

Weekly Assessment of CVP and SWP Delta Operations on ESA-listed Species

February 14, 2023

Executive Summary

Operational Conditions

See Weekly Fish and Water Operation Outlook document for February 14 - February 20 which includes the initial CVP and SWP operational intent and biological justification for the next seven days. Any recommended changes or alternatives to those operations made by either monitoring team is captured herein.

Winter-run Chinook Salmon

No loss of natural winter-run Chinook Salmon (by length at date, LAD) has occurred in the past week at the State and Federal fish salvage facilities (WY 2023 total loss = 50.91 fish, as of 2/13/2023). Loss of natural winter-run Chinook Salmon at the Central Valley Project (CVP) and State Water Project (SWP) fish collection facilities is likely to occur over the next week. 60-80 % of juvenile natural winter-run Chinook Salmon from brood year (BY) 2022 are estimated to be present in the Delta. The Delta Cross Channel (DCC) gates closure for the season reduces exposure of winter-run Chinook Salmon juveniles that are present in the Sacramento River near the DCC gates into the interior Delta.

Spring-run Chinook salmon

No loss of natural spring-run Chinook Salmon (by length at date, LAD) has occurred in the past week at the State or Federal fish salvage facilities (WY 2023 total loss = 2.54 fish as of 2/13/2023). Loss of spring-run Chinook salmon at the CVP and SWP fish collection facilities may occur over the next week. 30-45 % of juvenile natural spring-run Chinook Salmon from brood year (BY) 2022 are estimated to be present in the Delta. The DCC gates closure for the season reduces exposure of spring-run Chinook Salmon juveniles that are present in the Sacramento River near the DCC gates into the interior Delta.

Central Valley Steelhead

Loss of natural California Central Valley (CCV) steelhead has occurred in the past week at the State and Federal fish salvage facilities (WY 2023 December 1 - March 31 total loss = 120.2 fish, as of 2/13/2023). Loss of Central Valley steelhead at the CVP and SWP fish collection facilities may occur over the next week. 25-30 % of juvenile natural CCV Steelhead from brood year (BY) 2022 are estimated to be present in the Delta. DCC closure for the season reduces exposure to

Central Valley steelhead juveniles that are potentially present in the Sacramento River near the DCC gates.

Green Sturgeon

Loss of green sturgeon has not occurred in the past week at the State and Federal fish salvage facilities (WY 2023 total loss = 0 fish, as of 2/13/2023). Loss of green sturgeon is unlikely to occur over the next week due to their rare presence in the South Delta.

Delta Smelt

Based on recent detection data and distribution patterns over the past decade, Delta Smelt have likely completed migration, and fish are widely distributed throughout the Delta. Water temperatures are suitable for spawning (Damon et al. 2016) and two marked ripe Delta Smelt were detected. The response of cultured fish to environmental cues typically applied to wild Delta Smelt is highly uncertain. Unmarked Delta Smelt have been detected in Suisun Marsh and the Lower San Joaquin near Antioch between 1/31/2023 and 2/9/2023. Eight marked adult Delta Smelt were detected in Suisun Bay, the Lower Sacramento River, the Sacramento Deep Water Ship Channel and Liberty Island between 1/30/2023 and 2/9/2023. Two marked ripe Delta Smelt were detected by SKT in the Sacramento Deep Water Ship Channel and Lower Sacramento River. Marked Delta Smelt were detected at SWP on 2/8/2023 and CVP on 2/12/2023 and 2/13/2023. The Turbidity Bridge Avoidance Action off-ramped starting 2/9/2023 and turbidities continue to decrease. Overall risk for entrainment is low for Delta Smelt outside of the OMR corridor and risk is moderate for fish within the OMR corridor. However, the SMT remains concerned about salvage in the last week. In recent years, adult salvage of Delta Smelt reached the 50th percentile in late February or early March (see SacPas, https://www.cbr.washington.edu/sacramento/tmp/hrtsalvage 1676407207 694.html). Additional salvage is likely, particularly considering movement of X2 upstream in the coming week and

OMRI at -5000 cfs.

Delta Cross Channel Gates

The DCC gates were closed on 11/28/2022 to meet LTO Proposed Action and are expected to remain closed until May. DCC gates may only be opened to maintain water quality under D-1641 between November and January.

Monitoring Teams summary

There were no non-consensus issues to report from the Salmon Monitoring Team.

Smelt Monitoring Team:

Two ripe females were detected by SKT on 2/8, which offramps Turbidity Bridge Avoidance for the PA. The ripe females were cultured fish, and cultured fish were observed releasing eggs during the January fish releases, which could be due to stress or warmer water temperatures in the culture facilities. SMT discussed whether the presence of ripe, cultured fish reflects the status of

wild fish and the intent of the offramp. USFWS and USBR SMT members will work with their agencies to provide clarification in the coming weeks.

Operational and Regulatory Conditions

See current Weekly Fish and Water Operation Outlook document.

Biology, Distribution, and Evaluation Winter-run Chinook salmon, Spring-run Chinook salmon, Central Valley Steelhead

Population Status

Winter-run Chinook Salmon

- Delta Life Stages:
 - Juveniles, Adults
- Brood Year 2022 Productivity:
 - Natural winter-run Chinook salmon: Draft Juvenile production estimate (JPE) calculations have been established for brood year (BY) 2022 winter-run Chinook salmon. The final BY 2022 JPE is 49,924 natural origin juvenile winter run Chinook salmon.
 - Mean cumulative weekly passage of winter-run Chinook salmon through 1/28/2023 at Red Bluff Diversion Dam (RBDD) for the last 20 years of passage data is 98.5% (one SD of 1.9%). By 1/28/2023, 231,075 winter-run Chinook salmon were estimated to have passed RBDD compared to the cumulative passage last year of 572,568 winter-run Chinook salmon.
 - Hatchery winter-run Chinook salmon:
 - Approximately 432,458 Livingston Stone NFH brood year 2022 winter Chinook salmon were released at dusk on 1/26-1/27/2023 into the Sacramento River at John F. Reginato River Access boat ramp, Redding, CA. This is the first release of LSNFH brood year 2022 hatchery winter Chinook salmon comprising of approximately 58% of the total hatchery production for the Sacramento River supplementation program. The release group is 100% marked (adipose-fin clip and CWT) with an overall estimated average fork length of 85mm. There has been no loss so far this water year with this release group.

Spring-run Chinook Salmon

• Delta Life Stages:

- Young-of-year (YOY) and Yearlings
- Brood Year 2022 Productivity:
 - Natural spring-run Chinook salmon: No JPE has been established for spring-run Chinook salmon.
 - Hatchery spring-run Chinook salmon surrogates associated with the Proposed Action (PA 4.10.5.10.2 Additional Real-Time OMR Restrictions and Performance Objectives):
 - Approximately 71,057 late-fall Chinook salmon from Coleman National Fish Hatchery were released at Battle Creek on 12/5/2022. This group is 100% marked with adipose-fin clip and CWT and have an estimated average fork length of 145mm. This is the first spring-run Chinook salmon surrogates release group associated with the Proposed Action. There has been no loss this water year of fish associated with the first surrogate release group.
 - Approximately 66,735 late-fall Chinook salmon from Coleman National Fish Hatchery were released at Battle Creek on 12/23/2022. This group is 100% marked with adipose-fin clip and CWT and have an estimated average fork length of 145mm.
 - Approximately 60,712 Coleman NFH brood year 2022 late-fall Chinook Salmon on January 13, 2023 into Battle Creek at Coleman NFH. This group is 100% marked (with an adipose-fin clip and CWT) and has an overall estimated average fork length of 145 mm.
 - There has been loss this water year of fish associated with the first, second, and third surrogate release groups.
 - The agencies in the SaMT discussed the thiamine vitamin deficiency that was observed in winter run Chinook salmon broodstock at the Livingston Stone National Fish Hatchery (LSNFH) in BY 2022. Last year the thiamine deficiency appeared to negatively affect survival of juvenile fish as they migrate downstream towards the Delta. The thiamine deficiency issue is also likely impacting spring-run Chinook salmon.

