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1995a). SWAP covers over 93% of irrigated agriculture in California,
most of which is in the Central Valley, and calibrates exactly to an
observed base year of land use and input allocation data through
use of exogenous elasticities and assumed profit-maximization
behavior by farmers. This paper, (i) documents SWAP and moti-
vates application to other regions, (ii) discusses SWAP construction
and emphasizes the sequential calibration diagnostic checks used
in the model, (iii) extends the applied PMP literature with more
flexible production and cost functions, and (iv) links the SWAP
model to the infrastructure of a hydro-economic network model for
water supply in California (CALVIN). We conclude with an empirical
example and estimate the value of water markets for California’s
San Joaquin Valley.

The next section highlights the importance of micro-level policy
analysis, in various geographic regions, with models similar to
SWAP. We place SWAP in the context of the existing literature of
optimization models and PMP. In the subsequent section we
construct SWAP with particular emphasis on the sequential cali-
bration routine and improvements over previous PMP models. The
calibration routine has six steps with model consistency checks at
each stage. Improvements over similar PMP models include
Constant Elasticity of Substitution (CES) production functions,
exponential PMP land cost functions, and endogenous crop prices.
Finally, we demonstrate an application of SWAP for evaluation of
water markets in the San Joaquin Valley. We conclude the paper
with a discussion of extensions, limitations, and future work on
SWAP.

1.1. Micro-level analysis of agricultural policies

In the US. and other agricultural economies the demand for
micro-level analysis of agricultural policies that reflect the effects
on local agricultural and environmental resources is growing for
several reasons. National agricultural policies are increasingly
driven or constrained by environmental criteria. Furthermore,
there are an increasing number of regional (state) level policies that
proscribe the use of agricultural inputs (land, water, labor and
supplies) and resources. The era of unfettered commodity price
support programs whose impact could be measured by aggregate
financial or physical outcomes is waning, as are the aggregate
demand and supply methods used to measure such outcomes.
Finally, the complex physical and economic interaction between
the environment and agricultural policies is difficult to accurately
capture using standard econometric techniques based on aggregate
data.

Calibrated optimization models for micro-level analysis, such as
SWAP, focus on spatially heterogeneous commodity, resource, and
input specific policies. Instead of using data from the outcome of
economic optimization to estimate aggregate elasticities, calibrated
optimization models use prior estimates of elasticities of demand,
supply, and substitution coupled with observed micro-input data
on regional production to calibrate the model. In the SWAP model
we additionally assume that profit-maximizing behavior and short
run equilibrium conditions led to the observed base year resource
allocation. Since these models use an explicit primal specification of
agricultural production, they can model policies defined in terms of
physical resource limits rather than financial outcomes.

1.2. Optimization models and Positive Mathematical Programming

Moore and Hedges (1963) first introduced models of irrigated
agriculture as a way to estimate irrigation water demand. They, and
later studies, used mathematical (typically linear) programming
models to estimate irrigation water demand elasticities. Gardner
(1983) reviewed studies on irrigation water demand, with

emphasis on California, completed during the 1960s and 1970s.
This literature has since evolved to focus on large-scale regional
optimization models. Today optimization models are used to
analyze water demand and agricultural—environmental policies,
since these models work better with a multitude of resource
constraints and complex interactions between agriculture and the
environment (Griffin, 2006).

A major problem that initially plagued optimization models was
a tendency to overspecialize in crop production (Howitt, 1995a). In
response, the 1980’s saw the first models based on the technique of
Positive Mathematical Programming (PMP). PMP is a deductive
approach to simulating the effects of policy changes on cropping
patterns at the extensive and intensive margins. The term “posi-
tive” implies the use of observed data as part of the model cali-
bration process. PMP has several advantages over traditional
optimization models. First, the PMP cost function calibrates the
model exactly to observed values of production output and factor
usage. Second, PMP adds flexibility to the profit function by
relaxing the restrictive linear cost assumption. A third advantage is
that PMP does not require large datasets. Heckelei and Britz (2005)
note that PMP models can be viewed as a bridge between econo-
metric models, with substantial data requirements, and more
limited traditional optimization models. Finally, programming
models including the subset of PMP models such as SWAP are more
responsive to policy changes than statistical (inductive) models of
agricultural production (Scheierling et al., 2006).

Calibration of production models by PMP has been reviewed
extensively in the literature and variations on the base method
have been developed. Buysse et al. (2007) and Heckelei and Wolff
(2003) argue that shadow values from calibration and resource
constraints are an arbitrary source of information for model cali-
bration. Subsequent research suggests the use of exogenous infor-
mation such as land rents instead of shadow values (Heckelei and
Britz, 2005; Kanellopoulos et al., 2010). Heckelei and Britz (2005)
and Paris and Howitt (1998) propose a generalized maximum
entropy (GME) formulation to estimate resource and calibration
constraint shadow values. However, the GME procedure has seen
little use in applied research. Merel and Bucaram (2010) and Merel
et al. (2011) propose calibration against exogenous, and potentially
regionally-disaggregate, supply elasticity estimates.

