

Weekly Assessment of CVP and SWP Delta Operations on ESA-listed Species

May 23, 2023

Executive Summary

Operational Conditions

See Weekly Fish and Water Operation Outlook document for May 23 – May 29 which includes the initial CVP and SWP operational intent and biological justification for the next seven days. Any recommended changes or alternatives to those operations made by either monitoring team is captured herein.

Winter-run Chinook Salmon

Loss of natural winter-run Chinook Salmon (by length at date, LAD) has not occurred in the past week at the State and Federal fish salvage facilities (WY 2023 total loss = 109.88 fish, as of 5/22/2023). Loss of natural winter-run Chinook Salmon at the Central Valley Project (CVP) and State Water Project (SWP) fish collection facilities may occur over the next week. 1-2% of juvenile natural winter-run Chinook Salmon from brood year (BY) 2022 are estimated to be present in the Delta. The Delta Cross Channel (DCC) gates closure for the season reduces exposure of winter-run Chinook Salmon juveniles that are present in the Sacramento River near the DCC gates into the interior Delta.

Spring-run Chinook salmon

Loss of natural spring-run Chinook Salmon (by length at date, LAD) has occurred in the past week at the State or Federal fish salvage facilities (WY 2023 total loss = 5715.35 fish as of 5/22/2023). Loss of spring-run Chinook salmon at the CVP and SWP fish collection facilities may occur over the next week. 10-25% of juvenile natural spring-run Chinook Salmon from brood year (BY) 2022 are estimated to be present in the Delta. The DCC gates closure for the season reduces exposure of spring-run Chinook Salmon juveniles that are present in the Sacramento River near the DCC gates into the interior Delta.

Central Valley Steelhead

Loss of natural California Central Valley (CCV) steelhead has occurred in the past week at the State and Federal fish salvage facilities (WY 2023 December 1 - March 31 total loss = 1015.16 fish, April 1 – June 15 total loss = 246.31 fish, as of 5/22/2023). Loss of Central Valley steelhead at the CVP and SWP fish collection facilities is likely to occur over the next week. 15-30% of juvenile natural CCV Steelhead from brood year (BY) 2022 are estimated to be present in the

Delta. DCC closure for the season reduces exposure to Central Valley steelhead juveniles that are potentially present in the Sacramento River near the DCC gates.

Green Sturgeon

Loss of green sturgeon has not occurred in the past week at the State and Federal fish salvage facilities (WY 2023 total loss = 0 fish, as of 5/22/2023). Loss of green sturgeon is unlikely to occur over the next week due to their rare presence in the South Delta.

Delta Smelt

Based on recent detection data and distribution patterns over the past decade, Delta Smelt are spawning and larval Delta Smelt are present. No adult Delta Smelt have been detected since 3/21/2023. Thirty-four larval Delta Smelt have been detected since 3/13/2023. No Delta Smelt have been detected in Salvage since 3/2/2023. The most recent Secchi depths in the South Delta were above 1m, thus COA 8.5.2 is no longer triggered. Due to positive QWEST and OMRI, overall risk for entrainment is low for all life stages of Delta Smelt throughout the Delta.

Delta Cross Channel Gates

The DCC gates were closed on 11/28/2022 to meet LTO Proposed Action and are expected to remain closed until May. DCC gates may only be opened to maintain water quality under D-1641 between November and January.

Monitoring Teams summary

There were no non-consensus issues to report from the Salmon Monitoring Team.

There were no non-consensus issues to report from the Smelt Monitoring Team.

Operational and Regulatory Conditions

See current Weekly Fish and Water Operation Outlook document.

Biology, Distribution, and Evaluation Winter-run Chinook salmon, Spring-run Chinook salmon, Central Valley Steelhead

Population Status

Winter-run Chinook Salmon

- Delta Life Stages:
 - Juveniles, Adults
- Brood Year 2022 Productivity:

- Natural winter-run Chinook salmon: Draft Juvenile production estimate (JPE) calculations have been established for brood year (BY) 2022 winter-run Chinook salmon. The final BY 2022 JPE is 49,924 natural origin juvenile winter run Chinook salmon.
- Mean cumulative weekly passage of winter-run Chinook salmon through 5/6/2023 at Red Bluff Diversion Dam (RBDD) for the last 20 years of passage data is 100.0% (one SD of 0.1%). By 5/6/2023, 240,059 winter-run Chinook salmon were estimated to have passed RBDD compared to the cumulative passage last year of 572,568 winter-run Chinook salmon.
- Hatchery winter-run Chinook salmon:
 - Approximately 432,458 Livingston Stone NFH brood year 2022 winter Chinook salmon were released at dusk on 1/26-1/27/2023 into the Sacramento River at John F. Reginato River Access boat ramp, Redding, CA. This is the first release of LSNFH brood year 2022 hatchery winter Chinook salmon comprising of approximately 58% of the total hatchery production for the Sacramento River supplementation program. The release group is 100% marked (adipose-fin clip and CWT) with an overall estimated average fork length of 85mm. There has been no loss so far this water year with this release group.
 - Approximately 299,866 Livingston Stone NFH brood year 2022 winter Chinook salmon were released at dusk on 3/1/2023 into the Sacramento River at John F. Reginato River Access boat ramp, Redding, CA. This is the final release for the Livingston Stone NFH brood year 2022 winter Chinook Salmon supplementation program. This release group 100% marked (with an adipose-fin clip and CWT) and has an overall estimated average fork length of 85 mm. There has been no loss so far this water year with this release group.
 - Approximately 97,134 Coleman NFH Complex brood year 2022 winter Chinook Salmon were released on March 17, 2023. The release took place on the North Fork Battle Creek at Wilson Hill Bridge near Manton, CA. This is the first release of the brood year 2022 Jumpstart winter Chinook Salmon, and the only release of fish reared at the Mount Lassen Trout Farm, a private aquaculture facility located on North Fork Battle Creek. This group is 100% marked (with an adipose-fin and a left pelvic-fin clip and CWT).
 - Approximately 77,416 Coleman NFH Complex brood year 2022 winter Chinook Salmon were released on April 24, 2023. The release took place on the North Fork Battle Creek at Wilson Hill Bridge near Manton, CA. This is the final release of the brood year 2022 Jumpstart winter Chinook Salmon. This group is 100% marked (with an adipose-fin and a left pelvic-

fin clip and CWT) and has an overall estimated average fork length of 85 mm.

Spring-run Chinook Salmon

- Delta Life Stages:
 - Young-of-year (YOY) and Yearlings
- Brood Year 2022 Productivity:
 - Natural spring-run Chinook salmon: No JPE has been established for spring-run Chinook salmon.
 - Hatchery spring-run Chinook salmon surrogates associated with the Proposed Action (PA 4.10.5.10.2 Additional Real-Time OMR Restrictions and Performance Objectives):
 - Approximately 71,057 late-fall Chinook salmon from Coleman National Fish Hatchery were released at Battle Creek on 12/5/2022. This group is 100% marked with adipose-fin clip and CWT and have an estimated average fork length of 145mm. This is the first spring-run Chinook salmon surrogates release group associated with the Proposed Action. There has been no loss this water year of fish associated with the first surrogate release group.
 - Approximately 66,735 late-fall Chinook salmon from Coleman National Fish Hatchery were released at Battle Creek on 12/23/2022. This group is 100% marked with adipose-fin clip and CWT and have an estimated average fork length of 145mm.
 - Approximately 60,712 Coleman NFH brood year 2022 late-fall Chinook Salmon on January 13, 2023 into Battle Creek at Coleman NFH. This group is 100% marked (with an adipose-fin clip and CWT) and has an overall estimated average fork length of 145 mm.
 - There has been loss this water year of fish associated with the first, second, and third surrogate release groups.
 - The agencies in the SaMT discussed the thiamine vitamin deficiency that was observed in winter run Chinook salmon broodstock at the Livingston Stone National Fish Hatchery (LSNFH) in BY 2022. Last year the thiamine deficiency appeared to negatively affect survival of juvenile fish as they migrate downstream towards the Delta. The thiamine deficiency issue is also likely impacting spring-run Chinook salmon.

Central Valley Steelhead

- Delta Life Stages:
 - Spawning Adults, Kelts, Juveniles
- Brood Year 2022 Productivity:
 - Spawner abundance: There is limited information about the adult steelhead population. It is estimated to be small, contributing to the limited productivity of the population.
 - Natural steelhead: No JPE has been established for steelhead. Data are limited.
 - Hatchery steelhead: Reclamation's Proposed Action has no hatchery steelhead triggers.

Distribution

Winter-run Chinook Salmon

Current Distribution:

- For Winter-run Chinook Salmon observations reported to SaMT since previous meeting, see Table 1.
- For SaMT distribution estimates, see Table 2.
- There is uncertainty in the identification of some untagged salmonids potentially due to either tag loss or poor quality adipose clipping from hatchery releases made in the South Delta. Lower rates of tagging success were confirmed for by hatchery staff for some releases. Confirmation of origin of these fish will be through genetic identification.
- For fish observed in salvage and genetically analyzed through 4/25/2023, one has been genetically identified as Winter-run Chinook Salmon (see attachment A). The single winter-run LAD Chinook Salmon observed at the CVP facility on 2/23/2023 was genetically identified as a winter-run for a loss of 2.88. One winter-run LAD was observed at the CVP on 4/25/2023 and was genetically assigned as a fall run.