Central Valley Steelhead

- Delta Life Stages:
 - Spawning Adults, Kelts, Juveniles
- Brood Year 2022 Productivity:

- Spawner abundance: There is limited information about the adult steelhead population. It is estimated to be small, contributing to the limited productivity of the population.
- Natural steelhead: No JPE has been established for steelhead. Data are limited.
- Hatchery steelhead: Reclamation's Proposed Action has no hatchery steelhead triggers.

Distribution

Winter-run Chinook Salmon

Current Distribution:

- For Winter-run Chinook Salmon observations reported to SaMT since previous meeting, see Table 1.
- For SaMT distribution estimates, see Table 2.
- There is uncertainty in the identification of some untagged salmonids potentially due to either tag loss or poor quality adipose clipping from hatchery releases made in the South Delta. Lower rates of tagging success were confirmed for by hatchery staff for some releases. Confirmation of origin of these fish will be through genetic identification.
- No fish observed in salvage and genetically analyzed through 2/7/2023 has been genetically identified as Winter-run Chinook Salmon (see attachment A).

Historic Trends

- For historical winter-run Chinook salmon trends in salvage, see Table 3.
- Loss of natural winter-run Chinook salmon at the CVP and SWP fish collection facilities may occur over the next week based on life history and detections in real-time monitoring locations in the Delta. If historic trends in salvage were to continue, winter-run Chinook salmon loss is expected to increase over the next week.

Forecasted Distribution within Central Valley and Delta regions

- Movement of winter-run Chinook salmon juveniles into the lower reaches of the Sacramento River and upper Delta may continue over the next week.
- The STARS model projects route-specific proportion of entrainment, survival, and travel times (Table 5). This model does not estimate entrainment into the lower Sacramento River sloughs (i.e., Three-Mile Slough). The DCC gates were closed 11/28/22 and are expected to remain closed through mid-May 2023. If little precipitation is forecasted there may be a need to open the DCC gates to meet D-1641 water quality standards.

Spring-run Chinook salmon

Current Distribution

- For Spring-run Chinook salmon observations reported to SaMT since previous meeting, see Table 1.
- For SaMT distribution estimates, see Table 2.

Historical Trends

• For historical spring-run Chinook salmon trends in salvage, see Table 3. If historic trends in salvage were to continue YOY spring-run Chinook salmon loss is unlikely to increase over the next week.

Forecasted Distribution within Central Valley and Delta regions

• Yearling spring-run Chinook are thought to be migrating through the Delta.

Central Valley Steelhead

Current Distribution

- For CCV Steelhead observations reported to SaMT since previous meeting, see Table 1.
- For SaMT distribution estimates, see Table 2.

Historical Trends

• For historical CCV steelhead trends in salvage, see Table 2. If historic trends in salvage were to continue, juvenile CCV steelhead loss may occur over the next week.

Forecasted Distribution within Central Valley and Delta regions

- The entrainment tool estimates of CCV steelhead loss remain low (Table 6, Fig. 1).
- Closure of the DCC gates for the season will reduce exposure and possible entrainment of juvenile CCV steelhead from the Sacramento River into the interior Delta via the DCC gates.

Table 1. Fish observation reported since the previous SaMT meeting. NAs represent no data reported. See Operations Outlook for notes on interruptions in any surveys.

Locations	Reporting Period	SR Chinook	WR Chinook	LFR Chinook	Steelhead (Wild)	Green Sturgeon
GCID RST	N/A	N/A	N/A	N/A	N/A	N/A
Butte Creek RST	N/A	N/A	N/A	N/A	N/A	N/A

	Reporting	SR	WR	LFR	Steelhead	Green
Locations	Period	Chinook	Chinook	Chinook	(Wild)	Sturgeon
Tisdale RST	2/6-2/12	19	2	0	0	0
Knights Landing RST	2/7-2/13	5	5	0	1	0
Lower Sacramento RST	2/7-2/13	32	0	0	2	0
Beach Seines	2/2-2/11	0	0	0	0	0
Sac. Trawl	2/2-2/11	0	0	0	0	0
Chipps Island Midwater Trawl	2/2-2/11	0	0	0	0	0
Mossdale Kodiak Trawl	2/2-2/11	0	0	0	0	0
EDSM	2/2-2/11	0	0	0	0	0
Feather River Herringer RST	2/7-2/11	3	0	0	0	0
Feather River Eye Side RST	2/7-2/11	5	0	0	1	0
Lower Feather River	N/A	N/A	N/A	N/A	N/A	N/A

Table 2. Salmonid distribution estimates

Location	Yet to Enter Delta (%)	In the Delta (%)	Exited Delta past Chipps Island (%)
Young-of-year (YOY)	Current: 15-30%	Current: 60-80%	Current: 5-10%
winter-run Chinook salmon	Last Week: 25-35%	Last Week: 55-75%	Last Week: 0-10%
YOY spring-run Chinook	Current: 53-70 %	Current: 30-45%	Current: 0-2 %
salmon	Last Week: 58-75 %	Last Week: 25-40%	Last Week: 0-2 %
YOY hatchery winter-run	Current: 95-99%	Current: 1-5%	Current: 0 %
Chinook salmon	Last Week: 98-100 %	Last Week: 0-2 %	Last Week: 0 %
Natural origin steelhead	Current: 60-70%	Current: 25-30%	Current: 5-10%
	Last Week: 65-75%	Last Week: 20-25%	Last Week: 5-10%

				Sac Trawl	Chipps Island	
	Red Bluff		Knights	Sherwood	Trawl Catch	
Species	Diversion Dam	Tisdale Rst	Landing Rst	Catch Index	Index	Salvage
Chinook,	98.7%(97.8%,99.	84.3%(61.8%,106	88.5%(73.3%,103	47.5%(20.2%,74.	9.2%(0.0%,18.5%	34.7%(10.3%,
Winter-run,	7%) BY: 2013 -	.8%) BY: 2013 -	.7%) BY: 2013 -	8%) BY: 2013 -) BY: 2013 -	59.1%) WY:
Unclipped	2021	2021	2021	2021	2021	2013 - 2022
Chinook,	17.6%(5.7%,29.5	19.7%(0.6%,38.8	29.4%(3.8%,55.0	8.0%(-	0.0%(0.0%,0.0%)	0.5%(-
Spring-run,	%) BY: 2013 -	%) BY: 2013 -	%) BY: 2013 -	3.2%,19.1%) BY:	BY: 2013 - 2021	0.6%,1.7%)
Unclipped	2021	2021	2021	2013 - 2021		WY: 2013 -
						2022
Steelhead,	1.3%(-	27.5%(15.3%,39.	35.1%(15.0%,55.	20.1%(-	11.6%(1.0%,22.3	N/A
Unclipped	0.0%,2.6%) BY:	7%) BY: 2014 -	3%) BY: 2014 -	10.5%,50.7%) BY:	%) BY: 2013 -	
(January-	2013 - 2022	2022	2022	2013 - 2022	2022	
December)						
Steelhead,	N/A	N/A	N/A	N/A	N/A	22.9%(3.5%,4
Unclipped						2.2%) WY:
(December-						2013 - 2022
March)						
Steelhead,	N/A	N/A	N/A	N/A	N/A	0.0%(0.0%,0.
Unclipped						0%) WY:
(April-June)						2013 - 2022

Table 3. Historic migration	n and salvage natterns	Last undated	02/13/2023
Table 5. Thistoric migration	ni anu salvaye patterns.	Last upuateu	02/13/2023.