Research on linked hydrologic and economic models has
evolved parallel to research on PMP with a focus on improved
policy simulations and analysis. Economic models typically omit
a hydrologic representation and hydrologic models lack the ability
to economically allocate water. Hybrid hydrologic—economic
models can be holistic (one model) or compartmental (sequential
iteration between different models) (Cai, 2008; Braat and
vanLierop, 1987). Compartmental hydrologic—economic models
are frequently a hydrologic model linked with an economic model
calibrated by PMP. Gomann et al. (2005) link the RAUMIS economic
model, calibrated using PMP, to GROWA98 and WEKU hydrologic
models to model the effects of Nitrogen tax relative to a quota on
dairy herds to increase water quality in Germany. In an example of
work in California, Quinn et al. (2004) adopt a compartmental
approach and develop the PMP APSIDE economic model which is
linked to the CALSIM II water model. They also include climate
simulations, in a third model, to evaluate climate change impacts in
California. vanWalsum et al. (2008) introduce the bio-economic
model Waterwise which is linked to the DRAM PMP model. They
use the model to evaluate European Union water quality policies in
the Netherlands.

Despite the many papers employing PMP models to infer
economic values for water and environmental resources, we cannot
find any publication that focuses on the calibration procedure for PMP
economic models and formal diagnostic tests for each calibration
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stage. The calibration-diagnostic iterative procedure applies to
standalone economic models and linked hydrologic—economic
models in diverse geographic regions.

2. The Statewide Agricultural Production Model (SWAP)
2.1. SWAP modeling framework

A model is, by definition, a simplified representation of a real
system. In the process of abstracting and simplifying a real system,
a model loses some information; thus even with theoretically
consistent structure it is unlikely that a model will calibrate closely
to observed (base year) data. The problem is well documented in
agricultural production modeling (Hazell and Norton, 1986). One
solution is to use observed farmer behavior, in the form of observed
land use patterns, and additional exogenous information to cali-
brate parameters of the structural model that exactly reproduce
observed base-year conditions. Positive Mathematical Program-
ming is a common calibration method for structural agricultural
production models.

The SWAP model is a regional model of irrigated agriculture in
California, calibrated using PMP. PMP can derive model parameters
so that first-order conditions for economic optimization are satis-
fied at an observed base year of input and output data. This is
accomplished by assumed profit maximizing behavior by farmers
and a non-linear objective function. SWAP offers three key
improvements over traditional PMP models. First, SWAP includes
regional exponential PMP land cost functions, which corrects the
inability of previous models, with quadratic functions, to handle
large policy shocks. Second, SWAP includes regional Constant
Elasticity of Substitution (CES) crop production functions which
allow limited substitution between inputs. Leontief production
functions were common in most previous models. Finally, regional
crop prices are endogenously determined based on a statewide
demand function.

SWAP was originally developed to be the agricultural economic
component for the CALVIN model of the California water system
(Draper et al., 2003). It has subsequently been used in a wide range
of policy analyses in California. SWAP has been used to estimate
economic losses due to salinity in the Central Valley (Howitt et al.,
2009), economic losses to agriculture due to alternative conveyance
in the Sacramento-San Joaquin Delta (Appendix to Lund et al.,
2007), economic losses to agriculture and confined animal opera-
tions in California’s Southern Central Valley (Medellin-Azuara et al.,
2008), and economic effects of water shortage on Central Valley
agriculture (Howitt et al., 2011). The model has also been linked to
agronomic yield models in order to estimate effects of climate
change on irrigated agriculture in California (Medellin-Azuara et al.,
2012). Variations of SWAP also have been applied in other regions
such as the US-Mexico border basins (Howitt and Medellin-Azuara,
2008; Medellin-Azuara et al., 2009). The model is used for policy
analysis by the California Department of Water Resources (DWR,
2009) and the United States (U.S.) Department of the Interior
(Interior), Bureau of Reclamation (Reclamation, 2011).

SWAP is defined over homogenous agricultural regions and
assumes that farmers maximize profits subject to resource, tech-
nical, and market constraints. Farmers sell and buy in competitive
markets where any one farmer cannot affect the price of any
commodity. The model selects crops, water supplies, and other
inputs that maximize profit subject to constraints on water and
land, and subject to economic conditions regarding prices, yields,
and costs. The model incorporates water supplies from state and
federal projects, local water supplies, and groundwater. As condi-
tions change within a SWAP region (e.g. the quantity of available
project water supply increases or the cost of groundwater pumping

increases) the model optimizes production at both the extensive
and intensive margins by adjusting the crop mix, water sources and
quantities used, and other inputs. It will also fallow land in
response to resource conditions.

