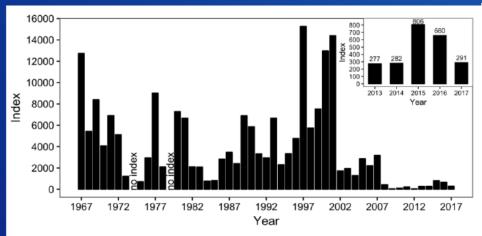
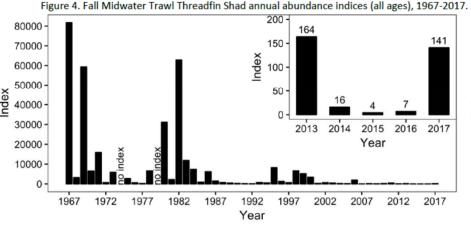
RECLAMATION

Managing Water in the West


USBR ROC on LTO
Delta Biology and Management Overview

January 19, 2018


U.S. Department of the Interior Bureau of Reclamation

Delta Fish Population Declines

1200 -Index Year

Figure 1. Fall Midwater Trawl Delta Smelt annual abundance indices (all ages), 1967-2017.

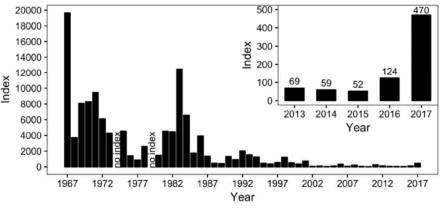
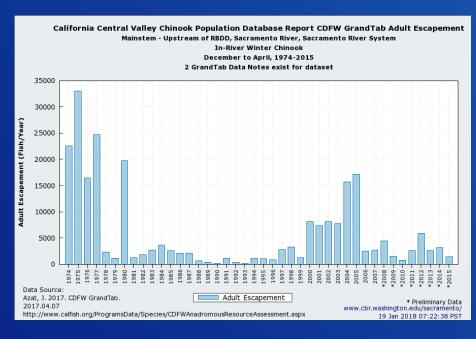
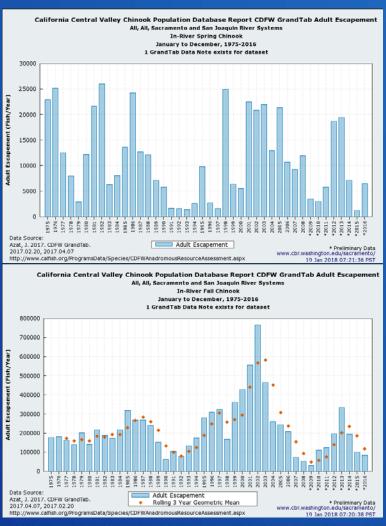
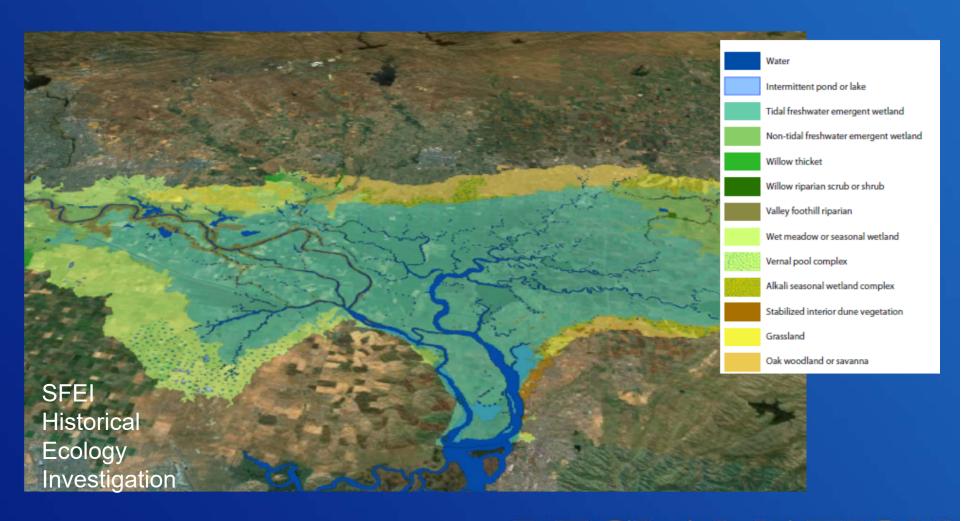




Figure 3. Fall Midwater Trawl Longfin Smelt annual abundance indices (all ages), 1967-2017.

