

Klamath River Basin Revised Natural Flow Study (KNFS)

November 2 – 3, 2022 Stakeholder Workshop Upper Klamath Basin Groundwater Flow Model (UKBGFM)

Jon Traum – jtraum@usgs.gov Scott Boyce – seboyce@usgs.gov Kelleen Lanagan – klanagan@usbr.gov

Outline

- Model Purpose
- Model Methodology
- Model Calibration,
 Sensitivity, & Uncertainty
 Analysis
- Natural Flow Representation
- Comparison to 2005 Natural Flow Study

Model Purpose

- Simulate groundwater conditions in the Upper Klamath Basin (UKB)
 - Groundwater levels
 - Groundwater storage
 - Recharge from precipitation and irrigation
 - Evapotranspiration of groundwater
 - Boundary flow between neighboring basins
 - Base flow to streams
 - Seepage between the lakes/reservoirs and the groundwater system
 - Flow to tile drains
 - Groundwater pumping
 - Canal seepage

Model Extent

- Simulates the entire UKB
- 33,887 model cells that are 2,500 by 2,500 foot
- 3 vertical layers ranging from 5 to 3,600 feet
- Layer zonation corresponds roughly to hydrogeologic units (shown on map)
- Seasonal stress periods
- Calibration period from October 1980 to September 2020

Modeling Methodology

- UKBGFM is based on a groundwater flow model developed in a 2012 USGS study (Gannet, 2012)
- Code has been updated from MODFLOW 2000 (Harbaugh and others, 2000) to MODFLOW-OWHM (Boyce and others, 2020)
- OHWM's improved input and output options are greatly beneficial

Prepared in cooperation with the Bureau of Reclamation and the Oregon Water Resources Department

Groundwater Simulation and Management Models for the Upper Klamath Basin, Oregon and California

Scientific Investigations Report 2012–5062

U.S. Department of the Interior U.S. Geological Survey

Evolution from MODFLOW-2000 to MODFLOW-OWHM

(figure modified from Boyce and others, 2020) Not all features shown will be used in the UKBGFM

Line Feed Input Option

- Input design can be used to replace entirely certain packages (WEL) (Harbaugh, 2005; Boyce, 2022) or work along side the current input (MNW2, GHB, SFR) (Harbaugh, 2005; Boyce, 2022).
- Each input is called a feed file and can easily be made in Excel.
- Below is an example Feed:

# Commer	nts			Well
1	3	4		W1
1	7	3		W2
1	6	7		W3
1	5	5		W4
STRESS PE	RIOD			
# W1	W2	W3	W4	SP
-1000	0.0	-4500	NaN	#1
-500	-1000	-3000	NaN	# 2
-1000	-1500	-1500	NaN	#3
-1500	-1000	-4500	-1000	#4
-1000	-1000	-3000	-2000	# 5
-1000	-1500	-3000	-3000	#6
-1500	-1000	-1500	-2000	#7
-1000	-1000	-1500	-2000	# 8
-1000	-500	-3000	-1000	# 9
-500	-1000	-4500	-2000	# 10

Package Budget Groups

 Package input can be tagged to belong to a specific budget group

- The group then appears in the Volumetric Budget as a standalone group
 - Also effects the Cell-By-Cell detailed output

Package Budget Groups

- For example, the GHB Package (Boyce and others, 2020)
- Normally the budget just prints out: HEAD DEP BOUNDS
- Instead, the input can tag GHB cells with custom names, such as:

GHB_RIVER GHB_BAY GHB_MARSH

Example OWHM Budget (Not UKB)