The SWAP model is written in GAMS (General Algebraic
Modeling System) and solved using the non-linear solver CONOPT-
3. The objective is to maximize the sum of producer (regional
profits) and consumer surplus.

2.2. Model development and calibration

Development of the SWAP model is divided into calibration and
policy analysis phases. Calibration is analogous to parameter esti-
mation in econometric models or calibration in Computable
General Equilibrium (CGE) models. Policy analysis estimates the
effects of changing prices, costs, resources, or institutions given the
calibrated parameter values.

We detail the calibration procedure for SWAP and emphasize
model improvements and diagnostic checks in the process. The
calibration procedure for SWAP reflects most of the ten steps dis-
cussed in Jakeman et al. (2006) with particular emphasis on
sequential calibration and a parallel set of diagnostic tests to check
model performance. Stepwise model development procedures
have been applied for many modeling problems, including neural
networks (Piuleac et al., 2010), and computational fluid dynamics
(Blocken and Gualtieri, 2012). The stepwise tests specified in Fig. 1
are ordered in a logical sequence. For example, the first test for
positive net returns is a necessary condition for an optimal solution
in the calibrated linear program. Likewise, the equality of the input
marginal value products to their opportunity costs is a necessary
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Fig. 1. SWAP calibration stages and tests.
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condition for optimal input calibration in the nonlinear CES model.
The sequential tests defined in Fig. 1 are a blueprint for model
validation and identification of potential problems.

The calibration phase of the SWAP model uses a sequential six-
step process outlined in Fig. 1. The six steps are (i) assemble input,
output and elasticity data, (ii) solve a linear program subject to
fixed resource and calibration constraints, (iii) derive the CES
production function parameters using input opportunity costs from
step two, (iv) estimate the crop and region-specific PMP cost
functions using a least squares method, (v) calibrate the aggregate
demand functions and regional adjustment costs using prior
demand elasticity estimates, and (vi) optimize and simulate the
calibrated SWAP model which includes tests for adequate calibra-
tion in terms of input and output prices and quantities.

Model calibration data should be representative of “normal”
production conditions in the relevant region. We take 2005 as the
base year in the SWAP model because it represents the most recent
data available for an average water and price year in California. The
model calibrates to the base year in terms of the following
parameters: crop output quantities, output prices, input quantities,
input value marginal products, variable costs, and imputed costs to
fixed inputs.

2.2.1. Step I: data assembly
The level of spatial aggregation is important for defining the
scope and method of analysis. Disaggregated production models

160 Miles

typically require more data but tend to be effective in policy anal-
ysis in rural economies (Taylor et al., 2005). When agricultural
production is homogeneous and production conditions are rela-
tively stable, there is less information gained from disaggregation.
SWAP aggregates agricultural production data to the level of
representative regions. The SWAP regions are based on the Cal-
ifornia Department of Water Resources (DWR) Detailed Analysis
Units (DAU). Each SWAP region is composed of one or more DAU
with homogenous microclimate, water availability, and production
conditions. This scale is more suitable for statewide hydro-
economic models that require marginal economic values of water
for competing agricultural and urban demand locations (Draper
et al., 2003). The SWAP model has 27 base regions in the Central
Valley plus the Central Coast, the Colorado River region that
includes Coachella, Palo Verde and the Imperial Valley and San
Diego, Santa Ana and Ventura, and the South Coast. The model has
a total of 37 agricultural regions, only 27 regions in the Central
Valley are considered for the analysis in this paper. Fig. 2 shows
California agricultural area covered in SWAP.

We aggregate crops into 20 representative crop groups. A single
crop group can represent several individual crops. Irrigated land
use represents the area of all crops within the group, production
costs and returns are represented by a single proxy crop for each
group. The current 20 crop groups were defined in collaboration
with DWR (DWR, 2010). For each group we choose the represen-
tative (proxy) crop based on four criteria: (i) availability of

Fig. 2. SWAP region definition and coverage.
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a detailed production budget, (ii) representative of the largest land
use within a group, (iii) representative of water use (applied water)
of all crops in the group, and (iv) having similar gross and net
returns as other crops in the group. The relative importance of
these criteria varies by crop. The 20 crop groups include almonds
and pistachios, alfalfa, corn, cotton, cucurbits, dry beans, fresh
tomatoes, grains, onions and garlic, other deciduous, other field,
other truck, irrigated pasture, potatoes, processing tomatoes, rice,
safflower, sugar beets, subtropical, and vines.