Historic Trends

- For historical winter-run Chinook salmon trends in salvage, see Table 3.
- Loss of natural winter-run Chinook salmon at the CVP and SWP fish collection facilities may occur over the next week based on life history and detections in real-time monitoring locations in the Delta. However, if historic trends in salvage were to continue, winter-run Chinook salmon loss is expected to decrease over the next week.

Forecasted Distribution within Central Valley and Delta regions

- Movement of winter-run Chinook salmon juveniles into the lower reaches of the Sacramento River and upper Delta may continue over the next week.
- The STARS model projects route-specific proportion of entrainment, survival, and travel times (Table 5). This model does not estimate entrainment into the lower Sacramento River sloughs (i.e., Three-Mile Slough).
- The DCC gates were closed 11/28/22 and are expected to remain closed due to high flows in the system.

Spring-run Chinook salmon

Current Distribution

- For Spring-run Chinook salmon observations reported to SaMT since previous meeting, see Table 1.
- For SaMT distribution estimates, see Table 2.

Historical Trends

• For historical spring-run Chinook salmon trends in salvage, see Table 3. If historic trends in salvage were to continue YOY spring-run Chinook salmon loss is unlikely to increase over the next week.

Forecasted Distribution within Central Valley and Delta regions

• Yearling spring-run Chinook are thought to be migrating through the Delta.

Central Valley Steelhead

Current Distribution

- For CCV Steelhead observations reported to SaMT since previous meeting, see Table 1.
- For SaMT distribution estimates, see Table 2.

Historical Trends

• For historical CCV steelhead trends in salvage, see Table 2. If historic trends in salvage were to continue, juvenile CCV steelhead loss may occur over the next week.

Forecasted Distribution within Central Valley and Delta regions

- The entrainment tool estimates of CCV steelhead loss to be moderate (Table 6, Fig. 1).
- Closure of the DCC gates for the season will reduce exposure and possible entrainment of juvenile CCV steelhead from the Sacramento River into the interior Delta via the DCC gates.

	Reporting	SR	WR	LFR	Steelhead	Green
Locations	Period	Chinook	Chinook	Chinook	(Wild)	Sturgeon
GCID RST	N/A	N/A	N/A	N/A	N/A	N/A
Butte Creek RST	5/13-5/21	20	0	0	1	0
Tisdale RST	5/13-5/21	105	0	0	2	0
Knights Landing RST	5/15-5/21	0	0	0	0	0
Lower Sacramento RST	5/8-5/13	0	0	0	0	0
Beach Seines	5/14-5/20	0	0	0	0	0
Sac. Trawl	5/14-5/20	2	0	0	0	0
Chipps Island	5/14-5/20	18	0	0	0	0
Midwater Trawl						
Mossdale Kodiak	5/14-5/20	N/A	N/A	N/A	N/A	N/A
Trawl						
EDSM	5/14-5/20	0	0	0	0	0
Feather River	5/12-5/18	0	0	0	0	0
Herringer RST						
Feather River Eye Side	5/15-5/18	0	0	0	1	0
RST						
Lower Feather River	5/15-5/22	0	0	0	0	0

Table 1. Fish observation reported since the previous SaMT meeting. N/As represent no data reported. See Operations Outlook for notes on interruptions in any surveys.

Table 2. Salmonid distribution estimates

Location	Yet to Enter Delta (%)	In the Delta (%)	Exited Delta past Chipps Island (%)
Young-of-year (YOY) winter-run Chinook salmon	Current: 0% Last Week: 0-1%	Current: 1-2% Last Week: 1-3%	Current: 98-99% Last Week: 97-98%
YOY spring-run Chinook	Current: 5-10%	Current: 10-25 %	Current: 70-80%
salmon	Last Week: 5-10%	Last Week: 15-30%	Last Week: 65-75%
YOY hatchery winter-run	Current: 0%	Current: 0%	Current: 100%
Chinook salmon	Last Week: 0%	Last Week: 0%	Last Week: 100%
Natural origin steelhead	Current: 5-10%	Current: 15-30%	Current: 65-75%
	Last Week: 5-10%	Last Week: 20-35%	Last Week: 60-70%

Species	Red Bluff Diversion Dam	Tisdale Rst	Knights Landing Rst	SacTrawl Sherwood Catch Index	Chipps Island Trawl Catch Index	Salvage
Chinook, Winter-run, Unclipped	100.0%(100. 0%,100.0%) BY: 2013 - 2021	100.0%(100. 0%,100.0%) BY: 2013 - 2021	100.0%(100. 0%,100.0%) BY: 2013 - 2021	100.0%(100. 0%,100.0%) BY: 2013 - 2021	100.0%(100.0 %,100.0%) BY: 2013 - 2021	100.0%(1 00.0%,10 0.0%) WY: 2013 - 2022
Chinook, Spring-run, Unclipped	99.7%(99.4% ,100.0%) BY: 2013 - 2021	100.0%(100. 0%,100.0%) BY: 2013 - 2021	100.0%(100. 0%,100.0%) BY: 2013 - 2021	100.0%(99.9 %,100.0%) BY: 2013 - 2021	99.6%(99.2%, 100.0%) BY: 2013 - 2021	97.7%(94. 3%,101.1 %) WY: 2013 - 2022
Steelhead, Unclipped (January- December)	31.2%(17.6% ,44.7%) BY: 2013 - 2022	81.7%(59.2% ,104.2%) BY: 2014 - 2022	81.4%(62.1% ,100.6%) BY: 2014 - 2022	88.7%(77.0% ,100.3%) BY: 2013 - 2022	94.3%(90.0%, 98.6%) BY: 2013 - 2022	N/A
Steelhead, Unclipped (December- March)	N/A	N/A	N/A	N/A	N/A	100.0%(1 00.0%,10 0.0%) WY: 2014 - 2023
Steelhead, Unclipped (April-June)	N/A	N/A	N/A	N/A	N/A	88.9%(78. 7%,99.1%) WY: 2013 - 2022

Table 3. Historic migration and salvage patterns. Last updated 5/22/2023.

Table 4. Mean daily flow and percent change (Wilkins Slough, Deer Creek, Mill Creek; cfs from CDEC) and temperature and percent change (Knights Landing; °F from RST).

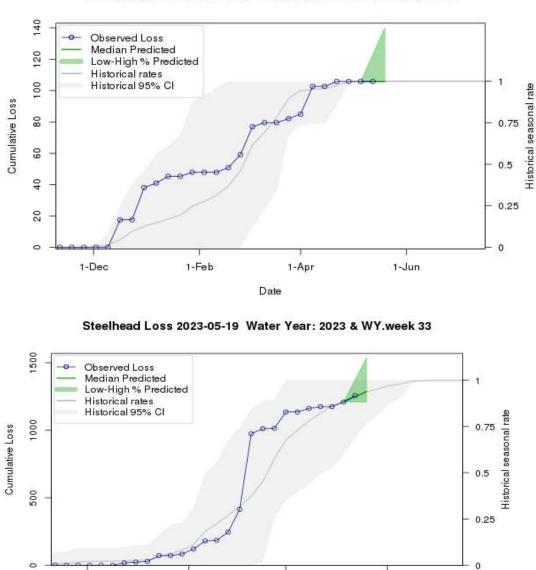
	(MLM): mean daily	(MLM):	Mill Creek (MLM):	daily flow	Creek (DCV):	Deer Creek (DCV):	mean daily flow	Knights Landing RST: water	Alert
Date	(cfs)	change		(cfs)	change		(cfs)	temp. (f)	Triggered
5/21/2023	1,074.7	-4.3%	Flow>95cf s	893.3	-3.8%	Flow>95 cfs	14,147.3	N/A	N/A
5/20/2023	1,123.2	-0.1%	Flow>95cf s	928.4	-1.3%	Flow>95 cfs	14,098.4	N/A	N/A
5/19/2023	1,124.5	3.5%	Flow>95cf s	940.2	-0.4%	Flow>95 cfs	14,101.1	N/A	N/A
5/18/2023	1,086.0	2.5%	Flow>95cf s	944.2	-0.4%	Flow>95 cfs	14,272.5	N/A	N/A
5/17/2023	1,059.7	-2.7%	Flow>95cf s	948.1	-3.3%	Flow>95 cfs	14,302.2	N/A	N/A
5/16/2023	1,089.5	4.7%	Flow>95cf s	980.7	2.2%	Flow>95 cfs	14,122.8	N/A	N/A

/ill			Deer			Wilkins		
creek	Mill		Creek	Deer		Slough		
MLM):	Creek		(DCV):	Creek		(WLK):	Knights	
nean	(MLM):		mean	(DCV):	Deer	mean	Landing	
aily	flow	Mill Creek	daily	flow	Creek	daily	RST:	
low	percent	(MLM):	flow	percent	(DCV):	flow	water	Alert
cfs)	change	Alert	(cfs)	change	Alert	(cfs)	temp. (f)	Triggered
,040.5	7.5%	Flow>95cf	959.8	4.6%	Flow>95	13,879.9	49.8	WLK>7500cfs
		S			cfs			and
								KNL<56.3F
	reek /ILM): iean aily ow ifs)	reek Mill MLM):Creek lean (MLM): aily flow ow percent fs) change	reek Mill MLM):Creek lean (MLM): aily flow Mill Creek ow percent (MLM): fs) change Alert	reek Mill Creek MLM): Creek (DCV): hean (MLM): mean aily flow Mill Creek daily ow percent (MLM): flow fs) change Alert (cfs)	reekMillCreekDeerMLM):Creek(DCV):Creekiean(MLM):mean(DCV):ailyflowMill Creekdailyflowpercent(MLM):flowowpercent(MLM):flowfs)changeAlert(cfs)040.57.5%Flow>95cf959.8	reek Mill Creek Deer MLM): Creek (DCV): Creek Mean (MLM): mean (DCV): Deer aily flow Mill Creek daily flow Creek ow percent (MLM): flow percent (DCV): fs) change Alert (cfs) change Alert	reekMillCreekDeerSloughMLM):Creek(DCV):Creek(WLK):nean(MLM):mean(DCV):DeermeanailyflowMill CreekdailyflowCreekdailyowpercent(MLM):flowflowCreekdailyfsichangeAlert(cfs)changeAlert(cfs)040.57.5%Flow>95cf959.84.6%Flow>9513,879.9	reekMillCreekDeerSloughMLM):Creek(DCV):Creek(WLK):Knightsnean(MLM):mean(DCV):DeermeanLandingailyflowMill CreekdailyflowCreekdailyRST:owpercent(MLM):flowpercent(DCV):flowwaterfs)changeAlert(cfs)changeAlert(cfs)temp. (f)040.57.5%Flow>95cf959.84.6%Flow>9513,879.949.8

Table 5. STARS model simulations for route-specific entrainment, travel times, and survival. Travel time is calculated in days.

