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Figure 2. PMP yield function on wheat

ence, PMP can be thought of as revealed effi-
ciency based on observed land allocations.

Equation (12) substantiates the dual values
shown in figure 1, where the duals for the cali-
bration constraint set (A,) in the stage I problem
are equal to the divergence between the LP av-
erage net value product per acre and opportu-
nity cost per acre. Since the value A, represents
the difference between VAP and VMP for the
more profitable crops, and given the linear
yield function in (8), a single element of A, can
be expressed as

o
I

P(B, - 8,:x,) — BB, — 28,x,)
Pd,x.

It

Using (13) the yield slope coefficient can be
solved as

B, = —2,

14
(),P‘_x

Using equation (10) the intercept coefficient ({3;)
for crop i can be solved in terms of §; and ¥,.
Despite all the notation, the basic concept of
PMP is numerically simple and easy to solve
automatically, even on desktop computers. A
numerical example applied to the problem in

equation (1) and figures | and 2 demonstrates
this simplicity.

The problems shown in figures 1 and 2 have
a single land constraint (500 acres) and two
crops, wheat and oats. The following param-
eters are used:

Wheat (w) (Oats) (o)

Crop prices P, =$2.98/bu P, = $2.20/bu
Variable cost/acte © = $129.62 o, = $109.98
Average yield/acre y_ = 69 bu Yo = 65.9 bu

The observed acreage allocation in the base
year is 300 acres of wheat and 200 acres of
oats. The problem in figure 1 is

(15) max (2.98%69 — 130)x,,
+(2.20%65.9 — 110)x,

subject to
(i) x, + x < 500
(i1) X, < 300.01
(i) X, < 200.01

Note the addition of the € perturbation term
(0.01) on the right-hand side of the calibration
constraints. The average gross margin from
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Figure 3. PMP model—quadratic yields on all crops

wheat is $76/acre and for oats is $35/acre. The
optimal solution to the stage 1 problem (1) is
when the wheat calibration constraint is bind-
ing at a value of 300.01 and constraint (i) is
binding when the oat acreage equals 199.99.
The oat calibration constraint is slack.

The dual value on land (X)) is $35 and on the
two calibration constraints (A,) = [4]1 and 0].
Using equation (14), the A, value for wheat and
the base-year data, the yield function slope for
wheat is calculated as

(16) 3, = 41/(2.98+%300.01) = 0.04586.

Quantity d,, is now substituted into equation
(10) to calculate the yield slope intercept B,

(17) B, = 69 +(0.04586+300.01) = 82.76.

Using the yield function parameters, the Stage
11 primal PMP problem becomes (see figure 2)

(18) max [2.98(82.76 — 0.04586 *x,) — 130]x,
+(2.20%65.9 — 110)x,

subject to
x,, + X%, £ 500.

A quick empirical check of the calibration of

problem (18) to the base values can be per-
formed by calculating the VMP of wheat at 300
acres. If it is close to the VMP (VAP) of oats
and convergent, the model will calibrate with-
out additional calibration constraints.

The marginal yield per acre of wheat is

Yi300 = 82.76 — 2%0.04586 %300 = 55.25
VMP,, 35 = 2.98#55.25 — 130 = 34.65

The VMP for wheat at 300 acres of $34.65 is
marginally below the VMP for oats ($35).
Thus, the unconstrained PMP model will cali-
brate within the rounding error of this example.
This numerical example shows that PMP
models can be calibrated using simple methods.
The Lhree-stage process and calculation of the
parameters is easily programmable as a single
process using GAMS/MINOS.* Thus, given the
initial data and specifications, the PMP model
is automatically calibrated in the time it takes
to solve an LP and QP solution for the model.
The PMP model specified in (18) calibrates
in all aspects. That is, the optimal solution,
binding constraints, objective function value

4 A PMP program wiilten for the GAMS/MINOS optimization pack-
age is available from the author by e-mail (rehowitt@ucdavis.edu). The
program can be used to automatically calibrate and run a range of ag-
ricultural production problems by PMP.
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and dual values will all be within rounding er-
ror of the original LP in (15) that is constrained
by the calibration constraints.

A valid objection to the simple PMP specifi-
cation in (15) is that we assumc a decreasing
yield/acre function for the more profitable un-
constrained crops Xy, but the crop set xg that is
constrained by resources is assumed to have
constant yields.

Calibrating the marginal crops (xg) with de-
creasing yield functions requires additional em-
pirical information. The independent variables,
as Xy are termed, use both the constrained re-
source opportunity cost (4,) and their own cali-
bration dual (4,) (figure 1) to solve for the
yield function parameters implied by the ob-
served crop allocations. However, the marginal
crops (xg) have no binding calibration con-
straint, and thus cannot empirically differenti-
ate marginal and average yield of the observed
calibration acreage using the minimal LP data
set specified.

Clearly some additional data are needed. The
simplest source of additional data are measure-
ments on the expected yield variation of the
marginal crops (xg) within a given region and
year. Regional acreage response elasticities
would supply the equivalent information, but it
would seem that yield variation is an easier em-
pirical value to obtain from farmers, particu-
larly if it is simplified into percentage deviations
above and below the mean yields in the region.

Returning to the simple pedagogical example
in equation (15) and figure 2, the stage 1 cali-
brated problem is run exactly as before. One of
the important pieces of information from the
optimal solution of the stage 1 problem is the
activities which are in the x5 and Xy groups.
This information is unlikely to be known be-
forehand.

In the example, assume that the a priori infor-
mation on oats is that expected yield variation
is plus or minus 10% of the mean. The reduced
marginal yield information now causes a recal-
culation of the opportunity cost of land. Given
an average yield (y,) for oats of 65.9 bu/acre
and a price of $2.20, the marginal return given
10% yield reduction will now be based on a
yield of $59.31 bu/acre; therefore, the dual
value on land (11) is reduced by $14.50 to
$20.50. The PMP dual (A,) must also be in-
creased by this same amount to ensure the first-
order conditions (12) hold. The new value for
A, = $55.50.

The calculations for the yield coefficients in
(16) and (17) are now applied to all activities,
both marginal (x;) and independent (xy). Note
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that the adjusted A, values are used for the in-
dependent activities, and the MVP based on the
prior data is used for the marginal crops.

The PMP problem, given the information on
marginal yields for the oat crop, is

(19) max [2.98(87.63 — 0.0621 *x,) — 130]x,,
+[2.20(72.49 — 0.0329 *x,) — 110]x,

subject to
X, + x5 £ 500.

The problem is shown in figure 3. The calibra-
tion acreage can be checked by calculating the
VMP for each crop at the calibration acreages
of ¥, =300 and %, = 200.

(20) (i) VMP,| . = 2.98+50.37-130=20.10
(ii) VMB| . = 2.20%59.33-110=20.53

With the VMP’s equal, aside from rounding er-
ror, the PMP with endogenous yield functions
will calibrate arbitrarily close to the base-year
acreages.