Table 4. Mean daily flow and percent change (Wilkins Slough, Deer Creek, Mill Creek; cfs from CDEC) and temperature and percent change (Knights Landing; °F from RST).

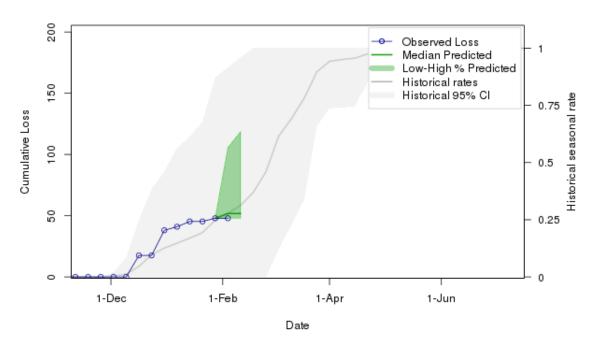
	Creek (MLM):	flow	Mill Creek	Creek (DCV):	flow	Creek	(WLK):	Knights Landing RST: water	Alert
Date	(cfs)	change	Alert	(cfs)	change	Alert	(cfs)	temp. (f)	Triggered
2/12/2023	180.2	-1.4%	Flow>95c fs	210.4	-1.5%	Flow>95cfs	8,828.4	N/A	N/A
2/11/2023	182.8	2.5%	Flow>95c fs	213.6	1.3%	Flow>95cfs	8,988.0	N/A	N/A
2/10/2023	178.5	0.5%	Flow>95c fs	210.9	-1.4%	Flow>95cfs	9,211.5	416	WLK>750 Ocfs and KNL<56.3 F

Date	Mill Creek (MLM): mean daily flow (cfs)	Mill Creek (MLM): flow /percent change	Mill Creek (MLM): Alert	daily flow	r i	Deer Creek (DCV): Alert	Wilkins Slough (WLK): mean daily flow (cfs)	Knights Landing RST: water temp. (f)	Alert Triggered
2/9/2023	177.6	-2.1%	Flow>95c fs	213.9	-3.3%	Flow>95cfs		41.4	WLK>750 Ocfs and KNL<56.3 F
2/8/2023	181.4	-3.8%	Flow>95c fs	221.2	-4.3%	Flow>95cfs	10,013.5	41.4	WLK>750 Ocfs and KNL<56.3 F
2/7/2023	188.6	-8.0%	Flow>95c fs	231.2	-8.5%	Flow>95cfs	10,179.0	41.2	WLK>750 Ocfs and KNL<56.3 F
2/6/2023	205.1	-5.9%	Flow>95c fs	252.7	-1.9%	Flow>95cfs	9,292.7	41.0	WLK>750 Ocfs and KNL<56.3 F

Table 5. STARS model simulations for route-specific entrainment, travel times, and survival. Travel time is calculated in days.

			Median Travel		Routing
Stock	Date	Route	Time	Survival	Probability
Winter Chinook	2023-02-12	Overall	6.32	0.40	N/A
Winter Chinook	2023-02-12	Sacramento River	5.93	0.44	0.60
Winter Chinook	2023-02-12	Yolo Bypass	9.72	0.53	0.00
Winter Chinook	2023-02-12	Sutter Slough	6.00	0.36	0.14
Winter Chinook	2023-02-12	Steamboat Slough	5.73	0.49	0.13
Winter Chinook	2023-02-12	Interior Delta	9.10	0.15	0.13
Late-fall Chinook	2023-02-12	Overall	9.70	0.49	N/A
Late-fall Chinook	2023-02-12	Delta Cross Channel	N/A	N/A	0.00
Late-fall Chinook	2023-02-12	Georgiana Slough	14.47	0.23	0.24
Late-fall Chinook	2023-02-12	Sacramento River	8.38	0.60	0.47
Late-fall Chinook	2023-02-12	Sutter and Steamboat Slough	8.87	0.51	0.30

The entrainment tool estimates a median and maximum loss of winter-run Chinook Salmon and juvenile CCV Steelhead each week (Table 6a).


Table 6a-b. WY 2023 loss and salvage predictor data: Environmental details, current and forecast.

a) WY 2023 loss and salvage predictor data: Predicted weekly loss of winter-run Chinook salmon and steelhead at CVP and SWP facilities.

Parameter	Modeled Current Week	Modeled Next Week
Predicted Steelhead, Median %	17	0
Predicted Steelhead, High %	132	39
Predicted Chinook Winter Run, Median %	4	0
Predicted Chinook Winter Run, High %	58	13

b) Environmental details, current and forecast.

Parameter	Data	Forecast
Temperature (Mallard Island, C)	9.1	20
Precipitation (5-d running sum, inches)	0	0
Old and Middle River Flows (cfs)	-5044	-3039
Sacramento River Flow (Freeport, cfs)	21088	6993
DCC Gates	closed	closed
San Joaquin River Flow (Vernalis, cfs)	6058	262
Export	8364	1887

Winter Run Loss 2023-02-10 Water Year: 2023 & WY.week 19

Steelhead Loss 2023-02-10 Water Year: 2023 & WY.week 19

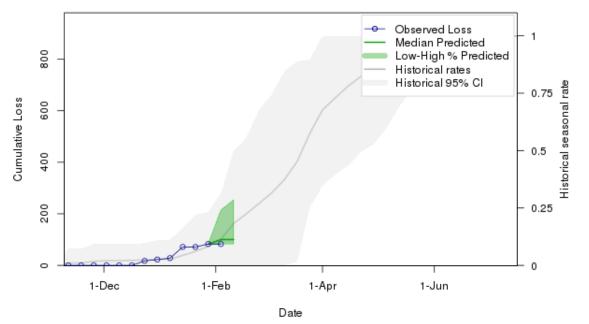


Figure 1. Predicted weekly loss of steelhead and winter-run Chinook salmon at the CVP and SWP facilities

