

Klamath River Basin Revised Natural Flow Study

November 2 – 3, 2022 Stakeholder Workshop Overview Presentation

Outline

- Goals of the Workshop
- Goal of the Natural Flow Study (NFS)
- Comparison of the 2005 and 2025 NFS
- Questions
- Study extent
- Analysis overview
- Comparison of current and pre-development conditions
- Technical review process
- What to expect for this workshop

Goals of the Workshop

- Receive input from Basin technical experts.
- Ensure that all applicable data sets and references have been included in the Revised Natural Flow Study library for consideration.
- Allow Stake Holders to communicate with and ask questions of the Study Team.
- Allow the Study Team to communicate with and ask questions of the local Klamath Basin technical experts and stakeholders.
- Clarify the goals, definitions and methods planned for the study.

Why are we revising the NFS?

- Revised study requested by stakeholders and government agencies.
- Contribute to the Klamath Basin Science Initiative
- Provide rigorous scientific information to support habitat studies, drought planning, and water supply/allocation planning
- Address deficiencies from the 2005 study (simplistic, coarse timescale, lack of transparency) identified by National Research Council

How will the revised NFS be used?

- Add to the scientific understanding of basin conditions
- A tool to address problems and provide solutions within the basin
- Baseline data and tool for a variety of separate studies and purposes, including upcoming biological opinion and consultation

Foundational Study Definitions

 Natural Flow or Pre-development Flow: "flow of water caused by nature. Water that would exist in a watercourse absent of human intervention/development."

 Undepleted Flow: "the stream flow in a watershed without the effects of diminishment by water uses for specific beneficial purposes including, but not limited to, irrigation, municipal, domestic, mining, commercial, industrial, stockwatering, recreational, and environmental concerns."

2005 Natural Flow Study

- Purpose was:
 - "provide an estimate of monthly natural flows in upper Klamath River at Keno."
 - "estimate of natural flow represents typical flow without agricultural development..."
 - Weather data from water years 1949-2000
- Pre-agricultural flow rather than a "natural" or pre-development flow study.
- National Research Council Recommendations:
 - Daily timestep
 - Quantitative groundwater assessment
 - Improved ET estimate
 - Include land cover changes
 - Include rainfall-runoff model
 - QA/QC and sensitivity analyses
 - Interaction of LKL and Klamath River

2025 Natural Flow Revised Study Goals/Assumptions Summarized

- Estimate daily flows at chosen locations on the mainstem Klamath River, removing the significant effects of human development (predevelopment).
- Simulate flows assuming pre-development landscape/hydraulic conditions, and weather data for water years 1981-2020.

2025 Natural Flow Revised Study Goals/Assumptions Summarized

- The study assumes the earliest available basin maps and documents represent basin development up to the time of the map/document's publication.
- Removing human development from the earliest documents/maps will produce a "natural" or pre-development landscape condition.
- It is also assumed that Native Inhabitants of the Klamath Basin did not significantly alter the "natural" condition of the Klamath Basin prior to the publication of the earliest maps/documents.
- The earliest maps of the basin are from the approximate ~1880 time period.

2025 Natural Flow Revised Study Goals/Assumptions Summarized

- Human development includes changes in
 - landscape scale vegetation,
 - lake surface water areas,
 - wetland areas,
 - agricultural development,
 - water management and flood control structures,
 - municipal development, channel modifications,
 - levees, roads, railroads, etc."
- Water years 1981-2020 data were chosen because they better represent current climate conditions, and reasonably accurate hydrologic data is available for this time period.
- Develop the most scientifically thorough estimate of natural flows possible

Basic Water Balance Methodology

Natural flow = gaged flow ± depletion ± water management

Calibrate to current conditions

Analyze models for pre-development conditions

Simplified NFS Modeling Schematic

Project Extent

 Phase 1 – Above Link River Dam (UKL inflows)

 Phase 2 – Link River Dam to Irongate Dam

 Phase 3 – Irongate Dam to the confluence with the Trinity River

Modeled Features

Pre-Development

- Reverse land subsidence
- Represent natural wetlands
- Marsh/Riparian areas
- Vegetation & landcover changes
- Natural mainstem river hydraulics controls (reefs)

Current Conditions

- Infrastructure
- Agricultural Impacts
 - Dams, reservoirs, canals, drains, ditches, berms, wells, pumping plants
 - Transbasin diversions
- Modified Lakes
 - Fourmile, Clear & Upper Klamath Lake

Infrastructure Changes

- Dams
- Roads
- Levees & berms
- Railroads
- Pumping plants
- Wells

Agricultural Impacts + Infrastructure

Canal examples include:

- A Canal
- North Canal
- Ady Canal
- Lost River Diversion Channel

Drains – Klamath Straits Drain

Transbasin Diversions

Pumping infrastructure

Wells

Crop consumptive use

Recharge (irrigation & canal seepage)

Topographic Changes

- Reverse subsidence effects
- Wetland alteration
- Removed Infrastructure

Modified Lakes

- Fourmile Lake
- Clear Lake
- Upper Klamath Lake
- Tule Lake
- Lower Klamath Lake

Part of the original dam structure at Clear Lake Reservoir, built in 1910. The rockfill dam was replaced with concrete in 2002. Photo credit: Courtney Mathews

Review Process

Highly influential Scientific Assessment (HISA) Classification

DOI defines HISA as:

- Potential impact of more than \$500 million in any one year on either public or private sector
- The dissemination is novel, controversial, or precedent-setting, or has significant interagency interest

Study Review Process

- Input from collaborators solicited throughout the study
 - Developing/Finalizing scope of work
 - Focused discussions with local subject matter experts
 - Update meetings
- Internal USBR Peer Review Process
 - Data
 - Model parameters
 - Results
 - Documentation
- External expert review

Project Schedule

• Phase 1 & 2 Natural Flows in 2024

Phase 3 Natural Flows in 2025

Comprehensive Report in 2025

Goals of the Workshop

- Receive input from Basin technical experts.
- Ensure that all applicable data sets and references have been included in the Revised Natural Flow Study library for consideration.
- Allow Stake Holders to communicate with and ask questions of the Study Team.
- Allow the Study Team to communicate with and ask questions of the local Klamath Basin technical experts and stakeholders.
- Clarify the goals, definitions and methods planned for the study.

Workshop Agenda

- Surface Hydrology Model
- Groundwater Hydrology Modeling
- Evapotranspiration Modeling
- Open Water Surface Evaporation Modeling
- Surface Hydraulics Modeling
- Riverware Mass Balance Model

Session Agenda

- Model Purpose
- Model Selection
- Input Data
- Methodology
- Comparison to the 2005 Natural Flow Study
- Natural Flow Representation
- Sensitivity & Uncertainty Analysis
- Questions & Discussion

Points of Contact

Bill Cronin, KBAO Project Manager wcronin@usbr.gov

Caroline Ubing, Study Team Project Manager cubing@usbr.gov

Marketa McGuire, Technical Lead mmcguire@usbr.gov