Stock	Date	Route	Median Travel Time	Survival	Routing Probability
Winter Chinook	2023-05-21	Overall	4.65	0.27	N/A
Winter Chinook	2023-05-21	Sacramento River	4.26	0.29	0.66
Winter Chinook	2023-05-21	Yolo Bypass	9.37	0.57	0.00
Winter Chinook	2023-05-21	Sutter Slough	4.89	0.25	0.13
Winter Chinook	2023-05-21	Steamboat Slough	4.25	0.27	0.10
Winter Chinook	2023-05-21	Interior Delta	7.06	0.21	0.11
Late-fall Chinook	2023-05-21	Overall	4.38	0.64	N/A
Late-fall Chinook	2023-05-21	Delta Cross Channel	N/A	N/A	0.00
Late-fall Chinook	2023-05-21	Georgiana Slough	6.87	0.36	0.18
Late-fall Chinook	2023-05-21	Sacramento River	3.67	0.71	0.47
Late-fall Chinook	2023-05-21	Sutter and Steamboat Slough	4.37	0.70	0.34

The entrainment tool estimates a median and maximum loss of winter-run Chinook Salmon and juvenile CCV Steelhead each week (Table 6a).


Table 6a-b. WY 2023 loss and salvage predictor data: Environmental details, current and forecast. Model results from 5/22/2023.

a) WY 2023 loss and salvage predictor data: Predicted weekly loss of winter-run Chinook salmon and steelhead at CVP and SWP facilities.

Parameter	Modeled Current Week	Modeled Next Week
Predicted Steelhead, Median %	39	39
Predicted Steelhead, High %	165	165
Predicted Chinook Winter Run, Median %	0	0
Predicted Chinook Winter Run, High %	17	17

b) Environmental details, current and forecast.

Parameter	Data	Forecast
Temperature (Mallard Island, C)	18.1	18.1
Precipitation (5-d running sum, inches)	0	0
Old and Middle River Flows (cfs)	6866	6866
Sacramento River Flow (Freeport, cfs)	44398	44398
DCC Gates	closed	closed
San Joaquin River Flow (Vernalis, cfs)	24763	24763
Export	4543	4543

Winter Run Loss 2023-05-19 Water Year: 2023 & WY.week 33

Figure 1. Predicted weekly loss of winter-run Chinook salmon at the CVP and SWP facilities based on historical loss

1-Apr

Date

1-Jun

1-Dec

1-Feb

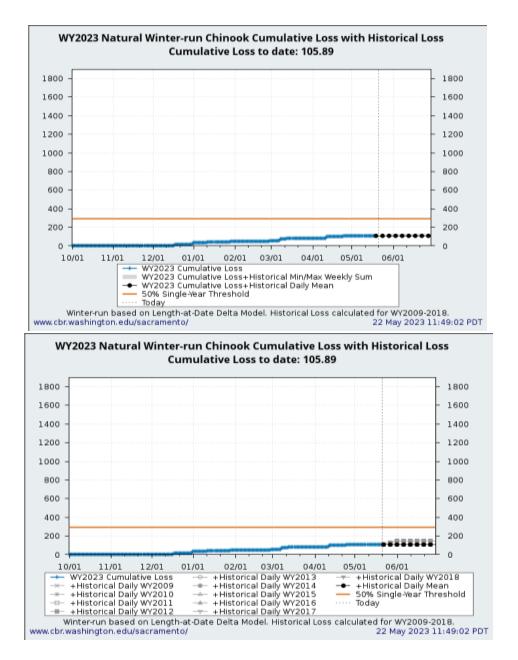


Figure 2. Predicted weekly loss of steelhead and winter-run Chinook salmon at the CVP and SWP facilities

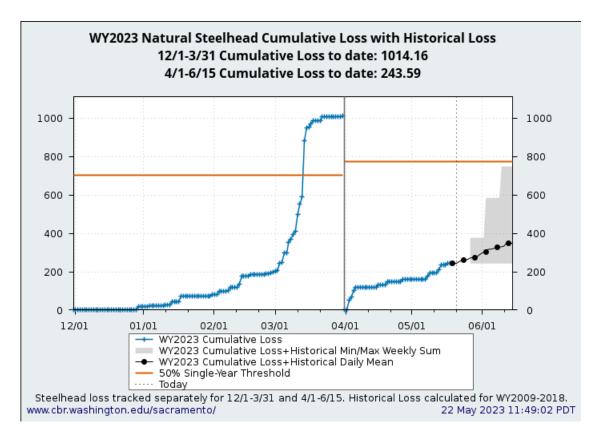


Figure 3. Cumulative natural steelhead loss for the year (blue) and 2009 – 2018 historic cumulative loss (gray, different symbols). Historic daily mean plotted in black circles

Evaluation

1. After January 1, are more than 5% of juveniles from one or more salmonid species present in the Delta?

Greater than 5% of all juvenile salmonids are present in the Delta.

2. Does the operational outlook's ranges impact fish movement and change the potential distribution of fish?

Potential effects within the 7 days (near-term) in the operations outlook.

OMR flow is expected to remain at or more positive than -5,000 cfs this upcoming week. OMR flows more positive than -5,000 cfs are hypothesized to have minimal impact on movement and distribution of salmonids in the South Delta.

Potential effects longer than the 7 days (longer-term) in the operations outlook.

Not applicable, see response above.

3. What is the likelihood of increased loss exceeding the next annual loss threshold (50%, 75% or 90% of threshold) resulting in OMR management actions based on population distribution, abundance, and behavior of fish in the Delta?

Winter-run Chinook salmon

Total juvenile natural winter-run Chinook salmon (LAD) loss is 109.88 fish (as of 5/22/2023). Loss of juvenile winter-run LAD Chinook salmon has not occurred in the past week at the CVP and SWP fish salvage facilities. Final JPE calculations have been established for brood year (BY) 2022 winter-run Chinook salmon. The agencies in the SaMT assessed the likelihood of exceeding the next annual loss threshold and believe that loss occurring in the next week is unlikely to lead to exceedance of the 50% single-year loss threshold (see Figures 1 and 2). Based on historical data, >99% of salvage for winter-run LAD Chinook salmon should have occurred at this time of the year (Table 3).

Spring-run Chinook salmon

Total natural young of year spring-run Chinook salmon (LAD) loss is 5715.35 fish (as of 5/22/2023). Loss of natural juvenile spring-run LAD Chinook salmon has occurred in the past week at the CVP and SWP fish salvage facilities. 9 genetically confirmed older spring-run have been caught in salvage this WY with a total loss of 62.79. Loss for yearling spring-run surrogate has not exceeded the 0.5 % threshold for any release group (refer to Ops Outlook Table 2). The agencies in the SaMT assessed the likelihood of exceeding annual loss threshold and believe that loss occurring in the next week is unlikely to lead to exceeding the hatchery spring-run surrogate threshold.

Central Valley Steelhead

Total natural juvenile steelhead loss (April 1 through June 15) is 246.31 fish (as of 5/22/2023). Loss of natural juvenile steelhead has not occurred in the past week at the CVP and SWP fish salvage facilities. See table 6a for predicted weekly loss of steelhead at the CVP and SWP facilities. The agencies in the SaMT assessed the likelihood of exceeding the 50% annual loss threshold and believe that loss occurring in the next week is unlikely to lead to the exceedance of 50% annual loss threshold (see Figures 1 and 3).

Total natural juvenile steelhead loss for the December 1 through March 31 period was 1015.16 fish. The December-March 50% annual loss threshold (707) was exceeded on 3/15/2023. See table 6a for predicted weekly loss of steelhead at the CVP and SWP facilities. Information is limited on steelhead population, so it is not possible to assess the effects on steelhead at a population level.

4. If an annual loss threshold has been exceeded, do continued OMR restrictions benefit fish movement and survival based on real-time information?

Winter-run Chinook salmon

The annual loss threshold for winter-run Chinook salmon has not been exceeded in WY 2023.

Spring-run Chinook salmon

The annual loss threshold for spring-run Chinook salmon has not been exceeded in WY 2023.

