Appendix 9F

Reservoir Fish Analysis Documentation

This appendix provides information about the methods and assumptions used for the Coordinated Long Term Operation of the Central Valley Project (CVP) and State Water Project (SWP) Environmental Impact Statement (EIS) analysis of reservoir fish. It is organized in two main sections:

- Section 9F.1: Reservoir Fish Analysis Methodology and Assumptions
- The reservoir fish impacts analysis uses modeled monthly reservoir elevations to develop rates of water level change to evaluate the effects on reservoir fish that spawn in the nearshore areas. The species analyzed were Largemouth Bass, Smallmouth Bass, and Spotted Bass. This section describes the overall analytical approach and assumptions.
- Section 9F.2: Reservoir Fish Analysis Results
- This section presents the survival estimates for each reservoir and fish species evaluated during the spawning period. Statistics are presented in exceedance plots and in tabular format.

9F. 1 Reservoir Fish Analysis Methodology and Assumptions

9F.1.1 Reservoir Fish Analysis Methodology

Reservoir storage and surface water elevations in the reservoirs from the CalSim II model were used to analyze the potential effects on reservoir fishes. Although aquatic habitat within the CVP and SWP water supply reservoirs may not be limiting, storage volume is used as an indicator of how much habitat is available to fish species inhabiting these reservoirs. Warm water fish species that inhabit the upper layer of these reservoirs may be affected by fluctuations in storage through changes in reservoir water surface elevations.
The evaluation method used to assess the influence of fluctuating water levels in the reservoirs was developed using the relationship presented in Lee (1999) and by examining literature on nest success levels found in self-sustaining populations of black bass (Micropterus spp.). Available literature suggests that nest failure is highly variable among water bodies and between years, but it is not uncommon to have up to 40 percent of nests fail (60 percent survival) (Scott and Crossman 1973). Many self-sustaining black bass populations in North America experience nest success (that is, the nest produces swim-up fry) rates of 21 to 96 percent, with many reported survival rates in the 40 to 60 percent range (Forbes 1981; Hunt and Annett 2002; Steinhart 2004) suggesting that much less than 100 percent survival is required to support a self-sustaining population. Based on the literature review, nest survival probability in excess of 40 percent is assumed to be sufficient to provide for a self-sustaining bass fishery.

The conceptual approach used to evaluate the effects of water surface elevation fluctuations on bass nests was based on a relationship between black bass nest success and water surface elevation reductions developed by Lee (1999) from research conducted on five California reservoirs. Lee (1999) examined the relationship between water surface elevation fluctuation rates and nesting success for Black Bass, and developed nest survival curves for Largemouth, Smallmouth, and Spotted bass. The equations corresponding to the relationship curves are the following:

- Largemouth Bass $Y=-56.378^{*} \ln (X)-102.59$
- Smallmouth Bass $Y=-46.466^{*} \ln (X)-83.34$
- Spotted Bass $Y=-79.095^{*} \ln (X)-94.162$
- where: X is the fluctuation rate (meter/day) and Y is the percentage of successful nests

Based on the work by Lee (1999), the maximum receding water level rate providing 100 percent successful nesting varied among species, with receding water level rates of less than 0.02 , less than 0.01 , and less than 0.065 meters per day ($\mathrm{m} /$ day) providing successful nesting of 100 percent of the Largemouth Bass, Smallmouth Bass, and Spotted Bass, nests, respectively. Recession rates of 0.07, 0.06 , and $0.17 \mathrm{~m} /$ day would allow for successful nesting of 50 percent of the Largemouth Bass, Smallmouth Bass, and Spotted Bass, nests, respectively.

For this analysis, water surface elevations at the end of each month from the CalSim II model output were used to calculate the monthly, and subsequently, daily fluctuation rates used to compute the percentage of successful nests using the equations from Lee (1999). CalSim II reports end-of-month (EOM) water surface elevations; therefore, water surface elevations from February through June were used in this analysis (that is, the March fluctuation rate is equal to the March EOM elevation minus the February EOM elevation). The average daily fluctuation rate used as " X " in the equations presented previously to compute the percentage of successful nests during that month was approximated by use of the monthly change in elevation divided by the number of days in that month. The percentage of successful nests was computed based on the equations from Lee (1999) for each month of the potential spawning season for these species.

This assessment is not intended to predict the absolute rate of survival in Black Bass nests, but rather to provide the basis for evaluating the relative differences among alternatives. These results should be viewed as indicators of the relative performance of the alternatives evaluated.

9F.1.2 Reservoir Fish Analysis Scenario Assumptions

This section describes the assumptions for the Reservoir Fish Analysis for the No Action Alternative, Second Basis of Comparison, and other alternatives.

The following CalSim II model simulations were performed as the basis for evaluating the impacts of the other alternatives:

- No Action Alternative
- Second Basis of Comparison

The following model simulations of other alternatives were performed:

- Alternative 1 - for simulation purposes, considered the same as Second Basis of Comparison
- Alternative 2 - for simulation purposes, considered the same as No Action Alternative
- Alternative 3
- Alternative 4 - for simulation purposes, considered the same as Second Basis of Comparison
- Alternative 5

Assumptions for each of these alternatives were developed with the surface water modeling tools and are described in Appendix 5A, Section B.

Alternative 1 modeling assumptions are the same as those for the Second Basis of Comparison and Alternative 2 modeling assumptions are the same as those for the No Action Alternative; therefore, the assumptions for those alternatives are not discussed separately in this document.

Assumptions for each of these alternatives are reflected to monthly CalSim II reservoir storage elevations that are used in the Reservoir Fish analysis described in this section.

9F. 2 Reservoir Fish Results

Results are provided for each of the following runs separately:

- No Action Alternative
- Second Basis of Comparison
- Alternative 1
- Alternative 3
- Alternative 5

In addition, the same statistics are provided for the following comparisons to establish changes of the alternative with respect to one of the bases of comparison:

- Alternative 1 compared to No Action Alternative
- Alternative 3 compared to No Action Alternative
- Alternative 5 compared to No Action Alternative
- No Action Alternative compared to Second Basis of Comparison

1 - Alternative 1 compared to Second Basis of Comparison
2 - Alternative 3 compared to Second Basis of Comparison
3 - Alternative 5 compared to Second Basis of Comparison
4 The first set of results is provided as probability exceedance curves of nest 5 survival percentage for each reservoir and species of bass. For this analysis, 6 exceedance plots for the percentage of nest survival were generated based on the 7 82-year CalSim II time period for each of the alternatives and bases of 8 comparison. Differences among alternatives were evaluated using the exceedance 9 probability corresponding to varying levels of survival.

10 The second set of results is provided as tables summarizing the monthly nest survival percentage for each reservoir and species of bass (as described previously) with monthly exceedance probabilities and long-term averages over the entire CalSim II simulation period. Averages are also provided by water year type.

15 Exceedance plots and tables, numbered to correspond to the following model 16 results, are presented at the end of this appendix:

17 - B.1. Trinity Largemouth Bass Survival Percentage
18 - B.2. Trinity Smallmouth Bass Survival Percentage
19 - B.3. Trinity Spotted Bass Survival Percentage
20 - B.4. Shasta Largemouth Bass Survival Percentage
21 - B.5. Shasta Smallmouth Bass Survival Percentage
22 - B.6. Shasta Spotted Bass Survival Percentage

- B.7. Oroville Largemouth Bass Survival Percentage

24 - B.8. Oroville Smallmouth Bass Survival Percentage

- B.9. Oroville Spotted Bass Survival Percentage
- B.10. Folsom Largemouth Bass Survival Percentage
- B.13. New Melones Largemouth Bass Survival Percentage
- B.14. New Melones Smallmouth Bass Survival Percentage

31

- B.15. New Melones Spotted Bass Survival Percentage

9F. 3 References

Forbes, A. 1981. Review of Smallmouth Bass (Micropterus dolomieui) Spawning Requirements and First Year Survival in Lakes. Wisconsin Department of Natural Resources Research Report 111.

Hunt, J. and C.A. Annett. 2002. Effects of habitat manipulation on reproductive success of individual largemouth bass in an Ozark Reservoir. North American Journal of Fisheries Management 22:1201-1208.
Lee, D.P. 1999. Water Level Fluctuation Criteria for Black Bass in California Reservoirs. California Department of Fish and Game. Reservoir Research and Management Project-Informational Leaflet No. 12. 12 pp.
Scott, W.B. and E.J. Crossman, 1973. Freshwater fishes of Canada. Bull. Fish. Res. Board Can. 184:1-966.
Steinhart, G.B. 2004. Exploring factors affecting smallmouth bass nest success and reproductive behavior. Ph. D. Dissertation. Department of Evolution, Ecology, and Organismal Biology. The Ohio State University.

This page left blank intentionally.

B.1. Trinity Large Mouth Bass Survival Percentage

Figure B-1-1. Trinity Large Mouth Bass Nest Survival Percentage, March

Notes: 1) Exceedance probability is defined as the probability a given value will be exceeded in any one year. 2) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 3) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 4) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure B-1-2. Trinity Large Mouth Bass Nest Survival Percentage, April

Notes: 1) Exceedance probability is defined as the probability a given value will be exceeded in any one year. 2) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 3) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 4) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure B-1-3. Trinity Large Mouth Bass Nest Survival Percentage, May

Notes: 1) Exceedance probability is defined as the probability a given value will be exceeded in any one year. 2) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 3) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 4) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure B-1-4. Trinity Large Mouth Bass Nest Survival Percentage, June

Notes: 1) Exceedance probability is defined as the probability a given value will be exceeded in any one year. 2) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 3) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 4) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table B-1-1. Trinity Large Mouth Bass Nest Survival Percentage, Monthly Percentage

No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	89
40\%	100	100	100	73
50\%	100	100	100	65
60\%	100	100	69	52
70\%	100	100	52	44
80\%	100	100	46	31
90\%	100	100	33	17
Long Term				
Full Simulation Period ${ }^{\text {b }}$	100	100	76	62
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	99	100	87	72
Above Normal (16\%)	100	100	84	52
Below Normal (13\%)	100	100	64	42
Dry (24\%)	100	100	67	58
Critical (15\%)	100	97	67	75

Alternative 1

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	78
40\%	100	100	100	72
50\%	100	100	100	61
60\%	100	100	68	55
70\%	100	100	54	39
80\%	100	100	48	31
90\%	100	100	33	18
Long Term				
Full Simulation Period ${ }^{\text {b }}$	100	99	76	61
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	99	100	87	71
Above Normal (16\%)	100	100	85	51
Below Normal (13\%)	100	100	66	46
Dry (24\%)	100	100	68	59
Critical (15\%)	100	95	69	69

Alternative 1 minus No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	0	0	0	0
20\%	0	0	0	0
30\%	0	0	0	-11
40\%	0	0	0	-2
50\%	0	0	0	-4
60\%	0	0	-1	3
70\%	0	0	2	-5
80\%	0	0	2	0
90\%	0	0	0	1
Long Term				
Full Simulation Period ${ }^{\text {b }}$	0	0	1	-1
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	0	0	0	-1
Above Normal (16\%)	0	0	1	-1
Below Normal (13\%)	0	0	1	4
Dry (24\%)	0	0	0	0
Critical (15\%)	0	-2	1	-6

Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
SWRCB D-1641, 1999); projected to Year 2030

Nes. 1) Al allernaives are simuled win projected hydrology and sea level at Year 2030 condions 2)
Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Second Basis of群parison and Atternative 4 results are not presented. Quaitative differences, if applicable, are discusser the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table B-1-2. Trinity Large Mouth Bass Nest Survival Percentage, Monthly Percentage

No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	89
40\%	100	100	100	73
50\%	100	100	100	65
60\%	100	100	69	52
70\%	100	100	52	44
80\%	100	100	46	31
90\%	100	100	33	17
Long Term				
Full Simulation Period ${ }^{\text {b }}$	100	100	76	62
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	99	100	87	72
Above Normal (16\%)	100	100	84	52
Below Normal (13\%)	100	100	64	42
Dry (24\%)	100	100	67	58
Critical (15\%)	100	97	67	75

Alternative 3

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	78
40\%	100	100	100	71
50\%	100	100	100	60
60\%	100	100	68	53
70\%	100	100	54	40
80\%	100	100	50	32
90\%	100	100	33	21
Long Term				
Full Simulation Period ${ }^{\text {b }}$	100	100	77	61
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	99	100	87	71
Above Normal (16\%)	100	100	86	52
Below Normal (13\%)	100	100	65	42
Dry (24\%)	100	100	68	60
Critical (15\%)	100	98	70	70

Alternative 3 minus No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	0	0	0	0
20\%	0	0	0	0
30\%	0	0	0	-11
40\%	0	0	0	-2
50\%	0	0	0	-5
60\%	0	0	-1	1
70\%	0	0	2	-3
80\%	0	0	4	2
90\%	0	0	0	4
Long Term				
Full Simulation Period ${ }^{\text {b }}$	0	0	1	-1
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	0	0	0	-1
Above Normal (16\%)	0	0	2	0
Below Normal (13\%)	0	0	1	0
Dry (24\%)	0	0	1	2
Critical (15\%)	0	1	2	-5

Exceedance probability is defined as the probability a given value will be exceeded in any one year
Based on the 82 -year simulation period
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
SWRCB D-1641, 1999); projected to Year 2030
tes. 1) Al alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2
Model results for Alternatives 1,4, and Second Basis of Comparison are the same, therefore Alternative
and 4 results are not presented. Qualitative differences, if applicabbe, are discussed in the text. 3) Model
results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the text.

Table B-1-3. Trinity Large Mouth Bass Nest Survival Percentage, Monthly Percentage

No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	89
40\%	100	100	100	73
50\%	100	100	100	65
60\%	100	100	69	52
70\%	100	100	52	44
80\%	100	100	46	31
90\%	100	100	33	17
Long Term				
Full Simulation Period ${ }^{\text {b }}$	100	100	76	62
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	99	100	87	72
Above Normal (16\%)	100	100	84	52
Below Normal (13\%)	100	100	64	42
Dry (24\%)	100	100	67	58
Critical (15\%)	100	97	67	75

Alternative 5

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	89
40\%	100	100	100	73
50\%	100	100	100	65
60\%	100	100	70	53
70\%	100	100	53	44
80\%	100	100	46	31
90\%	100	100	34	17
Long Term				
Full Simulation Period ${ }^{\text {b }}$	100	100	76	62
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	99	100	87	72
Above Normal (16\%)	100	100	84	53
Below Normal (13\%)	100	100	65	42
Dry (24\%)	100	100	68	58
Critical (15\%)	100	97	67	78

Alternative 5 minus No Action Alternative

	Statistic	Mar	Apr	May

Probability of Exceedance $^{\text {a }}$				
10%	0	0	0	0
20%	0	0	0	0
30%	0	0	0	0
40%	0	0	0	0
50%	0	0	0	0
60%	0	0	0	0
70%	0	0	1	0
80%	0	0	0	0
90%	0	0	1	0
Long Term				
Full Simulation Period	0	0	0	0
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	0	0	0	0
Above Normal (16\%)	0	0	0	0
Below Normal (13\%)	0	0	1	0
Dry (24\%)	0	0	0	-1
Critical (15\%)	0	0	0	3

Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
SWRCB D-1641, 1999); projected to Year 2030

Ies. 1) Al alternatives are simulated win projected hydrology and sea level at Year 2030 condiions. 2
Model results for Alternatives 1,4, and Second Basis of Comparison are the same, therefore Alternative
and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the text.

Table B-1-4. Trinity Large Mouth Bass Nest Survival Percentage, Monthly Percentage

Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	78
40\%	100	100	100	72
50\%	100	100	100	61
60\%	100	100	68	55
70\%	100	100	54	39
80\%	100	100	48	31
90\%	100	100	33	18
Long Term				
Full Simulation Period ${ }^{\text {b }}$	100	99	76	61
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	99	100	87	71
Above Normal (16\%)	100	100	85	51
Below Normal (13\%)	100	100	66	46
Dry (24\%)	100	100	68	59
Critical (15\%)	100	95	69	69

No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance $^{\text {a }}$				
10%	100	100	100	100
20%	100	100	100	100
30%	100	100	100	89
40%	100	100	100	73
$\mathbf{5 0 \%}$	100	100	100	65
$\mathbf{6 0 \%}$	100	100	69	52
70%	100	100	52	44
80%	100	100	46	31
90%	100	100	33	17
Long Term				
Full Simulation Period		100	100	76
Water Year Types				62
Wet (32\%)	99	100	87	72
Above Normal (16\%)	100	100	84	52
Below Normal (13\%)	100	100	64	42
Dry (24\%)	100	100	67	58
Critical (15\%)	100	97	67	75

No Action Alternative minus Second Basis of Comparison

	Statistic	Mar	Apr	May		Jun
Probability of Exceedance $^{\text {a }}$						
10%	0	0	0	0		
20%	0	0	0	0		
30%	0	0	0	11		
40%	0	0	0	2		
50%	0	0	0	4		
60%	0	0	1	-3		
70%	0	0	-2	5		
80%	0	0	-2	0		
90%	0	0	0	-1		
Long Term						
Full Simulation Period	0	0	-1	1		
Water Year Types ${ }^{\text {c }}$						
Wet (32\%)	0	0	0	1		
Above Normal (16\%)	0	0	-1	1		
Below Normal (13\%)	0	0	-1	-4		
Dry (24\%)	0	0	0	0		
Critical (15\%)	0	2	-1	6		

Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
(SWRCB D-1641, 1999); projected to Year 2030.
tes. 1) Al alternatives are simulated win projected hydrology and sea level at Year 2030 conditions. 2
Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternative 1
and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
esults for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the text.

Table B-1-5. Trinity Large Mouth Bass Nest Survival Percentage, Monthly Percentage

Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	78
40\%	100	100	100	72
50\%	100	100	100	61
60\%	100	100	68	55
70\%	100	100	54	39
80\%	100	100	48	31
90\%	100	100	33	18
Long Term				
Full Simulation Period ${ }^{\text {b }}$	100	99	76	61
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	99	100	87	71
Above Normal (16\%)	100	100	85	51
Below Normal (13\%)	100	100	66	46
Dry (24\%)	100	100	68	59
Critical (15\%)	100	95	69	69

Alternative 3

Statistic	Mar	Apr	May	Jun
Probability of Exceedance $^{\text {a }}$				
10%	100	100	100	100
20%	100	100	100	100
30%	100	100	100	78
40%	100	100	100	71
$\mathbf{5 0 \%}$	100	100	100	60
60%	100	100	68	53
70%	100	100	54	40
80%	100	100	50	32
90%	100	100	33	21
Long Term				
Full Simulation Period				
Water Year Types		100	100	77
Wet (32\%)				61
Above Normal (16\%)	100	100	87	71
Below Normal (13\%)	100	100	86	52
Dry (24\%)	100	100	65	42
Critical (15\%)	100	98	68	60
			70	70

Alternative 3 minus Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance $^{\text {a }}$				
10%	0	0	0	0
20%	0	0	0	0
30%	0	0	0	0
40%	0	0	0	0
50%	0	0	0	-1
60%	0	0	0	-2
70%	0	0	0	2
80%	0	0	2	2
90%	0	0	0	3
Long Term				
Full Simulation Period		0	0	0
Water Year Types				
Wet (32\%)	0	0		0
Above Normal (16\%)	0	0	1	0
Below Normal (13\%)	0	0	0	-4
Dry (24\%)	0	0	0	1
Critical (15\%)	0	3	1	1

Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
SWRCB D-1641, 1999); projected to Year 2030
tes. 1) Al alternatives are simulated win projected hydrology and sea level at Year 2030 conditions. 2
Model results for Alternatives 1,4, and Second Basis of Comparison are the same, therefore Alternative
and 4 results are not presented. Qualitative differences, if applicabbe, are discussed in the text. 3) Model
esults for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the text.

Table B-1-6. Trinity Large Mouth Bass Nest Survival Percentage, Monthly Percentage

Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	78
40\%	100	100	100	72
50\%	100	100	100	61
60\%	100	100	68	55
70\%	100	100	54	39
80\%	100	100	48	31
90\%	100	100	33	18
Long Term				
Full Simulation Period ${ }^{\text {b }}$	100	99	76	61
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	99	100	87	71
Above Normal (16\%)	100	100	85	51
Below Normal (13\%)	100	100	66	46
Dry (24\%)	100	100	68	59
Critical (15\%)	100	95	69	69

Alternative 5

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	89
40\%	100	100	100	73
50\%	100	100	100	65
60\%	100	100	70	53
70\%	100	100	53	44
80\%	100	100	46	31
90\%	100	100	34	17
Long Term				
Full Simulation Period ${ }^{\text {b }}$	100	100	76	62
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	99	100	87	72
Above Normal (16\%)	100	100	84	53
Below Normal (13\%)	100	100	65	42
Dry (24\%)	100	100	68	58
Critical (15\%)	100	97	67	78

Alternative 5 minus Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	0	0	0	0
20\%	0	0	0	0
30\%	0	0	0	11
40\%	0	0	0	2
50\%	0	0	0	4
60\%	0	0	2	-2
70\%	0	0	-1	5
80\%	0	0	-2	0
90\%	0	0	1	-1
Long Term				
Full Simulation Period ${ }^{\text {b }}$	0	0	0	1
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	0	0	0	1
Above Normal (16\%)	0	0	0	2
Below Normal (13\%)	0	0	0	-4
Dry (24\%)	0	0	0	-1
Critical (15\%)	0	2	-1	9

Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
(SWRCB D-1641, 1999); projected to Year 2030
tes. 1) Al alternatives are simulated win projected hydrology and sea level at Year 2030 conditions. 2
Model results for Alternatives 1,4, and Second Basis of Comparison are the same, therefore Alternative
and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
esults for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the text.
B.2. Trinity Small Mouth Bass Survival Percentage

Figure B-2-1. Trinity Small Mouth Bass Nest Survival Percentage, March

Notes: 1) Exceedance probability is defined as the probability a given value will be exceeded in any one year. 2) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 3) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 4) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure B-2-2. Trinity Small Mouth Bass Nest Survival Percentage, April

Notes: 1) Exceedance probability is defined as the probability a given value will be exceeded in any one year. 2) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 3) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 4) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure B-2-3. Trinity Small Mouth Bass Nest Survival Percentage, May

Notes: 1) Exceedance probability is defined as the probability a given value will be exceeded in any one year. 2) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 3) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 4) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure B-2-4. Trinity Small Mouth Bass Nest Survival Percentage, June

Notes: 1) Exceedance probability is defined as the probability a given value will be exceeded in any one year. 2) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 3) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 4) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table B-2-1. Trinity Small Mouth Bass Nest Survival Percentage, Monthly Percentage

No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	75
40\%	100	100	100	62
50\%	100	100	95	55
60\%	100	100	58	44
70\%	100	100	44	37
80\%	100	100	39	26
90\%	100	100	29	15
Long Term				
Full Simulation Period ${ }^{\text {b }}$	100	99	72	56
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	99	100	84	66
Above Normal (16\%)	100	100	80	47
Below Normal (13\%)	100	100	59	37
Dry (24\%)	100	100	63	51
Critical (15\%)	100	95	62	70

Alternative 1

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	65
40\%	100	100	100	60
50\%	100	100	87	52
60\%	100	100	57	46
70\%	100	100	46	33
80\%	100	100	41	27
90\%	100	100	29	16
Long Term				
Full Simulation Period ${ }^{\text {b }}$	100	99	72	55
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	99	100	84	66
Above Normal (16\%)	100	100	81	46
Below Normal (13\%)	100	100	60	41
Dry (24\%)	100	100	63	52
Critical (15\%)	100	93	62	63

Alternative 1 minus No Action Alternative

Statistic	Mar		Apr	May		Jun
Probability of Exceedance $^{\text {a }}$						
10%	0	0	0	0		
20%	0	0	0	0		
30%	0	0	0	-9		
40%	0	0	0	-1		
50%	0	0	-8	-3		
60%	0	0	-1	2		
70%	0	0	1	-4		
80%	0	0	1	0		
90%	0	0	0	1		
Long Term						
Full Simulation Period			0	0		
Water Year Types						
Wet (32\%)	0	0				
Above Normal (16\%)	0	0	0	-1		
Below Normal (13\%)	0	0	1	0		
Dry (24\%)	0	0	1	-1		
Critical (15\%)	0	0	0	3		
	0	-2	0	-6		

Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
SWRCB D-1641, 1999); projected to Year 2030

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2
Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Second Basis of Comparison and Aternative 4 results are not presented. Qualitative differences, if applicable, are discussed the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 esults are not presented. Qualitative differences, if applicable, are discussed in the tex

Table B-2-2. Trinity Small Mouth Bass Nest Survival Percentage, Monthly Percentage

No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	75
40\%	100	100	100	62
50\%	100	100	95	55
60\%	100	100	58	44
70\%	100	100	44	37
80\%	100	100	39	26
90\%	100	100	29	15
Long Term				
Full Simulation Period ${ }^{\text {b }}$	100	99	72	56
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	99	100	84	66
Above Normal (16\%)	100	100	80	47
Below Normal (13\%)	100	100	59	37
Dry (24\%)	100	100	63	51
Critical (15\%)	100	95	62	70

Alternative 3

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	65
40\%	100	100	100	60
50\%	100	100	95	51
60\%	100	100	58	45
70\%	100	100	46	35
80\%	100	100	42	28
90\%	100	100	29	18
Long Term				
Full Simulation Period ${ }^{\text {b }}$	100	99	73	56
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	99	100	84	66
Above Normal (16\%)	100	100	82	47
Below Normal (13\%)	100	100	60	37
Dry (24\%)	100	100	64	53
Critical (15\%)	100	95	64	64

Alternative 3 minus No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance $^{\text {a }}$				
10%	0	0	0	0
20%	0	0	0	0
30%	0	0	0	-9
40%	0	0	0	-2
50%	0	0	0	-4
60%	0	0	-1	1
70%	0	0	2	-3
80%	0	0	3	2
90%	0	0	0	4
Long Term				
Full Simulation Period		0	0	1
Water Year Types				
Wet (32\%)				-1
Above Normal (16\%)	0	0	0	-1
Below Normal (13\%)	0	0	1	0
Dry (24\%)	0	0	1	0
Critical (15\%)	0	0	1	2

Exceedance probability is defined as the probability a given value will be exceeded in any one year
Based on the 82 -year simulation period
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
SWRCB D-1641, 1999); projected to Year 2030

Ites. 1) Al alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2
Model results for Alternatives 1,4, and Second Basis of Comparison are the same, therefore Alternative
and 4 results are not presented. Qualitative differences, if applicabbe, are discussed in the text. 3) Model
results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the text.

