

Sacramento River Temperature Task Group

Thursday, February 27, 2020

1:00 pm - 3:00 pm Joint Operations Center, 3310 El Camino, Sacramento CA

Conference Line: 877-417-6209 Participant Code: 1593030

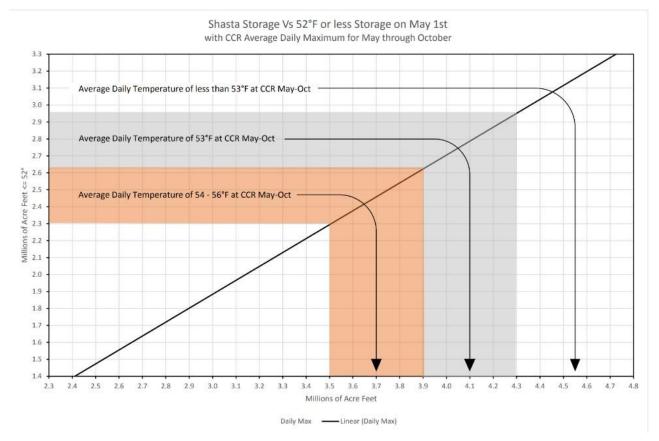
Agenda

- 1. Introductions
- 2. Purpose and Objective
- 3. 2020 Meeting Logistics
- 4. Overview Long Term Operations Implementation
- 5. Hydrology Update
- 6. Operations Update and Forecasts
 - a. Storage/Release Management Conditions
 - b. Temperature Management
- 7. River Fish Monitoring: carcass surveys, redd counts, stranding and dewatering surveys and sampling at rotary screw traps
- 8. Fish Distribution/Forecasts: Estimated percentage of the population upstream of Red Bluff Diversion Dame for steelhead, winter-run and spring-run Chinook salmon.
- 9. Seasonal Topics
- 10. Discussion
- 11. Review Action Items
- 12. Next Meeting Scheduling

Tentative SRTTG Meeting Logistics

- 4th Wednesday of month SRTTG meeting materials
- 4th Thursday of month SRTTG meeting
- 7 days after SRTTG meeting post materials
- 7 days after SRTTG meeting distribute draft meeting notes
- 14 days after SRTTG meeting comments on draft meeting notes
- 21 days after SRTTG meeting post final meeting notes

Sun	Mon	Tue	Wed	Thurs	Fri	Sat
23	24	25	26 Meeting Materials	27 SRTTG Meeting	28	29
1	2	3	4	5 Post Materials Draft Meeting Notes	6	7
8	9	10	11	12 Meeting Notes Comments	13	14
15	16	17	18	19 Post Final Meeting Notes	20	21
22	23	24	25 Meeting Materials	26 SRTTG Meeting	27	28
29	30	31				


February/March 2020 Example

Tentative SRTTG Monitoring and Modeling Logistics

- 4th Wednesday of month SRTTG meeting materials
- 4th Thursday of month SRTTG meeting
- 4th Monday of month Temperature modeling complete
- 4th Wednesday of month Salmon mortality modeling complete
- 2nd Thursday through 3rd Wednesday Profile Monitoring window

Sun	Mon	Tue	Wed	Thurs	Fri	Sat
23	24	25	26 Meeting Materials	27 SRTTG Meeting	28	29
1	2	3	4	5	6	7
8	9 B120 Hydrology	10	11	12 Profile	13 Profile	14
15	16 Profile CVP Ops Outlooks	17 Profile	18 Profile	19	20	21
22	23 Temp Modeling	24	25 Salmon Mort. Modeling Meeting Materials	26 SRTTG Meeting	27	28
29	30	31				

February/March 2020 Example

Figure 4-2. Relationship between Temperature Compliance, Total Storage in Shasta Reservoir, and Cold Water Pool in Shasta Reservoir

4.10.1.4.1 <u>Summer Cold Water Pool Management</u>

Reclamation proposes to operate the TCD at Shasta Dam to continue providing temperature management in accordance with CVPIA 3406(b)(6) while minimizing impacts on power generation. Cold water pool is defined as the volume of water in Shasta Reservoir that is less than 52°F, which Reclamation would determine based on monthly (or more frequent) reservoir temperature profiles. The Sacramento River above Clear Creek (CCR) gage is a surrogate for the downstream extent of most Winter-Run Chinook Salmon redds. Temperature management would start on May 15, or when the SRTTG determines, based on real-time information, that Winter-Run Chinook Salmon have spawned, whichever is later. Temperature management would end October 31, or when the SRTTG determines based on real-time monitoring that 95 percent of Winter-Run Chinook Salmon eggs have hatched, and alevin have emerged, whichever is earlier. Real-time information will continue to be considered in this process, which includes redd, carcass, and juvenile surveys.

Reclamation proposes to address cold water management utilizing a tiered strategy that allows for strategically selected temperature objectives, based on projected total storage and cold water pool, meteorology, Delta conditions, and habitat suitability for incoming fish population size and location. The tiered strategy recognizes that cold water is a scarce resource that can be managed to achieve desired water temperatures for fisheries objectives. Figure 4-3 below shows examples of water temperatures at CCR under the four tiers, with arrows indicating how temperatures would change in different years with less May 1 forecasted cold water pool. The proposed tiers are described below, along with storage levels that are likely to provide for cold water management within the tier. Actual

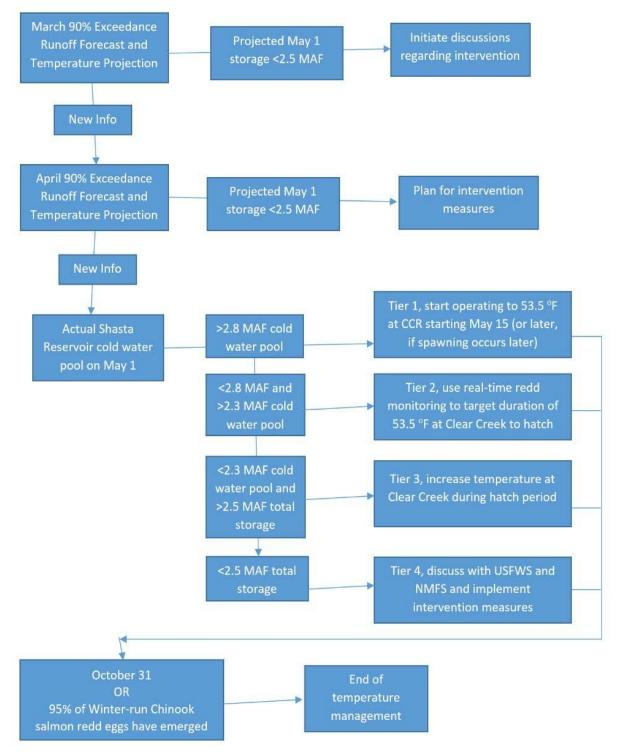


Figure 4-4. Decision Tree for Shasta Reservoir Temperature Management

Reclamation intends to collect temperature profile measurements for Shasta, Whiskeytown, and Trinity Reservoirs on the schedule shown in Table 4-9 and provide these to USFWS and NMFS if it is projected to be a Tier 4 year.

operations will depend upon the available cold water and modeling. In any given year, cold water pool and storage could result in Reclamation switching between tiers within the year if needed to optimally use the cold water pool. Coldwater pool management is proposed to start as early as May 15th, however temperatures at the start of the temperature management season are often lower than the target temperatures.

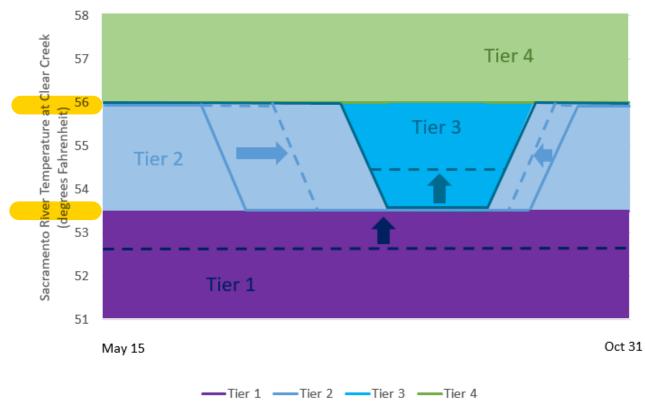


Figure 4-3. Tiered Temperature Management Strategy

- Tier 1. In years when Reclamation determines that cold water pool is sufficient (e.g., more than 2.8 MAF of cold water pool in Shasta Reservoir at the beginning of May or modeling suggests that a daily average temperature of 53.5°F at CCR can be maintained from May 15 to October 31), Reclamation proposes to operate to a daily average temperature of 53.5°F at the CCR gaging station to minimize temperature dependent mortality. Although Tier 1 years generally have sufficient cold water to maintain 53.5°F through October 31, the unknown meteorology continues to present a risk of temperatures rising above 53.5°F, particularly towards the end of the summer in September and October. Reclamation can generally manage these risks through real time operations of the TCD, although temporary exceedances may occur, and thus allowable tolerances will be identified in the annual temperature management plan through coordination with SRTTG.
- Tier 2. In years when cold water pool is insufficient to allow Tier 1 (e.g., less than 2.8 MAF of cold water pool in Shasta Reservoir at the beginning of May or modeling suggests that the 53.5°F at CCR cannot be maintained from May 15 to October 31), Reclamation would optimize use of cold water for Winter-Run Chinook Salmon eggs based on life-stage-specific requirements, reducing the duration of time of operating to 53.5°F target temperatures. Water temperatures at CCR would vary based on real-time monitoring of redd timing and lifestage-specific temperature

dependent mortality models, for example, Anderson (2017). The period of temperature management with 53.5°F at CCR would be centered on the projected time when the Winter-Run eggs have the highest dissolved oxygen requirement (37–67 days post fertilization). At 2.79 MAF of cold water pool, Reclamation would operate to 53.5°F from 37 days after the first observed redd to 67 days after the last observed redd, if this is earlier than October 31. The duration of the 53.5°F protection will decrease in proportion to the available cold water pool on May 1. Reclamation will determine this time period by running different temperature scenarios through the latest egg mortality model(s) and real-time monitoring of redds. Reclamation would operate to daily average temperatures at CCR during the temperature management season outside of the stage- specific critical window no warmer than 56°F Although Tier 2 years generally have sufficient cold water to maintain 56° F after the last observed red through October 31, the unknown meteorology continues to present a risk of temperatures rising above 56°F, particularly towards the end of the summer in September and October. Reclamation can generally manage these risks through real time operations of the TCD, although temporary exceedances may occur and thus allowable tolerances will be identified in the annual temperature management plan through coordination with the SRTTG.

