2014 15:58	Thallium	Total	EPA 200.8	ND	0.05	ug/L	0.05	0.1		Caltest
DMC	9/30/2014	13:15	10/22/2014 7:54	Thiobencarb	None	EPA 614	ND	0.008	ug/L	0.008	0.05		Caltest
DMC	10/14/2014	11:30	10/21/14 0:00	Thiobencarb	None	EPA 614	ND	0.008	ug/L	0.008	0.05		Caltest
DMC	9/30/2014	13:15	10/2/2014 21:59	Toluene	None	EPA 624	ND	0.19	ug/L	0.19	0.5		Caltest
DMC	10/14/2014	11:30	10/17/2014 23:19	Toluene	None	EPA 624	ND	0.19	ug/L	0.19	0.5		Caltest
DMC	9/30/2014	13:15	10/7/14 5:32	Total DCPA (Dacthal) Mono & Diacid Degradate	None	EPA 515.4	J	0.058	ug/L	0.04	0.1		Eurofins
DMC	10/14/2014	11:30	10/21/14 21:51	Total DCPA (Dacthal) Mono & Diacid Degradate	None	EPA 515.4	J	0.099	ug/L	0.04	0.1		Eurofins
DMC	9/30/2014	13:45		Total Dissolved Solids	Dissolved		=		mg/L	4	10		Caltest
DMC	10/14/2014	11:30	10/16/2014 17:24	Total Dissolved Solids	Dissolved	SM20-2540 C	=	390	mg/L	4	10		Caltest
DMC	9/30/2014	13:15	10/14/14 19:18	Total HpCDD	None	EPA 1613 D/F	J		pg/L				Frontier
DMC	10/14/2014	11:30	10/30/14 17:22	Total HpCDD	None	EPA 1613 D/F	=	38.3	pg/L				Frontier
DMC	9/30/2014	13:15	10/14/14 19:18		None	EPA 1613 D/F	ND	1.68	pg/L				Frontier
DMC	10/14/2014	11:30	10/30/14 17:22	•	None	EPA 1613 D/F	ND		pg/L				Frontier
DMC	9/30/2014	13:15	10/14/14 19:18		None	EPA 1613 D/F	ND	1.73					Frontier
DMC	10/14/2014	11:30	10/30/14 17:22		None	EPA 1613 D/F	ND	1.56	pg/L				Frontier
DMC	9/30/2014	13:15	10/14/14 19:18		None	EPA 1613 D/F	ND	0.674					Frontier
DMC	10/14/2014	11:30	10/30/14 17:22		None	EPA 1613 D/F	ND		pg/L				Frontier
DMC	9/30/2014	13:15	10/14/14 19:18		None	EPA 1613 D/F	ND	1.07					Frontier
DMC	10/14/2014	11:30	10/30/14 17:22		None	EPA 1613 D/F	ND	1.64					Frontier
DMC	9/30/2014	13:15	10/14/14 19:18		None	EPA 1613 D/F	ND	0.729					Frontier
DMC	10/14/2014	11:30	10/30/14 17:22		None	EPA 1613 D/F	ND	0.728					Frontier
DMC	9/30/2014	13:45	10/8/2014 13:18	Total Phosphorus as P	Total	SM4500-P B/F,1999, Low Level	=	0.11	mg/L	0.007	0.01		Caltest

