APPENDLK 1

Adult Avian Mortality Compensation Protocol

Adult-Murtality Specific Kisk Assessment and Witigation Approaches for Evaporation Basins used to Dispose uf Seleniferous Subsurface Agricultural Drainvater

Presented to the Mitigation Work Grauf, San Luis Drainage Feature Re-Evaluation (U.S. Bureau of Reclamation, C.S. Fish and Wildlife Service, URS Corporation, California Department af Fisla and Game, California Central Valley Regional Whater Quality Control Boarsl)

Prepared by Steven Detwiler
Senior Biologist, Watershed Flanning Branch Conservation, Restoration, and ContaminanIs Programs

U.S. Fish and Wildilife Service Sacramento Fish and Wildlife Office
280Cottage Wiay, W-2605 S'acramento, CA 95825

Adnıonition:

This Fish and Wildife Coordination Act report and associated documens are infended to assist the Burean of Reclamation in the preparation of the San Luis Drainage Feature Re-Evaltation, Environmertal lmpact Statement and associated Record of Decision. The risk analysis associated with the Service's Fish and Widflife Coordination Act report is specific to the San Luis Drainage Feature Re-evafuation and the potentiaf operation of evaporation basins constracted to provide drainage service th the San Luis Unit. The information and analysis contained hercin is for rechnical planning purposes onty and do not constitufe official policy of the Lis. Fish and Witdife Service with reapect to take or midigation for take of migratory birds protected umder the Migratory Bird Treaty Act of 1918 (76 USC 763-712; Ch. $228 ;$ July 13, 1918; 40 Stat. 755). The Service is providing this information parswant ondy to the Fish and Widilife Cothdination Act (16 USC 661-667e; the Act of March 10, 9934 ; Ch 55 ; 48 . StaL 401).

The Service remains committed to the Fish and Fildife Service Mitigation Policy which states that it is Service policy so recommend, in order of preferchce, avoidance and minimiaution of impacts to fish and widdife rewources, before compensation for hasses The prescriptions for midigation acreage prowided by the report and she modets contained herein would be applicable (Hader this third feast preferubte) tier ef compensation. The protocods prowided herein are meant to be conceptually uccurate and scientifically defensibte, and are intended to stand indenendent of isstues regarding the legafion of on itigution for take of migratory birds protected by the Migratory Bird Treaty Act

The prescriptions within this modet offer estimates of mitigation habitar required to offset population losses axwatiated with the infroduction und operation of evaporation facillties into the Iondscape mosaic of the Son Joaquit Valfey. Despite the intellectual rigor inhercntly tied to such iswes as metu-population ccology, optimalforugitg theory, dose-response and ecotoxicolous'; and the involved algebraic quantitatike modefing presented within this model, these prascriptions showid uot be mistaken as confidenf predictions. What is reprosented herein is a best wientific estimate.

Backeround

Currently, about $4,7 \mathrm{fl}$ acres of craporation ponds are in private operativen in the Southerin San Joaqum Valley. During the late 1980 's, researchers wonlinmer that elevated selenium concentrations in these ponds were impacting the reproductive suceess of shorebirds and waterfowl nesting at these siles, similar to the results found at the closed Kesterson Reseryoir. By the mid-'90's, the Service putlished mitigation protocols (L'SFWS, 1995a; 1995b) bastrd on the concept of "danelscape assimilative capacity," or a dilution effect that was postulated firm the analyical cespults (duck eggs at Kesterson, from a wateroorne concentration at over 100 ppb Se had the same Se residues as those from a Tularc Basin pond at around to ppb-it was hypothesized that ducks al Kesterson were diluting their exposure in the adjacent elem refuge wetlands).

The 1995 protocols essertially look at the losses in production associated with Sce beposure in the proslominant group of hirds nesting at the ponds (shorebirds). The prachice involvis the provision of "altertative" habitat in the immediate vicinity of evaporation basins to draw away birds from the ponds and dilute their dietary coxpusure (thereby reducing reproductive losses). The underlying risk assussment divaling the cumem Service protocols is robust with respect to the dose-response infurmalion (the curve for these birds contains around 1000 data points apiepe), but somewhat weak with respect to predicting habitat use (from the paritneter \mathbf{K}, or habitat attractivisesss). Additionally, it is based on the black-nceked stitt, a bird about lalf as Se-toleramt to egg-bome exposure as the American avoeel, but twice as tolerant as ducks. This decision was driven by the predominance of these species anong nesing birds on the cyaporation basins (other species would be protected by association sinec the same habitat would hawe ufility dier more than a single species).

Two protocols were developed, an alternative habitat protocol based on the dilution phenomertorn noted above, and a compensation protocol, aimed at the dires replaternent of lost production that remains an unavoidable conscquence of operation (having factored in dilution to the best practical extent via the prowision of altementive labitat). Curremtly, cyaporation ponds cach have a prescribed acreage of mitigatitn baseal on the acreage of the basin, and the extent of contamination in the ponals. Ntieigation acreage prescriptions in the Seryice Alternative Ilabitat protecol (USFWS, 1995b) range from zero mitigation to slighty greater than a one to one evaportion form to mitigation habitat acceage ratio. Curmolly, pond operators are providing Fron 0.1 tu 0.5 acres of mitigation habitat pur actio of evarotation basin (pers. coms., A. Toto).

The mitigation protucols were subnitted for peer-review in I995, and adopted as part of the WDR's within the Stale perriteing process. Sctcral pond opecaturs cotisid operations as a result, while others decited to forge ahcad with their own mitigation. These agrecments form the d or fictor Serviee policy widl respect to the operation and anitigation for evaporation ponds for disposal of subsurface agricultural drainwater. Operators are expected to monitor avian use of ${ }^{-}$ the ponds (biweckly wensuses), and collect a total of five shorebird eggs a yedr to validate residues (and profect effecti). The protocols initially were muant to be iterative, and revieved on five-year
intervals. Aitigation plans have been submitted on a 3 year interwal to the Regiontal Beard, however no update or review of the protocols has been implementert by the Service since their development ten years ago.

Limitations of Existing Protoculs

The existing Scrvice mitigation protocols focus sollly upon repoductivit lasses amongst blacknecked stilts and smerican avocets. During the inception ol' these frotocols, it was suggested that maintaining the preseribed aereages of clean altertative and compensation habitat ycar-round would provide sufficient mitigation for ather impacts due to the operation of the evaperation ponds. This ducision was probably more a function of converience than anything thes, considering lorw tittle data exists to quantify nor-brecding season impacts.
'The problem with this approach lies in purt with the nature of mitigation habitat created in particular, some of de most numorous species on existing evaporation ponds (namely diving birds such as roddy ducks, American coots, and eared grebes) are not well seryed by the habitat most suitable for shortobishs. Jurthermore, at least two of these species are likely more sensitive to Se exposure; and therefore, estimates of roquiscd mitigation acreages batsud un impacts to shorebirds may be under-jrotective. Because of the design of the propensed San Luis Drainage Feature Re-evaluation (SLDFR) cyaporation besins, fropex mitigation should take into account ponssible effects to species that dive while [araging.

The scond limitation of the ajpproach utilized in the curcent Seryice protovels is thal they figus upon mitigation based on an analysis of breeding scason losses (replacing egs prestuction). Hownet, mary species expected to be affected by the propersed eqaporation pouds do not hreed in the San Joaquin Valley in appreciabie numbers, and therefore the provision mistigation hablitat to enhance reproduction is an impracical strategy. A large rumber of bids potentially exposed to the projosed evaporation basins are migrants endior winter residents that witl not be expected to lreed at evaporation basins properly managed to control emergent or suspended vegetation (c.g., caitails and wigcongrass).

Since it is generally accepted that the rate of depuration of 5 from the body is fairly rapid, beceding impacts from low to moderate Se expensurt in these migrates are not thought to be signiticant. Higher or longer duration exposuris, however, might negatively impact fitncss (borly condition potentially resulting in smaller cilutch size and lower hatchling weight and survival) and adult survivali and harmitul residues in eggs could still manifest if adult borly burdens are initially high from overwinter exposure on the ponds. Ihese clliects are curetritly not directly quantificd or mitigated (athough provision of cleitn habitat in mitigation will again by association mest thes end, only to an unknown externt).

Another significant issux is the difference (demographically speaking) betwels risk assessment models based on production in temms of hatched egess (fecuselity) versus the endpoint of adult mortality (survival). For example, using data from the literature (Alisauskas and Aronld, 1994;

Kiel, 1955; Gorenzel et al., 1982; Ryder, 1963) (tor survival probabilities in the Americar Coot (scc Table 1, following), onc can calculate the probability of a hatchling surviving up to the "average" breeling agle.

Table 1: Probability of Survival to Refpective Llfestages in the American Coot

	$\begin{aligned} & \text { Eggs } \\ & \text { Laid } \end{aligned}$	$\underset{\text { hatch }}{\mathrm{T}_{\mathrm{D}}}$	$\begin{gathered} \text { To } \\ \text { flerdge } \end{gathered}$	Recruitrient	$\begin{gathered} \text { Year } \\ 2 \end{gathered}$	$\begin{gathered} \text { Yoar } \\ 3 \end{gathered}$	$\begin{gathered} \text { Year } \\ 4 \end{gathered}$	$\begin{gathered} \text { Year } \\ 5 \end{gathered}$	$\begin{gathered} \text { Year } \\ 6 \end{gathered}$
	1.0	0.752	0.564	0.248	0.122	0.060	0.029	0.014	0.007
\#'pair	11	B. 272	6.204	2.730	1.338	0.655	0.321	0.157	0.077

According to this constructed life table, it takes robulily 8 eggs to produce one average adult coot (assumed to be 2 years old hascu va medi; prolability given die surwival life table below). Given a hatcbability rate around 75 percent, the one adult represents roughly 6 hatchlings. 'I'be loss of a two-year old adult coot thus cormesponds to a repreductive loss of 75 pertent of a full clulch ofeges approaching total reproductive failure for that given season. The loss of a breeding age mdividual from the population thus exceuds significantly the impact of losing a single egg or even batebling, Given this alumedgraplic reality, froper mitigation should, in addition to minimizing and compensating for reproductive losscs, factor in adolt mortulty and faver the avoidance and or manimization of exposure. Short of this, compensatiton addressed at the level of atult survival and fitness will provide more practical henefits from a demographic porspective (on a population level).

