

TRACY FISH COLLECTION FACILITY STUDIES CALIFORNIA

Volume 9
Chemistry and Water Quality at the
Tracy Fish Collection Facility
Tracy, California

January 2000

United States Department of the Interior
Bureau of Reclamation
Mid-Pacific Region and the Technical Service Center

Chemistry and Water Quality at the Tracy Fish Collection Facility Tracy, California

By

Douglas Craft ¹, Lee Mao ², John Fields ² and Bruce Moore ² Tracy Fish Collection Facility Studies, California, Volume 9

United States Department of the Interior Bureau of Reclamation

Denver Technical Services Center

¹ Fisheries Applications Research Group

And

Mid-Pacific Region
² Quality Assurance Branch

January 2000

TABLE OF CONTENTS

EXECUTIVE SI	JMMARY Executive Summary 1	İ
Project	N	1
Field Si Analytic Compu Coding	SY ampling cal Methods for the October 1997 Sampling ter and Database Methods of Non-Detect Data se Quality Control Procedures	3 4 5
The Da Reliabil Genera Nutrien Trace E Organic Agricul	DISCUSSION ta and Appendices ity and Representativeness of Database Data I Chemistry and Major Ions t (nitrogen and phosphorus) Data Element Data: Compounds	6 7 8 5 2 2
CONCLUSION	S 23	3
Fundin TFCF a Databa Peer R	GMENTS 26 g and Coordination 26 and Hydrolab Assistance 26 se Collation 26 eview 26 ssistance 26	6 6 6 6
REFERENCES	2	6
	TABLES	
Table 1	Sampling locations for the October 1997 sampling event.	4
Table 2	Agricultural compounds of concern and months when they may be detected in TFCF waters. Boldfaced compounds have fish toxicity scores = 5.00 and significant application amounts. Amounts represent combined liquid and solid amounts expressed as kg, and likely detection months are listed in order of greatest amount.	:4
Table 3	Some other regulated pesticides (found in the San Joaquin and Sacramento Rivers). These data were included in the <i>toxicity</i> table in the <i>agdata.mdb</i> database. Boldface compounds are those identified as compounds of concern based on agricultural chemical application data analysis	24

Table 4	Other agricultural chemicals of concern identified by delta researchers. Boldface compounds are those identified as compounds of concern based on agricultural chemical application data analysis.	25
Table 5	Chemical water quality at TFCF compared to national and California water quality standards.	25
	FIGURES	
Figure 1	Map of the general TFCF area showing the lat-long box used to query the STORET database, and the smaller township-range box used to query the San Joaquin County agricultural chemical database.	2
Figure 2a	Median monthly dissolved solids and conductivity data from the STORET database	9
Figure 2b	Median monthly turbidity and temperature data from the STORET database	9
Figure 2c	Median monthly pH and dissolved oxygen data from the STORET database	10
Figure 3a	Plot of permanent Hydrolab probe data comparing tidal depth fluctuations with conductivity data for April 1997	10
Figure 3b	Plot of permanent Hydrolab probe data comparing tidal depth fluctuations with conductivity data for August 1997.	11
Figure 4a	Stiff diagrams for monthly minimum major ions concentrations collected from the STORET database.	12
Figure 4b	Stiff diagrams for monthly median major ions concentrations collected from the STORET database.	13
Figure 4c	Stiff diagrams for monthly maximum major ions concentrations collected from the STORET database.	14
Figure 5	Stiff diagrams for water samples collected near the TFCF in October 1997. Compare these diagrams with the median Stiff diagrams from STORET queries of nearby waters in Figure 6b.	16
Figure 6a	Stiff diagrams comparing minimum major ions data from the STORET database for the Tracy lat-long box (TFFMIN), and for stations near the San Joaquin River near Vernalis (VERMIN), Suisun Bay near the inflow of the Sacramento River (SUIMIN), the Mokelumne River north of Stockton (MOKMIN), and the Sacramento River near Sacramento (SACMIN).	17
Figure 6b	Stiff diagrams comparing median major ions data from the STORET database for the Tracy lat-long box (TFFMED), and for stations near the San Joaquin River near Vernalis (VERMED), Suisun Bay near the inflow of the Sacramento River (SUIMED), the Mokelumne River north of Stockton (MOKMED), and the Sacramento River near Sacramento (SACMED).	18

Figure 6c	for the 1 River ne River (S	grams comparing maximum major ions data from the STORET database fracy lat-long box (TFFMAX), and for stations near the San Joaquin ear Vernalis (VERMAX), Suisun Bay near the inflow of the Sacramento UIMAX), the Mokelumne River north of Stockton (MOKMAX), and the ento River near Sacramento (SACMAX)	9
Figure 7	Median	monthly major ions data from the STORET TFCF lat-long box query	0
Figure 8a		monthly total phosphorus and total Kjeldahl nitrogen (TKN) data from PRET TFCF lat-long box query 2	0
Figure 8b		monthly dissolved (filtered) nitrogen concentrations from the STORET t-long box query	1
Figure 8c		monthly dissolved (filtered) phosphorus major ions data from the T TFCF lat-long box query	:1
		APPENDICES - WITH TABLES AND FIGURES:	
APPENDIX 1	Guide 1	o Access database files.	
Table /	A1-1	STORET lat-long query sampling stations and distance from the TFCF 1-	.2
Table /	A1-2	Table names and contents in Access database tfcf_st.mdb (2,980 Kbytes) 1-	.3
Table /	A1-3	Access major ions database other_st.mdb (1,060 Kbytes)	.3
Table /	A1-4	Criteria from <i>The Farm Chemical Handbook '97</i> used to assign Relative toxicity scores to 96-hour LC-50 data	.4
APPENDIX 2		Chemistry and Biota Data: Summary of Major lons, Nutrients, and Trace it Data Collated from the EPA STORET database	
Table .	A2-1	STORET Parameter Numbers (Access field name Parmno) and associated descriptive fields used in the STORET chemical database for the Tracy Fish Collection Facility 2-	1
Table	A2-2	STORET sampling stations used in chemical data summaries for the Tracy Fish Collection Facility. These stations are located with a lat-long box defined by 37°45'00" N to 37°56'00" N and 121°20'00" W to 121°38'00" W	-6
Table	A2-3	Gross-property field water quality data summarized by month, collated from the EPA STORET database for samples in the vicinity of the Tracy Fish Collection Facility	-8
Table	A2-4a	Major ions data summaries from the STORET database for samples from the vicinity of the Tracy Fish Collection Facility	10
Table	A2-4b	Major ions data summaries from the STORET database for samples from the vicinity of Suisun Bay, California	1 (

Table A2-4c	Major ions data summaries from the STORET database for samples from the vicinity of the San Joaquin River near Vernalis, California 2-10
Table A2-4d	Major ions data summaries from the STORET database for samples from the Mokelumne River north of Stockton, California 2-11
Table A2-4e	Major ions data summaries from the STORET database for samples From the vacinity of the Sacramento River near Sacramento, California 2-12
Table A2-5	Summary by month of STORET major ions data for samples in the vicinity of the Tracy Fish Collection Facility
Table A2-6	Nutrient data summaries by month from the STORET database for samples in the vicinity of the Tracy Fish Collection Facility. All concentrations are in mg/L as N or as P
Table A2-7a	Trace element data summaries by month from the STORET database for samples in the vicinity of the Tracy Fish Collection Facility. Ag through Hg. Data reported as less than detection limit are indicated by negative numbers where the absolute value of the negative value represents the detection limit. Zero values represent data below unknown detection limits
Table A2-7b	Trace element data summaries by month from the STORET database for samples in the vicinity of the Tracy Fish Collection Facility. Mo through Zn. Data reported as less than detection limit are indicated by negative numbers where the absolute value of the negative value represents the detection limit. Zero values also represent data below unknown detection limits
Table A2-7c	Trace element data summaries by month from the STORET database for samples in the vicinity of the Tracy Fish Collection Facility. Fe and Mn. Data reported as less than detection limit are indicated by negative numbers where the absolute value of the negative value represents the detection limit. Zero values also represent data below unknown detection limits
Table A2-8a	General organic chemicals data (µg/L) available from the STORET database for samples in the vicinity of the Tracy Fish Collection Facility. Note the lack of available data, and hence the absence of summary statistics. Data reported as less than detection limit are indicated by negative numbers where the absolute value of the negative value represents the detection limit. Zero values represent data below unknown detection limits
Table A2-8b	Pesticide (µg/L) data available from the STORET database for samples in the vicinity of the Tracy Fish Collection Facility. Note the lack of available data, and hence the absence of summary statistics. Data reported as less than detection limit are indicated by negative numbers where the absolute value of the negative value represents the detection limit. Zero values represent data below unknown detection limits 2-23

Table A2-9a	Biological data summarized by month collated from the STORET database for sampling stations in the vicinity of the Tracy Fish Collection Facility	
Table A2-9b	Biological data summarized by month collated from the STORET database for sampling stations in the vicinity of the Tracy Fish Collection Facility	
APPENDIX 3 Agricu	ltural Chemicals Applied Near the Tracy Fish Collection Facility	
Table A3-1	Common (ISO) names for agricultural chemicals and their IUPAC or CAS chemical structure name applied in the vicinity of the Tracy Fish Collection Facility during 1997. These data were obtained from San Joaquin County and cross-referenced with information from The 1997 Farm Chemicals Handbook '97.	. 3-1
Table A3-2	Summary of agricultural chemical amounts applied to cropland, by class or type of chemical, along the Old River in the near vicinity of the Tracy Fish Collection Facility during 1997. These data summarize applications for Ranges 4E, 5E and 6E, within Township 1S, based on data obtained from San Joaquin County.	. 3-6
Table A3-3	Summary of agricultural chemicals and amounts applied to cropland along the Old River in the near vicinity of the Tracy Fish Collection Facility during 1997. These data summarize applications for Ranges 4E, 5E and 6E, within Township 1S, based on data obtained from San Joaquin County.	. 3-7
Table A3-4	Fish bioassay toxicity data as LC50 values in µg/L, for agricultural chemicals applied in the near vicinity of the Tracy Fish Collection Facility during 1997	3-17
Table A3-5	Summary of 1997 agricultural chemicals and amounts applied in the near vicinity of the TFCF. These chemicals represent the more toxic compounds having fish toxicity scores greater than 3.5. Data from San Joaquin County agricultural application database. <i>Italicized</i> chemicals represent toxicity score > 4 and application > 100kg or 100L, or toxicity score > 3.5 and < 4 with application > 1000kg or 1000L	3-19
Table A3-6	Chemical structures for the more toxic agricultural chemical compounds applied in larger quantities.	3-21
Table A3-7	Summary by month of 1997 agricultural chemical applications in the vicinity of the Tracy Fish Collection Facility for chemicals with average fish toxicity score toxicity scores > 4 and application > 100 kg or 100 L, or toxicity score \geq 3.5 and \leq 4 with application > 1000 kg or 1000 L	3-26
Figure A3-1	Kilograms of Aldicarb applied during 1997 near the TFCF	3-28
Figure A3-2	Kilograms of Bromoxynil applied during 1997 near the TFCF	3-28
Figure A3-3	Kilograms of Carbofuran applied during 1997 near the TFCF	3-29 3-29