Variable input costs for the crop groups are derived from the
regional cost and return studies from the University of California
Cooperative Extension (UCCE, 2011). There are four aggregate
inputs to production, (i) land, (ii), labor, (iii) water, and (iv) other
supplies. All inputs except water are derived from the UCCE
Budgets. Since cost budgets represent best management practices,
SWAP also uses the corresponding yields from the budgets.
Commodity prices for the base year in the model are from the
California County Agricultural Commissioner's reports published
by the U.S. Department of Agriculture (USDA, 2011).

We derive applied water per hectare (base) requirements for
crops in SWAP from DWR estimates (DWR, 2010). DWR estimates
are based on Detailed Analysis Units (DAU). An average of DAU's
within a SWAP region is used to generate a SWAP region specific
estimate of applied water per hectare for SWAP crops.

The SWAP model includes five types of surface water: State
Water Project (SWP) delivery, three categories of Central Valley
Project (CVP) delivery, and local surface water delivery or direct
diversion (LOC). The three categories of CVP deliveries represent
water service contract and include Friant Class 1 (CVP1), Friant
Class 2 (CL2), and water rights settlement and exchange delivery
(CVPS). CVP and SWP water costs have two components, a project
charge and a district charge. The sum of these components is the
region-specific cost of the individual water source.

Groundwater pumping costs are calculated as two components,
the fixed cost per cubic meter based on typical well designs and
costs within the region, plus the variable cost per cubic meter. The
variable cost per cubic meter is O&M plus energy costs based on
average total dynamic lift within the region. In our example
application we consider a short run drought analysis and hold
dynamic lift and groundwater pumping costs constant. Long run
policy analysis may link the SWAP model to a groundwater model
such as the Central Valley Hydrologic Model (CVHM) to simulta-
neously estimate changes in regional depth to groundwater
(Reclamation, 2011).

The model calibration approach, discussed in the following
section, is driven by the first order conditions and fixed resource
constraints. Since the underlying objective is to maximize profits,
subject to inequality constraints on the fixed inputs, each regional
crop production activity must have a positive gross margin at the
base calibration values. As such, the essential test at this stage is to
ensure that the gross margin over variable costs is positive for those
crops actually grown. If the net returns to land and management
are negative after checking the data, there are several ways of
addressing the problem. The simplest approach may be to use
a lower bound calibration constraint in Step II to calculate the
needed reduction in the land opportunity cost from the lower
bound constraint shadow value. More generally, the researcher
should consult extension agents and other experts to identify
potential inconsistencies in the crop budgets or other input data.

2.2.2. Step II: linear calibration program

In this step we solve a linear program of farm profit maximi-
zation with calibration constraints set to observed values of land
use. All other production inputs are normalized to land. The
Lagrangian multipliers on the calibration and resource constraints

are used in steps three and four to parameterize regional CES
production functions and exponential PMP cost functions. We
define sub-index g for (27) agricultural (SWAP) regions, i for (20)
crop groups, j for (4) production inputs, and w for (6) individual
water sources.

We solve a linear program to obtain marginal values on cali-
bration and resource constraints. The linear program objective
function is to maximize the sum of regional profits across all crops
by optimizing land use xlgjjan¢ and water use watlgy. Equation (1)
defines the objective function,

> ©gitlgy | Xlgijana
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where vg; are region-specific crop prices (marginal revenue per
tonne of output), yldg; are the base yields for crop i in region g, wgj;
are input costs, wgw are water costs, and dgj are regional Leontief
coefficients defined in Equation (2). Xy represents the observed
level of input use.
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Production is constrained by resource availability of binding
inputs including land and water. These are treated separately in the
calibration program, since regions may be binding in land, water, or
both. The land resource constraints are defined as

Z)dgi < bg,land vg, (3)
i

where bgjang are region-specific land availability constraints. The
water constraints are defined by region and water source,

> awgxly < watlgw Vg, (4)
i w

and

> " watgy <Y watconsgy Vg (5)
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where watconsgy are region and water source-specific constraints,
and awg; are crop water requirements (applied water per hectare)
and may reflect regional difference in average irrigation efficiency
or consumptive use, Define Ag and )(g/ as the shadow values for
Equations (3) and (4), respectively.

A calibration constraint forces the program to reproduce base
year observed cropping patterns, We include a perturbation
(¢ =0.0001) to decouple the resource and calibration constraints as
detailed in Howitt (1995a),

Xgitand < Xgijana + £ Y &1 (6)

We add the calibration constraint to land only, and use the
shadow value of land Ag,- as the marginal price needed to calibrate
optimal land allocation in Equation (6). The other inputs are cali-
brated by using the first order conditions for the CES production
function defined later in the process.

Two tests are applied to the output of the Step Il model. The first
test measures any deviation in regional crop input allocation by the
maodel. Percentage deviations in input use by crop and region of less
than 1% are permissible given the small perturbations in the cali-
bration constraints, but any input deviation greater than this
implies negative gross margins, or unduly restrictive fixed input
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constraints. The second calibration test verifies that the number of
non-zero dual values on calibration constraints plus the number of
non-zero shadow values on binding resource constraints equal the
number of non-zero production activities in each region. If this test
does not hold, the model will not have sufficient cost information to
calibrate the full set of non-zero activities as some crops should
have interior solutions, but do not have calibration shadow values
to derive them.