Bucause of the limitations of the 1995 protocols, and to tirulize the risk assessment being Londucted within the SLDFR to quandily adnult avian mortality, the Service deternined that the Mitigation Working Group and this waluation were the appropriate vehicle to develop additional protocols to handle mitigution specitit: to mon-lreeding effects. "lhis process has cyolved in cooperation with the CDFG. Reclamation, and the Regional Board. Reclamation provided additionel funding to the Service and a scopc of work to complete the risk assessment and mitigation moteleng represented in this white paper. As of this writing, the adult aviat mortalty prothect is undergoing pocr review by Dr. Joseph Skerupa of the Service (the primary author of the 1995 protocols) and Dr. Harry Ohlendert ${ }^{2 l l} \mathrm{Cl}_{2} \mathrm{M} \mathrm{Hill}$ (Une research biologist who conducted the foundational work ducumerting the effects of selenium on aquatic birds at Kesterson Reseryoir).

Protocol Derivation and Preparation-Adult Mortality Endpoint

The lasks associated with the preparatinn of mitigation protocols for adule mortality requite the following seps:

1) Derive a dose-response curve for 5 e exjostrite and adult mortality from the established database
2) Model habitat selection given the existing and proposel habitat mosaic
3) Estimate lesses from the dose-response curve and habitat use estimates (exposurc) given existing databasc and factoring in time (eluration of exposure)
4) Derive compensation to offset projecoled losses

Compensation

How muth atredge is required to replace losses incurted sive woperation of the cvaporation bashins? A crode estimate often suggested involves cration of one acre of clear habitat for cach acre of contammated babitat. The underlying reasnning is likely that this is a one-to-one teplacement luat wijl sustain an erfual momber of bitds at the onc site to those that are lopt at the other. Bua this strategy dous not withstand serutiny once a careful analysis of the untlerlyitg dyramics involved in natural systems is undertaken.

This one-w-one comprensation may rot be protectiwe when the degree of contamination and the relative use functions for cach habitat are considered. lior example, if a contaminated habitat is sul-atutely toxic, even short tem expusure could lead to montality armong exposell jndividuals. Alternatively, the initigation hahitat might be so attractive: or the redesigned evaporationt portds so unatractive, that aviap ust at the disposal basins may atedine to near rero; and exposure is no longer a matter of practical concern.

In reality, realized mortality from contarminant exposure is a multipariale function resulting fom the interaction of the following variables:
a) Degree of contamuation of cyaporation pend
b) Degree of contamination (or cleanliness/quality) of altcrnative habitet choices
e) Acreage of cyaporation ponuls
d) Acreage of altemative felbitat choices
c) The use patlens dietated by ecology of exporied pepulations (and habitat selection by indjuidual hirds within the popalation)
d) The status of the population (what is the severity of underlying stressors?)
g) The sensitivity of each particular spocies (may be related to lifestage, sex, leeding ecology, etc.)
h) The form or chernical species of the parlicular contamitant, and the particular bysten dynamics that govern movencol of the condaminint within various environmental compartrentis

Some of these pararncters are readily quantified (e.g., the actenge ol evaporation basins). Some may be reasonably mosletel (e.g., the degree of conlamination at the propesed ponds). Some might be estimaterl, But our confidence in the atecuracy of our estimates is often not bigh (b, g., partitioning of exposed populations in the sew halbitat nosaic, and the status of the underlying propulation).

If habiats art at cerrying capacity (saturated), and resourte limitations drive the population, them density-depenticnce would be a predominand factor dictating adult survival. This seenjriv would suggesit that natural systems will sustain a certain number of individuats bastal an the available
resources (e.g., wetlands), and population numbers will completely track labitat availability. A simple interpremation would suggest in this instance than evaporation ponds, albeit contaminated, are still a net denographic benefit since at least sonte birds are sustained (cyen though a large majority may dic). The underlying assumption herein is that a bird that goss anywhere edse than the evaporation pond is alruady cortemned to death (since cyery other habitat unit is already exhausted by the use of another individual).
l3ut this interpretation would nut be consistent with actual dynamics in natural systems. In reality, birds make choices ats iw what habitats they will spend time inhubiting, and these choices are based upon the perecplual filter of each individual. Habitat qualisy is a very important variable to consider, and the degree to which wild populations may accurately perccive quality and select form availible habitat choices "intelligently" ditates the finces of that pepulation.

Dispersal and habitat selection within a metapopulation is subject io gewd options (quality population "sources"), and poor options (uct population "sinks"). Certain chorces lead to an associated rate of survival. The reality is that if a given bird is not utilizing an evaporation basin to forage, it will still find other options, and hate a probability of survival associated with thes quality of those other choices. Alternative habitat choices are out there, and birds atratided to the naisance of evaporation basins, or to the beneft of mitigation habitat, do not a futuatically die if the ponds don't sustain them. lhe individual that moves to another habitat (off the ponds) will experience arother area with some associated rate of survival that is in part connected to the availability of food tustures for which it may compere. But this individual will not compete altogether unsuceesstully (now you just have one more mouth to feed in the new habitat). That particular habitat is selected among the suitic of available choices, and its eventual use is dictated by the sum of individual choices made by nembers of the population trying to optimize their hobitat selection whike minimizing encrey expenditure to jond sustertance, and thercby maximixe survival.

Thercfort, the availability of quality hathitat, and the accuracy with which individuals within the population identify and use suth habitat, is what distinguishes a vibrant artd sustainable popsulation. However, white individual fituess and survival (in part) follows the optimization function of sucecsisill habitat selection, the nefarious character of environmental contamination is that it is ofien a hidden parameter that kills silcmtly. Individuals within the population often cannot iedl, from any perceptually-relevant ecological signal, that a contaminated tabitat is a bad place to inhabit. As is the case historically with evaporation basins, when the thabitat is nutrientenriched and a prolifie net producur of available prey, the very sighal that attracts then (high prey elensity) is the sane perceptual cue that draws birds to the exposure that can lead to their demise.

What the SLDFR projuct is doing is altering the landscape, and avian usc functions and survival will be altered actordingly. This shift is what must be cquilibrated. Jfabitat Evaluation Procedure-based approaches operalt upon underlying assumptions athout equivalency of habitat utility, but in this instance we aren't destroying native habilin and replacing with other wellands. The differenec with conlamination effects is that we are degrading an overall babitat masaic by presenting polential population sinks into the range of available options.

Moreover, there art potential emergent properties assuciated with the large-scale transformation of the Pacilic lilyway that large cyaporation pend/mitigation complexcs may manilcst. Specidically, it is possible that the creation of significam acreape of cyaporation ponds and mitizatiun wetlands may alter regional migratury patterus as the San Joaquin Valley ends un "Infling" individual birds that may have otherwise flown onwards to the chats, wintered ont the Salton Sea, or ever continued or to Mexico (ameng other options). It is irmpossible to predict with accuracy or precision to what extent these will be a consequerce of the project.

The net influencu of the addition of craporation basins to a landscape is that more birds will be choosing Iesser quality babitat, pessibly Iealing to population declines. Given this fath, a miligution scenario that is not dependent are the underlying knowledge of population status, or predietions about consequences of regional landreape changes (and inderd, questions about deasity-dependence and the degree of saturation of existing habitat) is jreterable to one that must quantify or vstimat: these parameters.

This is why we must model risk based on labitat selection, overlain with the component of adula survival. Mitigation to equilibrate popuration losses and gains would include factors that decrease use of evaporation ponds, strategies to decrease the atereage of evaporation ponds, increasing the acreage of mitigation (clean) wetlands, and increasing the attractiveness (and therefore use) of clean mitigation tabitat. In three of the four above elenonts, Reclamation har indieated these will aleady be implemented to the maximunt practical extent during project planning. The task of the risk assessment and the models defined herein is to answer that fourth blement-- in quantify, to our best available scientific ability, the mitigation acriage necessary to цompensate for projected bird Insses at the cvaporation ponds.

The central gustion becomes how to model the incrased survival of those other birds that shali replace the jodividuals lost to mortality associated with the SLDFR cvaporation busins. It has been mentioned already how cge production is an impractical compensatory strategy for adult mortality, since it takes a large number ot eggs to functionally teplace a breeding age adult. Adationally, it has been mentioned that many of the wintering species in the San Joaquin Valley are not prolific breesers in the tegion (they (end to nesil further north). We therefore need wo enhance surviwal of adults (population-wide) as mitigation for adult mortality on the prands. For each bird lust, we must create andior enhance mitegation babitat such that another survives that orhervise woth not have if the project were not in place. What this means in practice is that the regional Jandscape must be improved in cqual measure to the alegradation construction and ojecration of the ponds rellects.

The revised protowols hercin involye the derivation of a quantitative model to equitibrate the meta-population level losses with gains through the provision of cleam hahitat. This will be of sufficient quality to conanew sursival in cqual measure (i) our best scientific estimate) to the projected lossics as a consuquence of pond construstion and operation. These acruages shuuld be seen as compensistury' mitigation specific to adult mortality. Froedine season effects, should any be expeced, are best compensatod (or mimimized) using the thablished protocols (USF'k'S 19959,1995) until cmpincal data (ir sufficicnt antlyses ute arailable to suggest otherwise.

