## **Environmental Assessment/Initial Study**

# 2014 Tehama-Colusa Canal Authority Water Transfers

California



### **Contents**

| Chapter : | 1 Introduction                          |      |
|-----------|-----------------------------------------|------|
| 1.1 Ba    | ackground                               | 1-2  |
| 1.2 No    | eed for Proposal and Project Objectives | 1-3  |
|           | ocument Structure                       |      |
|           | ong-Term Water Transfers                |      |
| Chantan   | 2 Alternatives                          | 2 1  |
| Chapter 2 | o Action                                |      |
|           | roposed Action/Proposed Project         |      |
|           | 2.1 Sellers                             |      |
|           | 2.2 Buyers                              |      |
|           | 2.3 Potential Water Transfer Methods    |      |
|           | ecent Environmental Documents           |      |
|           | nvironmental Commitments                |      |
|           | nvironmental Setting                    |      |
|           | 5.1 Aesthetics                          |      |
|           | 5.2 Air Quality                         |      |
|           | 5.3 Biological Resources                |      |
|           | 5.4 Geology and Soils                   |      |
|           | 5.5 Greenhouse Gas Emissions            |      |
|           | 5.6 Hydrology and Water Quality         |      |
|           | 5.7 Noise                               |      |
|           |                                         |      |
| Chapter 3 |                                         |      |
| I.        | Aesthetics                              |      |
| II.       | Agriculture and Forest Resources        |      |
| III.      | Air Quality                             |      |
| IV.       | Biological Resources                    |      |
| V.        | Cultural Resources                      |      |
| VI.       | Geology and Soils                       |      |
| VII.      | Greenhouse Gas Emissions                |      |
| VIII.     | Hazards and Hazardouse Materials        |      |
| IX.       | Hydrology and Water Quality             |      |
| X.        | Land Use and Planning                   |      |
| XI.       | Mineral Resources                       |      |
| XII.      | Noise                                   |      |
| XIII.     | Population and Housing                  |      |
| XIV.      | Public Services                         |      |
| XV.       | Recreation                              |      |
| XVI.      | Transportation/Traffic                  |      |
| XVII      | Utilities and Service Systems           | 3-51 |

| Chapter 4 Other Federal Environmental Compliance Requirements 4- 4.1 Indian Trust Assets (ITAs) 4- 4.2 Indian Sacred Sites 4- 4.3 Socioeconomics 4- 4.4 Environmental Justice 4- 4.5 Consultation and Coordination 4- 4.5.1 2014 Stakeholder Involvement 4- 4.5.2 Resource Agency Involvement 4- 4.5.3 Public Comments 4-  Chapter 5 References 5-  Table 2-1. Maximum Potential Transfer by Seller (Acre Feet) 5-  Table 2-2. Potential Transfer Types by Seller Based on 40 Percent Water Supplies from Reclamation (Upper Limits in Acre-Feet) 2-  Table 2-3. Potential Transfer Types by Seller Based on 75 Percent Water Supplies from Reclamation (Upper Limits in Acre-Feet) 2-  Table 2-4. Potential Buyers 2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.1 Indian Trust Assets (ITAs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4.3 Socioeconomics 4- 4.4 Environmental Justice 4- 4.5 Consultation and Coordination 4- 4.5.1 2014 Stakeholder Involvement 4- 4.5.2 Resource Agency Involvement 4- 4.5.3 Public Comments 5-  Chapter 5 References 5-  Table 2-1. Maximum Potential Transfer by Seller (Acre Feet) 2- Table 2-2. Potential Transfer Types by Seller Based on 40 Percent Water Supplies from Reclamation (Upper Limits in Acre-Feet) 2- Table 2-3. Potential Transfer Types by Seller Based on 75 Percent Water Supplies from Reclamation (Upper Limits in Acre-Feet) 2- Table 2-3. Potential Transfer Types by Seller Based on 75 Percent Water Supplies from Reclamation (Upper Limits in Acre-Feet) 2- Table 2-3. Potential Transfer Types by Seller Based on 75 Percent Water Supplies from Reclamation (Upper Limits in Acre-Feet) 2- Table 2-3. Potential Transfer Types by Seller Based on 75 Percent Water Supplies from Reclamation (Upper Limits in Acre-Feet) 2- Table 2-3. Potential Transfer Types by Seller Based on 75 Percent Water Supplies from Reclamation (Upper Limits in Acre-Feet) 2- Table 2-3. Potential Transfer Types by Seller Based on 75 Percent Water Supplies from Reclamation (Upper Limits in Acre-Feet) 2- Table 2-3. Potential Transfer Types by Seller Based on 75 Percent Water Supplies from Reclamation (Upper Limits in Acre-Feet) 2- Table 2-3. Potential Transfer Types by Seller Based on 75 Percent Water Supplies from Reclamation (Upper Limits in Acre-Feet) 2- Table 2-3. Potential Transfer Types by Seller Based on 75 Percent Water Supplies from Reclamation (Upper Limits in Acre-Feet) 2- Table 2-3. Potential Transfer Types by Seller Based on 75 Percent Water Supplies from Reclamation (Upper Limits in Acre-Feet) 2- Table 2-3. Potential Transfer Types by Seller Based on 75 Percent Water Supplies from Reclamation (Upper Limits in Acre-Feet) 2- Table 2-3. Potential Transfer Types by Seller Based on 75 Percent Water Supplies from Reclamation (Upper Limits in Acre-Feet) 2- Table 2-3. Potential Transfer Types by Seller Based on 75 Percent Water Supplies from Reclam |
| 4.4 Environmental Justice 4- 4.5 Consultation and Coordination 4- 4.5.1 2014 Stakeholder Involvement 4- 4.5.2 Resource Agency Involvement 4- 4.5.3 Public Comments 5-  Chapter 5 References 5-  Table 2-1. Maximum Potential Transfer by Seller (Acre Feet) 2- Table 2-2. Potential Transfer Types by Seller Based on 40 Percent Water Supplies from Reclamation (Upper Limits in Acre-Feet) 2- Table 2-3. Potential Transfer Types by Seller Based on 75 Percent Water Supplies from Reclamation (Upper Limits in Acre-Feet) 2-  Table 2-3. Potential Transfer Types by Seller Based on 75 Percent Water Supplies from Reclamation (Upper Limits in Acre-Feet) 2-  Table 2-3. Potential Transfer Types by Seller Based on 75 Percent Water Supplies from Reclamation (Upper Limits in Acre-Feet) 2-  Table 2-3. Potential Transfer Types by Seller Based on 75 Percent Water Supplies from Reclamation (Upper Limits in Acre-Feet) 2-  Table 2-3. Potential Transfer Types by Seller Based on 75 Percent Water Supplies from Reclamation (Upper Limits in Acre-Feet) 2-  Table 2-3. Potential Transfer Types by Seller Based on 75 Percent Water Supplies from Reclamation (Upper Limits in Acre-Feet) 2-  Table 2-3. Potential Transfer Types by Seller Based on 75 Percent Water Supplies from Reclamation (Upper Limits in Acre-Feet) 2-  Table 2-3. Potential Transfer Types by Seller Based on 75 Percent Water Supplies from Reclamation (Upper Limits in Acre-Feet) 2-  Table 2-3. Potential Transfer Types by Seller Based on 75 Percent Water Supplies from Reclamation (Upper Limits in Acre-Feet) 2-  Table 2-3. Potential Transfer Types by Seller Based on 75 Percent Water Supplies from Reclamation (Upper Limits in Acre-Feet) 2-  Table 2-3. Potential Transfer Types by Seller Based on 75 Percent Water Supplies from Reclamation (Upper Limits in Acre-Feet) 2-  Table 2-3. Potential Transfer Types by Seller Based on 75 Percent Water Supplies from Reclamation (Upper Limits in Acre-Feet) 2-  Table 2-3. Potential Transfer Types by Seller Based on 75 Percent Water Supplies from Reclamation (Upp |
| 4.5 Consultation and Coordination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4.5.1 2014 Stakeholder Involvement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4.5.2 Resource Agency Involvement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Tables  Table 2-1. Maximum Potential Transfer by Seller (Acre Feet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Tables  Table 2-1. Maximum Potential Transfer by Seller (Acre Feet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Tables  Table 2-1. Maximum Potential Transfer by Seller (Acre Feet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Table 2-1. Maximum Potential Transfer by Seller (Acre Feet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Table 2-1. Maximum Potential Transfer by Seller (Acre Feet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Table 2-2. Potential Transfer Types by Seller Based on 40 Percent Water Supplies from Reclamation (Upper Limits in Acre-Feet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Reclamation (Upper Limits in Acre-Feet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Table 2-3. Potential Transfer Types by Seller Based on 75 Percent Water Supplies from Reclamation (Upper Limits in Acre-Feet)2-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Reclamation (Upper Limits in Acre-Feet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Table 2-5. Estimated ETAW Values for Various Crops Suitable for Idling or Shifting  Transfers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Table 2-6. State and Federal Attainment Status 2-1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Table 2-7. Fish Species of Management Concern                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Table 3-1. CEQA Significance Thresholds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Table 3-2. Unmitigated Daily Emissions 3-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Table 3-3. Unmitigated Annual Emissions 3-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Table 3-4. Mitigated Emissions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Table 3-5. General Conformity Applicability Evaluation 3-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Table 3-6. Annual Harvested Rice Acreage by County in Sellers' Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Table 3-7. Summary of Project GHG Emissions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Table 3-8. Water Transfers through Groundwater Substitution under the Proposed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Table 3-9. Potential Additional Cumulative Sellers (Upper Limits)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Table 4-1. Summary of 2011 Regional Economy in Glenn, Colusa, Sutter, and Yolo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Counties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Table 4-2. 2012 Demographics and Income in Transferring Counties 4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Table 4-3. Farm Employment, 2003-2012 4-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

## **Figures**

| Figure 2-1. Potential Selling Entities                                              | 2-3  |
|-------------------------------------------------------------------------------------|------|
| Figure 3-1. Groundwater Levels at the Water Table due to Substitution Pumping at    |      |
| Location 12 (See Figure 3-3 for contours)                                           | 3-30 |
| Figure 3-2. Groundwater Levels in the Deep Aquifer due to Substitution Pumping at   |      |
| Location 12 (See Figure 3-4 for contours)                                           | 3-30 |
| Figure 3-3. Proposed Action Effects on Groundwater Levels at the Water Table        | 3-33 |
| Figure 3-4. Proposed Action Effects on Groundwater Levels in the Deep Aquifer       | 3-35 |
| Figure 4-1. Groundwater Effects to ITAs in the Sacramento Valley Groundwater Basin. | 4-2  |

## **Appendices**

| Appendix A | Public Comments                                            |
|------------|------------------------------------------------------------|
| Appendix B | Responses to Comments                                      |
| Appendix C | Groundwater Monitoring Data from 2013 Water Transfers      |
| Appendix D | <b>Environmental Commitments and Minimization Measures</b> |
| Appendix E | Mitigation Monitoring and Reporting Program                |
| Appendix F | Groundwater Monitoring Data                                |
| Appendix G | Air Quality Emissions Calculations                         |
| Appendix H | Special Status Wildlife Species with Potential to Occur    |
| Appendix I | Special Status Plant Species with Potential to Occur       |
| Appendix J | Greenhouse Gas Emisssions Calculations                     |
| Appendix K | Groundwater Modeling Results                               |
|            |                                                            |

### **Abbreviations and Acronyms**

AF Acre Foot

APCD Air Pollution Control District

AQAP Air Quality Attainment Plan

AQMD Air Quality Management District

ATCM Airborne Toxic Control Measure

BA Biological Assessment

Banks PP Harvey O. Banks Pumping Plant

Bgs Below ground surface BO Biological Opinion

CAAQS California Ambient Air Quality Standards

CARB California Air Resources Board
CCR California Code of Regulations
CDEC California Data Exchange Center
CEQA California Environmental Quality Act

CFR Code of Federal Regulations

Cfs cubic feet per second

CH<sub>4</sub> Methane

CO Carbon Monoxide CO<sub>2</sub> Carbon Dioxide

CO<sub>2</sub>e Carbon Dioxide Equivalent CVP Central Valley Project

CVPIA Central Valley Project Improvement Act

dB Decibel

Delta Sacramento-San Joaquin River Delta

DWR California Department of Water Resources

EA Environmental Assessment

EDD California Economic Development Department

EIR Environmental Impact Report
EIS Environmental Impact Statement

ESA Endangered Species Act

ETAW Evapotranspiration of Applied Water FONSI Finding of No Significant Impact

FE Federal Endangered
FT Federal Threatened
GGS Giant Garter Snake
GHG Greenhouse Gas

GIS Geographic Information System

gpm gallons per minute

GWP Global Warming Potential HCP Habitat Conservation Plan

ID Irrigation District

IPCC Intergovernmental Panel on Climate Change

IS Initial Study

ITAs Indian Trust Assets

Jones PP C.W. "Bill" Jones Pumping Plant MCL Maximum Contaminant Level

Mg/L miligrams per liter

MWC Mutual Water Company

N<sub>2</sub>O Nitrous Oxide

NAAQS National Ambient Air Quality Standards
NCCP Natural Community Conservation Plan
NEPA National Environmental Policy Act
NMFS National Marine Fisheries Service

NOx Nitrogen Oxides

NSVPA Northern Sacramento Valley Planning Area

 $O_3$  ozone

 $PM_{10}$  Inhalable Particulate Matter  $PM_{2.5}$  Fine Particulate Matter Reclamation Bureau of Reclamation

SACFEM Sacramento Valley Groundwater Model

SE State Endangered

SIP State Implementation Plan

SLDMWA San Luis & Delta-Mendota Water Authority

SOx Sulfur Oxides

SSC State Species of Special Concern

ST State Threatened SWP State Water Project

SWRCB State Water Resources Control Board TCCA Tehama Colusa Canal Authority

TDS Total Dissolved Solids

tpy tons per year

TUC Temporary Urgency Change

UCCE University of California Cooperative Extension

USDA United States Department of Agriculture

## 2014 Tehama-Colusa Canal Authority Water Transfers Environmental Assessment/Initial Study

USEPA United State Environmental Protection Agency

USFWS United States Fish and Wildlife Service

USGS United States Geological Survey VOC Volatile Organic Compounds

WA Water Agency
WD Water District

2010-2011 WTP EA 2010-2011 Water Transfers Program EA

## Chapter 1 Introduction

This Environmental Assessment (EA) and Initial Study (IS) for water transfers in contract year 2014<sup>1</sup> was prepared by the U.S. Department of the Interior, Bureau of Reclamation (Reclamation) and the Tehama-Colusa Canal Authority (TCCA). This joint EA/IS document satisfies the requirements of the National Environmental Policy Act (NEPA) (42 USC §4231 et seq.), the Council of Environmental Quality implementing regulations (40 CFR §1500-1508), the Department of the Interior's NEPA regulations (43 CFR Part 46), the California Environmental Quality Act (CEQA), and the Governor's Office of Planning and Research regulations to implement CEQA (Sections 15000-15387 of the California Code of Regulations). Reclamation is the federal lead agency responsible for NEPA review, through the EA, of the proposed water transfers, and the TCCA is the state lead agency responsible for CEQA review, through the IS, of the proposed water transfers.

This EA/IS describes the potential direct, indirect, and cumulative effects of transferring water from willing sellers, resulting from forbearance<sup>2</sup> actions taken by the sellers, to the Member Units of the TCCA. The sellers hold water rights on northern California waterways or contracts with the State of California (for water from the State Water Project [SWP]) or the United States (for Base Supply<sup>3</sup> and Central Valley Project (CVP) Water<sup>4</sup> ("Project Water")). This EA/IS also identifies measures that have been incorporated to minimize or avoid project-related impacts. The transfers included in this document are only those involving Project Water or Base Supply or CVP facilities. These transfers would require approval from Reclamation, which necessitates compliance with NEPA. These transfers would also require CEQA compliance for the buyers and sellers.

<sup>&</sup>lt;sup>1</sup> Water Service Contract Year is March 1, 2014 through February 28, 2015. Sacramento River Settlement Contract Year is April 1, 2014 through October 31, 2014.

<sup>&</sup>lt;sup>2</sup> For purposes of this EA, the term "forbear" or "forbearance" will refer to both the Base Supply and Project Water made available under the respective Sacramento River Settlement Contract, although, it is understood the Base Supply will be forborne, while the Project Water will be transferred.

<sup>&</sup>lt;sup>3</sup> Article 1(b) of the Sacramento River Settlement Contract defines Base Supply as the quantity of Surface Water established in Articles 3 and 5 which may be diverted by the Contractor from its Source of Supply each month during the period April through October of each Year without payment to the United States for such quantities diverted.

<sup>&</sup>lt;sup>4</sup> Article 1(n) of the Sacramento River Settlement Contract defines Project water as all Surface Water diverted or scheduled to be diverted each month during the period April through October of each Year by the Contractor from its Source of Supply which is in excess of the Base Supply.

Other transfers not involving the TCCA and its Member Units could occur during the same time period. The San Luis & Delta-Mendota Water Authority (SLDMWA) is releasing a separate EA/IS to analyze transfers from a very similar list of sellers to the SLDMWA Participating Members. These two documents reflect different potential buyers for the same water sources; that is, the sellers have only the amounts of water listed in Section 2 available for transfer, but the water could be purchased by SLDMWA or TCCA members.

#### 1.1 Background

The TCCA and its Member Units will experience severe water shortages in 2014 and are soliciting willing sellers to transfer water. A number of entities upstream from the Delta have expressed interest in transferring water to Member Units of the TCCA. The TCCA would negotiate with these sellers, on behalf of the Member Units, to identify potential transfers and the specifics of each transfer arrangement, which, collectively, constitute the "proposed project" to be addressed under CEQA. The TCCA and these willing sellers are using this EA/IS to inform decision-makers and the public of the potential environmental effects of the proposed water transfers and determine whether the transfers may result in significant environmental impacts that warrant the preparation of an Environmental Impact Report under CEQA. Because of the extremely dry conditions, the environment and agricultural community are already being impacted; this EA/IS focuses on the incremental impacts beyond those already anticipated.

To facilitate the transfer of water throughout the State, Reclamation is considering whether it should approve and facilitate water transfers between willing sellers and buyers when Base Supply, Project Water, or CVP facilities are involved in the transfer. Reclamation will not take part in the transfer negotiation process, nor will Reclamation develop a "program" to connect buyers and sellers. Reclamation would focus on the approval and facilitation of individual transfers of water involving Base Supply and/or Project Water or involving CVP facilities; these transfers constitute the "proposed action" to be addressed under NEPA. Reclamation is using this EA/IS to evaluate the potential environmental effects of the proposed action and determine whether it may result in significant environmental impacts.

Transfers would occur from sellers located upstream from the Delta to buyers that receive water from the Tehama-Colusa or Corning Canals, which divert Project Water<sup>5</sup> from the Sacramento River at the Red Bluff Pumping Plant. To deliver transferred water to Member Units of the TCCA, Reclamation would reoperate CVP facilities and may also request the California Department of

<sup>&</sup>lt;sup>5</sup> Article 1(u) of the Water Service Contract defines Project Water as all water that is developed, diverted, stored, or delivered by the Secretary in accordance with the statutes authorizing the Project and in accordance with the terms and conditions of water rights acquired pursuant to California law.

Water Resources (DWR) to reoperate State Water Project (SWP) facilities. Reclamation would review and approve, as appropriate, proposed water transfers in accordance with the *DRAFT Technical Information for Preparing Water Transfer Proposals* (Reclamation and DWR 2013), state law, the *Draft Interim Guidelines for Implementation of the Water Transfer Provisions of the Central Valley Project Improvement Act (Title XXXIV of Public Law 102-575)*, or the *Addendum to DRAFT Technical Information for Preparing Water Transfer Proposals* (Reclamation and DWR 2014).

#### 1.2 Need for Proposal and Project Objectives

While the 2014 water year, which extends from October 1, 2013 through September 30, 2014, is only partially complete, the hydrologic conditions so far have been critically dry. These conditions are worsened by the dry conditions statewide in 2012 and 2013, which affected reservoir storage coming into water year 2014. For example, storage in Shasta Reservoir was 1,794,000 acre-feet (AF) on March 3, 2014, which is 54 percent of average at this time of year and substantially less than storage on the same date in the previous year (3,620,000 AF) (California Data Exchange Center [CDEC] 2014). While it is too early in 2014 to know with certainty the final water supplies, CVP and SWP water service contractors initial allocations are 0 percent, and Sacramento River Settlement Contractors (Settlement Contractors) and refuges have been notified that the initial estimate of water supply available from Reclamation is 40 percent of their Contract Total rather than the anticipated 75 percent. Because of the extremely dry conditions in 2014, Governor Jerry Brown declared a drought state of emergency on January 17, 2014. The declaration calls for increased water conservation, implementation of water shortage contingency plans, accelerated funding for water supply projects, increased groundwater monitoring, and expedited processing of water transfers.

As a result of the significantly reduced water supplies available from Reclamation, the TCCA is in need of approximately 155,000 AF of water for about 70,000 acres of permanent crops to prevent the long term impacts of allowing these crops to die. Reclamation's need is to approve the transfer of Base Supply or Project Water that may require the use of CVP facilities, consistent with state and federal law, the Sacramento River Settlement Contract, and the Interim Guidelines for Implementation of the Water Transfer Provisions of the Central Valley Project Improvement Act (Title XXXIV of Public Law 102-575).

#### 1.3 Document Structure

To consider environmental impacts of the Proposed Action pursuant to both NEPA and CEQA, Chapter 3 includes the analysis of possible effects to resources using an initial study checklist adapted from the CEQA Guidelines Appendix G. Discussion of potential impacts for the No Action Alternative and Proposed Action are addressed in more detail following each checklist section.

The CEQA Checklist does not incorporate all resource areas required by NEPA; Chapter 4 includes NEPA-specific components.

The Draft EA/IS was released for public comment from March 13, 2014 to April 2, 2014. Appendix A includes public comment letters received, and Appendix B includes responses to those comments.

#### 1.4 Long-Term Water Transfers

Reclamation and SLDMWA are preparing a joint Environmental Impact Statement/Environmental Impact Report (EIS/EIR) to analyze the effects of water transfers from water agencies in northern California to water agencies south of the Delta and in the San Francisco Bay Area. The EIS/EIR will evaluate transfers of Project Water and non-Project water supplies that require use of CVP or SWP facilities to convey the transferred water. The EIS/EIR will evaluate water transfers over a 10-year period, from 2015 through 2024. Scoping has been completed for this project and all of the scoping information is available on Reclamation's website at <a href="http://www.usbr.gov/mp/cvp/ltwt/">http://www.usbr.gov/mp/cvp/ltwt/</a>. Transfers under that EIS/EIR would not affect 2014 water transfers, but consultation and coordination for Long-Term Water Transfers has assisted in development of this EA/IS.

## Chapter 2 Alternatives

#### 2.1 No Action

For the No Action Alternative, the TCCA, on behalf of the Member Units, would not buy water from willing sellers that required Reclamation approval during contract year 2014. Agricultural and urban water users will face shortages in the absence of water transfers. While it is too early in 2014 to know with certainty the final water supply made available by Reclamation, CVP and SWP water service contractors' initial allocations are 0 percent, and Settlement Contractors and refuges have been notified that the initial portion of the Contract Total to be made available this year is 40 percent rather than the anticipated 75 percent. These users may take alternative water supply actions in response to shortages, including increased groundwater pumping, cropland idling, reduction of landscape irrigation, or water rationing. Water users may also seek to transfer water from others, which may require additional NEPA or CEQA analysis. In the absence of transfers, growers may not have enough water to meet demands, and some permanent crops could be lost.

Given the current estimate of water supply to be made available by Reclamation and severely dry conditions, Glenn-Colusa Irrigation District (ID) estimated that about 15 percent of rice in the service area would be idled if the amount to be made available is 75 percent of its Contract Total (Bettner personal communication 2014). Glenn-Colusa ID was not able to provide an estimate of land that would be idled given the initial portion of the Contract Total to be made available this year of 40 percent. Other districts indicate that they would limit supplies to each grower based on surface water supply shortages, and each grower would make a field-by-field decision of whether they should idle some of their cropland or pump groundwater to augment supplies. Cropland idling estimates are not available at this time for these districts because each grower will make independent decisions regarding idling, though it is expected many growers will be idling considerable acreage under the No Action Alternative.

#### 2.2 Proposed Action/Proposed Project

The Proposed Action and Proposed Project (referred to herein as the Proposed Action) is the transfer of water in contract year 2014 to the Member Units of the TCCA. Reclamation has approval authority over potential transfers of Base Supply and Project Water, or transfers that involve the use of CVP facilities.

The Proposed Action includes potential transfers of up to 155,000 AF of water from 18 entities, listed in Table 2-1 and shown in Figure 2-1, to TCCA Member

Units. (Figure 2-1 shows selling agencies, but individual farms that could sell water are not included.) These transfers also include transfers between "common landowners" that own land in multiple water districts that may want to move water between different parcels to preserve permanent crops. Given the initial estimate of water supply to be made available by Reclamation is 0 percent to CVP water service contractors, 40 percent to Settlement Contractors, and 50 percent to DWR Settlement Contractors, it is highly unlikely that the TCCA will be able to obtain the full 155,000 AF through transfers. Table 2-1 shows potential upper limits for transfers based on the current estimates of water supply to be made available by Reclamation (40 percent to Settlement Contractors), but also shows potential upper limits if the available supplies increase to 75 percent. This list represents those agencies with whom the TCCA may negotiate the transfer of water. If Reclamation is able to increase available supplies, the TCCA may be able to negotiate the transfer of the full 155,000 AF. For analytical purposes, the full 155,000 AF is assumed to be available; however, it is not possible to determine which negotiations would be successful, what combination of sellers would ultimately transfer water to the TCCA, or how much water would ultimately be transferred to the TCCA. For this reason, modeling and analysis assumes the quantities and methods provided in Table 2-1 for 75 percent supplies to display the impacts that would be associated with providing the full 155,000 AF to the TCCA.