Figure A3-5	Kilograms of Desmedipham applied during 1997 near the TFCF 3-30
Figure A3-6	Kilograms of Diazinon applied during 1997 near the TFCF
Figure A3-7	Kilograms of Esfenvalerate applied during 1997 near the TFCF 3-31
Figure A3-8	Kilograms of Fenbutatin-oxide applied during 1997 near the TFCF 3-31
Figure A3-9	Kilograms of Fonofos applied during 1997 near the TFCF
Figure A3-10	Kilograms of Metam-sodium applied during 1997 near the TFCF 3-32
Figure A3-11	Kilograms of Metolachlor applied during 1997 near the TFCF 3-33
Figure A3-12	Kilograms of Oryzalin applied during 1997 near the TFCF
Figure A3-13	Kilograms of Oxyfluorfen applied during 1997 near the TFCF
Figure A3-14	Kilograms of Phosmet applied during 1997 near the TFCF
Figure A3-15	Kilograms of Permethrin applied during 1997 near the TFCF 3-35
Figure A3-16	Kilograms of Trifluralin applied during 1997 near the TFCF
	ical and Statistical Summary of Pesticide and Herbicide Data from USGS sis Results for Sample Collected at Vernalis, California
Table A4-1	Rank statistics as percentiles for the entire USGS Vernalis data set. All values are in ng/L. Variable detection limits have been recoded as the inverse of the maximum reported detection limit
Table A4-2a	Rank statistics as percentiles by month for the entire USGS Vernalis data set, Alachlor to Eptam. All values are in ng/L. Variable detection limits have been recoded as the inverse of the maximum reported detection limit
Table A4-2b	
	Rank statistics as percentiles by month for the entire USGS Vernalis data set, Fonofos to Trifluralin. All values are in ng/L. Variable detection limits have been recoded as the inverse of the maximum reported detection limit
Figure A4-1	data set, Fonofos to Trifluralin. All values are in ng/L. Variable detection limits have been recoded as the inverse of the maximum reported
Figure A4-1 Figure A4-2	data set, Fonofos to Trifluralin. All values are in ng/L. Variable detection limits have been recoded as the inverse of the maximum reported detection limit

Figure A4-4	Concentrations of Metolachlor in ng/L as measured by USGS (<i>MacCoy,</i> et al., 1995)
Figure A4-5	Concentrations of Methidathion in ng/L as measured by USGS (<i>MacCoy</i> , et al., 1995)
Figure A4-6	Concentrations of Carbofuran in ng/L as measured by USGS (MacCoy, et al., 1995)
Figure A4-7	Concentrations of Cyanazine in ng/L as measured by USGS (<i>MacCoy</i> , et al., 1995)
Figure A4-8	Concentrations of Dacthal in ng/L as measured by USGS (<i>MacCoy</i> , et al., 1995)
Figure A4-9	Concentrations of Eptam in ng/L as measured by USGS (<i>MacCoy, et al., 1995</i>)
APPENDIX 5 Data 1	rom the October 1997 Sampling Event
Table A5-1	Major ions data from the October 1997 sampling event. All concentrations are in mg/L unless otherwise noted
Table A5-2	Nutrient data from the October 1997 sampling event 5-1
Table A5-3	Trace element data from the October 1997 sampling event. All concentrations are in µg/L, except for total mercury (HG_U and HG_F) and methylmercury (MEHG_U, MEHG_F) which are expressed in ng/L
APPENDIX 6	Statistical and Graphical Summary of TFCF Permanent Hydrolab Probe Data: Hourly Average Values, March 1997 through February 1998.
Table A6-1	Statistical summary by month of March 1997 through February 1998 water quality parameters measured by the in situ Hydrolab H-20 probe installed at the intake of the TFCF behind the debris boom. These data summarize hourly average values 6-1
Figure A6-1	Plot of hourly average conductivity measured March through May 1997 by the <i>in situ</i> Hydrolab probe at the TFCF
Figure A6-2	Plot of hourly average dissolved oxygen measured March through May 1997 by the <i>in situ</i> Hydrolab probe at the TFCF 6-3
Figure A6-3	Plot of hourly average probe depth (showing daily tidal fluctuations) measured March through May 1997 by the <i>in situ</i> Hydrolab probe at the TFCF
Figure A6-4	Plot of hourly average pH measured March through May 1997 by the <i>in situ</i> Hydrolab probe at the TFCF
Figure A6-5	Plot of hourly average temperature measured March through May 1997 by the <i>in situ</i> Hydrolab probe at the TFCF

Figure A6-6	Plot of hourly conductivity measured June through August 1997 by the in situ Hydrolab probe at the TFCF	6-6
Figure A6-7	Plot of hourly average dissolved oxygen measured June through August 1997 by the <i>in situ</i> Hydrolab probe at the TFCF	6-6
Figure A6-8	Plot of hourly average probe depth (showing daily tidal fluctuations) measured June through August 1997 by the <i>in situ</i> Hydrolab probe at the TFCF.	6-7
Figure A6-9	Plot of hourly average pH measured June through August 1997 by the in situ Hydrolab probe at the TFCF	6-7
Figure A6-10	Plot of hourly average temperature measured June through August 1997 by the <i>in situ</i> Hydrolab probe at the TFCF	6-8

MEASUREMENT UNITS

acre English unit for land area, (1 acre = 2.471 ha)

equivalent a chemical concentration unit based on reactivity equal to the molar weight divided by the

valence of the compound or ion

g gram, SI mass unit

ha hectare, SI area unit (1 Ha = $1.00 \times 10^4 \text{ m}^2$)

kg kilogram, SI mass unit

L liter, SI volume unit

lat/long latitude/longitude

LC₅₀ lethal concentration that kills 50% of the test organisms within the exposure period of the

bioassay

LD₅₀ lethal dosage that kills 50% of the test organisms within the exposure period of the

bioassay

M molarity, moles per liter

m meter, SI length unit

meq/L milliequivalents per liter

mg milligram, SI mass unit, $(1 \text{ mg} = 10^{-3} \text{ g})$

mg/kg milligrams per kilogram (1000 g), SI concentration unit applied to solid samples and liquid

samples with high salinity

mg/L milligrams per liter, SI concentration unit

mL milliliter, SI volume unit, (1000 mL = 1.000 L)

mm millimeter (10⁻³ m), SI length unit

moles per 1000 g of solution

mole a chemical concentration unit based on empirical formula, equal to the mass of Avogadro's

number (6.023 X 10²³) of molecules of a chemical compound, or atoms of an element

mol/L moles per liter

µeg/L microequivalents per liter

 μg microgram, SI mass unit, $(1 \mu g = 10^{-6} g)$

GLOSSARY

μg/kg micrograms per kilogram (1000 g), SI concentration unit applied to solid samples and

liquid samples with high salinity

μg/L micrograms per liter, SI concentration unit

μm micrometer, or micron (10⁻⁶ m), SI length unit

µS/cm microsiemens per square centimeter, SI unit for electrical conductivity

mV millivolt, SI voltage unit

N normality, expressed in equivalents/liter

NTU nephelometric turbidity units

ng nanogram, SI mass unit, $(1 \text{ ng} = 10^9 \text{ g})$

ng/kg nanograms per kilogram (1000 g), SI concentration unit applied to solid samples and liquid

samples with high salinity

ng/L nanograms per liter, SI concentration unit

ppb parts per billion, equivalent to µg/kg and properly applied to solid sample concentrations

ppm parts per million, equivalent to mg/kg and properly applied to solid sample concentrations

ppt parts per trillion, equivalent to ng/kg and properly applied to solid sample concentrations

SI Système Internationale d'Unités, the international standard system for metric

measurement units

su or s.u. standard units, usually applied to pH

V volt, SI voltage unit

ANALYTICAL CHEMISTRY AND WATER QUALITY TERMS

AA atomic absorption

AAS atomic absorption spectrophotometer

CVAA cold vapor atomic absorption

CVAFS cold vapor atomic fluoresence spectrophotometry

Dissolved an operationally defined term applied to water analysis results, usually meaning

sample is filtered through a 0.45-µm pore-size membrane filter before analysis

EC electron capture detector, on a GC instrument (also electrical conductivity)

GLOSSARY

Glossary ii

FIA flow injection analyzer

FID flame ionization detector, on a GC instrument

GC gas chromatograph

GC-MS gas chromatograph - mass spectrometer

GFAA graphite furnace atomic absorption

IC ion chromatograph

ICP-ES inductively-coupled plasma - emisssion spectrograph

ICP-MS inductively-coupled plasma - mass spectrometer

pH degree of acidity or alkalinity of a solution

solute the chemical that is dissolved into the solvent

solvent the chemical that dissolves the solute

Suspended an operationally defined term applied to water analysis results, analytes associated

with suspended particles larger than 0.45-µm, usually calculated by subtracting

dissolved from total

Total an operationally defined term applied to concentration data, usually meaning an

unfiltered sample that is digested or extracted prior to analysis

QUALITY CONTROL - QUALITY ASSURANCE TERMS

ANSI American National Standards Institute

APHA American Public Health Association

ASTM American Society for Testing and Materials

ASQC American Society for Quality Control

AWWA American Water Works Association

BDL below detection limit

blank a clean check sample used to test for contamination during an instrument run

blind a certified check sample submitted to a lab disguised as a normal sample

CCB continuing calibration blank

CLP EPA Contract Laboratory Program

COC chain of custody

CCV continuing calibration verification, a certified known concentration check sample analyzed

at intervals during an instrument run, used to verify that the instrument remains properly

calibrated

check sample a sample analyzed during an instrument run having known concentrations, not necessarily

certified or traceable

DL detection limit

IB instrument blank - usually pure water or solvent run to check for contamination