Central Valley Steelhead

The April 1 – June 15 50% annual loss threshold for steelhead has not been exceeded in WY 2023.

The December 1 – March 31 50% annual loss threshold for steelhead (December 1 – March 31) was exceeded in WY 2023 and the 75% annual loss threshold was nearly exceeded; however, the December-March season for steelhead is over.

5. If OMR is more negative than -5,000 cfs, are there changes in spawning, rearing, foraging, sheltering, or migration behavior beyond those anticipated to occur under OMR management at -5,000 cfs?

Expected OMR flows are 2,500 to 11 cfs for the next week. Under OMR flows more negative than -5,000 cfs the SaMT expects impacts to rearing, foraging, sheltering, or migration of salmonids present in the south Delta. Salmonid presence in the south Delta is difficult to assess because of limited observations and there is uncertainty in how much of the population might be impacted.

Biology Distribution and Evaluation of Green Sturgeon

POPULATION STATUS

- Delta Life Stages:
 - Adults and Juveniles

Distribution

Current Distribution

• Adults: Most abundant during spring spawning migration period of March through May, and post spawning out-migration periods May through June; October through January

depending on first winter storm event resulting in significant Sacramento River flow increases. Adult presence year-round to a lesser extent mainly in San Pablo Bay.

• Juveniles: Age-1 through Age-3 juveniles present year-round and widely distributed. Juveniles tagged with acoustic tags in the main channel Sacramento River near Sherman Island detected in the Sacramento River as far upstream as the Cache Slough complex, in the San Joaquin River at the Antioch Bridge, in Threemile, Horseshoe Bend, and Montezuma Sloughs. Seasonal abundance at the primary sampling site (near Sherman Island) appears to be highest during summer in based on capture and telemetry data. Residence time at the primary sampling site for individual fish ranges from one day to over one year but telemetry data show outmigration from the primary sampling site to the Pacific Ocean ranges from 27 to 552 days. Recent capture data shows diurnal depth preference in the main channel of the Sacramento River. No recent documentation of shallow water habitat presence or foraging but likely.

Historical Trends

• Juvenile and adult green sturgeon are historically present in the San Joaquin and Sacramento rivers and Delta

Forecasted Distribution within Central Valley and Delta regions

• Juvenile and adult green sturgeon are present in the San Joaquin and Sacramento rivers and Delta during the next week.

Evaluation

1. Is there likely to be salvage that may exceed the annual loss limit?

Green sturgeon salvage is 0 fish (as of 5/23/2023). The agencies in the SaMT assessed the likelihood of salvage occurring in the next week is unlikely to occur.

Biology, Distribution, and Evaluation of Delta Smelt

Population Status

- Delta Smelt Life Stages:
 - Adults, larvae, juveniles
- Brood Year 2022:
- Abundance estimate:
 - The most recent abundance estimate for postlarval/juvenile Delta Smelt is from May 12, 2023, and was 599,217 (95% CI: 64,737 to 2,380,828).
- Biological Conditions:

• Delta Smelt are spawning and larval Delta Smelt are present. Adult Delta Smelt have not been detected since 3/21/2023. Larval Delta Smelt are expected to be present in the Lower and Upper Sacramento, Suisun Marsh, Suisun Bay, Cache Slough/Liberty Island, and Sacramento Deep Water Shipping Channel based on the most recent survey detections. The Smelt Monitoring Team discussed the most recent monitoring data (Table 4) and considered published literature and professional judgement on the historical trends in regional distribution.

Distribution

Current Distribution

- Real time detection data are currently limited to EDSM, Chipps Island Trawl and 20mm survey; Bay Study provides data as available.
- No adult Delta Smelt have been detected since 3/21/2023.
- Thirty-four confirmed larval Delta Smelt have been detected by surveys in Suisun Bay, Suisun Marsh, the Lower and Upper Sacramento River, the Lower San Joaquin River Cache Slough/Liberty Island, and the Sacramento Deep Water Shipping Channel between 3/13/2023-5/8/2023.
- No Delta Smelt have been detected in salvage at the SWP and CVP since 3/2/2023. Cumulative seasonal salvage is 52.
- Experimental release of hatchery Delta Smelt occurred at Rio Vista on 11/30/2022, and 1/18/2023-1/19/2023, and in the Deep Water Shipping Channel on 1/25/2023-1/26/2023. Forty-two fish from the experimental release have been caught or salvaged since 12/14/2022.
- Larval sampling at the Skinner Fish Facility (SFF) and the Tracy Fish Collection Facility (TFCF) was initiated by the SMT at 0400 on March 1.
- COA 8.5.2: Larvae are present, and the average 12-station Secchi depth is 107 cm.

Table 7. Summary of newly reported detections of Delta Smelt by Region and Salvage Facilities since the last assessment. Regions are those defined by EDSM sampling. Delta Smelt >58mm FL are considered adults. Subadult fish are considered by the SMT to be fish from the previous year's cohort based on size and timing of collection. Young of year are considered juveniles and larvae.

Life Stage	North	South	West	Far West	Salvage
Adult	0	0	0	0	0
Subadult	0	0	0	0	0
Larvae/Juvenile	0	0	0	0	0

Table 8. Summary of recent Delta Smelt detections reported since last assessment and the total detections for the current water year. Notes reflect latest information on reported detections or completion of survey for the water year and include both larval and adult detections. Total Fish counts do not distinguish between hatchery origin and wild Delta Smelt. Table indicates new detections and previously reported detections that have undergone preliminary ID, QA/QC, and genetic confirmation. Numbers are updated as QA/QC and genetic confirmation become available.

Sampling Method	Frequency	New Detections	Prelim- inary Detecti ons	QA/QC Detecti ons	Genetically Confirmed to Date	Total WY2023	Notes
EDSM	Weekly	0	N/A	39	1	40	Phase 2 began 4/4/23 Phase 1 ended 4/28/23
SKT	Monthly	0	N/A	4	N/A	4	Complete
SLS	Biweekly	0	0	4	N/A	4	Complete
20-mm	Biweekly	0	N/A	18	N/A	18	Ongoing
Summer Townet	Biweekly	0	N/A	N/A	N/A	0	Begins: June
Bay Study	Monthly	0	N/A	N/A	N/A	0	Ongoing
FMWT	Monthly	0	N/A	N/A	N/A	0	Complete
Chipps Island Trawl	Weekly	0	N/A	2	N/A	2	Ongoing
FCCL Brood Stock Collections	Weekly	0	N/A	2	N/A	2	Ongoing
LEPS	As available	0	N/A	N/A	N/A	0	Complete
FRP	Daily	0	N/A	N/A	N/A	0	Ongoing

Sampling Method Tracy Fish	Frequency Daily	New Detections	Prelim- inary Detecti ons N/A	QA/QC Detecti ons 9	Genetically Confirmed to Date N/A	Total WY2023 9	Notes Ongoing
Collection Facility (CVP)							
Skinner Fish Facility (SWP)	Daily	0	N/A	4	N/A	4	Ongoing
Total	N/A	N/A	N/A	N/A	N/A	83	Sum of all Delta Smelt observed during the OMR Managem ent Season

Cultured Delta Smelt Experimental Releases

- Experimental releases included:
 - 13,140 fish on November 30, 2022,
 - 17,570 fish on January 18-19, 2023, both at Rio Vista,
 - 12,995 in the Sacramento Deep Water Ship Channel.
- Experimental releases are complete.
- Details of Delta Smelt releases are available at: <u>SacPAS: Central Valley Prediction &</u> <u>Assessment of Salmon</u>

Table 9. Weekly summary of the origin of Delta Smelt. These identifications are considered tentative and additional genetic testing will confirm the identity of individuals. Individuals with no tags are provided alive to the FCCL as potential additions to the FCCL Broodstock.

Date	Survey	Stratum/Station	Total Caught	Ad. Clipped	VIE	No Tag
Date	Survey	Stratum/Station	Caught	Clipped	VIE	NO TAY
N/A	N/A	N/A	N/A	N/A	N/A	N/A

Historical Trends

- Upstream migration for Delta Smelt occurs between September and December and in response to "first flush" conditions (Sommer et al. 2011, Grimaldo et al. 2009). Migration typically ranges one to four weeks after flow and turbidity increases, based on salvage data (Sommer et al. 2011).
- Historically, detections of ripe Delta Smelt began in January and peaked in February and March and the majority of Delta Smelt spawning occurs within a temperature range of 9-18°C (Figure 4; Table 12; Damon et al. 2016).
- Based on historical monitoring data from the past few years (https://github.com/Delta-Stewardship-Council/deltafish), first detection of larvae in the Central and South Delta has typically occurred by mid to late March (<u>Columbia Basin Research Sacramento</u>).
- Salvage data as presented on SacPas indicates that adult Delta Smelt salvage in recent years has reached the 50th percentile at the end of February beginning of March.
- Historically, the highest peak in salvage is in May and the second highest is in June (Grimaldo et al 2009).

Forecasted Distribution within Central Valley and Delta regions

- Predicting the distribution of Delta Smelt is currently difficult because detection data is limited to a few wild individuals and historic patterns may not be representative of the low population levels.
- The SMT uses turbidity as a surrogate for Delta Smelt presence and in making assessments of the likelihood of entrainment for larval Delta Smelt after spawning begins.
- The potential of experimentally released Delta Smelt to distribute from their release site is unknown at this time and SMT cannot predict their distribution beyond the original release site and subsequent recaptures. There is a high degree of uncertainty regarding the response of cultured fish to environmental cues typically applied to wild Delta Smelt.