Table 2-1. Maximum Potential Transfer by Seller (Acre Feet)

| Water Agency                               | Maximum<br>Transfer<br>based on 40<br>Percent<br>Supplies | Maximum<br>Transfer<br>based on 75<br>Percent<br>Supplies |
|--------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|
| Anderson-Cottonwood Irrigation District    | 2,400                                                     | 4,800                                                     |
| Canal Farms                                | 722                                                       | 860                                                       |
| Conaway Preservation Group                 | 20,340                                                    | 26,639                                                    |
| Eastside Mutual Water Company              | 1,053                                                     | 2,000                                                     |
| Glenn-Colusa Irrigation District           | 51,168                                                    | 102,168                                                   |
| Maxwell Irrigation District                | 4,000                                                     | 7,500                                                     |
| Natomas Central Mutual Water Company       | 0                                                         | 30,000                                                    |
| Pelger Mutual Water Company                | 1,600                                                     | 4,000                                                     |
| Pleasant Grove-Verona Mutual Water Company | 7,000                                                     | 15,000                                                    |
| Princeton-Codora-Glenn Irrigation District | 8,000                                                     | 8,000                                                     |
| Provident Irrigation District              | 8,000                                                     | 8,000                                                     |
| Reclamation District 108                   | 15,000                                                    | 35,000                                                    |
| Reclamation District 1004                  | 12,900                                                    | 12,900                                                    |
| River Garden Farms                         | 0                                                         | 6,000                                                     |
| Roberts Ditch Irrigation Company           | 1,776                                                     | 3,330                                                     |
| Sycamore Mutual Water Company              | 10,000                                                    | 14,000                                                    |
| T&P Farms                                  | 620                                                       | 840                                                       |
| Te Velde Revocable Family Trust            | 1,520                                                     | 5,387                                                     |
| Total                                      | 146,099                                                   | 286,424                                                   |

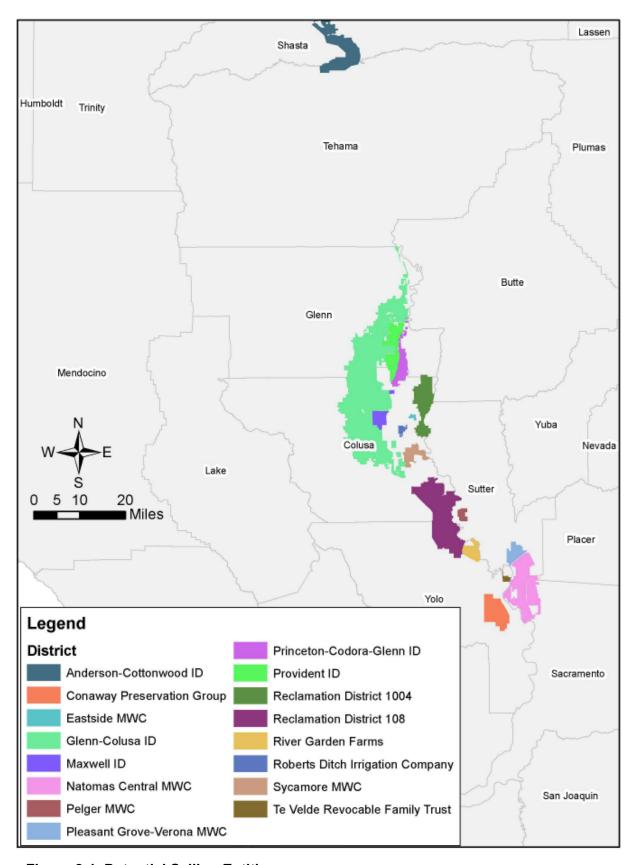



Figure 2-1. Potential Selling Entities

Administratively, Reclamation would evaluate each proposal individually, as it is received, to determine if it meets state law and Central Valley Project Improvement Act (CVPIA) requirements. Reclamation has followed this process in past years when approving transfers (such as the Drought Water Bank in 2009 and water transfers in 2013). Reclamation would reoperate CVP facilities to deliver transferred water to TCCA Member Units; DWR may also reoperate SWP facilities to help facilitate delivery of transferred water.

#### 2.2.1 Sellers

Table 2-1 lists agencies that have expressed interest in making water available for transfer in 2014 and the maximum transfer amounts under current and potentially increased water supplies from Reclamation. Table 2-2 shows the methodology by which the sellers could make water available for transfer with the current CVP and SWP water supplies (40 percent). Because of the hydrologic conditions, many agencies are uncertain about which transfer type would be used, and have therefore included potential upper limits for both types of transfers in Table 2-2. While the entity making water available could use one or a combination of mechanisms for making water available, or may shift the quantity made available during a particular period, the overall amount transferred would not exceed the values in Table 2-1.

Because the hydrology could change as the year moves forward, Table 2-3 shows the maximum transfer amounts for each transfer type if water supplies from Reclamation increase to 75 percent. As discussed above, these transfer quantities are assessed in this EA/IS to allow transfers to move forward if water supplies from Reclamation increase in the future. This analysis is conservative because these larger transfers would have greater potential for environmental impact than the smaller transfers based on current water supplies. Similar to Table 2-2, sellers have included multiple transfer types to allow flexibility, but the overall amount transferred would not exceed the values in Table 2-1.

The majority of the water would be transferred between April and September, but a small amount of water could also move in October to provide irrigation after harvest, when needed. Generally, groundwater substitution transfers could provide some water in October; however, the overall amount of water made available would not change. If water were made available in October, the overall totals from April through October would still not exceed the upper limits provided in Table 2-1.

Table 2-2. Potential Transfer Types by Seller Based on 40 Percent Water Supplies from Reclamation (Upper Limits in Acre-Feet)

|                                            | April –                     | June                                | July – October              |                                     |  |
|--------------------------------------------|-----------------------------|-------------------------------------|-----------------------------|-------------------------------------|--|
| Water Agency                               | Groundwater<br>Substitution | Cropland<br>Idling/Crop<br>Shifting | Groundwater<br>Substitution | Cropland<br>Idling/Crop<br>Shifting |  |
| Anderson-Cottonwood Irrigation District    |                             |                                     | 2,400                       |                                     |  |
| Canal Farms                                | 424                         | 175                                 | 298                         | 298                                 |  |
| Conaway Preservation Group                 | 14,960                      | 3,160                               | 5,380                       | 5,380                               |  |
| Eastside Mutual Water Company              | 556                         |                                     | 497                         |                                     |  |
| Glenn-Colusa Irrigation District           | 11,870                      | 9,250                               | 14,298                      | 15,750                              |  |
| Maxwell Irrigation District                | 2,000                       |                                     | 2,000                       |                                     |  |
| Natomas Central Mutual Water Company       |                             |                                     |                             |                                     |  |
| Pelger Mutual Water Company                | 400                         |                                     | 1,200                       |                                     |  |
| Pleasant Grove-Verona Mutual Water Company | 4,000                       | 1,762                               | 3,000                       | 3,000                               |  |
| Princeton-Codora-Glenn Irrigation District | 2,000                       | 1,110                               | 3,000                       | 1,890                               |  |
| Provident Irrigation District              | 2,000                       | 1,110                               | 3,000                       | 1,890                               |  |
| Reclamation District 108                   |                             | 5,550                               |                             | 9,450                               |  |
| Reclamation District 1004                  |                             | 2,775                               | 5,400                       | 4,725                               |  |
| River Garden Farms                         |                             |                                     |                             |                                     |  |
| Roberts Ditch Irrigation Company           | 1,072                       | 413                                 | 704                         | 704                                 |  |
| Sycamore Mutual Water Company              | 3,000                       | 2,349                               | 4,000                       | 4,000                               |  |
| T&P Farms                                  | 396                         | 132                                 | 224                         | 224                                 |  |
| Te Velde Revocable Family Trust            | 1,000                       | 305                                 | 520                         | 520                                 |  |
| Total <sup>1</sup>                         | 43,678                      | 28,091                              | 45,921                      | 47,831                              |  |

#### Note:

<sup>&</sup>lt;sup>1</sup> These totals cannot be added together. Agencies could make water available through groundwater substitution, cropland idling, or a combination of the two; however, they will not make the full quantity available through both methods. Table 2-1 reflects the total upper limit for each agency.

Table 2-3. Potential Transfer Types by Seller Based on 75 Percent Water Supplies from Reclamation (Upper Limits in Acre-Feet)

|                                            | April –                     | June                                | July – October              |                                     |  |
|--------------------------------------------|-----------------------------|-------------------------------------|-----------------------------|-------------------------------------|--|
| Water Agency                               | Groundwater<br>Substitution | Cropland<br>Idling/Crop<br>Shifting | Groundwater<br>Substitution | Cropland<br>Idling/Crop<br>Shifting |  |
| Anderson-Cottonwood Irrigation District    | 2,400                       |                                     | 2,400                       |                                     |  |
| Canal Farms                                | 460                         | 235                                 | 400                         | 400                                 |  |
| Conaway Preservation Group                 | 16,550                      | 5,925                               | 10,089                      | 10,089                              |  |
| Eastside Mutual Water Company              | 1,067                       |                                     | 933                         |                                     |  |
| Glenn-Colusa Irrigation District           | 11,870                      | 28,120                              | 14,298                      | 47,880                              |  |
| Maxwell Irrigation District                | 2,300                       | 2,775                               | 2,400                       | 4,725                               |  |
| Natomas Central Mutual Water Company       | 15,000                      |                                     | 15,000                      |                                     |  |
| Pelger Mutual Water Company                | 2,000                       | 704                                 | 2,000                       | 1,199                               |  |
| Pleasant Grove-Verona Mutual Water Company | 8,000                       | 3,330                               | 7,000                       | 5,670                               |  |
| Princeton-Codora-Glenn Irrigation District | 2,000                       | 1,110                               | 3,000                       | 1,890                               |  |
| Provident Irrigation District              | 2,000                       | 1,110                               | 3,000                       | 1,890                               |  |
| Reclamation District 108                   | 7,500                       | 7,400                               | 7,500                       | 12,600                              |  |
| Reclamation District 1004                  |                             | 2,775                               | 5,400                       | 4,725                               |  |
| River Garden Farms                         | 3,000                       |                                     | 3,000                       |                                     |  |
| Roberts Ditch Irrigation Company           | 2,010                       | 775                                 | 1,320                       | 1,320                               |  |
| Sycamore Mutual Water Company              | 4,000                       | 3,700                               | 4,000                       | 6,300                               |  |
| T&P Farms                                  | 440                         | 235                                 | 400                         | 400                                 |  |
| Te Velde Revocable Family Trust            | 1,950                       | 1,993                               | 975                         | 3,394                               |  |
| Total <sup>1</sup>                         | 82,547                      | 60,187                              | 83,115                      | 102,482                             |  |

Note:

#### 2.2.2 Buyers

Table 2-4 identifies entities that may be interested in buying transfer water. Not all of these potential buyers may end up actually purchasing water from the sellers. Purchase decisions depend on a number of factors, including, but not limited to, hydrology, water demands, availability of other supplies, and transfer costs. Reclamation and DWR would need to reoperate the CVP and SWP to deliver the transferred water, and the reoperation could be limited based on specific hydrologic conditions, biological conditions, or water quality issues. Reclamation cannot guarantee that a specific quantity of transfer capacity will be available.

<sup>&</sup>lt;sup>1</sup> These totals cannot be added together. Agencies could make water available through groundwater substitution, cropland idling, or a combination of the two; however, they will not make the full quantity available through both methods. Table 2-1 reflects the total upper limit for each agency.

**Table 2-4. Potential Buyers** 

| Tehama Colusa Canal Authority Member Units |
|--------------------------------------------|
| Colusa County Water District               |
| Corning Water District                     |
| Cortina Water District                     |
| Davis Water District                       |
| Dunnigan Water District                    |
| 4-M Water District                         |
| Glenn Valley Water District                |
| Glide Water District                       |
| Kanawha Water District                     |
| Kirkwood Water District                    |
| Myers-Marsh Mutual Water Company           |
| Orland-Artois Water District               |
| Westside Water District                    |

#### 2.2.3 Potential Water Transfer Methods

This EA/IS analyzes transfers from groundwater substitution and cropland idling/crop shifting, which are further described below. No other types of water transfers are covered by the evaluation in this EA/IS.

Reclamation approves transfers consistent with provisions of state and federal law that protect against injury to third parties as a result of water transfers. Several important principles include requirements that the transfer will not violate the provisions of federal or state law, will have no significant adverse effect on the ability to deliver Project Water, will be limited to water that would be consumptively used or irretrievably lost to beneficial use, will have no significant long-term adverse impact on groundwater conditions, and will not adversely affect water supplies for fish and wildlife purposes. Reclamation would not approve water transfers for which these basic principles have not been adequately addressed.

In 2014, some transfers may be accomplished through forbearance agreements rather than transfers that involve the State Water Resources Control Board. Forbearance agreements with Reclamation could be used for transfers between two CVP contractors. Under the agreements, sellers would forbear (i.e., temporarily suspend) the diversion of some of their Project Water or Base Supply, which in the absence of forbearance, would have been diverted during 2014 for use on lands within the sellers' service areas. This forbearance would be undertaken in a manner that allows Reclamation to deliver the forborne water supply as Project water to Member Units of the TCCA. A forbearance agreement would not change the way that water is made available for transfer,

conveyed to buyers, or used by the buyers. While the forbearance agreement would change the contractual arrangement used to deliver the water (and the necessary agency approvals for the transfer), it would not change the environmental effects of the transfer.

Additional information about water rights protection and water transfers is located at

http://www.waterboards.ca.gov/waterrights/water\_issues/programs/water\_transf ers/docs/watertransferguide.pdf in a State Water Resources Control Board (SWRCB) staff document titled *A Guide to Water Transfers - Draft* (SWRCB 1999).

#### 2.2.3.1 Groundwater Substitution

Groundwater substitution transfers occur when sellers choose to pump groundwater in lieu of diverting surface water supplies, thereby making the surface water available for transfer. Sellers making water available through groundwater substitution actions are agricultural users. Water could be made available for transfer during the irrigation season of April through October.

The mechanism to deliver transferred water to the TCCA would depend on the seller location. Some sellers, like Glenn-Colusa ID, have interconnections to the TCCA. The interconnection is typically used to deliver water to Glenn-Colusa ID from the Tehama-Colusa Canal; during a transfer, these deliveries would be reduced and additional water would stay in the TCCA area. Most of the groundwater substitution transfers are from agencies that typically divert water downstream on the Sacramento from the Tehama-Colusa Canal. Delivering water to the TCCA instead of downstream users on the Sacramento River could reduce flow in the Sacramento River between the diversion points; Reclamation would work closely with the TCCA to make sure that these transfers do not affect the flow or temperature requirements in the Sacramento River. To deliver transferred water from the Feather River system, additional flow from the Feather River would be used to meet downstream needs to allow additional Sacramento River flow to be delivered to the TCCA. Again, this reoperation would need to be carefully coordinated with CVP and SWP operations to make sure that any change in flows would not affect flow or temperature requirements in any of the waterways.

An objective in planning a groundwater substitution transfer is to ensure that groundwater levels recover to their seasonal high levels before transfers begin. Because groundwater levels generally recover at the expense of stream flow, the wells used in a groundwater substitution transfer should be sited and pumped in such a manner that the stream flow losses resulting from pumping are primarily during the wet season, when losses to stream flow minimally affect other legal users of water. For the purposes of this EA/IS, the stream flow losses are assumed to be 12 percent of the amount pumped for transfer. The quantity of water available for transfer would be reduced by these estimated stream flow losses.

#### 2.2.3.2 Cropland Idling/Crop Shifting

Cropland idling would make water available for transfer that would have been used for agricultural irrigation absent the transfer. Typically, the proceeds from the water transfer would pay growers to idle land that they would have otherwise placed in production. Rice has been the crop idled most frequently in previous transfer programs, and is the crop that could be idled for 2014 transfers.

The quantity of water made available for transfer through cropland idling actions would be calculated based on the evapotranspiration of applied water (ETAW). ETAW is the portion of applied surface water that is evaporated from the soil and plant surfaces and actually used by the crop. For 2014, this EA/IS only analyzes cropland idling from rice crops, which have an ETAW of 3.3 AF/acre (Reclamation and DWR 2013).

For crop shifting transfers, water is made available when farmers shift from growing a higher water use crop to a lower water use crop. The difference in ETAW values (Table 2-5) would be the amount of water that can be transferred. Transfers in 2014 could include transfers from rice to a crop with a lower water use from Table 2-5.

Table 2-5. Estimated ETAW Values for Various Crops Suitable for Idling or Shifting Transfers

| Crop                 | ETAW (acre-feet/acre) |
|----------------------|-----------------------|
| Alfalfa <sup>1</sup> | 1.7 (July – Sept)     |
| Bean                 | 1.5                   |
| Corn                 | 1.8                   |
| Cotton               | 2.3                   |
| Melon                | 1.1                   |
| Milo                 | 1.6                   |
| Onion                | 1.1                   |
| Pumpkin              | 1.1                   |
| Rice                 | 3.3                   |
| Sudan Grass          | 3.0                   |
| Sugar Beets          | 2.5                   |
| Sunflower            | 1.4                   |
| Tomato               | 1.8                   |
| Vine Seed/ Cucurbits | 1.1                   |
| Wild Rice            | 2.0                   |

Source: Reclamation and DWR 2013

Notes:

Water made available through cropland idling or crop shifting actions would be available at the beginning of the season (April or May) and would be available for transfer on the same pattern as would otherwise be used by the crop. Water

Only alfalfa grown in the Sacramento Valley floor north of the American River will be allowed for transfers. Fields must be disced on, or prior to, the start of the transfer period. Alfalfa acreage in the foothills or mountain areas is not eligible for transfer.

would be delivered to the TCCA on pattern; that is, in the same volume and at the same time as would have been consumptively used by the crop absent the transfer

Crop shifting would generally reduce potential environmental effects associated with cropland idling. The agencies interested in crop shifting are also interested in cropland idling, but are not sure of the distribution between the two methods. To be conservative, this EA/IS analyzes the effects as if all transfers were from crop idling because crop idling has the greater potential for effects.

For cropland idling transfers, the growers would be compensated but local economies could be adversely affected by decreased agricultural activity. To minimize socioeconomic effects on local areas where cropland idling occurs, the number of acres idled for the purpose of transferring water would be limited to 20 percent of the harvested acreage of each crop considered for idling within the selling district for the given hydrologic year. The "20 percent" figure is based on historical precedents and Water Code Section 1745.05(b) as follows:

- The agricultural industry experiences normal variation in crop acreage; therefore, agricultural economies and local public services adapt to address this variation. Historical amounts of idled land vary year-toyear by close to 20 percent, which indicates that the local economy has adjusted to similar amounts of crop idling.
- County economic measures, such as employment and personal income, fluctuate normally based on current economic conditions. Cropland idling has not generally resulted in economic impacts outside of the historical variations.
- Water Code Section 1745.05(b) requires a public hearing under some circumstances in which the amount of water from land idling exceeds 20 percent of the water that would have been applied or stored by the water supplier absent the water transfer in any given hydrologic year. Third parties would be able to attend the hearing and could argue to limit the transfer based on its economic effects.

#### 2.3 Recent Environmental Documents

In 2010, Reclamation completed the 2010-2011 Water Transfer Program Environmental Assessment (2010-2011 WTP EA) (Reclamation 2010). The 2010-2011 WTP EA provided an assessment of potential impacts to Surface Water Resources, Groundwater Resources, Water Quality, Power Generation, Cultural Resources, Socioeconomics, Indian Trust Assets, Environmental Justice, Climate Change, Visual Resources, Growth Inducing Impacts, and Cumulative Effects associated with potential groundwater substitution water transfers as well as cropland idling/crop shifting water transfers. The 2010-2011 WTP EA evaluated annual groundwater substitution transfers of up to 110,409

AF from the Sacramento and American River areas and cropland idling/crop shifting transfers of up to 109,469 AF from the Sacramento River area.

On February 26, 2010, Reclamation signed a Finding of No Significant Impact (FONSI) that included Reclamation's findings in accordance with NEPA. The FONSI described the key mitigation and monitoring actions necessary to support Reclamation's decision. To address some of the most prevalent comments received during the comment period concerning potential impacts to groundwater resources, Reclamation included well reviews and monitoring and mitigation plans to be implemented under the Proposed Action to minimize potential effects to groundwater resources. All plans were to be coordinated and implemented in conjunction with local ordinances, basin management objectives, and all other applicable regulations. The reviews and plans were to be required from sellers for review by Reclamation, and Reclamation would not approve transfers without adequate mitigation and monitoring plans. Reclamation found that the approval of proposed water transfers in support of the 2010-2011 Water Transfer Program was not a major Federal action that would significantly affect the human environment; therefore, an environmental impact statement was not required. Ultimately, however, no transfer proposals were submitted to Reclamation for approval under the 2010-2011 Water Transfer Program Proposed Action.

In 2013, Reclamation developed an EA for one-year transfers from sellers in the Sacramento River basin to SLDMWA. The EA analyzed up to 37.715 AF of groundwater substitution transfers. The 2013 Water Transfers EA included a detailed assessment of potential impacts to Surface Water Resources, Groundwater Resources, Air Quality, and Biological Resources. On June 21, 2013, Reclamation signed a FONSI with similar findings to those on the 2010-2011 WTP EA. Reclamation found that the 2013 water transfers would not significantly affect the human environment and an environmental impact statement was not required. Approximately 29,217 AF were transferred under actions and approvals addressed and cleared by this environmental document. As part of the monitoring plans required by the EA, the transferring parties have collected monitoring data starting pre-transfer. To date (through January 2014), the available monitoring data indicates that the groundwater aquifer is recovering to pre-transfer levels, as described in the EA (see Appendix C for available monitoring data). Final monitoring reports that describe the monitoring data will be available in May 2014.

#### 2.4 Environmental Commitments

This section presents the Environmental Commitments included in the Proposed Action to reduce potential environmental impacts from water transfers in contract year 2014. These Environmental Commitments will also be included in the Biological Assessment (BA) prepared for the Proposed Action. Appendix D includes the environmental commitments of the project. Appendix E includes the Mitigation Monitoring and Reporting Program, which describes how the

lead agencies will monitor the implementation of mitigation measures, environmental commitments, and minimization measures.

#### **Groundwater Substitution Transfers**

- Well reviews and monitoring and mitigation plans will be implemented to minimize potential effects of groundwater substitution on nearby surface and ground water resources. Well reviews, monitoring and mitigation plans will be coordinated and implemented in conjunction with local ordinances, basin management objectives, and all other applicable regulations. DWR and Reclamation have published draft technical information related to cropland idling/shifting and groundwater substitution transfers titled *DRAFT Technical Information for Preparing Water Transfer Proposals* (Reclamation and DWR 2013), which is available at http://www.water.ca.gov/watertransfers/.
- In groundwater basins where sellers are in the same groundwater subbasin as protected aquatic habitats, such as giant garter snake (GGS) preserves and conservation banks, groundwater substitution will be allowed as part of the 2014 Water Transfers if the seller can demonstrate that any impacts to water resources needed for special status species protection have been addressed. In these areas, sellers will be required to address these impacts as part of their mitigation plan.

#### **Cropland Idling Transfers**

- As part of the approval process, Reclamation will have access to the land to verify how the water transfer is being made available and to verify that the actions to protect the GGS are being implemented.
- Reclamation will provide a map(s) to United States Fish and Wildlife Service (USFWS) in May of 2014 showing the parcels of riceland that are idled for the purpose of transferring water in 2014. These maps will be prepared to comport to Reclamation's GIS standards.
- Water will not be purchased from a field fallowed during the two previous years (water may be purchased from the same parcel in successive years) (Reclamation and DWR 2013).
- Movement corridors for aquatic species include the major irrigation and drainage canals. The water seller will keep at least two feet of water in the major irrigation and drainage canals (but never more than existing conditions).
- In order to limit reduction in the amount of over-winter forage for migratory birds, including greater sandhill crane, transfers will minimize actions near known wintering areas in the Butte Sink.

- To ensure effects of cropland idling/shifting actions on western pond turtle habitat are avoided or minimized, canals will not be allowed to completely dry out.
- The focus of GGS mitigation in districts proposing water transfers made available from fallowed rice fields will be to ensure adequate water is available for priority suitable habitat with a high likelihood of GGS occurrence.
  - The determination of priority habitat will be made through coordination with GGS experts, GIS analysis of proximity to historic tule marsh, and GIS analysis of suitable habitat. The priority habitat areas are indicated on the priority habitat map which will be maintained by USFWS. In addition, fields abutting or immediately adjacent to federal wildlife refuges will be considered priority habitat.
  - Maintenance water in smaller drains and conveyance infrastructure support key habitat attributes such as emergent vegetation for GGS for escape cover and foraging habitat. If crop idling/shifting occurs in priority habitat areas, Reclamation will work with contractors to document that adequate water remains in drains and canals in those priority areas. Documentation may include flow records, photo documentation, or other means of documentation agreed to by Reclamation and USFWS.
  - Areas with known priority GGS populations will not be permitted to participate in cropland idling/shifting transfers. Water sellers can request a case-by-case evaluation of whether a specific field would be precluded from participating in 2014 Water Transfers. These areas include:
    - Fields abutting or immediately adjacent to Butte Creek, Colusa Drainage Canal, Gilsizer Slough, the land side of the Toe Drain along the Sutter Bypass, Willow Slough and Willow Slough Bypass in Yolo County, and
    - Lands in the Natomas Basin.

#### 2.5 Environmental Setting

The environmental setting in which implementation of the No Action Alternative or Proposed Action would occur is summarized below for resources that could be affected by water transfers. Additional details regarding relevant existing environmental conditions are provided in Chapter 3, within the analysis of potential impacts.

#### 2.5.1 Aesthetics

The Central Valley of California is primarily agricultural in nature, with Interstate 5 running from north to south through the valley floor. Views in the region from most major roadways and scenic routes are of agricultural fields or urban landscapes. The mix of orchard and row crop types, fallow fields, rice, and other irrigated crops and dry fields create the visual character for most of the project area. Urban centers, such as Sacramento and Stockton break up the farmland that dominates the views in the Central Valley, creating some major nighttime light sources near the city centers.

#### 2.5.2 Air Quality

Air quality in California is regulated by the United States Environmental Protection Agency (USEPA), the California Air Resources Board (CARB), and locally by Air Pollution Control Districts (APCDs) or Air Quality Management Districts (AQMDs). The following air districts regulate air quality within the project study area:

- Colusa County APCD
- Feather River AQMD
- Glenn County APCD
- Sacramento Metropolitan AQMD
- Shasta County AQMD
- Yolo/Solano AQMD

In the Sacramento Valley Air Basin, ozone (O<sub>3</sub>), inhalable particulate matter (PM<sub>10</sub>), and fine particulate matter (PM<sub>2.5</sub>) are pollutants of concern because ambient concentrations of these pollutants exceed the California Ambient Air Quality Standards (CAAQS). Additionally, ambient O<sub>3</sub> and PM<sub>2.5</sub> concentrations exceed the National Ambient Air Quality Standards (NAAQS), while PM<sub>10</sub> and carbon monoxide (CO) concentrations recently attained the NAAQS and are designated maintenance. Table 2-6 summarizes the attainment status for the counties located in the Sacramento Valley.

Table 2-6. State and Federal Attainment Status

|            | Attainment Status |                   |                  |                  |                   |                  |    |
|------------|-------------------|-------------------|------------------|------------------|-------------------|------------------|----|
| County     |                   | CAAQS             |                  |                  | NAA               | QS               |    |
|            | O <sub>3</sub>    | PM <sub>2.5</sub> | PM <sub>10</sub> | O <sub>3</sub>   | PM <sub>2.5</sub> | PM <sub>10</sub> | СО |
| Colusa     | N-T <sup>1</sup>  | Α                 | N                | Α                | Α                 | Α                | Α  |
| Glenn      | N-T <sup>1</sup>  | U                 | N                | Α                | Α                 | Α                | Α  |
| Sacramento | N                 | N                 | N                | $N^3$            | N                 | M                | М  |
| Shasta     | N                 | А                 | N                | Α                | Α                 | Α                | Α  |
| Sutter     | N-T <sup>1</sup>  | Α                 | N                | N <sup>3,4</sup> | N                 | Α                | Α  |
| Yolo       | N-T <sup>1</sup>  | U                 | N                | N <sup>3</sup>   | N                 | Α                | М  |

Source: 17 California Code of Regulations (CCR) §60200-60210; 40 Code of Federal Regulations (CFR) 81; CARB 2012: USEPA 2013

#### Notes:

#### Key:

A = attainment; CO = carbon monoxide; M = maintenance; N = nonattainment; N-T = nonattainment/transitional;  $O_3$  = ozone;  $PM_{10}$  = inhalable particulate matter;  $PM_{2.5}$  = fine particulate matter; U = unclassified

The Sacramento Valley Air Basin is bounded by the North Coast Ranges on the west and the Northern Sierra Nevada Mountains on the east, forming a bowl-shaped valley. The Sacramento Valley has a Mediterranean climate, which is characterized by hot dry summers and mild rainy winters.