MOWEL A: Uensity̧-Independeat Population Partitioning Modef

Derivation and Calculations

As discussox abouse, thabitat selection is a multivariak funclion hat inva) ves site selection from the gersperetive of the umit of each individual bird. The filter eath individual may utilize, or indeed, the behavior of any giver population of a particular syecies, is a matter of much conjecture ard theoretical speculation (5ee, unhong others: Machethur and Pianka, 1966; Emalen, 1966; McNamara, 1982; MeNair, 1983; Pyke, 1984; Clark and Mangel, 1984; Schowner, 1987).

While understantling such relationships ideally monitors the behavior of each individual and the parameters drixing its habitat selection, biologists can also coudely estimate the end resules of porpulanion-level selection by doing censuses. This measure, it done aceurately, would represent the jopulation-level partitioning (the summation of all individual habitat selcetions at that monent in time). The ratio of preferente for each particular habitat choice reПects the celativis affinity an individual will exhibit to each habitat choice (i.c., just how altraclive is X unit of habitat type A). In this fashion, the distribution of a given population of birds reflects a pertitioning function similar to the behavior of chemicals based on ther particular physical and electromianctic propertics. This partition ewrficient has leen expressed as K in the current Service mitigation protocols (LSEWS I99Sa: 1995b) for the case of alfanity for mitigution babitat relative to cyanotation basins.

If K was cqual for all habital types (or, mathematically $\mathrm{K} \quad$), then density would be completely explained by acreage of habitat. Wheiber or not this is the case may well be a function or how carefully we define habitat. Leor example, it may be truc that ayoects are distribuled in even prongrtion to the availability of saline vellands with a depth of 2.10 cmi water, a solt substrate, and invertebrate density exceoding X grams jer square meter. But we shall never be able to quantify or validate this hypuhetical situation without empirical data from a researeh eflion of conpletcly impractical magnitude.

Whorevere it is reasonable to presume that uther lactors besides simple physieal propertics of at particular site determine actual use. These would ninlude: density of ayailable prey ikems. proximity to other altractive habitat, the degree of predation pressure or other disturbance factors, among others. So it is safe to saty that this relationship is complex and multivariate, and we cam confidently postulatt that K is rot a fandom variable. In other words, birds do exhidut habitat selection that is net simply a function of the proportionale availability of each troad habitat category.

So what is exhibited in nature js reflected by a partitioning function of individuals within a population based on a twin-fold relationship. The first is simply a function on utaifable habitar. Overlain upun this is selection, which manifests as a chalized distribution pattem according to the allinity of the tespective specics for the available habitat. these two variables can be expreseed in utits of acreage $\left(\mathrm{Ac}_{n}\right)$ for ewh respective habitat type, and as the aftinity or partitioning coefficiont (K_{x}) for cach habian ty To.

Thus we define the following variables:
N The number of bitels extant in that population (or guild, etc.)
Acs The acreage of availahle habitat in existence before a project (baseline)
Actp The acreage of evaporation basins propesed as part of the projoct
$\mathrm{Ac}_{\text {int }}$ The acruage of mitigation habitat to be consturital as parl of the propect
In the simplest sense mentionta above (where pepuration dispersion is random), the population will be distributed in equal propontion to any defined habital typt, so that the proportion of the popalation in a given labitat type (x) would be represented by:

$$
\frac{A c_{1}}{A e_{I}}
$$

Proportional values are derived ju the context of the whole, in other words, felative to the tutal extent of babitat. These proportional use values can be calculated for any particular habilat type, though for purposes of expedience and ease of calculation it is sufficient herein to consider only the three athove (i.e., svaporation porde, mitigation habital, and the status que conditions [baseline]). Ite this case, then, Ace world be the sum acreage for all habitat types:

$$
A c_{\varepsilon}=A c_{\mathrm{b}}+A c_{\mathrm{w}}+A c_{m h}
$$

What we are interested in estimating is the total number of birds using cach hahitat typer, for it is from this value that we detcrmine eventual population-level impacts. This walue can be calculated by multiplying the population size (i), by the proportion in cach Jabitat "compartment."

$$
\frac{\mathrm{NA}_{3}}{\mathrm{Ac}}
$$

So in this nom-selective randon dispersion scenatio, the population will be distributed between respective habital types according to this furction:

In plain larguage, this says that the tutal number of birds in the population (N) will the the sum of all birds parlitioned into cath respective habitat type based solely on the acreage of habitat available.

But few would argue that avian distribution is random, anal it is generally aceepted ohat birds partition within the cruitcmmen based on affinties for specific habitat conditivns. Fortunately, all coungeting conditions and decisions are expressed by the realized population distribution in the available babital. fonther words, to the extent that we car measure the ren-randomness in distribution of birds within a given enviroment, we lave caplured the telative value uf the habitat selection function.

In the hrecding bird protocols, this vatue was denoted as K , and so herem they slall be defined as:
K_{b} Ihe affinity of individuals within the population for habilat ather than the cyapration basins and mitigation habitat ("other available habitat")
$K_{\text {ep }}$ The affinity of indjujduals within the popalation for evaporation basins relative to other ayailable habitat
$\mathbf{K}_{\text {mh }}$ 'The affinity of individuals within the pepulation for mitigation habitat relative to other available habitat

Note here that there is a slight motification in terms, as we are nory comparing habitar offinity refative to "hanelinc." which is pre-project conditions. "Shis wade can be set at I (K_{b} • l), but now K waltes for evaporation brsims ure waled relative to this bemchmark Thus, $K_{\text {me }}$ widl be a different numerical vatue than K in the brecding bird protocohs fince midigation habilat K has previonsly been scated relative to cwaporation basins. As will beconte evident at the end of this discussion, this distinction is not so critical by the finat derivation since the ratio of $K_{\text {ep }}$ to $K_{m h}$ still drives are find quantification of mitigation ucreuge.

The partitioning function above is now weighted by the increased affinity cach populaljon exhibits towards a particular liabitat, or:

$$
\frac{K_{3} A \varepsilon_{3}}{A c_{c}}
$$

This walue is now a bivariate [unction dependent upon tota] acroage overlain by habitat selection. For case of explanation, let us consider this valuc $\mathrm{U}_{\mathrm{s} \text {, or the attraction (realized use) function for }}$ birels towards habitat type X. This value can be conceptuadized as the functional footprint of the rbisective habitat lype (i.e., the weighted acreage of that given babitat type, based on its attractivences to indiviclual hirds within each population).

Following the adalysis above, while tactoring in the variable of habitat selection (preference) to the dunction, the number of bires partitioning to cach resplestive babitat type is now reflectel by:

$\underline{N}{ }^{*} \mathbf{K}_{y}{ }^{*} \boldsymbol{A l}_{\mathbf{r}}$
 $A c_{[}$

Or, from the shorthand above, as following:
NL_{s}
So in the sefective bivariate model, the population will pastition by:

$$
N=N^{*} U_{b}+N^{*} U_{t g}+N^{*} \mathbf{L}_{m h}
$$

The next important variable to quantify and inteduce to the model is Survival. This parameter is the fundamental wariable of interest for the derivation of a protocol dealing wilh adult mertality:

Following the delincations above:
So Bascline survival rate (conditions reflecting pre-project population status)
$S_{t y}$ The survival rate associated with exclusive use of eveporation basins during the duration of ${ }^{-}$ expocted exposure for cach respective splecies or guild
$S_{\text {anb }}$ The survival fate associated with exclusive use of ideal habitat (in which it is presumed mitigation habitat will be manayul optinally). Th is presumed (and imperative) that this value execeds baselint conditions, or clse ole project itselfis unositigable.

It follows that the number of birds (N) surviving (S) that partition to any given habitat (C) is reflected by:

$$
\mathbf{N} * \mathbf{S}_{x} \mathbf{U}_{x}
$$

The purpose of eompensation is to equally offset losess incurred fron bujding the new cvaporation basins. Of, put in model terns, to balance survival before and afler construction of the facidities. This condition will be achieved when the total number of birels thist survived belure the project was constructed would survive within the new landseape presemted by the evaporation basin and mitigation halitat.

Mathematically, this relationship is achieved when:

$$
\mathbf{N}^{ \pm} S_{b}=N * S_{t p} * U_{t p}+N^{*} S_{m \Delta}{ }^{*} U_{m h}+S_{b}\left(N-N U_{t p}-N L_{m \Delta}\right)
$$

[ilis relationship expresses the case when the total number of hirds surviving under pre-project conditions ($\mathrm{N}^{*} \mathrm{~S}_{\mathrm{s}}$) equals the total number surviving at the evaporation basins ($\mathrm{N}^{*} \mathrm{~S}_{\text {ep }}{ }^{*} \mathrm{U}_{\text {保 }}$) plus the cotal number surviving at the mitigetion wet ands $\left(\mathrm{N}^{*} \mathrm{~S}_{\text {anl }}{ }^{4} \mathrm{U}_{\text {mil }}\right)$) plus the total number suryiving in all other habjial, less the julividuals who have now relolated from this "other" habitat to the new habitat created by evaporatoon ponds and mitigation habitats sib(N - NLimp N 1 ; ${ }_{m b}$).