ICB initial calibration blank

ICV initial calibration verification, a certified known concentration check sample used to verify

that calibration standards were properly prepared and that the instrument is correctly

calibrated

IDL instrument detection limit

IEC International Electrotechnical Committee

ISO International Organization for Standardization

lon Balance a percentage used to check major ions data that compare cations to anions

J EPA data validation code for "estimated"

LCS laboratory control sample, a check sample with known, but not necessarily certified,

concentration

LOD limit of detection, statistically based

LOQ limit of quantitation, statistically based

MB method blank, a clean deionized water sample that is digested or extracted following a

given method

MDL method detection limit

MSD matrix spike duplicate

matrix the sum of all chemical components in the sample besides the analyte being tested

matrix spike a real sample to which a known amount of an analyte is added, sometime denoted MS

ND not detected

PQL practical quantitation limit

QA quality assurance, efforts and tests performed external to the lab to make sure that a lab is

following the QC requirements. These would include lab and field sampling audits,

submission of known concentration samples as blind check sample

QC quality control, efforts and tests undertaken in the lab to check or document analysis data

quality

RPD relative percent difference, a way to calculate precision from duplicate data

Recovery observed concentration divided by theoretical or true concentration, usually expressed as a

percentage

%R percent recovery, in general, (observed value)+(true value) X 100

SDG sample delivery group

spike a known amount of an analyte added to a real sample or blank

U EPA validation code for "undetected" (also element uranium)

ULSA Unique Laboratory Services Agreement, EPA program for contracting special analytical

tests not covered under routine contracting programs

WEF Water Environment Federation

ELEMENTS and ANALYTES

Al aluminum

As arsenic

Ag silver

anions negatively charged ions, usually HCO₃, CO₃², SO₄², and Cl².

B boron

Ba barium

BOD biological oxygen demand

Ca, Ca²⁺ calcium, or calcium ion

Cd cadmium

Cl chloride, or chloride ion

Co cobalt

CO₃² carbonate, or carbonate ion

COD chemical oxygen demand

Cr chromium

Cu copper

cations positively charged ions, usually Ca, Mg, Na, and K

DO dissolved oxygen, mg/L

DOC dissolved organic carbon

EC electrical conductivity, µS/cm

Eh redox potential, Mv

F- fluoride, or fluoride ion

Fe iron

Hg mercury

HCO₃ bicarbonate, or bicarbonate ion

ion an element or molecule dissolved in water with an electrical charge

K, K⁺ potassium, or potassium ion

Me-Hg methylmercury

Mg, Mg²⁺ magnesium, or magnesium ion

Mn manganese

Mo molybdenum

major ions higher concentration elements dissolved in water, usually: Ca, Mg, Na, K,

HCO₃, CO₃², SO₄², and Cl

N nitrogen

NH₃ ammonia

NH₄⁺ ammonium ion

NO₃ nitrate, or nitrate ion

NO₂ nitrite, or nitrite ion

NO₃+NO₂ nitrate plus nitrite

Na. Na⁺ sodium, or sodium ion

Ni nickel

nutrients a term referring to all nitrogen and phosphorus species, usually includes total-P, ortho-P

TKN, NH₃, NO₂, and NO₃

OH hydroxide, or hydroxide ion

o-P, ortho-P orthophosphate

P phosphorus

Pb lead

PO₄³⁻ orthophosphate, phosphate, or phosphate ion

SO₄² sulfate, or sulfate ion

Se selenium

Sb antimony

Sn tin.

T temperature, °C

TDS total dissolved solids, mg/L, also called "filterable residue"

TI thallium

Ti titanium

TKN total Kjeldahl nitrogen

TM trace metals

TOC total organic carbon

TSS total suspended solids, mg/L, also called "non-filterable residue"

t-P, total-P total phosphorus

U uranium

V vanadium

Zn zinc

AGENCY, ORGANIZATIONAL, and LOCATION ABBREVIATIONS

CVP Central Valley Project

DMC Delta Mendota Canal

EPA U.S. Environmental Protection Agency

FGS Frontier Geosciences, Inc., Seattle, Washington

MP Mid-Pacific Region, Bureau of Reclamation

SFEI San Francisco Estuary Institute

SJR San Joaquin River

SPSS Statistical Package for the Social Sciences, SPSS, Inc.

TEFF Tracy Experimental Fish Facility

TFCF Tracy Fish Collection Facility

TFFIP Tracy Fish Facility Improvement Program

TPP Tracy Pumping Plant

TSC Technical Service Center, Denver, Colorado

USBR U.S. Bureau of Reclamation

USGS U.S. Geological Survey

EXECUTIVE SUMMARY

This report presents a summary and assessment of the water quality at the Bureau of Reclamation's (Reclamation) Tracy Fish Collection Facility (TFCF), Tracy, California. The TFCF is the fish screen intake structure for the Tracy Pumping Plant (TPP), and provides water that is pumped into Reclamation's Delta Mendota Canal. These facilities are located in the southern region of the San Francisco Bay Delta area (Delta or South Delta) in northern California.

The evaluation in this report was based on historical and published data gathered from several different sources: queries from the Environmental Protection Agency (EPA) STORET database; the 1997 San Joaquin County agricultural chemical application database; a U.S. Geological Survey (USGS) study that measured sub-µg/L concentrations of pesticides and herbicides in the San Joaquin and Sacramento Rivers; data from a permanent Hydrolab probe installed at the TFCF intake; and data from a recent sampling event performed by Reclamation personnel in October 1997. These data were archived in Microsoft® Access 97 database files, and are available on request.

The major ions¹ chemistry and salinity at the TFCF are influenced by a complex set of variables that affect the Old River, a South Delta distributary of the San Joaquin River (SJR). These variables include large-scale Central Valley land use and watershed gradients, precipitation and storm events, seasonal runoff patterns, daily tidal fluctuations, large-scale irrigation water pumping at the TPP and the nearby State of California pumping facility at Clifton Court Forebay, seasonal irrigation and application of agricultural chemicals, and installation and removal of flow-restriction dams in local rivers and canals.

Data gathered for this report suggest that Old River water at the TFCF is a sodium-chloride dominant water with total dissolved solids (TDS) ranging from 300 to 1100 mg/L, and that the salinity and chemistry

are primarily influenced by seasonal runoff hydrology and watershed land use patterns. The dominant source water for the Old River is from the SJR; however, daily conductivity (EC) fluctuations of 100 to 300 $\mu\text{S/cm},$ caused by tidal action, are commonly observed at the TFCF. The daily salinity fluctuations are thought to be caused by up-gradient transport and mixing of lower concentration waters from the Mokelumne River and Sacramento River by the rising estuarine salt wedge.

The overall seasonal and daily trends observed in the TFCF Hydrolab data (the most representative data set with respect to TFCF proximity and half-hourly measurement frequency) are not clearly supported by major ions data collated from the EPA STORET database. The reasons for this general lack of corroboration include low numbers of samples having complete sets of major ions data, infrequent and discontinuous sampling schedules, and scarcity of data from stations sufficiently close to the TFCF to be location-representative. The selected TFCF latitude-longitude(lat-long) box query from the STORET database is generally rich in commonly measured field data, such as conductivity (EC), pH, or dissolved oxygen (DO), but is lacking in more complete sets of data for the major ions, nutrients (nitrogen and phosphorus), trace metals, and trace organics.

The STORET queries for gross water quality variables, nutrients, and biological data do show some indications of seasonal agricultural influence trends, but the trace metal and organics data sets do not contain enough representative data to assess the primary control variables for trace compounds in TFCF water. If the available data are evaluated with respect to California State water quality criteria, trace element data from the October 1997 sampling event and the USGS pesticide data sets suggest that TFCF water is well below levels of concern. However, the fish collected at the TFCF have consistently showed signs of environmental stress and fishery health impairment during summer operations.

While fish morbidity, lesions, and mortality are likely caused by fish exposure to general conditions prevailing in the greater South Delta area, the scarcity of water quality data representative of the TFCF makes assessing the fishery impacts of screen operations or new screen designs a difficult task.

[&]quot;major ions refers to higher concentration ionic components in natural waters, usually including calcium (Ca), magnesium (Mg), sodium (Na), potassium (K), carbonate ($\mathrm{CO_3}^2$), bicarbonate ($\mathrm{HCO_3}^2$), sulfate ($\mathrm{SO_4}^2$) and chloride (Cl')

Given the observed presence of many chemical toxins at low, sub-lethal concentrations in the SJR, Given the observed presence of many chemical toxins at low, sub-lethal concentrations in the SJR, and the lack of representative historical data in the vicinity of the TFCF, implementation of a defensible quality, temporally representative, and sufficiently low detection limit sampling and analysis program is

recommended. Current Subproject 8 plans address these technical issues (as well as costs) by implementation and use of compositing sampling pumps for both trace elements and organic analytes, and solid phase pre-concentration extraction for organic analytes.

INTRODUCTION

This report is the first in a series from Subproiect 8. Chemical Monitoring and Assessment at the Tracy Fish Screen, which is part of the Tracy Fish Facility Improvement Program (TFFIP). The TFFIP is an interdisciplinary research program started in 1989. and funded to investigate design and operational improvements for the fish screen at the Tracy Fish Collection Facility (TFCF). The fish screen at the TFCF, the intake for the Tracy Pumping Plant (TPP), was designed to prevent fish from being pumped through the TPP into the Delta Mendota Canal (DMC), and represented state-of-the-art technology when originally installed. However, changing fishery and regulatory conditions have mandated updating of screen technology and improvements to address fishery concerns. New fish screen technology developed under the TFFIP will be installed and tested at the Tracy Experimental Fish Facility (TEFF), currently under construction at the TFCF.