Table B-2-3. Trinity Small Mouth Bass Nest Survival Percentage, Monthly Percentage

No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	75
40\%	100	100	100	62
50\%	100	100	95	55
60\%	100	100	58	44
70\%	100	100	44	37
80\%	100	100	39	26
90\%	100	100	29	15
Long Term				
Full Simulation Period ${ }^{\text {b }}$	100	99	72	56
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	99	100	84	66
Above Normal (16\%)	100	100	80	47
Below Normal (13\%)	100	100	59	37
Dry (24\%)	100	100	63	51
Critical (15\%)	100	95	62	70

Alternative 5

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	75
40\%	100	100	100	62
50\%	100	100	95	55
60\%	100	100	59	44
70\%	100	100	45	37
80\%	100	100	39	27
90\%	100	100	29	15
Long Term				
Full Simulation Period ${ }^{\text {b }}$	100	99	72	57
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	99	100	84	66
Above Normal (16\%)	100	100	81	47
Below Normal (13\%)	100	100	60	38
Dry (24\%)	100	100	64	51
Critical (15\%)	100	95	62	72

Alternative 5 minus No Action Alternative

	Statistic	Mar	Apr	May

Probability of Exceedance $^{\mathrm{a}}$				0
10%	0	0	0	0
20%	0	0	0	0
30%	0	0	0	0
40%	0	0	0	0
50%	0	0	0	0
60%	0	0	0	0
70%	0	0	1	0
80%	0	0	0	0
90%	0	0	1	0
Long Term				
Full Simulation Period		0	0	0
Water Year Types		0		
Wet (32\%)	0	0	0	0
Above Normal (16\%)	0	0	0	0
Below Normal (13\%)	0	0	1	0
Dry (24\%)	0	0	0	0
Critical (15\%)	0	0	0	2

Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
SWRCB D-1641, 1999); projected to Year 2030

Ites. 1) Al alternatives are simulated win projected hydrology and sea level at Year 2030 conditions. 2
Iodel results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternative
and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the text.

Table B-2-4. Trinity Small Mouth Bass Nest Survival Percentage, Monthly Percentage

Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance $^{\text {a }}$				
10%	100	100	100	100
$\mathbf{2 0 \%}$	100	100	100	100
30%	100	100	100	65
40%	100	100	100	60
$\mathbf{5 0 \%}$	100	100	87	52
60%	100	100	57	46
70%	100	100	46	33
80%	100	100	41	27
90%	100	100	29	16
Long Term				
Full Simulation Period				
Water Year Types		100	99	72
Wet (32\%)				55
Above Normal (16\%)	100	100	84	66
Below Normal (13\%)	100	100	81	46
Dry (24\%)	100	100	60	41
Critical (15\%)	100	93	63	52
				62

No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance $^{\text {a }}$				
10%	100	100	100	100
20%	100	100	100	100
30%	100	100	100	75
40%	100	100	100	62
$\mathbf{5 0 \%}$	100	100	95	55
60%	100	100	58	44
70%	100	100	44	37
80%	100	100	39	26
90%	100	100	29	15
Long Term				
Full Simulation Period		100	99	72
Water Year Types				56
Wet (32\%)	99	100	84	66
Above Normal (16\%)	100	100	80	47
Below Normal (13\%)	100	100	59	37
Dry (24\%)	100	100	63	51
Critical (15\%)	100	95	62	70

No Action Alternative minus Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	0	0	0	0
20\%	0	0	0	0
30\%	0	0	0	9
40\%	0	0	0	1
50\%	0	0	8	3
60\%	0	0	1	-2
70\%	0	0	-1	4
80\%	0	0	-1	0
90\%	0	0	0	-1
Long Term				
Full Simulation Period ${ }^{\text {b }}$	0	0	0	1
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	0	0	0	0
Above Normal (16\%)	0	0	-1	1
Below Normal (13\%)	0	0	-1	-3
Dry (24\%)	0	0	0	-1
Critical (15\%)	0	2	0	6

Exceedance probability is defined as the probability a given value will be exceeded in any one year. Based on the 82 -year simulation period.
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
(SWRCB D-1641, 1999); projected to Year 2030.

Notes. 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2)
Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternative
and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
esults for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the text.

Table B-2-5. Trinity Small Mouth Bass Nest Survival Percentage, Monthly Percentage

Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance $^{\text {a }}$				
10%	100	100	100	100
$\mathbf{2 0 \%}$	100	100	100	100
30%	100	100	100	65
40%	100	100	100	60
$\mathbf{5 0 \%}$	100	100	87	52
60%	100	100	57	46
70%	100	100	46	33
80%	100	100	41	27
90%	100	100	29	16
Long Term				
Full Simulation Period				
Water Year Types		100	99	72
Wet (32\%)				55
Above Normal (16\%)	100	100	84	66
Below Normal (13\%)	100	100	81	46
Dry (24\%)	100	100	60	41
Critical (15\%)	100	93	63	52
				62

Alternative 3

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	65
40\%	100	100	100	60
50\%	100	100	95	51
60\%	100	100	58	45
70\%	100	100	46	35
80\%	100	100	42	28
90\%	100	100	29	18
Long Term				
Full Simulation Period ${ }^{\text {b }}$	100	99	73	56
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	99	100	84	66
Above Normal (16\%)	100	100	82	47
Below Normal (13\%)	100	100	60	37
Dry (24\%)	100	100	64	53
Critical (15\%)	100	95	64	64

Alternative 3 minus Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance $^{\text {a }}$				
10%	0	0	0	0
20%	0	0	0	0
30%	0	0	0	0
40%	0	0	0	0
50%	0	0	8	-1
60%	0	0	0	-2
70%	0	0	0	1
80%	0	0	2	1
90%	0	0	0	3
Long Term				
Full Simulation Period		0	0	1
Water Year Types				
Wet (32\%)	0	0	0	0
Above Normal (16\%)	0	0	1	0
Below Normal (13\%)	0	0	0	-3
Dry (24\%)	0	0	1	1
Critical (15\%)	0	2	2	1

Exceedance probability is defined as the probability a given value will be exceeded in any one year
Based on the 82 -year simulation period
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
(SWRCB D-1641, 1999); projected to Year 2030
tes. 1) Al alternatives are simulated win projected hydrology and sea level at Year 2030 conditions. 2
Model results for Alternatives 1,4, and Second Basis of Comparison are the same, therefore Alternative
and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
esults for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the tex

Table B-2-6. Trinity Small Mouth Bass Nest Survival Percentage, Monthly Percentage

Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance $^{\text {a }}$				
10%	100	100	100	100
$\mathbf{2 0 \%}$	100	100	100	100
30%	100	100	100	65
40%	100	100	100	60
$\mathbf{5 0 \%}$	100	100	87	52
60%	100	100	57	46
70%	100	100	46	33
80%	100	100	41	27
90%	100	100	29	16
Long Term				
Full Simulation Period				
Water Year Types		100	99	72
Wet (32\%)				55
Above Normal (16\%)	100	100	84	66
Below Normal (13\%)	100	100	81	46
Dry (24\%)	100	100	60	41
Critical (15\%)	100	93	63	52
				62

Alternative 5

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	75
40\%	100	100	100	62
50\%	100	100	95	55
60\%	100	100	59	44
70\%	100	100	45	37
80\%	100	100	39	27
90\%	100	100	29	15
Long Term				
Full Simulation Period ${ }^{\text {b }}$	100	99	72	57
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	99	100	84	66
Above Normal (16\%)	100	100	81	47
Below Normal (13\%)	100	100	60	38
Dry (24\%)	100	100	64	51
Critical (15\%)	100	95	62	72

Alternative 5 minus Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	0	0	0	0
20\%	0	0	0	0
30\%	0	0	0	9
40\%	0	0	0	1
50\%	0	0	8	3
60\%	0	0	1	-2
70\%	0	0	-1	4
80\%	0	0	-1	0
90\%	0	0	1	-1
Long Term				
Full Simulation Period ${ }^{\text {b }}$	0	0	0	1
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	0	0	0	0
Above Normal (16\%)	0	0	0	1
Below Normal (13\%)	0	0	0	-3
Dry (24\%)	0	0	1	-1
Critical (15\%)	0	2	0	9

Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
(SWRCB D-1641, 1999); projected to Year 2030
tes. 1) Al alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2
Model results for Alternatives 1,4, and Second Basis of Comparison are the same, therefore Alternative
and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
esults for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the tex
B.3. Trinity Spotted Bass Survival Percentage 2

Figure B-3-1. Trinity Spotted Bass Nest Survival Percentage, March

Notes: 1) Exceedance probability is defined as the probability a given value will be exceeded in any one year. 2) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 3) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 4) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure B-3-2. Trinity Spotted Bass Nest Survival Percentage, April

Notes: 1) Exceedance probability is defined as the probability a given value will be exceeded in any one year. 2) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 3) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 4) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure B-3-3. Trinity Spotted Bass Nest Survival Percentage, May

Notes: 1) Exceedance probability is defined as the probability a given value will be exceeded in any one year. 2) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 3) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 4) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure B-3-4. Trinity Spotted Bass Nest Survival Percentage, June

Notes: 1) Exceedance probability is defined as the probability a given value will be exceeded in any one year. 2) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 3) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 4) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table B-3-1. Trinity Spotted Bass Nest Survival Percentage, Monthly Percentage

No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	100
50\%	100	100	100	100
60\%	100	100	100	100
70\%	100	100	100	100
80\%	100	100	100	93
90\%	100	100	97	73
Long Term				
Full Simulation Period ${ }^{\text {b }}$	100	100	98	94
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	100	100	98	96
Above Normal (16\%)	100	100	100	93
Below Normal (13\%)	100	100	96	89
Dry (24\%)	100	100	96	90
Critical (15\%)	100	100	99	99

Alternative 1

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	100
50\%	100	100	100	100
60\%	100	100	100	100
70\%	100	100	100	100
80\%	100	100	100	93
90\%	100	100	97	75
Long Term				
Full Simulation Period ${ }^{\text {b }}$	100	100	98	95
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	100	100	98	96
Above Normal (16\%)	100	100	100	91
Below Normal (13\%)	100	100	98	89
Dry (24\%)	100	100	97	96
Critical (15\%)	100	100	99	99

Alternative 1 minus No Action Alternative

	Statistic	Mar	Apr	May

Probability of Exceedance ${ }^{\text {a }}$				
10\%	0	0	0	0
20\%	0	0	0	0
30\%	0	0	0	0
40\%	0	0	0	0
50\%	0	0	0	0
60\%	0	0	0	0
70\%	0	0	0	0
80\%	0	0	0	0
90\%	0	0	0	2
Long Term				
Full Simulation Period ${ }^{\text {b }}$	0	0	0	1
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	0	0	0	0
Above Normal (16\%)	0	0	0	-2
Below Normal (13\%)	0	0	2	-1
Dry (24\%)	0	0	1	5
Critical (15\%)	0	0	0	0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
(SWRCB D-1641, 1999); projected to Year 2030

Table B-3-2. Trinity Spotted Bass Nest Survival Percentage, Monthly Percentage

No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	100
50\%	100	100	100	100
60\%	100	100	100	100
70\%	100	100	100	100
80\%	100	100	100	93
90\%	100	100	97	73
Long Term				
Full Simulation Period ${ }^{\text {b }}$	100	100	98	94
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	100	100	98	96
Above Normal (16\%)	100	100	100	93
Below Normal (13\%)	100	100	96	89
Dry (24\%)	100	100	96	90
Critical (15\%)	100	100	99	99

Alternative 3

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	100
50\%	100	100	100	100
60\%	100	100	100	100
70\%	100	100	100	100
80\%	100	100	100	95
90\%	100	100	96	79
Long Term				
Full Simulation Period ${ }^{\text {b }}$	100	100	98	95
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	100	100	98	96
Above Normal (16\%)	100	100	100	93
Below Normal (13\%)	100	100	97	90
Dry (24\%)	100	100	97	96
Critical (15\%)	100	100	100	100

Alternative 3 minus No Action Alternative

	Statistic	Mar	Apr	May

Probability of Exceedance $^{\mathrm{a}}$				
10%	0	0	0	0
20%	0	0	0	0
30%	0	0	0	0
40%	0	0	0	0
50%	0	0	0	0
60%	0	0	0	0
70%	0	0	0	0
80%	0	0	0	3
90%	0	0	0	6
Long Term				
Full Simulation Period	0	0	0	1
Water Year Types ${ }^{\mathbf{c}}$				
Wet (32\%)	0	0	0	0
Above Normal (16\%)	0	0	0	0
Below Normal (13\%)	0	0	2	1
Dry (24\%)	0	0	1	6
Critical (15\%)	0	0	0	1

a Exceedance probability is defined as the probability a given value will be exceeded in any one year. Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
(SWRCB D-1641, 1999); projected to Year 2030

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2)
Model results for Alternatives 1,4, and Second Basis of Comparison are the same, therefore Alternative
and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the text.

Table B-3-3. Trinity Spotted Bass Nest Survival Percentage, Monthly Percentage

No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	100
50\%	100	100	100	100
60\%	100	100	100	100
70\%	100	100	100	100
80\%	100	100	100	93
90\%	100	100	97	73
Long Term				
Full Simulation Period ${ }^{\text {b }}$	100	100	98	94
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	100	100	98	96
Above Normal (16\%)	100	100	100	93
Below Normal (13\%)	100	100	96	89
Dry (24\%)	100	100	96	90
Critical (15\%)	100	100	99	99

Alternative 5

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	100
50\%	100	100	100	100
60\%	100	100	100	100
70\%	100	100	100	100
80\%	100	100	100	93
90\%	100	100	98	73
Long Term				
Full Simulation Period ${ }^{\text {b }}$	100	100	98	94
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	100	100	98	96
Above Normal (16\%)	100	100	100	94
Below Normal (13\%)	100	100	97	89
Dry (24\%)	100	100	96	90
Critical (15\%)	100	100	99	99

Alternative 5 minus No Action Alternative

	Statistic	Mar	Apr	May

Probability of Exceedance $^{\mathrm{a}}$				
10%	0	0	0	0
20%	0	0	0	0
30%	0	0	0	0
40%	0	0	0	0
50%	0	0	0	0
60%	0	0	0	0
70%	0	0	0	0
80%	0	0	0	0
90%	0	0	1	0
Long Term				
Full Simulation Period	0	0	0	0
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	0	0	0	0
Above Normal (16\%)	0	0	0	0
Below Normal (13\%)	0	0	2	0
Dry (24\%)	0	0	0	0
Critical (15\%)	0	0	0	0

Exceedance probability is defined as the probability a given value will be exceeded in any one year. Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
(SWRCB D-1641, 1999); projected to Year 2030.

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2)
Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternative
and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
esults for Alternative 2 and $N o$ Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the text.

Table B-3-4. Trinity Spotted Bass Nest Survival Percentage, Monthly Percentage

Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	100
50\%	100	100	100	100
60\%	100	100	100	100
70\%	100	100	100	100
80\%	100	100	100	93
90\%	100	100	97	75
Long Term				
Full Simulation Period ${ }^{\text {b }}$	100	100	98	95
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	100	100	98	96
Above Normal (16\%)	100	100	100	91
Below Normal (13\%)	100	100	98	89
Dry (24\%)	100	100	97	96
Critical (15\%)	100	100	99	99

No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance $^{\text {a }}$				
10%	100	100	100	100
20%	100	100	100	100
30%	100	100	100	100
40%	100	100	100	100
$\mathbf{5 0 \%}$	100	100	100	100
$\mathbf{6 0 \%}$	100	100	100	100
70%	100	100	100	100
80%	100	100	100	93
90%	100	100	97	73
Long Term				
Full Simulation Period		100	100	98
Water Year Types				94
Wet (32\%)	100	100	98	96
Above Normal (16\%)	100	100	100	93
Below Normal (13\%)	100	100	96	89
Dry (24\%)	100	100	96	90
Critical (15\%)	100	100	99	99

No Action Alternative minus Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance $^{\text {a }}$				
10%	0	0	0	0
20%	0	0	0	0
30%	0	0	0	0
40%	0	0	0	0
50%	0	0	0	0
60%	0	0	0	0
70%	0	0	0	0
80%	0	0	0	0
90%	0	0	0	-2
Long Term				
Full Simulation Period	0	0	0	-1
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	0	0	0	0
Above Normal (16\%)	0	0	0	2
Below Normal (13\%)	0	0	-2	1
Dry (24\%)	0	0	-1	-5
Critical (15\%)	0	0	0	0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
(SWRCB D-1641, 1999); projected to Year 2030.

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2)
Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternative
and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the text.

Table B-3-5. Trinity Spotted Bass Nest Survival Percentage, Monthly Percentage

Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	100
50\%	100	100	100	100
60\%	100	100	100	100
70\%	100	100	100	100
80\%	100	100	100	93
90\%	100	100	97	75
Long Term				
Full Simulation Period ${ }^{\text {b }}$	100	100	98	95
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	100	100	98	96
Above Normal (16\%)	100	100	100	91
Below Normal (13\%)	100	100	98	89
Dry (24\%)	100	100	97	96
Critical (15\%)	100	100	99	99

Alternative 3

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	100
50\%	100	100	100	100
60\%	100	100	100	100
70\%	100	100	100	100
80\%	100	100	100	95
90\%	100	100	96	79
Long Term				
Full Simulation Period ${ }^{\text {b }}$	100	100	98	95
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	100	100	98	96
Above Normal (16\%)	100	100	100	93
Below Normal (13\%)	100	100	97	90
Dry (24\%)	100	100	97	96
Critical (15\%)	100	100	100	100

Alternative 3 minus Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance $^{\text {a }}$				
10%	0	0	0	0
20%	0	0	0	0
30%	0	0	0	0
40%	0	0	0	0
50%	0	0	0	0
60%	0	0	0	0
70%	0	0	0	0
80%	0	0	0	2
90%	0	0	0	4
Long Term				
Full Simulation Period		0	0	0
Water Year Types				
Wet (32\%)	0			1
Above Normal (16\%)	0	0	0	0
Below Normal (13\%)	0	0	0	2
Dry (24\%)	0	0	-1	1
Critical (15\%)	0	0	0	0
		0	0	1

Exceedance probability is defined as the probability a given value will be exceeded in any one year. Based on the 82 -year simulation period.
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
SWRCB D-1641, 1999); projected to Year 2030.

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2)
Model results for Alternatives 1,4, and Second Basis of Comparison are the same, therefore Alternative
and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
esults for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the text.

Table B-3-6. Trinity Spotted Bass Nest Survival Percentage, Monthly Percentage

Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	100
50\%	100	100	100	100
60\%	100	100	100	100
70\%	100	100	100	100
80\%	100	100	100	93
90\%	100	100	97	75
Long Term				
Full Simulation Period ${ }^{\text {b }}$	100	100	98	95
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	100	100	98	96
Above Normal (16\%)	100	100	100	91
Below Normal (13\%)	100	100	98	89
Dry (24\%)	100	100	97	96
Critical (15\%)	100	100	99	99

Alternative 5

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	100
50\%	100	100	100	100
60\%	100	100	100	100
70\%	100	100	100	100
80\%	100	100	100	93
90\%	100	100	98	73
Long Term				
Full Simulation Period ${ }^{\text {b }}$	100	100	98	94
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	100	100	98	96
Above Normal (16\%)	100	100	100	94
Below Normal (13\%)	100	100	97	89
Dry (24\%)	100	100	96	90
Critical (15\%)	100	100	99	99

Alternative 5 minus Second Basis of Comparison

Statistic	Mar		Apr	May		Jun
Probability of Exceedance $^{\text {a }}$						
10%	0	0	0	0		
20%	0	0	0	0		
30%	0	0	0	0		
40%	0	0	0	0		
50%	0	0	0	0		
60%	0	0	0	0		
70%	0	0	0	0		
80%	0	0	0	0		
90%	0	0	1	-2		
Long Term						
Full Simulation Period		0	0	0		
Water Year Types						
Wet (32\%)				-1		
Above Normal (16\%)	0	0	0	0		
Below Normal (13\%)	0	0	0	3		
Dry (24\%)	0	0	-1	1		
Critical (15\%)	0	0	-1	-5		
	0	0	0	0		

Exceedance probability is defined as the probability a given value will be exceeded in any one year. Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
SWRCB D-1641, 1999); projected to Year 2030.

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2)
Model results for Alternatives 1,4, and Second Basis of Comparison are the same, therefore Alternative
and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
esults for Alternative 2 and N o Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the tex.

B.4. Shasta Large Mouth Bass Survival Percentage

Figure B-4-1. Shasta Large Mouth Bass Nest Survival Percentage, March

Notes: 1) Exceedance probability is defined as the probability a given value will be exceeded in any one year. 2) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 3) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 4) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure B-4-2. Shasta Large Mouth Bass Nest Survival Percentage, April

Notes: 1) Exceedance probability is defined as the probability a given value will be exceeded in any one year. 2) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 3) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 4) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure B-4-3. Shasta Large Mouth Bass Nest Survival Percentage, May

Notes: 1) Exceedance probability is defined as the probability a given value will be exceeded in any one year. 2) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 3) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 4) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure B-4-4. Shasta Large Mouth Bass Nest Survival Percentage, June

Notes: 1) Exceedance probability is defined as the probability a given value will be exceeded in any one year. 2) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 3) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 4) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table B-4-1. Shasta Large Mouth Bass Nest Survival Percentage, Monthly Percentage

No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	84
20\%	100	100	100	34
30\%	100	100	100	24
40\%	100	100	100	17
50\%	100	100	100	9
60\%	100	100	100	4
70\%	100	100	94	0
80\%	100	100	51	0
90\%	100	98	19	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	97	94	81	22
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	91	100	98	48
Above Normal (16\%)	100	100	99	14
Below Normal (13\%)	100	95	71	17
Dry (24\%)	100	98	68	9
Critical (15\%)	100	65	55	3

Alternative 1

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	75
20\%	100	100	100	33
30\%	100	100	100	18
40\%	100	100	100	10
50\%	100	100	100	4
60\%	100	100	100	0
70\%	100	100	82	0
80\%	100	100	47	0
90\%	100	100	23	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	97	94	79	20
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	90	100	97	46
Above Normal (16\%)	100	100	97	11
Below Normal (13\%)	100	94	64	13
Dry (24\%)	100	97	68	5
Critical (15\%)	100	66	54	3

Alternative 1 minus No Action Alternative

	Statistic	Mar	Apr	May

Probability of Exceedance $^{\text {a }}$				
10%	0	0	0	-9
20%	0	0	0	-1
30%	0	0	0	-6
40%	0	0	0	-8
50%	0	0	0	-5
60%	0	0	0	-4
70%	0	0	-12	0
80%	0	0	-4	0
90%	0	2	4	0
Long Term				
Full Simulation Period		0	0	-2
Water Year Types				-3
Wet (32\%)	-1	0	-1	-2
Above Normal (16\%)	0	0	-2	-3
Below Normal (13\%)	0	-1	-7	-3
Dry (24\%)	0	0	1	-4
Critical (15\%)	0	1	-1	-1

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
SWRCB D-1641, 1999); projected to Year 2030.