Factoring in Sb wo the parenthetical function on the right side of the equation anove, it follows that, at equilibrium.

$$
N^{*} S_{b}=N * S_{c p} * U_{c p}+V^{*} S_{m s h} * U_{n b}+N * S_{n}-N * S_{b}-L_{s p}-N * S_{b} * \dot{C}_{m \hbar}
$$

And factoring out N from the right hall [of the equation:

$$
N^{*} S_{\mathbf{L}}=N^{*}\left(S_{c p} \otimes L_{e p} \div S_{m b} * L_{m h}+S_{b}-S_{b}-L_{c q}-S_{b}-U_{m h}\right)
$$

N is now canceled out on cach side, yiciding:

$$
S_{b}=S_{\mathrm{tp}} *\left[\mathrm{l}_{\mathrm{ep}}+S_{\mathrm{mh}} * \mathrm{E}_{\mathrm{ohh}}+\mathrm{S}_{\mathrm{b}}-\mathrm{S}_{\mathrm{b}}-U_{\mathrm{ty}}-S_{\mathrm{h}} \cdot \mathrm{U}_{m b}\right.
$$

Isolating 5_{h} to the feft hand side of the expation, we derive:

Therefore:

$$
S_{b}+U_{n h}+S_{b}-U_{m h}=S_{c 9} * E_{t p}+S_{m h} * \dot{L}_{m M}
$$

Now jsolating and fertwing out U_{y} yalues to simplify, we derive:

$$
\begin{aligned}
& \text { then } \\
& L_{m b} *\left(S_{b}-S_{m \mid \Delta}\right)=L_{e_{e p}}{ }^{*}\left(S_{e p}-S_{b}\right)
\end{aligned}
$$

Expanding L_{y} values now for fint derivations of the model:

Aez cimeels out on both sides of the ruation, leaving:

The variable we are interester int deriving during the risk assessment is acreage of mitigation habitas reeded to achieve this cquilibetum state-in other words, solving algebraically for Acmh. This final deriyation becomes:

$$
A c_{m h}=\frac{K_{\mathrm{wp}} A c_{c p}\left(S_{\underline{p}}-S_{b}\right)}{K_{p \mathrm{ph}}\left(\mathrm{~S}_{\mathrm{b}}-S_{\mathrm{ml}}\right)}
$$

To the extent that we can accurately estimate the true valucs for the above variables, compensation will be achieved at the balance point of the cquatior above. At this squilibrium state, population losses will be oftiet by the gains achieved through the provision of optimal habitat with perforetance characteristics as defined above.

Identificertion and selection of model input values

From the model cquation above, it is clear that three mein slasses to variables must be estimated as input parameters to the model. These include: the projected evaporation pond acreage (Acep); K valucs for mitigetion habitat ($K_{\text {roh }}$); and survival estimates for haseline (existing) conditions (S_{b}), the evaporation hasins (S_{p}), and miligation babital (S_{mb}). Following the brcakduwn already established for this eurmet risk assessment: final model outputs shall be gencrated for each specific awian guidel of interest (shorcbirds, dabbling ducks, and diving bitels),

For purpases of this white paper, the figures used will be cither from those presented in the Drall FIS, or as part of materials presented to the Mitigation Werk Group through URS Corporation. These include, acreage estimates, K valucs, dietary exposure estimates from the bioncturnulation model jointly developed with Servicc inpul, propected wildlife residence times (in part) suggested hy LukS, and the inlluent waterbonc [Sc] projections provided by Reclanation (namely, assuming s $10 \mu \mathrm{~g} \mathrm{~kg}$ total recoverable |Se]). Alj other input variables art dedined and explained herein.

Running the Model

Calculation for Diving bird Guild:

K estimeates
['o date, the risk assessment process for SLDFR las used a projected K bsimate of 2.0 (i.c., that mitigation habital is wioc as attraclive as evaporation basins) for the diving birds guild. 'lhis value was cheosen since the conpirical database (from consuses under the scenario where available rniligation babitat wasn't dosiuned explicitly for decper water loragers) does not capture a reliable estimate for K in the diviog birds guild (existing values would prediet densities at evaporation pords pertips ten times that observed at the mitigation wetands).

Whike this approacin (assuming a K value of 2) was usce as a default starting point during the jnitial Serwje protocol derivation to represent habitat selection in shorebid guilds, it isn't supported in the special citeumstanee of diving ducks, Specifically, it may be signitivaraly under-protective if habilat ranagers are unsucuessful in raplicating hicg quality wintering habitat to draw away foraging divers. On the one hatrd, halsitat designed specilically for thesc birds will presumably conlain alh the elements that render such habitat attewive and uscful (c.g.: margins with emergent vegetation, open waler sections, high benthie prouluctivity). However, cwaporation ponds are also highly productive coosystems, atod historical census data has proven that this habitat type is exiremely attractive to diving birds.

Therefore, for purposes of the diving bird calvulation, it is assumed herein that $K_{\text {q }}$ and $\mathbf{K}_{\text {un }}$ are approximate (borli habitats are of equal attractivences). We believe that absent data to sugegest otherwise, this assumption represents a more logical starting point. Hathematically within the meriel, the ratio of cach variable thercty cuncels the othe' out ($\mathrm{K}_{\infty} \div \mathrm{K}_{\mathrm{nw}}=1$), atod their influence can be disecgarded for this partieular calculation.

Suryival cutinates

Review of the various Birds of North America species atconums for diving bitds reweals that no empincal data are availathe for adult survival in the species of interest monst appropriate to this risk model (i.e., eater grebes or rudcly ducks). Data for other diving bird species known to frequent the evaporation ponds is also very limited to non-exjstent. Survival data for American coots appcars in the life table analysis above, but the figures specilic to this particular bird are likely not reflective ot ducks (demographically sptaking, the coot is probably more an r-selected bird than reddy ducks- or characterized by higher fecundity and lower adult survival and litespan).

However, another vexing data linitation makes this particular shorconing lcsis important specifically, we have no cmpinical data from whith to project expected survival rates associated with mitigation habitats (optimal conditions). For the mitigation to work, this value must exeent baseline survival rates. This value car only be a speculatiwe estimate until mondinring preduces actual figures for input to the model.

Newerheless, regardluss of the actual values selected, the actual difference between optimal and baseline survival rates ($\mathrm{S}_{\mathrm{b}}-\mathrm{S}_{\mathrm{n} \text { 此}}$), and between surwival on evaporation bosins and bascline (proproject; $\mathrm{S}_{\mathrm{SP}^{2}} \mathrm{~S}_{0}$) conditions are the linal deterninants within the mathematical calculation. The magnitude of the difference between pre-project survival and baseline is simply reflected in the morality associated specific to selemium exposure (the figure derived from the dose response mudeling). The magnitude of the difficrence between bascline survival and that observed at the optimally-managed mitigation hahitats is a diunction of the specifice enhancement exjected in ideal habilat versus available (more marginab) cloices. Therefore, the accuracy of the specifice underlying baseline survival value becomes less critical in an absolute reathematical sense. One unctric is mudeled from the risk asscssment, while the other is simply a projection using a most reasonable gutess.

Despite data linitations, at least for dabbling duck species, some information is asailabte in the per-revicwed hiterature. Ovensiner survival rates summarized by LRS included figares for dabbling ducks approximatigg 0.7 (70 percent) (see ILssibeck, 1993; Fileskes et al., 2002). Fleskes et al (2002) obserwed a muan overswinter survival rate in 5 JV northern pintails of 70.8 percent. Miller al al. (1995) observed a survival rate of 87.9 pereent in the Sac Valloy and Bay:Della for this sane species. One possible approach is to use the Sacramento Valley survivah rates observed as ceflective or "optimal" conalitions expected hy inbabiting mitigation welands specifically atsigned for diving birds withir the Sar Joaquin Valley. Lising these figures, inhabiting mitigation habitat continualiy over winter would predict an imprnvement in survival rates by 17.1 percentage points over baseline (pre-project) conditions.

Another possible sitratcgy would be to run the model at two plausible extrences -5 pcrcen improventent seflecting modest gains; and -25 percent improvement, fepresenting prore or less complete over-winter survival (within a realistic range of survivorship values that allows for sume density-jidependent morality factors). The outer bounds of these two ligures would
theoretically reflect a plausible ratge of expected mitigation wbligations fother things, such as K valucs, and dose-response proxlictions being equals.

For purposes of providing a precise cstimate of mitigation required to compensate for adult mortality associated with the SLDPR project. Ule cnhancement in survival rates associaltud with optimally-managed aitigation habitat wial te assumal to exceed baselinu (pre-project) survival by 10 percent. The rasoning behind this figure is that the differenee between Miller's Sac Valleyidelta pintails and those from the San Joaquin Vallcy may bu overly gencrous given that the estimate is based on a dabbling duck species, ath the Sacramento Valley's habitat mosaic (consisting of thousands of acres of State and Fuderal refuges amidst a mosaic of agricultural mabitat idcally suited to this particular gaild). There is also rightiul concers about placing too much faith in two studies for only onc species across such a broad risk assusmerth as that involved in the current SLDJ'R planning process. This bestchmark value will be assumed to approximate ten percent (atd applich woll guilds within the current analysis).

Dose-Response

The Draft EIS incorporated a mrtality assumption for birds using the cvaporation basins based on a No-Observed Adverse Effects Level (NOATL) of 10 ppm (lietary exposure in mallards derived by Ifeinc and Fitzgerald (1993). It is predjeted that exposurc to diets hetwecn $10-15 \mathrm{ppm}$ excecding sixtecn weeks would lead to adult mortality. Herts, as with all areas associated with the risk assessmant for the endpoint of adult mortality, the selection of a dilution standard set at 10 ppm dielary Se should be lurtleer consigered.