Most of the sellers' service area supports agricultural land uses. Crop cycles, including land preparation and harvest, contribute to pollutant emissions, primarily particulate matter. Groundwater pumping with diesel and natural gasfueled engines also emits air pollutants through exhaust. The primary pollutants emitted by diesel pumps are nitrogen oxides (NOx), volatile organic compounds (VOC), CO, PM<sub>10</sub>, and PM<sub>2.5</sub>; NOx and VOCs are precursors to O<sub>3</sub> formation.

#### 2.5.3 Biological Resources

The project area includes the Sacramento watershed. Although the Sacramento Valley is dominated by agricultural land, remnant grassland, savannah, riparian and wetland habitats remain. In the Sacramento Valley, seasonally flooded agriculture, in particular rice fields, provide important foraging habitat for a variety of wildlife species. Rice fields also provide resting, nesting, and breeding habitat similar to natural wetlands. Irrigation ditches can contain wetland vegetation such as cattails, which provide cover habitat.

Terrestrial species potentially affected by the Proposed Action include GGS (*Thamnopphis gigas*), greater sandhill crane (*Grus canadensis tabida*), black

Nonattainment/transitional areas are defined as those areas that during a single calendar year, the State standards were not exceeded more than three times at any monitoring location within the area.

<sup>&</sup>lt;sup>2</sup> 8-hour O<sub>3</sub> classification = marginal

<sup>&</sup>lt;sup>3</sup> 8-hour O<sub>3</sub> classification = severe

<sup>&</sup>lt;sup>4</sup> The Sacramento Metro nonattainment area for Sutter County is defined as the "portion south of a line connecting the northern border of Yolo County to the southwestern tip of Yuba County and continuing along the southern Yuba County border to Placer County" (40 CFR 81.305).

tern (*Chlidonias niger*), and western pond turtle (*Actinemys marmorata*). The following listings apply to the above species under the Federal and California Endangered Species Acts (ESA).

- Giant Garter Snake listed as threatened under the Federal and California ESAs
- Greater Sandhill Crane listed as threatened under the California ESA and is fully protected under the California Fish and Game Code
- Black Tern listed as a State Species of Concern
- Western Pond Turtle status is under review under the Federal ESA and listed as a State Species of Concern

Table 2-7 summarizes fish species of concern in rivers and tributaries upstream from the Delta in the sellers' area.

**Table 2-7. Fish Species of Management Concern** 

| Status       | Species                       | Primary Management Consideration <sup>(1)</sup> |  |  |
|--------------|-------------------------------|-------------------------------------------------|--|--|
|              | Winter-run Chinook Salmon     | FE, SE                                          |  |  |
| Listed       | Spring-run Chinook Salmon     | FT, ST                                          |  |  |
| Listea       | Central Valley Steelhead      | FT, Recreation                                  |  |  |
|              | Green sturgeon                | FT, Recreation                                  |  |  |
| Commercial   | Fall/late-fall Chinook Salmon | Commercial, Recreation                          |  |  |
| Recreational | Striped bass                  | Recreation                                      |  |  |
|              | American shad                 | Recreation                                      |  |  |
|              | Hardhead                      | SSC, Ecological                                 |  |  |
| Ecological   | Splittail <sup>(2)</sup>      | SSC, Ecological                                 |  |  |
|              | White sturgeon                | Ecological, Recreation                          |  |  |

<sup>&</sup>lt;sup>1</sup> FE-Federal endangered, FT-Federal threatened, SE-state endangered, ST-state threatened, SSC – State Species of Special Concern

#### 2.5.4 Geology and Soils

The Central Valley consists of mostly flat terrain associated with low gradient river valleys. There are some earthquake faults in the region but earthquakes are generally associated with coastal California, west of the Central Valley. Strong seismic shaking is not common in the Central Valley, and liquefaction and other seismic-related ground failure are not major hazards in the region. Landslides and other hazards associated with unstable soil are uncommon due to the flat terrain. Dust from agricultural activities, such as plowing, grading, and discing, is a common occurrence in the Central Valley agricultural areas, including the project area, and is a normal part of the agriculture practice in the region.

<sup>&</sup>lt;sup>2</sup> Under a Federal District Court ruling, the splittail rule has been remanded to USFWS. Splittail continue to be treated as a listed species.

#### 2.5.5 Greenhouse Gas Emissions

The greenhouse gas (GHG) analysis focuses on the following three pollutants: carbon dioxide ( $CO_2$ ), methane ( $CH_4$ ), and nitrous oxide ( $N_2O$ ). The other two pollutant groups commonly evaluated in various GHG reporting protocols, hydrofluorocarbons and perfluorocarbons, are not expected to be emitted in large quantities as a result of the alternatives and are not discussed further in this section.

Worldwide, California is the 14<sup>th</sup> largest emitter of CO<sub>2</sub> if it were a country. On a per capita basis, California would be ranked 19<sup>th</sup> in the world (CARB 2011). Agricultural emissions represented approximately 7 percent of California's GHG emissions in 2009. Agricultural emissions represent the sum of emissions from agricultural energy use (from pumping and farm equipment), agricultural residue burning, agricultural soil management (the practice of using fertilizers, soil amendments, and irrigation to optimize crop yield), enteric fermentation (fermentation that takes place in the digestive system of animals), histosols (soils that are composed mainly of organic matter) cultivation, manure management, and rice cultivation.

#### 2.5.6 Hydrology and Water Quality

#### 2.5.6.1 Surface Water

The Sacramento River flows south for 447 miles through the northern Central Valley and enters the Delta from the north. The major tributaries to the Sacramento River are the Feather, Yuba, and American rivers. Reclamation owns and operates the CVP, which has major reservoirs on the Sacramento River (Shasta Reservoir) and American River (Folsom Reservoir). DWR owns and operates the SWP, which has a major reservoir on the Feather River (Oroville Reservoir).

#### 2.5.6.2 Water Quality

While water quality in the Sacramento River system is generally good, several water bodies within the area of analysis have been identified as impaired by certain constituents of concern and appear on the most recent 303(d) list of impaired waterways under the Clean Water Act (SWRCB 2011).

#### 2.5.6.3 Groundwater

#### **Redding Groundwater Basin**

Historically, groundwater levels have remained stable within the Redding Groundwater Basin. Seasonal fluctuations in groundwater levels are generally less than 5 feet and can be up to 16 feet during drought years (ACID, 2011). These declines are usually followed by recovery to predrought levels after several successive normal or above-normal precipitation events occurred (CH2M HILL 2007). Appendix F includes groundwater monitoring data in the

Anderson-Cottonwood ID area (the potential selling entity in the Redding Basin).

Land Subsidence. Land subsidence has not been monitored in the Redding Area Groundwater Basin. However, there would be potential for subsidence in some areas of the basin if groundwater levels were substantially lowered. The groundwater basin west of the Sacramento River is composed of the Tehama Formation, which has exhibited subsidence in Yolo County.

Groundwater Quality. Groundwater in the Redding area of analysis is typically of good quality, as evidenced by its low total dissolved solids (TDS) concentrations, which range from 70 to 360 milligrams per liter (mg/L). Areas of high salinity (poor water quality), are generally found on the western basin margins, where the groundwater is derived from marine sedimentary rock. Elevated levels of iron, manganese, nitrate, and high TDS have been detected in some areas (DWR 2003).

#### Sacramento Groundwater Basin

The Sacramento Valley Groundwater Basin includes portions of Tehama, Glenn, Butte, Yuba, Colusa, Placer, and Yolo Counties. Groundwater accounts for less than 30 percent of the annual supply used for agricultural and urban purposes within the Sacramento Valley. Urban pumping in the Sacramento Valley increased from approximately 250,000 AF annually in 1961 to more than 800,000 AF annually in 2003 (Faunt 2009). However cumulative change in groundwater storage has been relatively constant over the long term within the Sacramento Valley. Storage tends to decrease during dry years and increase during wetter periods. Appendix F includes groundwater monitoring data to further characterize groundwater levels in the Sacramento Valley Groundwater Basin near the potential selling entities.

Land Subsidence. Historically, land subsidence occurred in the eastern portion of Yolo County and the southern portion of Colusa County, owing to groundwater extraction and geology. Due to groundwater withdrawal over several decades, as much as four feet of land subsidence has occurred east of Zamora. The area between Zamora, Knights Landing, and Woodland has been most affected (Yolo County 2012). Subsidence in this region is generally related to groundwater pumping and subsequent consolidation of loose aquifer sediments.

Groundwater Quality. Groundwater quality in the Sacramento Valley Groundwater Basin is generally good and sufficient for municipal, agricultural, domestic, and industrial uses. However, there are some localized groundwater quality issues in the basin. Some of the water quality issues within the Sacramento Valley may include occurrences of saltwater intrusion or elevated levels of nitrates, naturally occurring boron, and other introduced chemicals (DWR 2003).

#### 2.5.7 Noise

Noise is generally measured in decibels (dB), which are measured on a logarithmic scale so that each increase in 10 dB equals a doubling of loudness. The letter "A" is added to the abbreviation (dbA) to indicate an "A-weighted" scale, which filters out very low and very high frequencies that cannot be heard by the human ear.

The buyers and sellers areas are primarily agricultural; major noise sources include traffic, railroad operations, airports, industrial operations, farming operations, and fixed noise sources. Common noise sources associated with farming operations include tractors, harvesting equipment and spray equipment (Glenn County 1993). Typical noise levels created by a range of farm equipment are presented in Table 2-8.

Table 2-8. Typical Noise Levels Associated with Farm Equipment

| Equipment                  | Distance<br>(feet) | Sound Level<br>(dB) |
|----------------------------|--------------------|---------------------|
| Diesel Wheel Tractor       |                    |                     |
| - with Disc                | 150                | 72-75               |
| - with Furrow              | 50                 | 69-79               |
| Weed Sprayer (1-cylinder)  | 50                 | 74-75               |
| Aero Fan 391 Speed Sprayer | 200                | 74-76               |
| Diesel Engine              | 50                 | 75-85               |

Source: Brown-Buntin Associates, Inc. in Glenn County 1993

Key: dB = decibel

A Community Noise Survey conducted in Glenn County indicated that typical noise levels in noise sensitive areas, including rural areas, are relatively quiet and fall in the range of 48 dB to 60 dB Ldn<sup>1</sup> (Glenn County 1993). These noise levels would be reflective of conditions in the other counties.

<sup>&</sup>lt;sup>1</sup> The day-night average sound level (Ldn) is the average noise level, expressed in decibels, over a 24-hour period.

| Environmental Assessment/Initia | l Study                             |  |
|---------------------------------|-------------------------------------|--|
|                                 |                                     |  |
|                                 |                                     |  |
|                                 |                                     |  |
|                                 |                                     |  |
|                                 |                                     |  |
|                                 |                                     |  |
|                                 |                                     |  |
|                                 |                                     |  |
|                                 |                                     |  |
|                                 |                                     |  |
|                                 |                                     |  |
|                                 | This page left blank intentionally. |  |
|                                 |                                     |  |
|                                 |                                     |  |
|                                 |                                     |  |
|                                 |                                     |  |
|                                 |                                     |  |
|                                 |                                     |  |
|                                 |                                     |  |
|                                 |                                     |  |
|                                 |                                     |  |
|                                 |                                     |  |
|                                 |                                     |  |
|                                 |                                     |  |
|                                 |                                     |  |

## **Chapter 3 Environmental Impacts**

The following sections use the checklist from Appendix G of the CEQA Guidelines as a template to assess potential environmental effects under both CEQA and NEPA. The discussion for each resource focuses on potential impacts; resources that would not be affected are briefly discussed.

#### I. AESTHETICS

-- Would the project:

|                                                                                                                                                                                                                                     | Potentially<br>Significant<br>Impact | Less Than Significant with Mitigation Incorporation | Less Than<br>Significant<br>Impact | No<br>Impact |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------|------------------------------------|--------------|
| a) Have a substantial adverse effect on a scenic vista?                                                                                                                                                                             |                                      |                                                     |                                    |              |
| b) Substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings, or other locally recognized desirable aesthetic natural feature within a city-designated scenic highway? |                                      |                                                     |                                    |              |
| c) Substantially degrade the existing visual character or quality of the site and its surroundings?                                                                                                                                 |                                      |                                                     |                                    |              |
| d) Create a new source of substantial light or glare which would adversely affect day or nighttime views in the area?                                                                                                               |                                      |                                                     |                                    |              |

**a, b, d) No Impact.** The No Action Alternative and Proposed Action would not affect any scenic vista, damage scenic resources, or create a new light source. The Proposed Action would not affect scenic vistas relative to rivers or reservoir because there would be no changes beyond historical or seasonal fluctuations in flows or water levels. The Proposed Action does not result in any construction or new structures that could damage scenic resources (i.e., trees, rock outcroppings, historic buildings, etc.) or produce notable sources or light or glare.

c) Less than Significant. Cropland idling transfers in the Proposed Action would temporarily increase the amount of idled lands in the sellers' area. The No Action Alternative may also increase cropland idling in response to water shortages associated with the dry hydrologic conditions. Idled lands are typical features of agricultural landscapes as part of normal cultivation practices. The crop pattern resulting from the Proposed Action would likely be indistinguishable from those under normal cropping patterns. This impact would be less than significant as there would be no substantial changes or degradation to the visual character and quality of the sites or their surroundings.

#### II. AGRICULTURE AND FOREST RESOURCES:

In determining whether impacts to agricultural resources are significant environmental effects, lead agencies may refer to the California Agricultural Land Evaluation and Site Assessment Model (1997) prepared by the California Dept. of Conservation as an optional model to use in assessing impacts on agriculture and farmland. In determining whether impacts to forest resources, including timberland, are significant environmental effects, lead agencies may refer to information compiled by the California Department of Forestry and Fire Protection regarding the state's inventory of forest land, including the Forest and Range Assessment Project and the Forest Legacy Assessment project; and forest carbon measurement methodology provided in Forest Protocols adopted by the California Air Resources Board. Would the project:

|                                                                                                                                                                                                                                                                            | Potentially<br>Significant<br>Impact | Less Than Significant with Mitigation Incorporation | Less Than<br>Significant<br>Impact | No<br>Impact |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------|------------------------------------|--------------|
| a) Convert Prime Farmland,<br>Unique Farmland, or<br>Farmland of Statewide<br>Importance (Farmland), as<br>shown on the maps prepared<br>pursuant to the Farmland<br>Mapping and Monitoring<br>Program of the California<br>Resources Agency, to non-<br>agricultural use? |                                      |                                                     |                                    |              |
| b) Conflict with existing zoning for agricultural use, or a Williamson Act contract?                                                                                                                                                                                       |                                      |                                                     |                                    |              |

|                                                                                                                                                                                                                                                                                            | Potentially<br>Significant<br>Impact | Less Than<br>Significant<br>with<br>Mitigation<br>Incorporation | Less Than<br>Significant<br>Impact | No<br>Impact |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------|------------------------------------|--------------|
| c) Conflict with existing zoning for, or cause rezoning of, forest land (as defined in Public Resources Code section 12220(g)), timberland (as defined by Public Resources Code section 4526), or timberland zoned Timberland Production (as defined by Government Code section 51104(g))? |                                      |                                                                 |                                    |              |
| d) Result in the loss of forest land or conversion of forest land to non-forest use?                                                                                                                                                                                                       |                                      |                                                                 |                                    |              |
| e) Involve other changes in<br>the existing environment<br>which, due to their location<br>or nature, could result in<br>conversion of Farmland, to<br>non-agricultural use or<br>conversion of forest land to<br>non-forest use?                                                          |                                      |                                                                 |                                    |              |

**a, b, e) No Impact.** One-year water transfers under the Proposed Action temporarily take land out of production, but would not affect the long-term agricultural uses of the land. The No Action Alternative could also result in increased cropland idling in 2014 in response to reduced surface water supplies from the CVP and SWP. Idling cropland for a single year would be similar to fallowing a field under a normal crop rotation. Cropland idling would not affect the long-term designations of Prime Farmland or other Farmland Mapping and Monitoring Program classifications or affect Williamson Act contracts.

**c, d) No Impact.** The No Action Alternative and Proposed Action would have no impact to existing forest lands or timber, as the proposed water transfer methods do not pertain to such lands or resources.

#### III. AIR QUALITY

Where available, the significance criteria established by the applicable air quality management or air pollution control district may be relied upon to make the following determinations. Would the project:

|                                                                                                                                                                                                                                                                                            | Potentially<br>Significant<br>Impact | Less Than<br>Significant<br>with<br>Mitigation<br>Incorporation | Less Than<br>Significant<br>Impact | No<br>Impact |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------|------------------------------------|--------------|
| a) Conflict with or obstruct implementation of the applicable air quality plan?                                                                                                                                                                                                            |                                      |                                                                 |                                    |              |
| b) Violate any air quality<br>standard or contribute<br>substantially to an existing or<br>projected air quality violation?                                                                                                                                                                |                                      |                                                                 |                                    |              |
| c) Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is nonattainment under an applicable federal or state ambient air quality standard (including releasing emissions which exceed quantitative thresholds for ozone precursors)? |                                      |                                                                 |                                    |              |
| d) Expose sensitive receptors to substantial pollutant concentrations?                                                                                                                                                                                                                     |                                      |                                                                 |                                    |              |
| e) Create objectionable odors affecting a substantial number of people?                                                                                                                                                                                                                    |                                      |                                                                 |                                    |              |

#### a) Less than Significant Impact

**No Action Alternative:** Under the No Action Alternative, growers may idle rice or pump groundwater to supplement reduced surface water supplies. Crop idling actions could increase fugitive dust emissions. Although there could be emission increases under the No Action Alternative, the emissions would be consistent with existing trends in air quality and would be the same as existing conditions; therefore, emissions could not impede implementation of any air quality plan.

**Proposed Action:** The air districts associated with the counties of Shasta, Tehama, Glenn, Butte, Colusa, Sutter, and Yuba comprise the Northern

Sacramento Valley Planning Area (NSVPA). The NSVPA has jointly committed to preparing and adopting an Air Quality Attainment Plan (AQAP) to achieve and maintain healthful air in these counties. The Sacramento Metropolitan AQMD and the Yolo/Solano AQMD have also adopted various air quality plans for the pollutants for which they are currently designated nonattainment. As part of these plans, several control measures were adopted by the various counties to attain and maintain air quality standards. These control measures are then promulgated in the rules and regulations at each air district; therefore, if a Proposed Action is consistent with the air districts' and State regulations, then the project is in compliance with the AQAP. The air quality impacts from with transfer actions are associated with the actions taken to reduce consumptive use and are therefore concentrated in the sellers' region. As a result, air quality impacts for the buyers are not discussed further.

The Proposed Action would use a combination of electric, diesel, and natural gas driven groundwater pumps depending on the specific water agency. All diesel-fueled engines are subject to CARB's Airborne Toxic Control Measure (ATCM) for Stationary Ignition Engines (17 California Code of Regulations [CCR] 93115). The ATCM does not expressly prohibit the use of diesel engines for agricultural purposes; therefore, diesel engines may be used for groundwater pumping associated with groundwater substitution transfers as long as they are replaced when required by the compliance schedule.

All pumps proposed to be used by the water agencies would operate in compliance with all rules and regulations at the federal, state, and local levels; therefore, any activities associated with water transfers would be consistent with the AQAPs and the ATCM. As such, impacts would be less than significant.

#### b) Less than Significant with Mitigation

No Action Alternative: Under the No Action Alternative, growers would leave some crops idle, which would leave bare soils susceptible to fugitive dust emissions from windblown dusts. Growers would also continue to pump groundwater for irrigation, which releases emissions if diesel pumps are used. These actions in response to surface water shortages would continue under the No Action Alternative. There would be no change to emissions relative to existing conditions.

**Proposed Action:** To assess whether a proposed project would violate any air quality standards or contribute substantially to an existing or projected air quality violation, several of the air districts developed significance thresholds for mass daily and/or annual emission rates of criteria pollutants. Colusa, Glenn, and Shasta counties do not have published significance thresholds; therefore, the threshold used to define a "major source" in the Clean Air Act (100 tons per year) was used to evaluate significance. Table 3-1 summarizes the significance thresholds used by each air district.

**Table 3-1. CEQA Significance Thresholds** 

| Air District                 | Operation | Operational Significance Thresholds (pounds [lbs]/day) |    |     |      |       |  |  |  |
|------------------------------|-----------|--------------------------------------------------------|----|-----|------|-------|--|--|--|
| All District                 | VOC       | NOx                                                    | СО | SOx | PM10 | PM2.5 |  |  |  |
| Sacramento Metropolitan AQMD | 65        | 65                                                     |    |     |      |       |  |  |  |
| Yolo-Solano AQMD             | 10 tpy    | 10 tpy                                                 |    |     | 80   |       |  |  |  |
| Feather River AQMD           | 25        | 25                                                     |    |     | 80   |       |  |  |  |

Source: Feather River AQMD 2010; Sacramento Metropolitan AQMD 2009; Yolo-Solano AQMD 2007. Key:

In addition to the CEQA significance thresholds, the federal general conformity regulations apply to a proposed federal action in a nonattainment or maintenance area if the total of direct and indirect emissions of the relevant criteria pollutants and precursor pollutants caused by the proposed action equal or exceed certain de minimis amounts (40 CFR 93.153). Conformity means that such federal actions must be consistent with a state implementation plan's (SIP's) purpose of eliminating or reducing the severity and number of violations of the NAAQS and achieving expeditious attainment of those standards.

Groundwater substitution could increase air emissions in the seller area. Cropland idling transfers could reduce vehicle exhaust emissions, but increase fugitive dust emissions. Cropland idling transfers could offset some of the emissions from groundwater substitution transfers, but the quantity of water transferred under each mechanism could be much less than what is included in Table 2-3. Because cropland idling transfers may not occur up to the upper limits, they cannot be counted on to reduce impacts of groundwater substitution. Therefore, impacts were only evaluated for groundwater substitution to estimate the maximum potential emissions that could occur because of the Proposed Action.

Some of the groundwater substitution transfers could go to users who would have pumped groundwater in response to surface water shortages in the No Action Alternative. The emissions from the reduction compared to the No Action Alternative could offset some of the emissions in the Proposed Action, but the quantity of the offset is uncertain. Therefore, this offset is also not considered within the analysis.

Table 3-2 summarizes the maximum daily emissions that would be estimated to occur in each water agency subject to a daily significance threshold. Table 3-3 summarizes the annual emissions that would occur in each water agency subject to an annual significance threshold. Significance was determined for individual water agencies.

<sup>-- =</sup> no threshold; AQMD = air quality management district; CO = carbon monoxide; lbs/day = pounds per day; NOx = nitrogen oxides; PM10 = inhalable particulate matter; PM2.5 = fine particulate matter; SOx = sulfur oxides; tpy = tons per year; VOC = volatile organic compounds

**Table 3-2. Unmitigated Daily Emissions** 

|                                            | Peak Daily Emissions (lbs/day) |     |         |             |      |       |
|--------------------------------------------|--------------------------------|-----|---------|-------------|------|-------|
| Water Agency                               | voc                            | NOx | СО      | SOx         | PM10 | PM2.5 |
| Feather River AQMD                         |                                |     |         |             |      |       |
| Natomas Central Mutual Water Company       |                                |     | All ele | ctric engin | es   |       |
| Pelger Mutual Water Company                | 1                              | 19  | 25      | 6           | 2    | 2     |
| Pleasant Grove-Verona Mutual Water Company | 25                             | 220 | 107     | 26          | 15   | 15    |
| Reclamation District 1004 <sup>1</sup>     | 2                              | 24  | 13      | 4           | 1    | 1     |
| CEQA Significance Threshold                | 25                             | 25  | n/a     | n/a         | 80   | n/a   |
| Sacramento Metropolitan AQMD               |                                |     |         |             |      |       |
| Natomas Central Mutual Water Company       |                                |     | All ele | ctric engin | es   |       |
| CEQA Significance Threshold                | 65                             | 65  | n/a     | n/a         | n/a  | n/a   |
| Yolo/Solano AQMD                           |                                |     |         |             |      |       |
| Conaway Preservation Group                 | 9                              | 91  | 68      | 18          | 8    | 8     |
| Reclamation District 108 <sup>2</sup>      | 8                              | 104 | 22      | 7           | 2    | 2     |
| River Garden Farms                         | All electric engines           |     |         |             |      |       |
| Te Velde Revocable Family Trust            | All electric engines           |     |         |             |      |       |
| CEQA Significance Threshold                | n/a                            | n/a | n/a     | n/a         | 80   | n/a   |

Notes:

Key:

AQMD = air quality management district; CEQA = California Environmental Quality Act; CO = carbon monoxide; lbs/day = pounds per day; n/a = not applicable; NOx = nitrogen oxides; PM10 = inhalable particulate matter; PM2.5 = fine particulate matter; SOx = sulfur oxides; VOC = volatile organic compound

**Table 3-3. Unmitigated Annual Emissions** 

|                                                         | Annual Emissions (tons per year) |     |            |             |      |       |
|---------------------------------------------------------|----------------------------------|-----|------------|-------------|------|-------|
| Water Agency                                            | VOC                              | NOx | СО         | SOx         | PM10 | PM2.5 |
| Colusa County APCD                                      |                                  |     |            |             |      |       |
| Canal Farms                                             |                                  |     | All electi | ric engine  | S    |       |
| Eastside Mutual Water Company                           | <1                               | 2   | 2          | 1           | <1   | <1    |
| Glenn-Colusa Irrigation District <sup>1</sup>           | 1                                | 2   | 9          | 3           | <1   | <1    |
| Maxwell Irrigation District                             | <1                               | 5   | 4          | 1           | <1   | <1    |
| Princeton-Codora-Glenn Irrigation District <sup>2</sup> | 1                                | 8   | 2          | 1           | <1   | <1    |
| Provident Irrigation District <sup>3</sup>              | 1                                | 9   | 2          | 1           | <1   | <1    |
| Reclamation District 108 <sup>4</sup>                   |                                  |     | All electi | ric engine: | S    |       |
| Reclamation District 1004 <sup>5</sup>                  | <1                               | 2   | 1          | <1          | <1   | <1    |
| Roberts Ditch Irrigation Company                        |                                  |     | All electi | ric engine: | S    |       |
| Sycamore Mutual Water Company                           |                                  |     | All electi | ric engine: | S    |       |
| T&P Farms                                               |                                  |     | All electi | ric engine: | S    |       |
| CEQA Significance Threshold                             | 100                              | 100 | 100        | 100         | 100  | 100   |
| Glenn County APCD                                       |                                  |     |            |             |      |       |
| Glenn-Colusa Irrigation District <sup>1</sup>           | 1                                | 2   | 9          | 3           | <1   | <1    |
| Princeton-Codora-Glenn Irrigation District <sup>2</sup> | 1                                | 8   | 2          | 1           | <1   | <1    |
| Provident Irrigation District <sup>3</sup>              | 1                                | 9   | 2          | 1           | <1   | <1    |
| Reclamation District 1004 <sup>5</sup>                  | <1                               | 2   | 1          | <1          | <1   | <1    |

Reclamation District 1004 is split into three different air districts; therefore, only emissions from Sutter County are included.