Table B-4-2. Shasta Large Mouth Bass Nest Survival Percentage, Monthly Percentage

No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	84
20\%	100	100	100	34
30\%	100	100	100	24
40\%	100	100	100	17
50\%	100	100	100	9
60\%	100	100	100	4
70\%	100	100	94	0
80\%	100	100	51	0
90\%	100	98	19	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	97	94	81	22
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	91	100	98	48
Above Normal (16\%)	100	100	99	14
Below Normal (13\%)	100	95	71	17
Dry (24\%)	100	98	68	9
Critical (15\%)	100	65	55	3

Alternative 3

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	75
20\%	100	100	100	32
30\%	100	100	100	18
40\%	100	100	100	9
50\%	100	100	100	5
60\%	100	100	100	0
70\%	100	100	68	0
80\%	100	100	44	0
90\%	100	95	22	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	97	94	78	20
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	90	100	96	45
Above Normal (16\%)	100	100	94	12
Below Normal (13\%)	100	97	64	14
Dry (24\%)	100	97	68	5
Critical (15\%)	100	66	54	3

Alternative 3 minus No Action Alternative

	Statistic	Mar	Apr	May

Probability of Exceedance $^{\text {a }}$				
10%	0	0	0	-9
20%	0	0	0	-1
30%	0	0	0	-5
40%	0	0	0	-8
50%	0	0	0	-4
60%	0	0	0	-4
70%	0	0	-26	0
80%	0	0	-7	0
90%	0	-3	3	0
Long Term				
Full Simulation Period		0	-2	-3
Water Year Types		0		
Wet (32\%)	-1	0	-1	-3
Above Normal (16\%)	0	0	-5	-3
Below Normal (13\%)	0	2	-8	-3
Dry (24\%)	0	0	0	-3
Critical (15\%)	0	1	-1	0

Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
SWRCB D-1641, 1999); projected to Year 2030

Ites. 1) Al alternatives are simulated win projecled hydrology and sea level at Year 2030 condiions. 2
odel results for Alternatives 1, 4 , and Second Basis of Comparison are the same, therefore Alternative
nd 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
sults for Alternative 2 and N o Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the text.

Table B-4-3. Shasta Large Mouth Bass Nest Survival Percentage, Monthly Percentage

No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	84
20\%	100	100	100	34
30\%	100	100	100	24
40\%	100	100	100	17
50\%	100	100	100	9
60\%	100	100	100	4
70\%	100	100	94	0
80\%	100	100	51	0
90\%	100	98	19	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	97	94	81	22
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	91	100	98	48
Above Normal (16\%)	100	100	99	14
Below Normal (13\%)	100	95	71	17
Dry (24\%)	100	98	68	9
Critical (15\%)	100	65	55	3

Alternative 5

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	84
20\%	100	100	100	34
30\%	100	100	100	26
40\%	100	100	100	17
50\%	100	100	100	9
60\%	100	100	100	4
70\%	100	100	100	0
80\%	100	100	54	0
90\%	100	100	29	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	97	94	82	22
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	90	100	98	48
Above Normal (16\%)	100	100	100	14
Below Normal (13\%)	100	97	71	16
Dry (24\%)	100	98	72	10
Critical (15\%)	100	65	58	3

Alternative 5 minus No Action Alternative

	Statistic	Mar	Apr	May

Probability of Exceedance $^{\text {a }}$				
10%	0	0	0	0
20%	0	0	0	1
30%	0	0	0	2
40%	0	0	0	0
50%	0	0	0	0
60%	0	0	0	0
70%	0	0	6	0
80%	0	0	2	0
90%	0	2	11	0
Long Term				
Full Simulation Period		0	2	0
Water Year Types				
Wet (32\%)	0	0	0	0
Above Normal (16\%)	0	0	1	0
Below Normal (13\%)	0	2	0	-1
Dry (24\%)	0	0	4	1
Critical (15\%)	0	0	4	0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
(SWRCB D-1641, 1999); projected to Year 2030.

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2)
Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternative
and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
esults for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the text.

Table B-4-4. Shasta Large Mouth Bass Nest Survival Percentage, Monthly Percentage

Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance $^{\text {a }}$				
10%	100	100	100	75
20%	100	100	100	33
30%	100	100	100	18
40%	100	100	100	10
$\mathbf{5 0 \%}$	100	100	100	4
60%	100	100	100	0
70%	100	100	82	0
80%	100	100	47	0
90%	100	100	23	0
Long Term				
Full Simulation Period		97	94	79
Water Year Types				
Wet (32\%)	90	100	97	
Above Normal (16\%)	100	100	97	11
Below Normal (13\%)	100	94	64	13
Dry (24\%)	100	97	68	5
Critical (15\%)	100	66	54	3

No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance $^{\text {a }}$				
10%	100	100	100	84
20%	100	100	100	34
30%	100	100	100	24
40%	100	100	100	17
$\mathbf{5 0 \%}$	100	100	100	9
60%	100	100	100	4
70%	100	100	94	0
80%	100	100	51	0
90%	100	98	19	0
Long Term				
Full Simulation Period		97	94	81
Water Year Types				22
Wet (32\%)	91	100	98	48
Above Normal (16\%)	100	100	99	14
Below Normal (13\%)	100	95	71	17
Dry (24\%)	100	98	68	9
Critical (15\%)	100	65	55	3

No Action Alternative minus Second Basis of Comparison

Statistic	Mar		Apr	May		Jun
Probability of Exceedance $^{\text {a }}$						
10%	0	0	0	9		
20%	0	0	0	1		
30%	0	0	0	6		
40%	0	0	0	8		
50%	0	0	0	5		
60%	0	0	0	4		
70%	0	0	12	0		
80%	0	0	4	0		
90%	0	-2	-4	0		
Long Term						
Full Simulation Period	0	0	2	3		
Water Year Types						
Cet (32\%)						
Above Normal (16\%)	1	0	1	2		
Below Normal (13\%)	0	0	2	3		
Dry (24\%)	0	1	7	3		
Critical (15\%)	0	0	-1	4		
	0	-1	1	1		

a Exceedance probability is defined as the probability a given value will be exceeded in any one year. based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
(SWRCB D-1641, 1999); projected to Year 2030.

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2)
Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternative 1
and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the text.

Table B-4-5. Shasta Large Mouth Bass Nest Survival Percentage, Monthly Percentage

Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance $^{\text {a }}$				
10%	100	100	100	75
$\mathbf{2 0 \%}$	100	100	100	33
30%	100	100	100	18
40%	100	100	100	10
$\mathbf{5 0 \%}$	100	100	100	4
60%	100	100	100	0
70%	100	100	82	0
80%	100	100	47	0
90%	100	100	23	0
Long Term				
Full Simulation Period		97	94	79
Water Year Types				20
Wet (32\%)	90	100	97	46
Above Normal (16\%)	100	100	97	11
Below Normal (13\%)	100	94	64	13
Dry (24\%)	100	97	68	5
Critical (15\%)	100	66	54	3

Alternative 3

Statistic	Mar	Apr	May	Jun
Probability of Exceedance $^{\text {a }}$				
10%	100	100	100	75
20%	100	100	100	32
30%	100	100	100	18
40%	100	100	100	9
50%	100	100	100	5
60%	100	100	100	0
70%	100	100	68	0
80%	100	100	44	0
90%	100	95	22	0
Long Term				
Full Simulation Period		97	94	78
Water Year Types				
Wet (32\%)				
Above Normal (16\%)	100	100	96	45
Below Normal (13\%)	100	97	94	12
Dry (24\%)	100	97	68	14
Critical (15\%)	100	66	54	5
				3

Alternative 3 minus Second Basis of Comparison

Statistic	Mar	Apr	May	
Probability of Exceedance $^{\text {a }}$				Jun
10%	0	0	0	0
20%	0	0	0	-1
30%	0	0	0	1
40%	0	0	0	0
50%	0	0	0	1
60%	0	0	0	0
70%	0	0	-15	0
80%	0	0	-3	0
90%	0	-5	-1	0
Long Term				
Full Simulation Period	0	0	-1	0
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	0	0	0	-1
Above Normal (16\%)	0	0	-3	1
Below Normal (13\%)	0	3	-1	0
Dry (24\%)	0	0	-1	1
Critical (15\%)	0	0	0	0

Exceedance probability is defined as the probability a given value will be exceeded in any one year. Based on the 82 -year simulation period.
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
(SWRCB D-1641, 1999); projected to Year 2030.

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2)
Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternative 1
and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
esults for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the text.

Table B-4-6. Shasta Large Mouth Bass Nest Survival Percentage, Monthly Percentage

Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance $^{\text {a }}$				
10%	100	100	100	75
$\mathbf{2 0 \%}$	100	100	100	33
30%	100	100	100	18
40%	100	100	100	10
$\mathbf{5 0 \%}$	100	100	100	4
60%	100	100	100	0
70%	100	100	82	0
80%	100	100	47	0
90%	100	100	23	0
Long Term				
Full Simulation Period		97	94	79
Water Year Types				20
Wet (32\%)	90	100	97	46
Above Normal (16\%)	100	100	97	11
Below Normal (13\%)	100	94	64	13
Dry (24\%)	100	97	68	5
Critical (15\%)	100	66	54	3

Alternative 5

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	84
20\%	100	100	100	34
30\%	100	100	100	26
40\%	100	100	100	17
50\%	100	100	100	9
60\%	100	100	100	4
70\%	100	100	100	0
80\%	100	100	54	0
90\%	100	100	29	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	97	94	82	22
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	90	100	98	48
Above Normal (16\%)	100	100	100	14
Below Normal (13\%)	100	97	71	16
Dry (24\%)	100	98	72	10
Critical (15\%)	100	65	58	3

Alternative 5 minus Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	0	0	0	9
20\%	0	0	0	1
30\%	0	0	0	8
40\%	0	0	0	8
50\%	0	0	0	5
60\%	0	0	0	4
70\%	0	0	18	0
80\%	0	0	6	0
90\%	0	0	6	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	0	0	3	3
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	1	0	1	2
Above Normal (16\%)	0	0	3	3
Below Normal (13\%)	0	2	7	3
Dry (24\%)	0	0	4	5
Critical (15\%)	0	-1	5	1

Exceedance probability is defined as the probability a given value will be exceeded in any one year. Based on the 82 -year simulation period.
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
(SWRCB D-1641, 1999); projected to Year 2030.

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2)
Model results for Alternatives 1,4, and Second Basis of Comparison are the same, therefore Alternative
and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
esults for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the text.

[^0]Figure B-5-1. Shasta Small Mouth Bass Nest Survival Percentage, March

Notes: 1) Exceedance probability is defined as the probability a given value will be exceeded in any one year. 2) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 3) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 4) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure B-5-2. Shasta Small Mouth Bass Nest Survival Percentage, April

Notes: 1) Exceedance probability is defined as the probability a given value will be exceeded in any one year. 2) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 3) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 4) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure B-5-3. Shasta Small Mouth Bass Nest Survival Percentage, May

Notes: 1) Exceedance probability is defined as the probability a given value will be exceeded in any one year. 2) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 3) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 4) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure B-5-4. Shasta Small Mouth Bass Nest Survival Percentage, June

Notes: 1) Exceedance probability is defined as the probability a given value will be exceeded in any one year. 2) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 3) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 4) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table B-5-1. Shasta Small Mouth Bass Nest Survival Percentage, Monthly Percentage

No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance $^{\text {a }}$				
10%	100	100	100	71
20%	100	100	100	29
30%	100	100	100	21
40%	100	100	100	15
$\mathbf{5 0 \%}$	100	100	100	9
60%	100	100	100	5
70%	100	100	79	0
80%	100	100	44	0
90%	100	83	17	0
Long Term				
Full Simulation Period				
Water Year Types		97	93	78
Wet (32\%)				21
Above Normal (16\%)	100	100	97	
Below Normal (13\%)	100	95	66	14
Dry (24\%)	100	96	66	16
Critical (15\%)	100	64	50	8
				3

Alternative 1

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	63
20\%	100	100	100	28
30\%	100	100	100	16
40\%	100	100	100	9
50\%	100	100	100	4
60\%	100	100	98	0
70\%	100	100	69	0
80\%	100	100	40	0
90\%	100	91	20	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	97	93	77	19
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	89	99	96	43
Above Normal (16\%)	100	100	95	11
Below Normal (13\%)	100	94	57	13
Dry (24\%)	100	97	66	5
Critical (15\%)	100	64	49	2

Alternative 1 minus No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance $^{\text {a }}$				
10%	0	0	0	-8
20%	0	0	0	-1
30%	0	0	0	-5
40%	0	0	0	-6
50%	0	0	0	-4
60%	0	0	-2	-5
70%	0	0	-10	0
80%	0	0	-3	0
90%	0	8	4	0
Long Term				
Full Simulation Period			0	-2
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	-1	0	-1	-2
Above Normal (16\%)	0	0	-2	-2
Below Normal (13\%)	0	-1	-8	-3
Dry (24\%)	0	1	0	-3
Critical (15\%)	0	0	-1	0

Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
(SWRCB D-1641, 1999); projected to Year 2030

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2)
Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Second Basis of
 the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 resuits are not presented. Qualitative differences, if applicable, are discussed in the text.

Table B-5-2. Shasta Small Mouth Bass Nest Survival Percentage, Monthly Percentage

No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance $^{\text {a }}$				
10%	100	100	100	71
20%	100	100	100	29
30%	100	100	100	21
40%	100	100	100	15
$\mathbf{5 0 \%}$	100	100	100	9
60%	100	100	100	5
70%	100	100	79	0
80%	100	100	44	0
90%	100	83	17	0
Long Term				
Full Simulation Period				
Water Year Types		97	93	78
Wet (32\%)				21
Above Normal (16\%)	100	100	97	
Below Normal (13\%)	100	95	66	14
Dry (24\%)	100	96	66	16
Critical (15\%)	100	64	50	8
				3

Alternative 3

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	63
20\%	100	100	100	28
30\%	100	100	100	16
40\%	100	100	100	9
50\%	100	100	100	5
60\%	100	100	92	0
70\%	100	100	57	0
80\%	100	100	38	0
90\%	100	81	19	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	97	93	76	19
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	89	99	96	42
Above Normal (16\%)	100	100	91	12
Below Normal (13\%)	100	96	57	13
Dry (24\%)	100	96	65	5
Critical (15\%)	100	65	50	3

Alternative 3 minus No Action Alternative

	Statistic	Mar	Apr	May

Probability of Exceedance $^{\text {a }}$				
10%	0	0	0	-8
20%	0	0	0	-1
30%	0	0	0	-5
40%	0	0	0	-6
50%	0	0	0	-3
60%	0	0	-8	-5
70%	0	0	-22	0
80%	0	0	-6	0
90%	0	-2	3	0
Long Term				
Full Simulation Period		0	-3	-2
Water Year Types		0		
Wet (32\%)	-1	0	-2	-2
Above Normal (16\%)	0	0	-6	-2
Below Normal (13\%)	0	2	-9	-2
Dry (24\%)	0	0	-1	-3
Critical (15\%)	0	1	-1	0

Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
SWRCB D-1641, 1999); projected to Year 2030
tes. 1) Al alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2
Model results for Alternatives 1,4, and Second Basis of Comparison are the same, therefore Alternative
and 4 results are not presented. Qualitative differences, if applicabbe, are discussed in the text. 3) Model
esults for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the text.

Table B-5-3. Shasta Small Mouth Bass Nest Survival Percentage, Monthly Percentage

No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance $^{\text {a }}$				
10%	100	100	100	71
20%	100	100	100	29
30%	100	100	100	21
40%	100	100	100	15
$\mathbf{5 0 \%}$	100	100	100	9
60%	100	100	100	5
70%	100	100	79	0
80%	100	100	44	0
90%	100	83	17	0
Long Term				
Full Simulation Period				
Water Year Types		97	93	78
Wet (32\%)				21
Above Normal (16\%)	100	100	97	
Below Normal (13\%)	100	95	66	14
Dry (24\%)	100	96	66	16
Critical (15\%)	100	64	50	8
				3

Alternative 5

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	70
20\%	100	100	100	29
30\%	100	100	100	22
40\%	100	100	100	15
50\%	100	100	100	8
60\%	100	100	100	5
70\%	100	100	85	0
80\%	100	100	45	0
90\%	100	97	25	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	97	93	80	21
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	90	99	97	45
Above Normal (16\%)	100	100	98	14
Below Normal (13\%)	100	96	65	15
Dry (24\%)	100	97	70	9
Critical (15\%)	100	64	55	3

Alternative 5 minus No Action Alternative

	Statistic	Mar	Apr	May

Probability of Exceedance $^{\text {a }}$				
10%	0	0	0	0
20%	0	0	0	0
30%	0	0	0	2
40%	0	0	0	0
50%	0	0	0	0
60%	0	0	0	0
70%	0	0	6	0
80%	0	0	2	0
90%	0	14	9	0
Long Term				
Full Simulation Period	0	0	2	0
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	0	0	0	0
Above Normal (16\%)	0	0	1	0
Below Normal (13\%)	0	1	-1	0
Dry (24\%)	0	1	3	1
Critical (15\%)	0	0	5	0

Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
SWRCB D-1641, 1999); projected to Year 2030
tes. 1) Al alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2
Model results for Alternatives 1,4, and Second Basis of Comparison are the same, therefore Alternative
and 4 results are not presented. Qualitative differences, if applicabbe, are discussed in the text. 3) Model
results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the text.

Table B-5-4. Shasta Small Mouth Bass Nest Survival Percentage, Monthly Percentage

Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	63
20\%	100	100	100	28
30\%	100	100	100	16
40\%	100	100	100	9
50\%	100	100	100	4
60\%	100	100	98	0
70\%	100	100	69	0
80\%	100	100	40	0
90\%	100	91	20	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	97	93	77	19
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	89	99	96	43
Above Normal (16\%)	100	100	95	11
Below Normal (13\%)	100	94	57	13
Dry (24\%)	100	97	66	5
Critical (15\%)	100	64	49	2

No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance $^{\text {a }}$				
$\mathbf{1 0 \%}$	100	100	100	71
20%	100	100	100	29
30%	100	100	100	21
40%	100	100	100	15
$\mathbf{5 0 \%}$	100	100	100	9
60%	100	100	100	5
70%	100	100	79	0
80%	100	100	44	0
90%	100	83	17	0
Long Term				
Full Simulation Period		97	93	78
Water Year Types				21
Wet (32\%)	90	99	97	44
Above Normal (16\%)	100	100	97	14
Below Normal (13\%)	100	95	66	16
Dry (24\%)	100	96	66	8
Critical (15\%)	100	64	50	3

No Action Alternative minus Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	0	0	0	8
20\%	0	0	0	1
30\%	0	0	0	5
40\%	0	0	0	6
50\%	0	0	0	4
60\%	0	0	2	5
70\%	0	0	10	0
80\%	0	0	3	0
90\%	0	-8	-4	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	0	0	2	2
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	1	0	1	2
Above Normal (16\%)	0	0	2	3
Below Normal (13\%)	0	1	8	3
Dry (24\%)	0	-1	0	3
Critical (15\%)	0	0	1	0

Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
SWRCB D-1641, 1999); projected to Year 2030

Ites. 1) Al alternatives are simulated win projecled hydrology and sea level at Year 2030 conditions. 2
Iodel results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternative
nd 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
sults for Alternative 2 and N o Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the text.

Table B-5-5. Shasta Small Mouth Bass Nest Survival Percentage, Monthly Percentage

Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	63
20\%	100	100	100	28
30\%	100	100	100	16
40\%	100	100	100	9
50\%	100	100	100	4
60\%	100	100	98	0
70\%	100	100	69	0
80\%	100	100	40	0
90\%	100	91	20	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	97	93	77	19
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	89	99	96	43
Above Normal (16\%)	100	100	95	11
Below Normal (13\%)	100	94	57	13
Dry (24\%)	100	97	66	5
Critical (15\%)	100	64	49	2

Alternative 3

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	63
20\%	100	100	100	28
30\%	100	100	100	16
40\%	100	100	100	9
50\%	100	100	100	5
60\%	100	100	92	0
70\%	100	100	57	0
80\%	100	100	38	0
90\%	100	81	19	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	97	93	76	19
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	89	99	96	42
Above Normal (16\%)	100	100	91	12
Below Normal (13\%)	100	96	57	13
Dry (24\%)	100	96	65	5
Critical (15\%)	100	65	50	3

Alternative 3 minus Second Basis of Comparison

	Statistic	Mar	Apr	May
Probability of Exceedance ${ }^{\text {a }}$				
10%	0	0	0	0
20%	0	0	0	-1
30%	0	0	0	0
40%	0	0	0	0
50%	0	0	0	1
60%	0	0	-6	0
70%	0	0	-12	0
80%	0	0	-3	0
90%	0	-10	-1	0
Long Term				
Full Simulation Period		0	-1	0
Water Year Types				
Wet (32\%)	0	0		
Above Normal (16\%)	0	0	0	-1
Below Normal (13\%)	0	0	-4	1
Dry (24\%)	0	2	0	0
Critical (15\%)	0	-1	-1	0
	0	1	0	0

Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period.
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
SWRCB D-1641, 1999); projected to Year 2030
tes. 1) Al alternatives are simulated win projected hydrology and sea level at Year 2030 conditions. 2
Iodel results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternative
nd 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
sults for Alternative 2 and N o Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the tex

Table B-5-6. Shasta Small Mouth Bass Nest Survival Percentage, Monthly Percentage

Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	63
20\%	100	100	100	28
30\%	100	100	100	16
40\%	100	100	100	9
50\%	100	100	100	4
60\%	100	100	98	0
70\%	100	100	69	0
80\%	100	100	40	0
90\%	100	91	20	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	97	93	77	19
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	89	99	96	43
Above Normal (16\%)	100	100	95	11
Below Normal (13\%)	100	94	57	13
Dry (24\%)	100	97	66	5
Critical (15\%)	100	64	49	2

Alternative 5

Statistic	Mar	Apr	May	Jun
Probability of Exceedance $^{\text {a }}$				
10%	100	100	100	70
$\mathbf{2 0 \%}$	100	100	100	29
30%	100	100	100	22
40%	100	100	100	15
50%	100	100	100	8
60%	100	100	100	5
70%	100	100	85	0
80%	100	100	45	0
90%	100	97	25	0
Long Term \quad				
Full Simulation Period				
Water Year Types $^{\mathbf{c}}$	97	93	80	21
Wet (32\%)				
Above Normal (16\%)	90	99	97	45
Below Normal (13\%)	100	100	98	14
Dry (24\%)	100	96	65	15
Critical (15\%)	100	97	70	9
	100	64	55	3

Alternative 5 minus Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	0	0	0	7
20\%	0	0	0	1
30\%	0	0	0	7
40\%	0	0	0	6
50\%	0	0	0	4
60\%	0	0	2	5
70\%	0	0	16	0
80\%	0	0	5	0
90\%	0	7	5	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	0	0	3	2
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	1	0	1	2
Above Normal (16\%)	0	0	3	3
Below Normal (13\%)	0	2	7	2
Dry (24\%)	0	0	3	4
Critical (15\%)	0	0	5	1

Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
SWRCB D-1641, 1999); projected to Year 2030
tes. 1) Al alternatives are simulated winh projected hydrology and sea level at Year 2030 conditions. 2
Model results for Alternatives 1,4, and Second Basis of Comparison are the same, therefore Alternative
nd 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
esults for Alternative 2 and $N o$ Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the tex

Figure B-6-1. Shasta Spotted Bass Nest Survival Percentage, March

Notes: 1) Exceedance probability is defined as the probability a given value will be exceeded in any one year. 2) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 3) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 4) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure B-6-2. Shasta Spotted Bass Nest Survival Percentage, April

Notes: 1) Exceedance probability is defined as the probability a given value will be exceeded in any one year. 2) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 3) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 4) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure B-6-3. Shasta Spotted Bass Nest Survival Percentage, May

Notes: 1) Exceedance probability is defined as the probability a given value will be exceeded in any one year. 2) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 3) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 4) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure B-6-4. Shasta Spotted Bass Nest Survival Percentage, June

Notes: 1) Exceedance probability is defined as the probability a given value will be exceeded in any one year. 2) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 3) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 4) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table B-6-1. Shasta Spotted Bass Nest Survival Percentage, Monthly Percentage

No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	97
30\%	100	100	100	83
40\%	100	100	100	74
50\%	100	100	100	62
60\%	100	100	100	56
70\%	100	100	100	46
80\%	100	100	100	36
90\%	100	100	76	26
Long Term				
Full Simulation Period ${ }^{\text {b }}$	99	98	95	63
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	98	100	100	87
Above Normal (16\%)	100	100	100	60
Below Normal (13\%)	100	100	96	58
Dry (24\%)	100	100	91	55
Critical (15\%)	100	84	84	31

Alternative 1

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	96
30\%	100	100	100	75
40\%	100	100	100	63
50\%	100	100	100	55
60\%	100	100	100	47
70\%	100	100	100	35
80\%	100	100	100	24
90\%	100	100	82	16
Long Term				
Full Simulation Period ${ }^{\text {b }}$	99	98	95	56
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	98	100	100	86
Above Normal (16\%)	100	100	100	51
Below Normal (13\%)	100	100	96	45
Dry (24\%)	100	100	93	44
Critical (15\%)	100	86	83	27

Alternative 1 minus No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	0	0	0	0
20\%	0	0	0	-1
30\%	0	0	0	-8
40\%	0	0	0	-11
50\%	0	0	0	-7
60\%	0	0	0	-9
70\%	0	0	0	-11
80\%	0	0	0	-12
90\%	0	0	6	-10
Long Term				
Full Simulation Period ${ }^{\text {b }}$	0	0	0	-7
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	0	0	0	-1
Above Normal (16\%)	0	0	0	-9
Below Normal (13\%)	0	0	-1	-13
Dry (24\%)	0	0	2	-11
Critical (15\%)	0	2	0	-4

Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
SWRCB D-1641, 1999); projected to Year 2030

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2
Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Second Basis of omparison and Alternative 4 results are not presented. Qualitative differences, if appicable, are disciss the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 esults are not presented. Qualitative differences, if applicable, are discussed in the tex.