The first issue to addess is the extrapolation of dose-response from one spocics to another. Standard F^{1} A metholulogy for converting toxicity thresholds betwen differcnt species suggests the whe of uncertainly factors to aecourt for differences in sensitivity. 'lypically, the factor used is a ten-fold margin of safety fowever, these are usually associatel widn more stringent public health related issues).

Within a knewn taxa -shurebirds-there is at least a two-fold difference in embryonic toletartice (Skomps, 1958). The black-neeked stilt is roughty twiee as sensitive to cmbryone Se expersure as its close sister species, the Americat ivocet. Ducks themselves are again about hallas tolerant as stilts (bered on empiricel data). Chickens and quail appear to be aboul halt as tolerant as mallards. The mechanisms for these differences are not known to date, as the specific michanism for Se's toxicodynamic behavior has yet to be verifiel. But it is clear that cuen within and betwon orders or avian taxa, a wide range of tokerances are possible. This reality argucs for the utilization of uncertainty facturs whon comparing between avian genera,

Considering estabtished EPA methodolugy and the empitically obsereed variability in speciesspecific Se tolerances, and altowing for the fact that mallards are on the more sensitive end of the spectrom, it seems reasonable to incorporate a siffery factor of 2 to extrapolate between heinz and Fitzgerald's mallards to othic duck specibs. In the case of the more tolbrant shorcbirds, an argumen for a relaxed uncertainty factor of th. 5 (halving the mallard curei) could be mede. However, given the athendam uncertaipty in so many farts of the risk assessment, and the
empirical dalubase that suggests very bigh allinity within these guilds to mitigation habitats (mearing mitigation prescriptions for adult morality in these speceics are likely to bu modest), foregoing a relaxed uncortainty factor seems the more responsible decision.

An argument for some lower effects standard than the one estimeated in Heinz and jitzeeratd (1993) is alceady suggestod within the literature. Faibrober and fowles (1990) olserved increastrl alatione aminotransferase (AL.T) attivity and suppression of delayed-type hypersensitivity (DSH) to tuberculin in mallards dosed with 2.2 mg . selenomethionine through drinking water. ALT is released into blowd as an indieator of liver or hear tamage. DTlis is a tust of immunc response to previously semsitized individuals (in this case, to tubcreulin). Skorupa et al. (1996) cites the above study to support a 5.5 ppm dry weight dielary exposure threshold for immunotoxic effects in mallards (wherein the authors converted from an waterborne route of administration to a food basis using ligures provided by (rary Heinc). If this valuc reflects a real thfect from Se exposure, and one of biological significance, it would represent a Lowest Observed Effocts Level (LOEL) and the NOAEL would be cven lowtr (though only ant dose of stlentomethionine was adminislared).

In adelition to uncertainey factors for jater-specife extrapolations, such variables as interindividual difference, inter-sex corrections (where males or femalus may be more strositive), scasonal corrections, and uncertanty factors for immunotoxie tompounds have bent used routinely in many tisk assessments. Similarly, it can be reasonably argued that birds under dab combitions mety not be subject to the same stessors associated with frec-living atimals (c.g., disease challenge, resource dimitation, predation pressure, other chemical slressors, ete,). So this ficetor would also argue for a lower threshold in order to be substatially protective of wild birds.

While there is support in the literature for the contention that male duek survival is higher than that obscrved in females for both Northern pintail and Canvasbacks (Reinecker, 1985; Reinecker, 1987), it has mot been shown to be the case for Sc (as no studies have bren conducted to determine differences in sensitivity by sex). Furthernore, it isn't elsar whether this difterential rate or survival (if extame) twa any relationship to contaminant-inducted montalities. Thetefore: during this cument risk assessment, mo uncertainty factor is ustd to extrapolate firm Ficinz and Filcgerald's made matlards to protect wild fenale avifauna.

The remaining issue to consider for incomoration includes the aforementioned uncertainty factor to translate form lab to field conditions. Considering that the obscrval TOLL in the deinzFitrgerald studjes was estimater at 15 ppm and $\$$ korapa's estimate from the Fairbrother'fowles stuity of an LOEl. of 5.5 ppm , an uncettainty factor of 3 for the endpoint of immunatoxicity is suggestod. Since a large part of the uncortainty involving extrapolation from tab to field conditions involves the endpoint of jamunocompetence (and the stressor of discase challenge that car be a proximate causc of mortality), this urecertainty factor of 3 secms reasonable to scale from the I.D values derived by Feinz trom sub-acute exposures.

Linder traditional apporaches, these values together falif of 2 for inter-specific protection and a L'F of 3 for Se as an jmmunotoxicant) actually argue for a dilution standard for altult survival more along the linhs of $2 \mathrm{ppm}, \mathrm{d}, \mathrm{w}$. in the diel (tectintically, $10: 6$, or perbaps $15: 6$). It could
be argucd that the stecp curve for Se as a substance bith a very narrow margin of safcty would requite less stringent (or at least non-multiplicative) uncertainty facturs. Yet the namowness of this same curve could contrersely be used to arguc for conscrvatism in establishing risk threshtalds, so it becomes a matter of judermett on the part of the risk assessor. Suffice it to say for purposes of this sliseussion that sub-acute adule male lethalify derived from lab studies is a crude and cxirume benchinark upon which to basc a risk ussessment, and some corretion in the frime of uncertainly factors is strongly suggested. Ar EF of at least 2 scems warmited, and for concordance with State action devels for monitoring, a dilution standard of 4 for alulujuvenile protection semos like a more realistic standard than 10 mgikg.

Within this current analysis huwever, the derivation of an appropriate dilution standard is actually less important, considering the relative uncertainty involverl in defining actual expasure (both (lose and duration) associated with the projected SLDFR evaporation basins. The imporant variable of interest for calculation of mitjgation acreages through this model is realized survival, and this tstimate is based on the aceurate definition of dietary dose, duration of exposure, and tinally the dose-response curve (for that final endpoint of adult mortality) that will be realized in a wild population for bach species utilizing the SLDFR eqaporation jonds.

Exposurcinnalysis
The curtent risk assessment process bas provided a best-availathle-scientific estimate for the variables of dietary dose (captured through service technical conments and invorporated into the cutrent (Trat EIS), and herein pertaining to dosc-response. Duration of exposure is a sjgnificant arca with little ayailable slata, and for this variable we are unfortunately left with nothing short of rough speculation. Itrese limitations should he kept in mind by planners when applying the outputs from this particular motel to actual implementation of project mitigation. Thorough monitoring, and dexible adaptive management plans (with contingencies) ate sitangly encouraged as associated prudent measures.

In the current risk analysis, URS projected that 2.5 perecnt of birds would forage exclusively at evaporation basins for ≥ 16 weeks. While thert are basically nu enpirical data to support this assumption, there is alse rone to refute it. For purposes of this analysis, this figute therefore seems to be as rcasonable as arother-with the provided caviat that (as with some of the survival figures above), the number is simply an assumption. For purposes of the jnitiul mitigation acreage calculation, this exposure protile will be maintained.

The exposure prediction presented in the Dradt EJS assumed as much as 10 percent increased mortality associated with Ionger-term exposure at the cvaporation hasins [technically, based on the LOAEL of 15 ppm in flimz and Fitegerald (1993), an [D 10 was deriwed for what could be considered coninual over-winter exposure]. Figure 1 presunts the dose-response cuave from Heing and Fitzgerald with the values corrected from a festh weight to dry weight basis to be consistent with the hioacemnulation model previousiy derived.

Figure 1. 1G 4tcek exposure starting in Navember. Adult nale mallards. Dashed lines iadicate 95% confitheace interval.

Using an TiF of 2 for the sbove cure yields the same slope, only the I. D_{s} js now hald that af the uriginat curve $\left(\mathrm{LD}_{50}=14,0\right)$. This relationsilip is presented as Figure 2.

Figure 2. 16 werk exposure with 2 X margin of sifety.
URS has prodicted that diving birds will be exposed to dictary [5t] at $13.7 \mathrm{mg} / \mathrm{kg} \mathrm{d} . \mathrm{w}$, givel an iniluent waterbome [Sc] of 10 ugiL during the breeding season. Using this dictary expusure and the equation for the Heimz/litzgerald alose-response curve ipproximates an LD_{7} without an uncertaindy factur, or an LD_{4} at an UF of 2 . So at the concentrations prodictex in the last ateration of the risk asscssmen 47 percent of 25 pervent yields 11.75 pereent mortality associated with this exposure scenario. However, there is a logical extension from the alove considerations that has yet to be considered.

Closer analysis of the Hein\% and Fitzgerald (1903) study reweals that much of the mortality associated with Se exposure manifested by week 8 . In the high dose group, all birds had already tiva by this point. In the lowest observord effect tratment group ($20 \mathrm{mg} / \mathrm{kg}$), one bird died carly (incek 6), and another by week 13 (two hirds dicd after 14 weeks, and anotber by the end of the experiment). [t is evident that stme mortality may resula from shorler duration exposure than simply that conmected to full over-winter site figlelity, and this clement is not yet captured in the risk analysis.
11. we assume that another 25 percent of the individuals within the population stayed hetween 4 16 wecks, there is still mortality assaciated with that component of the population. Sinee the tesignation ofeluration exposute is already frapght with significant uncertainty, a rough
approximation of the numbers of lost individuals from that intermediate-tem exposure thight be estimated by applying the cight week exposure data to that other 25 percent of the propulation. For purposes of this admitectly crude analysis, mortality estimates (if any) from exposure durations less dar four wecks ate innorted. The dase-response curve for an cight-wcek duration of exposure is prescrated in ligure 3.