- Tier 3. When Reclamation determines that life-stage-specific temperature targets cannot be met per (2) above (e.g., less than 2.3 MAF of cold water pool in Shasta Reservoir at the beginning of May or modeling suggests that cold water pool management at colder tiers would cause loss of temperature control late in the season), Reclamation proposes to use cold water pool releases to maximize Winter- Run Chinook Salmon redd survival by increasing the coldest water temperature target (see Figure 4-4 below). In Tier 3, the targeted temperature at CCR during the early and late periods of cold water pool management will not exceed a daily average of 56°F. Based on latest egg mortality models, real-time monitoring, and expected and current cold water availability, Reclamation would decrease the temperatures during the period of greatest temperature stress on early life stages to minimize adverse effects to the greatest extent possible. During this critical period, temperatures will be targeted between 53.5°F and 56°F. Tier 3 will be selected if Reclamation's temperature management plan indicates that temperatures can be maintained to at least 56°F at CCR, otherwise Reclamation would operate to Tier 4. Although Tier 3 years generally have sufficient cold water to maintain 56°F through October 31, the unknown meteorology continues to present a risk of temperatures rising above 56°F, particularly towards the end of the summer in September and October. Reclamation can generally manage these risks through real time operations of the TCD, although temporary exceedances may occur, and thus allowable tolerances will be identified in the annual temperature management plan through coordination with the SRTTG. If the temperature management plan indicates a higher risk of exceeding 56°F before October 1st, this is an indication that the cold water pool may not support a warm early fall and will therefore be treated as a Tier 4 year for the purposes of intervention measures and early season discussions and coordination.
- **Tier 4.** If there is less than 2.5 MAF of total storage (note the use of "total" storage as opposed to the "cold water pool" used in the previous criteria) in Shasta Reservoir at the beginning of May, or if Reclamation cannot meet 56°F at CCR, Reclamation will attempt to operate to a less than optimal temperature target and period that is determined in real-time with technical assistance from NMFS and USFWS. Reclamation will explore improved coordination of downstream diversions, and the potential for demand shifting. In addition, Reclamation proposes to implement intervention measures (e.g., increasing hatchery intake and trap and haul, as described below).

At the March forecast (mid-March), if the forecasted Shasta Reservoir total storage is projected to be below 2.5 MAF at the beginning of May, Reclamation would initiate discussions with USFWS and NMFS on potential intervention measures should this low storage condition continue into April and

UNITED STATES DEPARTMENT OF THE INTERIOR U.S. BUREAU OF RECLAMATION-CENTRAL VALLEY PROJECT-CALIFORNIA DAILY CVP WATER SUPPLY REPORT

FEBRUARY 25, 2020

RESERVOIR RELEASES IN CUBIC FEET/SECOND

RUN DATE: February 26, 2020

RESERVOIR	DAM	WY 2019	WY 2020	15 YR MEDIAN
TRINITY	LEWISTON	300	298	301
SACRAMENTO	KESWICK	3,342	5,008	3,342
FEATHER	OROVILLE (SWP)	1,750	2,250	1,750
AMERICAN	NIMBUS	9,738	1,998	1,998
STANISLAUS	GOODWIN	1,505	2,009	378
SAN JOAQUIN	FRIANT	636	582	200

STORAGE IN MAJOR RESERVOIRS IN THOUSANDS OF ACRE-FEET

RESERVOIR	CAPACITY	15 YR AVG	WY 2019	WY 2020	% OF 15 YR AVG
TRINITY	2,448	1,595	1,687	2,021	127
SHASTA	4,552	3,147	3,548	3,551	113
FOLSOM	977	479	604	457	95
NEW MELONES	2,420	1,515	2,004	1,945	128
FED. SAN LUIS	966	685	909	503	73
TOTAL NORTH CVP	11,363	7,422	8,752	8,477	114
MILLERTON	520	300	369	290	97
OROVILLE (SWP)	3,538	2,092	1,983	2,255	108

ACCUMULATED INFLOW FOR WATER YEAR TO DATE IN THOUSANDS OF ACRE-FEET

RESERVOIR	CURRENT WY 2020	WY 1977	WY 1983	15 YR AVG	% OF 15 YR AVG
TRINITY	182	55	713	386	47
SHASTA	<mark>1,556</mark>	1,124	4,044	2,209	70
FOLSOM	485	158	2,225	970	50
NEW MELONES	238		741	326	73
MILLERTON	315	99	1,100	332	95

ACCUMULATED PRECIPITATION FOR WATER YEAR TO DATE IN INCHES

RESERVOIR	CURRENT WY 2020	WY 1977	WY1983	AVG (N YRS)	% OF AVG	LAST 24 HRS
TRINITY AT FISH HATCHERY	11.40	6.47	32.74	22.25 (58)	51	0.00
SACRAMENTO AT SHASTA DAM	<mark>24.31</mark>	7.82	62.86	42.15 (63)	<mark>58</mark>	0.00
AMERICAN AT BLUE CANYON	29.60	11.54	65.43	44.49 (45)	67	0.00
STANISLAUS AT NEW MELONES	12.13		27.79	18.31 (42)	66	0.00
SAN JOAQUIN AT HUNTINGTON LK	13.51	7.80	53.80	27.26 (45)	50	0.00

Upper Sacramento River Summary Conditions – February (On-going):

Storage/Release Management Conditions:

- Reservoir Inflow Uncertainty: Shorter term forecasts (8-14 day) suggest a below normal chance of precipitation
- Longer term forecasts (three-month outlook) suggest below normal precipitation
- Dry pattern persisting and February inflows falling below the 90% inflow exceedance probability estimates
- Current release from Keswick Dam: Ramping up from 5,000 cfs to 5,500 cfs beginning March 1st for SWRCB D1641 Delta Outflow requirements
- Long-term conservative (hydrology) projections suggest lower Shasta storage volumes

Temperature Management:

- Temperature management: inactive
- Selective withdrawal: Rebuilding cold-water-pool reserves. All Upper and Middle gates open, when storage elevations are sufficient, the Middle gates will be closed. Long term conservative (hydrology) projections suggest difficulty reaching a TCD configuration with only the Top Gates.
- Meteorological Uncertainty: Shorter term forecasts (8-14 day) suggest below normal to near normal temperatures
- Longer term forecasts (three-month outlook) suggest above normal chances of warmer temperatures

Resources:

- Reclamation Bay Delta website: <u>https://www.usbr.gov/mp/bdo/lto/index.html</u>
- LTO Proposed Action: <u>https://www.usbr.gov/mp/bdo/docs/ba-chapter-4-proposed-action.pdf</u>
- 2019 Biological Opinions: <u>https://www.usbr.gov/mp/bdo/lto/biop.html</u>
- Excellent link for short term precipitation forecasts, overlay with burn areas, debris flow potential, etc: <u>https://www.cnrfc.noaa.gov/</u>
- Comprehensive Upper Sacramento fishery information: <u>https://www.calfish.org/ProgramsData/ConservationandManagement/CentralValleyMonitoring</u> <u>/CDFWUpperSacRiverBasinSalmonidMonitoring.aspx</u>
- SacPAS: Central Valley Prediction & Assessment of Salmon: <u>http://www.cbr.washington.edu/sacramento/</u>
- Bulletin 120 Forecast Updates: <u>http://cdec.water.ca.gov/b120up.html</u>

CVP Northern System Operation Outlooks: Draft February 2020

90% Runoff Exceedance Outlook

End of Month Storage/Elevation	Feb	Mar	Apr	Мау	Jun	Jul
Shasta Volume (TAF)	3556	3680	3764	3682	3289	2792
Shasta Elevation (Feet)	1031	1036	1039	1036	1020	998

Monthly Average River Release	Feb	Mar	Apr	Мау	Jun	Jul
Sacramento (CFS)	4370	4000	7000	7950	11900	12500
Clear Creek (CFS)	200	200	218	380	288	150

Trinity Diversions	Feb	Mar	Apr	Мау	Jun	Jul
Carr Power Plant (TAF)	8	63	120	107	125	120
Spring Creek PP (TAF)	10	70	90	90	110	110

50% Runoff Exceedance Outlook

End of Month Storage/Elevation	Feb	Mar	Apr	Мау	Jun	Jul
Shasta Volume (TAF)	3602	3959	4062	3981	3681	3126
Shasta Elevation (Feet)	1033	1046	1050	1047	1036	1013

Monthly Average River Release	Feb	Mar	Apr	Мау	Jun	Jul
Sacramento (CFS)	4000	5000	7000	8000	11000	13500
Clear Creek (CFS)	200	200	218	380	288	150

Trinity Diversions	Feb	Mar	Apr	Мау	Jun	Jul
Carr Power Plant (TAF)	0	85	61	49	121	99
Spring Creek PP (TAF)	35	110	40	40	110	90

Notes: Inflow is based on the DWR B120 90% or 50% inflow exceedance Outlook; Historical inflows are used in the month of October and future months.

CVP actual operations do not follow any forecasted operation or outlook; actual operations are based on real-time conditions.

CVP operational forecasts or outlooks consider general system-wide dynamics and do not necessarily address specific watershed/tributary details.

CVP releases represent monthly averages.

CVP operations are updated monthly as new hydrology information is made available December through May.

Storages

Federal End of the Month Storage/Elevation (TAF/Feet)

		Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan
Trinity	1998	2045	2047	2009	1887	1728	1581	1406	1250	1213	1189	1199	1231
	Elev.	2344	2344	2342	2333	2321	2310	2295	2281	2277	2275	2276	2279
Whiskeytown	207	206	206	238	238	238	238	238	238	206	206	206	206
-	Elev.	1199	1199	1209	1209	1209	1209	1209	1209	1199	1199	1199	1199
Shasta	3482	3556	3680	3764	3682	3289	2792	2434	2252	2142	2142	2226	2377
	Elev.	1031	1036	1039	1036	1020	998	981	971	965	965	970	978
Folsom	487	465	448	484	470	419	365	311	274	249	229	225	276
	Elev.	412	410	415	413	406	398	389	383	378	374	373	383
New Melones	1983	1924	1891	1821	1743	1668	1583	1512	1470	1434	1445	1459	1472
	Elev.	1045	1042	1036	1028	1021	1012	1004	1000	996	997	999	1000
San Luis	363	380	479	414	280	140	-23	-67	17	151	273	398	603
	Elev.	485	495	481	462	437	408	387	396	409	428	458	485
Total		8575	8751	8729	8299	7481	6537	5833	5501	5394	5484	5713	6166

Monthly River Releases (TAF/cfs)