The resulting model will calibrate acreage al-
location and input use, and the objective func-
tion value precisely. However, the dual value
on resources will be lower reflecting the addi-
tional, and presumably more accurate, data on
the yield variation among the marginal crops.

Policy Modeling with PMP

The purpose of most programming models is to
analyze the impact of quantitative policy sce-
narios which take the form of changes in prices,
technology, or constraints on the system. The
policy response of the model can be character-
ized by its response to sensitivity analysis and
changes in constraints.

Advantages of the PMP specification are not
only the automatic calibration feature, but also
its ability to respond smoothly to policy sce-
narios. Paris shows that input demand functions
and output supply functions obtained by param-
eterizing a PMP problem satisfy the Hicksian
conditions for the competitive firm. In addition,
the input demand and supply functions are con-
tinuous and differentiable with respect to
prices, costs, and right-hand side quantities. At
the point of a change in basis, the supply and
demand functions are not differentiable. This is
in contrast lo LP or stepwise problems, where
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the dual values, and sometimes the optimal so-
lution, are unchanged by parameterization until
there is a discrete change in basis, when they
jump discontinuously to a new level.

The ability to represent policies by constraint
structures is important. The PMP formulation
has the property that the nonlinear calibration
can take place at any level of aggregation. That
is, one can nest an LP subcomponent within thc
quadratic objective function and obtain the op-
timum solution to the full problem. An example
of this is used in technology selection where a
specification that causes discrete choices may
be appropriate. Suppose a given regional com-
modity can be produced by a combination of
five alternative linear technologies, whose ag-
gregate output has a common supply function.
The PMP can calibrate the supply function
while a nested LP problem selects the optimal
set of linear technology levels that make up the
aggregate supply (Hatchett, Horner, and Howitt).

Since the intersection of the convex sets of
constraints for the main problem and the con-
vex nested subproblem is itself convex, then
the optimal solution to the nested LP subprob-
lem will be unchanged when the main problem
is calibrated by replacing the calibration con-
straints with quadratic PMP cost functions. The
calibrating functions can thus be introduced at
any level of the linear model. In some cases,
the available data on base-year values will dic-
tate the calibration level. Ideally, the level of
calibration would be determined by the proper-
ties of the production functions, as in the ex-
ample of linear irrigation technology selection.
The PMP approach does not replace all linear
cost functions with equivalent quadratic speci-
fications, but only replaces those that data or
theory suggest are best modeled as nonlinear.

If one has prior information on the nature of
yield externalities and rotational effects be-
tween crops, they can be explicitly incorporated
by specifying cross-crop yield interaction coef-
ficients in equations (13) and (14). The PMP
yield slope coefficient matrix is positive defi-
nite, k X &, and has rank k. Without the cross-
crop effects the matrix is diagonal.

Resource-using activities such as fodder
crops consumed on the farm may be specified
with zero valued objective function coeffi-
cients. Where an activity is not resource-using,
but merely acts as a transfer between other ac-
tivities, there is no empirical basis or need to
modify the objective function coefficients.

Amer. J. Agr. Econ.
Conclusions

Programming models have a strong role to play
in agricultural policy analysis, particularly
where reliable time-series data are absent, or
shifts in market institutions or constraints have
changed substantially over time. The problem
addressed in this paper is one of calibrating
programming models without adding con-
straints that cannot be justified by economic
theory or agricultural technology. The solution
proposed by the PMP approach is based on the
derivation of nonlinear yield functions from the
base-year data and prior crop yield data. The
derivation is achieved by a simple three-step
procedure.

Calibration of a model to the base-year data
set and constraints is a necessary, but not suffi-
cient, condition for a meaningful policy model.
The ultimate test of a policy model is its ability
to predict behavioral responses out of the
sample base-year. If the yield response func-
tions calibrated in the PMP method have a basis
in regional soil variation and farmer behavior,
then they should be relatively stable over time
and can provide additional structural informa-
tion for policy response. Empirical tests of the
stability of the PMP values are required to
evaluate the stability of the calibrated models.
Initial tests in Kasnakoglu and Bauer are en-
couraging.

The PMP approach is shown to satisfy the
main criteria for calibrating sectoral and re-
gional models. Using PMP, the model calibrates
precisely to output and input quantities, the ob-
jective function value, dual constraint values,
and output prices. In addition, the PMP ap-
proach can incorporate priors on yield variabil-
ity or supply elasticities.

[Received July 1991;
final revision received November 1994.]
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Appendix A

ProPOSITION 1. Given an agent maximizing multi-out-
put profit subject to linear constraints on some in-
puts or outputs, if the number of nonzero nondegen-
erate production activity levels observed (k) exceeds
the number of binding constraints (m), then a neces-
sary and sufficient condition for profit maximization
at the observed levels is that the profit function be
nonlinear (in output) in some of the (k) production
activities.

Proof. Define the profit function in general as a
function of input allocation x, f(x).

(al)

problem is max f(X)

subject to

AX<b X=nxl

A=mxXxn m<n

Al the observed optimal solution (nondegenerate in
primal and dual specifications) there are k non-zero
values of X. Drop the zero values of X and define
the m x m basic partition of A as the (m X m) optimal
solution basis matrix B and the remaining partition
of A as N (m x k — m). Partitioning the k x 1 vector x
into the m x I vector xg and (k — m) x1 vector xy, the
problem (al) is written as

X

(a2) max f(x) subject to [B : N]{ B} =b
xN

or

(a3) max £(xg, Xy) subject to Bxy + Nxy=Db

Given the constraint set in (a3), X3 can be written

(a4) x5 = B-'b - B 'Nxy.

Since the binding constraints are implicit in (a4),
substituting (a4) into the (a3) objective function
gives

7102 ‘9T 19903100 uo Xipuag Apnf Aq /310'sjeumolpioyxo-aele//.dyy woly pspeojumoq



340 May 1995

(a5) max f(B~'b — B-'Nxy, Xy).
Taking the gradient of (a5) with respect to xy yields
the reduced gradient (r,)

(a6) 1, = Vi, - Vi, BN
A zero reduced gradient is a necessary condition for
optimality (Luenberger). Without loss of generality
we define the basic part of the objective function as
linear with coefficients ¢y, which yields the optimal-
ity condition

@7) r,, =

- Vi, — BN =0

The objective function associated with the indepen-
dent (xy) variables has either zero coefficients, lin-
ear coefficients, or a nonlinear specification. If f(xy)
had zero coefficients, xy would have to be zero at
the optimum given the positive opportunity cost of
resources. If f(xy) was linear, say cy, then (a7) would
be the reduced cost of the activity. A zero reduced
cost of a nonbasic activity implies degeneracy when
coupled with a zero activity level xy. Since xy > 0 at
the optimum, f(xy) cannot be linear and hence must
be nonlinear for (a7) to hold.