The purpose of Subproject 8 is to develop a reference or "baseline" water quality data set that combines historical water chemistry data, agricultural chemical application data, data from continuous Hydrolab probe monitoring of general water quality variables temperature (T), degree of acidity or alkalinity of a solution (pH), conductivity (EC), dissolved oxygen (DO), redox potential (Eh), along with chemical analysis data from future water samples collected at the TFCF. A baseline water quality data set is important to the TFFIP because, as this report will describe, representative water quality data for the TFCF are not generally available. Representative and comprehensive water quality data are needed to identify and understand the local TFCF variables affecting water chemistry in the Old River, and to better understand the relationships between observed fishery health problems and water quality. Without a basic understanding of the toxic components and chemical fishery stressors active in TFCF water, it would be difficult to assess whether fishery health effects are caused by new screen technology installation, or whether the observed effects are due to generalized South Delta water quality.

The Subproject 8 study is being coordinated with personnel at the TFCF and the Quality Assurance Branch in the Bureau of Reclamation (Reclamation)

Mid-Pacific (MP) Regional Office, Sacramento, California. Peer reviews of reports and plans are being performed by personnel from the U.S. Geological Survey (USGS), Sacramento, California, the Central Valley Regional Water Quality Control Board, Sacramento, and the San Francisco Bay Estuary Institute (SFEI), San Francisco, California.

Project Background: Both the TFCF and the TPP were built in the early 1950's as part of the Reclamation's Central Valley Project (CVP), a large irrigation infrastructure project that enabled agricultural expansion throughout most of the Central Valley of California. The Tracy facilities are located approximately 8 km northwest of the town of Tracy, California (see map in Figure 1).

The TPP pumps water for imigation, municipal, and industrial uses from the Old River into the DMC, which flows southeast from the screen and pumping facilities. The California Aqueduct is a similar nearby irrigation facility operated by the State of California (the State facility) at Clifton Court Forebay, located north of the TFCF. Before the CVP and similar State irrigation systems were implemented, the San Joaquin River (SJR) water flowed north unimpeded into San Francisco Bay. The SJR is now diverted south in the DMC, the Friant-Kern Canal, and other State and Federal irrigation canals. Water from the Sacramento-San Joaquin Delta (Delta) is conveyed by a series of pumping stations on the DMC to the Mendota Pool to replace water diverted to the Friant-Kern Canal. DMC water flows by gravity southward down the San Joaquin Valley in a network of canals and then returns by way of the SJR.

Delta water quality and fishery health have been affected by the irrigation infrastructure, expanding water re-use over time, and modern agricultural practices. For example, fish collected at the TFCF during summer months often show symptoms of environmental stress such as skin lesions, damaged gills, poor equilibrium, and mortality during screen operation and temporary holding prior to transport to the SJR. Implementation of the Endangered Species Act has also raised concerns, as several species of threatened fish are showing population declines in the Delta.

General Factors Affecting Water Quality at the TFCF: The chemistry of TFCF intake water from the

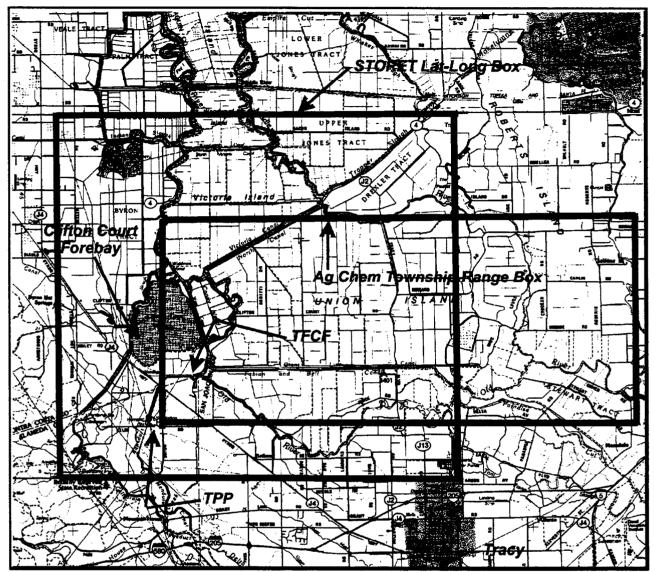


Figure 1 Map of the general TFCF area showing the lat-long box used to query the STORET data base, and the smaller township-range box used to query the San Joaquin County agricultural chemical data base.

Old River, a South Delta distributary of the SJR, is the result of many variables interacting in a complex and poorly understood manner. Local influences include large-scale South Delta mixing of different freshwater sources converging on San Francisco Bay, tidal fluctuations, artificial pumping from the TPP and the State facility at Clifton Court Forebay, irrigation return flows and chemical applications on local crops, and the seasonal installation (in April) and removal (in September) of temporary channel

barriers in the Old River and nearby irrigation canals. Finally, year to year variability in the hydrologic cycle, increasing urban population trends, and seasonal variability in precipitation and runoff events add greater complexity to the hydrodynamic factors influencing the water quality at the TFCF.

The Old River at the TFCF intake is a sodiumchloride dominated water with TDS ranging from 300 to 1100 mg/L. The principal influence at the TFCF is the SJR and its exposure to runoff from the entire southern portion of the Central Valley and its marine sedimentary geology, along with agricultural and urban land use. Daily tidal EC fluctuations of 100 to 300 μS/cm are also commonly observed at the TFCF. These salinity fluctuations are thought to be caused by up-gradient transport and mixing of lower concentration waters from the Mokelumne River and Sacramento River by the rising tidal salt wedge (*State of California, 1999*). These tidal flows are also thought to hydraulically retard SJR flows into the Old River.

While water quality at the TFCF appears to be controlled mainly by large-scale Central Valley runoff and local tidal effects, agricultural activity and associated chemical applications also occur in the immediate vicinity of the TFCF. These irrigation return-flow inputs enter the Grant Line and Fabian and Bell Canals, the Victoria and North Canals, the Tom Paine Slough and the Paradise Cut, along with the Old and Middle Rivers, and represent a highly variable contaminant source for the TFCF water. detected in the SJR. When background concentrations of toxic agricultural chemicals during the early 1990's were observed well below regulated concentrations, in the range of 50 to 800 ng/L (MacCoy et al., 1995; and Crepeau et al., 1994). However, local herbicide and pesticide applications may produce higher concentration transient "spikes" that move through the TFCF intake.

Agricultural chemical applications occur during three periods: the winter dormant spray season (December-February); the spring season (March-April); and the summer active growing season (July-September). The mechanisms that transport these chemicals into local TFCF waters have not been specifically investigated, but probably include: irrigation leaching of treated fields and subsequent subsurface drainage; surface runoff in return flow drains; surface and drainage runoff from rain and storm events; leaching and transport through the soil column into local ground waters; and accidental discharges related to chemical applications and storage.

This report provides a TFFIP reference source that summarizes and discusses the available historical data, recently collected chemical analyses data, the 1997 San Joaquin County agricultural chemical

application and toxicity data, and chemical structural data. These data have been collated and archived in Microsoft® Access databases. Also provided is a brief discussion of other work and plans for Subproject 8 involving an ongoing calibration and reporting program for the permanent Hydrolab probe installed at the TFCF intake (which measures pH, T, EC, and DO on an semi-continuous 30-minute schedule), and implementation of a cost-effective and defensible-quality sampling and analysis plan involving monthly compositing and preconcentration of samples.

METHODOLOGY

Field Sampling: The single sampling event for this study was performed by Reclamation personnel from the TFCF, MP Regional Office, Sacramento, California, and the first author during October 1997. Five surface water grab samples were collected from stations in the near vicinity of the TFCF in the Old River, the Grant Line and Fabian Canals, and near the intake for the TFCF and the Clifton Court Forebay, and analyzed for major ions, total and dissolved organic carbon (TOC/DOC), nitrogen (N) and phosphorus (P), and trace elements including mercury (Hg), and methylmercury (Me-Hg). Sampling station names, locations, and descriptions are listed in Table 1.

Water column profiles for T, pH, DO, EC, Eh, and turbidity were measured at each sampling site using a Hydrolab Model H-20 multi-probe with the Surveyor 4 data logger. All Hydrolab sensing probes were calibrated the day of sampling. EC was calibrated using a certified standard reference solution (Environmental Resources Associates, Inc., Arvada, Colorado), pH using a 2-buffer (VWR Scientific) calibration, Eh using Zobell's solution (VWR Scientific) or pH buffer. DO was calibrated using saturated air at a measured barometric pressure, and turbidity was calibrated using a 40-mg/L formazin standard (Hydrolab 4000-mg/L stock solution). Calibration for each probe was verified before sampling and at the end of the day using a reference calibration verification solution. Hydrolab profile data and sample notes were recorded in a field notebook.

Raw water samples for major ions, nutrients (all N and P forms), and TOC were collected as surface

 Table 1
 Sampling locations for the October 1997 sampling event.

Station ID	Description	°N Latitude	°W Longitude	km from TFCF
Site 1	Old River 50 m upstream of	070401458	4040041501	
Site 2	temporary barrier abutments Old River 50 m downstream of	37°48'15"	121°31'52"	2.8
	temporary barrier abutments	37°48'21"	121°32'01"	2.5
Site 3	At temporary barrier abutments			
Site 4	upstream of Grant Line Bridge Confluence of Grant Line	37°49'12"	121°26'42"	10.1
	Canal and Old River	37°49'13"	121°33'07"	0.73
Site 5	Old River at TFCF intake			
	outside debris boom	37°49'01"	121°33'32"	0.15

grab samples from the boat, or with a van Dorn sampler (Wildco Supply) for at-depth samples. Samples were then transferred to labeled, pre-cleaned polyethylene sample bottles (Environmental Sampling Supply, Oakland, California) which were placed on ice in coolers. Samples for major ions and nutrients were shipped overnight to the Reclamation Environmental Research Chemistry Laboratory, Denver, Colorado (the Denver Lab), and TOC/DOC samples were shipped overnight to the Reclamation Pacific Northwest Regional Soil and Water Laboratory (the Boise Lab). The Boise Lab performed 0.45-um membrane filtration within 24 hours of sample receipt, and samples to both labs were shipped under standard Chain of Custody (COC) procedures. Quality assurance for these samples included collection of duplicate samples submitted as blinds to the labs.