2.2.3. Step III: production function parameter calibration

In this step we sequentially derive the parameters for the
Constant Returns to Scale (CRS) CES production function for each
region and crop following the procedure developed in Howitt
(1995b). The CES is a flexible functional form which allows for
a constant rate of substitution between production inputs and nests
Leontief (fixed proportions) and Cobb—Douglas (unit substitution)
production technologies. Researchers use various types of
quadratic functions in agricultural optimization models (Cai, 2008).
The model which preceded SWAP in California, the Central Valley
Production Model, modeled production along the water use-
irrigation efficiency isoquant (Reclamation, 1997). SWAP improves
previous methods and calibrates a CES production function for each
crop and region. One key property of the CES production function is
that it defines the rates at which inputs can be substituted for each
other, for example, applied water used in irrigation can be partly
substituted for by increased irrigation efficiency which requires
additional labor and capital.

The Constant Returns to Scale (CRS) CES production functions
for every region and first-order conditions for an optimum input
allocation yield a sequential set of conditions to solve for the
parameters of the CES. The theoretical properties may be found in
Beattie and Taylor (1985). We define the CES functions as

]U/Pi’ (7)
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where yg; represents output of crop i in tonnes for region g, by
combining aggregate inputs j. The scale parameters are (1g) and the
relative use of production factors is represented by the share
parameters fgjj. Production factor use is given by Xgj;. The returns to
scale coefficient is v and CRS requires that the coefficient is set at 1.

The SWAP model uses a non-nested CES production function
with the same elasticity of substitution between any two inputs.
The SWAP model is also able to handle a nested-CES production
function with two or more sub-nests and corresponding versions of
the model have been developed. If data are available the substitu-
tion elasticity should be estimated. If substitution elasticities are
available from existing studies those can be used. Currently there
are insufficient data to estimate the elasticity of substitution, thus
the value is fixed at ¢ = 0.17 for all inputs. We assume this value to
allow for limited substitution between inputs based on experience
from previous analyses.

Limited substitution between inputs is consistent with observed
farmer production practices. Namely, we observe that farmers can,
over a limited range, substitute among inputs in order to achieve
the same level of production. Fig. 3 shows an example of a CES
production surface. To show the CES function as a 3-dimensional
surface two inputs (supplies and land) are held constant. The
vertical axis shows total production of alfalfa in Region 15 given
different combinations of water and labor which are shown on the
horizontal axes. Fig. 3 illustrates two important aspects of the CES
production function. First, substitution between inputs can be seen
by holding production constant (the vertical axis) and sliding
around the production surface. There is limited substitution
between water and labor, as shown by the “sharp” corners to the

Production

Water Labor

Fig. 3. Simplified CES production function surface for alfalfa in region 15.

production surface. Second, Fig. 3 demonstrates the ability of SWAP
to model deficit (stress) irrigation by farmers or, more generally, the
marginal product of a given input. Faced with a water shortage we
expect that farmers may deficit-irrigate some crops. Holding labor
constant and sliding along the production surface, as water is
decreased production (yield) decreases as well. Additional restric-
tions can be imposed to incorporate exogenous agronomic data.

The first order condition for optimal input allocation is that the
value marginal product (output price times the marginal product)
of each input for each crop and region is equal to the marginal cash
cost plus opportunity cost of the input. This is equal to the base
ir&l)ut price plus the dual value on the resource constraints, A; and
2., and, when binding, the dual value on the calibration constraint,
Agi- The linear program in Step II will not have calibration shadow
values for activities associated with the binding resource
constraints. In the absence of prior estimates of the marginal
productivity of these crops, we impose the assumption that
marginal productivity decreases 25% over the base condition
productivity and thus use 25% of the land resource shadow value as
a proxy for the calibration shadow value, and adjust the other
calibration values accordingly. While this is a general assumption
over different regions and crops, it provides a robust method for full
calibration of all the observed crops without inducing infeasibilities
from more arbitrary exogenous restrictions.