/0 	LUMETRIC BUDGET FOR	ENTIRE MODEL AT	END OF TIME STEP 2 IN	STRESS PERIOD	1
	CUMULATIVE VOLUMES	L**3	RATES FOR THIS TIME STEP	L**3/T	
	IN: 		IN: 		
	STORAGE =	48054609.4324	STORAGE =	1063868.0255	
	CONSTANT HEAD =	0.0000	CONSTANT HEAD =	0.0000	
	HEAD DEP BOUNDS =	13292913.8925	HEAD DEP BOUNDS =	137959.0091	
	STREAM LEAKAGE =	5688847.7083	STREAM LEAKAGE =	129280.6578	
	FARM WELLS =	0.0000	FARM WELLS =	0.0000	
	FARM NET RECH. =	606564.9591	FARM NET RECH. =	19788.0392	
	TOTAL IN =	103644847.5984	TOTAL IN =	2267888.3940	
	OUT:		OUT:		
	STORAGE =	59716711.3035	STORAGE =	1188612.5844	
	CONSTANT HEAD =	0.0000	CONSTANT HEAD =	0.0000	
	HEAD DEP BOUNDS =	132913.8925	HEAD DEP BOUNDS =	1959.0091	
	STREAM LEAKAGE =	16132211.6689	STREAM LEAKAGE =	334647.3482	
	FARM WELLS =	1005616.5098	FARM WELLS =	32863.9139	
	FARM NET RECH. =	5441472.2726	FARM NET RECH. =	173732.9247	

Example OWHM Budget (Not UKB)

 VOLUMETRIC BUDGET FOR ENTIRE MODEL AT END OF TIME STEP
 2 IN STRESS PERIOD
 1

CUMULATIVE VOLUMES	L**3	RATES FOR THIS TIME STEP	L**3/T
 TN •		TN•	
IN.		IN.	
SIORAGE =	48054609.4324	SIORAGE =	1063868.0255
CONSTANT HEAD =	0.0000	CONSTANT HEAD =	0.0000
GHB_RIVER =	292913.8925	GHB_RIVER =	7959.0091
GHB_BAY =	127738.3006	GHB_BAY =	2766.0901
GHB_MARSH =	1067712.0409	GHB_MARSH =	27508.3903
STREAM LEAKAGE =	5688847.7083	STREAM LEAKAGE =	129280.6578
FARM WELLS =	0.0000	FARM WELLS =	0.0000
FARM NET RECH. =	606564.9591	FARM NET RECH. =	19788.0392
TOTAL IN =	103644847.5984	TOTAL IN =	2267888.3940
OUT:		OUT:	
STORAGE =	59716711.3035	STORAGE =	1188612.5844
CONSTANT HEAD =	0.0000	CONSTANT HEAD =	0.0000
GHB_RIVER =	527980.5309	GHB_RIVER =	1099.0253
GHB_BAY =	0.0000	GHB_BAY =	0.0000
GHB_MARSH =	1860597.9330	GHB_MARSH =	22822.0533
STREAM LEAKAGE =	16132211.6689	STREAM LEAKAGE =	334647.3482
FARM WELLS =	1005616.5098	FARM WELLS =	32863.9139
FARM NET RECH. =	5441472.2726	FARM NET RECH. =	173732.9247

Example Plan for MODFLOW Packages to be used for the Upper Klamath Basin Groundwater Flow Model

Non-Developed Land

> Recharge from Precipitation (RCH) (Harbaugh and others, 2000)

Evapotranspiration of Groundwater (EVT) (Harbaugh and others, 2000)

Neighboring Groundwater Basins Boundary Flow (GHB) (Harbaugh and others, 2000)

Developed Land Groundwater **Recharge from** Groundwater **Runoff from** Surface **Pumping for Precipitation**, **Pumping for Precipitation** Water other Urban Irrigation, and and Irrigation Irrigation Diversion Canals uses (WEL) (WEL) (RCH) (Harbaugh and others, 2000) (Harbaugh and others, 2000) (Harbaugh and others, 2000) Surface Water System **Upper Klamath Basin** Flow to Tile Drains (DRN) **Groundwater** System (Harbaugh and others, 2000) **Base Flow to** Streams (STR) (Prudic, 1989) Seepage to and Change in from Lakes and Groundwater **Reservoirs** (RES) Storage (LPF) (Fenske and others, 1996) (Harbaugh and others, 2000)