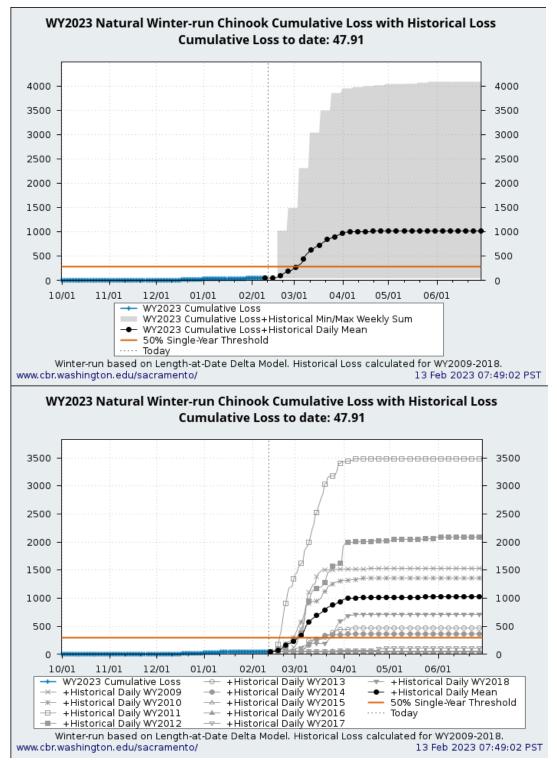


Figure 2. Predicted weekly loss of steelhead and winter-run Chinook salmon at the CVP and SWP facilities

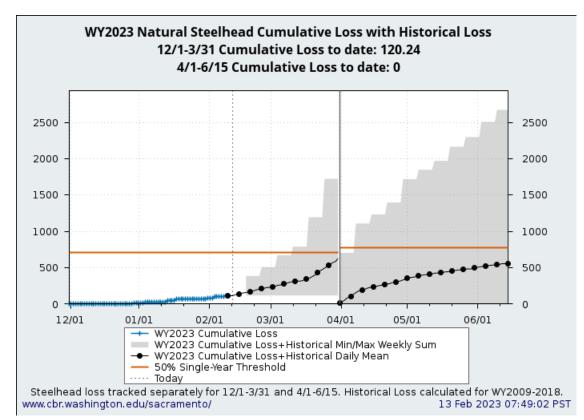


Figure 3. Cumulative natural steelhead loss for the year (blue) and 2009 – 2018 historic cumulative loss (gray, different symbols). Historic daily mean plotted in black circles

Evaluation

1. After January 1, are more than 5% of juveniles from one or more salmonid species present in the Delta?

Greater than 5% of all juvenile salmonids are present in the Delta.

2. Does the operational outlook's ranges impact fish movement and change the potential distribution of fish?

Potential effects within the 7 days (near-term) in the operations outlook.

OMR flow is expected to remain at or more positive than -5,000 cfs this upcoming week. OMR flows more positive than -5,000 cfs are hypothesized to have minimal impact on movement and distribution of salmonids in the South Delta.

Potential effects longer than the 7 days (longer-term) in the operations outlook.

Not applicable, see response above.

3. What is the likelihood of increased loss exceeding the next annual loss threshold (50%, 75% or 90% of threshold) resulting in OMR management actions based on population distribution, abundance, and behavior of fish in the Delta?

Winter-run Chinook salmon

Total juvenile natural winter-run Chinook salmon (LAD) loss is 50.91 fish (as of 02/13/2023). Loss of juvenile winter-run Chinook salmon has occurred in the past week at the CVP and SWP fish salvage facilities. Final JPE calculations have been established for brood year (BY) 2022 winter-run Chinook salmon. The agencies in the SaMT assessed the likelihood of exceeding the next annual loss threshold and are uncertain if loss occurring in the next week will lead to exceedance of the 50% single-year loss threshold. It is possible that the 50% annual loss threshold (292), 75% annual loss threshold (438), 90% annual loss threshold (525.7) and incidental take limit (998.5) will be exceeded this year, based on length at date.

The winter-run juvenile production estimate is low this year, leading to a low annual loss threshold. The length-at-date model is used for tracking exceedance of these thresholds; however, this year hatcheries experienced errors in clipping latefall run Chinook salmon that are within the older juvenile size range and may be mistakenly identified as natural winter-run because they lack the typical markings of a hatchery-produced fish. Figures 1 and 2 also provide a forecast of winter-run loss for the year, and indicate possible exceedance of these salvage based winterrun triggers. It is uncertain how well the historical data described in Figure 2 may be relevant this year. Genetic methods provide a more accurate measure of identifying winter-run Chinook salmon than length-at-date. DNA results indicate a loss of 0 winter-run Chinook salmon so far this year.

Spring-run Chinook salmon

Total natural juvenile spring-run Chinook salmon (LAD) loss is 2.54 fish (as of 2/13/2023). No loss of natural juvenile spring-run Chinook salmon has occurred in the past week at the CVP and SWP fish salvage facilities. The agencies in the SaMT assessed the likelihood of exceeding the next annual loss threshold and believes that loss occurring in the next week is unlikely to lead to exceedance of the 50% single-year loss threshold.

Central Valley Steelhead

Total natural juvenile steelhead loss (December 1 through March 31) is 120.2 fish (as of 2/13/2023). Loss of natural juvenile has occurred in the past week at the CVP and SWP fish salvage facilities. The agencies in the SaMT assessed the likelihood of exceeding the next annual loss threshold and believe that loss occurring in the next week is unlikely to lead to exceedance of the 50% single-year loss threshold.

4. If an annual loss threshold has been exceeded, do continued OMR restrictions benefit fish movement and survival based on real-time information?

Winter-run Chinook salmon

The annual loss threshold for winter-run Chinook salmon has not been exceeded in WY 2023.

Spring-run Chinook salmon

The annual loss threshold for spring-run Chinook salmon has not been exceeded in WY 2023.

Central Valley Steelhead

The annual loss threshold for steelhead (December 1 - March 31) has not been exceeded in WY 2023.

5. If OMR is more negative than -5,000 cfs, are there changes in spawning, rearing, foraging, sheltering, or migration behavior beyond those anticipated to occur under OMR management at -5,000 cfs?

Expected OMR flows are no more negative than -4,800 to -5,000 cfs for the next week. Under OMR flows more negative than -5,000 cfs the SaMT expects impacts to rearing, foraging, sheltering, or migration of salmonids present in the south Delta. Salmonid presence in the south Delta is difficult to assess because of limited observations and there is uncertainty in how much of the population might be impacted.

Biology Distribution and Evaluation of Green Sturgeon

Population Status

- Delta Life Stages:
 - Adults and Juveniles

Distribution

Current Distribution

• Adults: Most abundant during spring spawning migration period of March through May, and post spawning out-migration periods May through June; October through January depending on first winter storm event resulting in significant Sacramento River flow increases. Adult presence year-round to a lesser extent mainly in San Pablo Bay. • Juveniles: Age-1 through Age-3 juveniles present year-round and widely distributed. Juveniles tagged with acoustic tags in the main channel Sacramento River near Sherman Island detected in the Sacramento River as far upstream as the Cache Slough complex, in the San Joaquin River at the Antioch Bridge, in Threemile, Horseshoe Bend, and Montezuma Sloughs. Seasonal abundance at the primary sampling site (near Sherman Island) appears to be highest during summer in based on capture and telemetry data. Residence time at the primary sampling site for individual fish ranges from one day to over one year but telemetry data show outmigration from the primary sampling site to the Pacific Ocean ranges from 27 to 552 days. Recent capture data shows diurnal depth preference in the main channel of the Sacramento River. No recent documentation of shallow water habitat presence or foraging but likely.

Historical Trends

• Juvenile and adult green sturgeon are historically present in the San Joaquin and Sacramento rivers and Delta

Forecasted Distribution within Central Valley and Delta regions

• Juvenile and adult green sturgeon are present in the San Joaquin and Sacramento rivers and Delta during the next week.