<sup>&</sup>lt;sup>2</sup> Reclamation District 108 is split into two different air districts; therefore, only emissions from Yolo County are included.

**Table 3-3. Unmitigated Annual Emissions** 

|                                         |     | Annual Emissions (tons per year) |            |            |      |       |  |
|-----------------------------------------|-----|----------------------------------|------------|------------|------|-------|--|
| Water Agency                            | VOC | NOx                              | СО         | SOx        | PM10 | PM2.5 |  |
| CEQA Significance Threshold             | 100 | 100                              | 100        | 100        | 100  | 100   |  |
| Shasta County AQMD                      |     |                                  |            |            |      |       |  |
| Anderson-Cottonwood Irrigation District |     | All electric engines             |            |            |      |       |  |
| CEQA Significance Threshold             | 100 | 100                              | 100        | 100        | 100  | 100   |  |
| Yolo/Solano AQMD                        |     |                                  |            |            |      |       |  |
| Conaway Preservation Group              | 1   | 6                                | 4          | 1          | 1    | 1     |  |
| Reclamation District 108 <sup>4</sup>   |     | •                                | All electi | ric engine | S    |       |  |
| River Garden Farms                      |     | All electric engines             |            |            |      |       |  |
| Te Velde Revocable Family Trust         |     | All electric engines             |            |            |      |       |  |
| CEQA Significance Threshold             | 10  | 10                               | n/a        | n/a        | n/a  | n/a   |  |

#### Notes:

APCD = air pollution control district; AQMD = air quality management district; CEQA = California Environmental Quality Act; CO = carbon monoxide; n/a = not applicable; NOx = nitrogen oxides; PM10 = inhalable particulate matter; PM2.5 = fine particulate matter; SOx = sulfur oxides; VOC = volatile organic compound

As shown in the tables, emissions from Pleasant Grove-Verona Mutual Water Company would exceed the daily NOx thresholds (Table 3-2).

The following mitigation measures would reduce the severity of the air quality impacts:

- AQ-1 All diesel-fueled engines would either be replaced with an engine that would meet the applicable emission standards for model year 2013 or would be retrofit to meet the same emission standards.
- AQ-2 Natural gas engines will be retrofit with a selective catalytic reduction device (or equivalent) that is capable of achieving a NOx control efficiency of at least 90 percent.
- AQ-3 Any engines operating in the area of analysis that are capable of operating as either electric or natural gas engines would only operate with electricity during any groundwater transfers.
- AQ-4 Selling agency would reduce pumping at diesel wells to reduce emissions to below the thresholds.

Glenn-Colusa Irrigation District is split into two different air districts; therefore, emissions split between Glenn and Colusa Counties.

Princeton-Codora-Glenn Irrigation District is split into two different air districts; therefore, emissions split between Glenn and Colusa Counties.

Provident Irrigation District is split into two different air districts; therefore, emissions split between Glenn and Colusa Counties.

<sup>&</sup>lt;sup>4</sup> Reclamation District 108 is split into two different air districts; therefore, emissions split between Colusa and Yolo Counties.

<sup>&</sup>lt;sup>5</sup> Reclamation District 1004 is split into three different air districts; therefore, emissions split between Glenn and Colusa Counties. Key:

• AQ-5 – Operation of the engines at Pleasant Grove-Verona Mutual Water Company will be limited to 6.5 hours per day per engine or 202 cumulative hours for all engines.

Mitigated emissions are provided in Table 3-4. Implementation of these mitigation measures would reduce NOx emissions to less than significant.

**Table 3-4. Mitigated Emissions** 

|                                               | Р   | Peak Daily Emissions (lbs/day) |     |     |      |       |  |
|-----------------------------------------------|-----|--------------------------------|-----|-----|------|-------|--|
| Water Agency                                  | VOC | NOx                            | СО  | SOx | PM10 | PM2.5 |  |
| Feather River AQMD                            |     |                                |     |     |      |       |  |
| Pleasant Grove-Verona Mutual Water<br>Company | 3   | 23                             | 66  | 21  | 1    | 1     |  |
| CEQA Significance Threshold                   | 25  | 25                             | n/a | n/a | 80   | n/a   |  |

Key:

AQMD = air quality management district; CEQA = California Environmental Quality Act; CO = carbon monoxide; lbs/day = pounds per day; n/a = not applicable; NOx = nitrogen oxides; PM10 = inhalable particulate matter; PM2.5 = fine particulate matter; SOx = sulfur oxides; VOC = volatile organic compound

As discussed above, in addition to the CEQA significance thresholds, the federal general conformity regulations apply to a proposed federal action in a nonattainment or maintenance area if the total of direct and indirect emissions of the relevant criteria pollutants and precursor pollutants caused by the proposed action equal or exceed certain de minimis amounts (40 CFR 93.153). Because the CEQA-related mitigation measures are fully enforceable under Cal. Pub. Res. Code §21081.6 and would be a requirement of project implementation, mitigated emissions for the Proposed Action were compared to the general conformity de minimis thresholds. Table 3-5 summarizes the general conformity applicability evaluation.

**Table 3-5. General Conformity Applicability Evaluation** 

|                        | Emissions (tons per year) |                  |                 |                             |             |                                |  |  |  |
|------------------------|---------------------------|------------------|-----------------|-----------------------------|-------------|--------------------------------|--|--|--|
|                        | VOC1                      | NOx <sup>1</sup> | CO <sup>2</sup> | SOx <sup>3</sup>            | PM10        | PM <sub>2.5</sub> <sup>4</sup> |  |  |  |
| Emissions <sup>5</sup> | 1                         | 8                | 4               | 3                           | <1          | 1                              |  |  |  |
| Classification         | Severe                    | Severe           | Maintenance     | PM <sub>2.5</sub> Precursor | Maintenance | Nonattainment                  |  |  |  |
| De Minimis Threshold   | 25                        | 25               | 100             | 100                         | 100         | 100                            |  |  |  |
| Exceed Threshold?      | No                        | No               | No              | No                          | No          | No                             |  |  |  |

#### Notes

#### Key:

CO = carbon monoxide; NOx = nitrogen oxides;  $PM_{10}$  = inhalable particulate matter;  $PM_{2.5}$  = fine particulate matter; SOx = sulfur oxides; VOC = volatile organic compound

Mitigated emissions would be less than the general conformity de minimis thresholds; therefore, no further action would be required under general conformity. Detailed calculations are provided in Appendix G.

#### c) Less than Significant

**No Action Alternative:** As described previously, the No Action Alternative would not change emissions relative to existing emissions. Because emissions would not increase, the No Action Alternative would not result in a cumulative impact to air quality.

**Proposed Action:** All counties affected by the Proposed Action are located in areas designated nonattainment for the O<sub>3</sub> and PM<sub>10</sub> CAAQS. Additionally, Sacramento County is designated nonattainment for the PM<sub>2.5</sub> CAAQS. Nonattainment status represents a cumulatively significant impact within the area. O<sub>3</sub> is a secondary pollutant, meaning that it is formed in the atmosphere from reactions of precursor compounds under certain conditions. Primary precursor compounds that lead to O<sub>3</sub> formation include volatile organic compounds and nitrogen oxides; therefore, the significance thresholds established by the air districts for VOC and NOx are intended to maintain or attain the O<sub>3</sub> CAAQS and NAAQS. Because no single project determines the nonattainment status of a region, individual projects would only contribute to the area's designation on a cumulative basis.

<sup>&</sup>lt;sup>1</sup> The Sacramento Metro 8-hour O₃ nonattainment area consists of Sacramento and Yolo Counties and parts of El Dorado, Placer, Solano, and Sutter Counties. Emissions occurring within the attainment area of these counties are excluded from the total emissions.

The Sacramento Area CO maintenance area is based on the Census Bureau Urbanized Area and consists of parts of Placer, Sacramento, and Yolo Counties. The general conformity applicability evaluation is based on emissions that would occur within the entire county to be conservative.

<sup>&</sup>lt;sup>3</sup> All counties are designated as attainment areas for SO<sub>2</sub>; however, since SO<sub>2</sub> is a precursor to PM<sub>2.5</sub>, its emissions must be evaluated under general conformity.

<sup>&</sup>lt;sup>4</sup> The 24-hour PM<sub>2.5</sub> nonattainment area for Sacramento includes Sacramento County and parts of El Dorado, Placer, Solano, and Yolo Counties. The general conformity applicability analysis assumes that all emissions that could occur within each county would occur within the Sacramento nonattainment area to be conservative.

OC and NOx emissions are excluded from Sutter County for Pelger Mutual Water Company and Reclamation District 1004 because they are located in areas designated as attainment for the federal 8-hour O<sub>3</sub> NAAQS.

Several air districts, including the Sacramento Metropolitan AQMD (2011), develop significance thresholds to determine if a project's individual emissions could result in a cumulatively considerable adverse contribution to the existing air quality conditions. Therefore, if an alternative would produce air quality impacts that are individually significant, then the alternative would also be cumulatively considerable. Conversely, if the alternative's emissions would be less than the significance thresholds, then the alternative would not be expected to result in a cumulatively considerable contribution to the existing significant cumulative impact.

The Proposed Action could exceed NOx standards (an  $O_3$  precursor) in areas that are in nonattainment for  $O_3$ , which would be a cumulatively considerable effect. However, implementation of mitigation measures AQ-1 through AQ-5 would reduce individual impacts to less than significant and reduce the cumulative contribution. Therefore, air quality impacts would not be cumulatively considerable.

## d) Less than Significant

No Action Alternative and Proposed Action: The proposed engines would either be remotely located in rural areas or would be located on existing agricultural land. The engines would not be located within one-quarter mile of a sensitive receptor. Additionally, emissions from individual engines would not exceed any district's significance criteria. Therefore, air quality impacts would be less than significant.

#### e) No Impact

No Action Alternative and Proposed Action: The use of diesel engines during groundwater substitution activities may generate near-field odors that are considered a nuisance. Diesel equipment emits a distinctive odor that may be considered offensive to certain individuals. The local air districts have rules (e.g., Sacramento Metropolitan AQMD Rule 402) that prohibit emissions that could cause nuisance or annoyance to a considerable number of people. All water agencies would operate their engines in compliance with the local rules and regulations. Therefore, the proposed operation of any diesel-fueled engines would have a less than significant impact associated with the creation of objectionable odors affecting a substantial number of people.

# IV. BIOLOGICAL RESOURCES

- Would the project:

|                                                                                                                                                                                                                                                                                                                      | Potentially<br>Significant<br>Impact | Significant with Mitigation Incorporation | Less Than<br>Significant<br>Impact | No<br>Impact |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------|------------------------------------|--------------|
| a) Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Wildlife or U.S. Fish and Wildlife Service? |                                      |                                           |                                    |              |
| b) Have a substantial adverse effect<br>on any riparian habitat or other<br>sensitive natural community<br>identified in City or regional plans,<br>policies, regulations or by the<br>California Department of Fish and<br>Wildlife or US Fish and Wildlife<br>Service?                                             |                                      |                                           |                                    |              |
| c) Have a substantial adverse effect on federally protected wetlands as defined by Section 404 of the Clean Water Act (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means?                                                 |                                      |                                           |                                    |              |
| d) Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites?                                                                                   |                                      |                                           |                                    |              |
| e) Conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance?                                                                                                                                                                                  |                                      |                                           |                                    |              |

#### IV. BIOLOGICAL RESOURCES

- Would the project:

|                                                                                                                                                                                      | Potentially<br>Significant<br>Impact | Less Than Significant with Mitigation Incorporation | Less Than<br>Significant<br>Impact | No<br>Impact |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------|------------------------------------|--------------|
| f) Conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan? |                                      |                                                     |                                    |              |

# a) Less than Significant Impact

No Action Alternative: Continued dry hydrologic conditions could affect special status fish species by reducing inflow to the Delta that could affect the ability of Reclamation and DWR to meet the operational requirements of the Biological Opinions on the Continued Long-term Operations of the CVP/SWP (National Marine Fisheries Service [NMFS] & USFWS BOs) and D1641. CVP and SWP operations on the Sacramento, Feather, and American rivers will be managed adaptively to meet environmental and water quality standards that are put in place throughout the water year. Reclamation is consulting frequently with NMFS and USFWS on CVP and SWP operations relative to the BOs and special status fish species. Reclamation and DWR submitted, and the SWRCB granted a temporary urgency change (TUC) petition on January 31, 2014. The SWRCB relaxed some salinity and outflow criteria in the Delta in response to extremely low storage levels, and amendments to the TUC may be necessary as conditions warrant. Reclamation and DWR will continue to coordinate closely with the SWRCB to balance the need to provide water supplies south of the Delta, and protect water quality in the Delta.

Under No Action Alternative, growers in the sellers' area would idle rice in response to reduced surface water supplies. Glenn-Colusa ID estimates that approximately 15 percent of rice fields would be idled if Reclamation provides 75 percent of its Contract Total, with additional fallowing under lower with decreased water supplies. Rice idling in other districts would also occur under the No Action Alternative, but estimates are unavailable at this time because those districts are managed differently than Glenn-Colusa ID. Rice idling actions could have an adverse effect to GGS that use flooded rice fields for foraging and protective cover habitat during the summer months. Rice idling would have similar adverse effects to western pond turtle.

Because of the reduced water supply due to extremely dry conditions, refuge surface water supplies would be reduced in 2014. A reduction in available water

supply to refuges and rice growers would result in less available habitat for migratory bird species.

**Proposed Action:** Water transfers would slightly decrease river flows during the transfer period from the TCCA diversion at Red Bluff to the downstream of the point of diversion for the sellers under the No Action Alternative. Reclamation is consulting frequently with USFWS and NMFS on CVP and SWP operations relative to the BOs and special status fish species. Special status fish species would not be affected by the Proposed Action beyond those impacts considered by the BOs and current consultations with NMFS and USFWS.

The following is a discussion of effects of rice idling actions on special status wildlife species that are present in the sellers' area. Environmental Commitments have been incorporated into the Proposed Action to reduce potential impacts to special status wildlife species. The Environmental Commitments are listed in Section 2.4. Additional special status animal and plant species have the potential to occur in the project area, but would not be affected by the Proposed Action. Appendices H and I list special status animal and plant species that could be present in the project area and the reason for no effect.

Rice idling could affect special status species that use rice fields for forage, cover, nesting, breeding, or resting. Under the Proposed Action, a maximum of 49,294 acres of rice could be idled in Colusa, Glenn, Sutter and Yolo counties based on the transfer quantities in Table 2-3 and an ETAW of 3.3 acre-feet per acre. Table 3-6 shows the annual rice acreages in each county from 2002 to 2011.

Table 3-6. Annual Harvested Rice Acreage by County in Sellers' Area

| Year              | Glenn  | Colusa  | Sutter  | Yolo   | Total   |
|-------------------|--------|---------|---------|--------|---------|
| 2002              | 92,382 | 134,300 | 96,224  | 32,446 | 355,352 |
| 2003              | 87,793 | 127,350 | 93,654  | 37,303 | 346,100 |
| 2004              | 86,017 | 150,130 | 121,131 | 45,655 | 402,933 |
| 2005              | 88,876 | 136,400 | 97,801  | 34,670 | 357,747 |
| 2006              | 82,436 | 142,600 | 92,984  | 29,997 | 348,017 |
| 2007              | 82,668 | 148,550 | 108,241 | 32,660 | 372,119 |
| 2008              | 77,770 | 150,200 | 92,344  | 30,057 | 350,371 |
| 2009              | 89,483 | 152,400 | 109,766 | 36,593 | 388,242 |
| 2010              | 88,209 | 154,000 | 115,000 | 41,400 | 398,609 |
| 2011              | 84,900 | 149,000 | 112,000 | 42,500 | 388,400 |
| Average (2007-11) | 84,606 | 150,830 | 107,470 | 36,642 | 379,548 |

Source: California Department of Food and Agriculture, California Agricultural Statistics 2003-2012

Rice idling actions could affect the GGS that use flooded rice fields for foraging and protective cover habitat during the summer months. GGS require water during their active phase, extending from spring until fall. During the winter months, GGS are dormant and occupy burrows in upland areas. While the preferred habitat of GGS is natural wetland areas with slow moving water, GGS use rice fields and their associated water supply and tail water canals as habitat, particularly where natural wetland habitats are not available. Because of the historic loss of natural wetlands, rice fields and their associated canals and drainage ditches have become important habitat for GGS.

Rice idling would affect available habitat for GGS. The GGS displaced from idled rice fields would need to find other areas to live and may face increased predation risk, competition, and reduced food supplies. This may lead to increased mortality, reduced reproductive success, and reduced condition prior to the start of the overwintering period. Rice idling transfers would be subject to the Environmental Commitments described in Section 2.4, which include numerous measures to protect GGS.

As included in the Environmental Commitments, Reclamation will coordinate with USFWS and GGS experts to identify priority suitable habitat for GGS and discourage idling in those priority areas. Implementation of Environmental Commitments will also protect movement corridors for GGS by maintaining water in irrigation ditches and canals. Some GGS would successfully relocate to find alternate forage, cover, and breeding areas.

Rice idling under the Proposed Action would have a less than significant impact on GGS because the Environmental Commitments would avoid or reduce many of the potential impacts associated with displacement of GGS. Some individual snakes would be exposed to displacement and the associated increased risk of predation, reduced food availability, increased competition, and potentially reduced fecundity. The number of individual snakes affected is expected to be small because Environmental Commitments avoid areas known to be priority habitat for GGS or where GGS populations are known to occur. The Environmental Commitment to maintain water in canals near idled fields would also protect GGS.

Migratory bird species, including the black tern, use seasonally flooded agricultural land for nesting and forage habitat during the summer rearing season. The greater sandhill crane uses rice fields during the fall, winter, and early spring. Rice idling that reduces habitat could adversely affect these species. Migratory bird species are highly mobile and can fly to other areas of rice production or nearby wildlife refuges. To reduce impacts to the greater sandhill crane, transfers will minimize actions near known wintering areas in the Butte Sink. The proposed 2014 cropland idling transfers would reduce potential habitat for special status migratory bird species, including the greater sandhill crane or black tern; however, given the mobility of these species and

the Environmental Commitments incorporated into the Proposed Action, the impacts would be less than significant.

Ditches and drains associated with rice fields provide suitable habitat for the western pond turtle. Actions that result in the desiccation of aquatic habitat could result in the turtle migrating to new areas, which in turn puts them at an increased risk of predation. An Environmental Commitment requires drainage canals in areas where western pond turtle are known to occur not to be left completely dry. This Environmental Commitment minimizes impacts to western pond turtle. Therefore, effects to the western pond turtle of cropland idling transfers to would be less than significant.

#### b, c) Less than Significant Impact

No Action Alternative: Flow and elevation changes within the river and reservoirs due to the past years' dry weather conditions, lack of precipitation, and limited snow pack have resulted in existing adverse conditions for managed and unmanaged wetlands. As a result of decreased flow in rivers, there would be limited or no connection between the riparian areas and wetlands associated with these rivers. Reservoir water surface elevations continue to fall and many of the large reservoirs, such as Shasta, Folsom, and Oroville, already have water levels hundreds of feet from their bathtub ring of wetlands and riparian areas. Also, wildlife refuges, which have the same reduction in surface water supplies as the Sacramento River Settlement Contractors, are likely to receive a reduced supply of water due to reduced water available to the CVP and SWP. Cropland idling in response to water shortages would also reduce the amount of tail water that flows to wetlands.

**Proposed Action:** In April, May, and June, Reclamation and DWR may store transfer water in Shasta and Oroville reservoirs to facilitate delivery water to the TCCA. If water is stored, river flows from the Reservoirs to the seller's point of diversion would decrease in April, May, and June. The flow changes would occur from Shasta Dam downstream to the point where the water would have been diverted without transfers. The potential change in flow would be about 685 cubic feet per second (cfs) if supplies increase to allow the maximum transfers included in this document, but flow changes would be about 320 cfs if the supplies do not increase. These estimates show the average change during June (the month with the greatest potential change in river flow), but instantaneous peak flows may be slightly higher. During dry conditions in 1977, flows averaged 6,560 cfs in May and 6,244 cfs in June (U.S. Geological Survey [USGS] 2014). Reclamation would not store all the water in Shasta and would deliver transfer water to TCCA on a similar irrigation pattern than without the transfer. Therefore, the changes in river flows would be less than stated above and would likely be a fairly small percent of the overall river flows. The Proposed Action would result in minor effects to any riparian habitat near the rivers. Impacts would be less than significant.

Under the No Action Alternative, dry hydrologic conditions, reduced water supplies, and baseline idling would adversely impact wetlands. Rice idling transfers would reduce irrigation tail water flows to wetlands. Environmental Commitments limiting the amount of rice acres idled in historic tule marsh habitat and maintaining water in ditches would support flows to existing wetlands. The incremental effect to wetlands under the Proposed Action would be less than significant.

# d) Less than Significant Impact

No Action Alternative: The lack of available water due to critically dry conditions could affect movement corridors or nursery sites for GGS and other fish and wildlife. Wildlife that is dependent on water as a means of moving from one area to another may be unable to relocate due to the parched landscape. Snakes present in areas of rice idling would have to move across dewatered habitat to find suitable areas with water. Moving across dewatered areas could expose snakes to a number of potential impacts associated with the need to relocate. These include the energetic costs associated with relocation, a reduction in food supplies associated with the decrease in habitat, increased predation, potential for increased competition in new habitats, and potentially reduced reproduction and recruitment for those individuals displaced. Dewatered areas could also affect movement of the western pond turtle that occupy drainage ditches and irrigation canals. Dewatering could require the turtle to migrate to new areas, which in turn puts them at an increased risk of predation.

**Proposed Action:** The GGS individuals and other fish and wildlife would already be affected by the dry conditions, including those areas idling rice as a consequence of the reduced water supply. For species that use irrigated rice fields and drainage ditches for habitat, such as GGS and western pond turtle, these species would need to relocate to other suitable habitat and could be exposed to a number of potential impacts associated with the need to relocate, as described above. Any additional rice acreage idled to make water available for transfer may also affect the species ability to move from one place to another. Areas idled as a consequence of the Proposed Action would be required to implement environmental commitments to maintain some habitat and movement corridors.

Limited data is available on how well displaced snakes can move to and assimilate into new habitats (USFWS 2010). GGS have been documented to move 0.25 to 0.5 miles per day in the course of the normal daily activities. Individuals have been documented to move up to 5 miles over the course of a few days in response to dewatering of habitat. Environmental Commitments discourage rice idling in areas of suitable habitat where GGS are likely to occur, such as areas where historic tule marsh has been converted to rice lands. If a seller chooses to idle lands within these priority habitat areas, the Environmental Commitments require that adequate water remain in the

associated drains and canals. Maintenance water in smaller drains and conveyance infrastructure support key habitat attributes such as emergent vegetation which GGS utilize for escape cover and foraging habitat. Ensuring water remains in these key habitats reduces the potential impact to suitable habitat and the need for GGS individuals to relocate. Environmental Commitments would reduce potential impacts to movement corridors of GGS; therefore, impacts would be less than significant.

# e, f) Less Than Significant Impact

**No Action Alternative:** Several adopted Habitat Conservation Plans (HCP) and Natural Community Conservation Plans (NCCP) exist within the project area, including the Natomas Basin HCP, South Sacramento HCP, and the Yuba-Sutter NCCP/HCP. These plans cover some of the potentially affected species and may have additional requirements for species conservation within their plan areas.

Increased groundwater pumping or cropland idling under the No Action Alternative would not conflict with the HCPs. However, wildlife preserves are likely to receive a reduced supply of water due to reduced water available to the CVP and SWP. Increases in groundwater pumping could also affect the water supplies needed to fulfill the water needs of the conservation banks and preserves established by some of these HCPs. For example, the Natomas Basin Habitat Conservation Plan, as implemented by the Natomas Basin Conservancy, relies on surface water supplies from Natomas Central Mutual Water Company and groundwater in water short years. Cropland idling in response to water shortages would also reduce the amount of tail water that flows to wetlands which are part of these HCPs.

**Proposed Action:** Water transfers under the Proposed Action would have a less than significant impact on the natural communities that are covered in these plans because of the temporary nature of the transfers and the minimal changes in flows and reservoir levels associated with water transfers, as described above for Impacts b and c. The Environmental Commitments under the Proposed Action would minimize impacts to special status species that are covered in the plans. The Environmental Commitments also require sellers to address third-party impacts from groundwater substitution specifically in areas where groundwater subbasins include conservation banks or preserves for GGS. The Proposed Action would not conflict with HCP and NCCP provisions.

#### V. CULTURAL RESOURCES

- Would the project:

|                                                                                                                                   | Potentially<br>Significant<br>Impact | Significant with Mitigation Incorporation | Less Than<br>Significant<br>Impact | No<br>Impact |
|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------|------------------------------------|--------------|
| a) Cause a substantial adverse change in the significance of a historical resource as defined in State CEQA §15064.5?             |                                      |                                           |                                    |              |
| b) Cause a substantial adverse<br>change in the significance of an<br>archaeological resource pursuant<br>to State CEQA §15064.5? |                                      |                                           |                                    |              |
| c) Directly or indirectly destroy a unique paleontological resource or site or unique geologic feature?                           |                                      |                                           |                                    |              |
| d) Disturb any human remains, including those interred outside of formal cemeteries?                                              |                                      |                                           |                                    |              |

**a-d)** No Action. The water elevations of Shasta and Oroville reservoirs are near historic low elevations due to dry hydrologic conditions. Under the No Action, these conditions may lead to the exposure of cultural resources that have been inundated for many years. In some cases, these water surface elevations may be historically low and the receeding water may reveal cultural resources that have been inundated since 1977.

**Proposed Action.** The decline of water surface elevations in the reservoirs utilized for water transfers would be the result of the operation of those reservoirs to fulfill downstream regulatory requirements. Reclamation and DWR will release water from the CVP and SWP reservoirs to meet the operational requirements of the Biological Opinions on the Continued Longterm Operations of the CVP/SWP and D1641. Diversions for water transfer purposes would not result in release of any additional water from Shasta or Oroville Reservoir. Operation of the reservoirs would remain unchanged when compared to the No Action Alternative. There would be no ground disturbing activities, land alteration, or construction proposed that could disturb historical, archeological, or paleontologic resources associated with the No Action Alternative or the Proposed Action. Thus, there would be no disturbance impacts to existing or potential burial sites, cemeteries, or human remains interred outside of formal cemeteries.