Monitoring	Sample	Sample			Fraction							QA	
Location	Date	Time	Analysis Date	Analyte Name	Name	Method Name	Qualifier	Result	Unit	MDL	RL	Code	Lab Name
DMC	10/14/2014	11:30	10/21/2014 10:19	Total Phosphorus as P	Total	SM4500-P B/F,1999, Low Level	=	0.12	mg/L	0.007	0.01		Caltest
DMC	9/30/2014	13:15	10/14/14 19:18	Total TCDD	None	EPA 1613 D/F	ND	0.455	pg/L				Frontier
DMC	10/14/2014	11:30	10/30/14 17:22	Total TCDD	None	EPA 1613 D/F	ND	0.559	pg/L				Frontier
DMC	9/30/2014	13:15	10/14/14 19:18	Total TCDF	None	EPA 1613 D/F	ND	0.654	pg/L				Frontier
DMC	10/14/2014	11:30	10/30/14 17:22	Total TCDF	None	EPA 1613 D/F	ND	0.63	pg/L				Frontier
DMC	9/30/2014	13:15	10/3/14 17:13	Toxaphene	None	EPA 505	ND	0.08	ug/L	0.08	0.5		Eurofins
DMC	10/14/2014	11:30	10/18/14 5:36	Toxaphene	None	EPA 505	ND	0.08	ug/L	0.08	0.5		Eurofins
DMC	9/30/2014	13:15	10/2/2014 21:59	trans-1,2-Dichloroethene	None	EPA 624	ND	0.22	ug/L	0.22	0.5		Caltest
DMC	10/14/2014	11:30	10/17/2014 23:19	trans-1,2-Dichloroethene	None	EPA 624	ND	0.22	ug/L	0.22	0.5		Caltest
DMC	9/30/2014	13:15	10/2/2014 21:59	trans-1,3-Dichloropropene	None	EPA 624	ND	0.16	ug/L	0.16	0.5		Caltest
DMC	10/14/2014	11:30	10/17/2014 23:19	trans-1,3-Dichloropropene	None	EPA 624	ND	0.16	ug/L	0.16	0.5		Caltest
DMC	9/30/2014	13:15	10/10/14 1:10	trans-Nonachlor	None	EPA 525.2	ND	0.03	ug/L	0.03	0.05		Eurofins
DMC	10/14/2014	11:30	10/21/14 19:48	trans-Nonachlor	None	EPA 525.2	ND	0.03	ug/L	0.03	0.05		Eurofins
DMC	9/30/2014	13:15	10/7/14 13:22	Tributyltin	None	Organotins, PSEP (GC/MS)	ND	0.0009	ug/L	0.0009	0.0023		TestAmerica
DMC	10/14/2014	11:30	10/23/14 13:06	Tributyltin	None	Organotins, PSEP (GC/MS)	ND	0.00088	ug/L	0.00088	0.0022		TestAmerica
DMC	9/30/2014	13:15	10/2/2014 21:59	Trichloroethene	None	EPA 624	ND	0.2	ug/L	0.2	0.5		Caltest
DMC	10/14/2014	11:30	10/17/2014 23:19	Trichloroethene	None	EPA 624	ND	0.2	ug/L	0.2	0.5		Caltest
DMC	9/30/2014	13:15	10/2/2014 21:59	Trichlorofluoromethane (F-11)	None	EPA 624	ND	0.29	ug/L	0.29	0.5		Caltest
DMC	10/14/2014	11:30	10/17/2014 23:19	Trichlorofluoromethane (F-11)	None	EPA 624	ND	0.29	ug/L	0.29	0.5		Caltest
DMC	9/30/2014	13:15	10/2/2014 21:59	Trichlorotrifluorethane (F113)	None	EPA 624	ND	0.11	ug/L	0.11	1		Caltest
DMC	10/14/2014	11:30	10/17/2014 23:19	Trichlorotrifluorethane (F113)	None	EPA 624	ND	0.11	ug/L	0.11	1		Caltest
DMC	9/30/2014	13:15	10/10/14 1:10	Trifluralin	None	EPA 525.2	ND	0.04	ug/L	0.04	0.1		Eurofins
DMC	10/14/2014	11:30	10/21/14 19:48	Trifluralin	None	EPA 525.2	ND	0.04	ug/L	0.04	0.1		Eurofins
DMC	9/30/2014	13:15	10/2/2014 21:59	Vinyl chloride	None	EPA 624	ND	0.25	ug/L	0.25	0.5		Caltest
DMC	10/14/2014	11:30	10/17/2014 23:19	Vinyl chloride	None	EPA 624	ND	0.25	ug/L	0.25	0.5		Caltest
DMC	9/30/2014	13:15	10/2/2014 21:59	Xylenes, Total	None	EPA 624	ND	0.26	ug/L	0.26	0.5		Caltest
DMC	10/14/2014	11:30	10/17/2014 23:19	Xylenes, Total	None	EPA 624	ND	0.26	ug/L	0.26	0.5		Caltest
DMC	9/30/2014	13:15	10/7/2014 14:38	Zinc	Total	EPA 200.8	=	1.2	ug/L	0.7	1		Caltest
DMC	10/14/2014	11:30	10/23/2014 15:58	Zinc	Total	EPA 200.8	=	77	ug/L	0.7	1		Caltest