Table B-6-2. Shasta Spotted Bass Nest Survival Percentage, Monthly Percentage

No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	97
30\%	100	100	100	83
40\%	100	100	100	74
50\%	100	100	100	62
60\%	100	100	100	56
70\%	100	100	100	46
80\%	100	100	100	36
90\%	100	100	76	26
Long Term				
Full Simulation Period ${ }^{\text {b }}$	99	98	95	63
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	98	100	100	87
Above Normal (16\%)	100	100	100	60
Below Normal (13\%)	100	100	96	58
Dry (24\%)	100	100	91	55
Critical (15\%)	100	84	84	31

Alternative 3

Statistic	Mar	Apr	May	Jun
Probability of Exceedance $^{\text {a }}$				
$\mathbf{1 0 \%}$	100	100	100	100
$\mathbf{2 0 \%}$	100	100	100	95
30%	100	100	100	76
40%	100	100	100	63
$\mathbf{5 0 \%}$	100	100	100	57
60%	100	100	100	47
70%	100	100	100	35
80%	100	100	100	28
90%	100	100	81	22
Long Term				
Full Simulation Period			98	95
Water Year Types $^{\text {c }}$	99	98	57	
Wet (32\%)				
Above Normal (16\%)	100	100	100	84
Below Normal (13\%)	100	100	100	53
Dry (24\%)	100	100	96	48
Critical (15\%)	100	86	92	45
			84	29

Alternative 3 minus No Action Alternative

	Statistic	Mar	Apr	May

Probability of Exceedance ${ }^{\text {a }}$				
10%	0	0	0	0
20%	0	0	0	-2
30%	0	0	0	-8
40%	0	0	0	-11
50%	0	0	0	-5
60%	0	0	0	-9
70%	0	0	0	-11
80%	0	0	0	-8
90%	0	0	5	-5
Long Term				
Full Simulation Period			0	0
Water Year Types				
Wet (32\%)	0	0		-6
Above Normal (16\%)	0	0	0	-3
Below Normal (13\%)	0	0	0	-7
Dry (24\%)	0	0	-1	-11
Critical (15\%)	0	0	1	-10
	0	2	1	-2

Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
SWRCB D-1641, 1999); projected to Year 2030

Ites. 1) Al alternatives are simulated with projected hydrology and sea level at Year 2030 condiions. 2
odel results for Alternatives 1, 4 , and Second Basis of Comparison are the same, therefore Alternative
nd 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
sults for Alternative 2 and N o Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the text.

Table B-6-3. Shasta Spotted Bass Nest Survival Percentage, Monthly Percentage

No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	97
30\%	100	100	100	83
40\%	100	100	100	74
50\%	100	100	100	62
60\%	100	100	100	56
70\%	100	100	100	46
80\%	100	100	100	36
90\%	100	100	76	26
Long Term				
Full Simulation Period ${ }^{\text {b }}$	99	98	95	63
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	98	100	100	87
Above Normal (16\%)	100	100	100	60
Below Normal (13\%)	100	100	96	58
Dry (24\%)	100	100	91	55
Critical (15\%)	100	84	84	31

Alternative 5

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	98
30\%	100	100	100	86
40\%	100	100	100	74
50\%	100	100	100	62
60\%	100	100	100	56
70\%	100	100	100	45
80\%	100	100	100	37
90\%	100	100	91	27
Long Term				
Full Simulation Period ${ }^{\text {b }}$	99	98	97	63
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	98	100	100	87
Above Normal (16\%)	100	100	100	60
Below Normal (13\%)	100	100	97	58
Dry (24\%)	100	100	97	56
Critical (15\%)	100	87	86	32

Alternative 5 minus No Action Alternative

	Statistic	Mar	Apr	May

Probability of Exceedance $^{\text {a }}$				
10%	0	0	0	0
20%	0	0	0	1
30%	0	0	0	3
40%	0	0	0	0
50%	0	0	0	0
60%	0	0	0	0
70%	0	0	0	-1
80%	0	0	0	1
90%	0	0	15	1
Long Term				
Full Simulation Period	0	0	2	0
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	0	0	0	0
Above Normal (16\%)	0	0	0	0
Below Normal (13\%)	0	0	0	0
Dry (24\%)	0	0	6	1
Critical (15\%)	0	3	2	1

Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
SWRCB D-1641, 1999); projected to Year 2030

Ies. 1) Al alternatives are simulated win projected hydrology and sea level at Year 2030 conditions. 2
Iodel results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternative
nd 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
sults for Alternative 2 and N o Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the text.

Table B-6-4. Shasta Spotted Bass Nest Survival Percentage, Monthly Percentage

Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	96
30\%	100	100	100	75
40\%	100	100	100	63
50\%	100	100	100	55
60\%	100	100	100	47
70\%	100	100	100	35
80\%	100	100	100	24
90\%	100	100	82	16
Long Term				
Full Simulation Period ${ }^{\text {b }}$	99	98	95	56
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	98	100	100	86
Above Normal (16\%)	100	100	100	51
Below Normal (13\%)	100	100	96	45
Dry (24\%)	100	100	93	44
Critical (15\%)	100	86	83	27

No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance $^{\text {a }}$				
$\mathbf{1 0 \%}$	100	100	100	100
20%	100	100	100	97
$\mathbf{3 0 \%}$	100	100	100	83
$\mathbf{4 0 \%}$	100	100	100	74
$\mathbf{5 0 \%}$	100	100	100	62
$\mathbf{6 0 \%}$	100	100	100	56
70%	100	100	100	46
80%	100	100	100	36
90%	100	100	76	26
Long Term				
Full Simulation Period		99	98	95
Water Year Types				63
Wet (32\%)	98	100	100	87
Above Normal (16\%)	100	100	100	60
Below Normal (13\%)	100	100	96	58
Dry (24\%)	100	100	91	55
Critical (15\%)	100	84	84	31

No Action Alternative minus Second Basis of Comparison

Statistic	Mar		Apr	May
Probability of Exceedance ${ }^{\text {a }}$				Jun
10%	0	0	0	0
20%	0	0	0	1
30%	0	0	0	8
40%	0	0	0	11
50%	0	0	0	7
60%	0	0	0	9
70%	0	0	0	11
80%	0	0	0	12
90%	0	0	-6	10
Long Term				
Full Simulation Period		0	0	0
Water Year Types	c			
Wet (32\%)	0	0	0	7
Above Normal (16\%)	0	0	0	1
Below Normal (13\%)	0	0	1	9
Dry (24\%)	0	0	-2	13
Critical (15\%)	0	-2	0	11

Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
SWRCB D-1641, 1999); projected to Year 2030

Ites. 1) Al alternatives are simulated with projected hydrology and sea level at Year 2030 condiions. 2
Iodel results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternative
nd 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
sults for Alternative 2 and N o Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the text.

Table B-6-5. Shasta Spotted Bass Nest Survival Percentage, Monthly Percentage

Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	96
30\%	100	100	100	75
40\%	100	100	100	63
50\%	100	100	100	55
60\%	100	100	100	47
70\%	100	100	100	35
80\%	100	100	100	24
90\%	100	100	82	16
Long Term				
Full Simulation Period ${ }^{\text {b }}$	99	98	95	56
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	98	100	100	86
Above Normal (16\%)	100	100	100	51
Below Normal (13\%)	100	100	96	45
Dry (24\%)	100	100	93	44
Critical (15\%)	100	86	83	27

Alternative 3

Statistic	Mar	Apr	May	Jun
Probability of Exceedance $^{\text {a }}$				
$\mathbf{1 0 \%}$	100	100	100	100
$\mathbf{2 0 \%}$	100	100	100	95
30%	100	100	100	76
40%	100	100	100	63
$\mathbf{5 0 \%}$	100	100	100	57
60%	100	100	100	47
70%	100	100	100	35
80%	100	100	100	28
90%	100	100	81	22
Long Term				
Full Simulation Period			98	95
Water Year Types $^{\text {c }}$	99	98	57	
Wet (32\%)				
Above Normal (16\%)	100	100	100	84
Below Normal (13\%)	100	100	100	53
Dry (24\%)	100	100	96	48
Critical (15\%)	100	86	92	45
			84	29

Alternative 3 minus Second Basis of Comparison

Statistic	Mar		Apr	May		Jun
Probability of Exceedance $^{\text {a }}$						
10%	0	0	0	0		
20%	0	0	0	-1		
30%	0	0	0	1		
40%	0	0	0	0		
50%	0	0	0	2		
60%	0	0	0	0		
70%	0	0	0	0		
80%	0	0	0	4		
90%	0	0	-1	5		
Long Term						
Full Simulation Period		0	0	0		
Water Year Types						
Wet (32\%)				1		
Above Normal (16\%)	0	0	0	-2		
Below Normal (13\%)	0	0	0	2		
Dry (24\%)	0	0	0	2		
Critical (15\%)	0	0	-1	1		
	0	0	1	1		

Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
SWRCB D-1641, 1999); projected to Year 2030
tes. 1) Al alternatives are simulated win projected hydrology and sea level at Year 2030 conditions. 2
Model results for Alternatives 1,4, and Second Basis of Comparison are the same, therefore Alternative
nd 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
esults for Alternative 2 and $N o$ Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the tex

Table B-6-6. Shasta Spotted Bass Nest Survival Percentage, Monthly Percentage

Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	96
30\%	100	100	100	75
40\%	100	100	100	63
50\%	100	100	100	55
60\%	100	100	100	47
70\%	100	100	100	35
80\%	100	100	100	24
90\%	100	100	82	16
Long Term				
Full Simulation Period ${ }^{\text {b }}$	99	98	95	56
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	98	100	100	86
Above Normal (16\%)	100	100	100	51
Below Normal (13\%)	100	100	96	45
Dry (24\%)	100	100	93	44
Critical (15\%)	100	86	83	27

Alternative 5

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	98
30\%	100	100	100	86
40\%	100	100	100	74
50\%	100	100	100	62
60\%	100	100	100	56
70\%	100	100	100	45
80\%	100	100	100	37
90\%	100	100	91	27
Long Term				
Full Simulation Period ${ }^{\text {b }}$	99	98	97	63
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	98	100	100	87
Above Normal (16\%)	100	100	100	60
Below Normal (13\%)	100	100	97	58
Dry (24\%)	100	100	97	56
Critical (15\%)	100	87	86	32

Alternative 5 minus Second Basis of Comparison

Statistic	Mar		Apr	
May		Jun		
Probability of Exceedance ${ }^{\text {a }}$				
10%	0	0	0	0
20%	0	0	0	2
30%	0	0	0	11
40%	0	0	0	11
50%	0	0	0	7
60%	0	0	0	9
70%	0	0	0	10
80%	0	0	0	13
90%	0	0	9	11
Long Term				
Full Simulation Period		0	0	1
Water Year Types	c			
Wet (32\%)	0	0	0	7
Above Normal (16\%)	0	0	0	2
Below Normal (13\%)	0	0	1	9
Dry (24\%)	0	0	4	13
Critical (15\%)	0	1	2	12
				4

Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
SWRCB D-1641, 1999); projected to Year 2030
tes. 1) Al alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2
Model results for Alternatives 1,4, and Second Basis of Comparison are the same, therefore Alternative
nd 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
esults for Alternative 2 and $N o$ Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the text.

B.7. Oroville Large Mouth Bass Survival Percentage

Figure B-7-1. Oroville Large Mouth Bass Nest Survival Percentage, March

Notes: 1) Exceedance probability is defined as the probability a given value will be exceeded in any one year. 2) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 3) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 4) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure B-7-2. Oroville Large Mouth Bass Nest Survival Percentage, April

Notes: 1) Exceedance probability is defined as the probability a given value will be exceeded in any one year. 2) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 3) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 4) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure B-7-3. Oroville Large Mouth Bass Nest Survival Percentage, May

Notes: 1) Exceedance probability is defined as the probability a given value will be exceeded in any one year. 2) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 3) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 4) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure B-7-4. Oroville Large Mouth Bass Nest Survival Percentage, June

Notes: 1) Exceedance probability is defined as the probability a given value will be exceeded in any one year. 2) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 3) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 4) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table B-7-1. Oroville Large Mouth Bass Nest Survival Percentage, Monthly Percentage

No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	80
40\%	100	100	100	23
50\%	100	100	100	8
60\%	100	100	100	0
70\%	100	100	100	0
80\%	100	100	67	0
90\%	100	100	30	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	97	96	85	36
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	91	100	100	81
Above Normal (16\%)	100	100	100	37
Below Normal (13\%)	100	96	82	24
Dry (24\%)	100	100	69	2
Critical (15\%)	98	78	62	7

Alternative 1

Statistic	Mar	Apr	May	Jun
Probability of Exceedance $^{\text {a }}$				
10%	100	100	100	100
20%	100	100	100	100
30%	100	100	100	48
40%	100	100	100	3
50%	100	100	100	0
60%	100	100	100	0
70%	100	100	93	0
80%	100	100	39	0
90%	100	100	1	0
Long Term				
Full Simulation Period			96	78
Water Year Types				
Wet (32\%)	97	100	97	
Above Normal (16\%)	100	100	85	31
Below Normal (13\%)	100	98	63	12
Dry (24\%)	100	100	67	0
Critical (15\%)	98	74	63	7

Alternative 1 minus No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance $^{\text {a }}$				
10%	0	0	0	0
20%	0	0	0	0
30%	0	0	0	-32
40%	0	0	0	-19
50%	0	0	0	-8
60%	0	0	0	0
70%	0	0	-7	0
80%	0	0	-27	0
90%	0	0	-30	0
Long Term				
Full Simulation Period		0	0	-6
Water Year Types				
Wet (32\%)				-5
Above Normal (16\%)	0	0	-3	-8
Below Normal (13\%)	0	0	-15	-6
Dry (24\%)	0	2	-20	-12
Critical (15\%)	0	0	-3	-2

Exceedance probability is defined as the probability a given value will be exceeded in any one year.
based on the 82 -year simulation period
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
(SWRCB D-1641, 1999); projected to Year 2030

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2
Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Second Basis of Comparison and Atternative 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the tex

Table B-7-2. Oroville Large Mouth Bass Nest Survival Percentage, Monthly Percentage

No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	80
40\%	100	100	100	23
50\%	100	100	100	8
60\%	100	100	100	0
70\%	100	100	100	0
80\%	100	100	67	0
90\%	100	100	30	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	97	96	85	36
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	91	100	100	81
Above Normal (16\%)	100	100	100	37
Below Normal (13\%)	100	96	82	24
Dry (24\%)	100	100	69	2
Critical (15\%)	98	78	62	7

Alternative 3

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	17
40\%	100	100	100	0
50\%	100	100	100	0
60\%	100	100	100	0
70\%	100	100	100	0
80\%	100	100	54	0
90\%	100	100	14	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	97	96	80	27
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	90	100	97	63
Above Normal (16\%)	100	100	86	26
Below Normal (13\%)	100	95	73	10
Dry (24\%)	100	100	67	0
Critical (15\%)	98	78	65	6

Alternative 3 minus No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance $^{\text {a }}$				
10%	0	0	0	0
20%	0	0	0	0
30%	0	0	0	-64
40%	0	0	0	-23
50%	0	0	0	-8
60%	0	0	0	0
70%	0	0	0	0
80%	0	0	-13	0
90%	0	0	-16	0
Long Term				
Full Simulation Period		0	0	-4
Water Year Types				
Wet (32\%)				-10
Above Normal (16\%)	0	0	-3	-17
Below Normal (13\%)	0	0	-14	-11
Dry (24\%)	0	-1	-9	-13
Critical (15\%)	0	0	-2	-2
	0	0	3	-2

Exceedance probability is defined as the probability a given value will be exceeded in any one year
Based on the 82 -year simulation period.
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
(SWRCB D-1641, 1999); projected to Year 2030.

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2)
Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternative 1
and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
esults for Alternative 2 and N o Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the tex.

Table B-7-3. Oroville Large Mouth Bass Nest Survival Percentage, Monthly Percentage

No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	80
40\%	100	100	100	23
50\%	100	100	100	8
60\%	100	100	100	0
70\%	100	100	100	0
80\%	100	100	67	0
90\%	100	100	30	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	97	96	85	36
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	91	100	100	81
Above Normal (16\%)	100	100	100	37
Below Normal (13\%)	100	96	82	24
Dry (24\%)	100	100	69	2
Critical (15\%)	98	78	62	7

Alternative 5

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	80
40\%	100	100	100	23
50\%	100	100	100	12
60\%	100	100	100	0
70\%	100	100	100	0
80\%	100	100	100	0
90\%	100	100	54	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	97	97	89	37
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	91	100	100	82
Above Normal (16\%)	100	100	100	37
Below Normal (13\%)	100	96	90	26
Dry (24\%)	100	100	81	3
Critical (15\%)	98	82	68	8

Alternative 5 minus No Action Alternative

	Statistic	Mar	Apr	May

Probability of Exceedance $^{\text {a }}$				
10%	0	0	0	0
20%	0	0	0	0
30%	0	0	0	0
40%	0	0	0	0
50%	0	0	0	4
60%	0	0	0	0
70%	0	0	0	0
80%	0	0	33	0
90%	0	0	23	0
Long Term				
Full Simulation Period	0	1	5	1
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	0	0	0	1
Above Normal (16\%)	0	0	0	0
Below Normal (13\%)	0	0	8	2
Dry (24\%)	0	0	12	1
Critical (15\%)	0	4	6	1

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period.
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
(SWRCB D-1641, 1999); projected to Year 2030.
tes. 1) Al alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2
Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternative 1
and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
esults for Alternative 2 and N o Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the tex.

Table B-7-4. Oroville Large Mouth Bass Nest Survival Percentage, Monthly Percentage

Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	48
40\%	100	100	100	3
50\%	100	100	100	0
60\%	100	100	100	0
70\%	100	100	93	0
80\%	100	100	39	0
90\%	100	100	1	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	97	96	78	31
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	91	100	97	73
Above Normal (16\%)	100	100	85	31
Below Normal (13\%)	100	98	63	12
Dry (24\%)	100	100	67	0
Critical (15\%)	98	74	63	7

No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	80
40\%	100	100	100	23
50\%	100	100	100	8
60\%	100	100	100	0
70\%	100	100	100	0
80\%	100	100	67	0
90\%	100	100	30	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	97	96	85	36
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	91	100	100	81
Above Normal (16\%)	100	100	100	37
Below Normal (13\%)	100	96	82	24
Dry (24\%)	100	100	69	2
Critical (15\%)	98	78	62	7

No Action Alternative minus Second Basis of Comparison

Statistic	Mar		Apr	May
Probability of Exceedance ${ }^{\text {a }}$				
10%	0	0	0	0
20%	0	0	0	0
30%	0	0	0	32
40%	0	0	0	19
50%	0	0	0	8
60%	0	0	0	0
70%	0	0	7	0
80%	0	0	27	0
90%	0	0	30	0
Long Term				
Full Simulation Period		0	0	6
Water Year Types				
Wet (32\%)				5
Above Normal (16\%)	0	0	3	
Below Normal (13\%)	0	0	15	8
Dry (24\%)	0	-2	20	12
Critical (15\%)	0	0	3	2
	0	3	-1	0

Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
(SWRCB D-1641, 1999); projected to Year 2030

Ies. 1) Al alternatives are simulated win projected hydrology and sea level at Year 2030 condiions. 2
Model results for Alternatives 1,4, and Second Basis of Comparison are the same, therefore Alternative
and 4 results are not presented. Qualitative differences, if applicabbe, are discussed in the text. 3) Model
results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the tex

Table B-7-5. Oroville Large Mouth Bass Nest Survival Percentage, Monthly Percentage

Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	48
40\%	100	100	100	3
50\%	100	100	100	0
60\%	100	100	100	0
70\%	100	100	93	0
80\%	100	100	39	0
90\%	100	100	1	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	97	96	78	31
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	91	100	97	73
Above Normal (16\%)	100	100	85	31
Below Normal (13\%)	100	98	63	12
Dry (24\%)	100	100	67	0
Critical (15\%)	98	74	63	7

Alternative 3

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	17
40\%	100	100	100	0
50\%	100	100	100	0
60\%	100	100	100	0
70\%	100	100	100	0
80\%	100	100	54	0
90\%	100	100	14	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	97	96	80	27
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	90	100	97	63
Above Normal (16\%)	100	100	86	26
Below Normal (13\%)	100	95	73	10
Dry (24\%)	100	100	67	0
Critical (15\%)	98	78	65	6

Alternative 3 minus Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	0	0	0	0
20\%	0	0	0	0
30\%	0	0	0	-32
40\%	0	0	0	-3
50\%	0	0	0	0
60\%	0	0	0	0
70\%	0	0	7	0
80\%	0	0	14	0
90\%	0	0	13	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	0	0	2	-4
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	0	0	0	-10
Above Normal (16\%)	0	0	0	-5
Below Normal (13\%)	0	-3	10	-1
Dry (24\%)	0	0	1	0
Critical (15\%)	0	4	2	-1

Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
SWRCB D-1641, 1999); projected to Year 2030
tes. 1) Al alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2
Model results for Alternatives 1,4, and Second Basis of Comparison are the same, therefore Alternative
nd 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the text.

Table B-7-6. Oroville Large Mouth Bass Nest Survival Percentage, Monthly Percentage

Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	48
40\%	100	100	100	3
50\%	100	100	100	0
60\%	100	100	100	0
70\%	100	100	93	0
80\%	100	100	39	0
90\%	100	100	1	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	97	96	78	31
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	91	100	97	73
Above Normal (16\%)	100	100	85	31
Below Normal (13\%)	100	98	63	12
Dry (24\%)	100	100	67	0
Critical (15\%)	98	74	63	7

Alternative 5

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	80
40\%	100	100	100	23
50\%	100	100	100	12
60\%	100	100	100	0
70\%	100	100	100	0
80\%	100	100	100	0
90\%	100	100	54	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	97	97	89	37
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	91	100	100	82
Above Normal (16\%)	100	100	100	37
Below Normal (13\%)	100	96	90	26
Dry (24\%)	100	100	81	3
Critical (15\%)	98	82	68	8

Alternative 5 minus Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	0	0	0	0
20\%	0	0	0	0
30\%	0	0	0	32
40\%	0	0	0	20
50\%	0	0	0	12
60\%	0	0	0	0
70\%	0	0	7	0
80\%	0	0	61	0
90\%	0	0	53	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	0	1	11	6
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	0	0	3	8
Above Normal (16\%)	0	0	15	6
Below Normal (13\%)	0	-2	28	14
Dry (24\%)	0	0	14	2
Critical (15\%)	0	7	5	1

Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
SWRCB D-1641, 1999); projected to Year 2030
tes. 1) Al alternatives are simulated win projected hydrology and sea level at Year 2030 conditions. 2
Model results for Alternatives 1,4, and Second Basis of Comparison are the same, therefore Alternative
and 4 results are not presented. Qualitative differences, if applicabbe, are discussed in the text. 3) Model
results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the text.