Samples for trace elements (or trace metals) and Hg were grab samples collected using ultra-clean sampling procedures provided by Frontier Geosciences, Inc., Seattle, Washington (FGS) following EPA Method 1669 (EPA, 1996b). FGS provided certified pre-cleaned, double-bagged Teflon sample bottles, and also performed requested 0.45-µm filtration within 24 hours of sample receipt. Surface grab samples were collected from a slowly moving boat. Water samples were shipped to FGS by overnight delivery on ice using standard COC forms and procedures.

Quality assurance for these samples included collection of duplicate samples, and field trip blanks (sample bottles filled with deionized water

and preservative opened and exposed to air at each sampling station) submitted as blinds to the analytical laboratory.

Analytical Methods for the October 1997 The Denver Lab analyzed water Sampling: samples for major ions and nutrients, using EPA (EPA, 1983; EPA, 1986) or APHA-AWWA-WEF Standard Methods (American Public Health Association, 1995) consensus methods. Calcium (Ca), magnesium (Mg), sodium (Na), and potassium (K) were analyzed using inductivelycoupled plasma emission spectrometry (ICP-ES) with a Thermo-Jarrel Ash ICP-61. Ammonia (NH_a). nitrate+nitrite (NO₃+NO₂), and total Kieldahl nitrogen (TKN), total-phosphorus (t-P), orthophosphorus (PO₄⁴), were analyzed automated colorimetric methods on a Perstorp Analytical Model 3570 automated flow-injection analyzer. Sulfate (SO₄²), and chloride (Cl⁻) were analyzed by ion chromatography using a Dionex Model DX-500 Ion Chromatograph. Carbonate (CO₃²) and bicarbonate (HCO₃) alkalinity were analyzed using electrometric titration on an automated Brinkmann Model 682 titroprocessor. The Boise Lab analyzed for TOC/DOC using an Ol. Inc., Model 700 TOC analyzer following EPA Method 415.1 (EPA, 1983).

FGS analyzed for total Hg using EPA Method 1631 (EPA, 1996c), which involves bromine monochloride (BrCl) oxidation followed by stannous chloride (SnCl₂) reduction, purging volatile Hg onto a gold trap, followed by thermal desorption before detection using Cold Vapor Atomic Fluorescence Spectrophotometry (CVAFS). Me-Hg was analyzed by the FGS Method (Bloom

and Fitzgerald, 1983; Bloom, 1989; and Bloom, 1990) and involved distillation extraction and aqueous phase ethylation followed by gas chromatographic (GC) separation before detection using CVAFS. Low concentration trace elements were analyzed using inductively-coupled plasma mass spectrometry (ICP-MS), following EPA Method 1638 (EPA, 1996a) using an Elan-Perkin Elmer Model 6000 ICP-MS. Ultra-clean filtration was performed under clean-room conditions.

All analytical service laboratories used in this study had formal quality assurance plans in place which included provision for standard operating procedures, instrument calibration verification, instrument duplicates and spikes, laboratory control samples, and defined corrective actions for each instrument run. All data deliverable packages except for TOC/DOC included Quality Control (QC) reports that allowed evaluation and validation of data quality. While this sampling was performed before a formal Quality Assurance Project Plan was implemented, no chemical data from this sampling required special qualification.

Computer and Database Methods: Data presented in this report were collated from several different sources: the EPA STORET database, 1997 agricultural chemical field application data from San Joaquin County, USGS pesticide and herbicide data (MacCoy et al., 1995; and Crepeau et al., 1994) and Hydrolab data from the TFCF Geomation data acquisition system. Appendix 1 provides details on data base files, sources, and procedures used in subsequent appendices.

Generally, source files in ASCII format or printed tables were imported into Microsoft® Access (version 2.0), running under Microsoft® Windows 95. Microsoft® Excel (version 5.0) was used to convert ASCII text data source files for subsequent import into Access as tables. Within each database, simple or crosstab queries were created to display and export specific information from the data sets for subsequent graphing and statistical analysis using SPSS® (Statistical Package for the Social Sciences, Windows® version 8.0). Queries were exported from Access as Excel (version 3.0) files which were converted to SPSS® using DBMSCopy (version 6.06, SPSS, Inc.). Processed and altered SPSS® files were

also returned to Access as new tables, imported via conversion to an Excel spreadsheet. Version 2.0 Access files have also been converted to Access 97 files, and either format is available from the first author on request.

Coding of Non-Detect Data: Chemical analyses data reported as below detection limit were entered as negative numbers which corresponded to the inverse of the reported detection limit. For example, <20 µg/L would be coded as -20 µg/L. Concentration data reported as zero values (except for CO₃²), or as "U" or "ND" without auxiliary indication of instrument detection limits, were coded as -1.00E-05 (which usually prints as "0" in a summary table). In this way, none of the available data had to be censored and the nondetect and detection limit information could be preserved.

However, an important precaution is warranted to prevent biased statistical estimates in cases where non-detects with several detection limits exist, as was observed with several agricultural chemicals measured by the USGS, and the STORET trace element data in this report. Preprocessing to censor non-detect data, averaging of detection limit values, or recoding of data as suggested by Nehls (Nehls and Akland, 1973) and others (Keith et al., 1983; Gilliom et al., 1984; Gilbert, 1987) is recommended before calculating summary statistics. For the USGS pesticide data, variable detection limits were replaced by the maximum reported detection limit before rank-based calculations were performed.

Because of the limited number of historical samples collected near the TFCF for several nutrient and trace element analytes during some months, calculation of summary statistics may not be worthwhile or informative. Generally, non-parametric (rank-based) statistics were used for STORET data summaries rather than parametric estimates (such as mean, standard deviation, confidence intervals). Rank-based statistics (such as the median, quartiles, and percentiles) are less influenced by spurious data and extreme outliers, and are not affected by distribution assumption violations common with data sets with values near detection limits.

Database Quality Control Procedures: STORET queries were confirmed by checking all 43 station parameters to ensure that all stations were within the selected period of record (post-1960) and the selected lat-long box (121°20' to 121°38' W longitude, and 37°45' to 37°56' N latitude). In all Access database files, crosstab queries were spot checked (from 1 to 3 percent of entries, randomly selected) against the list-format tables to ensure that parameter number short names and concentration values were located under the appropriate column header, and in the proper rows for a given sample. Before performing any statistical summaries using SPSS, analysis spreadsheets exported from Access were visually inspected to check for any unusual data (for example a single sample over 10 times more concentrated than the average) which were then deleted in all Access tables and SPSS data files. USGS data scanned from their report tables (MacCoy et al., 1995) were all checked against the printed report values and corrected once the ASCII files were imported into Excel.

RESULTS and DISCUSSION

The Data and Appendices: Data collected for this report come from several sources, and summary tables and figures are presented in the following appendices:

Appendix 1 contains details regarding the data base structure, data tables, queries and field names.

Appendix 2 summarizes the 1980-1996 STORET data from the TFCF lat-long box query described in the methodology. Table A2-1 lists the STORET parameter numbers and associated analyte descriptions. Table A2-2 lists the sampling stations, and by reference, the State and Federal agencies whose data are summarized in later tables. Most of the data collection was performed by California agencies with additional contributions from Reclamation and the USGS.

Table A2-3 summarizes the water quality parameters usually measured in the field (T, pH, DO, EC), by month. Tables A2-4a

though 4e provide all-data summaries of major ions for the Tracy query (4a), Suisun Bay (4b), the SJR near Vernalis (4c), the Mokelumne River north of Stockton, California (4d), along with the Sacramento River (4e). Table A2-5 provides a monthly summary of TFCF lat-long query major ions data.

Nutrient data are summarized by month in Table A2-6, and this table ends the "data rich environment" for the STORET data summaries. Trace element summaries in Tables A2-7a through 7b reflect several orders of magnitude fewer data points (2 to 50 samples per analyte compared to >1000 for some nutrient analyses), and unfiltered samples greatly outnumber filtered samples. Tables A2-8a and 8b present the only organic compound data available in this particular lat-long box, and Tables A2-9a and 9b show the available biotic data.

Appendix 3 provides summaries agricultural chemical application data from the San Joaquin County source. The list of chemicals, their usage class, and chemical structure that are applied in the three township-range quadrangles near the TFCF are found in Table A3-1. Table A3-2 provides a summary of total crop acreage treated and total amounts of chemicals applied by usage class (e.g., herbicide, pesticide), and Table A3-3 provides similar information summarized by individual chemical. Table A3-4 provides a summary of lethal concentration (LC₅₀) toxicity data (Meister and Sine, 1997; Johnson and Finley, 1980) for the chemicals applied near the TFCF (See Appendix 1 for additional details regarding assignment of toxicity scores). Table A3-5 combines the toxicity score information with chemical application data for chemicals with fish toxicity scores >3.5. Chemical structure diagrams, provided as a convenient reference for expected mass spectral data interpretation of unknowns, are provided for the 16 "compounds of concern" in Table A3-6, and Table A3-7 and the Appendix 3 bar charts for these 16 compounds show combined monthly application amounts (as kg) of these compounds during 1997.

Appendix 4 summarizes the low-concentration herbicide and pesticide analyses data for the SJR at Vernalis sampling station from the USGS (*MacCoy et al., 1995*) study. Figures A4-1 through A4-9 summarize results for those compounds that were *routinely* detected, using graphs of concentration over time. Tables A4-1a and 1b summarize the median, minimum, and maximum by month for the USGS data set, and Tables A4-3a and 3b provide more detailed rank statistics in the upper percentiles.

Appendix 5 presents the inorganic analyses results from the October 1997 sampling event. Major ions are listed in Table A5-1, nutrients and organic carbon in Table A5-2, and ICP-MS trace elements in Table A5-3. These data provide a single-event "snapshot" observation of water quality in the immediate vicinity of the TFCF during the fall season when local waters probably contain the lowest levels of chemical contaminants.

Appendix 6 provides a summary of the TFCF Hydrolab probe data, including T, pH, EC, and DO. Table A6-1 presents monthly summary data for the period of March 1997 through the middle of February 1998. Representative data for several different variables for the spring and the summer data subsets are shown in Appendix 6, Figures A6-1 through A6-10.