A Reclamation archaeologist was consulted to ensure the Proposed Action would have no adverse impact on any historic properties. It was determined that this type of activity does not have the potential to cause effects on historic properties, if present, and Reclamation has no further obligation under National Historic Preservation Act Section 106, pursuant to 36 CFR Part 800.3(a)(1).

# VI. GEOLOGY AND SOILS

-- Would the project:

|                                                                                                                                                                                                                                                                                        | Potentially<br>Significant<br>Impact | Less Than<br>Significant<br>with<br>Mitigation<br>Incorporation | Less Than<br>Significant<br>Impact | No<br>Impact |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------|------------------------------------|--------------|
| a) Exposure of people or<br>structures to potential<br>substantial adverse effects,<br>including the risk of loss, injury,<br>or death involving:                                                                                                                                      |                                      |                                                                 |                                    |              |
| i) Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault? Refer to Division of Mines and Geology Special Publication 42. |                                      |                                                                 |                                    |              |
| ii) Strong seismic ground shaking?                                                                                                                                                                                                                                                     |                                      |                                                                 |                                    |              |
| iii) Seismic-related ground failure, including liquefaction?                                                                                                                                                                                                                           |                                      |                                                                 |                                    |              |
| iv) Landslides?                                                                                                                                                                                                                                                                        |                                      |                                                                 |                                    |              |
| b) Result in substantial soil erosion or the loss of topsoil?                                                                                                                                                                                                                          |                                      |                                                                 |                                    |              |
| c) Be located on a geologic unit<br>or soil that is unstable, or that<br>would become unstable as a<br>result of the project, and<br>potentially result in on- or off-<br>site landslide, lateral spreading,<br>subsidence, liquefaction or<br>collapse?                               |                                      |                                                                 |                                    |              |

#### VI. GEOLOGY AND SOILS

-- Would the project:

|                                                                                                                                                                                      | Potentially<br>Significant<br>Impact | Significant with Mitigation Incorporation | Less Than<br>Significant<br>Impact | No<br>Impact |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------|------------------------------------|--------------|
| d) Be located on expansive soil, as defined in Table 18-1-B of the Uniform Building Code (1994), creating substantial risks to life or property?                                     |                                      |                                           |                                    |              |
| e) Have soils incapable of adequately supporting the use of septic tanks or alternative waste water disposal systems where sewers are not available for the disposal of waste water? |                                      |                                           |                                    |              |

a) No Impact. There are no new facilities or construction proposed for the No Action Alternative or Proposed Action, and no existing facilities fall within an Alquist-Priolo Earthquake Fault Zone, as shown in the Interim Revision of Special Publication 42 of the Division of Mines and Geology, Fault Rupture Zones in California (California Department of Conservation 2007). Therefore, the No Action Alternative and Proposed Action would not expose people or structures to impacts related to fault rupture, ground shaking, ground failure, liquefaction, or landslides.

#### b) Less than Significant

**No Action Alternative**: In 2014, surface water shortages may lead to increased cropland idling in both the seller and buyer areas. Within the seller area, the soils consist of fine particles of clay, loam, some sand, and silty clays (U.S. Department of Agriculture [USDA] 2013a). These soils are susceptible to wind erosion but have a relatively low wind erodibility index. The Natural Resource Conservation Service estimated in the 2010 Natural Resources Inventory that approximately 0.68 tons of topsoil are eroded annually by wind from cultivated land, and 0.36 tons of topsoil are eroded annually from non-cultivated land (USDA 2013b).

Agricultural practices determine the amount of wind erosion to a greater extent than climate in the Sacramento Valley. Farming operations such as plowing, leveling, planting, weeding, mowing, cutting, and baling all increase wind erosion by stirring up or exposing top soil. Fallow fields experience a net reduction in wind erosion by avoiding these practices. Fine soils such as sand and silts erode at a higher rate than the clays and silty clays found in the project

area. Therefore, the soils in the project area have a relatively low risk of wind erosion when left in a dry and unplanted condition.

The buyers' area similarly has soils that are primarily clay and loam (USDA 2013a). Similar to the sellers' area, these soils have a relatively low risk of wind erosion.

**Proposed Action**: Similar to the No Action Alternative, increased cropland idling in the Sacramento Valley to make water available for transfer is not likely to substantially increase wind erosion of sediments. In the buyer area, water is likely to be used on permanent crops (such as orchards and vineyards). The soils underlying these fields have a low risk of wind erosion; therefore, continued cultivation is not likely to substantially increase erosion.

# c) Less than Significant

No Action Alternative and Proposed Action: The project area is underlain by clay and is located in flat terrain. No new construction or ground disturbing actions are proposed for either the No Action Alternative or the Proposed Action that could result in on- or off-site landslide, lateral spreading, liquefaction, or collapse. Groundwater substitution transfers could reduce groundwater levels, which could decrease water pressure and result in a loss of structural support for clay and silt beds. This impact is analyzed in more detail in the groundwater section of Hydrology and Water Quality. The analysis finds that the potential for land subsidence from increased groundwater pumping (under the No Action Alternative and the Proposed Action) would be small.

**d, e) No Impact.** There are no expansive soils known to exist in the project area. There are no septic tanks or alternative waste water disposal systems proposed or required for the No Action Alternative or Proposed Action. The Proposed Action does not include new construction, and thus no new waste water generation. Therefore, there would be no impact resulting from the implementation of the Proposed Action.

# VII. GREENHOUSE GAS EMISSIONS - Would the project:

|                                                                                                                                      | Potentially<br>Significant<br>Impact | Significant with Mitigation Incorporation | Less Than<br>Significant<br>Impact | No<br>Impact |
|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------|------------------------------------|--------------|
| a) Generate greenhouse gas<br>emissions, either directly or<br>indirectly, that may have a significant<br>impact on the environment? |                                      |                                           |                                    |              |
| b) Conflict with an applicable plan, policy or regulation adopted for the purpose of reducing the emissions of greenhouse gases?     |                                      |                                           |                                    |              |

Loca Thom

#### a, b) Less than Significant

**No Action Alternative**: Dry conditions in 2014 may cause additional groundwater pumping and cropland idling in response to surface water shortages. These actions will generally follow the pattern of what has happened during previous dry periods under existing conditions.

**Proposed Action**: This analysis estimated  $CO_2$ ,  $CH_4$ , and  $N_2O$  emissions that would occur from groundwater substitution transfers and cropland idling transfers using available emissions data and information on fuel type, engine size (horsepower), and annual transfer amounts included in the proposed alternatives. Existing emissions data used in the analysis includes:

- Diesel and natural gas fuel emission factors from The Climate Registry (2013a)
- Electric utility CO<sub>2</sub> emission factors from The Climate Registry (2013b)
- "Comparison of Summertime Emission Credits from Land Fallowing Versus Groundwater Pumping" (Byron Buck & Associates 2009)

Each GHG contributes to climate change differently, as expressed by its global warming potential (GWP). GHG emissions are discussed in terms of CO<sub>2</sub> equivalent (CO<sub>2</sub>e) emissions, which express, for a given mixture of GHG, the amount of CO<sub>2</sub> that would have the same GWP over a specific timescale. CO<sub>2</sub>e is determined by multiplying the mass of each GHG by its GWP. This analysis uses the GWP from the Intergovernmental Panel on Climate Change (IPCC) Second Assessment Report (IPCC 1996) for a 100-year time period to estimate CO<sub>2</sub>e. Although subsequent assessment reports have been published by the IPCC, the international convention, as reflected in various federal, state, and

voluntary reporting programs, is to use GWPs from the Second Assessment Report (CH<sub>4</sub> equal to 21 and N<sub>2</sub>O equal to 310).

The CARB uses a threshold of 25,000 metric tons CO<sub>2</sub>e per year as a threshold for including facilities in its cap-and-trade regulation (17 CCR 95800-96023). Because the goal of the regulation is to reduce GHG emissions statewide, this threshold was deemed appropriate to assess significance.

Groundwater substitution could increase GHG emissions in the seller area, while cropland idling transfers could reduce vehicle exhaust emissions. Cropland idling transfers could offset some of the emissions from groundwater substitution transfers, but the quantity of water transferred under each mechanism could be much less than what is included in Table 2-3. Therefore, impacts were evaluated for the full quantity of groundwater substitution, without regard for any potential offsets from idled land. Table 3-7 summarizes the GHG emissions associated with the Proposed Action. Detailed calculations are provided in Appendix J, Climate Change Analysis Emission Calculations.

Table 3-7. Summary of Project GHG Emissions

| Water Agency                                      | Annual Emissions (metric tons CO₂e per year) |      |                  |                   |
|---------------------------------------------------|----------------------------------------------|------|------------------|-------------------|
|                                                   | CO <sub>2</sub>                              | CH₄  | N <sub>2</sub> O | CO <sub>2</sub> e |
| Anderson-Cottonwood Irrigation District           | 134                                          | 0.21 | 0.65             | 135               |
| Canal Farms                                       | 20                                           | 0.03 | 0.10             | 20                |
| Conaway Preservation Group                        | 1,319                                        | 1.59 | 4.91             | 1,325             |
| Eastside Mutual Water Company                     | 352                                          | 0.30 | 0.88             | 353               |
| Glenn-Colusa Irrigation District                  | 175                                          | 0.27 | 0.85             | 176               |
| Glenn-Colusa Irrigation District (to Westside WD) | 3,761                                        | 3.42 | 10.19            | 3,775             |
| Maxwell Irrigation District                       | 827                                          | 0.70 | 2.08             | 830               |
| Natomas Central Mutual Water<br>Company           | 620                                          | 0.88 | 2.76             | 624               |
| Pelger Mutual Water Company                       | 293                                          | 0.30 | 0.90             | 295               |
| Pleasant Grove-Verona Mutual<br>Water Company     | 1,250                                        | 1.24 | 3.72             | 1,255             |
| Princeton-Codora-Glenn Irrigation District        | 618                                          | 0.54 | 1.60             | 621               |
| Provident Irrigation District                     | 672                                          | 0.60 | 1.77             | 674               |
| Reclamation District 108                          | 575                                          | 0.89 | 2.80             | 578               |
| Reclamation District 1004                         | 482                                          | 0.44 | 1.33             | 483               |
| River Garden Farms                                | 192                                          | 0.30 | 0.93             | 193               |
| Roberts Ditch Irrigation District                 | 59                                           | 0.09 | 0.29             | 59                |
| Sycamore Mutual Water<br>Company                  | 231                                          | 0.36 | 1.13             | 233               |
| T&P Farms                                         | 19                                           | 0.03 | 0.09             | 19                |
| Te Velde Revocable Family Trust                   | 79                                           | 0.12 | 0.38             | 79                |
| Total                                             | 11,670                                       | 12.3 | 37.37            | 11,727            |

Emissions from groundwater substitution would be 11,727 metric tons  $CO_2e$  per year (detailed calculations are provided in Appendix J). As a result, the Proposed Action would not conflict with any plan, policy, or regulation adopted for the purpose of reducing GHG emissions and impacts would be less than significant.

#### VIII. HAZARDS AND HAZARDOUS MATERIALS

-- Would the project:

|                                                                                                                                                                                                                                                                  | Potentially<br>Significant<br>Impact | Less Than Significant with Mitigation Incorporation | Less Than<br>Significant<br>Impact | No<br>Impact |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------|------------------------------------|--------------|
| a) Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials?                                                                                                                          |                                      |                                                     |                                    |              |
| b) Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment?                                                                  |                                      |                                                     |                                    |              |
| c) Emit hazardous emissions or<br>handle hazardous or acutely<br>hazardous materials, substances, or<br>waste within one-quarter mile of an<br>existing or proposed school?                                                                                      |                                      |                                                     |                                    |              |
| d) Be located on a site which is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and, as a result, would it create a significant hazard to the public or the environment?                                   |                                      |                                                     |                                    |              |
| e) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project result in a safety hazard for people residing or working in the project area? |                                      |                                                     |                                    |              |

#### VIII. HAZARDS AND HAZARDOUS MATERIALS

-- Would the project:

|                                                                                                                                                                                                                      | Potentially<br>Significant<br>Impact | Less Than Significant with Mitigation Incorporation | Less Than<br>Significant<br>Impact | No<br>Impact |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------|------------------------------------|--------------|
| f) For a project within the vicinity of a private airstrip, would the project result in a safety hazard for people residing or working in the project area?                                                          |                                      |                                                     |                                    |              |
| g) Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan?                                                                                            |                                      |                                                     |                                    |              |
| h) Expose people or structures to a significant risk of loss, injury or death involving wildland fires, including where wildlands are adjacent to urbanized areas or where residences are intermixed with wildlands? |                                      |                                                     |                                    |              |

**a-h) No Impact.** The No Action Alternative and Proposed Action would not involve the transport or use of hazardous materials, nor change in any way public exposure to hazards or hazardous materials. The No Action Alternative and Proposed Action would not occur on a hazardous materials site that would create a risk to the public or environment. The No Action Alternative and Proposed Action would not affect a public airport or private air strip. There are no new structures or buildings included in the Proposed Action; therefore, no people or structures would be exposed to wildland fires as a result of implementation.

# IX. HYDROLOGY AND WATER QUALITY – Would the project:

|                                                                                                                                                                                                                                                                                                                                                                                               | Potentially<br>Significant<br>Impact | Significant with Mitigation Incorporation | Less Than<br>Significant<br>Impact | No<br>Impact |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------|------------------------------------|--------------|
| a) Violate any water quality standards or waste discharge requirements?                                                                                                                                                                                                                                                                                                                       |                                      |                                           |                                    |              |
| b) Substantially deplete groundwater supplies or interfere substantially with groundwater recharge such that there would be a net deficit in aquifer volume or a lowering of the local groundwater table level (e.g., the production rate of pre-existing nearby wells would drop to a level which would not support existing land uses or planned uses for which permits have been granted)? |                                      |                                           |                                    |              |
| c) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, in a manner which would result in substantial erosion or siltation on- or off-site?                                                                                                                                                            |                                      |                                           |                                    |              |
| d) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, or substantially increase the rate or amount of surface runoff in a manner which would result in flooding on- or off-site?                                                                                                                     |                                      |                                           |                                    |              |
| e) Create or contribute runoff water which would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff?                                                                                                                                                                                                         |                                      |                                           |                                    |              |
| f) Otherwise substantially degrade water quality?                                                                                                                                                                                                                                                                                                                                             |                                      |                                           |                                    |              |

#### IX. HYDROLOGY AND WATER QUALITY

- Would the project:

|                                                                                                                                                                                  | Potentially<br>Significant<br>Impact | Less Than Significant with Mitigation Incorporation | Less Than<br>Significant<br>Impact | No<br>Impact |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------|------------------------------------|--------------|
| g) Place housing within a 100-year<br>flood hazard area as mapped on a<br>federal Flood Hazard Boundary or<br>Flood Insurance Rate Map or other<br>flood hazard delineation map? |                                      |                                                     |                                    |              |
| h) Place within a 100-year flood<br>hazard area structures which would<br>impede or redirect flood flows?                                                                        |                                      |                                                     |                                    |              |
| i) Expose people or structures to a significant risk of loss, injury or death involving flooding, including flooding as a result of the failure of a levee or dam?               |                                      |                                                     |                                    |              |
| i) Inundation by seiche, tsunami, or mudflow?                                                                                                                                    |                                      |                                                     |                                    |              |

# a) Less than Significant

No Action Alternative: The No Action Alternative would not violate any waste discharge requirements as no changes to waste discharges to surface waters would occur. CVP and SWP operations in the Delta will be managed adaptively to meet water quality standards that are put in place throughout the water year. Reclamation and DWR submitted, and the SWRCB granted a TUC petition on January 31, 2014. The SWRCB relaxed some salinity and outflow criteria in the Delta in response to extremely low storage levels, and amendments to the TUC may be necessary as conditions warrant. Reclamation and DWR will continue to coordinate closely with the SWRCB to balance the need to provide water supplies south of the Delta, and protect water quality in the Delta.

**Proposed Action**: Under the Proposed Action, Reclamation and DWR would operate CVP and SWP reservoirs to convey transferred water to the buyers. This reoperation would change reservoir storage and river flows. Sacramento River flows may be reduced by a small amount in April, May, and June downstream of TCCA and Feather River flows could increase. The flow changes would occur from Shasta Dam downstream to the point where the water would have been diverted without transfers. The potential change in flow would be about 685 cfs if supplies increase to allow the maximum transfers included in this document, but flow changes would be about 320 cfs if the supplies do not increase. These estimates show the average change during June

(the month with the greatest potential change in river flow), but instantaneous peak flows may be slightly higher. During dry conditions in 1977, flows in the Sacramento River near Colusa averaged 6,560 cfs in May and 6,244 cfs in June (USGS 2014). Reclamation would not store all the water in Shasta and would deliver transfer water to TCCA on a similar irrigation pattern than without the transfer. Therefore, the changes in river flows would be less than stated above and would likely be a fairly small percent of the overall river flows. Keeping water in storage in Shasta Reservoir could help conserve the cold water pool in a year where reservoir levels are so low; however, the very small change from the transfers would be a minor benefit. Changes in flows would not violate any existing water quality standards or worsen any water quality and flow standard violation.

#### b) Less than Significant

No Action Alternative: While it is too early in 2014 to know with certainty the final available surface water supplies, CVP and SWP water service contractors initial allocations are 0 percent, and Settlement Contractors and refuges have been notified that the initial portion of the Contract Total to be made available this year is 40 percent rather than the anticipated 75 percent. In the Sacramento Valley, reductions in supply have historically resulted in increased groundwater pumping and decreased groundwater levels; however, the water levels have rebounded quickly after the dry period (see Appendix F for historical groundwater monitoring data). Figures 3-1 and 3-2 show baseline groundwater trends (in addition to modeling results for the Proposed Action) at the groundwater table and in the deep aquifer, respectively, in the Sacramento Valley near Sycamore Mutual Water Company. The groundwater basin is likely to exhibit a trend of declining groundwater levels similar to those that occurred during historic droughts (such as 1976-1977 and 1987-1992), caused by increased pumping to address reduced surface water supplies.

**Proposed Action**: Water made available for transfer via groundwater substitution could affect groundwater hydrology. The potential effects could be short term declines in local groundwater levels, interaction with surface water, and land subsidence. Potential effects to water quality are discussed in Section (f) below.

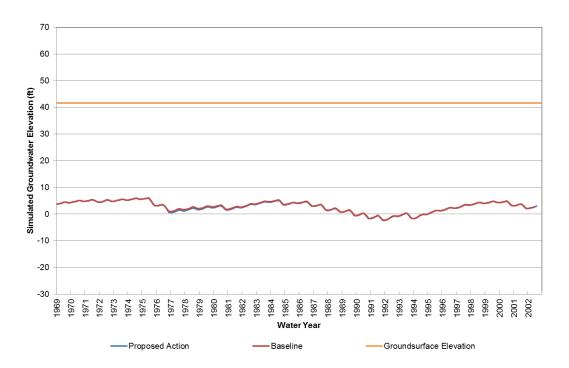



Figure 3-1. Groundwater Levels at the Water Table due to Substitution Pumping at Location 12 (See Figure 3-3)

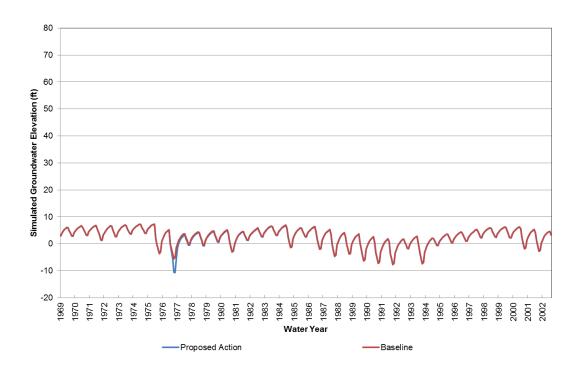



Figure 3-2. Groundwater Levels in the Deep Aquifer due to Substitution Pumping at Location 12 (See Figure 3-4)

Increased groundwater substitution pumping could result in temporary declines of groundwater levels. Groundwater substitution pumping could occur from April through October and the pumped groundwater would be used for crop irrigation. Declining groundwater levels resulting from increased groundwater substitution pumping could cause: (1) increased groundwater pumping costs due to increased pumping depth; (2) decreased yield from groundwater wells due to reduction in the saturated thickness of the aquifer; (3) decrease of the groundwater table to a level below the vegetative root zone, which could result in environmental effects; and 4) third-party impacts to neighboring wells.

Some of the transferred water would be delivered to users within the same groundwater basin, and could offset groundwater pumping in the No Action Alternative to address shortages. The amount of offset is uncertain, so to be conservative, the analysis considers impacts to groundwater without this reduction.

#### **Groundwater Levels**

**Redding Groundwater Basin.** Municipal, industrial, and agricultural water demands in the Redding Groundwater Basin area are approximately 8 million AF (DWR 2003). Groundwater is a major source of water supply within the Redding Groundwater Basin watershed. The exact quantity of groundwater that is pumped from the Redding Groundwater Basin is unknown; however, it is estimated that approximately 50,000 AF of water is pumped annually from domestic, municipal, industrial, and agricultural production wells (CH2M Hill 2003 as cited in Anderson-Cottonwood ID 2011). This magnitude of pumping represents approximately 6 percent of the average annual runoff (850,000 AF) in the basin. Agricultural, industrial, and municipal groundwater users in the Redding Groundwater Basin pump primarily from deeper continental deposits; whereas, domestic groundwater users in the basin generally pump from shallower deposits (Anderson-Cottonwood ID 2011). Some of the water made available for transfer through groundwater substitution transfers would originate from the Redding Groundwater Basin in Shasta County through Anderson-Cottonwood ID. The proposed Anderson-Cottonwood ID transfer would withdraw up to 4,800 AF per year of groundwater from production wells (see Table 3-8 for details on number of wells and pumping capacity). Unlike other groundwater substitution transfers, Anderson-Cottonwood ID's proposed transfer was not simulated in the Sacramento Valley Groundwater Model (SACFEM) because the model area does not include the Redding Basin. However, Anderson-Cottonwood ID has tested operation of these wells in the past at similar production rates and has observed no substantial impacts on groundwater levels or groundwater supplies (Anderson-Cottonwood ID 2013). Based on the results of the aquifer tests, groundwater substitution transfers are unlikely to have significant effects on groundwater levels. Because of the uncertainty of how groundwater levels could change, especially during a very dry year, Anderson-Cottonwood ID will implement the minimization measures described below, including Monitoring and Mitigation Plans.

Sacramento Groundwater Basin. Historically, groundwater levels in the basin have remained steady, declining moderately during extended droughts and recovering to pre-drought levels after subsequent wet periods (see Appendix F). DWR and other monitoring entities, as defined by Assembly Bill 1152, extensively monitor groundwater levels in the basin.

Groundwater drawdown impacts associated with groundwater pumping that would occur under the Proposed Action were evaluated using SACFEM. The effects of concurrent groundwater substitution pumping from 278 wells based on data collected from potential sellers within the Sacramento Valley have been modeled to estimate effects to groundwater resources. The modeling was completed based on initial estimates of transfers early in the season before sellers realized that they may receive reduced supplies from the CVP and SWP. The sellers have since reduced the potential amount of water available for transfer. The groundwater modeling results are therefore conservative in that the groundwater effects from pumping would be less than shown in the figures below because less water could be transferred. However, the overall groundwater level decline from both the No Action Alternative and the Proposed Action resulting from model simulations using 1977 hydrologic conditions is likely a reasonable estimate. This is because the sellers are likely to increase pumping in the No Action Alternative in response to reduced surface water deliveries.

Figures 3-3 and 3-4 show the simulated drawdown under September 1977 hydrologic conditions. During dry years, surface water resources are limited and users have historically increased groundwater pumping to address shortages. Water transfers for 2014 were simulated in SACFEM using September 1977 hydrologic conditions because this represents the driest conditions during the period of record. Simulating transfers during this period illustrates the potential to compound impacts from dry-year pumping as compared to the No Action Alternative. Water year 2014 may be drier than 1977, but data from 1977 represents the best information currently available.

Figure 3-3 presents the estimated drawdown at the water table and Figure 3-4 presents the estimated drawdown at approximately 110 feet below ground surface (bgs)<sup>1</sup>. Drawdown at the water table (Figure 3-3) represents the estimated decline in the water surface within the shallow, unconfined portion of the aquifer (i.e., the height of water within a shallow groundwater well). The drawdown in the deeper portion of the aquifer (Figure 3-4) represents a change in hydraulic head (i.e., water pressure) in a well that is screened in this lower portion of the aquifer.

<sup>&</sup>lt;sup>1</sup> Two sellers were removed from the Proposed Action in the Final EA/IS: Garden Highway MWC and Goose Club and Teichert Aggregate. The groundwater model simulation included these two districts, but the projected drawdown in these areas would not occur as part of the Proposed Action.

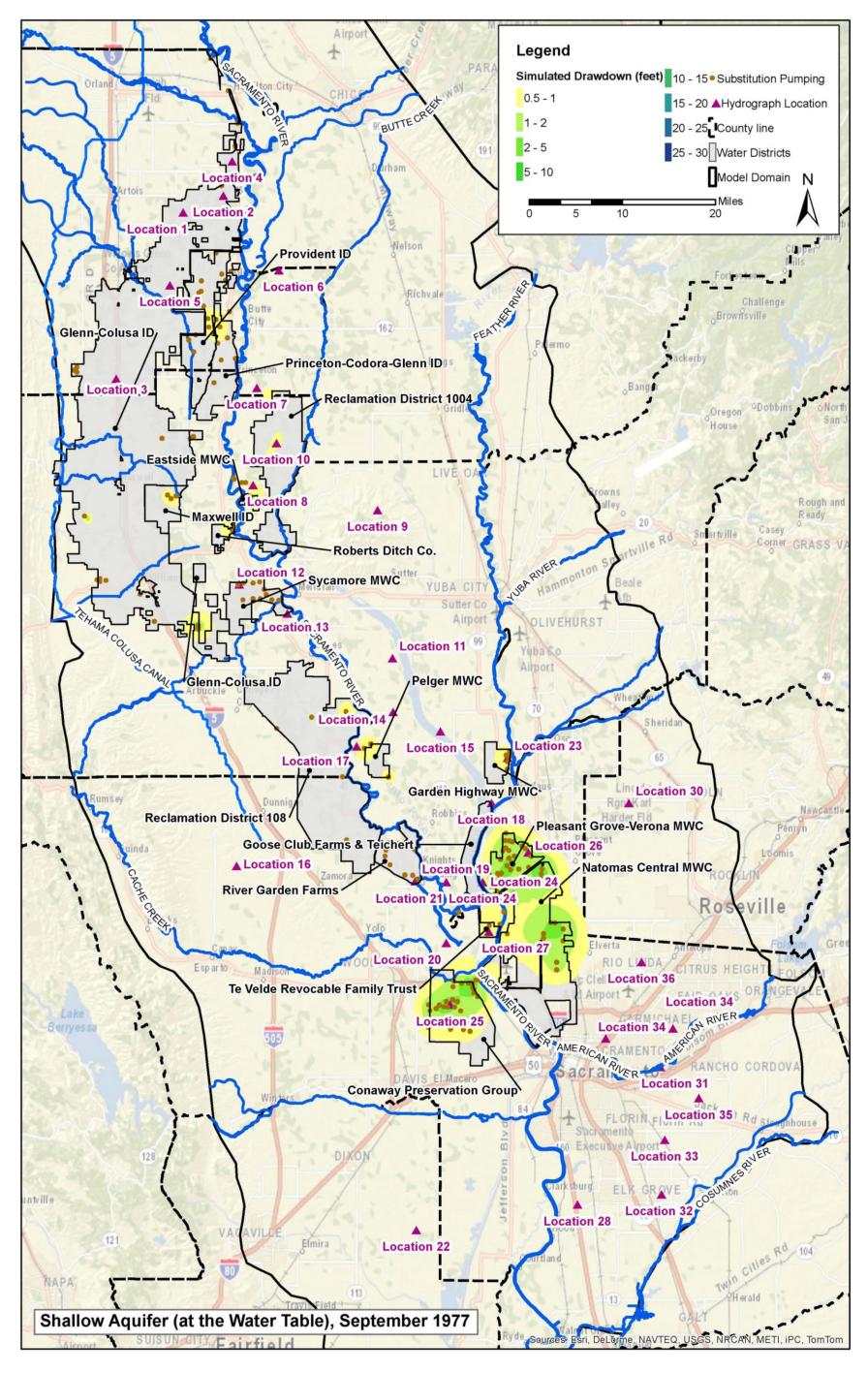
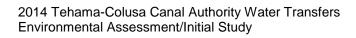




Figure 3-3. Proposed Action Effects on Groundwater Levels at the Water Table



This page left blank intentionally.