B.8. Oroville Small Mouth Bass Survival Percentage

Figure B-8-1. Oroville Small Mouth Bass Nest Survival Percentage, March

Notes: 1) Exceedance probability is defined as the probability a given value will be exceeded in any one year. 2) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 3) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 4) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure B-8-2. Oroville Small Mouth Bass Nest Survival Percentage, April

Notes: 1) Exceedance probability is defined as the probability a given value will be exceeded in any one year. 2) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 3) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 4) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure B-8-3. Oroville Small Mouth Bass Nest Survival Percentage, May

Notes: 1) Exceedance probability is defined as the probability a given value will be exceeded in any one year. 2) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 3) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 4) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure B-8-4. Oroville Small Mouth Bass Nest Survival Percentage, June

Notes: 1) Exceedance probability is defined as the probability a given value will be exceeded in any one year. 2) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 3) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 4) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table B-8-1. Oroville Small Mouth Bass Nest Survival Percentage, Monthly Percentage

No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	67
40\%	100	100	100	20
50\%	100	100	100	8
60\%	100	100	100	0
70\%	100	100	100	0
80\%	100	100	56	0
90\%	100	100	26	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	96	96	83	35
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	90	100	100	79
Above Normal (16\%)	100	100	100	35
Below Normal (13\%)	100	95	81	22
Dry (24\%)	100	100	68	2
Critical (15\%)	97	75	58	7

Alternative 1

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	41
40\%	100	100	100	3
50\%	100	100	100	0
60\%	100	100	100	0
70\%	100	100	78	0
80\%	100	100	34	0
90\%	100	100	1	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	96	95	77	30
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	89	100	97	72
Above Normal (16\%)	100	100	85	28
Below Normal (13\%)	100	97	59	11
Dry (24\%)	100	100	65	0
Critical (15\%)	97	70	58	6

Alternative 1 minus No Action Alternative

Statistic	Mar		Apr	May		Jun
Probability of Exceedance $^{\text {a }}$						
10%	0	0	0	0		
20%	0	0	0	0		
30%	0	0	0	-26		
40%	0	0	0	-17		
50%	0	0	0	-8		
60%	0	0	0	0		
70%	0	0	-22	0		
80%	0	0	-23	0		
90%	0	0	-26	0		
Long Term						
Full Simulation Period						
Water Year Types						
Wet (32\%)	0	0	-7	-5		
Above Normal (16\%)						
Below Normal (13\%)	0	0	-3	-8		
Dry (24\%)	0	0	-15	-7		
Critical (15\%)	0	-22	-10			
	0	0	-3	-1		

Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
SWRCB D-1641, 1999); projected to Year 2030

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2
Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Second Basis of Comparison and Atternative 4 results are not presented. Qualitative differences, if applicable, are discussed the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table B-8-2. Oroville Small Mouth Bass Nest Survival Percentage, Monthly Percentage

No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	67
40\%	100	100	100	20
50\%	100	100	100	8
60\%	100	100	100	0
70\%	100	100	100	0
80\%	100	100	56	0
90\%	100	100	26	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	96	96	83	35
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	90	100	100	79
Above Normal (16\%)	100	100	100	35
Below Normal (13\%)	100	95	81	22
Dry (24\%)	100	100	68	2
Critical (15\%)	97	75	58	7

Alternative 3

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	15
40\%	100	100	100	0
50\%	100	100	100	0
60\%	100	100	100	0
70\%	100	100	100	0
80\%	100	100	45	0
90\%	100	98	13	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	96	95	79	26
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	89	100	97	63
Above Normal (16\%)	100	100	85	23
Below Normal (13\%)	100	93	72	10
Dry (24\%)	100	100	66	0
Critical (15\%)	97	74	62	5

Alternative 3 minus No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	0	0	0	0
20\%	0	0	0	0
30\%	0	0	0	-52
40\%	0	0	0	-20
50\%	0	0	0	-8
60\%	0	0	0	0
70\%	0	0	0	0
80\%	0	0	-11	0
90\%	0	-2	-14	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	0	0	-4	-9
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	0	0	-3	-16
Above Normal (16\%)	0	0	-15	-12
Below Normal (13\%)	0	-2	-9	-11
Dry (24\%)	0	0	-2	-2
Critical (15\%)	0	-1	4	-1

Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
SWRCB D-1641, 1999); projected to Year 2030
tes. 1) Al alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2
Iodel results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternative
nd 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
sults for Alternative 2 and N o Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the text.

Table B-8-3. Oroville Small Mouth Bass Nest Survival Percentage, Monthly Percentage

No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	67
40\%	100	100	100	20
50\%	100	100	100	8
60\%	100	100	100	0
70\%	100	100	100	0
80\%	100	100	56	0
90\%	100	100	26	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	96	96	83	35
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	90	100	100	79
Above Normal (16\%)	100	100	100	35
Below Normal (13\%)	100	95	81	22
Dry (24\%)	100	100	68	2
Critical (15\%)	97	75	58	7

Alternative 5

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	67
40\%	100	100	100	20
50\%	100	100	100	11
60\%	100	100	100	1
70\%	100	100	100	0
80\%	100	100	100	0
90\%	100	100	45	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	96	96	88	36
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	90	100	100	80
Above Normal (16\%)	100	100	100	35
Below Normal (13\%)	100	95	89	23
Dry (24\%)	100	100	79	2
Critical (15\%)	97	78	65	7

Alternative 5 minus No Action Alternative

	Statistic	Mar	Apr	May

Probability of Exceedance $^{\text {a }}$				
10%	0	0	0	0
20%	0	0	0	0
30%	0	0	0	0
40%	0	0	0	0
50%	0	0	0	3
60%	0	0	0	1
70%	0	0	0	0
80%	0	0	44	0
90%	0	0	19	0
Long Term				
Full Simulation Period		1	5	1
Water Year Types				
Wet (32\%)	0	0	0	1
Above Normal (16\%)	0	0	0	0
Below Normal (13\%)	0	0	8	2
Dry (24\%)	0	0	11	1
Critical (15\%)	0	4	7	0

Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
SWRCB D-1641, 1999); projected to Year 2030

Ites. 1) Al alternatives are simulated win projected hydrology and sea level at Year 2030 conditions. 2
Iodel results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternative
nd 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
sults for Alternative 2 and N o Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the text.

Table B-8-4. Oroville Small Mouth Bass Nest Survival Percentage, Monthly Percentage

Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	41
40\%	100	100	100	3
50\%	100	100	100	0
60\%	100	100	100	0
70\%	100	100	78	0
80\%	100	100	34	0
90\%	100	100	1	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	96	95	77	30
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	89	100	97	72
Above Normal (16\%)	100	100	85	28
Below Normal (13\%)	100	97	59	11
Dry (24\%)	100	100	65	0
Critical (15\%)	97	70	58	6

No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	67
40\%	100	100	100	20
50\%	100	100	100	8
60\%	100	100	100	0
70\%	100	100	100	0
80\%	100	100	56	0
90\%	100	100	26	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	96	96	83	35
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	90	100	100	79
Above Normal (16\%)	100	100	100	35
Below Normal (13\%)	100	95	81	22
Dry (24\%)	100	100	68	2
Critical (15\%)	97	75	58	7

No Action Alternative minus Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	0	0	0	0
20\%	0	0	0	0
30\%	0	0	0	26
40\%	0	0	0	17
50\%	0	0	0	8
60\%	0	0	0	0
70\%	0	0	22	0
80\%	0	0	23	0
90\%	0	0	26	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	0	0	7	5
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	1	0	3	8
Above Normal (16\%)	0	0	15	7
Below Normal (13\%)	0	-2	22	10
Dry (24\%)	0	0	3	1
Critical (15\%)	0	5	-1	0

Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
SWRCB D-1641, 1999); projected to Year 2030

Ies. 1) Al alternatives are simulated win projected hydrology and sea level at Year 2030 condiions. 2
Iodel results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternative
nd 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
sults for Alternative 2 and N o Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the text.

Table B-8-5. Oroville Small Mouth Bass Nest Survival Percentage, Monthly Percentage

Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	41
40\%	100	100	100	3
50\%	100	100	100	0
60\%	100	100	100	0
70\%	100	100	78	0
80\%	100	100	34	0
90\%	100	100	1	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	96	95	77	30
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	89	100	97	72
Above Normal (16\%)	100	100	85	28
Below Normal (13\%)	100	97	59	11
Dry (24\%)	100	100	65	0
Critical (15\%)	97	70	58	6

Alternative 3

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	15
40\%	100	100	100	0
50\%	100	100	100	0
60\%	100	100	100	0
70\%	100	100	100	0
80\%	100	100	45	0
90\%	100	98	13	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	96	95	79	26
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	89	100	97	63
Above Normal (16\%)	100	100	85	23
Below Normal (13\%)	100	93	72	10
Dry (24\%)	100	100	66	0
Critical (15\%)	97	74	62	5

Alternative 3 minus Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	0	0	0	0
20\%	0	0	0	0
30\%	0	0	0	-26
40\%	0	0	0	-3
50\%	0	0	0	0
60\%	0	0	0	0
70\%	0	0	22	0
80\%	0	0	12	0
90\%	0	-2	12	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	0	0	2	-4
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	0	0	0	-9
Above Normal (16\%)	0	0	0	-5
Below Normal (13\%)	0	-4	13	-1
Dry (24\%)	0	0	1	0
Critical (15\%)	0	4	3	-1

Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
SWRCB D-1641, 1999); projected to Year 2030
tes. 1) Al alternatives are simulated win projected hydrology and sea level at Year 2030 conditions. 2
Model results for Alternatives 1,4, and Second Basis of Comparison are the same, therefore Alternative
and 4 results are not presented. Qualitative differences, if applicabbe, are discussed in the (ext. 3) Model
results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the text.

Table B-8-6. Oroville Small Mouth Bass Nest Survival Percentage, Monthly Percentage

Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	41
40\%	100	100	100	3
50\%	100	100	100	0
60\%	100	100	100	0
70\%	100	100	78	0
80\%	100	100	34	0
90\%	100	100	1	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	96	95	77	30
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	89	100	97	72
Above Normal (16\%)	100	100	85	28
Below Normal (13\%)	100	97	59	11
Dry (24\%)	100	100	65	0
Critical (15\%)	97	70	58	6

Alternative 5

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	67
40\%	100	100	100	20
50\%	100	100	100	11
60\%	100	100	100	1
70\%	100	100	100	0
80\%	100	100	100	0
90\%	100	100	45	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	96	96	88	36
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	90	100	100	80
Above Normal (16\%)	100	100	100	35
Below Normal (13\%)	100	95	89	23
Dry (24\%)	100	100	79	2
Critical (15\%)	97	78	65	7

Alternative 5 minus Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	0	0	0	0
20\%	0	0	0	0
30\%	0	0	0	26
40\%	0	0	0	17
50\%	0	0	0	11
60\%	0	0	0	1
70\%	0	0	22	0
80\%	0	0	66	0
90\%	0	0	45	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	0	1	12	6
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	1	0	3	8
Above Normal (16\%)	0	0	15	7
Below Normal (13\%)	0	-2	30	12
Dry (24\%)	0	0	14	2
Critical (15\%)	0	8	7	1

Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
SWRCB D-1641, 1999); projected to Year 2030

Notes. 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2)
Model results for Alternatives 1,4, and Second Basis of Comparison are the same, therefore Alternative
nd 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
esults for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the text.
B.9. Oroville Spotted Bass Survival Percentage

Figure B-9-1. Oroville Spotted Bass Nest Survival Percentage, March

Notes: 1) Exceedance probability is defined as the probability a given value will be exceeded in any one year. 2) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 3) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 4) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure B-9-2. Oroville Spotted Bass Nest Survival Percentage, April

Notes: 1) Exceedance probability is defined as the probability a given value will be exceeded in any one year. 2) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 3) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 4) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure B-9-3. Oroville Spotted Bass Nest Survival Percentage, May

Notes: 1) Exceedance probability is defined as the probability a given value will be exceeded in any one year. 2) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 3) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 4) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure B-9-4. Oroville Spotted Bass Nest Survival Percentage, June

Notes: 1) Exceedance probability is defined as the probability a given value will be exceeded in any one year. 2) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 3) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 4) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table B-9-1. Oroville Spotted Bass Nest Survival Percentage, Monthly Percentage

No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	81
50\%	100	100	100	62
60\%	100	100	100	47
70\%	100	100	100	30
80\%	100	100	100	19
90\%	100	100	92	7
Long Term				
Full Simulation Period ${ }^{\text {b }}$	99	99	95	60
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	98	100	100	95
Above Normal (16\%)	100	100	100	68
Below Normal (13\%)	100	100	96	55
Dry (24\%)	100	100	86	22
Critical (15\%)	100	94	90	43

Alternative 1

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	52
50\%	100	100	100	31
60\%	100	100	100	17
70\%	100	100	100	3
80\%	100	100	100	0
90\%	100	100	48	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	99	99	90	46
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	98	100	99	86
Above Normal (16\%)	100	100	93	44
Below Normal (13\%)	100	100	78	26
Dry (24\%)	100	100	83	14
Critical (15\%)	100	90	90	32

Alternative 1 minus No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	0	0	0	0
20\%	0	0	0	0
30\%	0	0	0	0
40\%	0	0	0	-29
50\%	0	0	0	-31
60\%	0	0	0	-30
70\%	0	0	0	-27
80\%	0	0	0	-19
90\%	0	0	-44	-7
Long Term				
Full Simulation Period ${ }^{\text {b }}$	0	-1	-4	-14
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	0	0	-1	-9
Above Normal (16\%)	0	0	-7	-24
Below Normal (13\%)	0	0	-18	-29
Dry (24\%)	0	0	-3	-8
Critical (15\%)	0	-4	0	-11

Exceedance probability is defined as the probability a given value will be exceeded in any one year.
based on the 82 -year simulation period
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
(SWRCB D-1641, 1999); projected to Year 2030

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2)
Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Second Basis of Comparison and Alternative 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the tex

Table B-9-2. Oroville Spotted Bass Nest Survival Percentage, Monthly Percentage

No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	81
50\%	100	100	100	62
60\%	100	100	100	47
70\%	100	100	100	30
80\%	100	100	100	19
90\%	100	100	92	7
Long Term				
Full Simulation Period ${ }^{\text {b }}$	99	99	95	60
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	98	100	100	95
Above Normal (16\%)	100	100	100	68
Below Normal (13\%)	100	100	96	55
Dry (24\%)	100	100	86	22
Critical (15\%)	100	94	90	43

Alternative 3

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	73
40\%	100	100	100	44
50\%	100	100	100	35
60\%	100	100	100	21
70\%	100	100	100	11
80\%	100	100	100	0
90\%	100	100	69	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	99	99	93	44
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	98	100	100	79
Above Normal (16\%)	100	100	93	49
Below Normal (13\%)	100	100	91	34
Dry (24\%)	100	100	85	9
Critical (15\%)	100	90	93	32

Alternative 3 minus No Action Alternative

Statistic	Mar		Apr	May		Jun
Probability of Exceedance $^{\text {a }}$						
10%	0	0	0	0		
20%	0	0	0	0		
30%	0	0	0	-27		
40%	0	0	0	-37		
50%	0	0	0	-27		
60%	0	0	0	-26		
70%	0	0	0	-19		
80%	0	0	0	-19		
90%	0	0	-23	-7		
Long Term						
Full Simulation Period						
Water Year Types						
Wet (32\%)	0	-1	-2	-16		
Above Normal (16\%)						
Below Normal (13\%)	0	0	0	-16		
Dry (24\%)	0	0	-7	-19		
Critical (15\%)	0	0	-5	-21		
	0	-4	-2	-13		

Exceedance probability is defined as the probability a given value will be exceeded in any one year.
based on the 82 -year simulation period
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
SWRCB D-1641, 1999); projected to Year 2030.

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2)
Model results for Alternatives 1,4, and Second Basis of Comparison are the same, therefore Alternative
and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
esults for Alternative 2 and N o Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the tex.

Table B-9-3. Oroville Spotted Bass Nest Survival Percentage, Monthly Percentage

No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	81
50\%	100	100	100	62
60\%	100	100	100	47
70\%	100	100	100	30
80\%	100	100	100	19
90\%	100	100	92	7
Long Term				
Full Simulation Period ${ }^{\text {b }}$	99	99	95	60
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	98	100	100	95
Above Normal (16\%)	100	100	100	68
Below Normal (13\%)	100	100	96	55
Dry (24\%)	100	100	86	22
Critical (15\%)	100	94	90	43

Alternative 5

Statistic	Mar	Apr	May	Jun
Probability of Exceedance $^{\text {a }}$				
$\mathbf{1 0 \%}$	100	100	100	100
$\mathbf{2 0 \%}$	100	100	100	100
30%	100	100	100	100
40%	100	100	100	82
$\mathbf{5 0 \%}$	100	100	100	67
60%	100	100	100	49
70%	100	100	100	37
80%	100	100	100	17
90%	100	100	100	7
Long Term				
Full Simulation Period			99	98
Water Year Types $^{\text {c }}$	99			61
Wet (32\%)	98	100	100	95
Above Normal (16\%)	100	100	100	69
Below Normal (13\%)	100	100	97	59
Dry (24\%)	100	100	97	23
Critical (15\%)	100	96	94	46

Alternative 5 minus No Action Alternative

| | Statistic | Mar | Apr | May |
| :---: | :---: | :---: | :---: | :---: | Jun

Probability of Exceedance $^{\mathrm{a}}$				0
10%	0	0	0	0
20%	0	0	0	0
30%	0	0	0	0
40%	0	0	0	0
50%	0	0	0	5
60%	0	0	0	2
70%	0	0	0	7
80%	0	0	0	-1
90%	0	0	8	0
Long Term				
Full Simulation Period		0	3	1
Water Year Types		0		
Wet (32\%)	0	0	0	0
Above Normal (16\%)	0	0	0	0
Below Normal (13\%)	0	0	2	4
Dry (24\%)	0	0	11	0
Critical (15\%)	0	2	4	3

Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
SWRCB D-1641, 1999); projected to Year 2030

Ites. 1) Al alternatives are simulated with projected hydrology and sea level at Year 2030 condiions. 2
odel results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternative
nd 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
sults for Alternative 2 and N o Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the text.

Table B-9-4. Oroville Spotted Bass Nest Survival Percentage, Monthly Percentage

Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	52
50\%	100	100	100	31
60\%	100	100	100	17
70\%	100	100	100	3
80\%	100	100	100	0
90\%	100	100	48	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	99	99	90	46
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	98	100	99	86
Above Normal (16\%)	100	100	93	44
Below Normal (13\%)	100	100	78	26
Dry (24\%)	100	100	83	14
Critical (15\%)	100	90	90	32

No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance $^{\text {a }}$				
$\mathbf{1 0 \%}$	100	100	100	100
20%	100	100	100	100
30%	100	100	100	100
$\mathbf{4 0 \%}$	100	100	100	81
$\mathbf{5 0 \%}$	100	100	100	62
$\mathbf{6 0 \%}$	100	100	100	47
70%	100	100	100	30
80%	100	100	100	19
90%	100	100	92	7
Long Term				
Full Simulation Period		99	99	95
Water Year Types				60
Wet (32\%)	98	100	100	95
Above Normal (16\%)	100	100	100	68
Below Normal (13\%)	100	100	96	55
Dry (24\%)	100	100	86	22
Critical (15\%)	100	94	90	43

No Action Alternative minus Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	0	0	0	0
20\%	0	0	0	0
30\%	0	0	0	0
40\%	0	0	0	29
50\%	0	0	0	31
60\%	0	0	0	30
70\%	0	0	0	27
80\%	0	0	0	19
90\%	0	0	44	7
Long Term				
Full Simulation Period ${ }^{\text {b }}$	0	1	4	14
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	0	0	1	9
Above Normal (16\%)	0	0	7	24
Below Normal (13\%)	0	0	18	29
Dry (24\%)	0	0	3	8
Critical (15\%)	0	4	0	11

Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
SWRCB D-1641, 1999); projected to Year 2030

Notes. 1) Al alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2
odel results for Alternatives 1, 4 , and Second Basis of Comparison are the same, therefore Alternative
nd 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
sults for Alternative 2 and N o Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the text.

Table B-9-5. Oroville Spotted Bass Nest Survival Percentage, Monthly Percentage

Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance $^{\text {a }}$				
10%	100	100	100	100
20%	100	100	100	100
30%	100	100	100	100
40%	100	100	100	52
50%	100	100	100	31
60%	100	100	100	17
70%	100	100	100	3
80%	100	100	100	0
90%	100	100	48	0
Long Term				
Full Simulation Period		99	99	90
Water Year Types				
Wet (32\%)		98	100	99
Above Normal (16\%)	100	100	93	86
Below Normal (13\%)	100	100	78	44
Dry (24\%)	100	100	83	26
Critical (15\%)	100	90	90	32

Alternative 3

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	73
40\%	100	100	100	44
50\%	100	100	100	35
60\%	100	100	100	21
70\%	100	100	100	11
80\%	100	100	100	0
90\%	100	100	69	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	99	99	93	44
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	98	100	100	79
Above Normal (16\%)	100	100	93	49
Below Normal (13\%)	100	100	91	34
Dry (24\%)	100	100	85	9
Critical (15\%)	100	90	93	32

Alternative 3 minus Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	0	0	0	0
20\%	0	0	0	0
30\%	0	0	0	-27
40\%	0	0	0	-8
50\%	0	0	0	4
60\%	0	0	0	4
70\%	0	0	0	8
80\%	0	0	0	0
90\%	0	0	21	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	0	0	3	-2
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	-1	0	0	-7
Above Normal (16\%)	0	0	1	5
Below Normal (13\%)	0	0	13	8
Dry (24\%)	0	0	1	-5
Critical (15\%)	0	1	3	1

Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
SWRCB D-1641, 1999); projected to Year 2030

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2
Model results for Alternatives 1,4, and Second Basis of Comparison are the same, therefore Alternative
nd 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
esults for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the tex

Table B-9-6. Oroville Spotted Bass Nest Survival Percentage, Monthly Percentage

Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	52
50\%	100	100	100	31
60\%	100	100	100	17
70\%	100	100	100	3
80\%	100	100	100	0
90\%	100	100	48	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	99	99	90	46
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	98	100	99	86
Above Normal (16\%)	100	100	93	44
Below Normal (13\%)	100	100	78	26
Dry (24\%)	100	100	83	14
Critical (15\%)	100	90	90	32

Alternative 5

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	82
50\%	100	100	100	67
60\%	100	100	100	49
70\%	100	100	100	37
80\%	100	100	100	17
90\%	100	100	100	7
Long Term				
Full Simulation Period ${ }^{\text {b }}$	99	99	98	61
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	98	100	100	95
Above Normal (16\%)	100	100	100	69
Below Normal (13\%)	100	100	97	59
Dry (24\%)	100	100	97	23
Critical (15\%)	100	96	94	46

Alternative 5 minus Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	0	0	0	0
20\%	0	0	0	0
30\%	0	0	0	0
40\%	0	0	0	29
50\%	0	0	0	36
60\%	0	0	0	32
70\%	0	0	0	34
80\%	0	0	0	17
90\%	0	0	52	7
Long Term				
Full Simulation Period ${ }^{\text {b }}$	0	1	8	15
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	0	0	1	9
Above Normal (16\%)	0	0	7	24
Below Normal (13\%)	0	0	19	34
Dry (24\%)	0	0	14	8
Critical (15\%)	0	6	3	14

Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
SWRCB D-1641, 1999); projected to Year 2030
tes. 1) Al alternatives are simulated win projected hydrology and sea level at Year 2030 conditions. 2
Iodel results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternative
nd 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
esults for Alternative 2 and $N o$ Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the tex

B.10. Folsom Large Mouth Bass Survival Percentage

Figure B-10-1. Folsom Large Mouth Bass Nest Survival Percentage, March

Notes: 1) Exceedance probability is defined as the probability a given value will be exceeded in any one year. 2) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 3) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 4) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure B-10-2. Folsom Large Mouth Bass Nest Survival Percentage, April

Notes: 1) Exceedance probability is defined as the probability a given value will be exceeded in any one year. 2) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 3) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 4) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure B-10-3. Folsom Large Mouth Bass Nest Survival Percentage, May

Notes: 1) Exceedance probability is defined as the probability a given value will be exceeded in any one year. 2) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 3) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 4) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure B-10-4. Folsom Large Mouth Bass Nest Survival Percentage, June

Notes: 1) Exceedance probability is defined as the probability a given value will be exceeded in any one year. 2) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 3) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 4) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table B-10-1. Folsom Large Mouth Bass Nest Survival Percentage, Monthly Percentage

No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	100
50\%	100	100	100	69
60\%	100	100	100	52
70\%	100	100	100	37
80\%	100	100	100	23
90\%	100	100	100	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	100	99	96	63
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	100	100	100	93
Above Normal (16\%)	100	100	100	61
Below Normal (13\%)	100	100	100	61
Dry (24\%)	100	100	94	35
Critical (15\%)	97	93	82	46

Alternative 1

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	100
50\%	100	100	100	55
60\%	100	100	100	37
70\%	100	100	100	17
80\%	100	100	100	6
90\%	100	100	100	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	100	99	96	56
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	100	100	100	90
Above Normal (16\%)	100	100	100	45
Below Normal (13\%)	100	100	100	35
Dry (24\%)	100	100	96	32
Critical (15\%)	97	92	83	55

Alternative 1 minus No Action Alternative

| | Statistic | Mar | Apr | May |
| :---: | :---: | :---: | :---: | :---: | Jun

Probability of Exceedance $^{\text {a }}$				
10%	0	0	0	0
20%	0	0	0	0
30%	0	0	0	0
40%	0	0	0	0
50%	0	0	0	-14
60%	0	0	0	-15
70%	0	0	0	-20
80%	0	0	0	-16
90%	0	0	0	0
Long Term				
Full Simulation Period	0	0	1	-7
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	0	0	0	-3
Above Normal (16\%)	0	0	0	-16
Below Normal (13\%)	0	0	0	-26
Dry (24\%)	0	0	2	-3
Critical (15\%)	0	-1	1	9

Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
(SWRCB D-1641, 1999); projected to Year 2030

Table B-10-2. Folsom Large Mouth Bass Nest Survival Percentage, Monthly Percentage

No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	100
50\%	100	100	100	69
60\%	100	100	100	52
70\%	100	100	100	37
80\%	100	100	100	23
90\%	100	100	100	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	100	99	96	63
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	100	100	100	93
Above Normal (16\%)	100	100	100	61
Below Normal (13\%)	100	100	100	61
Dry (24\%)	100	100	94	35
Critical (15\%)	97	93	82	46

Alternative 3

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	87
50\%	100	100	100	57
60\%	100	100	100	40
70\%	100	100	100	22
80\%	100	100	100	8
90\%	100	100	100	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	99	99	96	57
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	100	100	100	85
Above Normal (16\%)	100	100	100	45
Below Normal (13\%)	100	100	98	50
Dry (24\%)	100	100	96	34
Critical (15\%)	96	91	81	54

Alternative 3 minus No Action Alternative

| | Statistic | Mar | Apr | May |
| :---: | :---: | :---: | :---: | :---: | Jun

Probability of Exceedance $^{\text {a }}$				
10%	0	0	0	0
20%	0	0	0	0
30%	0	0	0	0
40%	0	0	0	-13
50%	0	0	0	-13
60%	0	0	0	-12
70%	0	0	0	-14
80%	0	0	0	-14
90%	0	0	0	0
Long Term				
Full Simulation Period	0	0	0	-6
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	0	0	0	-8
Above Normal (16\%)	0	0	0	-16
Below Normal (13\%)	0	0	-2	-11
Dry (24\%)	0	0	2	-1
Critical (15\%)	-1	-2	-1	8

Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
SWRCB D-1641, 1999); projected to Year 2030

Ites. 1) Al alternatives are simulated with projected hydrology and sea level at Year 2030 condiions. 2
odel results for Alternatives 1, 4 , and Second Basis of Comparison are the same, therefore Alternative
nd 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the text.