PROPOSITION 2. A necessary condition for the ex-
act calibration of a k x 1 vector X is that the objec-
tive function associated with the (k — m) X 1 vector
of independent variables xy contain at least (k —m)
linearly independent instruments that change the
first derivatives of f(xy).

Proof. By proposition 1 f(xy) is nonlinear in Xy.
Each element of the gradient Vf(x,)has a compo-
nent that is a function of xy, and probably also a
constant term. The optimality conditions in equation
(a7) are modified by subtracting the constant com-
ponents in the gradient (k) from both sides to give

(a8) V£, =c*
where

vi,, = Vf, - K
and

¢* = ¢,B-N - k’

The 1 x (k — m) vector Vf, can be written as the
product of xy and a (k — m) x (k — m) matrix F,
where the ith column of F has elements

of (xy) 1

ox, X

as in equation (4).
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Using this decomposition

(a9) VI, =x(F
the necessary reduced gradient condition (a8) can
now be rewritten as

(al0) xyF = c*

Calibration of an optimization model requires that
the observed solution vector % results from the opti-
mal solution of the calibrated model. From equation
(a4) the independent values X, imply the dependent
values %,. Since from (a8), c* is a vector of fixed
parameters, the necessary condition (al0) can only
hold at X, if the values of F- can be calibrated to
map c* into X,. Thus the matrix of calibrating gra-
dients F-! must span X such that

(all) Xj = c*F-!

It follows that the rank of F must be (k — m) and
there have to be (k — m) linearly independent instru-
ments which change the values of F to exactly cali-

brate X.

Example. Let x, be a 2 x 1 vector

and

(al2) f(xy) = O'Xy— X4 Qxy

[al} [qll qll:l
o = % Q =
o, 9 492

and symmetric. Writing (a7) as

where

(al3) [o; — 2x,9,, — 2x,4;,, 0y — 2X,g5; — 2x,9y]

- BN =0

defining the 1 x (k — m) row vector ¢* as in equation
(aB) results in
(al4)  [2x,q;, + 2X,G,5. 25,0y + 2X,95] = 7

By definition, the left-hand side of equation (al4)
can be written as the product of xj and a matrix F
where

2q, 24,
@al5) F = .
2q9, 24,
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Therefore the optimality condition that the reduced
gradient equals 0 requires that xyF = c*. If particular
values of xy, say X, are required by changing the
coefficients of F, then %X, =c* F.

Note from equation (a8) that —c* is the difference
between the constant linear term in the objective
function k and the opportunity cost of the re-
sources. Thus —c* is equal to the vector of PMP dual
values A,. Solving for the parameters of F, given c*
and %, is computationally identical to solving for
the vector of §, parameters which requires the neces-
sary condition that F is linearly independent and of
rank (k — m).

COROLLARY. The number of calibration terms in
the objective function must be equal to or greater
than the number of independent variables to be cali-
brated.

Appendix B

Perturbation of the calibration constraints is shown
to preserve the primal and dual values.

Constraint Decoupling

Constraint decoupling is shown given the degenerate
problem where the binding and slack resource con-
straints under values X are separated into groups I
and II.

Problem P1.
(bl) maximize f(x)
subject to Ax=b (D

Ax < b (11)
Ix = % (11T
x=kxl,A=mxk A=(-m)xk

X =kxl k>m b=mxl1 f)z(l— m) X L.

% is a k x 1 vector of activities that are observed to
be nonzero in the base-year data; k > m implies that
there are more nonzero activities to calibrate than
the number of binding resource constraints (I).

We assume that f(x) is monotonically increasing
in x with first and second derivatives at all points,
and that problem P1 is not primal or dual degener-
ate.

ProposITION 3. There exists a k X 1 vector of per-
turbations € (€ > 0) of the values X such that

(a) The constraint set (I) in equation (bl) is
decoupled from the constraint set (III), in the sense
that the dual values associated with constraint set |
do not depend on constraint set 111;

(b) The number of binding constraints in con-
straint set 11l is reduced so that the problem is no
longer degenerate; and
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(¢c) The binding constraint set I remains un-
changed.

Proof. Define the perturbed problem with the

calibration constraints defined as upper bounds
without loss of generality.

Problem P2.

(b2) maximize f(x)
subjectto  Ax=b 0))
Ax < b (1D
Ix<x+e (I11)

Any row of the nonbinding resource constraints (II)
Ax < b in problem P1 can be written

k

(b3) \;]é,.,.x,.| < b, i=1,..,(1-m)
i=1

Select the constraint i = 1, ..., (I — m) such that

k
b, - 21 a;%,
=

is minimized. If ;> 0, j =1, .., k are selected such
that

k s
(b4) % ae,| < [b, - Za,r,}
j= i=t

By rearranging (b4), an inequality holds for the con-
straint when X = X + €, but x cannot exceed X + €
{rom constraint set (III); therefore, thosc constraints
in Ax < b that are inactive under the values X will
remain inactive after the perturbation to X + €.

The invariance of the binding resource constraints
for (I) under the perturbation € can be shown using
the reduced gradient approach (Luenberger). Using
(b4) we can write problem P2 using only constraint
sets I and III.

(b5) maximize f(x)
subject to Ax=Db
Ix<x +e

where A(m x k), and I = k x k. Invoking the
nondegeneracy assumption for A and starting with
the solution for problem P1 X, the constraints can
be partitioned

B

X
XN

Z
Il

(b6)

IA
Fa
=

+ + =
m
o

ot
~
A
PR
z
™
z
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For brevity, the partition of A has becn made so that
the (k — m) activities associated with N have the
highest value of marginal products for the constrain-
ing resources. The reduced gradient for changes in
%, is therefore

(b7) r, =V - Vi, B7N.
Since f(*) is monotonically increasing in Xy and Xy,
the resource constraints will continue to be binding
since the optimization criterion will maximize those
activities with a nonnegative reduced gradient until
the reduced gradient is zero or the upper-bound cali-
bration constraint %, + & is encountered. Since m <
n, the model overspecializes in the more profitable
crops when subject only to constraint sets I and IL
Under the specification in problem P2 the most prof-
itable activities will not have a zero-reduced gradi-
ent before being constrained by the calibration set IT
at values of %, + € Thus, the binding constraint set
I remains binding under the € perturbation.

The resource vector for the resource constrained
crop activities (Xz) now is

(b8) b - Ny +€)

and from (b6)
x, = B1[b - N, + g)].

Since B is of full rank m, exactly m values of xp are
determined by the binding resource constraints,
which depend on the input requirements for the sub-
set of calibrated crop acre values Xy + €.