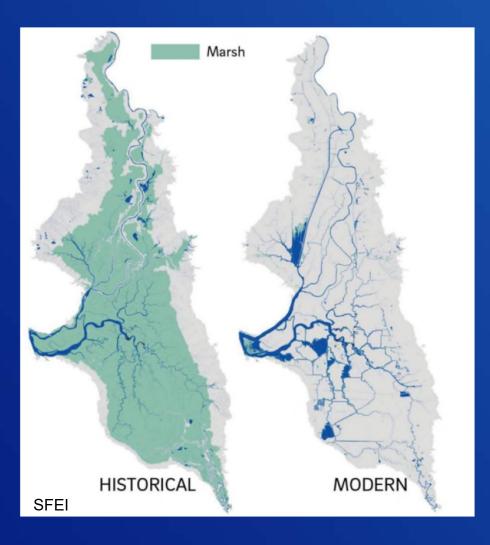
Figure 2. Fall Midwater Trawl Age-0 Striped Bass annual abundance indices, 1967-2017.

Salmon Populations Too.

CVP/SWP Delta Biology Overview


- The Estuary Past
 - Floodplains
 - Tidal Islands
 - Distributary Rivers
- Species of Interest
 - Residents
 - Anadromous
- Challenges
 - Loss of Habitat
 - Altered Flow
 - Water Quality
 - Nonnative Species
 - Hatcheries and Harvest Management

Conceptual Models


Monitoring Information

Programs and Projects

Historic Delta regions Northern, Central, and Southern

Habitat Loss >95% of wetlands lost

Plans

Tidal Marsh and Floodplain Restoration Action in NMFS and USFWS BiOps

- 8,000 acres of tidal marsh
- 17,000 acres of floodplain

Delta Smelt Resiliency Strategy

- 9,000 acres
 Salmon Resiliency Strategy
- 11,000 acres

Implementation Groups

- Fisheries Restoration Program
- EcoRestore Program
- Delta Conservancy

Challenges Confronting Fish and Water Management in the Bay-Delta

- Loss of Habitat
- 2. Altered Flows
- 3. Ecosystem Water Quality
- 4. Non-native Species
- 5. Hatcheries and Harvest Management

Each affects ESA-listed species based on scale and scope?

- What is the magnitude/duration/exposure to each challenge?
- What viability parameter is affected (ie: Population size, growth, distribution, diversity)?

Can activities be implemented through time to Protect, Restore, and Maintain species in the Bay-Delta?

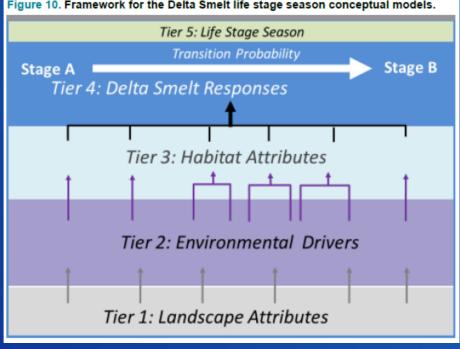
Environmental Watering Approaches

- Sustain populations
- Activities stabilize the natural population

- Improve juvenile productivity
- Activities increase survival and carrying capacity through flow and non-flow actions

- Avoid extinction
- Activities are off-the-shelf non-flow contingencies due to predicted stressors

Delta Smelt Conceptual Models


Habitat Attributes

- Entrainment Risk
- Predation Risk
- Food Availability
- Transport Direction
- Size and Location of LSZ

Environmental Drivers

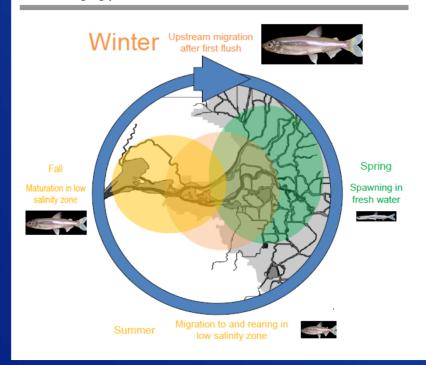
- Contaminants
- Food Production
- Predators
- Flows
- Turbidity
- Water Diversions
 DRAFT, Subject to Revision

What might be considered for protecting, restoring, and maintaining DSM?