Let the cost per unit of each input, inclusive of marginal cash
cost and opportunity cost of input j be wj. To simplify notation,
consider a single crop and region and normalize the price per unit
output to 1. Define

p=2=1 (8)

a

and the corresponding farm profit maximization problem, opti-
mizing over input use Xj, is written as,

v/p
= P _ .
maxm = Zﬂjxf Za)jxj. (9)
J j
Constant returns to scale requires that v=1 and

Y =1 (10)
j

We use the restrictions imposed by constant returns to scale and
take ratios of any two first order conditions to derive the familiar
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optimality condition that marginal rate of technical substitution
equals the ratio of input costs. Let | correspond to all j#1 and by
rearranging and using the restriction in Equation (10) we can
explicitly solve for the first (or any arbitrary) coefficient,

By = L . (11)

(=1/0)
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We use the same procedure as above for all other §; where I+1,
thus

B =

(12)

We calculate the scale parameter, for each region and crop, from
the definition of the CES production function, evaluated at the base
level. The scale parameter is

(Vid/Riana) Riana
v/p;
1
J

The process generalizes to any number of regions and crops. In
SWAP this process is automatically performed for all crops and
regions and the production functions are fully calibrated.

= (13)

2.2.3.1. Numerical scaling issues in optimization models. From the
first order conditions we see that

(-1/0)
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Bl - w1 Xl(*]/c) 3 (14)

for any given input L If input costs (marginal cash cost plus
opportunity cost) of two inputs are of a different order of magni-
tude this can cause the g; coefficients to become unbalanced and
lead to numerical issues with model calibration. Specifically, an ill-
conditioned calibration routine will tend to set 8; = 1 and all other
gj = 0. In turn, the model will not calibrate with a low elasticity of
substitution (large value in the exponent). This type of data issue is
common with large-scale regional production models since inputs
are aggregated into coarse categories. For example, other supplies
have a much larger cost per unit land than labor costs for many
crops causing ill-conditioned matrices that impede numerical
convergence to an optimal solution.

There are many sophisticated scaling approaches but a simple
solution used in SWAP is to numerically scale input costs into units
of the same order of magnitude. We use land costs as the reference
scale and convert input costs, except for land, into land units. We
calculate the ratio of input use to total hectares, for each crop and
region, and normalize the costs of production into the corre-
sponding unit. This scaling is used throughout the SWAP program.
Atthe end of the program we use a de-scaling routine which simply
reverses this process to convert input use and costs back into
standard units.

2.24. Step 1V: estimating an exponential PMP cost function

The SWAP model posits that farmers cultivate the best land first
for any given crop so additional land put into production will be of
lower quality. The effect will vary over space and will depend on
several additional factors including management skills, field-
specific physical capital, and the dynamic effects of crop rotation.
In general, additional land into production requires a higher cost to

prepare and cultivate. We combine this unobservable (directly)
information with average production costs to calibrate exponential
land cost functions in the model.

PMP land cost functions are calibrated using information from
acreage response elasticities and shadow values (implied values)
on calibration constraints. Merel and Bucaram (2010) derive
conditions for the exact calibration to elasticities for the Leontief
and CES model with a quadratic PMP cost function. They show that
the approach used here can be defined as myopic calibration, since
it does not account for the effect of crop interdependency on the
marginal elasticity. However they do show that under so-called
“number of crops” and “dominant response” conditions, the
myopic approach can be an adequate approximation. With 20
representative crops, the SWAP model is likely to satisfy both
conditions, though we have not numerically tested the conditions
since they are derived for a quadratic PMP cost function. In another
more general formulation, Merel et al. (2011) show that
a decreasing returns to scale CES function can calibrate exactly to
a wider set of elasticities. They also propose that for multiple
regions such as in SWAP, the individual region elasticities be
allowed to vary as long as the weighted aggregate crop elasticity
calibrates to the prior value. This modification will be incorporated
in future versions of the SWAP model.

Previous PMP models, such as CVPM, were specified with
quadratic PMP land cost functions. Fig. 4 shows a comparison of the
exponential PMP cost function and the more frequently used
quadratic PMP cost function that implies a linear marginal cost on
land. Calibrating a quadratic total cost function subject to a supply
elasticity constraint can result in negative marginal costs over
a range of low hectares for a specific crop and region. This is
inconsistent with basic production theory and can result in
numerical difficulties both in the calibration phase and with policy
analysis. The exponential cost function is always bounded above
zero, by definition, which is consistent with observed costs of
production. The marginal factor cost of land has the required first
and second order conditions for calibration and minimizes the
difference from the prior elasticity value. A second practical
advantage is that the exponential cost function often can fit
a desired elasticity of supply without forcing the marginal cost of
production at low hectares to have unrealistic values. A quadratic
PMP cost function, often forces the modeler two choose between an

4,000
=¢-Quadratic PMP /

3,500
-@-Exponential PMP /

3,000 /
2,500 /

2,000

1,500 ‘/7
1,000 / /
500

50 100 150 200 250 300 350 400

Marginal Cost ($/hectare)

-500

Planted Area (hectares)

Fig. 4. Comparison of quadratic and exponential PMP land cost functions (adapted
from Medellin-Azuara et al., 2010).
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unrealistic elasticity, which influences policy response, or an
unrealistic initial marginal cost of production. Researchers
considering using a quadratic total function should beware of the
potential for negative marginal costs.