Evaluation

1. Is there likely to be salvage that may exceed the annual loss limit?

Green sturgeon salvage is 0 fish (as of 2/13/2023). The agencies in the SaMT assessed the likelihood of salvage occurring in the next week is unlikely to occur.

Biology, Distribution, and Evaluation of Delta Smelt

Population Status

- Delta Smelt Life Stages:
 - Adults and subadults
- Brood Year 2022:
- Abundance estimate:
 - The abundance estimate as of February 10, 2023, was 4,028 (95% CI: 805-12,389).
- Biological Conditions:
 - Adult and subadult Delta Smelt are expected to be present in Suisun Bay, the Lower Sacramento River, the Sacramento Deepwater Ship Channel, Liberty

Island, the Lower San Joaquin River, and the Southern Delta based on the most recent survey detections. The large-scale population Delta Smelt migration has likely completed and the population is distributed widely in the Delta (Sommer et al. 2011). High variability in localized movement of spawning fish is likely (Polansky et al. 2017). The response of cultured fish to environmental cues typically applied to wild Delta Smelt is highly uncertain. Water temperatures are suitable for spawning (Damon et al. 2016), and two marked ripe Delta Smelt were detected. The Smelt Monitoring Team discussed the most recent monitoring data (Table 4) and considered published literature and professional judgement on the historical trends in regional distribution.

Distribution

Current Distribution

- Real time detection data is currently limited to EDSM, Chipps Island Trawl and SLS; Bay Study and SKT provide data as available.
- Unmarked Delta Smelt were detected in Suisun Marsh and in the Lower San Joaquin near Antioch between 1/31/2023-2/9/2023.
- Eight marked adult Delta Smelt have been detected in Suisun Bay, the Lower Sacramento River, the Sacramento Deepwater Ship Channel and Liberty Island between 1/30/2023 and 2/9/2023. Two marked ripe adult Delta Smelt were detected in the Sacramento Deepwater Ship Channel and the Lower Sacramento River on 2/8/2023.
- Marked Delta Smelt were salvaged at SWP on 2/8/2023 and CVP on 2/12/2023 and 2/13/2023 (n=2). All were from the hard release at Rio Vista on 1/18-1/19/23. Expanded seasonal salvage is now 20.
- Experimental release of hatchery Delta Smelt occurred at Rio Vista on November 30, 2022, and January 18-19, 2023, and in the Deepwater Shipping Channel on January 25-26, 2023. Twenty-five fish from the experimental release have been caught between 12/14/22 and 2/13/23.
- Larval sampling at the Skinner Fish Facility (SFF) and the Tracy Fish Collection Facility (TFCF) will be initiated by the SMT on March 1.
- COA 8.5.2: No larval or juvenile Delta Smelt have been salvaged at the SFF or TFCF as of 1/3/2023 (Table 7).

Table 7. Summary of newly reported detections of Delta Smelt by Region and Salvage Facilities since the last assessment. Regions are those defined by EDSM sampling. Delta Smelt >58mm FL are considered adults. Subadult fish are considered by the SMT to be fish from the previous year's cohort based on size and timing of collection. Young of year are considered juveniles and larvae.

Life Stage	North	South	West	Far West	Salvage
Adult	3	4	1	0	0
Subadult	0	0	0	0	0
Larvae/Juvenile	0	0	0	0	0

Table 8. Summary of recent Delta Smelt detections reported since last assessment and the total detections for the current water year. Notes reflect latest information on reported detections or completion of survey for the water year and include both larval and adult detections. Total Fish counts do not distinguish between hatchery origin and wild Delta Smelt. Table indicates detections that have undergone preliminary ID, QA/QC, and genetic confirmation. Numbers are updated as QA/QC and genetic confirmation become available.

Sampling Method	Frequency	New Prelim- inary Detections	Prelim- inary to Date	QA/QC to Date	Genetically Confirmed to Date	Total WY2023	Notes
EDSM	Weekly	2	N/A	18	1	21	Phase 1 began 12/5/22
SKT	Monthly	2	N/A	N/A	N/A	2	Began 1/9/23
SLS	Biweekly	0	N/A	N/A	N/A	0	Ongoing
20-mm	Biweekly	0	N/A	N/A	N/A	0	Begins: 3/13/23
Summer Townet	Biweekly	0	N/A	N/A	N/A	0	Begins:
Bay Study	Monthly	0	N/A	N/A	N/A	0	Ongoing
FMWT	Monthly	0	N/A	N/A	N/A	0	Complete
Chipps Island Trawl	Weekly	0	N/A	1	N/A	1	Ongoing

Sampling Method	Frequency	New Prelim- inary Detections	Prelim- inary to Date	QA/QC to Date	Genetically Confirmed to Date	Total WY2023	Notes
FCCL Brood Stock Collections	Weekly	0	N/A	2	N/A	2	Ongoing
LEPS	As available	0	N/A	N/A	N/A	0	Ongoing
FRP	Daily	0	N/A	N/A	N/A	0	Ongoing
Tracy Fish Collection Facility (CVP)	Daily	3	N/A	1	N/A	4	Ongoing
Skinner Fish Facility (SWP)	Daily	1	N/A	N/A	N/A	1	Ongoing
Total	N/A	N/A	N/A	N/A	N/A	31	Sum of all Delta Smelt observed during the OMR Managemen t Season

Cultured Delta Smelt Experimental Releases

- Experimental releases included:
 - 13,140 fish on November 30, 2022,
 - 17,570 fish on January 18-19, 2023, both at Rio Vista,
 - 12,995 in the Sacramento Deep Water Ship Channel.
- Experimental releases are complete.
- Details of Delta Smelt releases are available at: <u>SacPAS: Central Valley Prediction &</u> <u>Assessment of Salmon</u>

Table 9. Weekly summary of the origin of Delta Smelt. These identifications are considered tentative and additional genetic testing will confirm the identity of individuals. Individuals with no tags are provided alive to the FCCL as potential additions to the FCCL Broodstock.

			Total	Ad.		
Date	Survey	Stratum/Station	Caught	Clipped	VIE	No Tag
2/7/2023	EDSM	Cache Slough / Liberty Island	1	N/A	Х	N/A
2/8/2023	SWP Salvage	Southern Delta	1	N/A	Х	N/A
2/8/2023	SKT	Sacramento Deep Water Ship Channel	1	N/A	Х	N/A
2/8/2023	SKT	Lower Sacramento	1	N/A	Х	N/A
2/9/2023	EDSM	Suisun Marsh	1	N/A	N/A	Х
2/12/2023	CVP Salvage	Southern Delta	1	N/A	Х	N/A
2/13/2023	CVP Salvage	Southern Delta	2	N/A	Х	N/A

Historical Trends

- Upstream migration for Delta Smelt occurs between September and December and in response to "first flush" conditions (Sommer et al. 2011, Grimaldo et al. 2009). Migration typically ranges one to four weeks after flow and turbidity increases, based on salvage data (Sommer et al. 2011).
- The majority of Delta Smelt spawning occurs within a temperature range of 9-18°C (Damon et al. 2016).
- Salvage data as presented on SacPas indicates that adult Delta Smelt salvage in recent years has reached the 50th percentile at the end of February beginning of March.
- Historically, the highest peak in salvage is in May and the second highest is in June (Grimaldo et al 2009; figure 5).