The slackness in the m calibration constraints as-
sociated with the m resource constrained output lev-
els x, follows from the monoticity of the production
function in the rational stage of production. Since
the production function is monotonic, the input re-
quirement functions are also monotonic, and expan-
sion of the output level of the subset of crop acreage
to %, + €& will have a nonpositive effect on the re-
source vector remaining for the vector of crop acre-
ages constrained by the right-hand side, x,. That is
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(b9) b — N(%, + €,) < b — N, forey>0.
But since the input requirement functions for the x
subset are also monotonic, (b9) and (b6) imply that

(b10) x5 < %, or xz< %, + &, forgy>0.

From (b10) it follows that the m perturbed upper
bound calibration constraints associated with xp will
be slack at the optimum solution. Given (b4) and
(b10), the constraints at the optimal solution to the
perturbed problem P2 are

B N =b

A, A ([x <b
Gl | i .
I, Xy tEy| <X5 +E
I, = Xy + Ey

Thus, there are k binding constraints, b(m x 1) and x,,
+ &y [(k —m) x1].
The dual constraints to this solution are

B 0N
(b12) =
MK

using the partitioned inverse,

A P 0]V, fx"
(b13) =
where P = B! and Q = -N'B".

Thus, the & perturbation on the upper-bound con-
straint set II decouples the dual values of constraint
set I from constraint set II. This ensures that k con-
straints are binding and the partitioning of A into B

and N is the unique outcome of the optimal solution
to problem P2 in the first stage of PMP.

Vv, 1x*)
v, %)
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A CALIBRATION METHOD
FOR AGRICULTURAL ECONOMIC
PRODUCTION MODELS

Richard E. Howitt*

A method for calibrating agricultural production models is
presented. The data requirements are those for a linear programming
model with the addition of elasticities of substitution. Using these
data, production models with a CES production function can be
simply and automatically calibrated using small computers. The
resulfing models are shown to satisfy the standard microeconomic
conditions. When used for analysis of policy changes, the CES
models are able to respond smoothly to changes in prices or
constraints. Prior estimates of elasticities of substitution, supply or
demand can be incorporated in the models.

1. Introduction

Agricultural models that are used for policy analysis are often required to be
disaggregated by region, commodity and input use. The level of disaggregation
depends on the policy, but for analysis of the interaction between agricultural
price supports and environmental outcomes, the model requirements
frequently exceed the capacity of the data base for direct estimation. In this
case, the modeller has to use formal or informal calibration methods to match
the model outcome to the available data base. In microeconomic modelling the
process of calibrating models is widely practised, but rarely formally discussed,
In contrast, calibration methods for macroeconomic models have stimulated
an emerging literature. Hoover (1995) provides a survey and analysis of the
contending viewpeints. Gregory and Smith (1993) conclude that “Studies
which use calibration methods in macroeconomics are now too numerous to
list, and it is safe to say that the approach is beginning to predominate in the
quantitative application of macroeconomic models”. In an earlier paper these
same authors (Gregory and Smith, 1990) define calibration as involving the
choice of free parameters in a model by matching certain moments of simu%ated
models to those of the data.

In this paper, a new method for calibrating partial-equilibrium agricultural
production models on a national, regional or individual scale is presented. The

* Richard Howitt is a professor in the Department of Agricultural Economics at the University of
California, Davis, California, USA. The work described in this paper was supported by grants
3AEM-0-80037 and 3AEL-8-000-85 from the Economic !fesearch Service of the US
Department of Agriculture.
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ability formally to model input substitution makes the model particularly
suitable for the analysis of agricultural input policies where substitution is an
important avenue of adjustment for farmers.

Regional modellers often face the added difficulty of a severely restricted
data set which requires a compromise between the specification complexity of
the model and the degree of disaggregation. The trade-off required to model
the preferred specification with less than optimal data usually determines the
economic modelling methodology used. The calibration methodin this paper is
able to calibrate nonlinear CES production functions in agricultural models
using a minimum data set that usually restricts the modeller to a linear
programme. .

In the following section the calibration approach to model specification is
outlined. This calibration approach has some characteristics of both
econometric and programming models in that it has a more flexible production
specification than linear or quadratic programming (LP, QP) models, but the
free parameters in the modéll are based on observed farmer behaviour subject
to resource and policy constraints.

The paper concludes with an overview of the properties of the models which
can be termed calibrated production equilibrium (CPE) models, owing to their
conceptual similarities to computable general equilibrium (CGE) models. A
simple empirical example of the model calibration and response to input price
changes is shown.

2. Modelling Production Microeconomics in Agriculture

Linear programming models have a long and well-established tradition in the
regional analysis of agricultural production systems. They have significant
advantages in that they can be generated using minimal data sets and can
explicitly show how resources are used and the effect of policy constraints.
However, the specification of programming models raises a number of
problems. The root cause of the problem is that the production technology in
all programming problems is locally linear in all inputs, including land.
Quadratic (QP) specifications which include endogenous prices and risk terms
add some nonlinearities but do not change the linear stepwise specification of
regional production (Howitt, 1995). :

The linearity in programming models results in the following empirical
groblems. First, the methods used to calibrate linear programmes against the
ase-year data have to strike a balance between poor base-year calibration and
fully constrained models that may bias policy results. The second problem with
using linear production specifications for agricultural policy analysis is that
changes in input costs or commodity support prices in the model do not cause
changes in the dual values or types of output unless they precipitate a change of
basis. This leads to the well-known stepwise response of LP models to
parameterisation. For models based on aggregate data, the range between
steps may be larger than many levels of policy change, thus making the models
inflexible for some types of policy analysis. A third shortcoming of LP models
for analysing the ‘interaction of agricultural policy and environmental
consequences is that the Leontief technology, inherent in the linear response,
cannot reflect the gradual substitution of inputs as their costs or quantities are
changed.

Primal econometric models of production systems raise a different set of
empirical problems for the regional policy modeller. Unlike programming
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models, the problems with primal econometric models arise not from
restrictions on the specification which is usually theoretically consistent, but
from the empirical compromises that have to be made to accommodate the
limited data sets available. Aggregation over regions or time periods to allow
degrees of freedom may mask important regional resource differences, with
resulting distortions in predicted policy response.

CPE models use the basic calibration concepts from CGE models to
calculate the equilibrium production function coefficients for variable inputs.
The allocable resource inputs, such asland, are calibrated in a different manner
using the basic price data, the dual values on crop allocations and the implicit

costs of production generated using the positive mathematical programming
(PMP) approach (Howitt, 1995).

Using relationships based on the first-order conditions, CPE models can
calibrate regional crop-specific CES or Cobb-Douglas production functions
without imposing arbitrary calibration constraints. The resulting models have
the capacity to simulate detailed regional changes in agricultural policy or
environmental constraints. In addition, because they have the same technology
as more aggregated models, CPE models can be aggregated to sector-level
production functions in CGE or econometric models. CPE models are

designed to nest into one sector of a more general CGE or econometric model.