Abiotic Conditions

Turbidity

- Sunny, clear and cooler. Winds at Stockton are forecast to be WNW ranging 5-11 mph. In Antioch, winds are forecast to be W and NW today changing to SW ranging 9-18 mph with gusts up to 23 mph.
- Turbidity is below 12 FNU at OBI and at other stations in the central and south Delta. Turbidity is expected to remain stable over the next week.

Table 10. Relevant Environmental Factors to the current management actions for Delta Smelt.

Date Reported	SJJ 3-day Average Water temperature (°C)	20 mm 5 Avg Secchi Depth (m)	Water temperature Clifton Court (°C)
5/22/2023	20.2	1.07*	20.8

*Data from 5/8/2023-5/9/2023

X2 Conditions

- As of 5/22/2023, X2 is estimated to be slightly downstream of Martinez (< 56 km) and may shift downstream towards Martinez later this week (~56 km).
- When X2 is above 81 km, the SMT uses the X2_EC_Graph.xlxs tool to estimate the position of X2 for both the Sacramento and San Joaquin Rivers and assumes the average of the two is representative of an approximate X2 position.

Other Environmental Conditions

- The Fish and Water Operation Outlook OMR Index values are expected to range between +2,500 to +6,000 cfs this week.
- QWEST was estimated at 26,000 cfs on 5/22/2023 and is expected to remain stable this week.
- Water temperature at Rio Vista was 17.4°C and at Antioch was 20.3°C on 5/15/2023.
- Real time tracking of environmental conditions, relevant thresholds and Delta Smelt catch data are updated daily at: <u>Columbia Basin Research Delta Smelt</u>.

Evaluation

USBR and DWR Proposed Operations:

- 5/23/2023-5/30/2023:
- COA 8.17 of the ITP, Export Curtailments for Spring Outflow, is in effect, with a 4:1 Vernalis flow/export ratio, due to a Wet Year classification. However, because

the three-day averaged Delta Outflow is greater than 44,500 cfs, the export restriction is "off-ramped".

- The Bay/Delta is in "excess" conditions and no ESA biological protections are "controlling" water project operations.
- Interim Operations have been adopted. USBR will be adhering to ITP Protections for Larval & Juvenile Delta Smelt (COA 8.5.2) or the PA's Larval and Juvenile Smelt Protections, whichever is more protective.

Evaluation

1. Between December 1 and January 31, has any first flush condition been exceeded?

First flush conditions based on running 3-day average flow and running 3-day average turbidity at Freeport were met on December 31, 2022, triggering IEWPP regulations. The CVP and SWP reduced exports beginning on 1/3/2023 through 1/16/2023.

2. Do DSM have a high risk of migration and dispersal into areas at high risk of future entrainment? (December 1- January 31)

This is no longer applicable.

3. Has a spent female been collected?

A spent female has not been collected, but two cultured ripe females were caught by SKT on 2/8/2023. Some of the fish released in January were observed to be ripe and releasing eggs upon release. This could be due to warmer water temperatures at culture facilities, or due to stress from releases.

4. If OMR of -2000 cfs does not reduce OBI turbidity below 12NTU/FNU, what OMR target is deemed protective between -2000 and -5000 cfs?

This question is not applicable as the turbidity bridge avoidance action was offramped starting 2/9/2023 with the capture of two ripe, marked female Delta Smelt.

5. If OBI is 12 NTU/FNU, what do other station locations show?

This question is not applicable as the action was off-ramped starting 2/9/2023 with the capture of two ripe, marked female Delta Smelt.

6. If OBI is 12 NTU/FNU, is a turbidity bridge avoidance action not warranted? What is the supporting information?

This question is not applicable as the action was off-ramped starting 2/9/2023 with the capture of two ripe, marked female Delta Smelt.

7. After March 15 and if QWEST is negative, are larval or juvenile DSM within the entrainment zone of the CVP and SWP pumps based on surveys?

QWEST is positive and anticipated to remain positive through the week. Thirty-four larval DSM were detected since 3/13/2023, all outside of the entrainment zone.

8. Based on real-time spatial distribution of Delta Smelt and currently available turbidity information, should OMR be managed to no more negative than -3,500?

Turbidity and temperature conditions: On 5/8/2023-5/9/2023, 20 mm Survey #5 mean Secchi depth at the South Delta stations was above 1m (1.07m). The 3-day mean water temperature at Jersey Point exceeded 12° C on 3/18/23.

Real-time biological conditions: All confirmed larval DSM have been detected outside of the entrainment zone.

Current OMRI management: No, Secchi depth is above 1m, and QWEST and OMRI are highly positive due to high flows; thus larval and juvenile entrainment protections are not triggered.

9. What do hydrodynamic models, informed by EDSM or other relevant data, suggest the estimated percentage of larval and juvenile DSM that could be entrained may be?

OMRI values are anticipated to be between +2,500 cfs and +6,000 cfs throughout the week. The majority of spawning typically occurs between 11-14°C but can continue up to 18°C (Damon et al. 2016; Attachment A, Figure 4). Daily and 3-day average water temperatures are greater than 14°C, and at some stations, greater than 18°C. Based on detections in salvage earlier this season, adult fish were in the South Delta and may have spawned there. Spawning is ongoing, and no larvae have been detected inside of the entrainment zone. The likelihood of larval DSM entrainment is low, given positive OMRI and QWEST values.

Delta Smelt References

Damon, L. J., S. B. Slater, R. D. Baxter, and R. W. Fujimura. 2016. Fecundity and reproductive potential of wild female Delta smelt in the upper San Francisco Estuary, California. California Fish and Game 102(4):188–210.

- Hobbs, J. A., Lewis, L. S., Willmes, M., Denney, C., & Bush, E. (2019). Complex life histories discovered in a critically endangered fish. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-52273-8
- Grimaldo, L. F., T. Sommer, N. Van Ark, G. Jones, E. Holland, P. B. Moyle, B. Herbold & P. Smith (2009) Factors Affecting Fish Entrainment into Massive Water Diversions in a Tidal Freshwater Estuary: Can Fish Losses be Managed? North American Journal of Fisheries Management, 29:5, 1253-1270, DOI: 10.1577/M08-062.1
- Gross, E. S. (2021). Modeling Delta Smelt Distribution for Hypothesized Swimming Behaviors. San Francisco Estuary and Watershed Science, 19(1).
- Kimmerer, W. J. (2008). Losses of Sacramento River Chinook Salmon and Delta Smelt to Entrainment in Water Diversions in the Sacramento-San Joaquin Delta. San Francisco Estuary and Watershed Science, 6(2).
- Polansky, L., Newman, K.B., Nobriga, M.L. et al. Spatiotemporal Models of an Estuarine Fish Species to Identify Patterns and Factors Impacting Their Distribution and Abundance. Estuaries and Coasts 41, 572–581 (2018). https://doi.org/10.1007/s12237-017-0277-3
- Smith, W. E., Polansky, L., and M. L Nobriga. 2021. Disentangling risks to an endangered fish: using a state-space life cycle model to separate natural mortality from anthropogenic losses. Canadian Journal of Fisheries and Aquatic Sciences, 78: 1008-1029.
- Sommer, T., F. Mejia, M. Nobriga, and L. Grimaldo. 2011. The Spawning Migration of Delta Smelt in the Upper San Francisco Estuary. San Francisco Estuary and Watershed Science 9(2).

Attachment A.

Table 11. Salmonid Genetic testing results for WY 2023 as of this assessment. Genetic identification of salmon is not used in calculating loss.

							Pos		Pos			
	Sample	Fork					Prob		Prob			Original
ID	Date	Length	Julian	ots28	sexid	Assignment	1	Group	2	Model	Facility	ID
C22012	12/17/20	185	171	late	male	Non-winter	1.000	Spring	1.000	Fall	CVP	C220127
7CVP	22 22:00											CVP
C22009	12/18/20	137	172	late	female	Non-winter	1.000	Spring	1.000	Winter	SWP	C220098
8SWP	22 13:00											SWP
C22009	12/28/20	154	181	late	male	Non-winter	1.000	Spring	0.607	Late	SWP	C220099
9SWP	22 5:00									Fall		SWP
C22012	12/30/20	163	184	late	female	Non-winter	1.000	Fall	0.981	Late	CVP	C220128
8CVP	22 23:59									Fall		CVP
C22018	12/31/20	180	184	late	male	Non-winter	1.000	Fall	1.000	Late	SWP	C220180
0SWP	22 3:00									Fall		SWP
C23008	1/1/2023	150	185	late	male	Non-winter	1.000	Fall	0.982	Winter	SWP	C230082
2SWP	10:00											SWP
C23008	1/1/2023	113	185	late	female	Non-winter	1.000	Fall	0.988	Winter	SWP	C230083
3SWP	11:00											SWP
C23008	1/2/2023	212	187	early	male	Non-winter	1.000	Fall	0.988	Fall	CVP	C230082
2CVP	14:00											CVP
C23000	1/3/2023	35	187	late	female	Non-winter	1.000	Fall	0.982	Fall	CVP	C230001
1CVP	10:00											CVP
C23000	1/3/2023	34	187	late	male	Non-winter	1.000	Fall	0.769	Fall	CVP	C230002
2CVP	10:00											CVP
C23000	1/3/2023	33	187	late	female	Non-winter	1.000	Fall	0.930	Fall	CVP	C230003
3CVP	10:00											CVP