QA Codes:

L3 = The associated blank spike recovery was above method acceptance limits.

LE = MRL Check recovery was above laboratory acceptance limits.

LK = The associated blank spike recovery was above method acceptance limits. This target analyte was not detected in the sample.

R7 = LFB/LFBD RPD exceeded the laboratory acceptance limit. Recovery met acceptance criteria.

VC = CCV is high biased, ND data are reportable as per TNI V1M4 1.7.2.(e).i.

Calculation of the estimated distance to "complete mixing" considering the 7Q10 and harmonic mean flows calculated in the Delta-Mendota Canal

DMC Dimensions (see Figure E	8-1)	DMC Flows	DMC Average Advective Velocity			
	ft	m		cfs	m³/s		m/s
Base a	99	30.18	7Q10 flow	397	11.24	7Q10 flow	0.10
Base b	48	14.63	Harmonic mean (HM) flow	2153	60.97	Harmonic mean flow	0.53
Height	17	5.18					
	ft ²	m²	Distance to "complete mixing"	equation (a)	iter Eischer et a	al 1070)	
Area	1249.5	116.08	(1) Lm = $0.1 \text{ u}(2\text{W})^2/\text{D}_{T}$	Distance at		, 1 <i>575</i> 7	
Alea	1249.5	110.00	where:	m	miles		
	ft	m	Lm = length complete mix	823.29	0.5	DMC Geometry and	Elows
Channel width (W)		30.18	u = avg advective velocity (m/s)	025.25	0.5	1° inputs to complete	
Wetted perimeter	109.3	33.31	W = channel width (m)	Distance a	t HM Flow	2° inputs to complete	
	105.5	55.51	D_T = transverse	m	miles		
	m/m		dispersion coefficient (m^2/s)	4464.82	2		
Hydraulic gradient	-		dispersion coefficient (m /s)	4404.02	5		
Tryata and gradient	0.00003		(2) $D_T = 0.2 Hu' (m^2/s)$		0.043		
Base a = 99) f+		H = avg. depth of flow (m)		5.18		
Dase a = 95							
		11-1-1-1 4	(3) Sheer velocity = $u' = SQRT gR_HS$				
		Height = 1		ĺ			
			g = accel. d/t gravity (m/s2)		9.81		
Base b = 48	-		R _H = hydralic radius (m)		3.48		
Figure B-1: DMC D	imensions		S = hydraulic gradient (m/m)		0.00005		

Note: Because water movement and elevation in the DMC are controlled by a series of gates along its length, water height (or depth) does not vary much throughout a year. After consultation with San Luis & Delta-Mendota Water Authority staff, a water height of 17 ft was chosen to be representative of the canal across all water year types. To this end, the only factor that differs among the calculations for distance to complete mixing for the 7Q10 and harmonic mean flows is the average advective velocity, which is a function of flow.

Appendix F: Supplemental Discussion of Far-Field Impacts Calculations

According to the State Water Project Annual Report of Operations (DWR, 2005):

"There are two accounting procedures for calculating storage shares in O'Neill Forebay. One calculates storage shares using actual SWP/USBR deliveries from water pumped at Dos Amigos PP. The other method calculates storage shares in O'Neill using amounts pumped for each agency derived from scheduled energy at Dos Amigos only. Since scheduled pumping and water deliveries never match, there is always a difference that is carried over into subsequent months. These mismatches are used to "underschedule" or "overschedule" energy and pumping at Dos Amigos only in order to bring the mismatch back into alignment or closer to zero."