The ability to disaggregate from a national level has two advantages. First, it
enables the effect of broad agricultural policy changes to be expressed on a
regional agricultural basis. Stmilarly, national agricultural policy effects on
regional environmental variables can also be calculated. Often regional
differences are notable, and the political impact of regional diversity is
important. While agriculture is not a large component of many industrial
economies, it does have a disproportionate effect on environmental impacts,
and often has a strong political role. In less-developed economies, the
agricultural sector is usually dominant in terms of resources used and labour
employed.

The second advantage of regional disaggregation of the a ricultural sector is
that it enables the agricultural economy to be directly linked to its regional
resource base. Thus economic policies at any level can be linked to specific
environmental impacts. For example, a change in the exchange rate can be
linked to changes in the export demand for a given agricultural crop in a
national model, and the shift in crop demand due to the exports could be

translated by the CPE model into changes in the levels of regional herbicide
use.

Over the years there have been several different approaches to defining
calibrating constraints in linear models. CPE models use the observed regional
crop-land allocations to deduce the first-order conditions. The empirical values
are then combined with a cost (or yield) function that is nonFinear in the
regional crop-land allocation. The changing cost of production is based on the
Ricardian concept of heterogeneous inputs (Peach, 1993) in a given region or
farm. Examples of this heterogeneity are differing soil qualities, or the fixed
amount of seasonal operation time and management available in most farm
businesses. Both these factors lead to increasing marginal costs for regional
crop production.

Production economists have often noted that crop yields are stochastic
(Anderson, 1974; Antle, 1983) but, owing to the aggregation of land in most
economic models, the linkage between expected yield and land quality is not
usually formally defined. Agronomists and soil scientists have compiled tables
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that group soils by yield classification for most established agricultural areas.
While information on the variation in yield potential is hard to quantify on a
farm level, farmers are acutely aware of which fields have the most profit
potential for a given croE and weather situation. The ‘positive’ modelling
approach assumes that the farmer uses this knowledge of the effect that
expansion or contraction of acreage will have on profit per acre. The marginal
conditions that reflect this knowledge are revealed in the crop-land allocation
made by the farmer. ‘ ) ’

For the reasons given above, the gross margin per acre is assumed to fall as
the acreage in a particular crop is increased. By using the data on crop-acreage
selection under given expected prices and costs, the modeller can deduce the
first-order conditions for land allocation.

The following section develops an empirical calibration method. The
method uses the crop-land allocations, the basic LP data set and an estimate of
the elasticity of substitution to calibrate a regional CES model.

3. Calibrated Production Equilibrium Models

The empirical calibration procedure uses a three-stage approach. A
constrained linear programme is specified for the first stage. In the second
stage, the regional production and cost parameters that calibrate the nonlinear
CES model to the base-year data are derived from the numerical results of the
linear programme. The resource and policy constraints that reflect the
empirical data are also included in the calibration process. The third-stage
model is specified with a nonlinear objective function that incorporates the
nonlinear production functions and land costs. The CES model also has
resource and policy constraints. However, the calibration constraints used in
the first stage are absent.

The initial development of positive mathematical programming (PMP) used
nonlinear cost functions and Leontief technology to calibrate a range of
models. Over the past ten years the PMP method of calibrating has been
applied to national models of the US, Canadian and Turkish agricultural
economies and several regional models (Bauer and Kasnacoglu, 1990; Horner
etal., 1992; House, 1987).

Analysis of a wider response to agricultural policy requires the introduction
of more flexible production functions. The PMP and CGE calibration
approaches can be combined to calibrate agricultural production models
consistently and simply. In this example.we will use the simplest: crop-
production data set possible, although this approach can be easily applied to
mixed or pure livestock production. For an example of calibration methods
?pgpgl})ejd to mixed livestock and crop production see Bauer and Kasnacoglu

1 .

The data set, which can be termed the minimum LP dataset, isa single cross-
section observation of regional production over i crops. Observations include
product prices P;, acreage allocation &;, crop input use x;;, cost per unit input ;,
and average yields ¥;,. Allocable resource limits or policy constraints are
defined as b;, the right-hand side values of inequality constraints on the
production activities. Regional subscripts have been omitted for simplicity.
The first stage LP model is defined in equations (1a) to (1c). Because the linear
technology specification is suboptimal for some policy changes, does not mean
that the numerical dual values for the base-data LP model are incorrect. The
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generation of the dual values for the two types of constraint in model (1) is an
essential step in the derivation of adjusted factor costs that will allow the more
complex CES specification to be calibrated from the simple data base.

Max 3, pi¥ix; — 2 w; 2; (1a)
s.t. Ax <b, (1b)
Ix<x+e. (1c)

The model differs from the usual LP format by the set of calibration
constraints shown as (1c). The e perturbation on the calibration constraints
decouples the true resource constraints (1b) from the calibration constraints,
and ensures that the dual values on the allocable resources represent the
marginal values of the resource constraints. The two constraint sets will yield
two sets of dual values. A1 are the resource shadow value duals associated with
constraint set (1b). The vector of elements A2 are the PMP duals from the
calibration constraint set (1c). The dual values on these calibration constraints
are the additional marginal ‘implicit’ costs that are needed for the equimarginal
conditions for land allocation among crops to hold. In other words, the
imperfect market for land and its heterogeneity do not, in general, allow the
marginal allocation conditions to hold for each crop grown. A marginal cost in
addition to the average land cost is required if the first-order conditions for
optimal land allocation are to hold for the observed cropping pattern.

These two sets of dual values are used to calculate the equilibrium
opportunity cost of land and other fixed but allocable inputs. These values are
then used in the derivation of the production function coefficients.

CGE models are by definition and convention based on Walras’ law for
factor allocation, which defines the set of prices that equate excess sugply and
demand (Dervis, et al., 1982). For partial-equilibrium models, the fixed
resource endowment and local adjustment costs result in resource factors
having scarcity costs that may not be fully reflected in the nominal resource or
rental prices. While CGE calibration methods can use market prices and
quantities to define the share equations and production function parameters,
partial-equilibrium agricultural models have to augment the nominal prices by
the resource and crop-specific shadow values generated in the first LP stage of
the calibration.

_ Equation (2) shows a three-input CES production function for a single crop,
1.

¥i = ai(Byxy + Baxp t+ Bsx?a)l' ()
where y = U—-(}—l, B, =1 — B, — B, and ¢ = a prior on the elasticity of
substitution,

The production function is specified as having constant returns to scale for a
given quality of land, since use of the two sets of dual values and the nominal
factor prices exactly allocates the total value of production among the different
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inputs, If the modeller needs to specify groups of inputs with differing
elasticities of substitution, perhaps zero for some inputs, tﬁe nested approach
suggested by Sato (1967) can be incorporated. The Cobb-Douglas production
function or restricted quadratic specifications can be used instead of the CES.