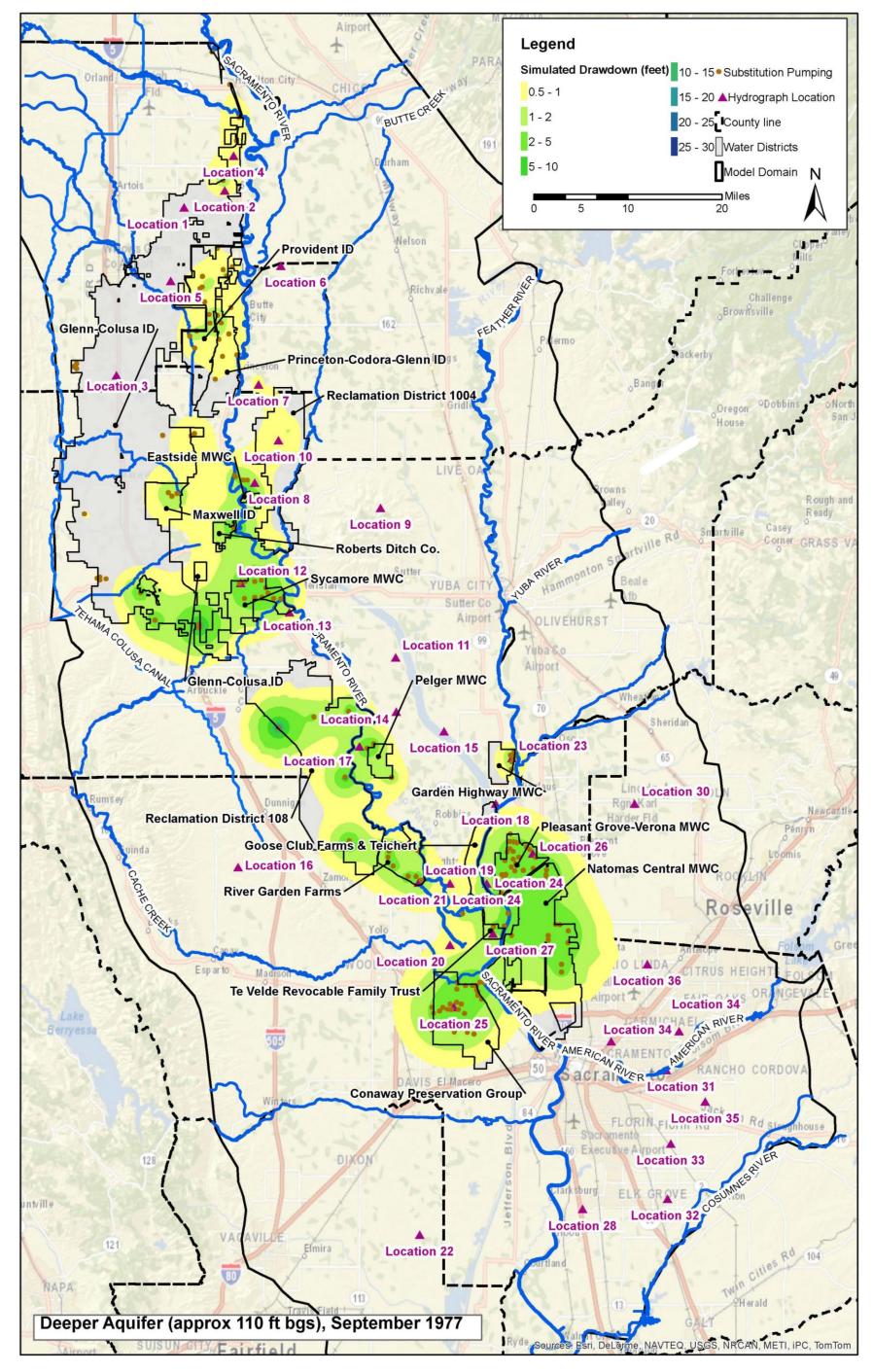




Figure 3-4. Proposed Action Effects on Groundwater Levels in the Deep Aquifer



This page left blank intentionally.

Figures 3-1 and 3-2 show simulated hydrographs for Location 12 (see Figures 3-3 and 3-4 for location). Figures 3-1 and 3-2 show that groundwater levels decline slightly more with groundwater substitution (the blue line) than under the No Action/No Project Alternative pumping conditions (the red line). The drawdown extends longer than the period of groundwater pumping, potentially over a year or two. Most areas in the model exhibit smaller drawdown changes than those shown in Figures 3-1 and 3-2. Appendix K, Groundwater Modeling Results, includes hydrographs for multiple locations.

Groundwater substitution under the Proposed Action could result in temporary drawdown that exceeds what would have occurred under the No Action Alternative. Increased groundwater pumping could also cause localized declines of groundwater levels, or cones of depression, near the wells participating in the groundwater substitution transfer. These decreased groundwater levels, however, are relatively small. Most changes in groundwater elevation are less than 5 feet and occur primarily within the localized area selling the water.

The model results correspond to monitoring information that indicates groundwater levels in the Sacramento Valley tend to decrease during the irrigation season and rebound in the wet winter months. Model results also indicate that while the groundwater levels sometimes do not return to No Action Alternative levels within one year, they recover relatively quickly (as shown in Figures 3-1 and 3-2 and the hydrographs in Appendix K). Because of the aquifer's relatively short recovery period after increased extractions, incidental recharge, and the one-year time frame of the transfer, the Proposed Action would likely have a minimal effect on long-term groundwater level trends. However, the model results may not reflect all specific local conditions throughout the Sacramento Valley. Therefore, minimization measures described below would include development of monitoring and mitigation plans to monitor and address potential groundwater level changes that could affect third parties or biological resources.

Table 3-8. Water Transfers through Groundwater Substitution under the Proposed Action

| Groundwater<br>Basin | Potential Seller                                  | Number of Wells | Pumping Rate (gpm) | Range of<br>Screened Interval<br>(feet) |
|----------------------|---------------------------------------------------|-----------------|--------------------|-----------------------------------------|
| Redding Area         | Anderson Cottonwood Irrigation District           | 2               | 1,000 – 5,500      | 150 - 455                               |
|                      | Canal Farms                                       | 2               | 3,500              | 200- 305                                |
|                      | Conaway<br>Preservation Group                     | 33              | 1,400- 3,500       | 70-578                                  |
|                      | Eastside Mutual<br>Water Company                  | 1               | 3,800              | 150- 240                                |
|                      | Glenn-Colusa<br>Irrigation District               | 21              | 425- 4000          | 25- 1,300                               |
|                      | Maxwell Irrigation District                       | 5               | 3,800              | 150- 240                                |
| Sacramento Valley    | Natomas Central<br>Mutual Water<br>Company        | 13              | 4,200              | 150- 350                                |
|                      | Pelger Mutual Water<br>Company                    | 3               | 2,555              | 100- 485                                |
|                      | Pleasant Grove-<br>Verona Mutual<br>Water Company | 31              | 1,500- 5,000       | 100- 260                                |
|                      | Princeton-Codora-<br>Glenn Irrigation<br>District | 11              | 2,500 – 5,000      | 110 - 290                               |
|                      | Provident Irrigation District                     | 12              | 2,000 – 3,300      | 93 - 260                                |
|                      | Reclamation District<br>108                       | 5               | 1,600 – 5,700      | 150 - 535                               |
|                      | Reclamation District<br>1004                      | 16              | 1,000- 5,800       | 56- 400                                 |
|                      | River Garden Farms                                | 7               | 1,700- 2,990       | 170- 686                                |
|                      | Robert Ditch<br>Irrigation Company                | 2               | 4,500              | 140 - 250                               |
|                      | Sycamore Mutual Water Company                     | 12              | 2,500- 3,500       | 256- 906                                |
|                      | T&P Farms                                         | 2               | 3,500              | 185- 257                                |
|                      | Te Velde Revocable Family Trust                   | 4               | 2,200- 4656        | 115-455                                 |

#### **Groundwater/Surface Water Interaction**

The implementation of groundwater substitution pumping can lower the groundwater table and may change the relative difference between the groundwater and surface water levels. The water pumped from a groundwater well could have two impacts that reduce the amount of surface water compared to pre-pumping conditions. The mechanisms are:

- Induced leakage. Lowering of the groundwater table causes a condition where the groundwater table is lower than the surface-water level. This condition causes leakage out of surface water bodies and could increase percolation rates on irrigated lands.
- Interception of groundwater. A well used for groundwater substitution pumping can intercept groundwater that normally might have discharged to the surface water.

Due to these depletions in streamflow, the volume of water that can be realistically transferred is not the same as the volume of groundwater pumped through a substitution action. The amount of water that can justifiably be considered to be transferred is the volume of substitution pumping less the amount of induced leakage and the amount of intercepted groundwater flow. The Proposed Action includes measures that would reduce the amount of water that the TCCA receives by an assumed 12 percent depletion factor to prevent any adverse impacts associated with surface water-groundwater interaction, as further described in Chapter 2. This would mitigate potential stream depletion as a result of the Proposed Action.

Reclamation and DWR have developed well acceptance criteria to further mitigate the potential for streamflow depletion based on the well's location, depth, and construction information. These criteria are in the *DRAFT Technical Information for Preparing Water Transfer Proposals* (Reclamation and DWR 2013).

#### **Land Subsidence**

Excessive groundwater extraction from unconfined and confined aquifers could lower groundwater levels and decrease water pressure. The reduction in water pressure could result in a loss of structural support for clay and silt beds. The loss of structural support could cause the compression of clay and silt beds, which could lower the ground surface elevation (land subsidence). The compression of fine-grained deposits, such as clay and silt, is largely permanent. Infrastructure damage and alteration of drainage patterns are possible consequences of land subsidence.

Redding Groundwater Basin. Land subsidence has not been monitored in the Redding Groundwater Basin. However, there would be potential for subsidence

in some areas of the basin if groundwater levels were substantially lowered. The groundwater basin west of the Sacramento River is composed of the Tehama Formation; this formation has exhibited subsidence in Yolo County and the similar hydrogeologic characteristics in the Redding Groundwater Basin could allow subsidence.

The potential for subsidence as a result of the Proposed Action is small if the groundwater substitution pumping is small compared to overall pumping in a region. The minimization measures described below require all groundwater substitution transfers to monitor for subsidence or provide a credible analysis why it would be unlikely. The process of real-time subsidence monitoring will measure any changes in the ground surface elevation, whether subsidence is short-term or long-term.

Sacramento Groundwater Basin. Most areas of the Sacramento Valley Groundwater Basin have not experienced land subsidence that has caused impacts to the overlying land. However, portions of Colusa and Yolo counties have experienced subsidence; historically land subsidence occurred in the eastern portion of Yolo County and the southern portion of Colusa County, owing to groundwater extraction and geology. As much as four feet of land subsidence, due to groundwater withdrawal, has occurred east of Zamora over the last several decades. The area between Zamora, Knights Landing, and Woodland has been most affected (Yolo County 2012). Subsidence in this region is generally related to groundwater pumping and subsequent consolidation of loose aquifer sediments.

As mentioned earlier most areas of the Sacramento Valley Groundwater Basin have not experienced land subsidence that has caused impacts to the overlying land. Most of the transfers in the Proposed Action do not include groundwater substitution pumping within the areas of Yolo and Colusa counties that have had subsidence issues. Conaway Preservation Group is in eastern Yolo County near areas of historic subsidence; DWR maintains an extensometer to help monitor potential subsidence issues. A transfer in this area would need to incorporate monitoring and mitigation for subsidence as discussed in the minimization measures described below. Therefore, the effect on potential land subsidence in the Sacramento Valley would be less than significant.

#### **Minimization Measures**

The *DRAFT Technical Information for Preparing Water Transfer Proposals* (Reclamation and DWR 2013) and Addendum (Reclamation and DWR 2014) provide guidance for the development of proposals for groundwater substitution water transfers. The objectives of this process are: to mitigate adverse environmental effects that occur; to minimize potential effects to other legal users of water; to provide a process for review and response to reported third party effects; and to assure that a local mitigation strategy is in place prior to the groundwater transfer. The seller will be responsible for assessing and

minimizing or avoiding adverse effects resulting from the transfer within the source area of the transfer.

Each entity participating in a groundwater substitution transfer will be required to confirm that the proposed groundwater pumping will be compatible with state and local regulations and groundwater management plans. Reclamation's transfer approval process and groundwater minimization measures set forth a framework that is designed to avoid and minimize adverse groundwater effects. Reclamation will verify that sellers adopt these minimization measures to minimize the potential for adverse effects related to groundwater extraction.

**Well Review Process** Potential sellers will be required to submit well data for Reclamation and, where appropriate, DWR review, as part of the transfer approval process. Required information is detailed in the *DRAFT Technical Information for Preparing Water Transfer Proposals* (Reclamation and DWR 2013) and Addendum (Reclamation and DWR 2014) for groundwater substitution transfers.

For the purposes of this EA/IS, Reclamation assumes that streamflow losses due to groundwater pumping to make water available for transfer are 12 percent of the amount pumped. Sellers may submit modeling information from approved models to demonstrate that this percentage should be different. Reclamation continues to require well location and construction information to ensure that the criteria in the *DRAFT Technical Information for Preparing Water Transfer Proposals* (Reclamation and DWR 2013) are met.

**Monitoring Program** Potential sellers will be required to complete and implement a monitoring program that must, at a minimum, include the following components:

- Monitoring Well Network. The monitoring program will incorporate a sufficient number of monitoring wells to accurately characterize groundwater levels and response in the area before, during, and after transfer pumping takes place.
- Groundwater Pumping Measurements. All wells pumping to replace surface water designated for transfer shall be configured with a permanent instantaneous and totalizing flow meter capable of accurately measuring well discharge rates and volumes. Flow meter readings will be recorded just prior to initiation of pumping and at designated times, but no less than monthly and as close as practical to the last day of the month, throughout the duration of the transfer.
- Groundwater Levels. Sellers will collect measurements of groundwater levels in both participating transfer wells and monitoring wells.
   Groundwater level monitoring will include measurements before,

during and after transfer-related pumping. The water transfer proponent will measure groundwater levels as follows:

- <u>Prior to transfer</u>: Groundwater levels will be measured monthly from March 2014 until the start of transfer.
- <u>Start of transfer</u>: Groundwater levels will be measured on the same day that the transfer begins, prior to the pump being turned on.
- <u>During transfer</u>: Groundwater levels will be measured weekly throughout the transfer period.
- <u>Post-transfer</u>: Groundwater levels will be measured weekly for one month after the end of transfer pumping, after which groundwater levels will be measured monthly until March 2015.
- Groundwater Quality. For municipal sellers, the comprehensive water quality testing requirements of Title 22 should be sufficient for the water transfer monitoring program. Agricultural sellers shall measure specific conductance in samples from each participating production well. Samples shall be collected when the seller first initiates pumping, monthly during the transfer period, and at the termination of transfer pumping.
- Land Subsidence. Reclamation will work with the seller to develop the specifics of a mutually agreed upon subsidence monitoring effort. The extent of required land subsidence monitoring will depend on the expected susceptibility of the area to land subsidence. Areas with documented land subsidence will require more extensive monitoring than others.
- Coordination Plan. The monitoring program will include a plan to coordinate the collection and organization of monitoring data, and communication with the well operators and other decision makers.
- Evaluation and Reporting. The proposed monitoring program will describe the method of reporting monitoring data. At a minimum, sellers will provide data summary tables to Reclamation, both during and after transfer-related groundwater pumping. Post-program reporting will continue until groundwater levels recover to seasonal highs in March 2015. Water transfer proponents will provide a final summary report to Reclamation evaluating the effects of the water transfer. The final report will identify transfer-related impacts on groundwater and surface water (both during and after pumping), and the extent and significance, if any, of impacts on local groundwater users. It should include groundwater elevation contour maps for the area in which transfer operations are located, showing pre-transfer

groundwater elevations, groundwater elevations at the end of the transfer, and recovered groundwater elevations in March 2015.

**Mitigation Plan** Potential sellers will also be required to complete and implement a mitigation plan. If the seller's monitoring efforts indicate that the operation of wells for groundwater substitution pumping are causing substantial adverse impacts, the seller will be responsible for mitigating any significant environmental impacts that occur. Mitigation actions could include:

- Curtailment of pumping until natural recharge corrects the issue.
- Lowering of pumping bowls in third party wells affected by transfer pumping.
- Reimbursement for significant increases in pumping costs due to the additional groundwater pumping to support the transfer.
- Other actions as appropriate.

To ensure that mitigation plans will be tailored to local conditions, the plan must include the following elements:

- 1. A procedure for the seller to receive reports of purported environmental or third party effects;
- 2. A procedure for investigating any reported effect;
- 3. Development of mitigation options, in cooperation with the affected third parties, for legitimate effects; and
- 4. Assurances that adequate financial resources are available to cover reasonably anticipated mitigation needs.

#### c) Less than Significant

No Action Alternative: Because of dry conditions in 2014, water users in the Sacramento Valley may idle more cropland in response to supply shortages. Under normal farming practices, growers leave fields fallow during some cropping cycles in order to make improvements such as land leveling and weed abatement or to reduce pest problems and build soils. Growers manage potential soil erosion impacts to avoid substantial loss of soils and to protect soil quality (USDA Natural Resources Conservation Service [NRCS] 2009). While growers would not be able to engage in management practices that result in a consumptive use of water on an idled field, they could continue such erosion control techniques as surface roughening tillage to produce clods, ridges, and depressions to reduce wind velocity and trap drifting soil; establishment of barriers at intervals perpendicular to wind direction; or, application of mulch (USDA NRCS 2009). Therefore, cropland idling under the No Action

Alternative would not result in substantial soil erosion or sediment deposition into waterways. Impacts to water quality would be less than significant.

**Proposed Action**: The Proposed Action could include cropland idling in addition to the idling that would occur under the No Action Alternative, which has the potential to increase sediment erosion into nearby waterways. Similar to the No Action Alternative, growers would implement measures to prevent the loss of topsoil. Additionally, the rice crop cycle and the soil textures in the sellers' areas reduce the potential for wind erosion in this region. The process of rice cultivation includes incorporating the leftover rice straw into the soils after harvest through discing. Once dried, the combination of decomposed straw and clay texture soils typically produces a hard, crust-like surface. If left undisturbed, this surface texture would remain intact throughout the summer, when wind erosion would be expected to occur, until winter rains begin. This surface type would not be conducive to soil loss from wind erosion. During the winter rains, the hard, crust-like surface typically remains intact and the amount of sediment transported through winter runoff would not be expected to increase. Therefore, there would be little-to-no increase in sediment transport resulting from wind erosion or winter runoff from idled rice fields under the Proposed Action and the resultant impact would be less than significant.

**d, e, g, h, i, j)** No Impact. The Proposed Action and No Action Alternative would not involve any actions that would result in flooding or create runoff water that would exceed the capacity of existing drainage systems or provide a substantial source of polluted runoff.

**f)** Less Than Significant. Changes in groundwater levels and the potential change in groundwater flow directions could cause a change in groundwater quality through a number of mechanisms. One mechanism is the potential mobilization of areas of poorer quality water, drawn down from shallow zones, or drawn up into previously unaffected areas. Changes in groundwater gradients and flow directions could also cause (or speed) the lateral migration of poorer quality water.

**No Action Alternative:** Surface water shortages would likely cause some water users to pump additional groundwater. The groundwater pumping could cause water quality concerns, as described above. However, the groundwater pumping would follow historic dry year trends and would not likely change groundwater quality compared to existing conditions.

#### **Proposed Action:**

**Redding Groundwater Basin.** Groundwater in the Redding Basin area of analysis is typically of good quality, as evidenced by its low TDS concentrations, which range from 70 to 360 mg/L. Areas of high salinity (poor water quality), are generally found on the western basin margins, where the groundwater is derived from marine sedimentary rock. Elevated levels of iron,

manganese, nitrate, and high TDS have been detected in some areas (DWR 2003).

Groundwater extraction under the Proposed Action would be limited to withdrawals during the irrigation season of the 2014 contract year. Since groundwater in the Redding area is of good quality, adverse effects from the migration of reduced groundwater quality would be anticipated to be minimal.

Sacramento Groundwater Basin. Groundwater quality in the Sacramento Valley Groundwater Basin is generally good and sufficient for municipal, agricultural, domestic, and industrial uses. However, there are some localized groundwater quality issues in the basin. Arsenic was detected above the maximum contaminant level (MCL) in 22 percent of the primary aquifers within the Sacramento Valley. Nutrient concentration within the central Sacramento Valley region was above the MCLs in about three percent of the primary aquifers. In the southern portion of the basin, nutrients were detected above the MCLs in about one percent of the primary aquifers (Bennett 2011).

Groundwater extraction under the Proposed Action would be limited to withdrawals during the irrigation season of the 2014 contract year. Groundwater extraction under the Proposed Action would be limited to short-term withdrawals during the irrigation season and extraction near areas of reduced groundwater quality would not be expected to result in a permanent change to groundwater quality conditions. Consequently, effects from the migration of reduced groundwater quality would be less than significant.

## **X. LAND USE AND PLANNING** - Would the project:

| 1 /                                                                                                                                                                                                                                                                                                         | Potentially<br>Significant<br>Impact | Less Than Significant with Mitigation Incorporation | Less Than<br>Significant<br>Impact | No<br>Impact |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------|------------------------------------|--------------|
| a) Physically divide an established community?                                                                                                                                                                                                                                                              |                                      |                                                     |                                    |              |
| b) Conflict with any applicable land use plan, policy, or regulation of an agency with jurisdiction over the project (including, but not limited to the general plan, specific plan, local coastal program, or zoning ordinance) adopted for the purpose of avoiding or mitigating an environmental effect? |                                      |                                                     |                                    |              |
| c) Conflict with any applicable habitat conservation plan or natural community conservation plan?                                                                                                                                                                                                           |                                      |                                                     |                                    |              |

- **a, b) No Impact.** The No Action Alternative and Proposed Action would not involve any construction or new structures that could divide a community or conflict with land use plans, policies, or zoning.
- **c) No Impact.** The No Action Alternative and Proposed Action would not conflict with local policies protecting biological resources or habitat conservation plans.

#### XI. MINERAL RESOURCES -

Would the project:

|                                                                                                                                                                       | Potentially<br>Significant<br>Impact | Less Than<br>Significant<br>with<br>Mitigation<br>Incorporation | Less Than<br>Significant<br>Impact | No<br>Impact |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------|------------------------------------|--------------|
| a) Result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state?                                |                                      |                                                                 |                                    |              |
| b) Result in the loss of availability of a locally-important mineral resource recovery site delineated on a local general plan, specific plan or other land use plan? |                                      |                                                                 |                                    |              |

**a, b) No Impact.** The No Action Alternative and Proposed Action do not require construction or other activities that would result in the loss of availability of known mineral resources.

## **XII. NOISE** - Would the project result in:

|                                                                                                                                                                                                                                                                     | Potentially<br>Significant<br>Impact | Less Than Significant with Mitigation Incorporation | Less Than<br>Significant<br>Impact | No<br>Impact |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------|------------------------------------|--------------|
| a) Exposure of persons to or<br>generation of noise levels in excess<br>of standards established in the local<br>general plan or noise ordinance, or<br>applicable standards of other<br>agencies?                                                                  |                                      |                                                     |                                    |              |
| b) Exposure of persons to or<br>generation of excessive<br>groundborne vibration or<br>groundborne noise levels?                                                                                                                                                    |                                      |                                                     |                                    |              |
| c) A substantial permanent increase<br>in ambient noise levels in the<br>project vicinity above levels<br>existing without the project?                                                                                                                             |                                      |                                                     |                                    |              |
| d) A substantial temporary or<br>periodic increase in ambient noise<br>levels in the project vicinity above<br>levels existing without the project?                                                                                                                 |                                      |                                                     |                                    |              |
| e) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels? |                                      |                                                     |                                    |              |
| f) For a project within the vicinity of a private airstrip, would the project expose people residing or working in the project area to excessive noise levels?                                                                                                      |                                      |                                                     |                                    |              |

#### **Discussion:**

**a, b, c, e, f) No Impact.** The No Action Alternative and Proposed Action would not result in the development of any new noise-emitting devices. The Proposed Action would only rely on existing facilities and equipment. No new construction activities would be associated with the Proposed Action and no ground-disturbing actions with the potential to generate groundborne vibrations

would occur. Certain wells may be located within an airport land use plan, but there would be no new permanent residents or workers near the wells that could be affected by any plane noise. For private airstrips, the Proposed Action would not expose people in the vicinity to excessive noise levels.

d) Less Than Significant. The No Action Alternative would not increase ambient noise levels. The Proposed Action would result in the temporary operation of existing electric, diesel, and natural gas driven wells that would result in temporary increases in noise levels. All the wells would be located in rural areas, which are generally removed from noise-sensitive receptors or in a farm setting with typical noise from agricultural operations. The wells would be operated by a willing landowner; therefore, any localized noise levels would be approved by the landowner. Noise impacts from increased well operation would be less than significant.