Trinity	TAF	17	18	36	92	47	28	53	52	23	18	18	18
•	cfs	300	300	600	1,498	783	450	857	870	373	300	300	300
Clear Creek	TAF	11	12	13	23	17	9	9	9	12	12	12	12
	cfs	200	200	218	380	288	150	150	150	200	200	200	200
Sacramento	TAF	243	246	416	489	708	768	615	416	369	268	246	246
	cfs	4370	4000	7000	7950	11900	12500	10000	7000	6000	4500	4000	4000
American	TAF	102	108	108	108	105	95	95	78	62	59	66	61
	cfs	1829	1750	1823	1765	1758	1550	1542	1305	1004	1000	1071	1000
Stanislaus	TAF	75	48	60	39	12	12	12	12	39	12	12	13
	<mark>cfs</mark>	1350	780	1004	631	200	200	200	200	635	200	200	219
Trinity Divers	ions (TA	F) _{Feb}	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Νον	Dec	Jan
Carr PP		8	63	120	107	125	120	121	100	23	26	12	3
Spring Crk. PP		10	70	90	90	110	110	110	90	45	20	12	10
Delta Summa	ry (TAF)	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan
Tracy		99	190	45	46	115	111	193	255	260	176	158	240
USBR Banks		0	0	0	0	0	7	7	7	0	0	0	0
Contra Costa		1 1								-			0
		14.0	12.7	12.7	12.7	9.8	11.1	12.7	14.0	16.8	18.4	18.3	14.0
Total USBR		14.0							14.0 276	16.8 277			
Total USBR COA Balance		• •	12.7	12.7	12.7	9.8	11.1	12.7			18.4	18.3	-42
COA Balance		-21	12.7 203 -21	12.7 57 -17	12.7 59 -6	9.8 125 0	11.1 129 21	12.7 213 11	276 46	277	<u>18.4</u> 194 -42	18.3 176 -42	-42
COA Balance Vernalis	TAF	-21 145	12.7 203 -21 134	12.7 57 -17 119	12.7 59 -6 100	9.8 125 0 43	11.1 129 21 45	12.7 213 11 40	276 46 46	277 17 108	18.4 194 -42 83	18.3 176 -42 83	254 -42 92
COA Balance	TAF cfs	-21	12.7 203 -21	12.7 57 -17	12.7 59 -6	9.8 125 0	11.1 129 21	12.7 213 11	276 46	277	<u>18.4</u> 194 -42	18.3 176 -42	-42
COA Balance Vernalis	cfs	-21 145	12.7 203 -21 134	12.7 57 -17 119	12.7 59 -6 100	9.8 125 0 43	11.1 129 21 45	12.7 213 11 40	276 46 46	277 17 108	18.4 194 -42 83	18.3 176 -42 83	254 -42 92
COA Balance Vernalis Vernalis Old/Middle River St	cfs	-21 145	12.7 203 -21 134	12.7 57 -17 119	12.7 59 -6 100	9.8 125 0 43	11.1 129 21 45	12.7 213 11 40	276 46 46	277 17 108	18.4 194 -42 83	18.3 176 -42 83	254 -42 92
COA Balance Vernalis Vernalis Old/Middle River St Old/Middle R. calc.	cfs	-21 145 2611 -2,910	12.7 203 -21 134 2179 -3,802	12.7 57 -17 119 2004 -663	12.7 59 -6 100 1631 -997	9.8 125 0 43 721 -2,140	11.1 129 21 45 737 -2,189	12.7 213 11 40 655 -3,335	276 46 46 772 -4,825	277 17 108 1758 -4,218	18.4 194 -42 83 1393 -3,812	18.3 176 -42 83 1355 -4,882	254 -42 92 1504 -4,848
COA Balance Vernalis Vernalis Old/Middle River St Old/Middle R. calc. Computed DOI	cfs	-21 145 2611 -2,910 12463	12.7 203 -21 134 2179 -3,802 9777	12.7 57 -17 119 2004 -663 9901	12.7 59 -6 100 1631 -997 7694	9.8 125 0 43 721 -2,140 7094	11.1 129 21 45 737 -2,189 4994	12.7 213 11 40 655 -3,335 4002	276 46 46 772 -4,825 3009	277 17 108 1758 -4,218 4002	18.4 194 -42 83 1393 -3,812 4505	18.3 176 -42 83 1355 -4,882 4506	254 -42 92 1504 -4,848 7629
COA Balance Vernalis Old/Middle River St Old/Middle R. calc. Computed DOI Excess Outflow	cfs	-21 113 -21 145 2611 -2,910 -2,910 12463 1063	12.7 203 -21 134 2179 -3,802 9777 1236	12.7 57 -17 119 2004 -663 9901 0	12.7 59 -6 100 1631 -997 7694 0	9.8 125 0 43 721 -2,140 7094 0	11.1 129 21 45 737 -2,189 4994 0	12.7 213 11 40 655 -3,335 4002 0	276 46 46 772 -4,825 3009 0	277 17 108 1758 -4,218 4002 0	18.4 194 -42 83 1393 -3,812 4505 0	18.3 176 -42 83 1355 -4,882 -4,882 4506 0	254 -42 92 1504 -4,848 7629 1627
COA Balance Vernalis Vernalis Old/Middle River St Old/Middle R. calc. Computed DOI	cfs d.	-21 145 2611 -2,910 12463	12.7 203 -21 134 2179 -3,802 9777	12.7 57 -17 119 2004 -663 9901	12.7 59 -6 100 1631 -997 7694	9.8 125 0 43 721 -2,140 7094	11.1 129 21 45 737 -2,189 4994	12.7 213 11 40 655 -3,335 4002	276 46 46 772 -4,825 3009	277 17 108 1758 -4,218 4002	18.4 194 -42 83 1393 -3,812 4505	18.3 176 -42 83 1355 -4,882 4506	254 -42 92 1504 -4,848 7629

Hydrology

	Trinity	Shasta	Folsom	New Melones	3
Water Year Inflow (TAF)	548	3,373	1,149		
Year to Date + Forecasted % of mean	45%	61%	42%	58%	

CVP actual operations do not follow any forecasted operation or outlook; actual operations are based on real-time conditions.

CVP operational forecasts or outlooks represent general system-wide dynamics and do not necessarily address specific watershed/tributary details.

CVP releases or export values represent monthly averages.

CVP Operations are updated monthly as new hydrology information is made available December through May.

Storages

Federal End of the Month Storage/Elevation (TAF/Feet)

		Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan
Trinity	1998	2068	2114	2196	2034	1911	1793	1639	1491	1455	1442	1472	1527
	Elev.	2346	2349	2354	2343	2335	2326	2314	2302	2299	2298	2301	2305
Whiskeytown	207	206	206	238	238	238	238	238	238	206	206	206	206
-	Elev.	1199	1199	1209	1209	1209	1209	1209	1209	1199	1199	1199	1199
Shasta	3482	3602	3959	4062	3981	3681	3126	2709	2549	2459	2538	2682	3043
	Elev.	1033	1046	1050	1047	1036	1013	994	987	982	986	993	1010
Folsom	487	469	552	640	692	663	540	448	360	328	313	318	362
	Elev.	413	423	433	439	435	421	410	397	392	389	390	397
New Melones	1983	1955	1958	1871	1785	1709	1639	1577	1533	1493	1510	1534	1566
	Elev.	1048	1048	1040	1032	1025	1018	1011	1007	1002	1004	1007	1010
San Luis	363	397	543	532	402	215	80	52	121	252	391	609	804
	Elev.	484	499	494	465	436	402	380	391	421	444	475	501
Total		8697	9332	9539	9133	8418	7417	6663	6291	6193	6400	6821	7507

Monthly River Releases (TAF/cfs)

Trinity	TAF	17	18	32	258	47	28	53	52	23	18	18	18
	cfs	300	300	540	4,189	783	450	857	870	373	300	300	300
Clear Creek	TAF	11	12	13	23	17	9	9	9	12	12	12	25
	cfs	200	200	218	380	288	150	150	150	200	200	200	400
Sacramento	TAF	222	307	416	492	654	830	676	416	369	238	246	246
	cfs	4000	5000	7000	8000	11000	13500	11000	7000	6000	4000	4000	4000
American	TAF	97	108	105	108	119	184	154	149	108	105	108	108
	cfs	1750	1750	1765	1750	2005	3000	2500	2500	1750	1758	1750	1750
Stanislaus	TAF	43	32	91	76	41	15	15	15	48	12	12	14
	cfs	780	525	1537	1242	690	250	250	250	774	200	200	226

Trinity Diversions (TAF)

		Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan
Carr PP		0	85	61	49	121	99	100	99	23	25	9	10
Spring Crk. PP		35	110	40	40	110	90	90	90	45	20	12	19.8
Delta Summary	(TAF)					_			_			_	
		Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan
Tracy		128	250	127	88	121	210	254	260	265	201	260	240
USBR Banks		0	0	0	0	0	13	13	13	0	0	0	0
Contra Costa		14.0	12.7	12.7	12.7	9.8	11.1	12.7	14.0	16.8	18.4	18.3	14.0
Total USBR		142	263	139	101	131	234	280	287	282	219	278	254
COA Balance		2	2	10	10	0	0	0	0	23	0	0	0
Vernalis	TAF	127	140	181	175	88	54	52	57	117	83	83	93
Vernalis	cfs	2293	2282	3038	2843	1480	884	852	956	1897	1393	1355	1511
Old/Middle River Std.	г												
Old/Middle R. calc.	cfs	-3,261	-4,946	-2,284	-1,330	-4,128	-5,041	-5,702	-6,929	-7,237	-5,896	-6,723	-5,033
	т т	44400	1000.4	11001	0777	7000	7000	5000	4455	100.1	4000	0500	45540
Computed DOI	├ ───┤	11400	16934	11094	9777	7396	7223	5889	4455	4994	4992	8508	15519
Excess Outflow	+	0	5515	0	163	0	211	211	219	0	0	2505	9516
% Export/Inflow	↓	29%	29%	23%	17%	34%	35%	41%	54%	58%	56%	49%	30%
% Export/Inflow std.		45%	35%	35%	35%	35%	65%	65%	65%	65%	65%	65%	65%

Hydrology

	Trinity	Shasta	Folsom	New Melones	
Water Year Inflow (TAF)	804	3,864	1,466	5 711	
Year to Date + Forecasted % of mean	67%	70%	54%	67%	

CVP actual operations do not follow any forecasted operation or outlook; actual operations are based on real-time conditions.

CVP operational forecasts or outlooks represent general system-wide dynamics and do not necessarily address specific watershed/tributary details.

CVP releases or export values represent monthly averages.

CVP Operations are updated monthly as new hydrology information is made available December through May.