Formally, in Step IV of PMP calibration we estimate parameters
for the exponential cost function. We define the total land cost
function as

TC(Xland) = feT¥ind (] 5 )

where 4 and v are the intercept and the elasticity parameter for the
exponential land area response function, respectively. These
parameters are from a regression of the calibration shadow values
on the observed quantities, restricted by the first order conditions,
and elasticity of supply for each crop group from previous studies.
For clarity, consider a single PMP cost function within a single
region for a specific crop, defined as

v — TC

— = 6767Xland’ (‘16)
0Xiand

where marginal cost equals cash cost plus marginal opportunity
cost. The acreage supply elasticity, 7, is

_ axland IC
= oTC X;and’ (]7)
where
Xjand 1 (18)

ATC ~ dyeYXuma’

Simplifying and noting that the logarithmic version of the
equation is linear,

In(mdvXigng) + YXiana = In(R). (19)

Thus, two conditions, Equations (16) and (19), must be satisfied
at the calibrated (observed) base level of land use. The former is the
PMP condition and holds with equality, the latter is the elasticity
condition which we fit by least-squares.

The test at this stage of calibration is to calculate the deviation of

the marginal PMP cost at the base land allocation from the shadow -

value of the corresponding calibration constraint, Aﬁmd, derived in
Step II. If deviations are more than a few percentage points in this
test, the model does not accurately calibrate, usually due to a non-
optimal solution in the least squares fit for the parameters, or an
unduly restrictive elasticity constraint on the estimation.

2.2.5. Step V: calibrating demands for endogenous prices

We include endogenous prices through downward sloping
demand functions for all crops in SWAP. This represents the
consumer side of the market and provides a mechanism for
calculation of consumer surplus in the model. As such, the objective
function is to maximize the sum of producer and consumer surplus.

We define a subroutine to estimate a statewide demand func-
tion for each crop based on the California crop demand elasticity as
estimated by Green et al. (2006). We specify the model with linear
California-specific crop demand functions. The demand curve
represents consumer's willingness-to-pay for a given level of crop
production. All else constant, as production of a crop increases, the
willingness-to-pay for additional production is expected to fall and
to clear the market the price must also fall. The extent of the price
decrease depends on the elasticity of demand or, equivalently, the
price flexibility. The latter refers to the percentage change in crop
price due to a percent change in production given a perfectly
competitive market.

We account for regional price differences in the California
statewide demand functions. Crop demand includes both in-state
and out of state demands for California crops. The statewide
demand functions are defined using a base price and regional prices
may include deviations from that base price. The state-wide market
price of each crop is assumed constant across regions in the state.
Regional deviations from the base reflect variations in distance
from markets, production contracts, crop quality, variety, harvest
season, and other factors.

Production shares by region and price flexibilities of demand are
the relevant data needed to calibrate the demand functions. The
price flexibilities are based on earlier work for the CVPM model
(Reclamation, 1997). We specify a linear inverse-demand function
with two parameters, for crop i in region g, defined as

pi = éof — “?(Zg: Zygij>- (20)
j

The crop price is p; and parameters & and al.z represent the
intercept and slope of the crop-specific inverse demand curve,
respectively. The parameter £ is a potential parallel shift in demand
due to exogenous factors. We calculate the California price for crop i
by weighting the regional observed prices vgi by the fraction of
region g in the statewide production. Proportion of production
(ppgi) is defined as

. (21)

where Jg; is the base production. The weighted California price is
consequently defined as

wp; = Y vgibPgi- (22)
g

The regional marketing cost is the difference between the
observed regional price (base) and the calculated California crop
price. This reflects differences in price which can be attributed to
various region-specific differences discussed above and is defined
as

I'MCgi = Vgi — WPgi. (23)

Given the above definitions, we can calculate the parameters of
the inverse demand functions. For a given price flexibilities (x;), the
slope parameter is

) XiWDgi
aF = - (24

Consequently, the intercept is

0‘1’1 = wp; — al-z Z_f/g, (25)
g

The test at this stage is to substitute the regional production
quantities into Equation (20) and check to see if the equilibrium
price adjusted by the regional marketing cost calibrates closely,
within a few percentage points, to the regional price.

2.2.6. Step VI: a calibrated non-linear optimization program

The last step in SWAP calibration combines the calibrated
functions into a non-linear optimization program. This base
program does not include a policy shock and is used to ensure that
the calibrated model reproduces observed base year conditions. We
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include endogenous price determination, agronomic constraints,
and resource constraints in the program. With endogenous prices,
the objective function is to maximize the sum of producer and
consumer surplus.