## XIII. POPULATION AND HOUSING - Would the project:

|                                                                                                                                                                                                                          | Potentially<br>Significant<br>Impact | Less Than Significant with Mitigation Incorporation | Less Than<br>Significant<br>Impact | No<br>Impact |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------|------------------------------------|--------------|
| a) Induce substantial population<br>growth in an area, either directly (for<br>example, by proposing new homes<br>and businesses) or indirectly (for<br>example, through extension of roads<br>or other infrastructure)? |                                      |                                                     |                                    |              |
| b) Displace substantial numbers of existing housing, necessitating the construction of replacement housing elsewhere?                                                                                                    |                                      |                                                     |                                    |              |
| c) Displace substantial numbers of people, necessitating the construction of replacement housing elsewhere?                                                                                                              |                                      |                                                     |                                    |              |

- a) No Impact. The No Action Alternative and Proposed Action would not induce population growth. Water transfers would help reduce water shortages, and would not increase the maximum acreage under production or require more farm workers to meet labor demands. No housing would be constructed, demolished, or replaced as a result of water transfers.
- **b, c)** No Impact. The No Action Alternative and Proposed Action would include no construction, demolition, or other activities that could displace existing housing or people and necessitate the construction of replacement housing.

#### XIV. PUBLIC SERVICES

- Would the project result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives for any of the public services:

| the public services:                                                                                 |                                      |                                                                 |                                    |              |
|------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------|------------------------------------|--------------|
|                                                                                                      | Potentially<br>Significant<br>Impact | Less Than<br>Significant<br>with<br>Mitigation<br>Incorporation | Less Than<br>Significant<br>Impact | No<br>Impact |
| a) Fire protection?                                                                                  |                                      |                                                                 |                                    |              |
| b) Police protection?                                                                                |                                      |                                                                 |                                    |              |
| c) Schools?                                                                                          |                                      |                                                                 |                                    |              |
| d) Parks?                                                                                            |                                      |                                                                 |                                    |              |
| e) Other governmental facilities (including roads)?                                                  |                                      |                                                                 |                                    |              |
| <b>a-e) No Impact.</b> The No Accreate any new demand for particular facilities to be altered. Trans | oublic service                       | es or require an                                                | y existing pu                      | blic         |

**a-e) No Impact.** The No Action Alternative and Proposed Action would not create any new demand for public services or require any existing public facilities to be altered. Transferred water would be transported using existing conveyance facilities and pumping stations, and would not require the use of area roads, so there would be no impact to roads or other government facilities. Water transfers would not affect the supplies available to municipalities or other jurisdictions for fire protection, parks, or school use. Therefore, there would be no impact to Public Services or Public Facilities as a result of this project.

#### XV. RECREATION -

|                                                                                                                                                                                                                | Potentially<br>Significant<br>Impact | Less Than Significant with Mitigation Incorporation | Less Than<br>Significant<br>Impact | No<br>Impact |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------|------------------------------------|--------------|
| a) Would the project increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated? |                                      |                                                     |                                    |              |

#### XV. RECREATION -

|                                                                                                                                                                                                                                                                                                                                                                                                                                        | Potentially<br>Significant<br>Impact | Less Than<br>Significant<br>with<br>Mitigation<br>Incorporation | Less Than<br>Significant<br>Impact   | No<br>Impact |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------|--------------------------------------|--------------|
| b) Does the project include<br>recreational facilities or require the<br>construction or expansion of<br>recreational facilities which might<br>have an adverse physical effect on the<br>environment?                                                                                                                                                                                                                                 |                                      |                                                                 |                                      |              |
| <b>a, b) No Impact.</b> The No Action Altraffect any recreation facilities or requaction facilities.                                                                                                                                                                                                                                                                                                                                   |                                      | _                                                               |                                      |              |
| XVI. TRANSPORTATION/TRAFFIC Would the project:                                                                                                                                                                                                                                                                                                                                                                                         | _                                    |                                                                 |                                      |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                        | Potentially<br>Significan<br>Impact  |                                                                 | Less Than<br>Significant<br>1 Impact | No<br>Impact |
| a) Cause an Conflict with an applicable plan, ordinance or policy establishing measures of effectiveness for the performance of the circulation system, taking into account all modes of transportation including mass transit and non-motorized travel and relevant components of the circulation system, including but not limited to intersections, streets, highways and freeways, pedestrian and bicycle paths, and mass transit? |                                      |                                                                 |                                      |              |
| b) Conflict with an applicable congestion management program, including, but not limited to level of service standards and travel demand measures, or other standards established by the county congestion management agency for designated roads or highways?                                                                                                                                                                         |                                      |                                                                 |                                      |              |
| c) Result in a change in air traffic<br>patterns, including either an increase in<br>traffic levels or a change in location that<br>results in substantial safety risks?                                                                                                                                                                                                                                                               |                                      |                                                                 |                                      |              |

## **XVI. TRANSPORTATION/TRAFFIC –** Would the project:

|                                                                                                                                                                                                                                                                                                                                                                                          | Potentially<br>Significant<br>Impact                                                               |                                                                                                                  | Less Than<br>Significant<br>Impact                                                                   | No<br>Impact                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------|
| d) Substantially increase hazards due to<br>a design feature (e.g., sharp curves or<br>dangerous intersections) or<br>incompatible uses (e.g., farm<br>equipment)?                                                                                                                                                                                                                       |                                                                                                    |                                                                                                                  |                                                                                                      |                                     |
| e) Result in inadequate emergency access?                                                                                                                                                                                                                                                                                                                                                |                                                                                                    |                                                                                                                  |                                                                                                      |                                     |
| f) Conflict with adopted policies, plans, or programs regarding public transit, bicycle, or pedestrian facilities, or otherwise decrease the performance or safety of such facilities?                                                                                                                                                                                                   |                                                                                                    |                                                                                                                  |                                                                                                      |                                     |
| <b>a-g) No Impact.</b> The No Action Altercreate any new demand on transportation construction activities that would increase. The amount of water transferred during normal water years, and so wou in the buyer's area that could increase level of service or air traffic patterns in increase to the hazard to design feature parking capacity, or conflict with adoptransportation. | ion service<br>ease the tra<br>would be<br>ald not cre<br>traffic. The<br>the projects, inadeques. | es. The Propo<br>affic on roads<br>less than wha<br>ate an increas<br>are would be<br>ct area, nor wante emergen | sed Action<br>in the proj<br>t is supplie<br>se in farm a<br>no impact<br>yould there<br>cy access o | has no ect d ctivity to the be an r |
| XVII. UTILITIES AND SERVICE SYSTEMS - Would the project:                                                                                                                                                                                                                                                                                                                                 |                                                                                                    |                                                                                                                  |                                                                                                      |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                          | Potentially<br>Significant<br>Impact                                                               | Less Than Significant with Mitigation Incorporation                                                              | Less Than<br>Significant<br>Impact                                                                   | No<br>Impact                        |
| a) Exceed wastewater treatment requirements of the applicable Regional Water Quality Control Board?                                                                                                                                                                                                                                                                                      |                                                                                                    |                                                                                                                  |                                                                                                      |                                     |

## XVII. UTILITIES AND SERVICE SYSTEMS - Would the project:

|                                                                                                                                                                                                                                   | Potentially<br>Significant<br>Impact | Less Than Significant with Mitigation Incorporation | Less Than<br>Significant<br>Impact | No<br>Impact |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------|------------------------------------|--------------|
| b) Require or result in the construction of new water or wastewater treatment facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?                            |                                      |                                                     |                                    |              |
| c) Require or result in the construction of new stormwater drainage facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?                                      |                                      |                                                     |                                    |              |
| d) Have sufficient water supplies available to serve the project from existing entitlements and resources, or are new or expanded entitlements needed?                                                                            |                                      |                                                     |                                    |              |
| e) Result in a determination by the wastewater treatment provider which serves or may serve the project that it has adequate capacity to serve the project's projected demand in addition to the provider's existing commitments? |                                      |                                                     |                                    |              |
| f) Be served by a landfill with sufficient permitted capacity to accommodate the project's solid waste disposal needs?                                                                                                            |                                      |                                                     |                                    |              |
| g) Comply with federal, state, and local statutes and regulations related to solid waste?                                                                                                                                         |                                      |                                                     |                                    |              |

**a-g) No Impact.** The No Action Alternative and Proposed Action would not create any new demand on utilities or service systems. There would be no impact to utility or service systems resulting from implementing the Proposed Action. Transfers would not require the construction of new water or wastewater treatment facilities as all water transfers would be done using existing facilities. There would be no increase in demand for wastewater treatment facilities that could exceed existing capacities, and no new storm water drainage facilities would be required under the Proposed Action.

Water transfers would be done within the existing entitlements and resources, and no new water supplies for the sellers would be required. Buyers would also not require new water supplies as the transfers would provide agricultural water in lieu of the limited surface water supplies and in addition to the groundwater supplies already available in the buyers' area.

There would be no solid waste generated as a result of the Proposed Action, and therefore no landfill would be required. Therefore, there would be no impact to utilities or other service systems as a result of the Proposed Action.

## XVIII. MANDATORY FINDINGS OF SIGNIFICANCE –

|                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Potentially<br>Significant<br>Impact | Less Than<br>Significant<br>with<br>Mitigation<br>Incorporation | Less Than<br>Significant<br>Impact | No<br>Impact |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------|------------------------------------|--------------|
| a) Does the project have the potential to degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, reduce the number or restrict the range of a rare or endangered plant or animal or eliminate important examples of the major periods of California history or prehistory? |                                      |                                                                 |                                    |              |
| b) Does the project have impacts that are individually limited, but cumulatively considerable? ("Cumulatively considerable" means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects)?                                                                                                           |                                      |                                                                 |                                    |              |
| c) Does the project have<br>environmental effects which will<br>cause substantial adverse effects on<br>human beings, either directly or<br>indirectly?                                                                                                                                                                                                                                                                                                  |                                      |                                                                 |                                    |              |

- a) Less than Significant. Water transfers would not have substantial incremental effects to habitat or species relative to the conditions would occur in response to the dry hydrologic conditions. Environmental Commitments required for 2014 transfers would reduce potential special status species impacts to less than significant. Water transfers would not degrade the quality of the environmental or eliminate examples of California history or prehistory.
- b) Less than Significant. The cumulative analysis considers other potential water transfers that could occur in the 2014 transfer season, including non-CVP water transfers. The SLDMWA is releasing a separate EA/IS to analyze transfers from a similar list of sellers as included in this document. These two documents reflect different potential buyers for the same water sources; therefore, the transfer quantities identified in the two documents cannot be summed (i.e., it is the same available transfer water in both documents). The transfer quantities as identified in Table 2-3 could be purchased by either the SLDMWA Participating Members or TCCA Members Units.

Table 3-9 lists additional entities who have indicated interest in providing non-CVP water for transfer. Water transfers methods could include cropland idling and groundwater substitution (the same as described for the Proposed Action) and also stored reservoir water, which includes releases of water that would have remained in storage in non-CVP or SWP reservoirs.

**Table 3-9. Potential Additional Cumulative Sellers (Upper Limits)** 

| (Acre-feet)                                |                           |                             |                                  |
|--------------------------------------------|---------------------------|-----------------------------|----------------------------------|
| Water Agency                               | Stored<br>Reservoir Water | Groundwater<br>Substitution | Cropland Idling/<br>Substitution |
| Feather River Area of Analysis             |                           |                             |                                  |
| Biggs West Gridley WD                      |                           |                             | 32,190                           |
| Butte WD                                   |                           | 5,350                       | 11,055                           |
| Cordua ID                                  |                           | 12,000                      |                                  |
| Garden Highway Mutual Water<br>Company     |                           | 3,500                       |                                  |
| Gilsizer Slough                            |                           | 5,300                       |                                  |
| Goose Club Farms and Teichert<br>Aggregate |                           | 2,000                       | 6,000                            |
| Richvale ID                                |                           |                             | 21,120                           |
| South Sutter WD                            | 20,000                    |                             |                                  |
| Plumas MWC                                 |                           | 3,500                       |                                  |
| Sutter Extension WD                        |                           | 4,000                       | 11,000                           |
| Tule Basin Farms                           |                           | 6,400                       |                                  |
| Western Canal WD                           |                           |                             | 35,442                           |
| Yuba County Water Agency                   |                           | 30,000                      | 30,000                           |
| American River Area of Analysis            |                           |                             |                                  |
| Placer County WA                           | 40,000                    |                             |                                  |
| Sacramento County WA                       |                           | 15,000                      |                                  |

**Table 3-9. Potential Additional Cumulative Sellers (Upper Limits)** 

| (Acre-feet)               |                           |                             |                                  |  |
|---------------------------|---------------------------|-----------------------------|----------------------------------|--|
| Water Agency              | Stored<br>Reservoir Water | Groundwater<br>Substitution | Cropland Idling/<br>Substitution |  |
| Delta Area of Analysis    |                           |                             |                                  |  |
| Reclamation District 2068 |                           | 1,150                       | 7,500                            |  |
| Pope Ranch                |                           | 2,800                       | 600                              |  |
| Total                     | 60,000                    | 91,000                      | 154,907                          |  |

Abbreviations:
ID: Irrigation District
MWC: Mutual Water Company

WA: Water Agency WD: Water District

Water transfers occur in most years to move water to agencies that may be experiencing shortages. Within the last five years, Reclamation approved and facilitated transfers of 79,926 AF in 2009 (21,045 AF of cropland idling and 58,881 AF of groundwater substitution) and 31,406 AF in 2013. Reclamation participated in the monitoring efforts during and after these transfers (as specified in the environmental documents) and did not find significant environmental effects of these transfers or cumulative effects with other transfers. Additionally, non-CVP related transfers continued during this time period. In 2013, transfers from both CVP and non-CVP sources totaled 268,730 AF (DWR 2014); these transfers include transfers within basins and transfers between basins. About 249,600 AF of these transfers originated in the Sacramento Valley and were transferred to users in other areas of the Sacramento Valley, the Bay Area, the Central Valley, or southern California.

These transfers represent a small portion of the Sacramento Valley's overall supply. Applied water in the Sacramento Valley from 2001 to 2010 has ranged from a low of about 8,196,000 AF in 2005 up to 9,915,000 AF in 2004. The driest year during this period was 2007, when applied water was about 9,868,000 AF. (DWR 2013) These figures include applied water from surface water, groundwater, and reuse.

The Proposed Action could have potential cumulatively considerable impacts to air quality, biological resources, and groundwater resources. The cumulative analysis for these resources follows. The Proposed Action would not have cumulatively considerable impacts to other resources evaluated in this EA/IS.

#### **Air Quality**

All counties affected by the Proposed Action are located in areas designated nonattainment for the  $O_3$  and  $PM_{10}$  CAAQS. Additionally, Sacramento County is designated nonattainment for the  $PM_{2.5}$  CAAQS. Nonattainment status represents a cumulatively significant impact within the area.  $O_3$  is a secondary pollutant, meaning that it is formed in the atmosphere from reactions of

precursor compounds under certain conditions. Primary precursor compounds that lead to O<sub>3</sub> formation include volatile organic compounds and nitrogen oxides; therefore, the significance thresholds established by the air districts for VOC and NOx are intended to maintain or attain the O<sub>3</sub> CAAQS and NAAQS. Because no single project determines the nonattainment status of a region, individual projects would only contribute to the area's designation on a cumulative basis.

The significance thresholds developed by the air districts serve to evaluate if a proposed project could either 1) cause or contribute to a new violation of a CAAQS or NAAQS in the study area or 2) increase the frequency or severity of any existing violation of any standard in the area. Air districts recognize that air quality violations are not caused by any one project, but are a cumulative effect of multiple projects. Therefore, the air districts (including the Sacramento Metropolitan AQMD) have developed guidance that indicates a proposed project would be cumulatively considerable if the air quality impacts are individually significant.

Implementation of mitigation measures would reduce the Proposed Action's individual impacts to less than significant. Therefore, air quality impacts would not be cumulatively considerable.

#### **Biological Resources**

Transfers under the cumulative condition would result in the idling of additional rice fields than those included in the Proposed Action. Most of the cumulative cropland idling transfers would occur in the Feather River area, the majority of which is in Butte and Sutter counties. There could also be some cropland idling transfers in Yuba County. Rice would be the main crop idled in these counties. RD2068 and Pope Ranch in the Delta region do not have substantial rice acreage; therefore, other crops in these districts would likely be idled for transfers.

As described in the Biological Resources section, rice fields provide habitat for GGS, western pond turtle, and migratory birds. For the GGS and western pond turtle, rice idling could result in reduced forage and cover habitat, hindered movement, and increased predation risk. For migratory birds, rice idling could reduce nesting, forage, and rearing habitat. Additional rice idled under the cumulative condition could increase these effects relative to the Proposed Action.

An additional 44,487 acres of rice could be idled under the cumulative condition, based on the cropland idling transfer quantities in Table 3-9 and an ETAW of 3.3 acre-feet per acre for rice. Including the Proposed Action, up to 93,781 acres of rice could be idled cumulatively. The Proposed Action includes Environmental Commitments to reduce potential effects to special status species, including GGS and western pond turtle, and migratory birds. Other

water transfers facilitated by Reclamation and DWR using Federal and State facilities would be required to have similar conservation measures in place to protect special status species. The Environmental Commitments would reduce potential effects of the Proposed Action to special status species under the cumulative condition, such that the Proposed Action's contribution would not be cumulatively considerable.

#### **Groundwater Resources**

The reduction in recharge due to the decrease in precipitation and runoff in the past years in addition to the increase in groundwater transfers would lower groundwater levels. The groundwater modeling for the Proposed Action suggests that the groundwater pumping from transfers in addition to the groundwater pumping from dry conditions would not cause significant adverse effects to groundwater levels. The additional groundwater substitution transfers in the cumulative condition are relatively small compared to overall groundwater pumping in the Sacramento Valley associated with dry year conditions and the Proposed Action; therefore, this addition to the cumulative condition is not likely to cause a significant cumulative impact.

Reclamation requires well review, monitoring, and mitigation to reduce effects to third party groundwater users for approval of transfers. Only wells that meet the requirements outlined in the DRAFT Technical Information for Preparing Water Transfer Proposals (Reclamation and DWR 2013) will be allowed to participate in a transfer. Reclamation will not approve transfers if appropriate monitoring and mitigation does not occur. Monitoring and mitigation programs would reduce cumulative groundwater effects. Reclamation will verify that monitoring and mitigation are appropriately implemented and groundwater effects do not occur. Coordination of groundwater programs in the Sacramento Valley would also minimize and avoid the potential for cumulative effects to groundwater resources. DWR is involved in multiple groundwater programs in the Sacramento Valley, including monitoring programs. Reclamation will work with DWR to track program activities, collect and combine data, and assess potential groundwater effects. Because of the required groundwater monitoring and mitigation for transfer approval and agency coordination, the Proposed Action would not result in a cumulatively considerable contribution to effects on groundwater.

c) No Impact. The Proposed Action would not result in environmental effects that cause substantial adverse impacts to human beings. Effects in the sellers' area would be temporary, occurring in only 2014, and do not present a substantial risk to water supplies to human beings. The Proposed Action would provide additional water to the buyers' area, which would benefit agricultural production and the regional economies in the buyers' area. There would be no long-term effects of the Proposed Action.

| 2014 Tehama-Colusa Canal Auth<br>Environmental Assessment/Initial | Study                               |  |
|-------------------------------------------------------------------|-------------------------------------|--|
|                                                                   |                                     |  |
|                                                                   |                                     |  |
|                                                                   |                                     |  |
|                                                                   |                                     |  |
|                                                                   |                                     |  |
|                                                                   |                                     |  |
|                                                                   |                                     |  |
|                                                                   |                                     |  |
|                                                                   |                                     |  |
|                                                                   |                                     |  |
|                                                                   |                                     |  |
|                                                                   |                                     |  |
|                                                                   |                                     |  |
|                                                                   |                                     |  |
|                                                                   | This page left blank intentionally. |  |
|                                                                   |                                     |  |
|                                                                   |                                     |  |
|                                                                   |                                     |  |
|                                                                   |                                     |  |
|                                                                   |                                     |  |
|                                                                   |                                     |  |
|                                                                   |                                     |  |
|                                                                   |                                     |  |
|                                                                   |                                     |  |
|                                                                   |                                     |  |
|                                                                   |                                     |  |
|                                                                   |                                     |  |
|                                                                   |                                     |  |
|                                                                   |                                     |  |
|                                                                   |                                     |  |

# Chapter 4 Other Federal Environmental Compliance Requirements

In addition to resources analyzed in Chapter 3, Department of the Interior Regulations, Executive Orders, and Reclamation guidelines require a discussion of the following additional items when preparing environmental documentation.

#### 4.1 Indian Trust Assets (ITAs)

ITAs are defined as legal interests in property held in trust by the U.S. government for Indian tribes or individuals, or property protected under U.S. law for federally recognized Indian tribes or individuals. ITAs can include land, minerals, federally-reserved hunting and fishing rights, federally-reserved water rights, and in-stream flows associated with a reservation or Rancheria. By definition, ITAs cannot be sold, leased, or otherwise encumbered without approval of the U.S. The following ITAs overlay the boundaries of the Sacramento Valley Groundwater Basin:

- Auburn Rancheria
- Chico Rancheria
- Colusa
- Cortina
- Paskenta
- Rumsey

Groundwater substitution is the only transfer method under the Proposed Action that could affect ITAs. Auburn Rancheria, Cortina, and Rumsey lie on the border of the basin, where groundwater levels would be less affected by proposed groundwater pumping. Groundwater modeling in the Sacramento Valley Groundwater Basin shows that there would be essentially no effect to groundwater table elevations from groundwater substitution transfers near the Chico Rancheria, and Paskenta sites (see Figure 4-1). The Colusa Rancheria is in an area of potential drawdown. The changes in groundwater levels near the Colusa Rancheria would be less than two feet, which would be a minimal effect to groundwater pumping.

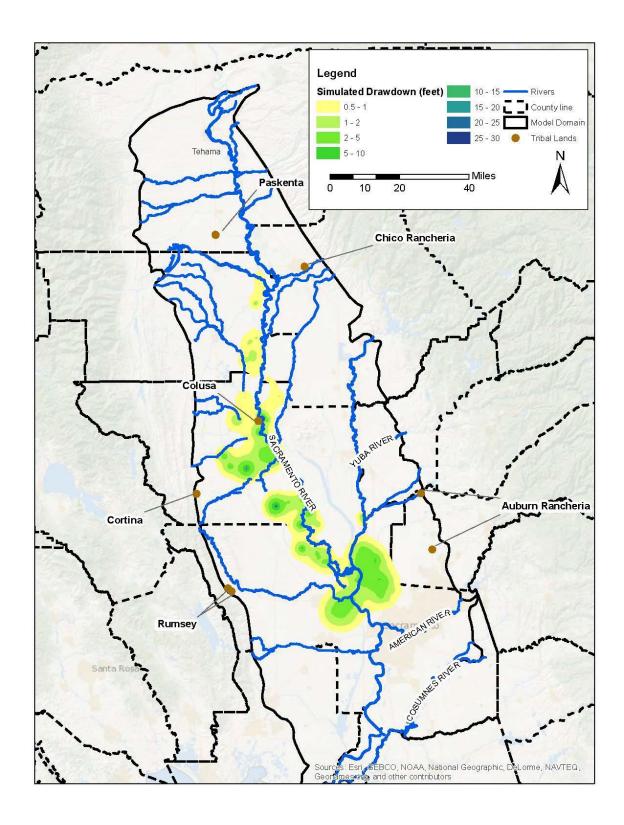



Figure 4-1. Groundwater Effects to ITAs in the Sacramento Valley Groundwater Basin

The Redding Rancheria falls within the Redding Groundwater Basin, which is where groundwater substitution transfers would occur by Anderson-Cottonwood ID. The groundwater evaluation concludes that there would not be significant effects to groundwater elevations in the Redding Groundwater Basin based on past pump tests and that Anderson-Cottonwood ID would implement minimization measures because of the uncertainty of changes in groundwater levels in a critical water year. As a result, there would be no effects to the Redding Rancheria.

Because groundwater substitution transfers would not affect groundwater table elevations near the ITA sites, the Proposed Action would not affect ITAs.

#### 4.2 Indian Sacred Sites

As defined by Executive Order 13007: Indian Sacred Sites, a sacred site "means any specific, discrete, narrowly delineated location on Federal land that is identified by an Indian tribe, or Indian individual determined to be an appropriately authoritative representative of an Indian religion, as sacred by virtue of its established religious significance to, or ceremonial use by, an Indian religion; provided that the tribe or appropriately authoritative representative of an Indian religion has informed the agency of the existence of such a site." The affected environment for the Proposed Action does not include Federal land; therefore, there is no potential for Indian Sacred Sites to be affected by the Proposed Action.

#### 4.3 Socioeconomics

Agriculture is a primary industry in the counties in Colusa, Glenn, Sutter, and Yolo counties. In 2011, the combined value of agricultural production in the five counties was approximately \$3.0 billion. Table 4-1 summarizes the regional economy in 2011 for Glenn, Colusa, Sutter, and Yolo counties. The counties were combined into one region because many of the participating sellers' service area cross county boundaries and the regional economies are generally similar with respect to the major industries. It is important to note that Yolo County represents a significant portion of the employment, labor income, and output in the region because of its proximity to the urban Sacramento area and economic activities associated with the University of California at Davis.

Table 4-1. Summary of 2011 Regional Economy in Glenn, Colusa, Sutter, and Yolo Counties

|                                               | Employment | Labor Income<br>(million \$) | Output<br>(million \$) |
|-----------------------------------------------|------------|------------------------------|------------------------|
| Agriculture                                   | 19,806     | \$9,197.1                    | \$24,918.9             |
| Mining                                        | 617        | \$829.1                      | \$2,687.7              |
| Construction                                  | 8,461      | \$35.2                       | \$199.9                |
| Manufacturing                                 | 9,593      | \$452.7                      | \$970.7                |
| Transportation, Information, Public Utilities | 11,791     | \$572.5                      | \$4,588.5              |
| Trade                                         | 23,761     | \$532.6                      | \$1,661.1              |
| Service                                       | 69,938     | \$1,075.7                    | \$2,543.3              |
| Government                                    | 42,919     | \$2,497.2                    | \$8,460.2              |
| Total                                         | 186,885    | \$15,192.1                   | \$46,030.4             |

Source: IMPLAN 2012

While the 2014 water year, which extends from October 1, 2013 through September 30, 2014, is only partially complete, the hydrologic conditions so far have been critically dry. These conditions are worsened by the dry conditions statewide in 2012 and 2013, which affected reservoir storage coming into water year 2014. For example, storage in Shasta Reservoir was 1,794,000 AF on March 3, 2014, which is 54 percent of average at this time of year and substantially less than storage on the same date in the previous year (3,620,000 AF) (CDEC 2014). While it is too early in 2014 to know with certainty the final water supplies, CVP and SWP water service contractors initial allocations are 0 percent, and Sacramento River Settlement Contractors and refuges have been notified that the initial estimate of water supply from Reclamation is 40 percent of their Contract Total rather than the anticipated 75 percent.

Facing a water shortage, growers would take actions to protect permanent crops first to protect their investments. If available, growers would likely pump groundwater to substitute reduced surface water supplies. If groundwater is not available, growers would idle field crops and use available surface water to irrigate permanent crops. Glenn-Colusa ID estimates that about 15 percent of rice in the service area would be idled if provided 75 percent of its contractual supply. Cropland idling in other districts would also occur under the No Action Alternative, but estimates are unavailable at this time because other districts have not yet considered what actions they will take to address water shortages this year.