Habitat Attributes

- Entrainment Risk
- Predation Risk
- Food Availability
- Transport Direction

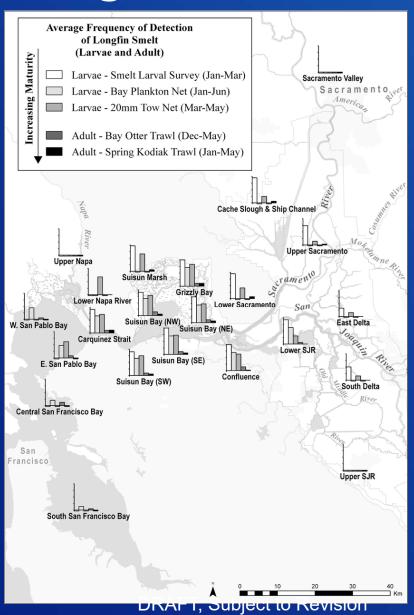
Environmental Drivers


- Contaminants
- Food Production
- Predators
- Flows
- Turbidity
- Water Diversions

DRAFT, Subject to Revision

- Export Reductions
- Seasonal Outflow Augmentation
- Aquatic Weed Control
- N Delta Food Web Enhancement
- Reoperation of Suisun Marsh Salinity Gates
- Sediment Supplementation in LSZ
- Spawning Habitat Augmentation
- Suisun Marsh Food Web Enhancement
- Management Wetland Food Web Enhancement
- Adjusting Fish Salvage Operations
- Stormwater Discharge Management
- Rio Vista Research Station
- Delta Smelt Habitat Restoration
- Franks Track Restoration
- Conservation Propagation
- Conservation Supplementation

Where might be considered for protecting, restoring, and maintaining DSM?


Figure 5. Simplified life cycle of Delta Smelt (modified from Bennett 2005). Colors correspond to different seasons with the low salinity zone changing position with season.

- Export Reductions
- Seasonal Outflow Augmentation
- Aquatic Weed Control
- N Delta Food Web Enhancement
- Reoperation of Suisun Marsh Salinity Gates
- Sediment Supplementation in LSZ
- Spawning Habitat Augmentation
- Suisun Marsh Food Web Enhancement
- Management Wetland Food Web Enhancement
- Adjusting Fish Salvage Operations
- Stormwater Discharge Management
- Rio Vista Research Station
- Delta Smelt Habitat Restoration
- Franks Track Restoration
- Conservation Propagation
- Conservation Supplementation

DRAFT, Subject to Revision

Longfin Smelt Conceptual Models

DRERIP model described stressors

Work describing linkages of

- 1. Fish responses
- 2. habitat attributes
- 3. environmental drivers would benefit evaluation of Delta challenges and opportunities

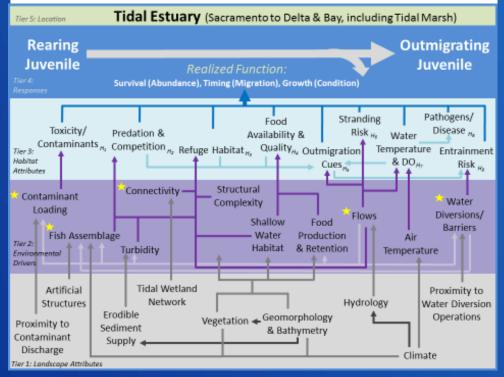
Potential IEP project in 2018 (?)