	Sample	Fork					Pos Prob		Pos Prob			Original
ID	Date	Length	Julian	ots28	sexid	Assignment	1	Group	2	Model	Facility	ID
C23000 4CVP	1/3/2023 10:00	34	187	late	male	Non-winter	1.000	Fall	0.984	Fall	CVP	C230004 CVP
C23000 5CVP	1/3/2023 12:00	35	188	late	male	Non-winter	1.000	Unassi gned	0.627	Fall	CVP	C230005 CVP
C23000 6CVP	1/4/2023 8:00	38	188	late	female	Non-winter	1.000	Fall	0.996	Fall	CVP	C230006 CVP
C23000 7CVP	1/4/2023 12:00	36	189	late	female	Non-winter	1.000	Fall	0.922	Fall	CVP	C230007 CVP
C23000 8CVP	1/4/2023 12:00	38	189	late	female	Non-winter	1.000	Fall	0.999	Fall	CVP	C230008 CVP
C23000 9CVP	1/4/2023 12:00	36	189	late	female	Non-winter	1.000	Spring	0.661	Fall	CVP	C230009 CVP
C23001 0CVP	1/4/2023 14:00	38	189	late	male	Non-winter	1.000	Fall	0.645	Fall	CVP	C230010 CVP
C23008 4SWP	1/4/2023 15:00	162	189	late	male	Non-winter	1.000	Fall	0.877	Late Fall	SWP	C230084 SWP
C23001 2CVP	1/4/2023 22:00	148	189	late	male	Non-winter	1.000	Spring	0.836	Winter	CVP	C230012 CVP
C23001 1CVP	1/5/2023 10:00	37	189	late	female	Non-winter	1.000	Fall	0.696	Fall	CVP	C230011 CVP
C23001 3CVP	1/5/2023 14:00	163	190	late	female	Non-winter	1.000	Fall	1.000	Late Fall	CVP	C230013 CVP
C23001 5CVP	1/11/202 3 6:00	38	195	late	male	Non-winter	1.000	Fall	0.970	Fall	CVP	C230015 CVP
C23001 6CVP	1/12/202 3 8:00	166	196	late	female	Non-winter	1.000	Spring	0.870	Winter	CVP	C230016 CVP
C23001 9CVP	1/12/202 3 10:00	42	196	late	male	Non-winter	1.000	Spring	0.870	Fall	CVP	C230019 CVP

							Pos		Pos			
ID	Sample Date	Fork Length	Julian	ots28	sexid	Assignment	Prob 1	Group	Prob 2	Model	Facility	Original ID
C23001 8CVP	1/12/202 3 12:00	34	197	late	female	Non-winter	1.000	Fall	0.986	Fall	CVP	C230018 CVP
C23002 0CVP	1/12/202 3 23:59	31	197	late	male	Non-winter	1.000	Fall	0.998	Fall	CVP	C230020 CVP
C23002 1CVP	1/13/202 3 6:00	35	197	late	male	Non-winter	1.000	Fall	0.981	Fall	CVP	C230021 CVP
C23002 2CVP	1/13/202 3 10:00	35	197	late	male	Non-winter	1.000	Spring	0.917	Fall	CVP	C230022 CVP
C23002 3CVP	1/13/202 3 23:59	38	198	late	male	Non-winter	1.000	Fall	0.966	Fall	CVP	C230023 CVP
C23002 4CVP	1/14/202 3 2:00	38	198	late	female	Non-winter	1.000	Fall	0.999	Fall	CVP	C230024 CVP
C23002 5CVP	1/14/202 3 6:00	35	198	late	male	Non-winter	1.000	Fall	0.994	Fall	CVP	C230025 CVP
C23002 6CVP	1/14/202 3 6:00	195	198	late	male	Non-winter	1.000	Fall	1.000	Late Fall	CVP	C230026 CVP
C23002 7CVP	1/14/202 3 14:00	36	199	late	female	Non-winter	1.000	Fall	0.991	Fall	CVP	C230027 CVP
C23008 6SWP	1/17/202 3 7:45	149	201	late	female	Non-winter	1.000	Fall	0.950	Winter	SWP	C230086 SWP
C23002 9CVP	1/17/202 3 8:00	36	201	late	female	Non-winter	1.000	Fall	0.998	Fall	CVP	C230029 CVP
C23003 1CVP	1/17/202 3 23:59	36	202	late	male	Non-winter	1.000	Fall	1.000	Fall	CVP	C230031 CVP
C23003 2CVP	1/17/202 3 23:59	35	202	late	male	Non-winter	1.000	Fall	1.000	Fall	CVP	C230032 CVP
C23003 3CVP	1/17/202 3 23:59	35	202	late	male	Non-winter	1.000	Fall	1.000	Fall	CVP	C230033 CVP

	C 1	F 1					Pos		Pos			0
ID	Sample Date	Fork Length	Julian	ots28	sexid	Assignment	Prob 1	Group	Prob 2	Model	Facility	Original ID
C23003 4CVP	1/18/202 3 4:00	35	202	late	male	Non-winter	1.000	Fall	1.000	Fall	CVP	C230034 CVP
C23003 5CVP	1/18/202 3 4:00	35	202	late	male	Non-winter	1.000	Fall	1.000	Fall	CVP	C230035 CVP
C23003 6CVP	1/18/202 3 12:00	38	203	late	female	Non-winter	1.000	Fall	1.000	Fall	CVP	C230036 CVP
C23003 7CVP	1/18/202 3 14:00	37	203	late	male	Non-winter	1.000	Fall	1.000	Fall	CVP	C230037 CVP
C23003 8CVP	1/18/202 3 16:00	34	203	late	male	Non-winter	1.000	Fall	1.000	Fall	CVP	C230038 CVP
C23003 9CVP	1/19/202 3 10:00	32	203	late	female	Non-winter	1.000	Fall	1.000	Fall	CVP	C230039 CVP
C23004 0CVP	1/19/202 3 10:00	37	203	late	male	Non-winter	1.000	Fall	1.000	Fall	CVP	C230040 CVP
C23004 1CVP	1/19/202 3 14:00	37	204	late	female	Non-winter	1.000	Fall	1.000	Fall	CVP	C230041 CVP
C23004 2CVP	1/19/202 3 18:00	35	204	late	female	Non-winter	1.000	Fall	1.000	Fall	CVP	C230042 CVP
C23004 3CVP	1/19/202 3 18:00	30	204	late	male	Non-winter	1.000	Fall	1.000	Fall	CVP	C230043 CVP
C23004 4CVP	1/19/202 3 18:00	38	204	late	male	Non-winter	1.000	Fall	1.000	Fall	CVP	C230044 CVP
C23004 5CVP	1/20/202 3 2:00	35	204	late	female	Non-winter	1.000	Fall	1.000	Fall	CVP	C230045 CVP
C23004 6CVP	1/20/202 3 2:00	35	204	late	female	Non-winter	1.000	Fall	1.000	Fall	CVP	C230046 CVP
C23004 7CVP	1/20/202 3 2:00	34	204	late	male	Non-winter	1.000	Fall	1.000	Fall	CVP	C230047 CVP

							Pos		Pos			
ID	Sample Date	Fork Length	Julian	ots28	sexid	Assignment	Prob 1	Group	Prob 2	Model	Facility	Original ID
C23004 8CVP	1/20/202 3 6:00	35	204	late	female	Non-winter	1.000	Fall	1.000	Fall	CVP	C230048 CVP
C23004 9CVP	1/20/202 3 10:00	37	204	late	female	Non-winter	1.000	Fall	1.000	Fall	CVP	C230049 CVP
C23005 0CVP	1/20/202 3 18:00	30	205	late	female	Non-winter	1.000	Fall	1.000	Fall	CVP	C230050 CVP
C23005 1CVP	1/21/202 3 12:00	34	206	late	female	Non-winter	1.000	Fall	1.000	Fall	CVP	C230051 CVP
C23005 2CVP	1/22/202 3 2:00	38	206	late	male	Non-winter	1.000	Fall	1.000	Fall	CVP	C230052 CVP
C23005 3CVP	1/22/202 3 12:00	35	207	late	female	Non-winter	1.000	Fall	1.000	Fall	CVP	C230053 CVP
C23005 4CVP	1/22/202 3 14:00	36	207	late	female	Non-winter	1.000	Fall	1.000	Fall	CVP	C230054 CVP
C23005 5CVP	1/23/202 3 12:00	37	208	late	male	Non-winter	1.000	Fall	1.000	Fall	CVP	C230055 CVP
C23005 6CVP	1/24/202 3 14:00	37	209	late	male	Non-winter	1.000	Fall	1.000	Fall	CVP	C230056 CVP
C23005 7CVP	1/26/202 3 14:00	35	211	late	female	Non-winter	1.000	Fall	1.000	Fall	CVP	C230057 CVP
C23005 8CVP	1/26/202 3 23:59	37	211	early	male	Non-winter	1.000	Fall	1.000	Fall	CVP	C230058 CVP
C23006 0CVP	1/27/202 3 8:00	42	211	late	female	Non-winter	1.000	Fall	1.000	Fall	CVP	C230060 CVP
C23006 1CVP	1/27/202 3 10:00	37	211	early	male	Non-winter	1.000	Fall	1.000	Fall	CVP	C230061 CVP
C23006 2CVP	1/27/202 3 14:00	35	212	late	male	Non-winter	1.000	Fall	1.000	Fall	CVP	C230062 CVP