Forecasted Distribution within Central Valley and Delta regions

- Predicting the distribution of Delta Smelt is currently difficult because detection data is limited to a few wild individuals and historic patterns may not be representative of the low population levels.
- The SMT uses turbidity as a surrogate for Delta Smelt presence and in making assessments of the likelihood of entrainment for larval Delta Smelt after spawning begins.
- The potential of experimentally released Delta Smelt to distribute from their release site is unknown at this time and SMT cannot predict their distribution beyond the original

release site and subsequent recaptures. There is a high degree of uncertainty regarding the response of cultured fish to environmental cues typically applied to wild Delta Smelt.

Abiotic Conditions

Turbidity

- Turbidity has decreased Delta-wide over the past week as flows have decreased. Forecast for this week includes windy conditions Tuesday and Wednesday, with NW winds 18-21 mph today near Stockton, gusting as high as 31 mph, and WNW winds 17-22 mph increasing to 25-30 mph near Antioch. Small chance of showers on Thursday.
- Turbidity is below 12 FNU at OBI and at other central and south Delta stations and is expected to decrease over the next week.

Table 10. Relevant Environmental Factors to the current management actions for Delta Smelt.

Date Reported	OBI Daily Average Turbidity (FNU)
2/13/2023	8.88

X2 Conditions

- As of 2/14/2023, X2 is estimated to be slightly upstream of Port Chicago (>65km).
- When X2 is above 81 km, the SMT uses the X2_EC_Graph.xlxs tool to estimate the position of X2 for both the Sacramento and San Joaquin Rivers and assumes the average of the two is representative of an approximate X2 position.

Other Environmental Conditions

- The Fish and Water Operation Outlook OMR Index values are expected to range between -4,800 to -5,000 cfs from 2/14/2023 to 2/21/2023.
- QWEST was estimated at 2,300 cfs on 2/13/2023 and is expected to remain above 1,500 cfs this week.
- Water temperature at Rio Vista was 10.1°C and at Antioch 10.3°C on 2/13/2023.
- Real time tracking of environmental conditions, relevant thresholds and Delta Smelt catch data are updated daily at: http://www.cbr.washington.edu/sacramento/workgroups/delta_smelt.html.

Evaluation

Proposed Operations: Combined CVP/SWP exports scheduled so that the 14-day average OMR is less negative or equal to -5,000 cfs.

1. Between December 1 and January 31, has any first flush condition been exceeded?

First flush conditions based on running 3-day average flow and running 3-day average turbidity at Freeport were met on December 31, 2022, triggering IEWPP regulations. The CVP and SWP reduced exports beginning on 1/3/2023 through 1/16/2023.

2. Do DSM have a high risk of migration and dispersal into areas at high risk of future entrainment? (December 1- January 31)

This is no longer applicable.

3. Has a spent female been collected?

A spent female has not been collected, but two cultured ripe females were caught by SKT on 2/8/2023. Some of the fish released in January were observed to be ripe and releasing eggs upon release. This could be due to warmer water temperatures at culture facilities, or due to stress from releases.

4. If OMR of -2000 cfs does not reduce OBI turbidity below 12NTU/FNU, what OMR target is deemed protective between -2000 and -5000 cfs?

This question is no longer applicable as OBI turbidity is < 12 NTU/FNU.

5. If OBI is 12 NTU/FNU, what do other station locations show?

OBI turbidity is currently below 12 NTU/FNU (Average of 8.9 FNU on 2/13/2023). The daily average turbidities on 2/13/2023 at Prisoners Point (9.1 NTU), Holland Cut (11.0 FNU) and Victoria Canal (9.2 NTU) are likely to decrease over the next seven days.

6. If OBI is 12 NTU/FNU, is a turbidity bridge avoidance action not warranted? What is the supporting information?

This question is no longer applicable as OBI turbidity is < 12 NTU/FNU.

7. After March 15 and if QWEST is negative, are larval or juvenile DSM within the entrainment zone of the CVP and SWP pumps based on surveys?

This question is not applicable until March 15th.

8. Based on real-time spatial distribution of Delta Smelt and currently available turbidity information, should OMR be managed to no more negative than -3,500?

This question is not applicable until March 15th.

9. What do hydrodynamic models, informed by EDSM or other relevant data, suggest the estimated percentage of larval and juvenile DSM that could be entrained may be?

This question is not applicable until March 15th.

Delta Smelt References

- Damon, L. J., S. B. Slater, R. D. Baxter, and R. W. Fujimura. 2016. Fecundity and reproductive potential of wild female Delta smelt in the upper San Francisco Estuary, California. California Fish and Game 102(4):188–210.
- Hobbs, J. A., Lewis, L. S., Willmes, M., Denney, C., & Bush, E. (2019). Complex life histories discovered in a critically endangered fish. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-52273-8
- Grimaldo, L. F., T. Sommer, N. Van Ark, G. Jones, E. Holland, P. B. Moyle, B. Herbold & P. Smith (2009) Factors Affecting Fish Entrainment into Massive Water Diversions in a Tidal Freshwater Estuary: Can Fish Losses be Managed? North American Journal of Fisheries Management, 29:5, 1253-1270, DOI: 10.1577/M08-062.1
- Gross, E. S. (2021). Modeling Delta Smelt Distribution for Hypothesized Swimming Behaviors. San Francisco Estuary and Watershed Science, 19(1).
- Kimmerer, W. J. (2008). Losses of Sacramento River Chinook Salmon and Delta sMelt to Entrainment in Water Diversions in the Sacramento-San Joaquin Delta. San Francisco Estuary and Watershed Science, 6(2).
- Polansky, L., Newman, K.B., Nobriga, M.L. et al. Spatiotemporal Models of an Estuarine Fish Species to Identify Patterns and Factors Impacting Their Distribution and Abundance. Estuaries and Coasts 41, 572–581 (2018). https://doi.org/10.1007/s12237-017-0277-3
- Smith, W. E., Polansky, L., and M. L Nobriga. 2021. Disentangling risks to an endangered fish: using a state-space life cycle model to separate natural mortality from anthropogenic losses. Canadian Journal of Fisheries and Aquatic Sciences, 78: 1008-1029.
- Sommer, T., F. Mejia, M. Nobriga, and L. Grimaldo. 2011. The Spawning Migration of Delta Smelt in the Upper San Francisco Estuary. San Francisco Estuary and Watershed Science 9(2).

Attachment A.

Table 11. Salmonid Genetic testing results for WY 2023 as of this assessment. Genetic identification of salmon is not used in calculating loss.

