RECLANATION *Managing Water in the West*

Delta-Mendota Canal Recirculation Feasibility Study

Stakeholder Workshop Baseline Assumptions February 9, 2007

U.S. Department of the Interior Bureau of Reclamation

State of California Department of Water Resources

Agenda

- Welcome & Introductions
- Purpose & Outcome
- Study Update
- Analytical Tools & Approach
- Water Supply, Water Quality, Fisheries
 - Baseline/Future without Conditions
 - Evaluation Criteria
- Next Steps
- Wrap-Up

Purpose and Outcome

Purpose

- Present Baseline Assumptions
- Review Evaluation Approach
- Outcome Receive Input
 - Technical Approach
 - Baseline and Common Assumptions
 - Evaluation Factors

Study Update

- DWR CEQA Lead
- Cooperating Agency Letters
- NOI/NOP February/March 2007
- Technical Work Group Sessions
- Public Scoping Meetings
 - Sacramento March 19
 - Los Banos March 19
 - Modesto March 21
- Key Milestone Reports
 - Initial Alternatives Information Report May 2007

- Plan Formulation Report December 2007
- Draft EIS/EIR 2008
- Final EIS/EIR & Feasibility Report 2008/2009

Primary Analytical Tools

- Water system operations/supply (CalSim II)
 - New Melones Operations Spreadsheet Model
- Delta Hydrodynamics and Fingerprinting (FDM)
- Water Quality
 - CalSim II (EC)
 - Evaluate Dissolved Oxygen
 - Source Fraction Spreadsheet Model (toxics, others)
- Energy (CalSim II Postprocessor)

Technical Analysis Linkage

CalSim II Model Baseline

Definition

 Representation of environmental and water system without DMC Recirculation Project

- Provides basis of comparison
- Consistent with Common Assumptions
 - Existing level of development
 - Depiction of existing environment and water system operations
 - 2030 level of development
 - Depiction of forecasted environmental conditions and water system operations

CEQA/NEPA No Project & Future No Action
RECLAMATION

CalSim II Model Baseline

- Geographic extent of CalSim II is large
- Requires numerous simulation assumptions
- Sacramento River Basin
 - Feather River
 - American River
 - Others
- Trinity River
- Sacramento San Joaquin River Delta
- San Joaquin River
 - Merced River
 - Tuolumne River
 - Stanislaus River (New Melones)
 - Others

CalSim II Modeling Assumptions Existing Level of Development

CVP Full Contract South of Delta

 C.W. "Bill" Jones Pumping Plant* – 4,200 cfs plus deliveries upstream of DMC construction

RECLAMATION

- SWP 3,000,000 4,100,000 Demand
 - Banks Pumping Plant 6,680 cfs
- Sacramento River San Joaquin River Delta
 - SWRCB Decision 1641
 - CVPIA 3406(b)(2)
- San Joaquin River
 - SWRCB Decision 1641
 - VAMP

*Formerly the Tracy Pumping Plant

CalSim II Modeling Assumptions San Joaquin River Basin Tributaries

Stanislaus River

- Interim Plan of Operations
- Tuolumne River
 - Existing conditions with FERC 1995 Settlement Agreement
- Merced River
 - Existing conditions with FERC and Davis-Grunsky
- Friant Division and San Joaquin River
 - Existing conditions with current flow obligations

CalSim II Modeling Assumptions 2030 Level of Development

- CVP full contract demand south of the Delta
 - C.W. "Bill" Jones Pumping Plant 4,600 cfs (with implementation of Intertie)
- SWP 3,000,000 4,100,000 Demand
 - Banks Pumping Plant 6,680 cfs
- Sacramento River San Joaquin River Delta
 - SWRCB Decision 1641
 - CVPIA 3406(b)(2)
- San Joaquin River
 - SWRCB Decision 1641
 - VAMP

CalSim II Modeling Assumptions

2030 Level of Development - Potential Near-Term Changes

TMDL and Water Quality Objective Actions

- Grasslands Bypass Project
- Dissolved oxygen
- Salt and boron
- Salinity
- VAMP Future
- Delta Conditions
 - SDIP (8,500 cfs at Banks)
 - Intertie
 - Barrier operation
 - Franks Track
- San Joaquin River Settlement
- Global Climate Change

San Joaquin River Model Background

- San Joaquin River Baseline conditions significantly influences the quantification of potential effects of recirculation
- San Joaquin River representation in CalSim II is acceptable for use in this analysis
 - Extensive review
 - Best available tool

CalSim II Representative Results

Average Water Quality of San Joaquin River at Vernalis by Year Type - Simulated

Average Flow of San Joaquin River at Vernalis by Year Type - Simulated

Preliminary Project and Water Supply Evaluation Metrics

Achieving Project Goals		
Component	Geographic Area	Criteria
EC	SJR Vernalis	Compliance with D1641, D1422
Flow	SJR Vernalis	Compliance with D1641, D1422
Reliance on New Melones	New Melones	Compliance with D1641, D1422 and IPO (see table below)
DO	SJR @ Stockton Ship Channel	6.0 mg/l Sept1 - October 31
Water levels in South Delta	South Delta	Change in Water Level