The definition of model calibration in the introduction, and over a decade of
empirical practice with calibrating CGE models, has established the precedent
of using robustly estimated parameters from other studies for calibration.
Elasticity parameters are often used as they représent underlying preferences
or technoslogies and, as such, are less likely to vary over specific model
applications. The use of exogenously estimated demand elasticities to calibrate
demand functions in quadratic programming models is well established. This
more general calibration approach extends this concept to incude elasticities of
sgg%t)itution, and in some other applications, elasticities of supply (House,
1 .

Given the data, equation (2) with I inputs has J unknown parameters to
calibrate. Namely, (J — 1) share parameters {; and one scale parameter, a.
Following the usual practice in econometric specifications and CGE
calibrations the (J — 1) unknown share parameters are expressed in terms of
the factor cost and input shares. The first-order conditions for input allocation
equate the value marginal product to the nominal input cost plus any shadow
costs for constrained resources. Algebraic manipulation of the first-order
conditions yields the recursive set of equations in (3a)-(3c) below that are
solved for the crop and regional-specific share coefficients. The algebraic
derivation of equations (3a)-(3c) is shown in the Appendix.

1 © Xy, 3 X, -b

B E R e G (a)
b= B @) (3b)
B=1-0—B; (3¢)

where @; = factor plus opportunity cost and o = elasticity of substitution.

Share equations for variable factor inputs whose supply functions are
assumed elastic are calibrated similarly to those in CGE model production
functions. An important difference between CPE and CGE models is in the
specification of the resource share equations. In regional partial-ecLuilibrium
models the physical limits on the availability of these resources has to be
reflected in the allocations. In most partial-equilibrium models these fixed
resources will have a market price, but it is likely that the physical limits will
also result in a dual value for the resource. Accordingly, the share equations for
allocable resource inputs other than land have the resource shadow cost,
measured by the dual for constraint group (b) in model 1, AL, added to the
market price of the input to yield @;. Owing to changes in quaiity, the cost of
land inputs is derived by adding the market price, shadow value (A1,) and the
marginal crop-specific PMP cost, A2; to yield the land factor cost ;. This crop-
specific cost of land reflects both the scarcity value of land and the quality

ifferences in land allocated to different crops.

The differences in land-(éuality value reflected in the PMP costs enable
multiple crop outputs with different average returns to land to be calibrated
against a single supply of land. This approach requires the solution of the LP
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calibration problem in equations (1a)-(1c), and is one way in which this partial-
equilibrium calibration method differs from CGE methods. In CGE models
the same calibration of multiple crops is usually achieved by defining different

land-supply functions for individual crops. This specification is not convincing
for the disaggregated models addressed in this paper.

The adjusted factor costs ; exactly exhaust the total revenues for each
cropping activity and are used in equations (3a)-(3c) to calibrate the share
coefficients.

The crop and regional scale coefficient a in equation (2) is calibrated by
substituting the values of B, @, y, and x back into equation (2), as shown in
equation (10) in the Appendix.

Since the marginal implicit cost of changing crop acreage is included in the
share equations via the parameter @, the cost function must also be explicitly
represented in the objective function. Followin Occam’s razor, we specify the
implicit cost function for each crop in equation %43) as quadratic in the acreage
allocated to the crop.

Implicit cost = ¥; x;? (4a)
)\.u = quix“ (4b)

Ny
therefore ¥, = 2%, (4¢)

Defining the quadratic cost function in equation (4a) as the implicit cost of
increasing regional crop acreage, the marginal implicit cost is calibrated using
the crop-specific PMP dual value. Equation (4b) shows how \2; from problem
(1) is used to calibrate the implicit cost function coefficient ¥, in equation (4c).

Using the coefficients calibrated above, a general CES representation of the
agricultural resource production problem is shown inequation (5).

Max Ei BiYi — 2’ mijxij - Ei ‘I’ixﬁ (Sa)
sty = oy By B (5b)
Ax<b. (5¢)

The model in equation (5) differs from that in the first stage, equation (1), in
three significant ways. First, the production technology is more general and has
the empirical elasticity of substitution incorporated in it. This means that the
model in (5) solves for the optimal input proportions in conjunction with the
land allocation, but not in fixed proportions to it as in the Leontief specification
in model (1).

Second, the objective function has the additional implicit cost function
specified for each land allocation. The basis of this cost is in the heterogeneity
of land, other inputs, and the fixed nature of some farm inputs such as family
labour and major machinery units.




154 RICHARD E. HOWITT

Third, the set of calibration constraints (1c) are omitted from the CPE model
in (5). The CPE model still calibrates with the base-year inputs and outputs
since the dual values from model (1) are incorporated in the first-order
condition used to calibrate the production and cost coefficients. Thus the CPE
model calibrates exactly to the base-year data without any arbitrary or
empirically insupportable constraints.

To. summarise, this section has shown how a minimal data set for a
constrained LP model can be used to generate a more general self-calibrating
CES model. The calibration process may sound complex, but with modern
algorithms such as GAMS/MINOS (Brooke et al., 1992) the whole process can
be written in code that performs swiftly and automatically on desktop
machines. The GAMS/MINOS code to perform these operations in one
sequence for this general class of problems is available from the author by e-
mail (rehowitt@ucdavis.edu).

4. Microeconomic Properties of Calibrated Production Models

In generalising the production specification to the CES class of functions, CPE
models show properties consistent with microeconomic theory that are not
exhibited in LP or input/output models. The ability for unconstrained
calibration has been addressed in the previoussection.

With the specification of a nonlinear profit function in land in PMP models,
the standard%icksian microeconomic properties can be derived. By specifying
the primal-dual model formulation, and making the usual assumption that the
matrix of implicit cost coefficients ¥ is positive definite, it can be shown (Paris,
1993 Ch. 11) that the slopes of the supply and demand functions derived from
the CPE model are respectively positive and negative, as in equations (6a) and
g‘gl)i Thg IiIicks symmetry conditions shown in equation (6c) also hold for the
model.

dy

B PSD (6a)
dx

3w =NSD (6b)
dy &

dw = T dp (6¢)

The problem of stepwise response to policy changes in linear programming
models is solved by the nonlinear specification in CPE models. The response of
the model output to changes in price, or input use to changes in cost, is a
continuous function, even though the basis may not change. When the basis of
linear constraints changes, the parametric response function changes slope but
is still continuous with the next basis. The importance of this property 1s that
politically acceptable agricultural policies are usually constrained to relatively
small changes in costs or policy constraints. The continuous functions in CPE
models can reflect these small policy changes and simulate their economic and
physical impact on a regional scale.