Northern CVP Water Temperature Report February - 2020

Page	Description
1	- Mean Daily Water Temperature, Release Flow Rates and Air Temperatures with Monthly Averages
2	- Redding 10-Day Forecasted Air Temperatures
3	 Sacramento River Mean Daily Water Temperature, Air Temperature and 10-Day Forecasted Air Temperature Plot Water Temperature Measuring Station Details Temperature Control Point Details
4	- Shasta Lake Isothermobaths Plot
5	- Trinity Lake Isothermobaths Plot
6	- Whiskeytown Lake Isothermobaths Plot
x	- <u>TCD Configuration</u> (External Link)

All Data in this Report is Preliminary and Subject to Change

D A					Mean D	aily Wa	iter Tem	peratur	es (°F)					R	Mean Daily elease (CFS		N Air Tei	lean I mpera	-	ծ (°F)
T E	TCD ¹	SHD	SPP ¹	KWK	SAC	CCR	BSF ²	JLF	BND	RDB	IGO	LWS		Sha ş ta Generation	Spring Creek P.P.	Keswick Total	RDD	BSF	RDB	LWS
Jan	51.1	50.3	47.9	50.1	50.1	50.0	49.8	49.7	49.9	49.6	47.2	43.4	-	4522	184	5043	47.8	46.8	48.0	-
02/01	50.2	49.5	47.9	49.6	49.7	49.6	50.0	50.3	50.6	50.8	47.6	44.8	-	4415	37	5050	50.5	47.8	51.7	-
02/02	50.2	49.5	47.4	49.6	49.7	49.5	49.8	50.0	50.2	49.8	47.2	43.6	-	4090	102	4848	49.5	48.4	49.7	-
02/03	# -	49.3	48.3	49.2	49.3	48.9	48.5	48.3	48.5	48.5	46.1	42.4	-	3992	44	4580	44.0	41.0	43.6	-
02/04	# -	49.4	48.1	49.0	49.0	48.6	47.8	47.4	47.5	47.3	46.1	42.2	-	5648	49	4374	48.5	44.8	45.4	-
02/05	# -	49.3	47.3	48.9	49.0	48.9	48.2	47.8	47.8	47.2	46.7	42.5	-	4127	217	4203	52.0	45.8	48.4	-
02/06	# -	49.2	48.1	49.1	49.4	49.7	49.2	48.9	48.9	48.3	47.4	43.1	-	3522	39	4006	56.5	50.5	51.8	-
02/07	# -	49.1	48.3	49.2	49.5	49.8	49.7	49.8	49.9	49.6	47.5	43.7	-	3520	37	3935	51.0	47.5	49.3	-
02/08	# -	49.0	48.3	49.3	49.5	49.7	49.6	49.6	49.8	49.7	47.1	43.0	-	3455	37	3929	49.5	47.3	50.3	-
02/09	# -	49.2	48.3	49.1	49.3	49.3	48.9	48.8	48.8	48.7	46.7	42.6	-	3422	37	3988	54.0	52.8	53.9	-
02/10	# -	49.2	48.4	49.0	49.3	49.5	49.3	49.2	49.3	48.9	46.8	42.4	-	4272	37	3987	61.5	60.3	59.8	-
02/11	# -	49.2	48.3	49.1	49.5	49.8	49.9	50.1	50.2	49.9	47.2	42.7	-	3865	37	4031	61.5	59.3	60.8	-
02/12	# -	49.0	48.4	49.4	49.7	50.0	50.2	50.5	50.8	50.7	47.4	43.0	-	3472	37	4036	57.5	54.1	58.8	-
02/13	# -	49.0	48.3	49.3	49.6	49.9	49.9	50.2	50.4	50.4	46.9	43.1	-	3418	37	4048	49.5	47.1	50.3	-
02/14	# -	48.9	47.9	49.3	49.6	50.0	50.1	50.3	50.5	50.3	47.2	43.6	-	3243	105	4049	52.5	48.2	50.5	-
02/15	# -	48.8	47.9	49.2	49.5	49.9	50.1	50.5	50.7	50.5	47.4	43.9	-	3325	67	3988	51.0	50.0	51.4	-
02/16	# -	48.9	48.4	49.3	49.6	50.1	51.1	51.6	51.8	51.4	48.2	45.5	-	3996	37	3996	58.0	57.5	57.5	-
02/17	# -	48.9	48.4	49.2	49.5	49.9	50.3	51.0	51.4	51.4	47.7	45.3	-	3444	37	3996	55.5	53.3	55.9	-
02/18	# -	49.2	48.3	49.1	49.4	49.6	49.8	50.1	50.3	50.3	47.3	43.8	-	3197	37	3986	52.5	49.5	52.3	-
02/19	# -	49.1	47.6	48.9	49.2	49.5	49.5	49.8	50.0	49.9	47.2	43.6	-	3771	121	3961	50.5	46.4	50.0	-
02/20	# -	48.9	47.5	49.0	49.3	49.5	49.7	49.9	50.1	49.8	47.3	44.3	-	3376	315	3962	52.0	48.2	51.3	-
02/21	# -	? 48.7	48.7	49.1	49.3	49.5	49.8	50.3	50.6	50.3	47.7	44.5	-	4110	37	4355	55.5	50.7	55.6	-
02/22	# -	? 49.0	48.5	49.1	49.6	50.0	50.2	50.5	50.7	50.7	48.0	44.6	-	4422	37	4417	57.5	51.7	57.0	-
02/23	# -	? 48.6	48.6	49.1	49.3	49.6	50.3	50.9	51.2	51.1	47.7	45.3	-	4423	37	4993	50.0	48.1	50.0	-
02/24	# -	? 48.8	48.4	49.1	49.5	49.8	50.1	50.5	50.8	50.8	47.7	45.7	-	4369	15	5014	55.0	52.0	55.4	-
02/25	# -	? 48.9	-	49.0	49.5	49.9	50.5	51.1	51.4	51.2	48.2	45.9	-	4863	0	5008	63.5	59.3	62.6	-
02/26																				
02/27																				
02/28																				
02/29																				
-																				
-																				
Feb	50.2	49.1	48.1	49.2	49.4	49.6	49.7	49.9	50.1	49.9	47.3	43.8		3910	64	4270	53.6	50.5	52.9	-
												Tota	I CFS	97757	1592	106740				
I	_egend								Notes			Tot	al AF	193897	3158	211714	1			

? = 1-9 hours of data missing (Average includes estimations)
 ! = 10 or more hours of data missing (Average not calculated)

= Station out of service

 \uparrow = Record high air temperature

 \downarrow = Record low air temperature

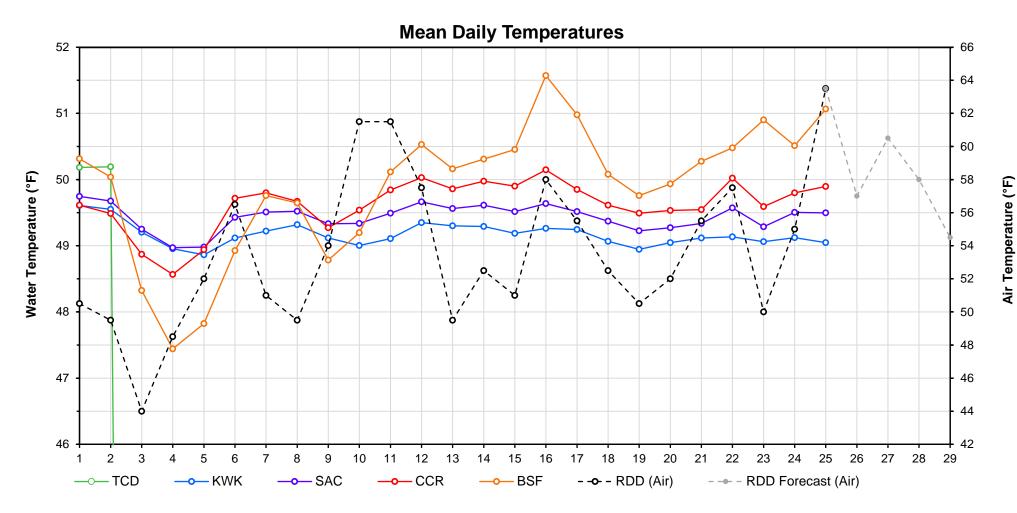
= Monthly Averages

¹ Temperatures are weighted averages based on individual penstock flow and temperature

Highlighted cells in the TCD column indicate a TCD change was made on that day

² Current control point (see page 3 for more details)