Winter-run Chinook Conceptual Model

Habitat Attributes

- Entrainment Risk
- Predation Risk
- Food Availability
- Transport Direction
- Outmigration Cues

Environmental Drivers


- Contaminants
- Fish Assemblage
- Flows
- Water Diversions
- Barriers
 DRAFT, Subject to Revision

NOAA Technical Memorandum NMFS

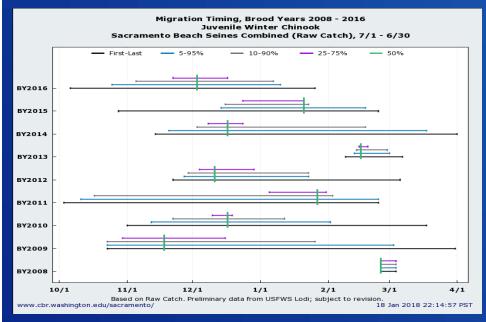
AUGUST 2017

SCIENTIFIC FRAMEWORK FOR ASSESSING FACTORS
INFLUENCING ENDANGERED SACRAMENTO RIVER
WINTER-RUN CHINOOK SALMON (Oncorhynchus
tshawytscha) ACROSS THE LIFE CYCLE

What might be considered for protecting, restoring, and maintaining WRCS?

Habitat Attributes

- Entrainment Risk
- Predation Risk
- Food Availability
- Transport Direction
- Outmigration Cues

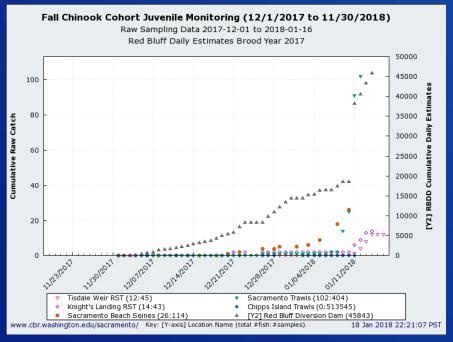

Environmental Drivers

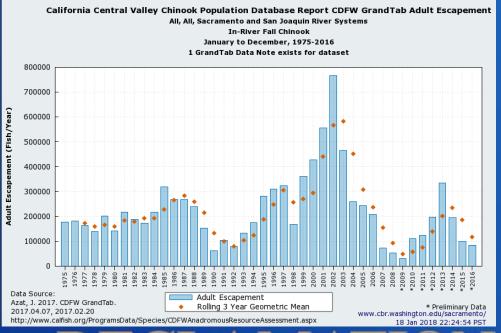
- Contaminants
- Fish Assemblage
- Flows
- Water Diversions
- Barriers

- Re-operate Delta Cross Channel
- Export Reductions
- Old and Middle River Reverse Flow Management
- Spring I:E Ratio Management
- Upgrade CVP/SWP Fish Collection, Holding, and Release Facilities
- Reduce Predator Hot Spots
- Restore Tidal Wetlands
- Restore Floodplain Habitats
- Restore Riparian Habitats
- Install South Delta/ HOR Barriers
- Install N. Delta/Georgiana S. Barriers
- Improve In-Delta Diversion Fish Screens
- Manage Winter/Early Spring Delta Conditions to Improve Survival

When might be considered for protecting, restoring, and maintaining WRCS?