It should be noted that 66 of the 11,962 (0.55%) daily storage data provided by DWR (Smith, 2015) for the O'Neill Forebay show a negative volume due to the mismatch in deliveries versus pumping. The data were revised such that the negative share equals 0% and the total storage equals the opposing (either federal or state) project share.

The average federal share (end-of-month storage) estimated within the San Luis Reservoir (based on available monthly data from January 1980 through September 2012) and O'Neill Forebay (based on available daily data from January 1980 through September 2012) calculated by month and by year are provided in **Table C-1** and **Table C-2**, respectively. The estimated annual average federal share of water within the San Luis Joint-Use Complex from 1980 – 2012 is shown graphically **Figure C-1**.

•	0, ,
San Luis Reservoir	O'Neill Forebay
47.46%	46.42%
46.83%	45.26%
47.05%	48.18%
46.86%	49.39%
45.30%	48.84%
40.53%	48.89%
32.88%	47.80%
27.70%	49.62%
34.01%	49.16%
41.10%	48.55%
47.91%	48.57%
48.83%	49.08%
27.7%	45.26%
48.83%	49.62%
	47.46% 46.83% 47.05% 46.86% 45.30% 40.53% 32.88% 27.70% 34.01% 41.10% 47.91% 48.83% 27.7%

Table C-1: Estimated Federal Share (end-of-month storage) by Month.

Year	San Luis Reservoir	O'Neill Forebay
1980	40.04%	48.65%
1981	44.31%	51.11%
1982	50.07%	47.96%
1983	44.12%	47.19%
1984	31.53%	53.32%
1985	32.08%	50.63%
1986	41.33%	48.15%
1987	43.11%	47.70%
1988	36.88%	47.75%
1989	44.58%	48.67%
1990	62.29%	50.40%
1991	57.91%	47.71%
1992	35.23%	48.64%
1993	39.10%	48.17%
1994	36.45%	43.57%
1995	39.17%	46.61%
1996	36.81%	52.86%
1997	35.61%	46.91%
1998	45.67%	46.10%
1999	35.08%	48.87%
2000	51.50%	48.95%
2001	47.52%	49.75%
2002	49.46%	48.87%
2003	46.61%	51.45%
2004	39.03%	49.79%
2005	41.89%	47.70%
2006	39.72%	47.13%
2007	37.35%	49.21%
2008	35.01%	48.81%
2009	36.97%	36.63%
2010	49.15%	46.26%
2011	47.03%	50.79%
2012	38.25%	48.45%
Minimum Estimated	31.53%	36.63%
Maximum Estimated	62.29%	53.32%

 Table C-2: Estimated Federal Share (end-of-month storage) by Year.

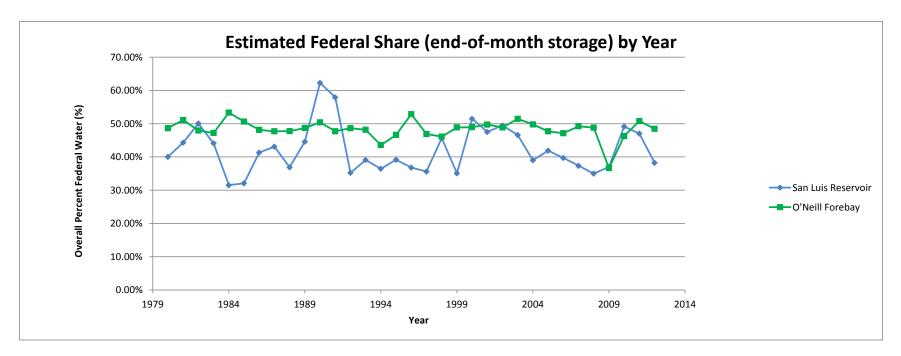


Figure C-1: Estimated Federal Share of Water within the San Luis Joint-Use Complex Storage Facilities as an Annual Average.