³ Column not used this month


D														Red	ding	(RD	D) D	Daily /	Air 1	em	perat	ures	s (°F)												
A	A	Actua	al													•	,				sted		•	,												
Т	Prev	vious	Day	Cu	irrent	Day		1 Da	ay		2 Da	ys		3 Da	ys		4 Da	ys		5 Da	ys		6 Da	ys		7 Da	ys		8 Da	ys		9 Day	ys	1	I0 Da	iys
Е	1	\uparrow	Avg	\checkmark	↑	Avg	\checkmark	↑	Avg	\checkmark	↑	Avg	≁	↑	Avg	1	↑	Avg	1	↑	Avg	\checkmark	1	Avg	↓	↑	Avg	\checkmark	↑	Avg	1	↑	Avg	\checkmark	↑	Avg
02/01	42	69	55.5	40	66	53.0	44	54	49.0	32	51	41.5	31	56	43.5	36	61	48.5	40	65	52.5	41	64	52.5	40	59	49.5	34	60	47.0	35	59	47.0	37	58	47.5
02/02	40	61	50.5	45	54	49.5	31	52	41.5	32	56	44.0	37	63	50.0	40	66	53.0	40	69	54.5	41	59	50.0	34	56	45.0	34	64	49.0	33	59	46.0	38	58	48.0
02/03	42	57	49.5	38	53	45.5	32	56	44.0	35	64	49.5	39	69	54.0	41	70	55.5	40	64	52.0	38	61	49.5	46	65	55.5	36	58	47.0	35	56	45.5	39	59	49.0
02/04	34	54	44.0		57	49.5	39	65	52.0	41	69	55.0	42	70	56.0	41	65	53.0	38	61	49.5		64	52.5		60	49.0		54	45.0		56	45.5	37	61	49.0
02/05	41	56	48.5		63	55.0	38	67	52.5	41	67	54.0	40	60	50.0	39	58	48.5	37	62	49.5		61	49.0		53	43.5		54	44.0	33	58	45.5	38	60	49.0
02/06	43	61	52.0		68	53.5	41	68	54.5	40	60	50.0		60	50.0	40	64	52.0	40	63	51.5		57	47.0		60	50.5		57	44.0		58	46.0	40	61	50.5
02/07	38	75	56.5		72	53.5	39	60	49.5	39	60	49.5		67	53.5	41	70	55.5	41	68	54.5		69	55.0		74	59.5		71	57.0		69	56.5	44	65	54.5
02/08	34	68	51.0		61	47.5	38	61	49.5	40	68	54.0		70	55.5	39	68	53.5	40	64	52.0		60	49.5		59	50.0		61	49.0		64	52.0	40	67	53.5
02/09	33	66	49.5		62	54.5	38	69	53.5	43	71	57.0	40	68	54.0	40	65	52.5	39	61	50.0		61	49.5		65	54.5	37	67	52.0	40	66	53.0	40	68	54.0
02/10	46	62	54.0		71	61.5	41	71	56.0	41	70	55.5		63	51.5	38	60	49.0	38	58	48.0		60	50.5		61	50.5	43	65	54.0	42	66	54.0	40	69	54.5
02/11	50	73	61.5		73	65.0	40	69	54.5	38	65	51.5		65	52.0	38	62	50.0	41	61	51.0		60	48.5		67	54.5		65	52.0	41	65	53.0	41	69	55.0
02/12	49	74	61.5		71 68	59.5 51.0	38	67 69	52.5 54.0	39 40	68 66	53.5		63	51.0	43 38		52.0	38	61	49.5		63	50.0 52.5		68 65	55.0 52.0		67 67	51.0		67 64	51.5	41 42	68 66	54.5
02/13	42 33	73 66	57.5 49.5		67	52.0	39 40	69 66	54.0 53.0	40	65	53.0 54.5		63 62	54.0 50.0	38	61 64	49.5 51.0	38 38	65 67	51.5 52.5		66 66	52.5 52.0		65 67	52.0 54.0		66	53.0 54.0		69	52.5 55.5	42 42	69	54.0 55.5
02/14	37	68	49.5 52.5		65	51.0	40	65	55.0	44	63	51.5		67	52.0	38	67	52.5	39	68	53.5		70	55.0		65	53.5		58	50.5		61	50.0	42 37	68	52.5
02/16	37	65	51.0		64	50.5	41	65	53.0	36	66	51.0		67	52.0	39	67	53.0	40	70	55.0		71	56.0		65	55.0		62	52.0		65	51.5	37	69	53.0
02/17	48	68	58.0		67	57.5	38	66	52.0	36	67	51.5		66	52.0	38	71	54.5	41	71	56.0	44	63	53.5		65	56.0		66	53.0		68	54.0	41	68	54.5
02/18	45	66	55.5		66	58.5	34	67	50.5	39	68	53.5		72	55.5	41	72	56.5	43	63	53.0		59	47.5		59	46.0		61	48.5		65	51.0	39	66	52.5
02/19	39	66	52.5		68	51.5	39	69	54.0	41	74	57.5		73	57.0	42	65	53.5	41	66	53.5		69	55.0		70	54.5		72	56.5		71	56.5	43	71	57.0
02/20	33	68	50.5	36	68	52.0	42	73	57.5	43	73	58.0	42	67	54.5	44	72	58.0	44	74	59.0	44	74	59.0	47	75	61.0	44	71	57.5	45	67	56.0	45	71	58.0
02/21	35	69	52.0	36	73	54.5	42	73	57.5	42	66	54.0	40	73	56.5	44	77	60.5	44	76	60.0	45	77	61.0	46	73	59.5	42	66	54.0	45	67	56.0	43	67	55.0
02/22	36	75	55.5	41	75	58.0	39	65	52.0	37	72	54.5	43	77	60.0	44	76	60.0	44	78	61.0	43	75	59.0	47	73	60.0	44	74	59.0	47	75	61.0	47	74	60.5
02/23	41	74	57.5	40	67	53.5	37	72	54.5	43	77	60.0	43	76	59.5	44	80	62.0	43	76	59.5	43	69	56.0	45	59	52.0	42	69	55.5	47	71	59.0	46	72	59.0
02/24	38	62	50.0	37	72	54.5	44	77	60.5	44	77	60.5	43	80	61.5	44	75	59.5	44	68	56.0	41	64	52.5	44	65	54.5	40	70	55.0	44	68	56.0	40	69	54.5
02/25	36	74	55.0	44	77	60.5	42	74	58.0	43	79	61.0	43	75	59.0	46	66	56.0	40	61	50.5	40	69	54.5	43	67	55.0	43	63	53.0	38	65	51.5	36	73	54.5
02/26	49	78	63.5	39	75	57.0	42	79	60.5	42	74	58.0	45	64	54.5	38	60	49.0	39	69	54.0	42	69	55.5	42	70	56.0	41	72	56.5	44	72	58.0	45	71	58.0
02/27																																				
02/28																																				
02/29																																				
-																																				
-																																				

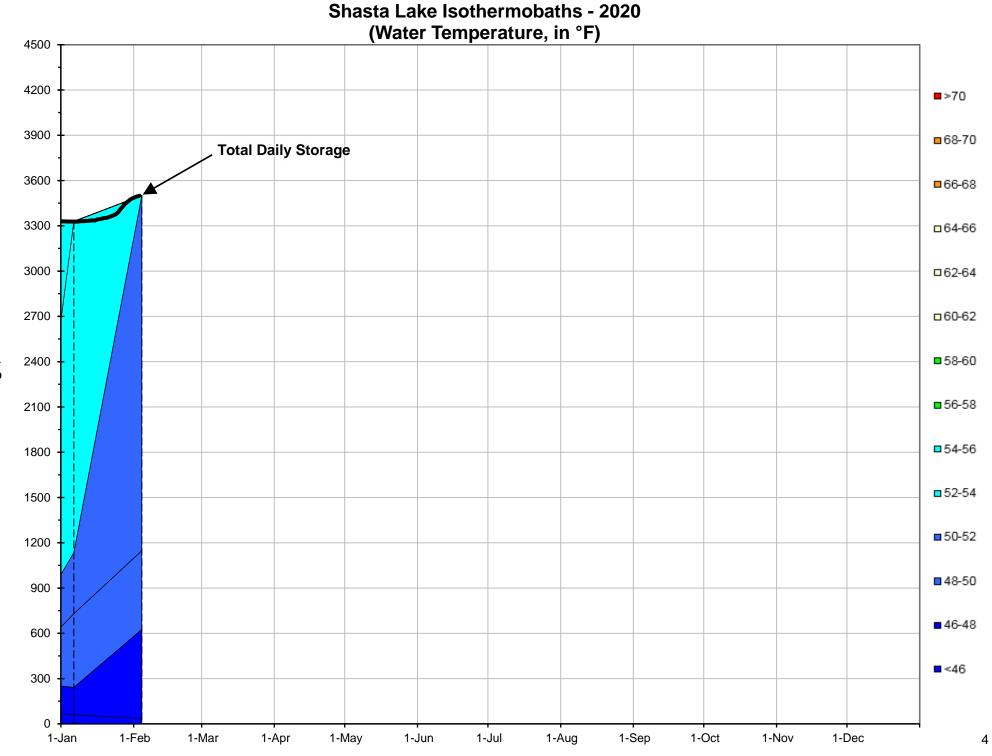
<u>Web Links</u>

Legend

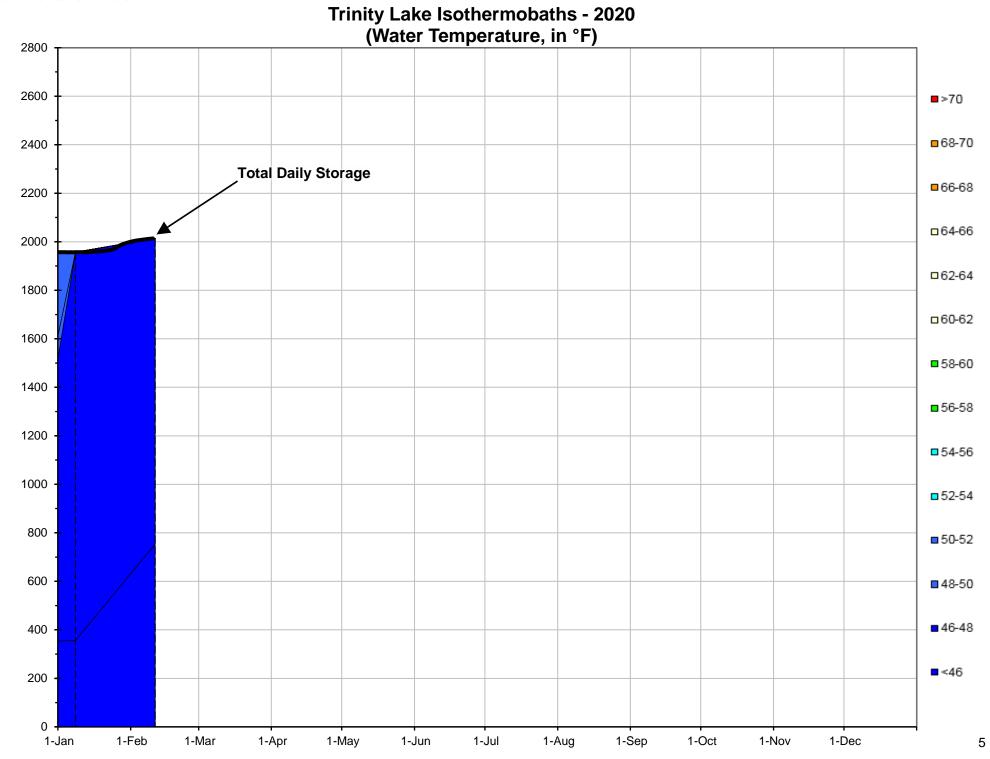
<u>10-Day Min/Max Forecast</u> <u>Previous Days Min/Max Actuals</u> NR = Forecasted temperatures not recorded

100 = Previous day actual temperatures in red and bolded indicate a record temperature for that date

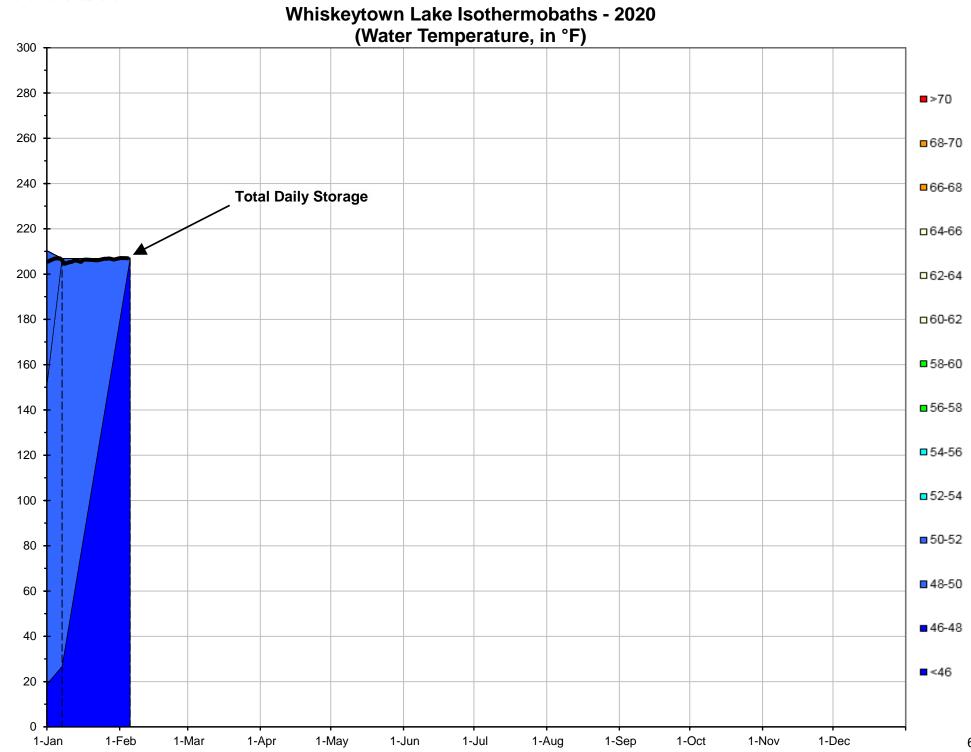
		Station Details	
Code	Body of Water	Location ¹	CDEC Link
TCD	N/A	Shasta Power Plant	N/A
SHD	Sacramento River	0.3 miles downstream of Shasta Power Plant	Click Here
SPP	N/A	Spring Creek Power Plant	N/A
KWK	Sacramento River	0.8 miles downstream of Keswick Dam	Click Here
SAC	Sacramento River	4.8 miles downstream of Keswick Dam	Click Here
CCR	Sacramento River	9.7 miles downstream of Keswick Dam	Click Here
BSF	Sacramento River	25 miles downstream of Keswick Dam	Click Here
JLF	Sacramento River	34 miles downstream of Keswick Dam	Click Here
BND	Sacramento River	41 miles downstream of Keswick Dam	Click Here
RDB	Sacramento River	58 miles downstream of Keswick Dam	Click Here
IGO	Clear Creek	7.3 miles downstream of Whiskeytown Dam	Click Here
LWS	Trinity River	1.1 miles downstream of Lewiston Dam	Click Here
DGC ²	Trinity River	19 miles downstream of Lewiston Dam	Click Here
NFH ³	Trinity River	38 miles downstream of Lewiston Dam	Click Here