A simple empirical example illustrates the above points. The data for a
greatly simplified and aggregated model of US irrigated crop production is
shown in Table 1. The model is specified as having two regions (California, rest
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Tablel Data for the llustrative Model

Crop Production Price (3/bu) Average Yield (bulacre)
Cotton (CA) 2.924 220.0
Cotton (RUS) 2.924 151.0
Wheat %CA) 2.98 85.0
Wheat (RUS) 2.98 69.0
Rice ECA) 7.09 70.1
Rice (RUS) 7.09 48.1
Regional Resource Constraints
LAND gCA) (Million Acres 2.65
LAND (RUS) (Million Acres 14.99
WATER §CA) (Million Acre Ft) 8.69
WATER (RUS) (Million Acre Ft) 28.33
Resource Costs Per Unit (3)

Land Water Capital Chemical
Cotton (CA) 66.0 25.6 10.0 10.0
Cotton (RUS) 28.0 28.4 10.0 10.0
Wheat gCA) 33.0 25.6 10.0 10.0
Wheat (RUS) 11.0 28.4 10.0 10.0
Rice (CA) 49.0 25.6 10.0 10.0
Rice (RUS) 39.0 28.4 10.0 10.0
Base Year Resource Allocation

Land Water Capital Chemical
Cotton (CA) 1.49 4.47 3.960 2.640
Cotton (RUS) 5.75 5.23 1.680 1.120
Wheat éCA) 0.62 1.14 1.980 1.320
Wheat (RUS) 6.50 6.89 0.660 0.440
Rice (CA) 0.54 3.08 2.940 1.960
Rice (RUS) 2.74 7.95 2.340 1.560

Notes: CA: California; RUS: Rest of USA; elasticity of substitution: 0.7.

of USA), three irrigated crops (cotton, wheat, rice) and four inputs per crop
(land, water, capital, chemicals). The data required for the CES model is the
minimum set required for a linear programme plus an estimate of the elasticity
of substitution obtained from prior econometric studies. Table 1 shows the
data, expected output price, average regional yields, expected input costs,
constraints on the allocable resources and the input allocations to regional crop

production observed in the base year of the model.

Table 2 contains the parameters calibrated for the CES production function
and the regional quadratic land-cost function. The scale parameters are
coincidentally very similar for cotton production in the two regions. The wheat
coefficients differ slightly, and rice production shows marked differences
between regions. The input share parameters in Table 2 differ widely among
crops in a given region, and also for the same crop between regions. These
differences do not have empirical meaning given the extreme aggregation of
the model, but do illustrate how the regional crop-specific calibration can
adjust to differing regional technologies and resource endowments.

The linear cost parameters are, for the most part, the same as the base-year
data costs in Table 1. Given that there are three binding constraints on
allocable resources, two land constraints and one irrigation water limit, the
three other crops require nonlinear ‘implicit’ cost terms for the optimum
marginal conditions to hold. For these crops, the linear coefficients on land cost
are calibrated so that the marginal and avera%e cost conditions hold. The
quadratic cost coefficients for these more profitable crops show wide variation,
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Table2 Parameters for the Calibrated CES Model

CES Scale Parameter

CA RUS
Cotton 153.381 153.588
Wheat 53.441 69.263
Rice 17.853 35.825

. CES Share Parameters

Land Water Capital Chemical
Cotton §CA) 0.601 0.315 0.054 0.030
Cotton (RUS) 0.937 0.057 0.004 0.002
Wheat (CA) 0.355 0.380 0.170 0.095
Wheat (RUS) 0.847 0.150 0.002 0.001
Rice gCA) 0.141 0.663 0.126 0.071
Rice (RUS) 0.632 0.336 0.021 0.012
Linear Cost Parameters

Land Water Capital Chemical
Cotton (CA) ~242.764 25.600 10.000 10.000
Cotton (RUS) -191.999 28.400 10,000 10.000
Wheat (CA) 33.000 25.600 10.000 10.000
Wheat (RUS) 11.000 28.400 10.000 10.000
Rice (CA) 49.000 25.600 10.000 10.000
Rice (RUS) -3.570 28.400 10.000 10.000
Quadratic Cost Parameters

Land
Cotton (CA) 414.448
Cotton (RUS) 76.521
Wheat (CA) 0.000
Wheat (RUS) 0.000
Rice (CA) 0.000
Rice (RUS) 31.073

Notes: AsTable 1.

as would be expected from the acreage differences. Quadratic cost functions
for all cropping activities can be calibrated, if required, but additional
information on the yield variability or the elasticity of supply is needed to
calibrate these marginal crops.

The prices and resource right-hand side constraints in Table 1 and the
parameters in Table 2 are used to define the CES production model shown in
equation (5). The resulting CPE model calibrates very closely in terms of
output produced, crop input allocations, and dual values on the binding
resource constraints. The results of the constrained linear model and the
unconstrained calibrated nonlinear model are so similar as to make tabular
presentation redundant. The model calibrated and solved for all three stages in
under two seconds on a standard 33 MgHz 486 personal computer.

Table 3 shows selected results from a 25 per cent increase in the cost of
chemical inputs in both regions. This could be the result of an environmental
policy that internalised chemical externalities by a poliution charge.

The theoretical advantages of the CES approach, namely smooth parametric
policy responses and the ability to change input use proportions, are shown in
the results. The first part of Table 3 shows the percentage change in total input
use by crop and region. Cotton production in California — cotton (CA) -is
notable in that the 14 per cent reduction in chemical use is more than
compensated for by increases in the absolute level of land, water and capital, and
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Table3 Changesin Input and Qutput Use (25% Increase in Chemical Cost)
Percentage Difference in Total Input Use

Land Water Capital Chemical
Cotton $CA) 0.296 1.371 0.079 -14.396
Cotton (RUS) -0.068 -0.146 -0.150 -14.593
Wheat gCA) 0.432 -0.389 ~1.654 -15.880
Wheat (RUS) 0.635 0.571 0.557 -13.994
Rice éCAL) -1.314 -1.845 -3.096 -17.112
Rice (RUS) -1.365 -1.737 -1.740 -15.952
Percentage Chunge in Per Acre Input Use
Water Capital Chemical

Cotton £CA) 1.071 -0.217 -14.648
Cotton (RUS) -0.078 -0.082 -14.535
Wheat gCA) -0.817 -2.078 -16.242
Wheat (RUS) -0.064 -0.078 -14.537
Rice (CA) -0.539 -1.806 ~16.008
Rice (RUS) -0.377 -0.380 -14.789
Percentage Chunge in Output

- CA RUS
Cotton 0.080 —0.144
Wheat -1,653 0.572
Rice -3.095 -1.737

Notes: As Table 1.

by intensity per acre of water. The output statistics in the last part of Table 3
show that for Californian cotton production, total output increases with
chemical costs. This is due to a shift in comparative advantage within California
towards cotton production caused by the chemical cost increase. For many
crops the trend is to have reductions in total input use for all inputs, and
consequent output reductions. Other crops, such as wheat in the rest of the
USA, show increases in total output despite large reductions in chemical use.
This is due to compensating increases in land area planted, but not in the
intensity of capital and water per acre which are reduced slightly. Clearly, even
in this very simple model, there is a wide variation in types of substitution
stimulated by the increase in chemical cost.