	Sample	Fork									
ID	Date	Length	Julian	ots28	Sex id	Assignment	PosProb1	Group	Model	Facility	Original ID
C220127CVP	12/17/2022 22:00	185	171	late	male	Non-winter	1.000	Spring	Fall	CVP	C220127CVP
C220098SWP	12/18/2022 13:00	137	172	late	female	Non-winter	1.000	Spring	Winter	SWP	C220098SWP
C220099SWP	12/28/2022 5:00	154	181	late	male	Non-winter	1.000	Spring	Late Fall	SWP	C220099SWP
C220128CVP	12/30/2022 23:59	163	184	late	female	Non-winter	1.000	Fall	Late Fall	CVP	C220128CVP
C220180SWP	12/31/2022 3:00	180	184	late	male	Non-winter	1.000	Fall	Late Fall	SWP	C220180SWP
C230082SWP	1/1/2023 10:00	150	185	late	male	Non-winter	1.000	Fall	Winter	SWP	C230082SWP
C230083SWP	1/1/2023 11:00	113	185	late	female	Non-winter	1.000	Fall	Winter	SWP	C230083SWP
C230082CVP	1/2/2023 14:00	212	187	early	male	Non-winter	1.000	Fall	Fall	CVP	C230082CVP
C230001CVP	1/3/2023 10:00	35	187	late	female	Non-winter	1.000	Fall	Fall	CVP	C230001CVP
C230002CVP	1/3/2023 10:00	34	187	late	male	Non-winter	1.000	Fall	Fall	CVP	C230002CVP
C230003CVP	1/3/2023 10:00	33	187	late	female	Non-winter	1.000	Fall	Fall	CVP	C230003CVP
C230004CVP	1/3/2023 10:00	34	187	late	male	Non-winter	1.000	Fall	Fall	CVP	C230004CVP
C230005CVP	1/3/2023 12:00	35	188	late	male	Non-winter	1.000	Unassigned	Fall	CVP	C230005CVP

	Sample	Fork									
ID	Date	Length	Julian	ots28	Sex id	Assignment	PosProb1	Group	Model	Facility	Original ID
C230006CVP	1/4/2023 8:00	38	188	late	female	Non-winter	1.000	Fall	Fall	CVP	C230006CVP
C230007CVP	1/4/2023 12:00	36	189	late	female	Non-winter	1.000	Fall	Fall	CVP	C230007CVP
C230008CVP	1/4/2023 12:00	38	189	late	female	Non-winter	1.000	Fall	Fall	CVP	C230008CVP
C230009CVP	1/4/2023 12:00	36	189	late	female	Non-winter	1.000	Spring	Fall	CVP	C230009CVP
C230010CVP	1/4/2023 14:00	38	189	late	male	Non-winter	1.000	Fall	Fall	CVP	C230010CVP
C230084SWP	1/4/2023 15:00	162	189	late	male	Non-winter	1.000	Fall	Late Fall	SWP	C230084SWP
C230012CVP	1/4/2023 22:00	148	189	late	male	Non-winter	1.000	Spring	Winter	CVP	C230012CVP
C230011CVP	1/5/2023 10:00	37	189	late	female	Non-winter	1.000	Fall	Fall	CVP	C230011CVP
C230013CVP	1/5/2023 14:00	163	190	late	female	Non-winter	1.000	Fall	Late Fall	CVP	C230013CVP
C230015CVP	1/11/2023 6:00	38	195	late	male	Non-winter	1.000	Fall	Fall	CVP	C230015CVP
C230016CVP	1/12/2023 8:00	166	196	late	female	Non-winter	1.000	Spring	Winter	CVP	C230016CVP
C230019CVP	1/12/2023 10:00	42	196	late	male	Non-winter	1.000	Spring	Fall	CVP	C230019CVP
C230018CVP	1/12/2023 12:00	34	197	late	female	Non-winter	1.000	Fall	Fall	CVP	C230018CVP
C230020CVP	1/12/2023 23:59	31	197	late	male	Non-winter	1.000	Fall	Fall	CVP	C230020CVP
C230021CVP	1/13/2023 6:00	35	197	late	male	Non-winter	1.000	Fall	Fall	CVP	C230021CVP
C230022CVP	1/13/2023 10:00	35	197	late	male	Non-winter	1.000	Spring	Fall	CVP	C230022CVP

	Sample	Fork									
ID	Date	Length	Julian	ots28	Sex id	Assignment	PosProb1	Group	Model	Facility	Original ID
C230023CVP	1/13/2023 23:59	38	198	late	male	Non-winter	1.000	Fall	Fall	CVP	C230023CVP
C230024CVP	1/14/2023 2:00	38	198	late	female	Non-winter	1.000	Fall	Fall	CVP	C230024CVP
C230025CVP	1/14/2023 6:00	35	198	late	male	Non-winter	1.000	Fall	Fall	CVP	C230025CVP
C230026CVP	1/14/2023 6:00	195	198	late	male	Non-winter	1.000	Fall	Late Fall	CVP	C230026CVP
C230027CVP	1/14/2023 14:00	36	199	late	female	Non-winter	1.000	Fall	Fall	CVP	C230027CVP
C230086SWP	1/17/2023 7:45	149	201	late	female	Non-winter	1.000	Fall	Winter	SWP	C230086SWP
C230029CVP	1/17/2023 8:00	36	201	late	female	Non-winter	1.000	Fall	Fall	CVP	C230029CVP
C230031CVP	1/17/2023 23:59	36	202	late	male	Non-winter	1.000	Fall	Fall	CVP	C230031CVP
C230032CVP	1/17/2023 23:59	35	202	late	male	Non-winter	1.000	Fall	Fall	CVP	C230032CVP
C230033CVP	1/17/2023 23:59	35	202	late	male	Non-winter	1.000	Fall	Fall	CVP	C230033CVP
C230034CVP	1/18/2023 4:00	35	202	late	male	Non-winter	1.000	Fall	Fall	CVP	C230034CVP
C230035CVP	1/18/2023 4:00	35	202	late	male	Non-winter	1.000	Fall	Fall	CVP	C230035CVP
C230036CVP	1/18/2023 12:00	38	203	late	female	Non-winter	1.000	Fall	Fall	CVP	C230036CVP
C230037CVP	1/18/2023 14:00	37	203	late	male	Non-winter	1.000	Fall	Fall	CVP	C230037CVP
C230038CVP	1/18/2023 16:00	34	203	late	male	Non-winter	1.000	Fall	Fall	CVP	C230038CVP
C230039CVP	1/19/2023 10:00	32	203	late	female	Non-winter	1.000	Fall	Fall	CVP	C230039CVP

	Sample	Fork									
ID	Date	Length	Julian	ots28	Sex id	Assignment	PosProb1	Group	Model	Facility	Original ID
C230040CVP	1/19/2023 10:00	37	203	late	male	Non-winter	1.000	Fall	Fall	CVP	C230040CVP
C230041CVP	1/19/2023 14:00	37	204	late	female	Non-winter	1.000	Fall	Fall	CVP	C230041CVP
C230042CVP	1/19/2023 18:00	35	204	late	female	Non-winter	1.000	Fall	Fall	CVP	C230042CVP
C230043CVP	1/19/2023 18:00	30	204	late	male	Non-winter	1.000	Fall	Fall	CVP	C230043CVP
C230044CVP	1/19/2023 18:00	38	204	late	male	Non-winter	1.000	Fall	Fall	CVP	C230044CVP
C230045CVP	1/20/2023 2:00	35	204	late	female	Non-winter	1.000	Fall	Fall	CVP	C230045CVP
C230046CVP	1/20/2023 2:00	35	204	late	female	Non-winter	1.000	Fall	Fall	CVP	C230046CVP
C230047CVP	1/20/2023 2:00	34	204	late	male	Non-winter	1.000	Fall	Fall	CVP	C230047CVP
C230048CVP	1/20/2023 6:00	35	204	late	female	Non-winter	1.000	Fall	Fall	CVP	C230048CVP
C230049CVP	1/20/2023 10:00	37	204	late	female	Non-winter	1.000	Fall	Fall	CVP	C230049CVP
C230050CVP	1/20/2023 18:00	30	205	late	female	Non-winter	1.000	Fall	Fall	CVP	C230050CVP
C230051CVP	1/21/2023 12:00	34	206	late	female	Non-winter	1.000	Fall	Fall	CVP	C230051CVP
C230052CVP	1/22/2023 2:00	38	206	late	male	Non-winter	1.000	Fall	Fall	CVP	C230052CVP
C230053CVP	1/22/2023 12:00	35	207	late	female	Non-winter	1.000	Fall	Fall	CVP	C230053CVP
C230054CVP	1/22/2023 14:00	36	207	late	female	Non-winter	1.000	Fall	Fall	CVP	C230054CVP
C230055CVP	1/23/2023 12:00	37	208	late	male	Non-winter	1.000	Fall	Fall	CVP	C230055CVP