Те	emperature	Control Point
Point	Temp. (°F)	Begin Date
BSF	56.0	05/25/2018

Notes


¹ Distances are approximate

² DGC is only reported in September


³ NFH is only reported in October, November and December

Storage, in TAF

Storage, in TAF

Storage, in TAF

Shasta TCD Configuration

Starting Date: 12/19/2019 Profile data collected 12/18/2019 **Ending Date: Current** Elevation Water Temp. (°F) 1200' ■ >70 ⁻ 1150' 68-70 1100' 66-68 **Upper Gates** 1050' □ 64-66 1000' 62-64 . 950' **Middle Gates** 6 Outlets 60-62 '900' . 850 **Pressure Relief** 58-60 Gates (PRG's) 8 Outlets 800' 56-58 .750 Side Gates **4 Outlets** 54-56 700' 52-54 650' 50-52 600' 48-50 **Temperature Control Device (TCD) River Outlets** 46-48

Upper Sacramento River – February 2020 Preliminary Temperature Analysis

Model Dyp	Location		May		T1	Ang	Son*	Oct*
Model Run	Location	Apr	May	Jun	Jul	Aug	Sep*	Oct∗
90% Hydrology 25% Historical Meteorology Targeting CCR at 53.5°F	Keswick Dam KWK	53.5	53.2	53.0	53.1	54.0	See Fig. 3	See Fig. 3
	Sac. R. abv Clear Creek CCR	53.7	53.7	53.5	53.5	54.4	See Fig. 4	See Fig. 4
	Airport Road	54.0	54.3	54.0	54.1	55.0	n/a	n/a
	Balls Ferry BSF	55.2	55.8	55.1	55.1	56.0	See Fig. 5	See Fig. 5
90% Hydrology 25% Historical Meteorology Targeting CCR at 56°F	Keswick Dam KWK	54.0	54.6	54.6	55.6	55.7	See Fig. 3	See Fig. 3
	Sac. R. abv Clear Creek CCR	54.2	55.0	55.0	56.0	56.0	See Fig. 4	See Fig. 4
	Airport Road	54.5	55.5	55.5	56.5	56.6	n/a	n/a
	Balls Ferry BSF	55.6	56.9	56.5	57.4	57.5	See Fig. 5	See Fig. 5

Summary of Temperature Results by Month (Monthly Average Temperature °F)

Summary of Shasta Lake Cold Water Pool and TCD Operation

Model Run	End of September Cold Water Pool <56°F (TAF)	First Side Gate Use (Date)	Full Side Gate Use (Date)
90%Hydro 25%Hist.	147	7/16	8/2
Met. CCR at 53.5°F			
90% Hydro 25% Hist.	469	9/8	10/30
Met. CCR at 56°F			

Model Run Date February 25, 2020

* The HEC5Q model output is displayed for the months April through August. Based on past analysis, the temperature model does not perform well in late September and October. One factor is that the modeled release temperatures are cooler than has historically been achieved when all release is through the side gates (lowest gates), especially when there's a large temperature gradient between the pressure relief gates (PRG) and the side gates.

For the months of September and October, ranges in possible outcomes are illustrated with the Fall Temperature Index (graphics above Figures 6-8). This relationship is an end of September Lake Shasta Volume less than 56°F and likely downstream temperature performance for the early fall months. Estimated temperatures for September and October may fall into a range indicated within the Fall Temperature Index (graphical chart), illustrating historical performance. However, this range should be viewed as an element of uncertainty based on past performance, not a simulation or projection of temperature management operations or results.

Temperature Analysis Results:

Modeling runs explore Sacramento River compliance performance above Clear Creek confluence and Balls Ferry locations by varying hydrology and meteorology. The temperature results for the Sacramento River between Keswick Dam and Balls Ferry are shown in Figures 1 through 2. The relationship between end-of-September lake volume below 56°F and a downstream Sacramento River compliance location through fall is based on the Figures 3-5. Runs targeting temperature above Clear Creek confluence and at Balls Ferry target locations attempt to meet the April 15 – May 15 temperature target of 56°F at Balls Ferry. The end of September coldwater-pool volumes were insufficient to confidently sustain the temperature targets into the late fall period for the sustained Clear Creek target at $53.5^{\circ}F$.

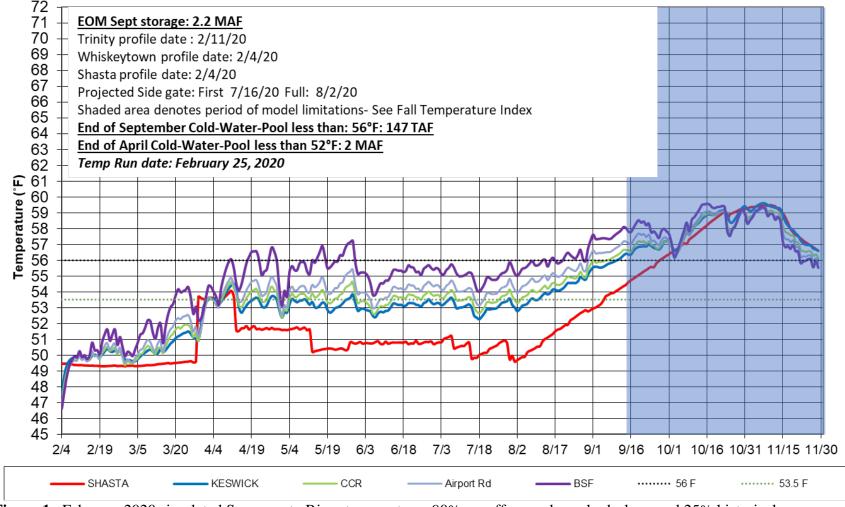
Temperature Model Inputs, Assumptions, Limitations and Uncertainty:

1. The latest available profiles for Shasta, Trinity, and Whiskeytown were taken on February 4, February 11, and February 4, respectively. Model results are sensitive to initial reservoir temperature conditions and the model performs best under highly stratified conditions. The temperature profiles prior to May do not yet exhibit conditions for ideal model computations (still nearly isothermal conditions). The model performs well after the reservoir stratifies, typically in late spring (i.e. end of April). The concern this year is assuming over or under estimations with variable hydrologic and meteorological conditions and not capturing the stratification with sufficient detail to project into the future with confidence.

 Guidance on forecasted flows from the creeks (e.g., Cow, Cottonwood, Battle, etc.) between Keswick Dam and Bend Bridge are not available beyond 5 days. Creek flows developed from the historical record that most closely reflects current conditions were used for all model runs. The resulting creek flows can cause significant additional warming in the upper Sacramento River during spring.
 Operation is based on the February 2020 Operation Outlooks (monthly flows, reservoir release, and end-of-month reservoir storage) for the 90%- and 50%-exceedances (when available), with minor modifications to accommodate for within month real-time operations (e.g. flood operations, underestimated system demands/requirements, etc.). After September historical information is used for inflow. Trinity Lake inflows are updated with the CNRFC 90% runoff exceedance for the 90% and DWR Bulletin 120 for the 50% runoff exceedance studies. The Operation Outlook assumes a representation of the State and Federal regulatory environment under NMFS and FWS 2019 Biological Opinions.

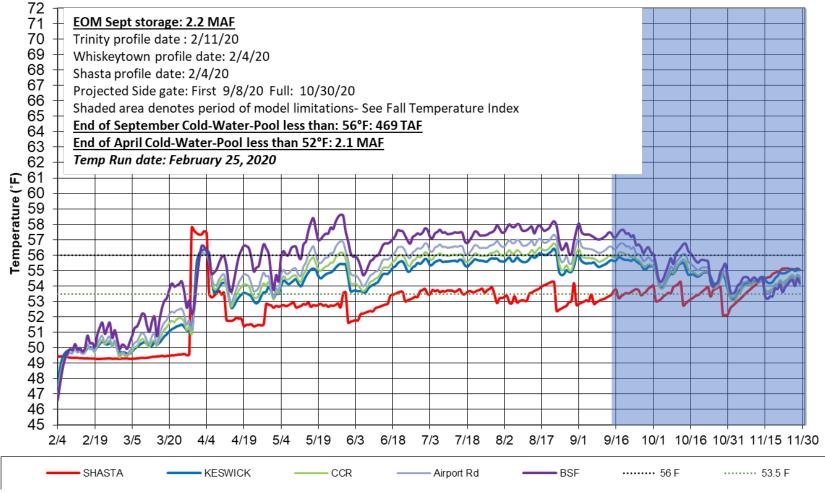
4. Although mean daily flows and releases are temperature model inputs, they are based on the mean monthly values from the operation outlooks. Mean daily flow patterns are user defined and are generalized representations. It is important to note that these outlooks do not suggest a certain actual future outcome, but rather the statistical likelihood of an event occurring, including, but not limited to, projected storage and releases. Thus, the outlooks do not provide exact end of month storages or flow rates but general projections that will likely fall within the range of uncertainty based on the different hydrologic runoff conditions between the 90% and 50% runoff exceedance hydrology.

5. Cottonwood Creek flows, Keswick to Bend Bridge local flows, and ACID diversions are mean daily synthesized flows based on the available historical record for a 1922-2002 study period. Side-flows were adjusted to a 95% historical exceedance for both the 90% and 50% runoff exceedance studies.


6. Meteorological inputs represent historical (1985 – 2017) monthly mean equilibrium temperature exceedance at 25% and 50% patterned after like months on a 6-hour time-step (for months prior to April). Assumed inflows temperature remain static inputs and do not vary with the assumed meteorology. Tools to use local three-month-temperature outlooks, driven by the NOAA NWS Climate Prediction Center (CPC) are used beginning in April.