	C 1	F 1					Pos		Pos			
ID	Sample Date	Fork Length	Julian	ots28	sexid	Assignment	Prob 1	Group	Prob 2	Model	Facility	Original ID
C23006 3CVP	1/27/202 3 18:00	52	212	late	female	Non-winter	1.000	Fall	1.000	Spring	CVP	C230063 CVP
C23006 4CVP	1/27/202 3 18:00	36	212	late	female	Non-winter	1.000	Fall	1.000	Fall	CVP	C230064 CVP
C23006 5CVP	1/27/202 3 18:00	30	212	late	female	Non-winter	1.000	Fall	1.000	Fall	CVP	C230065 CVP
C23006 6CVP	1/28/202 3 12:00	36	213	late	male	Non-winter	1.000	Fall	1.000	Fall	CVP	C230066 CVP
C23006 7CVP	1/28/202 3 14:00	35	213	late	female	Non-winter	1.000	Fall	1.000	Fall	CVP	C230067 CVP
C23006 8CVP	1/29/202 3 8:00	37	213	late	female	Non-winter	1.000	Fall	1.000	Fall	CVP	C230068 CVP
C23006 9CVP	1/29/202 3 8:00	39	213	late	female	Non-winter	1.000	Fall	1.000	Fall	CVP	C230069 CVP
C23007 0CVP	1/29/202 3 8:00	38	213	late	female	Non-winter	1.000	Fall	1.000	Fall	CVP	C230070 CVP
C23007 1CVP	1/29/202 3 8:00	39	213	late	male	Non-winter	1.000	Fall	1.000	Fall	CVP	C230071 CVP
C23007 2CVP	1/29/202 3 8:00	37	213	late	male	Non-winter	1.000	Fall	1.000	Fall	CVP	C230072 CVP
C23007 3CVP	1/29/202 3 8:00	38	213	late	female	Non-winter	1.000	Fall	1.000	Fall	CVP	C230073 CVP
C23007 4CVP	1/30/202 3 6:00	38	214	late	female	Non-winter	1.000	Fall	1.000	Fall	CVP	C230074 CVP
C23007 5CVP	1/30/202 3 6:00	36	214	early	male	Non-winter	1.000	Fall	1.000	Fall	CVP	C230075 CVP
C23007 6CVP	1/30/202 3 8:00	145	214	late	male	Non-winter	1.000	Spring	1.000	Winter	CVP	C230076 CVP

		F 1					Pos		Pos			
ID	Sample Date	Fork Length	Julian	ots28	sexid	Assignment	Prob 1	Group	Prob 2	Model	Facility	Original ID
C23007 7CVP	1/30/202 3 8:00	36	214	late	male	Non-winter	1.000	Fall	1.000	Fall	CVP	C230077 CVP
C23007 8CVP	1/30/202 3 18:00	45	215	early	male	Non-winter	1.000	Fall	1.000	Fall	CVP	C230078 CVP
C23007 9CVP	1/30/202 3 18:00	36	215	late	male	Non-winter	1.000	Fall	1.000	Fall	CVP	C230079 CVP
C23008 0CVP	1/30/202 3 20:00	37	215	late	female	Non-winter	1.000	Fall	1.000	Fall	CVP	C230080 CVP
C23008 1CVP	1/30/202 3 22:00	34	215	late	female	Non-winter	1.000	Fall	1.000	Fall	CVP	C230081 CVP
C23008 4CVP	1/31/202 3 8:00	40	215	late	female	Non-winter	1.000	Fall	1.000	Fall	CVP	C230084 CVP
C23008 5CVP	1/31/202 3 8:00	40	215	early	female	Non-winter	1.000	Fall	1.000	Fall	CVP	C230085 CVP
C23008 6CVP	1/31/202 3 16:00	34	216	late	male	Non-winter	1.000	Fall	1.000	Fall	CVP	C230086 CVP
C23008 7CVP	1/31/202 3 20:00	44	216	early	female	Non-winter	1.000	Fall	1.000	Fall	CVP	C230087 CVP
C23008 8CVP	2/1/2023 8:00	38	216	late	female	Non-winter	1.000	Fall	1.000	Fall	CVP	C230088 CVP
C23008 9CVP	2/1/2023 10:00	35	216	late	male	Non-winter	1.000	Fall	1.000	Fall	CVP	C230089 CVP
C23009 0CVP	2/1/2023 10:00	37	216	late	male	Non-winter	1.000	Fall	1.000	Fall	CVP	C230090 CVP
C23009 1CVP	2/1/2023 20:00	34	217	late	male	Non-winter	1.000	Fall	1.000	Fall	CVP	C230091 CVP
C23009 2CVP	2/1/2023 20:00	33	217	late	female	Non-winter	1.000	Fall	1.000	Fall	CVP	C230092 CVP

		F 1					Pos		Pos			
ID	Sample Date	Fork Length	Julian	ots28	sexid	Assignment	Prob 1	Group	Prob 2	Model	Facility	Original ID
C23009 3CVP	2/2/2023 10:00	41	217	late	female	Non-winter	1.000	Fall	1.000	Fall	CVP	C230093 CVP
C23009 4CVP	2/2/2023 12:00	39	218	late	male	Non-winter	1.000	Fall	1.000	Fall	CVP	C230094 CVP
C23009 7CVP	2/3/2023 6:00	42	218	late	female	Non-winter	1.000	Fall	1.000	Fall	CVP	C230097 CVP
C23009 8CVP	2/3/2023 6:00	48	218	late	male	Non-winter	1.000	Fall	1.000	Fall	CVP	C230098 CVP
C23009 9CVP	2/5/2023 6:00	38	220	late	female	Non-winter	1.000	Fall	1.000	Fall	CVP	C230099 CVP
C23010 0CVP	2/5/2023 6:00	36	220	late	female	Non-winter	1.000	Fall	1.000	Fall	CVP	C230100 CVP
C23010 2CVP	2/5/2023 14:00	41	221	early	male	Non-winter	1.000	Fall	1.000	Fall	CVP	C230102 CVP
C23010 3CVP	2/6/2023 8:00	38	221	late	male	Non-winter	1.000	Fall	1.000	Fall	CVP	C230103 CVP
C23010 4CVP	2/6/2023 8:00	38	221	late	female	Non-winter	1.000	Fall	1.000	Fall	CVP	C230104 CVP
C23010 5CVP	2/6/2023 8:00	34	221	late	male	Non-winter	1.000	Fall	1.000	Fall	CVP	C230105 CVP
C23010 6CVP	2/7/2023 6:00	38	222	late	male	Non-winter	1.000	Fall	1.000	Fall	CVP	C230106 CVP
C23010 7CVP	2/7/2023 18:00	39	223	late	female	Non-winter	1.000	Fall	0.992	Fall	CVP	C230107 CVP
C23010 8CVP	2/9/2023 12:00	38	225	late	male	Non-winter	1.000	Spring	0.602	Fall	CVP	C230108 CVP
C23010 9CVP	2/9/2023 12:00	40	225	early	male	Non-winter	1.000	Fall	1.000	Fall	CVP	C230109 CVP

							Pos		Pos			
ID	Sample Date	Fork Length	Julian	ots28	sexid	Assignment	Prob 1	Group	Prob 2	Model	Facility	Original ID
C23008 7SWP	2/10/202 3 9:00	35	225	late	female	Non-winter	1.000	Fall	0.977	Fall	SWP	C230087 SWP
C23011 0CVP	2/15/202 3 10:00	53	230	early	male	Non-winter	1.000	Fall	1.000	Fall	CVP	C230110 CVP
C23011 1CVP	2/16/202 3 23:59	48	232	late	female	Non-winter	1.000	Fall	0.999	Fall	CVP	C230111 CVP
C23011 2CVP	2/18/202 3 6:00	44	233	late	female	Non-winter	1.000	Spring	0.609	Fall	CVP	C230112 CVP
C23011 3CVP	2/22/202 3 12:00	48	238	late	male	Non-winter	1.000	Spring	1.000	Fall	CVP	C230113 CVP
C23011 4CVP	2/23/202 3 18:00	34	239	late	male	Non-winter	1.000	Spring	1.000	Fall	CVP	C230114 CVP
C23011 5CVP	2/23/202 3 23:59	130	239	early	male	Winter	1.000	Winter	1.000	Winter	CVP	C230115 CVP
C23011 6CVP	2/28/202 3 10:00	138	243	late	male	Non-winter	1.000	Spring	1.000	Winter	CVP	C230116 CVP
C23011 7CVP	2/28/202 3 23:59	148	244	late	female	Non-winter	1.000	Spring	1.000	Winter	CVP	C230117 CVP
C23011 8CVP	3/3/2023 4:00	171	246	late	female	Non-winter	1.000	Late Fall	1.000	Winter	CVP	C230118 CVP
C23012 1CVP	3/3/2023 20:00	35	247	late	female	Non-winter	1.000	Fall	1.000	Fall	CVP	C230121 CVP
C23012 3CVP	3/3/2023 20:00	55	247	late	male	Non-winter	1.000	Fall	1.000	Fall	CVP	C230123 CVP
C23012 4CVP	3/4/2023 4:00	38	247	late	female	Non-winter	1.000	Fall	1.000	Fall	CVP	C230124 CVP
C23012 5CVP	3/4/2023 16:00	38	248	late	male	Non-winter	1.000	Fall	1.000	Fall	CVP	C230125 CVP