Interbasin groundwater Flow

- In the 2012 USGS study (Gannett and others, 2012), interbasin boundary flows simulated include:
 - Between the Deschutes Basin and the UKB (North End)
 - Between the Pit River Basin and the UKB (South End)
- Interbasin groundwater flow is simulated using the general head boundary package (GHB) (Harbaugh and others, 2000)
- Other boundaries are no-flow

Stream Base Flow

- Streams simulated in the 2012 USGS study area are shown (Gannett and others, 2012)
- Streams are simulated using the stream package (STR) (Prudic, 1989)
- 2012 USGS study assumes that streamflow loss to the groundwater system is generally small and does not represent a significant source of recharge
- STR package was setup to only allow base flow to streams

Lake and Reservoir Seepage

- Lakes and reservoirs simulated in the 2012 USGS study (Gannet and others, 2012) include:
 - Upper and Lower Klamath Lakes
 - Tule Lake sumps
 - Gerber Reservoir
 - Clear Lake
- Lakes are simulated using the reservoir package (RES) (Fenske and others, 1996)
- Lake stages can be estimated from the Mass Balance Model being developed as part of the KNFS using RiverWare (Zagona and others, 2001)

Tile Drains

- Distribution of drains is based on the 2012 USGS Study (Gannet and others, 2012)
- Drain bottoms are assumed to be 10 feet below ground surface
- Groundwater discharge to drains is simulated using the drain package (DRN) (Harbaugh and others, 2000)

Recharge from Precipitation

- Recharge of precipitation can be simulated using output from a surface hydrology model that is being developed as part of the KNFS using the Precipitation-Runoff Modeling System (PRMS) (Regan and others, 2018)
- Example recharge data from Fall 2019 is shown
- Recharge is simulated using the recharge package (RCH) (Harbaugh and others, 2000)

Evapotranspiration of Groundwater

- For undeveloped land, groundwater evapotranspiration (ET) can be simulated using datasets calculated by the Desert Research Institute (DRI) being developed as part of the KNFS
- ET can be simulated using the evapotranspiration package (EVT) (Harbaugh and others, 2000) or the farm process (FMP) (Boyce and others, 2020)
- Example of areas with groundwater ET is shown
- Simulation of ET for Developed Land is
 TBD

Developed Land Use

- Groundwater fluxes based on developed land use that can be updated in the UKBGFM include:
 - Groundwater pumping for irrigation
 - Recharge of irrigation (deep percolation)
 - Groundwater pumping for other urban uses
 - Canal seepage
- Land Use data from US Department of Agriculture (USDA, 2021).
 - May be modified based groundtruthing or other analysis

Model Calibration

- UKBGFM can be calibrated to archive a best fit between simulated outputs and calibration targets
 - Groundwater levels at observation wells (shown on map)
 - Estimated base-flow component of gaged streamflow
- Calibration is performed using a combination of conceptual knowledge and automated methods
- Adjusted model parameters can include
 - Aquifer properties
 - Steam and lakebed conductance
 - Land-use properties

Sensitivity and Uncertainty Analysis

- A sensitivity analysis can be performed to determine the range over which parameters can be modified, while still ensuring a reasonable fit between simulated and observed
- An uncertainty analysis can be performed using this range of parameter values to determine a distribution of reasonable outputs such as base flow

Example of Uncertainty Analysis from a different study (Not UKB)

Accepted Paramter Distributinons

Discarded Paramter Distributions

Calibrated Model

Example Plan for Natural Flow Representation

Comparison to 2005 Natural Flow Study

- 2005 Study (Perry and others, 2005)
 - Groundwater accrual in streams between measured gages and UKL were estimated from various sources (measured springs, comparison of nearby streams, previous studies, etc.)
 - In UKL, groundwater interaction was calculated as the residual in an analytical mass balance equation

Current Study

- The UKBGFM, a physically based model, is being developed to simulates a groundwater water table that changes spatially and temporally
- Groundwater dependent fluxes, such as groundwater and surface water exchange, can be calculated using the UKBGFM