7. Meteorology, as well as the flow volume and pattern, significantly influences reservoir inflow temperatures and downstream tributary temperatures; and consequently, the development of the cold-water pool during winter and early spring, which is still uncertain prior to the end of April.

8. Modified model coefficients more closely represent actual Keswick Dam temperatures. As a result, temperature predictions downstream of Keswick Dam are likely to be warmer than actual.


9. The model is specifically being applied to generate the most accurate results at the Sacramento River above Clear Creek confluence location (CCR).

Sacramento River Modeled Temperature 2020 February 90%-Exceedance Water Outlook - 25% Historical Meteorology Apr15-May15_BSF56 and CCR53.5

Figure 1. February 2020 simulated Sacramento River temperatures 90% runoff exceedance hydrology and 25% historical meteorology targeting CCR at 53.5°F.

Sacramento River Modeled Temperature 2020 February 90%-Exceedance Water Outlook - 25% Historical Meteorology April15 - May15 BSF56 CCR56

Figure 2. February 2020 simulated Sacramento River temperatures 90% runoff exceedance hydrology and 25% historical meteorology targeting CCR at 56°F.

Figures 3-5 Model Performance and Fall Temperature Index:

1. Based on past analyses, the temperature model does not perform well in late September and October. One factor is that the modeled release temperatures are cooler than has historically been achieved when all release is through the side gates (lowest gates), especially when there's a large temperature gradient between the pressure relief gates (PRG) and the side gates.

2. Based on historical records, the end-of-September Lake Shasta volume below 56°F is a good indicator of fall water temperature in the river reachs.

3. Based on these records and estimates, the charts below illustrate a range of uncertainty in the expected river temperatures based on the end-of-September lake volume less than 56° F.

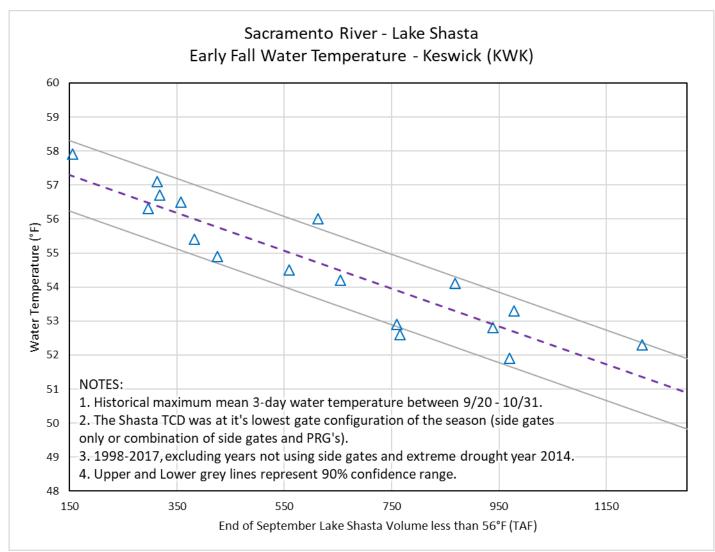


Figure 3. Historical relationship between Lake Shasta cold-water-pool characteristics and early fall Keswick water temperature.

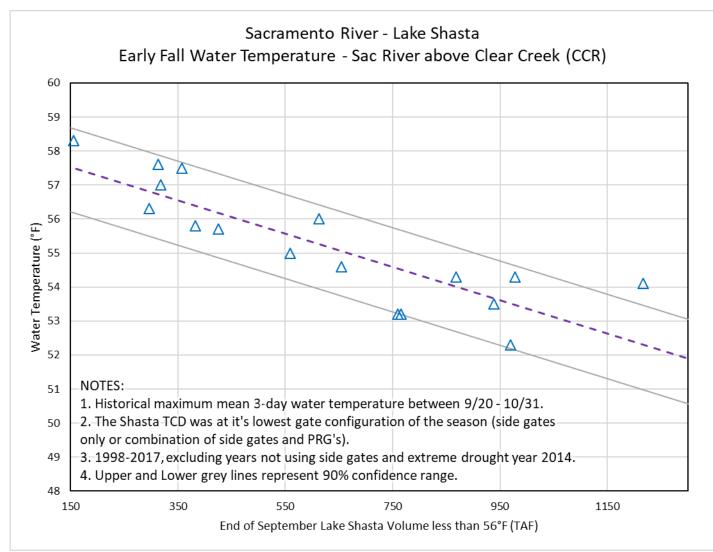


Figure 4. Historical relationship between Lake Shasta cold-water-pool characteristics and early fall Sacramento River above Clear Creek confluence water temperature.

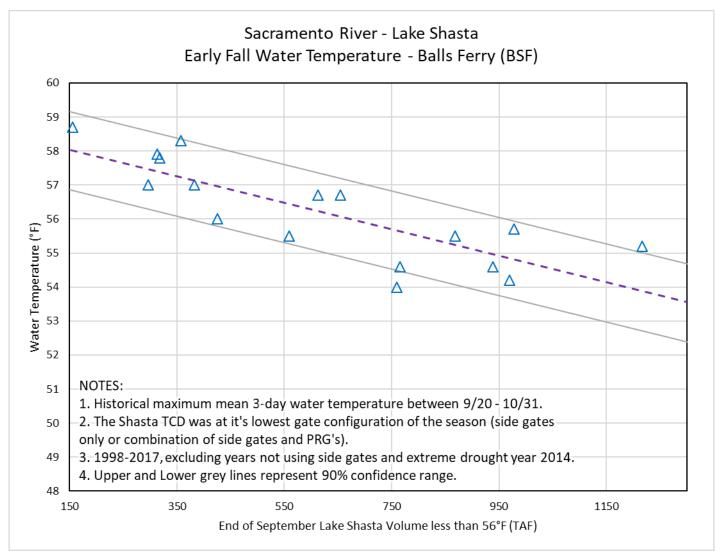


Figure 5. Historical relationship between Lake Shasta cold-water-pool characteristics and early fall Balls Ferry water temperature.

We've finished the February 25, 2020 Bulletin 120 (B120) forecast update. The forecast includes observed conditions through the morning of February 25, 2020.

The forecasts are posted at: <u>http://cdec.water.ca.gov/b120up.html</u>

Forecast Summary:

The projected median April-July (AJ) runoff in the major Sierra river basins ranges from 35 percent of average for the Tule River basin to 71 percent of average for the total inflow to Shasta Lake. All forecasts decreased compared to last week's February 18, 2020 B120 forecast update.

Runoff:

Flow rates are steady and nearly identical to last week.

River Basin	Percent of Historic Average	
Trinity	32	
Shasta Inflow	39	
Sacramento at Bend Bridge	37	
Feather	32	
Yuba	28	
American	23	
Cosumnes	13	
Mokelumne	29	
Stanislaus	29	
Tuolumne	22	
Merced	19	
San Joaquin	30	
Kings	39	
Kaweah	31	
Tule	25	
Kern	59	

February full natural flow rates updated through February 25, 2020:

Precipitation:

All three precipitation indices are still well below the average for February. Both the 5 & 6 stations have accumulated precipitation.

The accumulated average to date precipitation for Water Year 2020 and month to date are shown in the table below

Region/Index	WY-to-date precipitation as a percent of average (inches) through February 26, 2020	Month-to-date precipitation as a percent of month total (inches) through February 26, 2020
Northern Sierra 8-Station Index	50 (17.8 inches)	0 (0.0 inches)
San Joaquin 5-Station Index	42 (11.4 inches)	4 (0.3 inches)

Tulare Basin 6-Station Index46 (8.7 inches)12 (0.6 inches)
--

Snowpack:

The Statewide snowpack based on snow sensors is 11.5 inches which corresponds to 40 percent of the April 1 average. Since the last forecast, the Statewide snowpack snow water content has only lost 0.4 of an inch.

Region	Snow Water Content (inches)	% of Average (Apr 1)	% of Average (Feb 26)
Northern	13.2	45	51
Central	11.8	39	46
Southern	9.2	36	43
Statewide	11.5	40	47

The snowpack as of the morning of February 26, 2020 stands at the following (based on snow sensors):

Weather and Climate Outlooks:

According to CNRFC 6 day forecast, dry weather with above average temperatures are forecasted for the State through Friday. Cooling temperatures with scattered mountain showers possible over the weekend. Daytime high temperatures will generally be around 7 to 15 degrees above normal through Friday. Over the weekend, American, Feather, and Yuba basins are expected to receive 0.2 inches of precipitation on average. During the same period, San Joaquin, Tulare, and Upper Sacramento basins are expected to receive under 0.1 inches of precipitation. Statewide, freezing elevations will be above 8,000 feet through Friday and then decrease to around 6,000 feet over the weekend.

The NWS Climate Prediction Center (CPC) one-month outlook for March 2020 issued on February 20, 2020, points to increased chances of above normal temperatures all across the State. The same outlook suggests increased chances of below normal precipitation all across the State.

The CPC three-month (March-April-May) outlook, issued on February 20, 2020, points to increased chances of above normal temperatures all across the State. The same outlook suggests increased chances of below normal precipitation all across the State.

According to the latest El Niño/Southern Oscillation (ENSO) discussion issued by the Climate Prediction Center on February 24, 2020, ENSO-neutral conditions are present. Equatorial sea surface temperatures are near-to-above average across the Pacific Ocean. ENSO-neutral is favored through Northern Hemisphere spring 2020 (~60% chance), continuing through summer 2020 (~50% chance).

Next Update:

Both a B120 forecast and a Water Supply Index (WSI) forecast for conditions as of March 1, 2020 will be available by Monday, March 9, 2020. If you have any questions regarding this forecast, please contact a member of the Snow Surveys and Water Supply Forecasting section.