http://www.cbr.washington.edu/sacramento


BroodYear	Sampling Dates (MM/DD/YYYY)												
	First	5%	10%	25%	50%	75%	90%	95%	Last				
2017 ¹ YTD	11/21/2017								01/10/2018				
Average (2008 - 2016)	11/21	12/02	12/07	12/23	01/02	01/11	01/31	02/16	03/05				
Median (2008 - 2016)	11/01	11/20	11/29	12/10	12/17	12/29	01/25	02/23	03/05				
2016	10/05/2016	10/24/2016	11/04/2016	11/21/2016	12/02/2016	12/16/2016	01/06/2017	01/09/2017	01/25/2017				
2015	10/28/2015	12/14/2015	12/16/2015	12/24/2015	01/20/2016	01/20/2016	01/22/2016	02/17/2016	02/23/2016				
2014	11/14/2014	11/20/2014	12/03/2014	12/08/2014	12/17/2014	12/24/2014	02/17/2015	03/17/2015	03/31/2015				
2013	02/08/2014	02/12/2014	02/13/2014	02/14/2014	02/15/2014	02/18/2014	02/27/2014	02/28/2014	03/06/2014				
2012	11/21/2012	11/26/2012	11/28/2012	12/03/2012	12/10/2012	12/28/2012	01/22/2013	01/22/2013	03/05/2013				
2011	10/03/2011	10/11/2011	10/17/2011	01/04/2012	01/26/2012	01/30/2012	02/02/2012	02/23/2012	02/23/2012				
2010	11/01/2010	11/12/2010	11/22/2010	12/10/2010	12/17/2010	12/19/2010	01/11/2011	02/01/2011	03/17/2011				
2009	10/23/2009	10/23/2009	10/23/2009	10/30/2009	11/18/2009	12/16/2009	01/25/2010	03/02/2010	03/30/2010				
2008	02/24/2009	02/24/2009	02/24/2009	02/24/2009	02/24/2009	03/03/2009	03/03/2009	03/03/2009	03/03/2009				
n by	First	5%	10%	25%	50%	75%	90%	95%	Last				
BroodYear	Sampling Dates (NW/DD/YYYY)												


- Re-operate Delta Cross Channel
- Export Reductions
- Old and Middle River Reverse Flow Management
- Spring I:E Ratio Management
- Upgrade CVP/SWP Fish Collection, Holding, and Release Facilities
- Reduce Predator Hot Spots
- Restore Tidal Wetlands
- Restore Floodplain Habitats
- Restore Riparian Habitats
- Install South Delta/ HOR Barriers
- Install N. Delta/Georgiana S. Barriers
- Improve In-Delta Diversion Fish Screens
- Manage Winter/Early Spring Delta Conditions to Improve Survival

Other salmonids have less synthesized information on scope, but lots of information on scale. - Spring-run Chinook

- Central Valley steelhead

	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	NMFS
Juvenile winter-run													
Juvenile spring-run													
Juvenile steelhead													

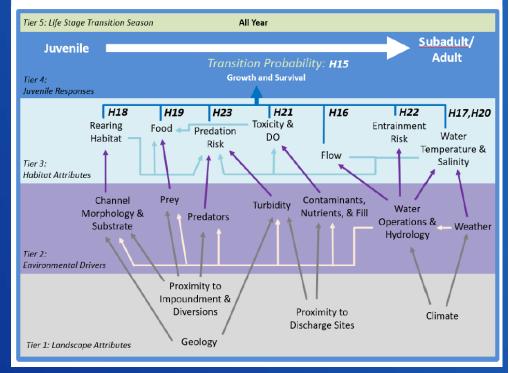
http://www.cbr.washington.edu/sacramento DRAFT, Subject to Revision

Green Sturgeon Conceptual Model

Habitat Attributes

- Rearing Habitat
- Flow
- Entrainment Risk
- Water Temperature
- Salinity

Environmental Drivers


- Contaminants
- Predators
- Water Operations
- Channel Substrate

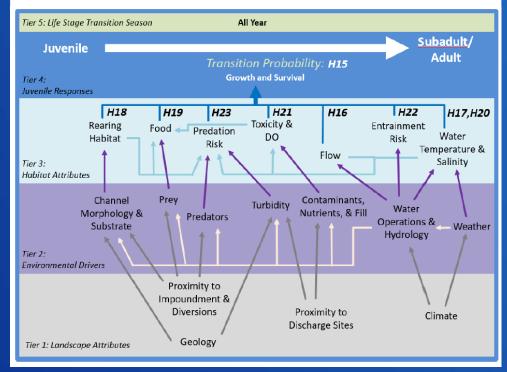
NOAA Technical Memorandum NMFS

SEPTEMBER 2017

IMPROVED FISHERIES MANAGEMENT THROUGH LIFE STAGE
MONITORING: THE CASE FOR THE SOUTHERN DISTINCT
POPULATION SEGMENT OF NORTH AMERICAN GREEN STURGEON
AND THE SACRAMENTO-SAN JOAQUIN RIVER WHITE STURGEON

Green Sturgeon Conceptual Model

Information on scope and scale is quite limited for green sturgeon in the Bay-Delta.