		F 1					Pos		Pos			0
ID	Sample Date	Fork Length	Julian	ots28	sexid	Assignment	Prob 1	Group	Prob 2	Model	Facility	Original ID
C23012 6CVP	3/5/2023 2:00	57	248	early	male	Non-winter	1.000	Fall	1.000	Fall	CVP	C230126 CVP
C23012 7CVP	3/5/2023 2:00	60	248	late	female	Non-winter	1.000	Fall	1.000	Fall	CVP	C230127 CVP
C23012 8CVP	3/5/2023 6:00	37	248	late	male	Non-winter	1.000	Fall	1.000	Fall	CVP	C230128 CVP
C23012 9CVP	3/5/2023 8:00	62	248	late	male	Non-winter	1.000	Fall	1.000	Spring	CVP	C230129 CVP
C23013 1CVP	3/5/2023 10:00	38	248	late	female	Non-winter	1.000	Fall	1.000	Fall	CVP	C230131 CVP
C23013 2CVP	3/5/2023 12:00	39	249	late	male	Non-winter	1.000	Fall	1.000	Fall	CVP	C230132 CVP
C23013 3CVP	3/5/2023 14:00	40	249	late	female	Non-winter	1.000	Fall	1.000	Fall	CVP	C230133 CVP
C23013 5CVP	3/6/2023 8:00	36	249	late	male	Non-winter	1.000	Fall	1.000	Fall	CVP	C230135 CVP
C23013 6CVP	3/6/2023 20:00	36	250	late	female	Non-winter	1.000	Fall	1.000	Fall	CVP	C230136 CVP
C23013 7CVP	3/7/2023 2:00	40	250	late	male	Non-winter	1.000	Fall	1.000	Fall	CVP	C230137 CVP
C23013 9CVP	3/7/2023 10:00	37	250	late	female	Non-winter	1.000	Fall	1.000	Fall	CVP	C230139 CVP
C23014 0CVP	3/8/2023 4:00	40	251	late	male	Non-winter	1.000	Fall	1.000	Fall	CVP	C230140 CVP
C23014 1CVP	3/8/2023 12:00	57	252	late	male	Non-winter	1.000	Fall	1.000	Fall	CVP	C230141 CVP
C23014 2CVP	3/8/2023 14:00	39	252	late	female	Non-winter	1.000	Fall	1.000	Fall	CVP	C230142 CVP

		F 1					Pos		Pos			
ID	Sample Date	Fork Length	Julian	ots28	sexid	Assignment	Prob 1	Group	Prob 2	Model	Facility	Original ID
C23008 8SWP	3/8/2023 15:00	156	252	late	female	Non-winter	1.000	Fall	1.000	Winter	SWP	C230088 SWP
C23014 4CVP	3/12/202 3 20:00	73	256	early	female	Non-winter	1.000	Fall	1.000	Spring	CVP	C230144 CVP
C23014 5CVP	3/13/202 3 2:00	60	256	late	female	Non-winter	1.000	Fall	1.000	Fall	CVP	C230145 CVP
C23014 6CVP	3/13/202 3 8:00	37	256	late	male	Non-winter	1.000	Fall	1.000	Fall	CVP	C230146 CVP
C23014 7CVP	3/13/202 3 8:00	53	256	late	female	Non-winter	1.000	Fall	1.000	Fall	CVP	C230147 CVP
C23014 8CVP	3/13/202 3 10:00	38	256	late	male	Non-winter	1.000	Fall	1.000	Fall	CVP	C230148 CVP
C23014 9CVP	3/13/202 3 16:00	33	257	late	male	Non-winter	1.000	Fall	1.000	Fall	CVP	C230149 CVP
C23015 0CVP	3/13/202 3 16:00	43	257	late	female	Non-winter	1.000	Fall	1.000	Fall	CVP	C230150 CVP
C23015 2CVP	3/13/202 3 18:00	137	257	late	female	Non-winter	1.000	Fall	1.000	Winter	CVP	C230152 CVP
C23015 1CVP	3/13/202 3 18:00	51	257	late	male	Non-winter	1.000	Fall	1.000	Fall	CVP	C230151 CVP
C23015 3CVP	3/13/202 3 22:00	34	257	late	female	Non-winter	1.000	Fall	1.000	Fall	CVP	C230153 CVP
C23015 4CVP	3/14/202 3 2:00	35	257	late	female	Non-winter	1.000	Fall	1.000	Fall	CVP	C230154 CVP
C23015 5CVP	3/14/202 3 8:00	37	257	late	female	Non-winter	1.000	Fall	1.000	Fall	CVP	C230155 CVP
C23015 6CVP	3/14/202 3 8:00	38	257	late	female	Non-winter	1.000	Fall	1.000	Fall	CVP	C230156 CVP

							Pos		Pos			
ID	Sample Date	Fork Length	Julian	ots28	sexid	Assignment	Prob 1	Group	Prob 2	Model	Facility	Original ID
C23015 7CVP	3/14/202 3 9:00	35	257	late	male	Non-winter	1.000	Fall	1.000	Fall	CVP	C230157 CVP
C23015 8CVP	3/14/202 3 9:00	37	257	late	female	Non-winter	1.000	Fall	1.000	Fall	CVP	C230158 CVP
C23015 9CVP	3/14/202 3 9:00	37	257	late	male	Non-winter	1.000	Fall	1.000	Fall	CVP	C230159 CVP
C23016 0CVP	3/14/202 3 16:00	36	258	late	male	Non-winter	1.000	Fall	1.000	Fall	CVP	C230160 CVP
C23016 2CVP	3/14/202 3 20:00	38	258	late	male	Non-winter	1.000	Fall	1.000	Fall	CVP	C230162 CVP
C23016 3CVP	3/15/202 3 2:00	80	258	late	male	Non-winter	1.000	Fall	1.000	Spring	CVP	C230163 CVP
C23016 4CVP	3/15/202 3 8:00	38	258	late	female	Non-winter	1.000	Fall	1.000	Fall	CVP	C230164 CVP
C23016 5CVP	3/15/202 3 8:00	36	258	late	male	Non-winter	1.000	Fall	1.000	Fall	CVP	C230165 CVP
C23016 6CVP	3/15/202 3 12:00	37	259	late	male	Non-winter	1.000	Fall	1.000	Fall	CVP	C230166 CVP
C23016 8CVP	3/15/202 3 12:00	37	259	late	male	Non-winter	1.000	Fall	1.000	Fall	CVP	C230168 CVP
C23016 9CVP	3/16/202 3 8:00	36	259	late	female	Non-winter	1.000	Fall	1.000	Fall	CVP	C230169 CVP
C23008 9SWP	3/16/202 3 13:00	77	260	early	female	Non-winter	1.000	Fall	1.000	Spring	SWP	C230089 SWP
C23017 0CVP	3/18/202 3 22:00	36	262	late	female	Non-winter	1.000	Fall	1.000	Fall	CVP	C230170 CVP
C23017 1CVP	3/18/202 3 23:59	38	262	late	female	Non-winter	1.000	Fall	1.000	Fall	CVP	C230171 CVP

							Pos		Pos			
	Sample	Fork					Prob		Prob			Original
ID	Date	Length	Julian	ots28	sexid	Assignment	1	Group	2	Model	Facility	ID
C23017	3/30/202	228	274	late	male	Non-winter	1.000	Spring	1.000	Winter	CVP	C230179
9CVP	3 23:59											CVP
C23018	4/3/2023	154	278	late	female	Non-winter	1.000	Fall	0.989	Winter	CVP	C230181
1CVP	22:00											CVP
C23016	4/11/202	122	286	early	male	Non-winter	1.000	Spring	1.000	Spring	SWP	C230165
5SWP	3 14:00											SWP
C23009	4/12/202	135	286	early	female	Non-winter	1.000	Spring	1.000	Winter	SWP	C230092
2SWP	3 9:00											SWP
C23024	4/25/202	176	300	late	male	Non-winter	1.000	Fall	1.000	Winter	CVP	C230249
9CVP	3 14:00											CVP

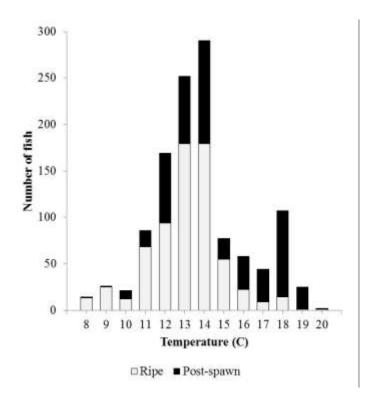


Figure 4.—The number of ripe (grey) or post-spawn (black) delta smelt caught in a specific temperature range during routine monthly sampling in the upper San Francisco Estuary during January-May for years 2002-2015 (Figure 8 from Damon et al. 2016).

Table 12. Number and size range (mm FL) of near-ripe female delta smelt on their first or subsequent clutch of eggs by month of collection. Delta smelt were used in this study's fecundity analysis and collected during routine monthly sampling during January-May for years 2012-2015 (Table 3 from Damon et al. 2016).

Month	First	Subsequent	Total
January	2 (72-73)	0	2 (72-73)
February	41 (56-84)	2 (65-85)	43 (56-85)
March	37 (63-77)	5 (63-81)	42 (63-81)
April	6 (62-82)	9 (65-90)	15 (62-90)
May	7 (68-78)	20 (69-83)	27 (68-83)