Reliability and Representativeness of Database Data: While the database created for this report certainly provides usable information regarding water quality conditions at the TFCF, the relative scarcity and variable applicability of the different data sources must also be acknowledged. None of the data sets collated were both comprehensive and representative of current conditions at the TFCF. Comprehensive implies that the data set includes many inorganic and organic analytes measured at sufficiently low detection limits, with accessible quality documentation. Ideally, the

external data sources should also be representative of current TFCF water quality conditions with respect to sampling site location, the purpose for sampling and analysis, the historical time period, and sampling frequency adequate to characterize variable conditions at the TFCF. The following summarizes the principal limitations of each of the data sets used in this study:

◆ The STORET data record in this study (Appendix 2) covers a 16-year period (from 1980 to 1996), and earlier data may not be representative of current climatic conditions (especially considering recent extreme El Niño events). Agricultural practices and land use patterns have also changed during this period, with shifts in crop species, chemical applications, along with population increases and greater urban runoff over time in the Central Valley.

More recent STORET data probably reflect a greater degree of standardization among the different agencies with respect to sampling and analysis, and quality assurance methodology; however, none of the STORET data have readily available quality documentation. Many STORET results were collected to comply with regulatory monitoring requirements, which do not often require the low detection limits associated with background survey concentrations.

Only one STORET station is located within 1 km of the TFCF, and only two stations are within 5 km (the average STORET station distance from the TFCF in this study is around 11 km).

Finally, considering the costs associated with environmental sampling and analysis, it is no surprise that very few studies sample frequently enough to catch events such as daily tidal mixing, changes in pumping at Clifton Court Forebay or the TPP, or short-duration chemical concentration spikes from agricultural chemical applications. (This factor is dramatically seen in the USGS data (Appendix 4, Figures A4-1 through A4-9), where agricultural chemicals are only detected

for short periods of time in the SJR at Vernalis.)

- Because pesticide and herbicide applications are regulated by local, State, and Federal agencies, the San Joaquin County agricultural chemical application data (Appendix 3) is probably very reliable, as well as being location representative. However, these data are not measurements of actual water concentrations, and are specific to 1997.
- The USGS Vernalis data (Appendix 4) are probably the best set of analytical measurement data with respect to sampling frequency, uniformity of analytical methods, and documented QC. However, the sampling station at Vernalis is over 30 km southsoutheast of the TFCF, and is therefore not location representative of TFCF water quality conditions.
- The October 1997 sampling event data (Appendix 5) are of reliable quality and are location-representative, but they represent only a single day's "snapshot" of conditions that vary both daily and seasonally. Organic analytes were not measured on these samples.
- The TFCF Hydrolab data (Appendix 6) are the most location and sampling frequency representative data set (sensing and recording data every 30 minutes), but frequent bi-weekly calibration and maintenance was not performed until October 1998. Also, the Hydrolab only measures overall water quality parameters: T, pH, DO, and EC.

These comments should not be interpreted as a rejection or discrediting of these data sets. Much of the data, and its detection limits, accuracy, and precision, are no doubt suitable for their original purpose. However, given that the task of this study is to draw conclusions about the water quality at the TFCF based on existing or available data, these limitations should be given appropriate consideration. Therefore, conclusions and trends observed in this report should be considered initial approximations awaiting further study and confirmation.

General Chemistry and Major lons: The following observations are based on the STORET data (Appendix 2, Tables A2-3 through A2-5), the TFCF Hydrolab data (Appendix 6), and the October 1997 sampling data (Appendix 6, Table A6-1). As mentioned previously, the general major ions chemistry at the TFCF suggests a well-buffered, slightly saline water, with TDS ranging from 300 to 1,100 mg/L, and containing sodium and chloride as the dominant ions.

Monthly median EC, total dissolved solids (TDS). turbidity, temperature, pH, and DO values derived from the STORET data can be seen in Figures 2a through 2c. These summary graphs show the broad general trend of low summer TDS, and DO contrasting with high summer turbidity and temperature. Generally, the TFCF Hydrolab data in Appendix 6 support the STORET data with the exception of EC data in Figure 2a, which shows an anomalous late summer maximum. Appendix 6, Figure A6-1 shows a plot of daily average EC as measured by the TFCF Hydrolab probe, and these data show two minima: one in summer, and one in The STORET EC maximum may be winter. caused by database location representativeness. The median DO (Figure 2c) summer minimum is consistent with observed high temperatures, primary productivity, suspended debris and DOC. Along with known seasonal agricultural chemical inputs, these conditions are all associated with fishery stress indicators seen in summer fish salvage at the TFCF. The median STORET pH data do not show any obvious seasonal trend, though higher pH values are seen in the summer.

Daily fluctuation in EC can be significant, as seen in Figures 3a and 3b. These graphs plot TFCF Hydrolab hourly average depth (in cm) and EC data together for April and August 1997. Probe depth is a local TFCF measure of fluctuating tidal water surface, and these plots show a general correlation between high tide depths and low EC. This is suggestive that rising tides from San Francisco Bay are "pushing" low salinity waters, perhaps from the Delta inflow zones of the Mokulemne and Sacramento Rivers, upstream to mix with SJR and Old River source inflows at the TFCF.

Figure 2a Median monthly dissolved solids and conductivity data from the STORET database.

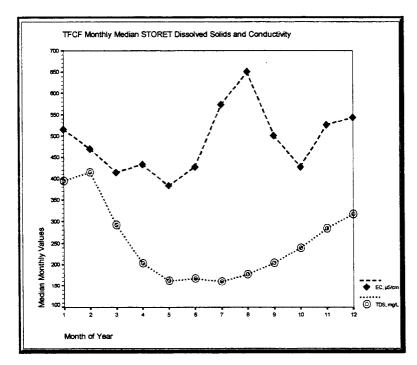


Figure 2b Median monthly turbidity and temperature data from the STORET database.

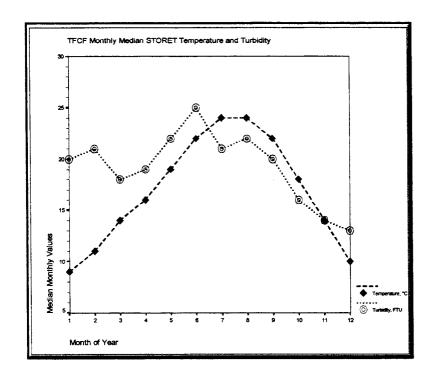


Figure 2c Median monthly pH and dissolved oxygen data from the STORET database.

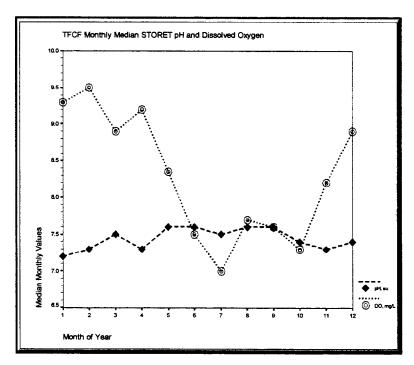


Figure 3a Plot of permanent Hydrolab probe data comparing tidal depth fluctuations with conductivity data for April 1997.

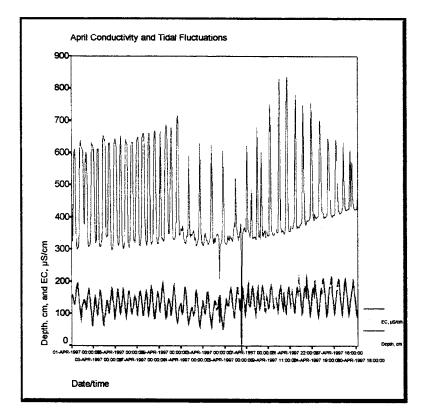
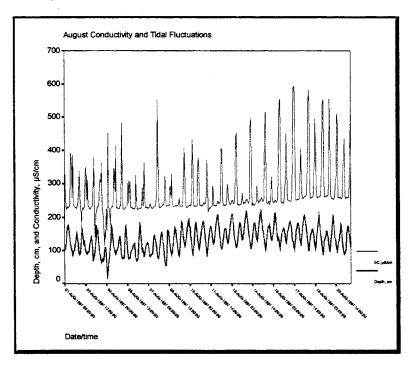



Figure 3b Plot of permanent Hydrolab probe data comparing tidal depth fluctuations with conductivity data for August 1997.

Note that daily EC values show ranges from as low as 10 µS/cm, all the way up to 500 µS/cm. This wide and variable range between minimum and maximum daily EC values could be the result of tidal interactions with local mixing factors. Perhaps the pumping schedules for the TPP and the Clifton Court Forebay facilities are "in phase" or "out of phase" with tidal influences at different times, either minimizing or promoting tidal influence on salinity dilution at the TFCF intake. Another possibility is that storm events may create temporary density layers that either mix with existing water at the TFCF intake, or prevent higher salinity water from being measured at low Despite the visually apparent inverse relationship between tidal depth and EC, a clear statistical correlation was not observed, probably by time lags arising from the caused hydrodynamics and kinetics of flow and mixing in response to tidal depth increases.

The TFCF Hydrolab probe, while having excellent location representativeness, was calibrated on an infrequent schedule until October 1998, when a more rigorous calibration schedule and procedure was adopted. While still informative, Hydrolab data prior to this date are less reliable, especially pH and DO, which use more complicated sensing

electrodes that require additional maintenance to maintain accurate calibration. All the Hydrolab sensing probes are also susceptible to fouling from adsorbing organic matter, seston, and debris present in summer TFCF waters.

Figures 4a through 4c show minimum, median, and maximum concentration Stiff diagrams (Stiff 1951), for monthly STORET data from the TFCF lat-long query. Stiff diagrams provide a convenient way to visualize and compare major ions data. The diagrams plot milliequivalents per liter (meg/L) concentrations of cations (positive ions) on the left, and anions (negative ions) on the right of a center 0 axis. Note that some of the monthly diagrams are missing due to incomplete data sets (this occurred despite the large amounts of major ions data dating from the early 1980's). These diagrams show that the general water chemistry for median and higher concentration waters are dominated by Na and Cl⁻, perhaps indicative of SJR water and runoff exposure to marine evaporite geology in the watershed of the Central Valley. At lower concentrations, cations and anions are present at more equal concentrations, suggestive of greater dilution with low TDS water.

Figure 4a Stiff diagrams for monthly <u>minimum</u> major ions concentrations collected from the STORET database.