Important Links:

 Full Natural Flow Data:

 Daily FNF

 http://cdec.water.ca.gov/reportapp/javareports?name=FNF

 Monthly FNF

<u>http://cdec.water.ca.gov/reportapp/javareports?name=FNFSUM</u> Seasonal FNF http://cdec.water.ca.gov/reportapp/javareports?name=FLOWOUT

Precipitation Data:

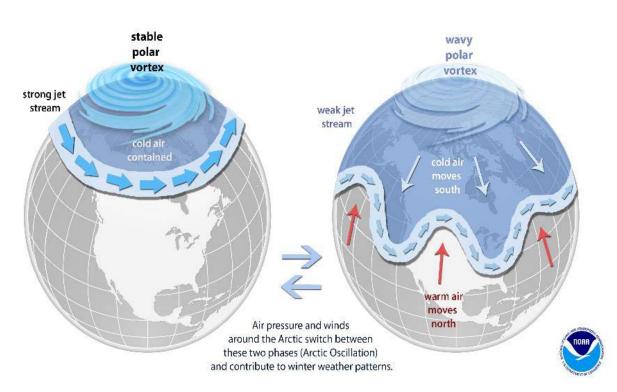
Latest Northern Sierra 8-Station Precipitation Index <u>http://cdec.water.ca.gov/cgi-progs/products/TAB_ESI.pdf</u> Latest San Joaquin 5-Station Precipitation Index <u>http://cdec.water.ca.gov/cgi-progs/products/TAB_FSI.pdf</u> Latest Tulare Basin 6-Station Precipitation Index <u>http://cdec.water.ca.gov/cgi-progs/products/TAB_TSI.pdf</u>

Snow Data:

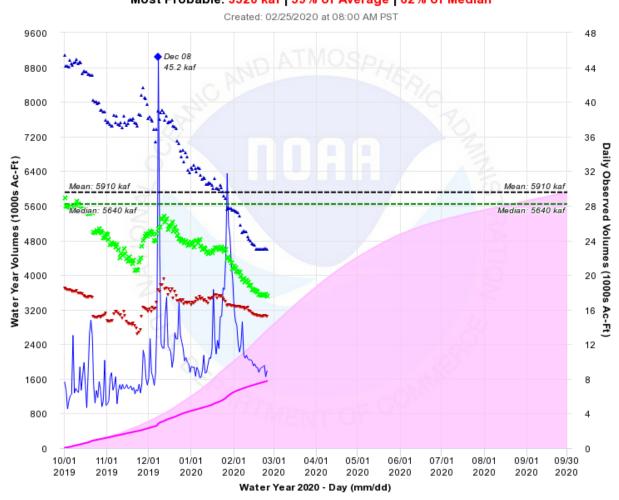
Latest Snow Sensor Report <u>http://cdec.water.ca.gov/reportapp/javareports?name=PAGE6</u> Latest Statewide Summary of Snow Water Equivalents <u>http://cdec.water.ca.gov/snowapp/sweq.action</u>

Extended Regional Forecasts:

California Nevada River Forecast Center 6 Day QPF and Snow Level Forecast http://www.cnrfc.noaa.gov/awipsProducts/RNOHD6RSA.php Climate Prediction Center One-Month Outlook Forecasts http://www.cpc.ncep.noaa.gov/products/predictions/30day/ Climate Prediction Center Three-Month Outlook Forecasts http://www.cpc.ncep.noaa.gov/products/predictions/long_range/seasonal.php?lead=1 U.S. Seasonal Drought Outlook http://www.cpc.ncep.noaa.gov/products/expert_assessment/sdo_summary.html Weather Forecast Office California Service Area-Products http://www.cnrfc.noaa.gov/forecasts.php El Niño Southern Oscillation (ENSO) Conditions and Weekly Discussion (including La Niña) http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/lanina/enso_evolution-status-fcstsweb.pdf

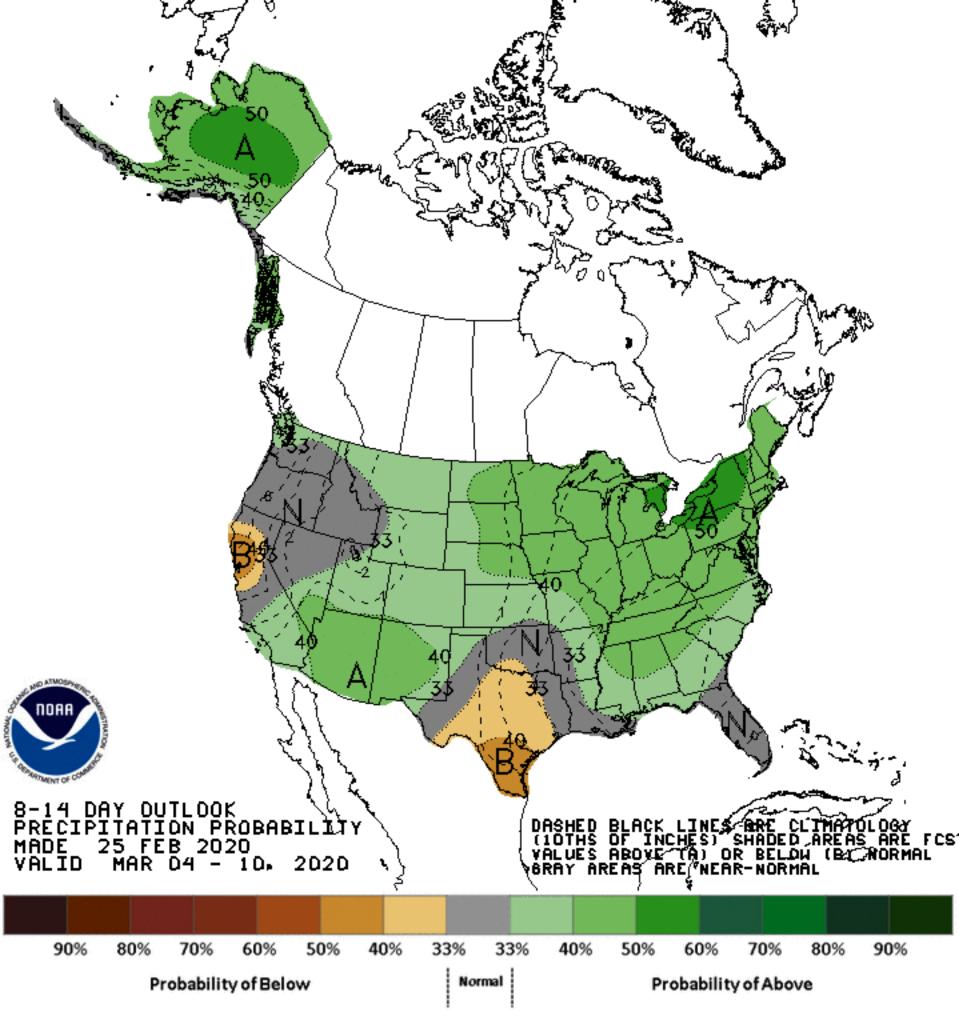

Bulletin 120:

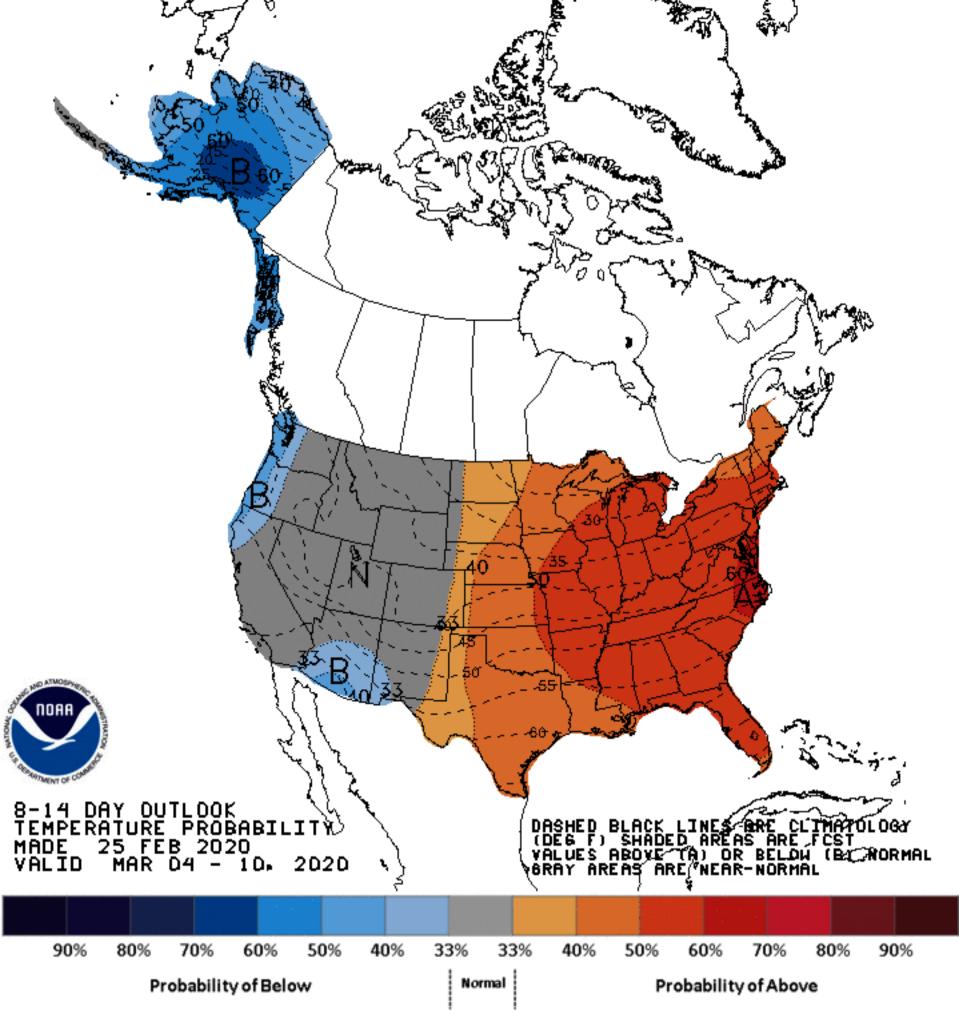
Historical forecast error plots can now be accessed at the link below. The plots compare actual and forecasted Bulletin 120 runoff projections for individual basins through WY 2018. <u>Historical Forecast Error Plots</u>


http://cdec.water.ca.gov/snow/bulletin120/B120_error_fcast_plots.html

Snow Surveys Staff Contact Information:

Sean de Guzman	sean.deguzman@water.ca.gov	(916) 574-2208
John King	john.j.king@water.ca.gov	(916) 574-2637
Andy Reising	andrew.reising@water.ca.gov	(916) 574-2181
Ashok Bathulla	ashok.bathulla@water.ca.gov	(916) 574-2634
Lauren Miller	lauren.miller@water.ca.gov	(916) 574-1433


Why is it so dry? One player may be the Positive Arctic Oscillation (AO)Positive AO = Stable Polar VortexNegative AO = Wavy Polar Vortex



SACRAMENTO - SHASTA DAM (SHDC1) 02/25/2020 Most Probable: 3520 kaf | 59% of Average | 62% of Median

Observed to Date Percent of Average: 57% (1550 kaf) Water Year to Date Average: 2720 kaf Historical Water Year Vol Max: 10800 kaf in 1974 Historical Water Year Vol Min: 2480 kaf in 1924 -- WY Volume Average -- WY Volume Median -- WY to Date Obs WY to Date Avg -- Daily Obs

WY Volume Average -- WY Volume Median -- WY to Date Obs
 WY to Date Avg -- Daily Obs
 Obs Peak ▲ ESP WY Vol Fcst 10% ▲ ESP WY Vol Fcst 25% × ESP WY Vol Fcst 50% ▼ ESP WY Vol Fcst 75%
 ▼ ESP WY Vol Fcst 90%