Figure 3. 8 week exposure.
Using the same $13.7 \mathrm{mg} / \mathrm{kg} \mathrm{d}$.w. dictary exposure and the squation for the Heinzifitzgerald 8woek duse-response curve approximates an LD $D_{0.2}$ wichout an wicertainty factor, and an $I D_{14}$ at an UF of 2. So at the concontrations predicted in the last jteration of the risk assessment 14 perpent of 25 percent yiclds an additional 3.6 percent mortality associatcd with this expusure scenation.

Lising this justidication, let us finally presume that moriality at the evaporation basin will yield a mortality ratu of 15.35 percent due to Se exposure. Subtracting that additional mortality rate fron the ahove estimate of a baseline survival (rate 0.708) yiclds a $S_{\text {ep }}$ value of 0.55 that slall the anjutide to both the diving bird and dahblers guild to account lior component duck species.

Under this circumstance, the final mitigation acreage necded for the in-Valley Altemative to capuilibrate breending seasom population lesses in the diving birds guild would be:

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{mb}}\left(\mathrm{Sb}_{\mathrm{b}}-\mathrm{S}_{\mathrm{ra}}\right) \\
& \mathrm{Ac}_{\mathrm{mh}} \quad \mathrm{j}+324(0,50.5537 \cdot 0.708) \\
& 1^{*}(0.708-0.808)
\end{aligned}
$$

Or:

$$
\text { Acm : } 5080 \text { altoces (munded to ncarcst } 10 \mathrm{ac} \text {) }
$$

The precliclion listed in Talble G-7 (Appendix G of Drafl ELS) lists a projected winter dictary contientration of 11.8 mgikg Se. Using the same methods above, and an uncertainty facter of 2 , we get an $1 . D_{2}$ and $\mathrm{LD}_{\text {on }}$ for sixteen week, and eigtr-week exposure groups, respectively. This calculates to an additional mortality uf 8.25 percent. Subtracting from 70.8 percent, this yields an cstimate of 62.55 percenl. Factoring these estimatcs into the cquation yiclds:

$$
\mathrm{Ac}_{\mathrm{min}}=\frac{1 * 3290(0.62 .53-0.708)}{1^{*}(0.708-0.80 \mathrm{~B})}
$$

Or,

$$
\text { Ac.al } 2720 \text { acres (rounded to nearest } 10 \text { acic) }
$$

Using these same figures abowe tor survival, and the dietary exposure predictions from the Drafl ESS (Table G-7, Appendix G), derivations for the other bird guilds are presuntel in Takhle 2 firr the full trealment Tn-Valley scelario, and the Water Needs Altemative Scenario.

Table 2: Mitigatlon Acreage estimations using the Compensation Habitat Mortality Protocol.* 1N-valLEY

WATER NEEDS

* Exposure assumptions are talculated als ahove for wastering hiriss, but assuming only \# areks for fall nigralion, and 4 weeks for spring migration (yielding mo mortalty estimste, but reproductive impairment Irvm Se biocensentration ln body tissues isn't precluted.

Uncertainty and Sensitivity Analysis

Given the considerable duta limitations with respeet to biuaccumulation. and scnanart uncertainties related to the efficacy and influence of Se pre-treatronen, we cannot with reawnable scientific confidenoe say what wildife mortality will be associated with the proposen SII.DFR evaporation ponds. Giveth that signilicart engincering imovations (e.g., vertical shest pile) are being discussed as potential pond desiger elements, we can'l say for guitds such as shorebirds, and purhups dabbling duciks, that K walues won't differ significantly from projections based on the econsus data available to date. Despite the considerable investment over the past decades in rescarch into the ceotoxioology of St , so much is still unknown ar porrly underitood.

These limitations wix the process of risk assessmirnt, and although seientists may prepare and offer our best ayalable cstimate, we still bave to acknowledge this uncertainty. By the time we have pome to a precise prescriptim of mitigation acreage, we con mot responsibly infer from such precision or the rigur of intellectually-complex toncogtual risk modeling that our estimate is anything more than a best gress. In the face of scientific uncertainty, the eppropriate inturetation is not that risk doesn't exist, but more that the degree of acceptable risk is pulicy decision, the prodence of which will only be known in hindsight.

While the conceptual movel hercin predicts a compensatory mitigation equilibritm within the confints of the underlying assumptions, we still do not definitively know whether realized mortality at the prods taight be as high as, for cxample, 80 pereent (20 perecon survivaly, or even as low as 35 percent (bis perecnt survival -ncaring our catimated bascline). As mentioned above, we can't say for sure whether K vahuss will te much ditterent than predicted -cither bocause additional data using insreased sampling frequency will reveal our current estimates arc inaccurate, or simply becaust dusign and mabagement at the SLDFR ponds will sender conditions there different than those at current privately-owied evaporation facilities.

For jurposes of this particular sensitivity andysis, uncertainty associated with our projections for dietary exposure are not inclutled (these, however, are also not insignificant). A discussion about uncertainty facturs and the attendant variability with respect to dose-resionse has atready been presented above. Hercin, the focus shall be upen the clements specific to the rariables in the final mitigation acreage equation.

To exhibit the influence of each variable on the motel outpul, stevtal rums of the model can be conducted, tach varying one or anothet prarancter and observing the attendant influence on prescribed mitigation babitat acreage This process reveals that thoth survival and K valucs are sensitive poumaneters withon the model, and etn lead to widely variable mitigation prescriptions based on the input values choser. Example calculations (using a rcalistic range of pussible input values) follow.

$$
\Lambda \mathrm{c}_{\mathrm{mh}}=\frac{\mathrm{K}_{\mathrm{TT}} \Delta \mathrm{c}_{\mathrm{m}}\left(\mathrm{~S}_{\mathrm{sp}}-\mathrm{S}_{\mathrm{D}}\right)}{\mathrm{K}_{\mathrm{tilh}}\left(\mathrm{~S}_{\mathrm{h}}-\mathrm{S}_{\mathrm{mlh}}\right)}
$$

Varying Survival at the Fivaporation Basins firom montality of 5\% to 70\%)

L'sing K valuns assumed 1:1 and acreate from the in Vallcy Altemative:

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{l}, \mathrm{~h}}(0.708-0.80 \mathrm{~s})
\end{aligned}
$$

Associated Variability: 14-ituld
Associated Cincertainty: Moderate to High (deperding on efficacy of trealment)

Varying Survivis at Mitigation Habifats fromm 5\% to 20% crhancement)

$$
\begin{aligned}
& A C_{\text {mh }}-\underline{K}_{C_{p}} \mathrm{AC}_{n}:(0.658-0.70 \mathrm{~K})=3,290 \text { ac } \\
& \mathrm{K}_{\text {ت山l }}(0.708-0.758) \\
& A c_{\pi S} K_{q} A c_{0}(0.658-0.708)-823 \mathrm{ac} \\
& \mathrm{~K}_{\mathrm{wn}}(0.708-0.908)
\end{aligned}
$$

Assuciated Variability: 4-kuld
Assocjated Uncertainty: Jligh (no cmpicical data).

Varying K Values (from 2:1 to $1: 10$)

Using acreage values from the In Valloy Alternative and 10 percent mortalily and enhancement:

$$
\begin{aligned}
& \text { l(0.708-0.808) } \\
& A c_{m k}=10 A c_{0}(0.608-0.708)-329 \mathrm{ac} \\
& \text { 10(0.708-0.808) }
\end{aligned}
$$

Associated Variability: 20-fold
Associated Lineertainty: Moderate (dejuending on acematy of cursent consus data, and desigrioperation changes at proprosed ponds).

We thave empirical data from which to caprure the variability associated with K estimales (though we have a biveat with pond tedesign). The data ubud for the bioaccumulation modeling las an associatext confdence jniteral (but this is qualifint by the prospect or truatment, and projected lower watcroment [Se] with possible changes in chemical fomp). The extant empirica]
database that relates embryonic Se sensitivity is avalable for several avian species, and within this is observed an 8 -fold (at least) range of tolerances. Whether this cant he extrapolated to adult mortality is a mattor of conjecture, but this in addition to the imposition of safety or unectainly factors can provide sorme sort of boundaries m mitigation projections.

This rough scnsitivity analysis suggests that hoth surfiqal values and K estimates are importimt parameters within the model (cven at a range of reasonable expectations amorgst the varied buput valucs). The pivatal issuc revolves around the relative investorent requircd to inducence each respective jarumetcr. In theory, Se pre-treatment may rexluce mortality associated with the pords (provided the henefits are not regated by making the Se more bioavaidable). Onte might presume that improxing survival at mitigation habitats within the range of ratistic progections involves diminishing returns- in that each incremental jercentage point enhancement will becond increasingly costly. As this range spans simply a four-fold variability, it may prove that simuificant expenditures towards optimizing labitat quality to some nith degrec are less prubent investments (unless these measures are joexpensive relative to higher cost technologies such as Se pretratment). Coussidering that factors that influcnes K values also diteetly jolluence the variable of exposure (that in turn detines mortality associated with Se toxicosis), measures that render ewaporation ponds less attractive to the maximum extent pratical are probably wise investments.