Table B-10-3. Folsom Large Mouth Bass Nest Survival Percentage, Monthly Percentage

No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	100
50\%	100	100	100	69
60\%	100	100	100	52
70\%	100	100	100	37
80\%	100	100	100	23
90\%	100	100	100	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	100	99	96	63
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	100	100	100	93
Above Normal (16\%)	100	100	100	61
Below Normal (13\%)	100	100	100	61
Dry (24\%)	100	100	94	35
Critical (15\%)	97	93	82	46

Alternative 5

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	100
50\%	100	100	100	69
60\%	100	100	100	51
70\%	100	100	100	37
80\%	100	100	100	22
90\%	100	100	100	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	100	99	97	63
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	100	100	100	93
Above Normal (16\%)	100	100	100	61
Below Normal (13\%)	100	100	100	62
Dry (24\%)	100	100	97	37
Critical (15\%)	97	95	83	43

Alternative 5 minus No Action Alternative

	Statistic	Mar	Apr	May

Probability of Exceedance $^{\mathrm{a}}$				0
10%	0	0	0	0
20%	0	0	0	0
30%	0	0	0	0
40%	0	0	0	0
50%	0	0	0	0
60%	0	0	0	-1
70%	0	0	0	0
80%	0	0	0	-1
90%	0	0	0	0
Long Term				
Full Simulation Period		0	1	0
Water Year Types		0		
Wet (32\%)	0	0	0	0
Above Normal (16\%)	0	0	0	0
Below Normal (13\%)	0	0	0	1
Dry (24\%)	0	0	3	2
Critical (15\%)	0	2	1	-3

Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
SWRCB D-1641, 1999); projected to Year 2030

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2
Model results for Alternatives 1,4, and Second Basis of Comparison are the same, therefore Alternative
nd 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the text.

Table B-10-4. Folsom Large Mouth Bass Nest Survival Percentage, Monthly Percentage

Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	100
50\%	100	100	100	55
60\%	100	100	100	37
70\%	100	100	100	17
80\%	100	100	100	6
90\%	100	100	100	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	100	99	96	56
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	100	100	100	90
Above Normal (16\%)	100	100	100	45
Below Normal (13\%)	100	100	100	35
Dry (24\%)	100	100	96	32
Critical (15\%)	97	92	83	55

No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance $^{\text {a }}$				
$\mathbf{1 0 \%}$	100	100	100	100
$\mathbf{2 0 \%}$	100	100	100	100
$\mathbf{3 0 \%}$	100	100	100	100
$\mathbf{4 0 \%}$	100	100	100	100
$\mathbf{5 0 \%}$	100	100	100	69
$\mathbf{6 0 \%}$	100	100	100	52
$\mathbf{7 0 \%}$	100	100	100	37
$\mathbf{8 0 \%}$	100	100	100	23
90%	100	100	100	0
Long Term				
Full Simulation Period		100	99	96
Water Year Types				63
Wet (32\%)	100	100	100	93
Above Normal (16\%)	100	100	100	61
Below Normal (13\%)	100	100	100	61
Dry (24\%)	100	100	94	35
Critical (15\%)	97	93	82	46

No Action Alternative minus Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	0	0	0	0
20\%	0	0	0	0
30\%	0	0	0	0
40\%	0	0	0	0
50\%	0	0	0	14
60\%	0	0	0	15
70\%	0	0	0	20
80\%	0	0	0	16
90\%	0	0	0	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	0	0	-1	7
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	0	0	0	3
Above Normal (16\%)	0	0	0	16
Below Normal (13\%)	0	0	0	26
Dry (24\%)	0	0	-2	3
Critical (15\%)	0	1	-1	-9

Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
(SWRCB D-1641, 1999); projected to Year 2030

Ites. 1) Al alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2
Model results for Alternatives 1,4, and Second Basis of Comparison are the same, therefore Alternative
and 4 results are not presented. Qualitative differences, if applicabbe, are discussed in the text. 3) Model
esults for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the tex

Table B-10-5. Folsom Large Mouth Bass Nest Survival Percentage, Monthly Percentage

Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	100
50\%	100	100	100	55
60\%	100	100	100	37
70\%	100	100	100	17
80\%	100	100	100	6
90\%	100	100	100	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	100	99	96	56
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	100	100	100	90
Above Normal (16\%)	100	100	100	45
Below Normal (13\%)	100	100	100	35
Dry (24\%)	100	100	96	32
Critical (15\%)	97	92	83	55

Alternative 3

Statistic	Mar	Apr	May	Jun
Probability of Exceedance $^{\text {a }}$				
$\mathbf{1 0 \%}$	100	100	100	100
$\mathbf{2 0 \%}$	100	100	100	100
30%	100	100	100	100
40%	100	100	100	87
$\mathbf{5 0 \%}$	100	100	100	57
60%	100	100	100	40
70%	100	100	100	22
80%	100	100	100	8
90%	100	100	100	0
Long Term				
Full Simulation Period			99	96
Water Year Types $^{\text {c }}$	99			57
Wet (32\%)	100	100	100	85
Above Normal (16\%)	100	100	100	45
Below Normal (13\%)	100	100	98	50
Dry (24\%)	100	100	96	34
Critical (15\%)	96	91	81	54

Alternative 3 minus Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance $^{\text {a }}$				
10%	0	0	0	0
20%	0	0	0	0
30%	0	0	0	0
40%	0	0	0	-13
50%	0	0	0	2
60%	0	0	0	4
70%	0	0	0	5
80%	0	0	0	2
90%	0	0	0	0
Long Term				
Full Simulation Period		0	0	0
Water Year Types				
Wet (32\%)	0			1
Above Normal (16\%)	0	0	0	-5
Below Normal (13\%)	0	0	0	0
Dry (24\%)	0	0	-2	15
Critical (15\%)	0	0	2	
	-1	-1	-2	-1

Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
SWRCB D-1641, 1999); projected to Year 2030
tes. 1) Al alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2
Model results for Alternatives 1,4, and Second Basis of Comparison are the same, therefore Alternative
nd 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the text.

Table B-10-6. Folsom Large Mouth Bass Nest Survival Percentage, Monthly Percentage

Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	100
50\%	100	100	100	55
60\%	100	100	100	37
70\%	100	100	100	17
80\%	100	100	100	6
90\%	100	100	100	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	100	99	96	56
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	100	100	100	90
Above Normal (16\%)	100	100	100	45
Below Normal (13\%)	100	100	100	35
Dry (24\%)	100	100	96	32
Critical (15\%)	97	92	83	55

Alternative 5

Statistic	Mar	Apr	May	Jun
Probability of Exceedance $^{\text {a }}$				
$\mathbf{1 0 \%}$	100	100	100	100
$\mathbf{2 0 \%}$	100	100	100	100
30%	100	100	100	100
40%	100	100	100	100
$\mathbf{5 0 \%}$	100	100	100	69
60%	100	100	100	51
70%	100	100	100	37
80%	100	100	100	22
90%	100	100	100	0
Long Term				
Full Simulation Period				
Water Year Types $^{\text {c }}$	100	99	97	63
Wet (32\%)				
Above Normal (16\%)	100	100	100	93
Below Normal (13\%)	100	100	100	61
Dry (24\%)	100	100	100	62
Critical (15\%)	100	100	97	37
	97	95	83	43

Alternative 5 minus Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance $^{\text {a }}$				
10%	0	0	0	0
20%	0	0	0	0
30%	0	0	0	0
40%	0	0	0	0
50%	0	0	0	14
60%	0	0	0	15
70%	0	0	0	20
80%	0	0	0	15
90%	0	0	0	0
Long Term				
Full Simulation Period		0	0	0
Water Year Types				
Wet (32\%)	0	0	0	7
Above Normal (16\%)	0	0	0	3
Below Normal (13\%)	0	0	0	27
Dry (24\%)	0	0	2	4
Critical (15\%)	0	3	0	-12

Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
SWRCB D-1641, 1999); projected to Year 2030

Notes. 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2)
Iodel results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternative
nd 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the text.

B.11. Folsom Small Mouth Bass Survival Percentage

Figure B-11-1. Folsom Small Mouth Bass Nest Survival Percentage, March

Notes: 1) Exceedance probability is defined as the probability a given value will be exceeded in any one year. 2) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 3) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 4) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure B-11-2. Folsom Small Mouth Bass Nest Survival Percentage, April

Notes: 1) Exceedance probability is defined as the probability a given value will be exceeded in any one year. 2) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 3) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 4) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure B-11-3. Folsom Small Mouth Bass Nest Survival Percentage, May

Notes: 1) Exceedance probability is defined as the probability a given value will be exceeded in any one year. 2) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 3) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 4) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure B-11-4. Folsom Small Mouth Bass Nest Survival Percentage, June

Notes: 1) Exceedance probability is defined as the probability a given value will be exceeded in any one year. 2) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 3) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 4) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table B-11-1. Folsom Small Mouth Bass Nest Survival Percentage, Monthly Percentage

No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	100
50\%	100	100	100	58
60\%	100	100	100	44
70\%	100	100	100	32
80\%	100	100	100	20
90\%	100	100	100	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	99	99	95	60
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	100	100	100	92
Above Normal (16\%)	100	100	100	58
Below Normal (13\%)	100	100	98	57
Dry (24\%)	100	100	93	32
Critical (15\%)	96	92	80	41

Alternative 1

Statistic	Mar	Apr	May	Jun
Probability of Exceedance $^{\text {a }}$				
$\mathbf{1 0 \%}$	100	100	100	100
$\mathbf{2 0 \%}$	100	100	100	100
30%	100	100	100	100
40%	100	100	100	92
$\mathbf{5 0 \%}$	100	100	100	46
60%	100	100	100	31
70%	100	100	100	15
80%	100	100	100	6
90%	100	100	100	0
Long Term				
Full Simulation Period			99	95
Water Year Types $^{\text {c }}$	99			54
Wet (32\%)	100	100	100	89
Above Normal (16\%)	100	100	100	43
Below Normal (13\%)	100	100	98	34
Dry (24\%)	100	100	94	29
Critical (15\%)	96	90	81	50

Alternative 1 minus No Action Alternative

| | Statistic | Mar | Apr | May |
| :---: | :---: | :---: | :---: | :---: | Jun

Probability of Exceedance $^{\text {a }}$				
10%	0	0	0	0
20%	0	0	0	0
30%	0	0	0	0
40%	0	0	0	-8
50%	0	0	0	-12
60%	0	0	0	-13
70%	0	0	0	-16
80%	0	0	0	-13
90%	0	0	0	0
Long Term				
Full Simulation Period	0	0	0	-6
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	0	0	0	-3
Above Normal (16\%)	0	0	0	-15
Below Normal (13\%)	0	0	0	-24
Dry (24\%)	0	0	1	-2
Critical (15\%)	0	-2	1	9

Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period.
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
SWRCB D-1641, 1999); projected to Year 2030

Nes. 1) Al alternatives are simulated win projected hydrology and sea level at Year 2030 conditions. 2)
Model results for Alternatives 1,4, and Second Basis of Comparison are the same, therefore Second Basis of群parison and Atternative 4 results are not presented. Quaitative differences, if applicable, are discusser the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text

Table B-11-2. Folsom Small Mouth Bass Nest Survival Percentage, Monthly Percentage

No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	100
50\%	100	100	100	58
60\%	100	100	100	44
70\%	100	100	100	32
80\%	100	100	100	20
90\%	100	100	100	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	99	99	95	60
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	100	100	100	92
Above Normal (16\%)	100	100	100	58
Below Normal (13\%)	100	100	98	57
Dry (24\%)	100	100	93	32
Critical (15\%)	96	92	80	41

Alternative 3

Statistic	Mar	Apr	May	Jun
Probability of Exceedance $^{\text {a }}$				
$\mathbf{1 0 \%}$	100	100	100	100
20%	100	100	100	100
30%	100	100	100	100
40%	100	100	100	73
50%	100	100	100	48
60%	100	100	100	34
70%	100	100	100	20
80%	100	100	100	8
90%	100	100	100	0
Long Term				
Full Simulation Period			99	95
Water Year Types $^{\text {c }}$	99			54
Wet (32\%)	100	100	100	82
Above Normal (16\%)	100	100	100	43
Below Normal (13\%)	100	100	97	46
Dry (24\%)	100	100	94	31
Critical (15\%)	95	90	79	50

Alternative 3 minus No Action Alternative

| | Statistic | Mar | Apr | May |
| :---: | :---: | :---: | :---: | :---: | Jun

Probability of Exceedance $^{\text {a }}$				
10%	0	0	0	0
20%	0	0	0	0
30%	0	0	0	0
40%	0	0	0	-27
50%	0	0	0	-10
60%	0	0	0	-10
70%	0	0	0	-12
80%	0	0	0	-12
90%	0	0	0	0
Long Term				
Full Simulation Period	0	0	0	-6
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	0	0	0	-10
Above Normal (16\%)	0	0	0	-15
Below Normal (13\%)	0	0	-1	-12
Dry (24\%)	0	0	2	-1
Critical (15\%)	-1	-2	-1	8

Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
SWRCB D-1641, 1999); projected to Year 2030

Ites. 1) Al alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2
Iodel results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternative
nd 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
sults for Alternative 2 and N o Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the text.

Table B-11-3. Folsom Small Mouth Bass Nest Survival Percentage, Monthly Percentage

No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	100
50\%	100	100	100	58
60\%	100	100	100	44
70\%	100	100	100	32
80\%	100	100	100	20
90\%	100	100	100	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	99	99	95	60
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	100	100	100	92
Above Normal (16\%)	100	100	100	58
Below Normal (13\%)	100	100	98	57
Dry (24\%)	100	100	93	32
Critical (15\%)	96	92	80	41

Alternative 5

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	100
50\%	100	100	100	58
60\%	100	100	100	43
70\%	100	100	100	32
80\%	100	100	100	19
90\%	100	100	100	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	99	99	96	60
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	100	100	100	92
Above Normal (16\%)	100	100	100	58
Below Normal (13\%)	100	100	99	58
Dry (24\%)	100	100	95	33
Critical (15\%)	96	95	81	38

Alternative 5 minus No Action Alternative

| | Statistic | Mar | Apr | May |
| :---: | :---: | :---: | :---: | :---: | Jun

Probability of Exceedance $^{\mathrm{a}}$				0
10%	0	0	0	0
20%	0	0	0	0
30%	0	0	0	0
40%	0	0	0	0
50%	0	0	0	0
60%	0	0	0	-1
70%	0	0	0	0
80%	0	0	0	-1
90%	0	0	0	0
Long Term				
Full Simulation Period		0	1	0
Water Year Types		0		
Wet (32\%)	0	0	0	0
Above Normal (16\%)	0	0	0	0
Below Normal (13\%)	0	0	1	1
Dry (24\%)	0	0	3	1
Critical (15\%)	0	3	1	-4

Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
SWRCB D-1641, 1999); projected to Year 2030

Ites. 1) Al alternatives are simulated with projected hydrology and sea level at Year 2030 condiions. 2
Iodel results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternative
nd 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
sults for Alternative 2 and N o Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the text.

Table B-11-4. Folsom Small Mouth Bass Nest Survival Percentage, Monthly Percentage

Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	92
50\%	100	100	100	46
60\%	100	100	100	31
70\%	100	100	100	15
80\%	100	100	100	6
90\%	100	100	100	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	99	99	95	54
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	100	100	100	89
Above Normal (16\%)	100	100	100	43
Below Normal (13\%)	100	100	98	34
Dry (24\%)	100	100	94	29
Critical (15\%)	96	90	81	50

No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance $^{\text {a }}$				
$\mathbf{1 0 \%}$	100	100	100	100
20%	100	100	100	100
30%	100	100	100	100
$\mathbf{4 0 \%}$	100	100	100	100
$\mathbf{5 0 \%}$	100	100	100	58
$\mathbf{6 0 \%}$	100	100	100	44
70%	100	100	100	32
80%	100	100	100	20
90%	100	100	100	0
Long Term				
Full Simulation Period		99	99	95
Water Year Types				60
Wet (32\%)	100	100	100	92
Above Normal (16\%)	100	100	100	58
Below Normal (13\%)	100	100	98	57
Dry (24\%)	100	100	93	32
Critical (15\%)	96	92	80	41

No Action Alternative minus Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance $^{\text {a }}$				
10%	0	0	0	0
20%	0	0	0	0
30%	0	0	0	0
40%	0	0	0	8
50%	0	0	0	12
60%	0	0	0	13
70%	0	0	0	16
80%	0	0	0	13
90%	0	0	0	0
Long Term				
Full Simulation Period		0	0	0
Water Year Types				
Wet (32\%)				6
Above Normal (16\%)	0	0	0	
Below Normal (13\%)	0	0	0	15
Dry (24\%)	0	0	0	24
Critical (15\%)	0	0	-1	2
	0	2	-1	-9

Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
SWRCB D-1641, 1999); projected to Year 2030

Ites. 1) Al alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2
Iodel results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternative
nd 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
sults for Alternative 2 and N o Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the text.

Table B-11-5. Folsom Small Mouth Bass Nest Survival Percentage, Monthly Percentage

Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	92
50\%	100	100	100	46
60\%	100	100	100	31
70\%	100	100	100	15
80\%	100	100	100	6
90\%	100	100	100	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	99	99	95	54
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	100	100	100	89
Above Normal (16\%)	100	100	100	43
Below Normal (13\%)	100	100	98	34
Dry (24\%)	100	100	94	29
Critical (15\%)	96	90	81	50

Alternative 3

Statistic	Mar	Apr	May	Jun
Probability of Exceedance $^{\text {a }}$				
$\mathbf{1 0 \%}$	100	100	100	100
20%	100	100	100	100
30%	100	100	100	100
40%	100	100	100	73
50%	100	100	100	48
60%	100	100	100	34
70%	100	100	100	20
80%	100	100	100	8
90%	100	100	100	0
Long Term				
Full Simulation Period			99	95
Water Year Types $^{\text {c }}$	99			54
Wet (32\%)	100	100	100	82
Above Normal (16\%)	100	100	100	43
Below Normal (13\%)	100	100	97	46
Dry (24\%)	100	100	94	31
Critical (15\%)	95	90	79	50

Alternative 3 minus Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	0	0	0	0
20\%	0	0	0	0
30\%	0	0	0	0
40\%	0	0	0	-19
50\%	0	0	0	2
60\%	0	0	0	3
70\%	0	0	0	4
80\%	0	0	0	2
90\%	0	0	0	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	0	0	0	0
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	0	0	0	-6
Above Normal (16\%)	0	0	0	0
Below Normal (13\%)	0	0	-1	12
Dry (24\%)	0	0	0	2
Critical (15\%)	-1	0	-1	0

Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
SWRCB D-1641, 1999); projected to Year 2030

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2
Model results for Alternatives 1,4, and Second Basis of Comparison are the same, therefore Alternative
nd 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
sults for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the tex

Table B-11-6. Folsom Small Mouth Bass Nest Survival Percentage, Monthly Percentage

Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	92
50\%	100	100	100	46
60\%	100	100	100	31
70\%	100	100	100	15
80\%	100	100	100	6
90\%	100	100	100	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	99	99	95	54
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	100	100	100	89
Above Normal (16\%)	100	100	100	43
Below Normal (13\%)	100	100	98	34
Dry (24\%)	100	100	94	29
Critical (15\%)	96	90	81	50

Alternative 5

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	100
50\%	100	100	100	58
60\%	100	100	100	43
70\%	100	100	100	32
80\%	100	100	100	19
90\%	100	100	100	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	99	99	96	60
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	100	100	100	92
Above Normal (16\%)	100	100	100	58
Below Normal (13\%)	100	100	99	58
Dry (24\%)	100	100	95	33
Critical (15\%)	96	95	81	38

Alternative 5 minus Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	0	0	0	0
20\%	0	0	0	0
30\%	0	0	0	0
40\%	0	0	0	8
50\%	0	0	0	12
60\%	0	0	0	12
70\%	0	0	0	16
80\%	0	0	0	13
90\%	0	0	0	0
Long Term				
Full Simulation Period ${ }^{\text {b }}$	0	1	0	6
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	0	0	0	3
Above Normal (16\%)	0	0	0	15
Below Normal (13\%)	0	0	1	24
Dry (24\%)	0	0	1	4
Critical (15\%)	0	5	1	-12

Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period.
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
SWRCB D-1641, 1999); projected to Year 2030
tes. 1) Al alternatives are simulated win projected hydrology and sea level at Year 2030 conditions. 2
Model results for Alternatives 1,4, and Second Basis of Comparison are the same, therefore Alternative
nd 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
esults for Alternative 2 and $N o$ Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the tex
B.12. Folsom Spotted Bass Survival Percentage 2

Figure B-12-1. Folsom Spotted Bass Nest Survival Percentage, March

Notes: 1) Exceedance probability is defined as the probability a given value will be exceeded in any one year. 2) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 3) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 4) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure B-12-2. Folsom Spotted Bass Nest Survival Percentage, April

Notes: 1) Exceedance probability is defined as the probability a given value will be exceeded in any one year. 2) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 3) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 4) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure B-12-3. Folsom Spotted Bass Nest Survival Percentage, May

Notes: 1) Exceedance probability is defined as the probability a given value will be exceeded in any one year. 2) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 3) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 4) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure B-12-4. Folsom Spotted Bass Nest Survival Percentage, June

Notes: 1) Exceedance probability is defined as the probability a given value will be exceeded in any one year. 2) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 3) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 4) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table B-12-1. Folsom Spotted Bass Nest Survival Percentage, Monthly Percentage

No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	100
50\%	100	100	100	100
60\%	100	100	100	100
70\%	100	100	100	100
80\%	100	100	100	81
90\%	100	100	100	47
Long Term				
Full Simulation Period ${ }^{\text {b }}$	100	100	99	88
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	100	100	100	100
Above Normal (16\%)	100	100	100	94
Below Normal (13\%)	100	100	100	90
Dry (24\%)	100	100	100	73
Critical (15\%)	100	100	91	80

Alternative 1

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	100
50\%	100	100	100	100
60\%	100	100	100	99
70\%	100	100	100	74
80\%	100	100	100	59
90\%	100	100	100	38
Long Term				
Full Simulation Period ${ }^{\text {b }}$	100	100	99	83
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	100	100	100	99
Above Normal (16\%)	100	100	100	78
Below Normal (13\%)	100	100	100	68
Dry (24\%)	100	100	100	72
Critical (15\%)	100	100	93	85

Alternative 1 minus No Action Alternative

	Statistic	Mar	Apr	May

Probability of Exceedance $^{\text {a }}$				
10%	0	0	0	0
20%	0	0	0	0
30%	0	0	0	0
40%	0	0	0	0
50%	0	0	0	0
60%	0	0	0	-1
70%	0	0	0	-26
80%	0	0	0	-23
90%	0	0	0	-9
Long Term	0	0	-6	
Full Simulation Period				
Water Year Types				
Wet (32\%)	0	0	0	-1
Above Normal (16\%)	0	0	0	-16
Below Normal (13\%)	0	0	0	-22
Dry (24\%)	0	0	0	-1
Critical (15\%)	0	0	2	4

Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
SWRCB D-1641, 1999); projected to Year 2030

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2
Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Second Basis of omparison and Alternative 4 results are not presented. Qualitative differences, if appicable, are disciss the text. 3) Model results for Atternative 2 and № Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text

Table B-12-2. Folsom Spotted Bass Nest Survival Percentage, Monthly Percentage

No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	100
50\%	100	100	100	100
60\%	100	100	100	100
70\%	100	100	100	100
80\%	100	100	100	81
90\%	100	100	100	47
Long Term				
Full Simulation Period ${ }^{\text {b }}$	100	100	99	88
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	100	100	100	100
Above Normal (16\%)	100	100	100	94
Below Normal (13\%)	100	100	100	90
Dry (24\%)	100	100	100	73
Critical (15\%)	100	100	91	80

Alternative 3

Statistic	Mar	Apr	May	Jun
Probability of Exceedance $^{\text {a }}$				
$\mathbf{1 0 \%}$	100	100	100	100
$\mathbf{2 0 \%}$	100	100	100	100
30%	100	100	100	100
40%	100	100	100	100
$\mathbf{5 0 \%}$	100	100	100	100
60%	100	100	100	100
70%	100	100	100	81
80%	100	100	100	62
90%	100	100	100	32
Long Term				
Full Simulation Period		100	100	99
Water Year Types $^{\text {c }}$				84
Wet (32\%)	100	100	100	98
Above Normal (16\%)	100	100	100	75
Below Normal (13\%)	100	100	100	84
Dry (24\%)	100	100	100	70
Critical (15\%)	100	100	91	83

Alternative 3 minus No Action Alternative

| | Statistic | Mar | Apr | May |
| :---: | :---: | :---: | :---: | :---: | Jun

Probability of Exceedance $^{\text {a }}$				
10%	0	0	0	0
20%	0	0	0	0
30%	0	0	0	0
40%	0	0	0	0
50%	0	0	0	0
60%	0	0	0	0
70%	0	0	0	-19
80%	0	0	0	-20
90%	0	0	0	-16
Long Term				
Full Simulation Period	0	0	0	-5
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	0	0	0	-2
Above Normal (16\%)	0	0	0	-19
Below Normal (13\%)	0	0	0	-6
Dry (24\%)	0	0	0	-3
Critical (15\%)	0	0	0	3

Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
SWRCB D-1641, 1999); projected to Year 2030

Ites. 1) Al alternatives are simulated with projected hydrology and sea level at Year 2030 condiions. 2
odel results for Alternatives 1, 4 , and Second Basis of Comparison are the same, therefore Alternative
nd 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
sults for Alternative 2 and N o Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the text.