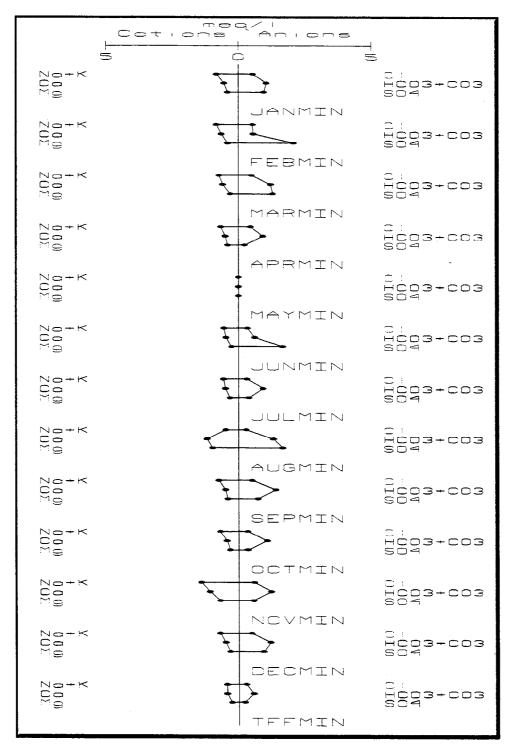


Figure 4b Stiff diagrams for monthly <u>median</u> major ions concentrations collected from the STORET database.

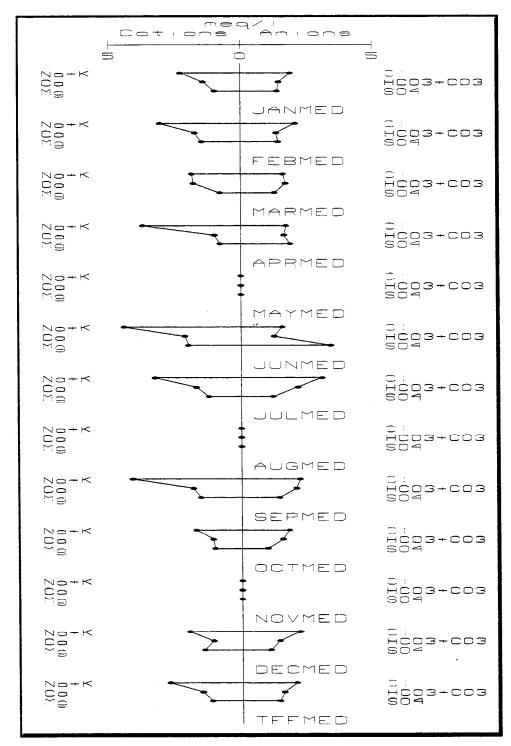
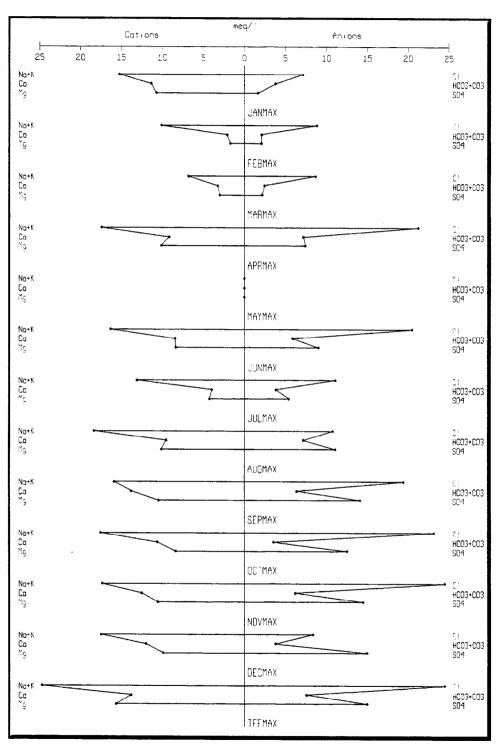



Figure 4c Stiff diagrams for monthly <u>maximum</u> major ions concentrations collected from the STORET database.

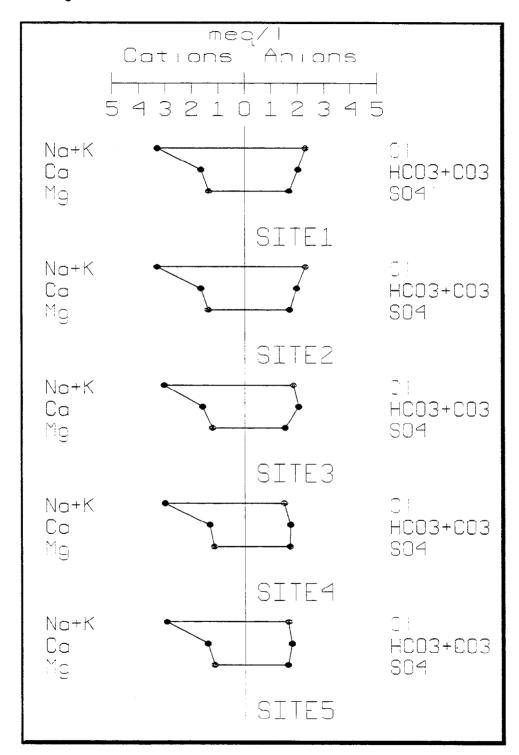
How do the median STORET major ions data compare with the October 1997 sample data? Figure 5 shows the Stiff diagrams for the October 1997 sample major ions data, and these diagrams should be visually compared to the median STORET data in Figure 4b. The Figure 5 plots are reasonably similar to the STORET median plot for October, though the trend from top to bottom in Figure 5 shows how much major ions concentrations can change during the course of 8 hours. Note the lower concentrations from Site 1 (sampled in the morning) to Site 5 (sampled last in the afternoon), suggesting possible tidal dilution as the day's sampling proceeded.

A comparison of STORET data for several different South Delta waters may be seen in Figures 6a through 6c, which show Stiff diagrams for minimum (Figure 6a), median (Figure 6b), and maximum (Figure 6c) concentrations (see Appendix 2 for tabular values). Each figure shows major ions from the TFCF lat-long query (TFFMIN, TFFMED, TFFMAX), the SJR at California (VERMIN, VERMED. Vernalis, VERMAX), Suisun Bay near the Sacramento River inflow zone (SUIMIN, SUIMED, SUIMAX), the Mokelumne River north of Stockton, California (MOKMIN, MOKMED, MOKMAX), and the Sacramento River at Sacramento (SACMIN, SACMED, SACMAX).

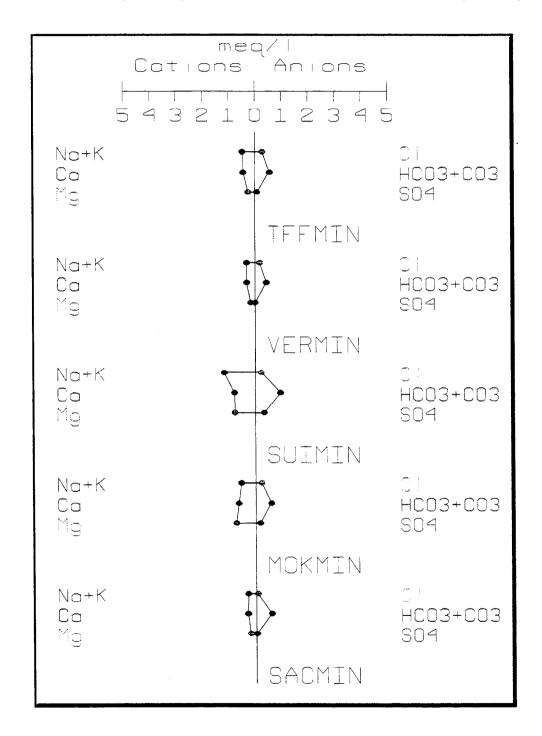
All Figure 6 plots suggest that TFCF water is slightly higher in concentration compared to the dominant source water from the SJR, perhaps suggesting that water usage, re-usage, and inflows between the SJR and the TFCF may be locally increasing dissolved ion concentrations. Notably, SO₄²⁻ is elevated (especially for the median and maximum data sets) at the TFCF relative to the SJR. Suisun Bay, the only other water source containing appreciable amounts of SO₄²⁻, is clearly estuarine and high in concentration relative to the Delta waters. The Mokelumne and Sacramento Rivers show the lowest concentrations, even for data maxima.

Median monthly STORET major ions data seen in Figure 7 represent a good example of the limitations of historical data. These plots show a general summer maxima for most ions, which is not consistent with the actual Hydrolab conductivity data from the TFCF. These results are possible when data from samples not representative of the TFCF are compared. Ironically, once again the

ions data from the October 1997 sampling (Table 4) are in general agreement with the median STORET values for October.


In summary, the salinity and major ions chemistry at the TFCF appears to be influenced by the complex interaction of several global and local factors. Global influences include the general climate, precipitation and land use patterns of the entire Central Valley watershed, that interact with daily tidal influences. These global factors interact with the local variables of pumping at the TPP and Clifton Court intakes, local storm events and runoff, local irrigation pumping and agricultural return flows, and the installation and removal of the South Delta temporary barriers.

Nutrient (nitrogen and phosphorus) Data: Figure 8a plots median monthly STORET TKN and total-P together using a log-scale. These data suggest that the South Delta water contains consistently detectable levels of N and P, probably indicative of agricultural fertilizer influence, and helps explain the algal blooms observed during summer months at the TFCF. Figure 8b plots median monthly N-species, and includes the TKN data from Figure 8a. Because the entire suite of N and P analyses were seldom observed for the same sample in the STORET data, counterintuitive results are possible, such as Figure 8b NO₃+NO₂ being higher than TKN. This occurs when data from a given month are limited and the available samples are from apparently different locations and source waters.


Given the consistent presence of DO in the TFCF waters, ammonia would not be expected to show elevated concentrations relative to other N-species, but the summer minimum trend for ammonia is counter-intuitive for the observed low DO in summer trend (Figure 2c). Figure 8c is a closeup of the monthly median total-P seen in Figure 7a, presented along with orthophosphate. The seasonal peaks in February and July are clearer in this graph, and ortho-P appears to be correlated with total-P.