Summary

- The UKBGFM is being developed to simulate groundwater conditions during current (WY1981 WY2020) and pre-development conditions
- The UKBGFM is based on a 2012 USGS Study
- The model code is being updated from MODFLOW 2000 to MODFLOW-OWHM
- Recharge from precipitation can be simulated using output from the PRMS model being developed as part of the KNFS
- Evapotranspiration can be simulated using datasets being developed by DRI as part of the KNFS
- UKBGFM outputs can be used in the RiverWare Mass Balance Model being developed as part of the KNFS
 - Base flow to streams
 - Seepage between the lakes/reservoirs and the groundwater system
 - Flow to tile drains
- Groundwater/surface water exchange is more refined using physically based model
- ²⁴ instead of previous analytical approach

References

Boyce, S.E., Hanson, R.T., Ferguson, I., Schmid, W., Henson, W., Reimann, T., Mehl, S.M., and Earll, M.M., 2020, One-Water Hydrologic Flow Model: A MODFLOW based conjunctive-use simulation software: U.S. Geological Survey Techniques and Methods 6–A60, 435 p., <u>https://doi.org/10.3133/tm6A60</u>.

Boyce, S.E., 2022, MODFLOW One-Water Hydrologic Flow Model (MF-OWHM) Conjunctive Use and Integrated Hydrologic Flow Modeling Software, version 2.2.0: U.S. Geological Survey Software Release, <u>https://doi.org/10.5066/P9P8I8GS</u>

Fenske, J.P., Leake, S.A., and Prudic, D.E., 1996, Documentation of a computer program (RES1) to simulate leakage from reservoirs using the modular finite-difference ground-water flow model (MODFLOW): U.S. Geological Survey Open-File Report 96–364, 51 p., <u>https://pubs.usgs.gov/of/1996/0364/report.pdf</u>.

Gannett, M.W., Wagner, B.J., and Lite, K.E., Jr., 2012, Groundwater simulation and management models for the upper Klamath Basin, Oregon and California: U.S. Geological Survey Scientific Investigations Report 2012–5062, 92 p., https://pubs.er.usgs.gov/publication/sir20125062.

Harbaugh, A.W., Banta, E.R., Hill, M.C., and McDonald, M.G., 2000, MODFLOW–2000, the U.S. Geological Survey modular groundwater model—User guide to modularization concepts and the ground-water flow process: U.S. Geological Survey Open-File Report 00–92, 121 p., <u>https://doi.org/10.3133/ofr200092</u>.

Harbaugh, A.W., 2005, MODFLOW-2005, the U.S. Geological Survey modular ground-water model -- the Ground-Water Flow Process: U.S. Geological Survey Techniques and Methods 6-A16

Perry, T., A. Lieb, A. Harrison, M. Spears, and T. Mull., 2005. Natural Flow of the Upper. Klamath River—Phase 1. U.S. Bureau of Reclamation. https://www.usbr.gov/mp/kbao/programs/docs/undepleted-klam-fnl-rpt.pdf.

Prudic, D.E., 1989, Documentation of a computer program to simulate stream-aquifer relations using a modular, finite-difference, ground-water flow model: U.S. Geological Survey Open-File Report 88–729, 113 p., https://doi.org/10.3133/ofr88729.

Regan, R.S., Markstrom, S.L., Hay, L.E., Viger, R.J., Norton, P.A., Driscoll, J.M., LaFontaine, J.H., 2018, Description of the National Hydrologic Model for use with the Precipitation-Runoff Modeling System (PRMS): U.S. Geological Survey Techniques and Methods, book 6, chap B9, 38 p., <u>https://doi.org/10.3133/tm6B9</u>.

United States Department of Agriculture (USDA), 2021, CropScape and Cropland Data Layers, accessed November 23, 2021, at https://www.nass.usda.gov/Research_and_Science/Cropland/sarsfaqs2.php

Zagona, E.A., Fulp, T.J., Shane, R., Magee, T., and Goranflo, H.M., 2001, RiverWare: A generalized tool for complex reservoir system ²⁵ modeling: Journal of the American Water Resources Association, v. 37, no. 4, p. 913–929.

Questions and Additional Discussion