In the TCCA buyer area, growers generally do not have access to groundwater supplies to irrigate crops. Water shortages to the TCCA Member Units may be severe enough that growers would not have the available water needed to

<sup>&</sup>lt;sup>1</sup> Employment is measured in number of jobs.

<sup>&</sup>lt;sup>2</sup> Income is the dollar value of total payroll for each industry plus income received by self-employed individuals.

<sup>&</sup>lt;sup>3</sup>Output represents the dollar value of industry production.

irrigate permanent crops. This could cause permanent crops to die or be permanently damaged. Damage to and loss of permanent crops would have long-term adverse effects to the regional economy in the Sacramento Valley. If the crop is lost, growers would lose annual revenues earned from sales and their initial investments to establish the crop. These economic effects would last beyond 2014. There may also be increased costs to remove the crops and prepare the land for subsequent planting. These would be adverse economic impacts under the No Action Alternative.

Under the Proposed Action, a maximum of 44,487 acres of rice could be idled in addition to rice acres idled as a result of the drought. Under the Proposed Action, growers selling water for transfers would be compensated for their expected losses in income that they would have received for selling a crop. As a result, growers would not experience a net loss in income and would presumably receive more revenue than if the crop were produced, which would be an economic benefit to participating growers.

Adverse regional economic effects would occur to businesses and individuals who support farming activities, such as farm workers, fertilizer and chemical dealers, wholesale and agricultural service providers, truck transport, and others involved in crop production and processing. These businesses and individuals would not receive compensation from the water transfer. Cropland idling would result in direct effects to employment, labor income and output. This analysis quantifies effects to employment to represent the magnitude of potential economic effects of the proposed cropland idling. There would be similar relative effects to labor income and output to the regional economy.

The transfer water would be used to irrigate permanent crops in Tehama, Glenn, Colusa, and Yolo counties that would have little or no water under the No Action Alternative. This would offset some of the economic effects of cropland idling because water would be used to irrigate crops within the same economic region and there would be fewer leakages outside the region. For example, some farm workers could travel within the region to the crops that would be irrigated with transferred water and they would not lose their jobs as a result of idling. Some businesses that support the region would also experience less of a decline in sales because the transferred water would be used locally and farm related supplies would still be purchased. Because the buyers and sellers are within the same or proximate economic region, there would be fewer adverse economic effects of cropland idling than if the sellers were more geographically separated.

Rice production provides approximately 3 farm jobs per 1,000 acres (University of California Cooperative Extension [UCCE] 2007, IMPLAN 2013). Based on the maximum acreages proposed for idling as a result of the Proposed Action, the direct effects of rice idling would be approximately 148 jobs lost in Colusa, Glenn, Sutter, and Yolo counties. These job losses would largely occur in the agricultural sector. Some of these direct effects may be offset if farm workers

can shift from working fields that are idled to fields where the transfer water is being used.

There would also be secondary regional economic impacts as a result of increased idling. Secondary effects occur because of the linkages among industries and include effects to employment, income, and output of support industries and as a result of reduced household spending. Secondary effects are often measured by economic multipliers. The employment multiplier for the "other crop farming" sector (which includes rice) in Colusa, Glenn and Yolo region is 2.87 (IMPLAN 2012), meaning that for every 1 job lost in the other crop farming sector, an additional 1.87 jobs would be lost in the regional economy.

Based on the estimated direct effects and employment multipliers, the total economic effect to employment of the proposed rice idling actions would be a loss of 424 jobs in Colusa, Glenn, Sutter, and Yolo counties. These job losses would be less than 1 percent of the total employment in both regions. At the regional level, this effect would not be substantial. Further, the Proposed Action would last for one year and growers could put the land back into agricultural production in the subsequent year if water supplies increase. Therefore, economic effects from cropland idling would be a temporary effect.

Effects may be more adverse in local communities. Rural communities have a much smaller economic base, and any changes to economic levels would be more adverse relative to a large regional economy. Reclamation and participating buyers and sellers will limit cropland idling as a result of the Proposed Action to less than 20 percent of the acreage of a particular crop in a district to reduce the potential for economic effects. Water Code Section 1745.05(b) requires a public hearing under some circumstances in which the amount of water from land idling exceeds 20 percent of the water that would have been applied or stored by the water supplier absent the water transfer in any given hydrologic year. Third parties would be able to attend the hearing and could argue to limit the transfer based on its economic effects.

In the buyer area, water transfers under the Proposed Action would provide water for irrigation that would help maintain crop production. Even with transfers, growers would continue to face water shortages and take actions to address reduce supplies. Transfer water would be used to irrigate permanent crops to keep them alive through the dry year and support long-term production. Permanent crops are typically more labor intensive and have higher value than field crops. Continued irrigation of permanent crops through the 2014 irrigation season would support farm labor and provide revenue to the region through 2014 and in the long-term. Transfer water would help local farm economies in the TCCA area of the Sacramento Valley by providing employment and wages to farm laborers. Transfers would protect growers' investments in permanent crops and farm income. Transfers would provide long-term economic benefits by keeping permanent crops alive through the 2014 dry conditions. If

permanent crops do not survive through 2014, there would be substantial long-term adverse economic effects to the buyer area by reducing employment and income in subsequent years. The Proposed Action would benefit the regional economy in the buyer area.

#### 4.4 Environmental Justice

The 1994 Executive Order 12898, Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations, requires all Federal agencies to conduct "programs, policies, and activities that substantially affect human health or the environment, in a manner that ensures that such programs, policies, and activities do not have the effect of excluding persons (including populations) from participation in, denying persons (including populations) the benefits of, or subjecting persons (including populations) to discrimination under, such programs, policies, and activities, because of their race, color, or national origin." Cropland idling could affect farm labor employment by temporarily reducing the amount of agricultural land in production or the number of farm workers needed to work existing land. Table 4-3 shows 2012 demographics and income in the counties where cropland idling could occur. In 2012, Colusa County had a Hispanic population greater than 50 percent. All counties had a lower median household income and higher unemployment rate relative to the state; and, Glenn, Sutter, and Yolo counties had a higher poverty rate than the state. These statistics indicate a potential for environmental justice effects in the seller area.

Table 4-2, 2012 Demographics and Income in Transferring Counties

| Tallie : El Este Esta Sur |                            |            |          |          |          |          |
|---------------------------------------------------------------|----------------------------|------------|----------|----------|----------|----------|
|                                                               |                            | CA         | Colusa   | Glenn    | Sutter   | Yolo     |
| Population                                                    |                            | 38,041,430 | 21,411   | 27,992   | 95,022   | 204,118  |
| Ethnicity <sup>1</sup> (%)                                    | Hispanic or<br>Latino      | 38.2       | 56.6     | 38.7     | 29.3     | 31.0     |
| Race <sup>2</sup> (%)                                         | White                      | 73.7       | 91.8     | 90.2     | 74.7     | 76.2     |
|                                                               | African<br>American        | 6.6        | 1.2      | 1.1      | 2.4      | 3.0      |
|                                                               | American<br>Indian         | 1.7        | 2.6      | 3.0      | 2.3      | 1.8      |
|                                                               | Asian                      | 13.9       | 1.7      | 2.9      | 16.1     | 13.6     |
|                                                               | Pacific<br>Islander        | 0.5        | 0.6      | 0.2      | 0.4      | 0.6      |
|                                                               | Multirace                  | 3.6        | 2.2      | 2.7      | 4.1      | 4.8      |
| Poverty Rate (2                                               | 008-2012) <sup>3</sup> (%) | 15.3       | 15.2     | 19.5     | 17.0     | 18.7     |
| Unemployment                                                  | Rate <sup>4</sup> (%)      | 10.5       | 20.0     | 14.7     | 17.6     | 11.5     |
| Median Househ<br>(2008-2012)                                  | old Income                 | \$61,400   | \$52,165 | \$42,641 | \$50,510 | \$57,260 |

Source: Employment Development Department (EDD) 2013, U.S. Census Bureau 2013. Notes:

<sup>&</sup>lt;sup>1</sup> The U.S. Census Bureau classifies Hispanic or Latino as an ethnicity, and surveys for this percentage across all races; therefore, the actual percentage of persons of only Hispanic or Latino origin could be smaller than the stated percentage (U.S. Census Bureau 2013).

Table 4-4 shows 2003-2012 farm employment in the counties that could idle cropland. Farm employment would be the most directly affected by cropland idling transfers.

Table 4-3. Farm Employment, 2003-2012

|      | Colusa, Glenn, Sutter and<br>Yolo Counties | Annual Percent Change |
|------|--------------------------------------------|-----------------------|
| 2003 | 11,480                                     |                       |
| 2004 | 11,330                                     | -1%                   |
| 2005 | 11,390                                     | 1%                    |
| 2006 | 11,390                                     | 0%                    |
| 2007 | 12,080                                     | 6%                    |
| 2008 | 12,310                                     | 2%                    |
| 2009 | 12,580                                     | 2%                    |
| 2010 | 12,950                                     | 3%                    |
| 2011 | 13,270                                     | 2%                    |
| 2012 | 13,440                                     | 1%                    |

Source: EDD 2012

Economic effects in the buyers' and sellers' areas as a result of the reduced supplies in this critical hydrologic year under the No Action Alternative are described in Section 4.3. These effects would also be relevant for environmental justice issues. In the TCCA area, reduced water supplies could cause long-term damage to or loss of permanent crops, which would reduce farm worker employment for the long-term. This could result in a disproportionate impact to low income and minority workers under the No Action Alternative. In the sellers' area, field crops would likely be idled in response to water shortages and to shift available surface water supplies to irrigate permanent crops. There would be some losses in employment of low income and minority workers on field crops, but employment needs for labor-intensive permanent crops would remain unchanged. Effects in the sellers' area would be temporary.

Under the Proposed Action, cropland idling transfers could disproportionately and adversely affect minority and low-income farm workers by reducing agricultural production. A maximum of 44,487 acres of rice could be idled under the Proposed Action. Based on the maximum idling acreage under the Proposed Action, approximately 148 farm workers jobs would be lost in Glenn,

<sup>&</sup>lt;sup>2</sup> A minority is defined as a member of the following population groups: American Indian/Alaskan Native, Asian or Pacific Islander, Black (non-Hispanic), or Hispanic (U.S. Census Bureau 2013).

<sup>&</sup>lt;sup>3</sup> The U.S. Census Bureau classifies families and persons as *below poverty* "if their total family income or unrelated individual income was less than the poverty threshold" as defined for all parts of the country by the federal government (U.S. Census Bureau 2013).

<sup>&</sup>lt;sup>4</sup> Civilian labor force is defined as all civilians 16 years or older employed or looking for work, and not in institutions. Data for unemployment rates were collected from EDD and are 2012 Annual Average (EDD 2013).

<sup>&</sup>lt;sup>5</sup> Household income is defined by the U.S. Census Bureau as "the sum of money income received in the calendar year by all household members 15 years old and over" (U.S. Census Bureau 2013).

Colusa, Sutter, and Yolo counties (1.1 percent of total 2012 farm employment). This magnitude of job losses is within historic annual fluctuations in farm worker employment. Annual changes in farm worker employment from 2002 to 2012 were 2 percent or greater in 5 years (EDD 2012). All farm worker effects would be temporary and only occur during the 2014 crop season. Cropland idling under the Proposed Action would not result in an adverse and disproportionately high effect to farm employment.

Water transfers under the Proposed Action would provide water to agricultural users in the buyers' area. Increased water supply would mostly be used to irrigate permanent crops that face water shortages under the No Action Alternative. This would provide employment for the labor intensive, permanent crops, which would provide farm employment for low income and minority workers. This would be a beneficial effect to environmental justice populations.

#### 4.5 Consultation and Coordination

#### 4.5.1 2014 Stakeholder Involvement

Reclamation and the TCCA continue to coordinate with interested sellers to implement water transfers in 2014. Reclamation has also coordinated with DWR on water transfers and use of SWP facilities. Tables 2-1 and 2-2 are the result of coordination among agencies.

#### 4.5.2 Resource Agency Involvement

Reclamation and the TCCA have been coordinating efforts with USFWS to help the USFWS understand the Proposed Action and transfers that could occur. Reclamation has also met with California Department of Fish and Wildlife and solicited their input on the environmental commitments. Reclamation will submit a Biological Assessment for USFWS review under Section 7 of the ESA.

#### 4.5.3 Public Comments

Reclamation and the TCCA are releasing this EA/IS for a 20 day public review period, beginning on March 12, 2014. Appendix A includes the comments received, and Appendix B includes responses to these comments.



## **Chapter 5 References**

- Anderson-Cottonwood Irrigation District (ACID) 2011. Anderson-Cottonwood Irrigation District Integrated Regional Water Management Program-Groundwater Production Element Project. August 2011.
- Anderson-Cottonwood Irrigation District (ACID) 2013. Initial Study and Proposed Negative Declaration for Anderson-Cottonwood Irrigation District's 2013 Water Transfer Program.
- Bennett, George L., V, Miranda S. Fram and Kenneth Belitz, 2011. Status of Groundwater Quality in the Southern, Middle, and Northern Sacramento Valley Study Units, 2005-2008: California GAMA Priority Basin Project.
- Bettner, Thaddeus, General Manager Glenn-Colusa Irrigation District, personal communication. 2014. Personal communication with Carrie Buckman, CDM Smith, and representatives of Tehama-Colusa Canal Authority, Bureau of Reclamation, and San Luis & Delta-Mendota Water Authority.Bureau of Reclamation. 2010. 2010-2011 Water Transfers Program. Final Environmental Assessment. February 2010.
- Bureau of Reclamation and California Department of Water Resources (Reclamation and DWR). 2013. DRAFT Technical Information for Preparing Water Transfer Proposals. Available from <a href="http://www.water.ca.gov/watertransfers/docs/DTIWT\_2014\_Final\_Draft.pdf">http://www.water.ca.gov/watertransfers/docs/DTIWT\_2014\_Final\_Draft\_pdf</a> [Accessed on January 6, 2014].
- Bureau of Reclamation and California Department of Water Resources (Reclamation and DWR). 2014. Addendum to DRAFT Technical Information for Preparing Water Transfer Proposals. Available from <a href="http://www.water.ca.gov/watertransfers/docs/2014/2014\_Water\_Transfer\_Guidlines\_Addendum.pdf">http://www.water.ca.gov/watertransfers/docs/2014/2014\_Water\_Transfer\_Guidlines\_Addendum.pdf</a> [Accessed on February 14, 2014].
- Byron Buck & Associates. 2009. "Comparison of Summertime Emission Credits from Land Fallowing Versus Groundwater Pumping." Memorandum from Byron Buck to Teresa Geimer, Drought Water Bank Manager. May 18.
- CALFED. 2000. Final Programmatic Environmental Impact Statement/Environmental Impact Report. pp. 5.4-1 to 5.4-14. Available

- from <a href="http://calwater.ca.gov/calfed/library/Archive\_EIS.html">http://calwater.ca.gov/calfed/library/Archive\_EIS.html</a> [Accessed on February 4, 2014].
- California Air Resource Board. 2011. California Greenhouse Gas Emissions Inventory: 2000-2009. December. Available from <a href="http://www.arb.ca.gov/cc/inventory/pubs/reports/ghg\_inventory\_00-09\_report.pdf">http://www.arb.ca.gov/cc/inventory/pubs/reports/ghg\_inventory\_00-09\_report.pdf</a> [Accessed on January 30, 2014].
- 2012. State Area Designations. Available from <a href="http://www.arb.ca.gov/desig/adm/adm.htm">http://www.arb.ca.gov/desig/adm/adm.htm</a> [Accessed on January 6, 2014].
- California Data Exchange (CDEC). 2014. Daily Drought Information Summary. Available from <a href="http://cdec.water.ca.gov/cgi-progs/reports/DROUGHTSUM">http://cdec.water.ca.gov/cgi-progs/reports/DROUGHTSUM</a> [Accessed on March 3, 2014].
- California Department of Conservation, 2007. California Geologic Survey Fault Rupture Zones in California; Alquist-Priolo Earthquake Fault Zoning Act with Index to Earthquake Fault Zone Maps. Special Publication 42, Interim Revision 2007.
- California Department of Food and Agriculture. 2012. California Agricultural Commissioners Reports. Available from:

  <a href="http://www.nass.usda.gov/Statistics\_by\_State/California/Publications/AgComm/Detail/">http://www.nass.usda.gov/Statistics\_by\_State/California/Publications/AgComm/Detail/</a> [Accessed on January 6, 2014].
- California Department of Water Resources. 2003. California's Groundwater: Bulletin 118, Update 2003. October.
- 2013. Public Review Draft of California Water Plan Update 2013, Sacramento River Regional Report. Available from
   <a href="http://www.waterplan.water.ca.gov/docs/cwpu2013/2013-prd/Vol2\_SacramentoRiverRR\_PRD\_Final\_fk\_wo.pdf">http://www.waterplan.water.ca.gov/docs/cwpu2013/2013-prd/Vol2\_SacramentoRiverRR\_PRD\_Final\_fk\_wo.pdf</a>. [Accessed on March 3, 2014].
- 2014.2012/2013 Transfer Activity. Available from <a href="http://www.water.ca.gov/watertransfers/docs/2014/2012-2013\_Transfers\_Charts.pdf">http://www.water.ca.gov/watertransfers/docs/2014/2012-2013\_Transfers\_Charts.pdf</a>. [Accessed on March 3, 2014].
- CH2M Hill. 2003. Draft Redding Basin Water Resources Management Plan Phase 2C Report. Prepared for Redding Area Water Council. May *as cited in* Anderson-Cottonwood Irrigation District (ACID) 2011. Anderson-Cottonwood Irrigation District Integrated Regional Water Management Program- Groundwater Production Element Project. August 2011.
- -2007.Redding Basin Water Resources Management Plan Environmental Impact Report. January.

- Employment Development Department. 2012. Employment by Industry data.

  Available from
  <a href="http://www.labormarketinfo.edd.ca.gov/LMID/Employment\_by\_Industry\_Data.html">http://www.labormarketinfo.edd.ca.gov/LMID/Employment\_by\_Industry\_Data.html</a> [Accessed on March 3, 2014].
- 2013. Monthly Labor Force Data for Counties. Annual Average 2012 Revised. Available from <a href="http://www.calmis.ca.gov/file/lfhist/12aacou.pdf">http://www.calmis.ca.gov/file/lfhist/12aacou.pdf</a> [Accessed on January 2, 2014].
- Faunt, C.C., ed. 2009. Groundwater Availability of the Central Valley Aquifer, California: U.S. Geological Survey Professional Paper 1766, 225 p.
- Feather River Air Quality Management District. 2010. Indirect Source Review Guidelines: A Technical Guide to Assess the Air Quality Impact of Land Use Projects Under the California Environmental Quality Act. Available from <a href="http://www.fraqmd.org/CEQA%20Planning.html">http://www.fraqmd.org/CEQA%20Planning.html</a> [Accessed on January 6, 2014].
- Glenn County. 1993. Glenn County General Plan. Volume III Setting. January 22. Available from <a href="http://gcplanupdate.net/">http://gcplanupdate.net/</a> documents/docs/VOLUME%20III-SETTING-1.pdf [Accessed on January 7, 2014].
- IMPLAN. 2012. County Data for Colusa, Glenn, Yolo, and Sutter Counties.
- IMPLAN 2013. IMPLAN to FTE Conversions. Accessed: January 3, 2014.

  Available from

  <a href="https://implan.com/V4/index.php?option=com\_multicategories&view=article&id=628:628&Itemid=14">https://implan.com/V4/index.php?option=com\_multicategories&view=article&id=628:628&Itemid=14</a>
- Intergovernmental Panel on Climate Change (IPCC). 1996. Climate Change 1995: The Science of Climate Change. Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, Great Britain: Press Syndicate of the University of Cambridge.
- Sacramento Metropolitan Air Quality Management District. 2009. SMAQMD Thresholds of Significance Table. December. Available from <a href="http://www.airquality.org/ceqa/cequguideupdate/Ch2TableThresholds.p">http://www.airquality.org/ceqa/cequguideupdate/Ch2TableThresholds.p</a> <a href="https://df">df</a> [Accessed on January 6, 2014].
- 2011. CEQA Guide to Air Quality Assessment. Chapter 8: Cumulative Air Quality Impacts. June. Available online at:

  <a href="http://www.airquality.org/ceqa/cequguideupdate/Ch8CumulativeFinal.p">http://www.airquality.org/ceqa/cequguideupdate/Ch8CumulativeFinal.p</a>
  <a href="http://www.airquality.org/ceqa/cequguideupdate/ch8CumulativeFinal.p</a>
  <a href="http://www.airquality.org/ceqa/cequguideupdate/ch8CumulativeFinal.p</a>
  <a href="http://www.airquality.org/ceqa/cequguideupdate/ch8CumulativeFinal.p</a>
  <a href="http://www.airquality.or

## 2014 Tehama-Colusa Canal Authority Water Transfers Environmental Assessment/Initial Study

- State Water Resources Control Board (SWRCB). 1999. A Guide to Water Transfers. July 1999. Draft. Division of Water Rights State Water Resources Control Board. Available from <a href="http://www.waterboards.ca.gov/waterrights/water\_issues/programs/water\_transfers/docs/watertransferguide.pdf">http://www.waterboards.ca.gov/waterrights/water\_issues/programs/water\_transfers/docs/watertransferguide.pdf</a> [Accessed on January 29, 2014].
- 2011. The California 2010 303(d) list (with sources). Available at: <a href="http://www.waterboards.ca.gov/water\_issues/programs/tmdl/integrated2">http://www.waterboards.ca.gov/water\_issues/programs/tmdl/integrated2</a> <a href="http://www.waterboards.ca.gov/water\_issues/programs/tmdl/integrated2">http://www.water\_issues/programs/tmdl/integrated2</a> <a href="http://www
- The Climate Registry. 2013a. 2013 Climate Registry Default Emission Factors. Available from http://www.theclimateregistry.org/downloads/2013/04/2013-Climate-Registry-Default-Emissions-Factors.pdf [Accessed on January 2, 2014].
- 2013b. Utility-Specific Emission Factors. Available from http://www.theclimateregistry.org/resources/protocols/general-reportingprotocol/ [Accessed on January 2, 2014].
- United States Census Bureau. 2013. State and County Quick Facts. Available at: <a href="http://quickfacts.census.gov/qfd/states/06000.html">http://quickfacts.census.gov/qfd/states/06000.html</a> [Accessed on January 2, 2014].
- United States Department of Agriculture. 2009. Farm and Ranchlands
  Protection Program. Programmatic Environmental Assessment. January
  2009. Available from
  <a href="http://www.nrcs.usda.gov/Internet/FSE\_DOCUMENTS/stelprdb104234">http://www.nrcs.usda.gov/Internet/FSE\_DOCUMENTS/stelprdb104234</a>
  <a href="http://www.nrcs.usda.gov/Internet/FSE\_DOCUMENTS/stelprdb104234">http://www.nrcs.usda.gov/Internet/FSE\_DOCUMENTS/stelprdb104234</a>
  <a href="http://occupan.gov/Internet/FSE\_DOCUMENTS/stelprdb104234">http://occupan.gov/Internet/FSE\_DOCUMENTS/stelprdb104234</a>
  <a href="http://occupan.gov/Internet/FSE\_DOCUMENTS/stelprdb104234">http://occupan.gov/Internet/FSE\_DOCUMENTS/stelprdb104234</a>
  <a href="http://occupan.gov/Internet/FSE\_DOCUMENTS/stelprdb104234">http://occupan.gov/Internet/FSE\_DOCUMENTS/stelprdb104234</a>
  <a href="http://occupan.gov/Internet/FSE\_DOCUMENTS/stelprdb104234">http://occupan.gov/Internet/FSE\_DOCUMENTS/stelprdb104234</a>
  <a href="http://occupan.gov/Internet/FSE\_Documentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgamentgament
- 2013a. Natural Resource Conservation Service and the University of California, Davis Agriculture and Natural Resources Department. SoilWeb online soil survey data, Available from <a href="http://casoilresource.lawr.ucdavis.edu/gmap/">http://casoilresource.lawr.ucdavis.edu/gmap/</a> [Accessed December 31, 2013].
- 2013b. Summary Report: 2010 National Resources Inventory, Natural Resources Conservation Service, Washington, D.C, and Center for Survey Statistics and Methodology, Iowa State University, Ames, Iowa. Available from <a href="http://www.nrcs.usda.gov/Internet/FSE\_DOCUMENTS/stelprdb116735">http://www.nrcs.usda.gov/Internet/FSE\_DOCUMENTS/stelprdb116735</a>
   4.pdf. [Accessed December 31, 2013].
- United States Environmental Protection Agency. 2013. The Green Book Nonattainment Areas for Criteria Pollutants. December 5. Available from <a href="http://www.epa.gov/oaqps001/greenbk/">http://www.epa.gov/oaqps001/greenbk/</a> [Accessed on January 6, 2014].

- United States Fish and Wildlife Service (USFWS). 2010. Endangered Species Consultation on the Bureau of Reclamation's Proposed Central Valley Project Water Transfers Program for 2010- 2011.
- United States Geologic Survey (USGS). 2014. Sacramento River monitoring information at Colusa. Available from:

  <a href="http://waterdata.usgs.gov/nwis/monthly?referred\_module=sw&amp;site\_no=11389500&amp;por\_11389500\_2=2209368,00060,2,1921-04,2013-01&amp;start\_dt=1976-10&amp;end\_dt=1977-09&amp;format=html\_table&amp;date\_format=YYYY-MM-DD&amp;rdb\_compression=file&amp;submitted\_form=parameter\_sele\_ction\_list\_[Accessed on February 4, 2014].</a>
- University of California Cooperative Extension (UCCE). 2007. Sample Costs to Produce Rice, Sacramento Valley, Rice Only Rotation. Available from <a href="http://coststudies.ucdavis.edu">http://coststudies.ucdavis.edu</a> [Accessed on: March 26, 2012].
- Yolo County. 2012: Final Environmental Impact Report on the Environmental Education and Sustainability Park. Available from: .

  <a href="http://www.yolocounty.org/home/showdocument?id=20521">http://www.yolocounty.org/home/showdocument?id=20521</a>. See page 3.6-4. [Accessed on February 4, 2014].
- Yolo-Solano Air Quality Management District. 2007. *Handbook for Assessing and Mitigating Air Quality Impacts*. July 11. Available from <a href="http://www.ysaqmd.org/documents/CEQAHandbook2007.pdf">http://www.ysaqmd.org/documents/CEQAHandbook2007.pdf</a> [Accessed on January 6, 2014].

| 2014 Tehama-Colusa Canal A Environmental Assessment/Ini | uthority Water Transfers<br>tial Study |
|---------------------------------------------------------|----------------------------------------|
|                                                         |                                        |
|                                                         |                                        |
|                                                         |                                        |
|                                                         |                                        |
|                                                         |                                        |
|                                                         |                                        |
|                                                         |                                        |
|                                                         | This page left blank intentionally.    |