Assumptions and Limitations

Following are the assumptions and conditions of this morele:

1) This is a density-indepenelent model. It is derigned to provide a habitat mosaic to equilibrate losses, basert on augnenting adult survival. It does not incorporate actual estimated densities al tyaporation or mitigation facilities, or projections of actual (numeric) losses. This has the benefit of bypassing coneenis such as underlying popplation status, and the possibility that bitds that otherwise would not utilize the san Joaquin Valley may be attracted by the addjional habitat represented by the new pords. This has the cost that- as in the case of brecting jrescriptions tor dewpuater birds (that are nol expected to nest at the pouds in high numbers so long as proper vegetation control is mainained) under certain circumstances mitigation noeds may seem ligh when a relatively fewer number of hotds are actually at tisk. In the case of birds with higher altinity for altemative haticats and lower expected losses (e.g., shorebirds), there mady the mitigation habitat freseriptions that are so limited in extent that resource depletim may become a complicating factor.
2) For purposes of the calculations presented herein, the projections basel on the analysis presented in the Draft EIS for dictary Se biotwcumulation by guild wite adopted. While the Survice assisted with the derivation of this particular model, curtain assunptions were later superimposed that were nol consistent with the suggestions of Serviec technical staff. Spccifically, the biosecumulation model was on using input valucs that assmmed Sc pretreatment wuald produce waterhone [Sc] at 10 ppb ar beter. The Service has commented on the treatment methodotogy already, and refers readers to the planing aid memorandid (USF゙WS: July 20n5; USFWS, November 2004) for Further information.
3) For purpuses of projecting enhanecronen assocjated with mitigation habitats, a figure of 10 gercent additional adull survival (abuve baseline) was attributed to the prescribud mitigation acteage. There jis much uncertainty associated with this estinatu.
4) For purposes of the dose-response analysis, this model aceepts the URS projection of 25 percent of birds staying ≥ 16 weeks at the ponds, and furthers this projection to associate another 25 percent with $4-16$ week residence time at the contaminated sites. This figure probably varibs significantly by species, and is very much a guess. A very high degree of unectaimly is associated with this variable.
5) At urbectainty factor of 2 was uset to telate the Heinz/Fitzgerald curse io realezod mortality on the ponds. Review of the data, and cstablishod EPA protownl, justity at least Jus level of protection (perthaps more). This debate aside, there is less (relative) uncentainty associatux with this estimation.
6) It is assumed that the K values provided by URS from biweekly census data (colfected as part of WDR's for mitigation monitoring at existing Tulare ponds) are reflective of future conditions at the SL.DFR ponds. This presumes first that they are accurate themselves; and second, that conditions at the dew pords will be sinitar to those at existiny evaporation basins. Howevis, Reclamation is discussing signifisantly different jond design alternatives (e, g. sheet piling and vertical walls), and intemsive water management to deter use ot the ponds by dabbling and widding species. It also remains to be quantified what inlluente an agercssive level of hazing may have on avian use of evaporation ponds (haioing conducted by privale pond operatons tends to be rather sporadie). If thest are implemented and properly managed, it is possible that bird use will be significantly lower than estimated by bistoric census data.

MODEL B; Jensity-Dependent Numeric Replacement Model

A didjerint derivation and compensation mendel can be based upon the alternale extrentei.e., that population regulation is purely density-dependent: and that ayaibable habitats are saturated. Howeyer, this model stops shart of the unctalistic conclusion that any additional babitat (no mater how contaminated, so long as some birds surviye) is a population benefit. Jnstead, it expands from a numeric estimate of loss following the risk assessment above. 7hen, utiljring the realized density data represented in the estinates from the available censubes, we assume this value is the functional man'ing capacity of the mitigation habibats. The projected nunber of birds lost at the çajoration basins (from the risk astessment above) is then equilibrated by the provision of babitat to support the same number of birds in kind.

The derivation for this calculation follows:
Taking
$\Gamma_{e p} \quad$ as the density or birds measured on evaporation basins (based on census data)
$\mathrm{D}_{\mathrm{ma}} \quad$ as the density of birds on mitigation habitats (from historic census data) Actp as acreage of proposed covaperation pords (using Draft EIS projections) $\mathrm{LD}_{\mathrm{x}}{ }^{16 \text { wrek }}$ as projmortion of bids expected to die at >16 weeks exposure on the pondsreflecting a projecked 25 percent of the metapopulation (as derived ubove). LD. ${ }^{8 \text { wrek }}$ as the jroportion of birds expected to dic at 8 wacks exposure (berving as the midpoint estimate for birds inlabiting the ponds from 4-I6 wesks)reflucting 25 percent of the metapopulation (as derived above).

Jtrein, $W_{c p}$ is taken from the mean phas two standard deviations value diam historic evaporation pond census data. This is meant to be a conservative estimate to capture the upper 95 perecen eonfitherse boundary for expected number of exposed indiwiduals. Valuts
 of actual sustained carrying capacity of thess habiats (under the specific modet assumptions). The [.D) values are derived as above, and are listed in l'able 2. Acsp is again taken trom projections in the Drafi EIS.

Following the assumptions within this model, the number of bids expected to die from exposure at the S1.IIFR ponds would be estimatext by:

Jhis equation relleets the oumber of birds using the ponds multiplied by the mortality estimates (derived using the same conditions explained in Model A_{4} above), Jathe 3 displays these murtality estimates by guild and seavon as projected for the full in Vailey and fiuter Sheeds altimatives.

Talle 3: Number of Birds Expected to Die from se Exposure at the SLDFR Evaporation Ponds llnder 'Iwo Examplo Alternatives and Assuming $10 \mu \mathrm{~g} / \mathrm{L}|\mathrm{Se}|$ in Pond Water.

The rexa derivation involves a simple calculation following from the condition that the new habitut provided as miligation will have to sustain an equal number of birds to those losi at the evaporation basins. This is retlected in solving the equation:

$$
\text { Mortality } \leftarrow \mathrm{l}_{\mathrm{mb}}=\text { Number of birds sustained by mitigation hahitat }
$$

However, tecald that thete is some baseline devel of mortality assocjated with cyen the "optimal" antigation habitat. While the conditions of this particular model dictate that "rew" habitat will gencrate "nesw" birds, it will not be in a onc-to-one ratio unless survival in the new habitat is 100 percent. So, in reality, to sustain an equal readized number of birds to the numbers lost at the contaminated sitbs, we must provjde habitat to subtain a larger initial subset of individuals. -this is functionally a numeric replacement model (not a population dispersion model as is Model A). [n other words, we must divide by the factor $\mathrm{S}_{\text {wh }}$. (assumed berein to be 0.80 g). So,

$$
A e_{m h}=\text { Mortality } \div D_{m h} \div S_{m \&}
$$

Tables 4a-4d display the mitigation prescriptions from both roolels by guild and scason for all four in Valley disposal alternatives. In addition, they contain an estimate of the number of birds that would be sustained by this mitigation habitat under the assumed relationsbips above.

The Merged (Carrying-Capacity Adjusted Population Partitioning) Model

The Service tecomnonds an approach to compensatory mitigation that utidizes both models simultaneously, with preference going to the ligher acreage prescription. Rather than utilize one or the other model, it is preferable to muet the ligher of the wo obligations, and bompensate for the conditions under both sets of assumptions. Where the number of birds projected lost at the evaporation basins exceeds the carring capacity of the Model A mitigation habitat atreage, the higher value dictated by Nowlel B is selceted as the mitigation prescription, and presented in the liest column of Tables $4 \mathrm{a}-4 \mathrm{~d}$. Fffectively, the mitigation would then peotect the expostid propulation (a number that is indeterminate) in a densityinslepentient fashion. Howtiver, it would do this while maintaining a shecte on the reasortalrleness reflected in the density-indepertent acreage preseription (ensurigg this mitigation habitat witl provide adequate carrying capacity to sustoin this minimum level of birds).

The Scruice rewommends that these figures be used to reflect our best scientific estimate for the impacts associated with Se exposure to adult birds using the evaporation hasion, and should be considered the minimun theoreticul berchmark for provision of habitat to comptersate population-level losses associated with the opcration ol these ponds. Note that in the case of breeding season comparisons, the final figures prisented in Tables $4 \mathrm{a}-4 \mathrm{~d}$ should be compared to estimates based on the curcent LSFWS (1995a, 194)5b) protocols; and here again, the higher prescrusion would be the minimum acreage to jrovide compensation.

No protecols lave been derivid to compensate tor losses of juvenile birds, or for exposure and efticels to spting migranls that may be jmpacted by foraging at the ponds an their way to their brecoling grounds. If Se pretreatment fails to mbet targeted perlormance stardards, these risks becorte more signilicant, and should be revisited.

With respect to habitut categories, the provision of habitat would be inclusive als compensation for both adult survival and repreductive impaiment (i.c., the sarte acreage suffices for both), within gujlds (so all species within that grouping would be protectod by the same acredget, but not betwein guilds. In other words, the Service still believes that habitat for eash guild should be provided in discrete units, so that dabbling ducks and shorebirds hewe independent obligations. The preseriptimes for these guilds are not so cxecessive that thisissue thould provent plamers from ensuring that density-deftendent effects (c. B , interspecific competition) do not render mitigation habitals less suitable due to resource depletion.
Tahte 4a: Mitigation Acreage Estimates from lioth Models far the In-Valley Alternative

Tahle Ab: Mitigation Acreage Estimales from Both Models for the Groundwater (Wuality Alternative

Table Ae: Mitigation Acreage Fstimates from Both Mndels for the Water Needs Alternative

Table 4d: Miligation Acreage Estinates from Both Models for the Drainage-Impaired Aren Alternative

References Cited

Alisarskas, kr : Amolel, [WW. 1994. Amerncan Coot. Pp. 127-143 in . Migratory shore and upland game bird management in North America (T. C. Jacla and C. E. l3raun, ods.). [nt. Assoc. Fish Wijid. Agencies, Alen Press, J,awrence, KS.

Clark, CW.; Mangel, M. 1484. Foraging and flocking strategics: [nformation in an uncertain environment. Amer. Natural. 123(5):626-641.

Empen, JA. 1966. The role of time and energy in food preforence. Amer. Natural. 100:611-617.
Fairhrother, A., and J. Fowles. 1990. Subchronic cffocts of sodium selenite and sclenemethionine on several immune functions in mallards. Arch. Fov. Contam. Toxicol., 19:836-844.