Max PSS = ZI: (&x} (;Ygi) +%a,-2 (;ygf) 2)
_ ; Z (2giexp (+Ygi%eiiand ) )
=323

g i

- Zg: > (wgwwatgw). (26)

w

Wgi supplyXgi supply + wgi,laborxgi,labor)

The choice variables are inputs (land, labor, water, and other
supplies) for each region g and crop i, in addition to total regional
water use by source. The first term of the objective function,
Equation (26), is the sum of gross revenue plus consumer surplus
for all crops and regions, measured relative to the base crop prices.
The second term captures the region-specific gross revenue asso-
ciated from deviations in regional prices from the base prices (these
are denoted regional marketing costs). The third term is the region
and crop specific PMP land costs. These include both the direct
costs of land reported in the base data and the marginal costs
inferred from the shadow values on the resource and calibration
constraints. The fourth term accounts for labor and other supply
costs across all regions and crops. Finally, the fifth term of the
objective function is the sum of irrigation water costs by region,
crop, and water source. This term is written separately to empha-
size that SWAP includes water costs that vary by source.

We define a convex constraint set with resource, agronomic, and
other policy constraints. First, the production technology generates
the regional crop production yg as defined in Equation (7).
Resource constraints include regional input constraints,

> xgj < by for j=water, (27)
i

where bg; is total input available by region. Water constraints are
incorporated as a restriction on the total water used by region and
source,

watgy < watconsgy (28)

and total water input use,
ng,i,water < Zwatgw. (29)
i w

SWAP allows for movement along the CES production surface,
i.e. substitution between inputs. One intensive margin adjustment
commonly observed in agriculture is deficit (stress) irrigation.
SWAP endogenously determines potential stress irrigation which is
dictated by the shape of the respective CES production function. An
upper-bound constraint of 15% stress irrigation (relative to the base
condition applied water per hectare) is allowed in the model, to
prevent the model from reducing applied water rates below the
range normally observed. We define the stress irrigation constraint
as

Xgi water

> 0.85 awyg; 30
Xgl',land & ( )

Perennial crops are subject to natural retirement or rotation as
yields decline in older stands. The average perennial life (prenlife;)
is 25 years for almonds and pistachios, other deciduous, and vine
crops in SWAP (UCCE, 2011). Subtropical crops have an average life
of 30 years. If the time horizon of analysis exceeds 30 years then we
expect that farmers have full flexibility to adjust production deci-
sions, including retirement of orchards and vineyards. In the short
run we expect farmers devote resources to preserve perennial
stands still in prime bearing years. The SWAP model constrains
perennial retirement in the short-run (less than the life of the field)
to be a proportion of total land use. The proportion is the short-run
horizon in years divided by the perennial life. This implicitly
assumes that stand age is uniformly distributed and that only older,
lower-bearing, fields will be retired. Formally,

~ i yr
Xgpren,j = Xg,pren,j <] - (LWD’ o

where prenci and yr is the number of years of the analysis.
Marques et al. (2005) demonstrate a two-stage formulation to more
explicitly address permanent and annual crops for a range of water
availability conditions.

We also include a regional silage constraint for dairy herd feed
in the model. The silage constraint forces production to meet the
regional feed requirements of the California dairy herd. For
example, each cow consumes 20.5 kg of silage per day and corn
grain yields are 11.01 tonnes per hectare thus each cow requires
about 0.11 silage hectares per year. Multiplying the silage hectares
per cow per year by the number of cows in each region yields the
minimum silage requirement. The default model assumes
a constant herd size into the future, though additional information
about future of herd sizes could be used. This constraint can be
excluded if the policy being assessed causes relatively small
changes in water supply relative to existing regional supplies.
Formally,

xg,com,land = ig,corn,land: (32)

where Xg corn tana defines the minimum silage constraint for each
region.

Maximizing Equation (26) subject to Equations (27)—(29),
where production satisfies Equation (7) by choosing the optimal
input allocation for each crop and region yields a unique maximum
for the SWAP model. The result of the base model run is used to
determine if the model calibrates properly. Constraints defined by
Equations (30)—(32) are relaxed in the base model in order to check
for proper calibration.

There are three fundamental underlying assumptions which we
want to emphasize. First, we assume water is interchangeable
among crops in the region. Second, a representative regional farmer
acts to maximize annual expected profits, equating the marginal
revenue of water to its marginal cost. Third, a region selects the
crop mix that maximizes profits within that region. This assumes
sufficient levels of water storage and internal water distribution
capacity and flexibility.

We use the base program to evaluate the fit of the fully cali-
brated model. The final test for the fully calibrated model compares
the percentage difference in input allocation and production output
for the model and the base data. The next stage of testing, test 3 in
Fig. 1, compares the value marginal product of inputs and their
marginal costs for each regional crop input. This test checks that the
calibrated model satisfies the necessary conditions for optimization
in the CES model (Howitt, 1995b). Before policy scenarios are run,
the elasticities of output supply and input demand should be tested
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