Table B-12-3. Folsom Spotted Bass Nest Survival Percentage, Monthly Percentage

No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	100
50\%	100	100	100	100
60\%	100	100	100	100
70\%	100	100	100	100
80\%	100	100	100	81
90\%	100	100	100	47
Long Term				
Full Simulation Period ${ }^{\text {b }}$	100	100	99	88
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	100	100	100	100
Above Normal (16\%)	100	100	100	94
Below Normal (13\%)	100	100	100	90
Dry (24\%)	100	100	100	73
Critical (15\%)	100	100	91	80

Alternative 5

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	100
50\%	100	100	100	100
60\%	100	100	100	100
70\%	100	100	100	100
80\%	100	100	100	80
90\%	100	100	100	48
Long Term				
Full Simulation Period ${ }^{\text {b }}$	100	100	99	87
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	100	100	100	100
Above Normal (16\%)	100	100	100	94
Below Normal (13\%)	100	100	100	91
Dry (24\%)	100	100	100	73
Critical (15\%)	100	100	94	73

Alternative 5 minus No Action Alternative

| | Statistic | Mar | Apr | May |
| :---: | :---: | :---: | :---: | :---: | Jun

Probability of Exceedance $^{\text {a }}$				
10%	0	0	0	0
20%	0	0	0	0
30%	0	0	0	0
40%	0	0	0	0
50%	0	0	0	0
60%	0	0	0	0
70%	0	0	0	0
80%	0	0	0	-1
90%	0	0	0	0
Long Term				
Full Simulation Period	0	0	0	-1
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	0	0	0	0
Above Normal (16\%)	0	0	0	0
Below Normal (13\%)	0	0	0	0
Dry (24\%)	0	0	0	0
Critical (15\%)	0	0	3	-7

Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
SWRCB D-1641, 1999); projected to Year 2030

Ites. 1) Al alternatives are simulated with projected hydrology and sea level at Year 2030 condiions. 2
odel results for Alternatives 1, 4 , and Second Basis of Comparison are the same, therefore Alternative
nd 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
sults for Alternative 2 and N o Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the text.

Table B-12-4. Folsom Spotted Bass Nest Survival Percentage, Monthly Percentage

Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	100
50\%	100	100	100	100
60\%	100	100	100	99
70\%	100	100	100	74
80\%	100	100	100	59
90\%	100	100	100	38
Long Term				
Full Simulation Period ${ }^{\text {b }}$	100	100	99	83
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	100	100	100	99
Above Normal (16\%)	100	100	100	78
Below Normal (13\%)	100	100	100	68
Dry (24\%)	100	100	100	72
Critical (15\%)	100	100	93	85

No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance $^{\text {a }}$				
$\mathbf{1 0 \%}$	100	100	100	100
20%	100	100	100	100
30%	100	100	100	100
$\mathbf{4 0 \%}$	100	100	100	100
$\mathbf{5 0 \%}$	100	100	100	100
$\mathbf{6 0 \%}$	100	100	100	100
70%	100	100	100	100
80%	100	100	100	81
90%	100	100	100	47
Long Term				
Full Simulation Period		100	100	99
Water Year Types				88
Wet (32\%)	100	100	100	100
Above Normal (16\%)	100	100	100	94
Below Normal (13\%)	100	100	100	90
Dry (24\%)	100	100	100	73
Critical (15\%)	100	100	91	80

No Action Alternative minus Second Basis of Comparison

Statistic	Mar		Apr	May
Probability of Exceedance ${ }^{\text {a }}$				Jun
10%	0	0	0	0
20%	0	0	0	0
30%	0	0	0	0
40%	0	0	0	0
50%	0	0	0	0
60%	0	0	0	1
70%	0	0	0	26
80%	0	0	0	23
90%	0	0	0	9
Long Term				
Full Simulation Period		0	0	0
Water Year Types				
Wet (32\%)				6
Above Normal (16\%)	0	0	0	1
Below Normal (13\%)	0	0	0	16
Dry (24\%)	0	0	0	22
Critical (15\%)	0	0	0	1
	0	0	-2	-4

Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
SWRCB D-1641, 1999); projected to Year 2030

Notes. 1) Al alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2
Iodel results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternative
nd 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
sults for Alternative 2 and N o Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the text.

Table B-12-5. Folsom Spotted Bass Nest Survival Percentage, Monthly Percentage

Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	100
50\%	100	100	100	100
60\%	100	100	100	99
70\%	100	100	100	74
80\%	100	100	100	59
90\%	100	100	100	38
Long Term				
Full Simulation Period ${ }^{\text {b }}$	100	100	99	83
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	100	100	100	99
Above Normal (16\%)	100	100	100	78
Below Normal (13\%)	100	100	100	68
Dry (24\%)	100	100	100	72
Critical (15\%)	100	100	93	85

Alternative 3

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	100
50\%	100	100	100	100
60\%	100	100	100	100
70\%	100	100	100	81
80\%	100	100	100	62
90\%	100	100	100	32
Long Term				
Full Simulation Period ${ }^{\text {b }}$	100	100	99	84
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	100	100	100	98
Above Normal (16\%)	100	100	100	75
Below Normal (13\%)	100	100	100	84
Dry (24\%)	100	100	100	70
Critical (15\%)	100	100	91	83

Alternative 3 minus Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance $^{\text {a }}$				
10%	0	0	0	0
20%	0	0	0	0
30%	0	0	0	0
40%	0	0	0	0
50%	0	0	0	0
60%	0	0	0	1
70%	0	0	0	7
80%	0	0	0	3
90%	0	0	0	-6
Long Term				
Full Simulation Period		0	0	0
Water Year Types				
Wet (32\%)				
Above Normal (16\%)	0	0	0	-1
Below Normal (13\%)	0	0	0	-3
Dry (24\%)	0	0	0	16
Critical (15\%)	0	0	0	-2
	0	0	-2	-1

Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
SWRCB D-1641, 1999); projected to Year 2030
tes. 1) Al alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2
Model results for Alternatives 1,4, and Second Basis of Comparison are the same, therefore Alternative
nd 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
sults for Alternative 2 and N o Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the tex

Table B-12-6. Folsom Spotted Bass Nest Survival Percentage, Monthly Percentage

Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	100
50\%	100	100	100	100
60\%	100	100	100	99
70\%	100	100	100	74
80\%	100	100	100	59
90\%	100	100	100	38
Long Term				
Full Simulation Period ${ }^{\text {b }}$	100	100	99	83
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	100	100	100	99
Above Normal (16\%)	100	100	100	78
Below Normal (13\%)	100	100	100	68
Dry (24\%)	100	100	100	72
Critical (15\%)	100	100	93	85

Alternative 5

Statistic	Mar	Apr	May	Jun
Probability of Exceedance $^{\text {a }}$				
$\mathbf{1 0 \%}$	100	100	100	100
$\mathbf{2 0 \%}$	100	100	100	100
$\mathbf{3 0 \%}$	100	100	100	100
40%	100	100	100	100
$\mathbf{5 0 \%}$	100	100	100	100
$\mathbf{6 0 \%}$	100	100	100	100
70%	100	100	100	100
$\mathbf{8 0 \%}$	100	100	100	80
$\mathbf{9 0 \%}$	100	100	100	48
Long Term				
Full Simulation Period				
Water Year Types $^{\text {c }}$	100	100	99	87
Wet (32\%)				
Above Normal (16\%)	100	100	100	100
Below Normal (13\%)	100	100	100	94
Dry (24\%)	100	100	100	91
Critical (15\%)	100	100	100	73
	100	100	94	73

Alternative 5 minus Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance $^{\text {a }}$				
10%	0	0	0	0
20%	0	0	0	0
30%	0	0	0	0
40%	0	0	0	0
50%	0	0	0	0
60%	0	0	0	1
70%	0	0	0	26
80%	0	0	0	22
90%	0	0	0	10
Long Term				
Full Simulation Period		0	0	0
Water Year Types				
Wet (32\%)	0	0	0	5
Above Normal (16\%)	0	0	0	1
Below Normal (13\%)	0	0	0	23
Dry (24\%)	0	0	0	1
Critical (15\%)	0	0	1	-11

Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
SWRCB D-1641, 1999); projected to Year 2030

Ites. 1) Al alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2
Iodel results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternative
nd 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
sults for Alternative 2 and N o Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the text.

B.13. New Melones Large Mouth Bass Survival Percentage

Figure B-13-1. New Melones Large Mouth Bass Nest Survival Percentage, March

Notes: 1) Exceedance probability is defined as the probability a given value will be exceeded in any one year. 2) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 3) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 4) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure B-13-2. New Melones Large Mouth Bass Nest Survival Percentage, April

Notes: 1) Exceedance probability is defined as the probability a given value will be exceeded in any one year. 2) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 3) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 4) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure B-13-3. New Melones Large Mouth Bass Nest Survival Percentage, May

Notes: 1) Exceedance probability is defined as the probability a given value will be exceeded in any one year. 2) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 3) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 4) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure B-13-4. New Melones Large Mouth Bass Nest Survival Percentage, June

Notes: 1) Exceedance probability is defined as the probability a given value will be exceeded in any one year. 2) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 3) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 4) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table B-13-1. New Melones Large Mouth Bass Nest Survival Percentage, Monthly Percentage

No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance $^{\text {a }}$				
10%	100	100	100	100
$\mathbf{2 0 \%}$	100	100	100	100
30%	100	100	100	100
40%	100	100	100	100
$\mathbf{5 0 \%}$	100	80	100	98
60%	100	72	100	63
70%	100	49	40	42
80%	100	27	29	27
90%	100	13	14	15
Long Term				
Full Simulation Period				
Water Year Types		95	68	72
Wet (32\%)				69
Above Normal (16\%)	94	83	98	95
Below Normal (13\%)	100	88	100	72
Dry (24\%)	95	58	65	61
Critical (15\%)	98	66	51	54
	87	29	25	43

Alternative 1

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	98
50\%	100	100	100	66
60\%	100	97	79	42
70\%	100	79	27	29
80\%	100	52	18	18
90\%	100	38	0	2
Long Term				
Full Simulation Period ${ }^{\text {b }}$	97	82	67	60
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	98	93	94	76
Above Normal (16\%)	100	95	100	68
Below Normal (13\%)	100	77	62	50
Dry (24\%)	98	84	43	51
Critical (15\%)	86	44	17	43

Alternative 1 minus No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	0	0	0	0
20\%	0	0	0	0
30\%	0	0	0	0
40\%	0	0	0	-2
50\%	0	20	0	-32
60\%	0	25	-21	-21
70\%	0	30	-13	-13
80\%	0	25	-11	-9
90\%	0	25	-14	-13
Long Term				
Full Simulation Period ${ }^{\text {b }}$	2	14	-5	-9
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	4	10	-4	-19
Above Normal (16\%)	0	7	0	-5
Below Normal (13\%)	5	19	-4	-10
Dry (24\%)	0	18	-7	-4
Critical (15\%)	-1	15	-8	0

Exceedance probability is defined as the probability a given value will be exceeded in any one year
Based on the 82 -year simulation period.
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
(SWRCB D-1641, 1999); projected to Year 2030

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2
Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Second Basis of Comparison and Alternative 4 results are not presented. Qualitative differences, if applicable, are discussed the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 resuits are not presented. Qualitative differences, if applicable, are discussed in the text.

Table B-13-2. New Melones Large Mouth Bass Nest Survival Percentage, Monthly Percentage

No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	100
50\%	100	80	100	98
60\%	100	72	100	63
70\%	100	49	40	42
80\%	100	27	29	27
90\%	100	13	14	15
Long Term				
Full Simulation Period ${ }^{\text {b }}$	95	68	72	69
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	94	83	98	95
Above Normal (16\%)	100	88	100	72
Below Normal (13\%)	95	58	65	61
Dry (24\%)	98	66	51	54
Critical (15\%)	87	29	25	43

Alternative 3

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	100
50\%	100	97	100	100
60\%	100	75	92	55
70\%	100	57	44	35
80\%	100	43	21	28
90\%	100	23	0	14
Long Term				
Full Simulation Period ${ }^{\text {b }}$	96	73	70	67
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	98	92	91	77
Above Normal (16\%)	100	94	100	90
Below Normal (13\%)	100	62	73	64
Dry (24\%)	98	68	46	59
Critical (15\%)	83	30	30	40

Alternative 3 minus No Action Alternative

	Statistic	Mar	Apr	May

Probability of Exceedance $^{\text {a }}$				
10%	0	0	0	0
20%	0	0	0	0
30%	0	0	0	0
40%	0	17	0	0
50%	0	4	-8	2
60%	0	8	4	-9
70%	0	16	-9	0
80%	0	10	-13	-1
90%				
Long Term	5	-2	-2	
Full Simulation Period				
Water Year Types				
Wet (32\%)				
Above Normal (16\%)	0	9	-7	-18
Below Normal (13\%)	0	6	0	17
Dry (24\%)	5	4	7	3
Critical (15\%)	0	2	-4	5
	-4	1	5	-2

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
(SWRCB D-1641, 1999); projected to Year 2030

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2)
Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternative
and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the text.

Table B-13-3. New Melones Large Mouth Bass Nest Survival Percentage, Monthly Percentage

No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	100
50\%	100	80	100	98
60\%	100	72	100	63
70\%	100	49	40	42
80\%	100	27	29	27
90\%	100	13	14	15
Long Term				
Full Simulation Period ${ }^{\text {b }}$	95	68	72	69
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	94	83	98	95
Above Normal (16\%)	100	88	100	72
Below Normal (13\%)	95	58	65	61
Dry (24\%)	98	66	51	54
Critical (15\%)	87	29	25	43

Alternative 5

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	100
50\%	100	72	100	100
60\%	100	43	60	79
70\%	100	24	29	43
80\%	100	10	1	25
90\%	95	0	0	7
Long Term				
Full Simulation Period ${ }^{\text {b }}$	95	60	64	70
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	95	87	93	97
Above Normal (16\%)	100	79	94	61
Below Normal (13\%)	95	50	58	59
Dry (24\%)	98	45	37	52
Critical (15\%)	85	14	19	60

Alternative 5 minus No Action Alternative

	Statistic	Mar	Apr	May

Probability of Exceedance $^{\mathrm{a}}$				
10%	0	0	0	0
20%	0	0	0	0
30%	0	0	0	0
40%	0	0	0	0
50%	0	-8	0	2
60%	0	-29	-40	15
70%	0	-25	-11	1
80%	0	-17	-28	-3
90%	-5	-13	-14	-8
Long Term				
Full Simulation Period		0	-9	-8
Water Year Types ${ }^{\text {c }}$				1
Wet (32\%)	1	4	-5	2
Above Normal (16\%)	0	-9	-6	-12
Below Normal (13\%)	0	-8	-7	-2
Dry (24\%)	0	-21	-13	-2
Critical (15\%)	-1	-15	-6	17

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
(SWRCB D-1641, 1999); projected to Year 2030.

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2)
Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternative
and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
esults for Alternative 2 and $N o$ Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the text.

Table B-13-4. New Melones Large Mouth Bass Nest Survival Percentage, Monthly Percentage

Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	98
50\%	100	100	100	66
60\%	100	97	79	42
70\%	100	79	27	29
80\%	100	52	18	18
90\%	100	38	0	2
Long Term				
Full Simulation Period ${ }^{\text {b }}$	97	82	67	60
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	98	93	94	76
Above Normal (16\%)	100	95	100	68
Below Normal (13\%)	100	77	62	50
Dry (24\%)	98	84	43	51
Critical (15\%)	86	44	17	43

No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance $^{\text {a }}$				
$\mathbf{1 0 \%}$	100	100	100	100
20%	100	100	100	100
30%	100	100	100	100
40%	100	100	100	100
$\mathbf{5 0 \%}$	100	80	100	98
$\mathbf{6 0 \%}$	100	72	100	63
70%	100	49	40	42
80%	100	27	29	27
90%	100	13	14	15
Long Term				
Full Simulation Period		95	68	72
Water Year Types				
Wet (32\%)	94	83	98	
Above Normal (16\%)	100	88	100	95
Below Normal (13\%)	95	58	65	62
Dry (24\%)	98	66	51	54
Critical (15\%)	87	29	25	43

No Action Alternative minus Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	0	0	0	0
20\%	0	0	0	0
30\%	0	0	0	0
40\%	0	0	0	2
50\%	0	-20	0	32
60\%	0	-25	21	21
70\%	0	-30	13	13
80\%	0	-25	11	9
90\%	0	-25	14	13
Long Term				
Full Simulation Period ${ }^{\text {b }}$	-2	-14	5	9
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	-4	-10	4	19
Above Normal (16\%)	0	-7	0	5
Below Normal (13\%)	-5	-19	4	10
Dry (24\%)	0	-18	7	4
Critical (15\%)	1	-15	8	0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year. based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
(SWRCB D-1641, 1999); projected to Year 2030.

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2)
Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternative 1
and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the text.

Table B-13-5. New Melones Large Mouth Bass Nest Survival Percentage, Monthly Percentage

Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	98
50\%	100	100	100	66
60\%	100	97	79	42
70\%	100	79	27	29
80\%	100	52	18	18
90\%	100	38	0	2
Long Term				
Full Simulation Period ${ }^{\text {b }}$	97	82	67	60
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	98	93	94	76
Above Normal (16\%)	100	95	100	68
Below Normal (13\%)	100	77	62	50
Dry (24\%)	98	84	43	51
Critical (15\%)	86	44	17	43

Alternative 3

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	100
50\%	100	97	100	100
60\%	100	75	92	55
70\%	100	57	44	35
80\%	100	43	21	28
90\%	100	23	0	14
Long Term				
Full Simulation Period ${ }^{\text {b }}$	96	73	70	67
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	98	92	91	77
Above Normal (16\%)	100	94	100	90
Below Normal (13\%)	100	62	73	64
Dry (24\%)	98	68	46	59
Critical (15\%)	83	30	30	40

Alternative 3 minus Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	0	0	0	0
20\%	0	0	0	0
30\%	0	0	0	0
40\%	0	0	0	2
50\%	0	-3	0	34
60\%	0	-21	13	13
70\%	0	-22	17	6
80\%	0	-9	3	10
90\%	0	-15	0	12
Long Term				
Full Simulation Period ${ }^{\text {b }}$	0	-8	3	7
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	0	-1	-3	1
Above Normal (16\%)	0	-1	0	22
Below Normal (13\%)	0	-15	11	13
Dry (24\%)	0	-16	3	8
Critical (15\%)	-3	-13	13	-2

a Exceedance probability is defined as the probability a given value will be exceeded in any one year. Based on the 82 -year simulation period.
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
(SWRCB D-1641, 1999); projected to Year 2030.

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2)
Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternative 1
and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
esults for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the text.

Table B-13-6. New Melones Large Mouth Bass Nest Survival Percentage, Monthly Percentage

Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	98
50\%	100	100	100	66
60\%	100	97	79	42
70\%	100	79	27	29
80\%	100	52	18	18
90\%	100	38	0	2
Long Term				
Full Simulation Period ${ }^{\text {b }}$	97	82	67	60
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	98	93	94	76
Above Normal (16\%)	100	95	100	68
Below Normal (13\%)	100	77	62	50
Dry (24\%)	98	84	43	51
Critical (15\%)	86	44	17	43

Alternative 5

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	100
50\%	100	72	100	100
60\%	100	43	60	79
70\%	100	24	29	43
80\%	100	10	1	25
90\%	95	0	0	7
Long Term				
Full Simulation Period ${ }^{\text {b }}$	95	60	64	70
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	95	87	93	97
Above Normal (16\%)	100	79	94	61
Below Normal (13\%)	95	50	58	59
Dry (24\%)	98	45	37	52
Critical (15\%)	85	14	19	60

Alternative 5 minus Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance $^{\text {a }}$				
10%	0	0	0	0
20%	0	0	0	0
30%	0	0	0	0
40%	0	0	0	2
50%	0	-28	0	34
60%	0	-54	-19	37
70%	0	-55	2	14
80%	0	-42	-17	7
90%	-5	-38	0	5
Long Term				
Full Simulation Period	-2	-22	-3	10
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	-3	-6	-1	21
Above Normal (16\%)	0	-16	-6	-7
Below Normal (13\%)	-5	-27	-4	9
Dry (24\%)	0	-39	-6	2
Critical (15\%)	-1	-30	2	17

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
SWRCB D-1641, 1999); projected to Year 2030.

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2)
Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternative
and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
esults for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the text.
B.14. New Melones Small Mouth Bass Survival Percentage

Figure B-14-1. New Melones Small Mouth Bass Nest Survival Percentage, March

Notes: 1) Exceedance probability is defined as the probability a given value will be exceeded in any one year. 2) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 3) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 4) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure B-14-2. New Melones Small Mouth Bass Nest Survival Percentage, April

Notes: 1) Exceedance probability is defined as the probability a given value will be exceeded in any one year. 2) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 3) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 4) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure B-14-3. New Melones Small Mouth Bass Nest Survival Percentage, May

Notes: 1) Exceedance probability is defined as the probability a given value will be exceeded in any one year. 2) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 3) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 4) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure B-14-4. New Melones Small Mouth Bass Nest Survival Percentage, June

Notes: 1) Exceedance probability is defined as the probability a given value will be exceeded in any one year. 2) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 3) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 4) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table B-14-1. New Melones Small Mouth Bass Nest Survival Percentage, Monthly Percentage

No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	100
50\%	100	67	100	86
60\%	100	60	91	53
70\%	100	42	34	35
80\%	100	23	25	24
90\%	85	12	13	14
Long Term				
Full Simulation Period ${ }^{\text {b }}$	94	65	70	66
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	93	81	97	93
Above Normal (16\%)	100	86	99	68
Below Normal (13\%)	94	55	63	59
Dry (24\%)	98	59	48	50
Critical (15\%)	82	26	23	40

Alternative 1

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	88
50\%	100	100	100	55
60\%	100	81	70	36
70\%	100	66	23	25
80\%	100	44	16	16
90\%	99	33	0	3
Long Term				
Full Simulation Period ${ }^{\text {b }}$	96	77	66	57
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	98	90	94	73
Above Normal (16\%)	100	94	99	64
Below Normal (13\%)	100	72	59	49
Dry (24\%)	97	77	42	47
Critical (15\%)	82	39	16	40

Alternative 1 minus No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	0	0	0	0
20\%	0	0	0	0
30\%	0	0	0	0
40\%	0	0	0	-12
50\%	0	33	0	-31
60\%	0	21	-22	-18
70\%	0	25	-11	-10
80\%	0	21	-9	-8
90\%	14	21	-13	-11
Long Term				
Full Simulation Period ${ }^{\text {b }}$	2	13	-4	-9
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	4	9	-4	-20
Above Normal (16\%)	0	8	0	-4
Below Normal (13\%)	6	17	-3	-10
Dry (24\%)	-1	18	-6	-3
Critical (15\%)	0	13	-7	0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period.
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
(SWRCB D-1641, 1999); projected to Year 2030.