Fleskes, JP; Jarvis, RL; Gilmer, DS. 2002, September-March surviwal of female northem pintails radiotagged in San Joaquin Yalley, Califonis. J. Wilda. Manage. (orf(3): 901-911.

Goreazel, WP; Ryder, RA; Braun, CE. 1982. Reproduction and nest site tharacteristics of Athericar Coots at different allitudes in Colorado. Condor 84: 59-65.

Huin\% C.H., and M.A. Fizgerath. 1993. Owerwinter survival of mallards teai selcnium. Arch. Env, Contart. Toxicol. 25(1) 90-94.

Feribock, JB. 1993. Survival of forthem pimails banded during winter in North Americi. I. Wrild]. Hanage, 57: 590-596.

Kuel, WH. /r. 1955. Nesting studics of the coots in suuthwestem Markitoba. J. Wikell. Manage, 19: 189 - 198.

MacArbur, Rif; Pisnka, ER. 1966. On optimal use of a patchy covironment. Amer. Natural. 100:603-609.

McNair, JN. 1983. A class of patch use strategies. Amer. Zool. 23:303-313.
Moxamara, J. 19:2. Optimal patch use in a stochastie environment, Theor. Popul. Bict. 21:269-288.

Midler, MR; lileskes, JP; Orthneycr: DL; Newton, WE; Cilmer, DS. 19)5. Survival of adult femate northert pintails in Sacramento Valley, Calitumia. J. Wild, Manage. 59(3): 478-486.

Fyke, Gli. 1984. Optimal foraging theory: A tritical review. Anr. Rey. Ecol. Syst. 15:523-575.

Reinceker, WC. 1987. urvival and recovery rate estimates of Northern Pintail barded in Califormiat 1948. 79. Calif. Fish and Fiame 73: $230 \cdot 237$.

Reincoker, WC. 1985. An analysis of Canvasbacks banded in California. Calif. Dep. Fish Game Bull. 71: 14]-149.

Ryder, RA. 1963 . Mipation and papulation thamics of Aprerican Coots in westem North Arserica. Jroc. Int. Omithol. Conerg. XIII: 441453.

Schoencr, [W. 1987. A brief history of optimal foraging ccology pp. $5-69$ in l'uraging Bchavior (A.C. Kamil, J.R. Krebs, lif.R. Pulliam, cds.). Plenum Press, Sew York and Iandon.

Skurupa, Jls. 1998. Selenium poisonitag of fish ard wildife in nature: Lessons fron twelve realworld examples. Pp. 315-354 in: Envinonmental Chemislry of Selcnium. (W,T. Prankenterger, Jr., and R.A. Ergberg, od5.), Marall Dekker, New York, NY.
U.S. Fish and Wrildife Scrvice. 1995a. Compensation Habitat Proldeol For Drainwater Evaporation Basins, January 1995. L:3. Fish and Wildlife Scrvict, Satramento California, 26 pp.
L.s. Fish and Wildlife Service. 1995b. Altemative [Jubitat Protocol For Drainwater Evaporetion Basins, Match l9ys. C'.S. Fish and Wildlife Service, Sacramento, Califomia. II pp.
L.S. Fish and widdife Scrvice, Jul 2003. Fish and wildife Courdination Act Planning Aid Membrandum on the Sirs Luis Drainage fieature Re-Eyaluation Plan. Wemorondum to Regional Director, U.S. Bureau of Retidnation, Sacramento, Califomia from Assistant Fijeld Supervisor, Sacramento Fish and Wildlife Office, Suramento, California, 26 prages plus antachments.
U.S. Fish ank Wildife Scrvice, Noy 2004. Fish and Wildlife Service Comments and Recommendations on the San Luis Drainage Feature Re-Evaluation Plan. Memorantiam to Regional Diroctor, U.S. Fiureau of Reelamation, Sacramento, Califorsia from Assistatt Field Superisur, Sacramento Fish and widilite Office, Sacramento, Califomia. 20 pages plus altachrnent.

Persunal Comununicatuns

Toto, Anthony, Water Resouses Control Enginter, Califomia Regional Water Quality Control Board, Fresmo, Califomia

Appendix A: Fuil Model Run with Ten Perecne Exposure Parameter Adjustment

Amended and added
1/11/20] 16

In response the Reclamation's comments (via the November 17, 2005 URS mennorandum) that the molel as presented above may be "overly comservative," the model was tun with an adjustment to the one parameter with the most attendant uncertainty-namely the population cxposurti prediction. Specifically, insteald of assuming that 25 percent of the exposed population would forage cxelusively on the cvaporation ponds for $>$ l 1 weeks (and another 25 pervent tior 8-16 weeks), these figures were anended to assume 10 percent of the birds would reside at the ponds for these intervals.

The uncertainty assoriaterl with this modeling effor has heen discussed. While the 10 percent assumption may make orore intuitive sense to this author, it too is purely specenative. As a result, all model outcones are qualilied. However, given a choice, it is ony protessional opinion that these amended model outpul figutss should represent the starting point for mitigation. In other words, this is the level of mitigation that would, to wur best scientific predictive ability, compensate for bepected wildife losses on the fonds using the cndpoint of adult mortality.

The model presentel herein is meant to be a step-wise and logical approach to pretictints adult montality assobjated with Se exposure on the foture SLDJR cyaporation ponds. A.s each parametcr und assumption is weighed and presumed reasonable or represents our best available guess, the outcome should speak dur itself. To the extent thet we atikrowedge uncertainty untending each of these estimates and assumptions, we admit uncertainty associaled with the final oulput.

The jssue of "conservatism" is a mater of perspective. Thu Service's role as steward for fish and wildlife resources dietites that we err on the side of precaution, and protection. In the end, the strength of our scientific prodictions with respect to the SLDFR risk assessimbter is constrained by both the cuality and quantity of the undeflying data, and the limitations of our understanding of the dymanics and variability ibherent in cuaporation ponal systems. No anount ol modeling, no matter how carelully constructed or thoroughly tehated, can fully bridge the gaps of unavailable data or limitations in the complex field of ecology.

What digures follow in these tables are, to the best of my ability as a scientist, the acrange estimates which 1 believe represent the most prudent level of mitigation which Reclamtation should provide as their "intitial cstimate" tor alult mortality compensation. For fastibility costing purposes (unnsistent with the proposal as anticipated within the Final EAS as eurrently prescribed in the December 11: 2005 LRS menn) I would recomment doubling this amount. In any one seasom, these initial estimate figures remain below a I:I ratio for cvaporation basin to mitigation acreage.

Listly, it should be noted that this risk assessment is Se-specific. The docturntitel (but peorly quantitied) moriality rates associaled with ele end points of sall fuxionsis and salt encrustaccan are not factored into the risk assessment; and so to the extent that ulic Sc mortality mosele is conservative in davor of safcty, it seryes to bulfer the population-leyel effects of these other known but unaccounted risks.

Table A: Mitipaion Aereages to Compensate for Adult Mortality at SlıOFR Eqaproration Ponds by Cuild.

- Acreages preseoted in the table reflect the higher of two estimates proyided by the Mudel A and Malel ts (the "density-independent" and "density-dependent" compensation protocols). Note that these acreages are not to be confused with alternative or comperasation habitat obligations as preseribed by the existing 1995 tiproductive impairment protocols. Howiever, babitat providod for impacts to breeding avifauna may be used to serye the dual purpose of compensating for frojected losses of adults from the population. [t is recommended that breeding scason acreages provided to either dilute or compensate for reproductive lossus assiociated with the poods include besit matargement practices to be functionally attractive, and sustainable for breeding birds (which may melude actual provision of this dabitat in months preceding the actual brecding season).

APPESDIX 2

Naveretia \qquad oats	$\begin{aligned} & \text { — Navarretia intertexta, } \\ & \text { Avera fatua } \end{aligned}$
perpergrass	Seppidium latipes
- perennial pepperwecd -_- - Lepidium latifotiam _-- - - - - - - -	
Picklewced	Salicornia pacifica
poison bemlock	Conium maculatom
Primrose	Boisduvatie giatella $=$ Eniohium pygraeum
puple trecdlegrass	Stipa pudelira
_ quilswort ___ _ _ _ soctes orcuttii . _ _ _ _	
- - red brome -	
Rush	Amprus unciatis
Suligrass - - - - Distichis spicata	
Saltbuşh	Atriplex spp.
sandwort	Archaria cadifornica
Smantwed	Pnjy ${ }^{\text {comam }}$ spp.
soft chess -- -- Bromus mothis	
$\underline{\text { spikerush }} \begin{aligned} & \text { swamp timothy }\end{aligned}$	
- Tall fiscue - _- - - Festuca amondinatea	
Tamarisk --- -- Tamarix aphyila	
Toad nıh	Juptus hafunius
valley oak	Quercus tobata
Wateryras	Echinochha colorum
white brodiaca	Bradiaea blancinhina
widgeongras	Ruppia muritima
wild millet	Setaria spa.
wild rosa	Rosaralifornica
withow	Salix spp.
woully marbles	Psilocarphus breviswima
Insects and Invertebrates	
brinc ilies - . .	tiphydridae spa.
brine shrimp	Aremia spp.
Midecs	Chironomidaes sp.
water horatimen -_ -	Corixidae spp.
Fish	
Anderican shad	Atoret sapidissime
black bullheal	Ameiuras melas
hlatk crappic.	Pomoxis nigromtactiatis
Blucuik Carp	Itepomis macroctionus Cyprinas carpia

REVIEW COMMENT SHEET
 Fish and Wildlife Coordination Act Report, San Luis Drainage Feature Re-Evaluation Report