	Sample	Fork									
ID	Date	Length	Julian	ots28	Sex id	Assignment	PosProb1	Group	Model	Facility	Original ID
C230056CVP	1/24/2023 14:00	37	209	late	male	Non-winter	1.000	Fall	Fall	CVP	C230056CVP
C230057CVP	1/26/2023 14:00	35	211	late	female	Non-winter	1.000	Fall	Fall	CVP	C230057CVP
C230058CVP	1/26/2023 23:59	37	211	early	male	Non-winter	1.000	Fall	Fall	CVP	C230058CVP
C230060CVP	1/27/2023 8:00	42	211	late	female	Non-winter	1.000	Fall	Fall	CVP	C230060CVP
C230061CVP	1/27/2023 10:00	37	211	early	male	Non-winter	1.000	Fall	Fall	CVP	C230061CVP
C230062CVP	1/27/2023 14:00	35	212	late	male	Non-winter	1.000	Fall	Fall	CVP	C230062CVP
C230063CVP	1/27/2023 18:00	52	212	late	female	Non-winter	1.000	Fall	Spring	CVP	C230063CVP
C230064CVP	1/27/2023 18:00	36	212	late	female	Non-winter	1.000	Fall	Fall	CVP	C230064CVP
C230065CVP	1/27/2023 18:00	30	212	late	female	Non-winter	1.000	Fall	Fall	CVP	C230065CVP
C230066CVP	1/28/2023 12:00	36	213	late	male	Non-winter	1.000	Fall	Fall	CVP	C230066CVP
C230067CVP	1/28/2023 14:00	35	213	late	female	Non-winter	1.000	Fall	Fall	CVP	C230067CVP
C230068CVP	1/29/2023 8:00	37	213	late	female	Non-winter	1.000	Fall	Fall	CVP	C230068CVP
C230069CVP	1/29/2023 8:00	39	213	late	female	Non-winter	1.000	Fall	Fall	CVP	C230069CVP
C230070CVP	1/29/2023 8:00	38	213	late	female	Non-winter	1.000	Fall	Fall	CVP	C230070CVP
C230071CVP	1/29/2023 8:00	39	213	late	male	Non-winter	1.000	Fall	Fall	CVP	C230071CVP
C230072CVP	1/29/2023 8:00	37	213	late	male	Non-winter	1.000	Fall	Fall	CVP	C230072CVP

	Sample	Fork									
ID	Date	Length	Julian	ots28	Sex id	Assignment	PosProb1	Group	Model	Facility	Original ID
C230073CVP	1/29/2023 8:00	38	213	late	female	Non-winter	1.000	Fall	Fall	CVP	C230073CVP
C230074CVP	1/30/2023 6:00	38	214	late	female	Non-winter	1.000	Fall	Fall	CVP	C230074CVP
C230075CVP	1/30/2023 6:00	36	214	early	male	Non-winter	1.000	Fall	Fall	CVP	C230075CVP
C230076CVP	1/30/2023 8:00	145	214	late	male	Non-winter	1.000	Spring	Winter	CVP	C230076CVP
C230077CVP	1/30/2023 8:00	36	214	late	male	Non-winter	1.000	Fall	Fall	CVP	C230077CVP
C230078CVP	1/30/2023 18:00	45	215	early	male	Non-winter	1.000	Fall	Fall	CVP	C230078CVP
C230079CVP	1/30/2023 18:00	36	215	late	male	Non-winter	1.000	Fall	Fall	CVP	C230079CVP
C230080CVP	1/30/2023 20:00	37	215	late	female	Non-winter	1.000	Fall	Fall	CVP	C230080CVP
C230081CVP	1/30/2023 22:00	34	215	late	female	Non-winter	1.000	Fall	Fall	CVP	C230081CVP
C230084CVP	1/31/2023 8:00	40	215	late	female	Non-winter	1.000	Fall	Fall	CVP	C230084CVP
C230085CVP	1/31/2023 8:00	40	215	early	female	Non-winter	1.000	Fall	Fall	CVP	C230085CVP
C230086CVP	1/31/2023 16:00	34	216	late	male	Non-winter	1.000	Fall	Fall	CVP	C230086CVP
C230087CVP	1/31/2023 20:00	44	216	early	female	Non-winter	1.000	Fall	Fall	CVP	C230087CVP
C230088CVP	2/1/2023 8:00	38	216	late	female	Non-winter	1.000	Fall	Fall	CVP	C230088CVP
C230089CVP	2/1/2023 10:00	35	216	late	male	Non-winter	1.000	Fall	Fall	CVP	C230089CVP
C230090CVP	2/1/2023 10:00	37	216	late	male	Non-winter	1.000	Fall	Fall	CVP	C230090CVP

	Sample	Fork									
ID	Date	Length	Julian	ots28	Sex id	Assignment	PosProb1	Group	Model	Facility	Original ID
C230091CVP	2/1/2023	34	217	late	male	Non-winter	1.000	Fall	Fall	CVP	C230091CVP
	20:00										
C230092CVP	2/1/2023	33	217	late	female	Non-winter	1.000	Fall	Fall	CVP	C230092CVP
	20:00										
C230093CVP	2/2/2023 10:00	41	217	late	female	Non-winter	1.000	Fall	Fall	CVP	C230093CVP
C230094CVP	2/2/2023	39	218	late	male	Non-winter	1.000	Fall	Fall	CVP	C230094CVP
	12:00										
C230097CVP	2/3/2023	42	218	late	female	Non-winter	1.000	Fall	Fall	CVP	C230097CVP
	6:00										
C230098CVP	2/3/2023	48	218	late	male	Non-winter	1.000	Fall	Fall	CVP	C230098CVP
	6:00										
C230099CVP	2/5/2023	38	220	late	female	Non-winter	1.000	Fall	Fall	CVP	C230099CVP
	6:00										
C230100CVP	2/5/2023	36	220	late	female	Non-winter	1.000	Fall	Fall	CVP	C230100CVP
	6:00										
C230102CVP	2/5/2023	41	221	early	male	Non-winter	1.000	Fall	Fall	CVP	C230102CVP
622010261/0	14:00		221			NI 1.	1 000	5.11		0.0	C220102CV/D
C230103CVP	2/6/2023 8:00	38	221	late	male	Non-winter	1.000	Fall	Fall	CVP	C230103CVP
C230104CVP	2/6/2023	38	221	late	female	Non-winter	1.000	Fall	Fall	CVP	C230104CVP
2230104211	8:00	50	221	late	Ternale		1.000	1 dii	1 dii	CVI	2230104201
C230105CVP	2/6/2023	34	221	late	male	Non-winter	1.000	Fall	Fall	CVP	C230105CVP
	8:00										
C230106CVP	2/7/2023	38	222	late	male	Non-winter	1.000	Fall	Fall	CVP	C230106CVP
	6:00										