Water Supply		
Component	Geographic Area	Criteria
	Delta export area, Stanislaus	CVP Ag service contracor delvieries
CVP contractors deliveries	Delivery Area	CVP M&I contracor delvieries
		Merced River Changes in VAMP releases and storage
SJR tributary effects	Tributaries	Tuolumne River Changes in VAMP Releases and storage
		Changes in San Luis Reservoir storage
		Changes in San Luis low point
Storage level changes	SLR,Sac Basin	Changes in Shasta and Folsom Reservoirs

Illustrative metric for Releases from New Melones - Annual Avg. (1000's Ac-Ft.)

	SEWD /			Vernalis	Vernalis			Missed	Missed
Total OID &	CSJWCD	Instream	Dissolved	Water Quality	Flow	Total Goodwin	Release Above	Vernalis WQ	Vernalis Flow
SSJID	NM Water	Fish	Oxygen	Objective	Objective	Release to River	Minimum	Release	Release
562	49	288	12	19	3	447	126	1	14

Preliminary Water Supply Evaluation Metrics

Illustrative Metric – Water Quality Performance

Water Quality

- Fischer Delta Model (FDM)
- Source Fraction Mass Balance San Joaquin River Model
- Dissolved Oxygen Evaluation
- Baseline and Future Without Conditions
- Evaluation Criteria

FDM Model Description

- FDM models complex bay-estuary channel systems
- Long history of use for study of water management and operations, movement and dispersion of pollutants and salinity, water surface elevations within Delta, and effects of changes in hydrologic conditions
- Delta is represented by interconnected open water areas and one-dimensional channel segments

FDM Approach & Baseline

- CalSim II model results (monthly or split month) will be used as FDM input for:
 - Flow rates of major flows into Delta
 - Exports and diversions from Delta
 - Water quality (salinity) of San Joaquin River inflows
- Historical water quality data for other inflows
- FDM results presented as:
 - Salinity
 - Source water fingerprinting (fraction of water from major sources)
 - Other water quality parameters will be estimated from fingerprinting results
 - Channel water direction and velocity
 - Water surface elevations

Water Quality Future without Condition

- Grassland Bypass Project will comply with in-place TMDLs for Selenium
- Assume salt reductions concurrent with Selenium reductions
- Dilution Flow from San Joaquin River restoration action modeled for cumulative impacts analysis

Evaluation Criteria – Water Quality

Component	Geographic Area	Criteria
DO	SJR, DWSC	5 mg/L (warm) 7 mg/L (cold)
Selenium	SJR	5 ug/L
EC	SJR, X2, other Delta/key locations	0.7 and 1.0 mS/cm
Toxics	SJR	various
Bromide	Delta M&I diversions	50 ug/L
DOC	Delta M&I diversions	3.0 mg/L

Fisheries

Fisheries Technical Working Group

- Department of Fish and Game
- Department of Water Resources
- NOAA Fisheries
- US Fish and Wildlife Service
- Consultant Team

Periodic Meetings and Cross Review of Information

Baseline

- Information Sources on Existing Species
 - Bay Delta Assessment Team (BDAT)
 - Agency Personnel
 - Literature

Future without Project

- Modeling Assumptions
- Existing Species as of 2007

Evaluation Structure

- Geographic Areas
- Species, Lifestages, and Timing
- Habitat factors

Species

- Chinook salmon (all runs)
- Central Valley steelhead
- Delta smelt
- Splittail
- Green and white sturgeon
- American shad
- Striped bass
- POD considerations

Location, Lifestage, and Timing Summary Table

Habitat Factors

• Delta

- Delta Channel hydraulics
- Source water
- Entrainment/salvage
- San Joaquin River
 - Flow
 - Source water
 - Temperature
 - Dissolved oxygen concentrations
 - Salinity
 - Turbidity
 - Toxics

Criteria

• Develop criteria for various habitat factors based on:

- Literature values
- Discussion with agency personnel
- Availability of adequate models to simulate these parameters

Next Steps

- Please submit comments by February 26
- Public Scoping Meetings March 2007
- IAIR May 2007
- Stakeholder Workshop: Screening Alternatives Summer 2007

PLEASE NOTE

The Public Scoping meetings have been rescheduled for April 2007 Not as previously indicated above

Wrap-up

For Additional Information Contact

Mr. Maury Kruth Project Manager Bureau of Reclamation 2800 Cottage Way Sacramento CA 95825 916-978-5078 mkruth@mp.usbr.gov

Ms. Sam Cervantes Outreach Coordinator Bureau of Reclamation 2800 Cottage Way Sacramento CA 95825 916-978-5189 scervantes@mp.usbr.gov

www.usbr.gov/mp/dmcrecirc/index.html