DRERIP model described stressors and periodicity

NOAA Technical Memorandum NMFS

SEPTEMBER 2017

IMPROVED FISHERIES MANAGEMENT THROUGH LIFE STAGE
MONITORING: THE CASE FOR THE SOUTHERN DISTINCT
POPULATION SEGMENT OF NORTH AMERICAN GREEN STURGEON
AND THE SACRAMENTO-SAN JOAQUIN RIVER WHITE STURGEON

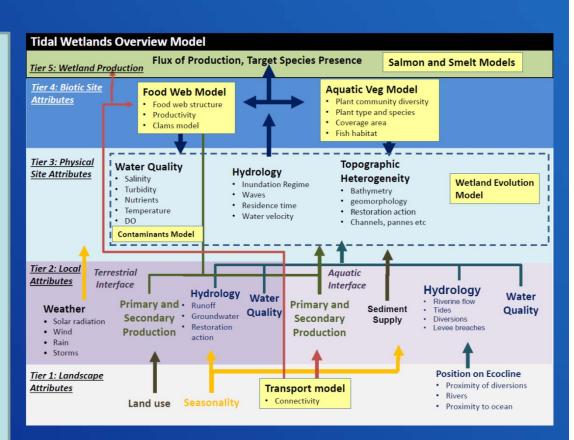
New Information Confronting Fish and Water Management in the Bay-Delta

- Loss of Habitat
- 2. Altered Flows
- 3. Ecosystem Water Quality
- 4. Non-native Species
- 5. Hatcheries and Harvest Management

Each affects ESA-listed species based on scale and scope?

- What is the magnitude/duration/exposure to each challenge?
- What viability parameter is affected (ie: Population size, growth, distribution, diversity)?

Habitat Restoration IEP Generating Monitoring and Planning Information


Tidal Wetland Suite of Conceptual Models (DFW)

Tidal Wetland Monitoring Pilot Project (DFW)

Yolo Bypass Fish Monitoring Project (DWR)

Liberty Island Fish Survey (USFWS)

Physical and Biological Drivers of Fish Populations to Inform Habitat Restoration Actions (USGS)

Altered Flow

How do individual fish movements influence population responses?

Advancement in PTM models

- Smelt entrainment (3D UnTRIM)
- Salmonid ePTM (DSM2)

Enhanced Distributional Monitoring

- Enhanced D. Smelt Monitoring
- Enhanced Acoustic Telemetry for Salmon Monitoring

Operational Experiments?

- Utilizing physical models now, can we get ePTM models integrated into toolbox for adaptive management?
- Do our observations from enhanced monitoring fit our predictions? RECLAMATIC

DRAFT, Subject to Revision

Ecosystem Water Quality Nutrients, Flows, and Habitat

Recent and Planned Experiments

- North Delta Food Web Enhancement
- Suisun Marsh Salinity Gate Reoperation
- Fish Food on Floodplain Farm Fields

Can models be developed from these activities to predict benefits and risks of larger actions?

- Sacramento Deepwater Ship Channel
- Yolo Bypass Juvenile Salmonid Habitat Restoration Program

Non-native species

Predation and competition in a novel environment

- Recent scientific synthesis (DSP) and new information (SWFSC South Delta studies)
- Improved information about predation in association with Clifton Court (SWP) and Primary Channel (CVP)
- Predation experiments and modeling for CVPIA structured decision model moving forward.
- Increased interest in monitoring programs (IEP)

Hatcheries and Harvest Management

Salmonids

- Production of salmonids becoming more dependent on hatcheries following drought.
- CWT data is demonstrating Delta planting of hatchery salmonids can improve survival but affects straying
- Fall flows through the Delta may influence salmonid straying between San Joaquin and Sacramento Rivers

Delta Smelt

 Delta smelt conservation supplementation beyond ongoing efforts may not be implemented before species rarity affects broodstock collection

What would you do?

- -Lots of lists, do you have new ideas? Why would you do it?
 - How does it affect scale and scope?
 - Do the habitat attributes affect fish responses directly or indirectly?
 - Are the environmental drivers affected by CVP/SWP?

When would you do it?

- Can it be accomplished in a year?
- Can it be accomplished in 5 years?