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2
Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Second Basis of comparison and Alternative 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the tex

Table B-14-2. New Melones Small Mouth Bass Nest Survival Percentage, Monthly Percentage

No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance $^{\text {a }}$				
10%	100	100	100	100
20%	100	100	100	100
30%	100	100	100	100
40%	100	100	100	100
$\mathbf{5 0 \%}$	100	67	100	86
60%	100	60	91	53
70%	100	42	34	35
80%	100	23	25	24
90%	85	12	13	14
Long Term				
Full Simulation Period				
Water Year Types		94	65	70
Wet (32\%)				66
Above Normal (16\%)	93	81	97	93
Below Normal (13\%)	100	86	99	68
Dry (24\%)	94	55	63	59
Critical (15\%)	98	59	48	50
	82	26	23	40

Alternative 3

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	100
50\%	100	81	100	100
60\%	100	63	81	46
70\%	100	48	38	30
80\%	100	36	18	24
90\%	100	20	0	13
Long Term				
Full Simulation Period ${ }^{\text {b }}$	96	70	69	65
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	98	89	90	77
Above Normal (16\%)	100	93	100	88
Below Normal (13\%)	100	57	69	61
Dry (24\%)	97	62	44	54
Critical (15\%)	79	27	27	37

Alternative 3 minus No Action Alternative

	Statistic	Mar	Apr	May

Probability of Exceedance $^{\text {a }}$				
10%	0	0	0	0
20%	0	0	0	0
30%	0	0	0	0
40%	0	0	0	0
50%	0	14	0	14
60%	0	3	-10	-7
70%	0	6	3	-6
80%	0	13	-7	0
90%	15	8	-12	-1
Long Term $_{\text {Full Simulation Period }}{ }^{\text {b }}$				
Water Year Types				
Wet (32\%)	2	5	-1	-1
Above Normal (16\%)	4	8		
Below Normal (13\%)	0	7	-7	-16
Dry (24\%)	6	2	7	20
Critical (15\%)	0	3	-4	2
	-3	1	4	4

Exceedance probability is defined as the probability a given value will be exceeded in any one year
Based on the 82 -year simulation period.
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
(SWRCB D-1641, 1999); projected to Year 2030.

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2)
Model results for Alternatives 1,4, and Second Basis of Comparison are the same, therefore Alternative
and 4 results are not presented. Qualitative differences, if applicabbe, are discussed in the text. 3) Model
esults for Alternative 2 and N o Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the text.

Table B-14-3. New Melones Small Mouth Bass Nest Survival Percentage, Monthly Percentage

No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance $^{\text {a }}$				
10%	100	100	100	100
20%	100	100	100	100
30%	100	100	100	100
40%	100	100	100	100
$\mathbf{5 0 \%}$	100	67	100	86
60%	100	60	91	53
70%	100	42	34	35
80%	100	23	25	24
90%	85	12	13	14
Long Term				
Full Simulation Period				
Water Year Types		94	65	70
Wet (32\%)				66
Above Normal (16\%)	93	81	97	93
Below Normal (13\%)	100	86	99	68
Dry (24\%)	94	55	63	59
Critical (15\%)	98	59	48	50
	82	26	23	40

Alternative 5

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	100
50\%	100	60	100	100
60\%	100	37	51	66
70\%	100	21	25	37
80\%	100	9	2	22
90\%	80	0	0	7
Long Term				
Full Simulation Period ${ }^{\text {b }}$	94	57	62	67
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	95	84	90	94
Above Normal (16\%)	100	76	93	58
Below Normal (13\%)	94	47	56	57
Dry (24\%)	97	43	36	49
Critical (15\%)	81	13	19	58

Alternative 5 minus No Action Alternative

	Statistic	Mar	Apr	May

Probability of Exceedance ${ }^{\text {a }}$				
10%	0	0	0	0
20%	0	0	0	0
30%	0	0	0	0
40%	0	0	0	0
50%	0	-7	0	14
60%	0	-24	-41	13
70%	0	-20	-9	1
80%	0	-14	-23	-2
90%	-5	-12	-13	-6
Long Term				
Full Simulation Period	0	-7	-8	1
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)		3	-7	1
Above Normal (16\%)	0	-10	-7	-10
Below Normal (13\%)	0	-8	-6	-2
Dry (24\%)	-1	-16	-12	-1
Critical (15\%)	-1	-13	-4	18

Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period.
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
SWRCB D-1641, 1999); projected to Year 2030.

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2)
Model results for Alternatives 1,4, and Second Basis of Comparison are the same, therefore Alternative
and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
esults for Alternative 2 and N o Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the text.

Table B-14-4. New Melones Small Mouth Bass Nest Survival Percentage, Monthly Percentage

Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	88
50\%	100	100	100	55
60\%	100	81	70	36
70\%	100	66	23	25
80\%	100	44	16	16
90\%	99	33	0	3
Long Term				
Full Simulation Period ${ }^{\text {b }}$	96	77	66	57
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	98	90	94	73
Above Normal (16\%)	100	94	99	64
Below Normal (13\%)	100	72	59	49
Dry (24\%)	97	77	42	47
Critical (15\%)	82	39	16	40

No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance $^{\text {a }}$				
$\mathbf{1 0 \%}$	100	100	100	100
20%	100	100	100	100
30%	100	100	100	100
40%	100	100	100	100
$\mathbf{5 0 \%}$	100	67	100	86
$\mathbf{6 0 \%}$	100	60	91	53
70%	100	42	34	35
80%	100	23	25	24
90%	85	12	13	14
Long Term				
Full Simulation Period		94	65	70
Water Year Types				
Wet (32\%)	93	81	97	96
Above Normal (16\%)	100	86	99	68
Below Normal (13\%)	94	55	63	59
Dry (24\%)	98	59	48	50
Critical (15\%)	82	26	23	40

No Action Alternative minus Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance $^{\text {a }}$				
10%	0	0	0	0
20%	0	0	0	0
30%	0	0	0	0
40%	0	0	0	12
50%	0	-33	0	31
60%	0	-21	22	18
70%	0	-25	11	10
80%	0	-21	9	8
90%	-14	-21	13	11
Long Term				
Full Simulation Period		-2	-13	4
Water Year Types				
Wet (32\%)				9
Above Normal (16\%)	-4	-9	4	20
Below Normal (13\%)	0	-8	0	4
Dry (24\%)	-6	-17	3	10
Critical (15\%)	1	-18	6	3
	0	-13	7	0

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period.
c As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
SWRCB D-1641, 1999); projected to Year 2030.

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2)
Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternative 1
and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the text.

Table B-14-5. New Melones Small Mouth Bass Nest Survival Percentage, Monthly Percentage

Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	88
50\%	100	100	100	55
60\%	100	81	70	36
70\%	100	66	23	25
80\%	100	44	16	16
90\%	99	33	0	3
Long Term				
Full Simulation Period ${ }^{\text {b }}$	96	77	66	57
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	98	90	94	73
Above Normal (16\%)	100	94	99	64
Below Normal (13\%)	100	72	59	49
Dry (24\%)	97	77	42	47
Critical (15\%)	82	39	16	40

Alternative 3

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	100
50\%	100	81	100	100
60\%	100	63	81	46
70\%	100	48	38	30
80\%	100	36	18	24
90\%	100	20	0	13
Long Term				
Full Simulation Period ${ }^{\text {b }}$	96	70	69	65
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	98	89	90	77
Above Normal (16\%)	100	93	100	88
Below Normal (13\%)	100	57	69	61
Dry (24\%)	97	62	44	54
Critical (15\%)	79	27	27	37

Alternative 3 minus Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	0	0	0	0
20\%	0	0	0	0
30\%	0	0	0	0
40\%	0	0	0	12
50\%	0	-19	0	45
60\%	0	-18	12	10
70\%	0	-18	14	5
80\%	0	-8	2	8
90\%	1	-12	0	10
Long Term				
Full Simulation Period ${ }^{\text {b }}$	0	-8	3	8
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	0	-1	-3	4
Above Normal (16\%)	0	-1	1	24
Below Normal (13\%)	0	-16	10	13
Dry (24\%)	0	-15	2	7
Critical (15\%)	-3	-12	11	-3

Exceedance probability is defined as the probability a given value will be exceeded in any one year. Based on the 82 -year simulation period.
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
(SWRCB D-1641, 1999); projected to Year 2030

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2)
Model results for Alternatives 1,4, and Second Basis of Comparison are the same, therefore Alternative
and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
esults for Alternative 2 and N o Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the tex.

Table B-14-6. New Melones Small Mouth Bass Nest Survival Percentage, Monthly Percentage

Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	88
50\%	100	100	100	55
60\%	100	81	70	36
70\%	100	66	23	25
80\%	100	44	16	16
90\%	99	33	0	3
Long Term				
Full Simulation Period ${ }^{\text {b }}$	96	77	66	57
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	98	90	94	73
Above Normal (16\%)	100	94	99	64
Below Normal (13\%)	100	72	59	49
Dry (24\%)	97	77	42	47
Critical (15\%)	82	39	16	40

Alternative 5

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	100
50\%	100	60	100	100
60\%	100	37	51	66
70\%	100	21	25	37
80\%	100	9	2	22
90\%	80	0	0	7
Long Term				
Full Simulation Period ${ }^{\text {b }}$	94	57	62	67
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	95	84	90	94
Above Normal (16\%)	100	76	93	58
Below Normal (13\%)	94	47	56	57
Dry (24\%)	97	43	36	49
Critical (15\%)	81	13	19	58

Alternative 5 minus Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance $^{\text {a }}$				
10%	0	0	0	0
20%	0	0	0	0
30%	0	0	0	0
40%	0	0	0	12
50%	0	-40	0	45
60%	0	-45	-19	30
70%	0	-45	2	12
80%	0	-35	-14	6
90%	-19	-33	0	4
Long Term				
Full Simulation Period		-2	-20	-4
Water Year Types				
Wet (32\%)				10
Above Normal (16\%)	-3	-6	-3	21
Below Normal (13\%)	0	-18	-7	-6
Dry (24\%)	-6	-26	-3	9
Critical (15\%)	0	-34	-6	2
	-1	-26	3	18

a Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period.
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
(SWRCB D-1641, 1999); projected to Year 2030

Notes: 1) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2)
Model results for Alternatives 1,4, and Second Basis of Comparison are the same, therefore Alternative
and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
esults for Alternative 2 and N o Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the tex.

8

B.15. New Melones Spotted Bass Survival Percentage

Figure B-15-1. New Melones Spotted Bass Nest Survival Percentage, March

Notes: 1) Exceedance probability is defined as the probability a given value will be exceeded in any one year. 2) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 3) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 4) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure B-15-2. New Melones Spotted Bass Nest Survival Percentage, April

Notes: 1) Exceedance probability is defined as the probability a given value will be exceeded in any one year. 2) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 3) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 4) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure B-15-3. New Melones Spotted Bass Nest Survival Percentage, May

Notes: 1) Exceedance probability is defined as the probability a given value will be exceeded in any one year. 2) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 3) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 4) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Figure B-15-4. New Melones Spotted Bass Nest Survival Percentage, June

Notes: 1) Exceedance probability is defined as the probability a given value will be exceeded in any one year. 2) All alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 3) Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Alternatives 1 and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 4) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table B-15-1. New Melones Spotted Bass Nest Survival Percentage, Monthly Percentage

No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	100
50\%	100	100	100	100
60\%	100	100	100	100
70\%	100	100	100	100
80\%	100	87	91	88
90\%	100	68	69	71
Long Term				
Full Simulation Period ${ }^{\text {b }}$	99	90	91	91
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	96	88	100	96
Above Normal (16\%)	100	98	100	99
Below Normal (13\%)	100	90	90	94
Dry (24\%)	100	97	92	89
Critical (15\%)	100	73	62	72

Alternative 1

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	100
50\%	100	100	100	100
60\%	100	100	100	100
70\%	100	100	88	90
80\%	100	100	75	75
90\%	100	100	39	53
Long Term				
Full Simulation Period ${ }^{\text {b }}$	100	98	84	85
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	100	100	96	92
Above Normal (16\%)	100	100	100	96
Below Normal (13\%)	100	100	88	76
Dry (24\%)	100	100	79	78
Critical (15\%)	100	87	45	78

Alternative 1 minus No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance $^{\text {a }}$				
10%	0	0	0	0
20%	0	0	0	0
30%	0	0	0	0
40%	0	0	0	0
50%	0	0	0	0
60%	0	0	0	0
70%	0	0	-12	-10
80%	0	13	-16	-13
90%	0	32	-30	-18
Long Term				
Full Simulation Period			8	-7
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	4	12	-4	-6
Above Normal (16\%)	0	2	0	-4
Below Normal (13\%)	0	10	-2	-18
Dry (24\%)	0	3	-13	-12
Critical (15\%)	0	15	-17	6

Exceedance probability is defined as the probability a given value will be exceeded in any one year
Based on the 82 -year simulation period
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
(SWRCB D-1641, 1999); projected to Year 2030

Ies. 1) Al alternaives are simulated whin proected hydrology and sea level at Year 2030 conditions. 2)
Model results for Alternatives 1, 4, and Second Basis of Comparison are the same, therefore Second Basis of Comparison and Atternative 4 results are not presented. Qualitative differences, if applicable, are discussed the text. 3) Model results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not presented. Qualitative differences, if applicable, are discussed in the text.

Table B-15-2. New Melones Spotted Bass Nest Survival Percentage, Monthly Percentage

No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	100
50\%	100	100	100	100
60\%	100	100	100	100
70\%	100	100	100	100
80\%	100	87	91	88
90\%	100	68	69	71
Long Term				
Full Simulation Period ${ }^{\text {b }}$	99	90	91	91
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	96	88	100	96
Above Normal (16\%)	100	98	100	99
Below Normal (13\%)	100	90	90	94
Dry (24\%)	100	97	92	89
Critical (15\%)	100	73	62	72

Alternative 3

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	100
50\%	100	100	100	100
60\%	100	100	100	100
70\%	100	100	100	98
80\%	100	100	79	88
90\%	100	82	38	69
Long Term				
Full Simulation Period ${ }^{\text {b }}$	99	94	86	88
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	100	100	92	77
Above Normal (16\%)	100	100	100	99
Below Normal (13\%)	100	90	95	97
Dry (24\%)	100	93	73	93
Critical (15\%)	92	79	71	83

Alternative 3 minus No Action Alternative

	Statistic	Mar	Apr	May

Probability of Exceedance $^{\text {a }}$				
10%	0	0	0	0
20%	0	0	0	0
30%	0	0	0	0
40%	0	0	0	0
50%	0	0	0	0
60%	0	0	0	0
70%	0	0	0	-2
80%	0	13	-12	0
90%	0	14	-31	-1
Long Term				
Full Simulation Period		4	-5	-3
Water Year Types ${ }^{\text {c }}$		4		
Wet (32\%)	4	12	-8	-19
Above Normal (16\%)	0	2	0	0
Below Normal (13\%)	0	0	4	3
Dry (24\%)	0	-4	-18	4
Critical (15\%)	-8	6	9	11

Exceedance probability is defined as the probability a given value will be exceeded in any one year
Based on the 82 -year simulation period
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
SWRCB D-1641, 1999); projected to Year 2030

Ites. 1) Al alternatives are simulated with projected hydrology and sea level at Year 2030 condiions. 2
Model results for Alternatives 1,4, and Second Basis of Comparison are the same, therefore Alternative
and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the text.

Table B-15-3. New Melones Spotted Bass Nest Survival Percentage, Monthly Percentage

No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	100
50\%	100	100	100	100
60\%	100	100	100	100
70\%	100	100	100	100
80\%	100	87	91	88
90\%	100	68	69	71
Long Term				
Full Simulation Period ${ }^{\text {b }}$	99	90	91	91
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	96	88	100	96
Above Normal (16\%)	100	98	100	99
Below Normal (13\%)	100	90	90	94
Dry (24\%)	100	97	92	89
Critical (15\%)	100	73	62	72

Alternative 5

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	100
50\%	100	100	100	100
60\%	100	100	100	100
70\%	100	84	91	100
80\%	100	63	52	84
90\%	100	27	9	60
Long Term				
Full Simulation Period ${ }^{\text {b }}$	100	81	80	88
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	99	99	100	100
Above Normal (16\%)	100	90	100	76
Below Normal (13\%)	100	78	74	92
Dry (24\%)	100	78	71	85
Critical (15\%)	100	38	38	80

Alternative 5 minus No Action Alternative

	Statistic	Mar	Apr	May

Probability of Exceedance $^{\mathrm{a}}$				0
10%	0	0	0	0
20%	0	0	0	0
30%	0	0	0	0
40%	0	0	0	0
50%	0	0	0	0
60%	0	0	0	0
70%	0	-16	-9	0
80%	0	-24	-39	-4
90%	0	-41	-60	-11
Long Term				
Full Simulation Period			-9	-11
Water Year Types			-3	
Wet (32\%)				
Above Normal (16\%)	3	11	0	4
Below Normal (13\%)	0	-9	0	-23
Dry (24\%)	0	-12	-17	-3
Critical (15\%)	0	-19	-20	-5

Exceedance probability is defined as the probability a given value will be exceeded in any one year.
based on the 82 -year simulation period.
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
SWRCB D-1641, 1999); projected to Year 2030
tes. 1) Al alternatives are simulated with projected hydrology and sea level at Year 2030 condiions. 2
Model results for Alternatives 1,4, and Second Basis of Comparison are the same, therefore Alternative
and 4 results are not presented. Qualitative differences, if applicabbe, are discussed in the text. 3) Model
results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the text.

Table B-15-4. New Melones Spotted Bass Nest Survival Percentage, Monthly Percentage

Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	100
50\%	100	100	100	100
60\%	100	100	100	100
70\%	100	100	88	90
80\%	100	100	75	75
90\%	100	100	39	53
Long Term				
Full Simulation Period ${ }^{\text {b }}$	100	98	84	85
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	100	100	96	92
Above Normal (16\%)	100	100	100	96
Below Normal (13\%)	100	100	88	76
Dry (24\%)	100	100	79	78
Critical (15\%)	100	87	45	78

No Action Alternative

Statistic	Mar	Apr	May	Jun
Probability of Exceedance $^{\text {a }}$				
$\mathbf{1 0 \%}$	100	100	100	100
20%	100	100	100	100
$\mathbf{3 0 \%}$	100	100	100	100
$\mathbf{4 0 \%}$	100	100	100	100
$\mathbf{5 0 \%}$	100	100	100	100
$\mathbf{6 0 \%}$	100	100	100	100
70%	100	100	100	100
80%	100	87	91	88
90%	100	68	69	71
Long Term				
Full Simulation Period		99	90	91
Water Year Types				91
Wet (32\%)	96	88	100	96
Above Normal (16\%)	100	98	100	99
Below Normal (13\%)	100	90	90	94
Dry (24\%)	100	97	92	89
Critical (15\%)	100	73	62	72

No Action Alternative minus Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance $^{\text {a }}$				
10%	0	0	0	0
20%	0	0	0	0
30%	0	0	0	0
40%	0	0	0	0
50%	0	0	0	0
60%	0	0	0	0
70%	0	0	12	10
80%	0	-13	16	13
90%	0	-32	30	18
Long Term				
Full Simulation Period		-1	-8	7
Water Year Types				
Wet (32\%)				6
Above Normal (16\%)	-4	-12	4	4
Below Normal (13\%)	0	-2	0	3
Dry (24\%)	0	-10	2	18
Critical (15\%)	0	-3	13	12
	0	-15	17	-6

Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period.
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
SWRCB D-1641, 1999); projected to Year 2030

Ites. 1) Al alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2
Model results for Alternatives 1,4, and Second Basis of Comparison are the same, therefore Alternative
and 4 results are not presented. Qualitative differences, if applicable, are discussed in the text. 3) Model
esults for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the tex.

Table B-15-5. New Melones Spotted Bass Nest Survival Percentage, Monthly Percentage

Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	100
50\%	100	100	100	100
60\%	100	100	100	100
70\%	100	100	88	90
80\%	100	100	75	75
90\%	100	100	39	53
Long Term				
Full Simulation Period ${ }^{\text {b }}$	100	98	84	85
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	100	100	96	92
Above Normal (16\%)	100	100	100	96
Below Normal (13\%)	100	100	88	76
Dry (24\%)	100	100	79	78
Critical (15\%)	100	87	45	78

Alternative 3

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	100
50\%	100	100	100	100
60\%	100	100	100	100
70\%	100	100	100	98
80\%	100	100	79	88
90\%	100	82	38	69
Long Term				
Full Simulation Period ${ }^{\text {b }}$	99	94	86	88
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	100	100	92	77
Above Normal (16\%)	100	100	100	99
Below Normal (13\%)	100	90	95	97
Dry (24\%)	100	93	73	93
Critical (15\%)	92	79	71	83

Alternative 3 minus Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance $^{\text {a }}$				
10%	0	0	0	0
20%	0	0	0	0
30%	0	0	0	0
40%	0	0	0	0
50%	0	0	0	0
60%	0	0	0	0
70%	0	0	12	8
80%	0	0	4	13
90%	0	-18	-1	17
Long Term				
Full Simulation Period	-1	-4	2	3
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	0	0	-4	-15
Above Normal (16\%)	0	0	0	3
Below Normal (13\%)	0	-10	6	21
Dry (24\%)	0	-7	-5	16
Critical (15\%)	-8	-8	26	4

Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
SWRCB D-1641, 1999); projected to Year 2030

Notes. 1) Al alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2
Model results for Alternatives 1,4, and Second Basis of Comparison are the same, therefore Alternative
and 4 results are not presented. Qualitative differences, if applicabbe, are discussed in the text. 3) Model
esults for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the text.

Table B-15-6. New Melones Spotted Bass Nest Survival Percentage, Monthly Percentage

Second Basis of Comparison

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	100
50\%	100	100	100	100
60\%	100	100	100	100
70\%	100	100	88	90
80\%	100	100	75	75
90\%	100	100	39	53
Long Term				
Full Simulation Period ${ }^{\text {b }}$	100	98	84	85
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	100	100	96	92
Above Normal (16\%)	100	100	100	96
Below Normal (13\%)	100	100	88	76
Dry (24\%)	100	100	79	78
Critical (15\%)	100	87	45	78

Alternative 5

Statistic	Mar	Apr	May	Jun
Probability of Exceedance ${ }^{\text {a }}$				
10\%	100	100	100	100
20\%	100	100	100	100
30\%	100	100	100	100
40\%	100	100	100	100
50\%	100	100	100	100
60\%	100	100	100	100
70\%	100	84	91	100
80\%	100	63	52	84
90\%	100	27	9	60
Long Term				
Full Simulation Period ${ }^{\text {b }}$	100	81	80	88
Water Year Types ${ }^{\text {c }}$				
Wet (32\%)	99	99	100	100
Above Normal (16\%)	100	90	100	76
Below Normal (13\%)	100	78	74	92
Dry (24\%)	100	78	71	85
Critical (15\%)	100	38	38	80

Alternative 5 minus Second Basis of Comparison

Statistic	Mar		Apr	May
Probability of Exceedance $^{\text {a }}$				Jun
10%	0	0	0	0
20%	0	0	0	0
30%	0	0	0	0
40%	0	0	0	0
50%	0	0	0	0
60%	0	0	0	0
70%	0	-16	3	10
80%	0	-37	-23	9
90%	0	-73	-30	7
Long Term				
Full Simulation Period				
Water Year Types				
Wet (32\%)	0	-17	-3	3
Above Normal (16\%)				
Below Normal (13\%)	0	-1	4	8
Dry (24\%)	0	-10	0	-20
Critical (15\%)	0	-22	-15	15
	0	-50	-7	7

Exceedance probability is defined as the probability a given value will be exceeded in any one year.
Based on the 82 -year simulation period
As defined by the Sacramento Valley 40-30-30 Index Water Year Hydrologic Classification
SWRCB D-1641, 1999); projected to Year 2030
tes. 1) Al alternatives are simulated with projected hydrology and sea level at Year 2030 conditions. 2
Model results for Alternatives 1,4, and Second Basis of Comparison are the same, therefore Alternative
and 4 results are not presented. Qualitative differences, if applicabbe, are discussed in the text. 3) Model
results for Alternative 2 and No Action Alternative are the same, therefore Alternative 2 results are not
presented. Qualitative differences, if applicable, are discussed in the text.

[^0]: B.5. Shasta Small Mouth Bass Survival Percentage