The second important characteristic claimed for CPE models is the smooth
response to parametric policy changes. Table 3 shows that the 25 per cent
increase in chemical cost produces different percentage changes in input
allocation and output. The change produced in total input use across crops and
regions ranges from a decrease of 17 per cent in chemicals to an increase of 0.3
per cent in water use. Several inputs and regional outputs are changed very
little by the chemical cost increase. Since all crops are still grown in all regions
there has been no change of basis; despite this the nonlinear functions are able
to show the marginal effects that a cost increase on chemicals will induce.

5. Conclusions

This paper has reviewed model requirements for analysing regional
agricultural s)olicy problems and found that, for some policy applications, the
conventional empirical approaches available for this task are wanting. Linear
programming models have insufficient technical flexibility, while econometric
models are often restricted by the data available.
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An alternative approach that calibrates more flexible production functions
than linear programmes, but uses almost the same minimal data base, is
introduced as a compromise between the extremes of linear programming and
econometric estimation. The properties of CPE models are shown to meet
many of the requirements for modelling regional agricultural policies, while
the data requirements are satisfied by the minimal data sets usually available on
aregional basis.

While potential difficulties in the nonlinear solution of the many-
dimensional nonlinear CPE specification cannot be blithely ignored, initial
empirical results indicate that these models are quite tractable. Given the
common agricultural policy requirement for modelling regional economic and
environmental consequences, the properties of the models seem to justify the
additional complexity.
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APPENDIX
Derivation of the Parameters for the CES Production Function
A CES production function with one output, three inputs and constant returns toscale is defined in
equation (Al):
1
y=“(31x?+ﬁzq+ﬁ3xgh (A1)

g—1
where y = "5 ; % B; = 1; o = prior value elasticity of substitution.




A CALIBRATION METHOD FOR AGRICULTURAL ECONOMIC PRODUCTION MODELS 159

Taking the derivative of (A1) with respect to x| we obtain
1
8y =1y 371
BT 5o (B Xy + B,xY + B3x)) (A2)
) 1 1 1
since(y—-)=-o.3-1=5-71
Simplifying and substituting (A2) can be rewritten as:

!

) -1
gz—l:lel Ta(Bx]+ By XY+ Byxg)e -t (A3)

8 ()
Equating ps—zl = wyand pa% = ) gives

-1
o _Bix ©
w 1
2 Bzxz_?’" (A4ﬂ)
|
w _Bix @
w 1
3 Byxy T (A4b)
From (A4a) we obtain
_ wy X =
Bo=Bi g G 7. (A3)
Likewise from equation (A4b):
_ Wy Xy —‘].1
B3~B|'g,‘l(;;) . (A8)
But from the constant returns to scale assumption
B3=1~PB1— B (A7)
Substituting (AS) and (A6) into (A7) we obtain:
w3 X —l— wy X| 1
ﬁ"&f,(x_J) "-—1—31"313,‘1(;(;) 9. (A8)
Dividing through by B and rearranging yields
1 wy X —.‘& wy Xy -1
—= —_—— + (= o,
Bl E ) TG (A9)

Solving (A9) for B; and substituting into equation (AS) solves for 3. Substituting the values into
equation (A7) solves for B5.

The numerical value for the total production, y, in equation (A1) is known from the observed
acreage %, and the average yield . Using the known values for B; ... fi3 and equation (A1), we can
solve for a as follows:

1
o = JRI(B XY + Bx] + Bx]. (A10)

The minimal data set needed to specify an LP model are the input allgcations and prices, the
expected yield, price and any resource or policy constraints. If the elasticity of substitution value
and the constant returns to scale assumption are added to this basic data set, the scale and share
parameters of the CES production function can be recursively solved for any number of inputs
using equations (A9), (AS5), (A7)and (A10).
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This paper describes calibration methods for models of agricultural production and water use in which
economic variables can directly interact with hydrologic network models or other biophysical system
models. We also describe and demonstrate the use of systematic calibration checks at different stages for
efficient debugging of models. The central model is the California Statewide Agricultural Production
Model (SWAP), a Positive Mathematical Programming (PMP) model of California irrigated agriculture. We
outline the six step calibration procedure and demonstrate the model with an empirical policy analysis.
Two new techniques are included compared with most previous PMP-based models: exponential PMP
cost functions and Constant Elasticity of Substitution (CES) regional production functions. We then
demonstrate the use of this type of disaggregated production model for policy analysis by evaluating
potential water transfers under drought conditions. The analysis links regional production functions with
a water supply network. The results show that a more flexible water market allocation can reduce
revenue losses from drought up to 30%. These results highlight the potential of self-calibrated models in
policy analysis. While the empirical application is for a California agricultural and environmental water
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system, the approach is general and applicable to many other situations and locations.
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1. Introduction

The importance of integrating economic and environmental
considerations for policy making has fostered the use of hydro-
economic models, surveyed by Harou et al. (2009) from a hydro-
logic perspective and by Booker et al. (2012) from an economic
viewpoint. This paper describes in detail methods by which
economic models of agricultural production and water use can be
calibrated at a scale where the economic variables can directly
interact with hydrologic network models. We also develop
systematic checks of calibration at different stages, which allows for
efficient debugging of models. While the empirical application is
for a California agricultural and environmental water system, the
approach is general and can be applied to other situations and
locations.
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Irrigated agriculture is the largest water user and an important
part of local economies in arid regions around the world, but it is
also a sector which is expected to adapt to changes in urban and
environmental water conditions and demands. Production in many
of these regions is increasingly constrained by environmental
concerns including groundwater overdraft, nitrate runoff, soil
erosion, salinity, and balancing water diversions with urban and
ecosystem demands. In addition, future population growth and
climate change is expected to increase food demand and place
additional strain on production, resources, and the environment.
Consequently, policymakers seek to design and evaluate
agricultural—environmental policies to address these and related
issues. Historically policy evaluation is undertaken with aggregate
financial and physical data, but these data, and corresponding
methods, are being replaced with the influx of micro-level and
remote sensing data and improvements in agricultural production
models.

We empirically illustrate the ideas in this paper with the
example of irrigated agriculture in California, but the methods and
insights apply to any agricultural region. The Statewide Agricultural
Production Model (SWAP) is a multi-region, multi-input and output
model of agricultural production which self-calibrates using the
method of Positive Mathematical Programming (PMP) (Howitt,
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