The good news for these STORET data is that except for summer ammonia, most of the median N- and P-species concentrations were well above routinely available instrument detection limits. The October 1997 N-P data (Appendix 5, Table A5-2) show general agreement with the median STORET

Figure 5 Stiff diagrams for water samples collected near the TFCF in October 1997. Compare these diagrams with the median Stiff diagrams from STORET queries of nearby waters in Figure 6b.

Stiff diagrams comparing minimum major ions data from the STORET database for the Tracy lat-long box (TFFMIN), and for stations near the San Joaquin River near Vernalis (VERMIN), Suisun Bay near the inflow of the Sacramento River (SUIMIN), the Mokelumne River north of Stockton (MOKMIN), and the Sacramento River near Sacramento (SACMIN).

Stiff diagrams comparing median major ions data from the STORET database for the Tracy lat-long box (TFFMED), and for stations near the San Joaquin River near Vernalis (VERMED), Suisun Bay near the inflow of the Sacramento River (SUIMED), the Mokelumne River north of Stockton (MOKMED), and the Sacramento River near Sacramento (SACMED).

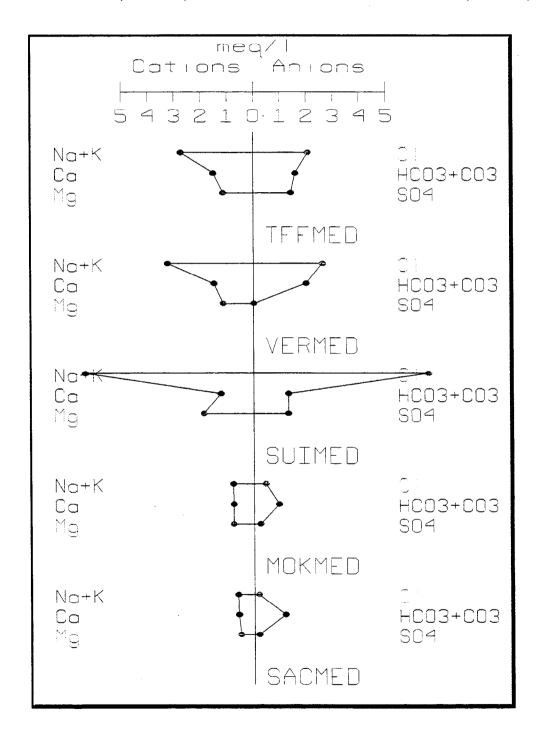


Figure 6c

Stiff diagrams comparing **maximum** major ions data from the STORET database for the Tracy lat-long box (TFFMAX), and for stations near the San Joaquin River near Vernalis (VERMAX), Suisun Bay near the inflow of the Sacramento River (SUIMAX), the Mokelumne River north of Stockton (MOKMAX), and the Sacramento River near Sacramento (SACMAX).

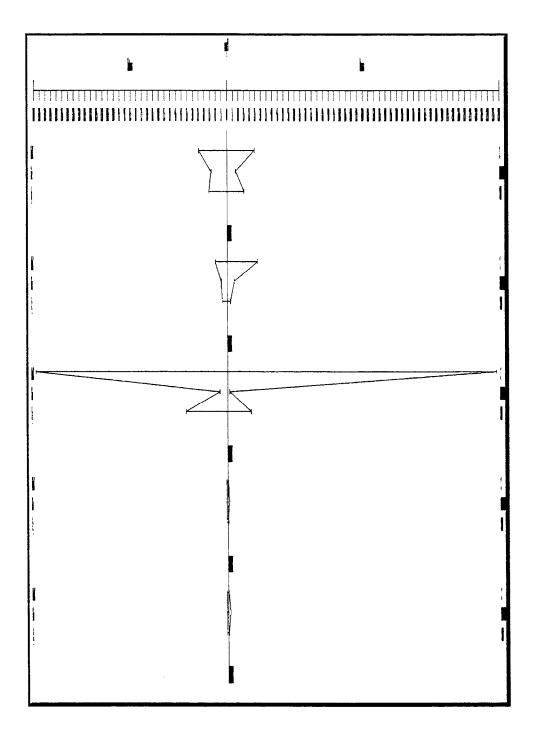


Figure 7 Median monthly major ions data from the STORET TFCF lat-long box query.

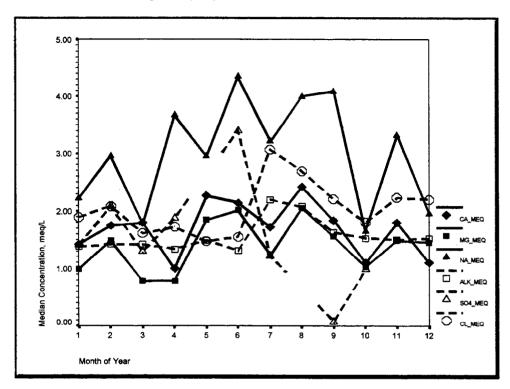
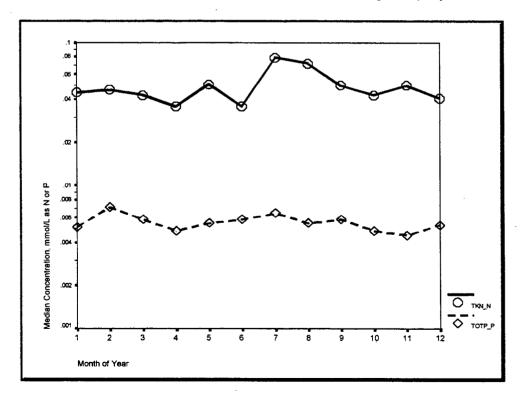
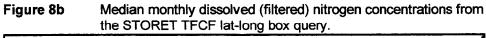




Figure 8a Median monthly total phosphorus and total Kjeldahl nitrogen (TKN) data from the STORET TFCF lat-long box query.

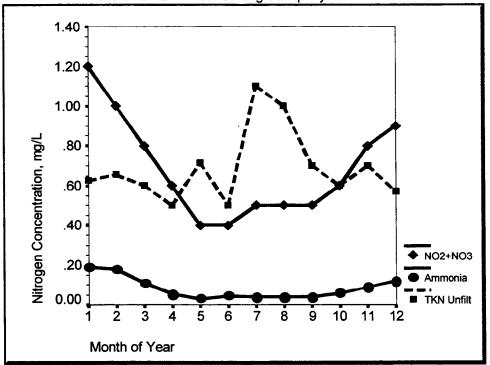
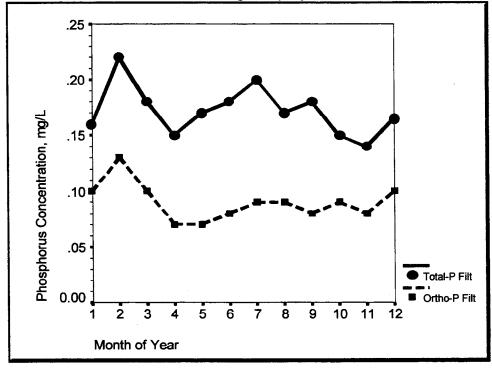



Figure 8c Median monthly dissolved (filtered) phosphorus data from the STORET TFCF lat-long box query.

data. Observed total-P, ortho-P, and TKN are similar to median October STORET values; however, observed ammonia and nitrite+nitrate are approximately twice median October STORET values.

Trace Element Data: The STORET data (Appendix 2, Tables A2-7a through A2-7c) do not provide a robust trace element data set with good temporal representativeness. Very few values represent measurements at low detection limits. and many months have very few or no available data. These data are therefore of limited This is indicative of the interpretative value. greater expense associated with trace element analyses, and the "higher detection limit" effect that established regulated concentrations (as in the Clean Water Act, Safe Drinking Water Act, or State regulations) can create in survey water quality data: Why test for very low concentrations if the regulated level is much higher and cheaper to analyze?

The October 1997 results tabulated in Appendix 5, represent a better and more reliable data set, but are limited as a single sampling event. If we assume that the fall is the time of least contamination (at least with respect to irrigation and agricultural activities), then these results have some value as a "baseline" or "control" data set.

Some of the good news from the October 1997 data is that mercury and methylmercury are very low - unfiltered total-Hg in the 1 to 4 ng/L range, filtered total-Hg in the ≤ 1 -ng/L range, and all methyl-Hg < 0.07 ng/L. (These results also suggest that the ultra-clean sampling protocols were properly performed during sample collection for trace elements and Hg). Both filtered and unfiltered lead (Pb) (<0.4 μ g/L), cadmium (Cd) (<0.02 μ g/L), thallium (Tl) (<0.005 μ g/L), zinc (Zn) (<2 μ g/L), and selenium (Se) (<0.8 μ g/L) suggest very low concentrations for these toxic elements.

Of greater potential concern are observed concentrations of dissolved uranium (U) (8 to 11 μ g/L), dissolved vanadium (V) (3 to 5 μ g/L), dissolved arsenic (As) (1.8 to 2.2 μ g/L), dissolved chromium (Cr) (1.5 to 2.0 μ g/L), and dissolved molybdenum (Mo) (2.5 to 3.1 μ g/L). These concentrations are well below regulated levels. but

may potentially contribute to fishery toxicity if concentrations increase with local chemical applications.

Organic Compounds: The STORET organics data set (summarized in Table A2-8a) contains limited usable data for industrial organic compounds, such as solvents and degreasers, or agricultural chemicals (seen in Table A2-8b). The reason for the relative scarcity of low concentration data is similar to that for low-concentration metals analyses: cost and regulatory data quality objectives.

Agricultural Chemical Applications: Agricultural chemical application data are summarized in Appendix 3. Table A3-4 summarizes the available LC₅₀ fish toxicity data and the average fish toxicity scores. The 114 individual chemicals are sorted from "very toxic" scores (score = 5) to "safe" (score = 1). Table A3-5 identifies the more toxic agricultural compounds and combines the average fish toxicity score with chemical application data. These data represent the 23 compounds with average fish toxicity score > 3.5, and they represent 20.2 percent of total chemicals, 20.6 percent of total solid applications, and 5.92 percent of total liquid applications.

Appendix 3 summaries of the San Joaquin agricultural data show that during 1997, 114 different agricultural chemicals were applied to the 27,000-ha area in the vicinity of the TFCF. Over 95,000 liters (L) of liquid formulations and 222,416 kilograms (kg) of solid formulations were applied.

Insecticides accounted for 27,428 L (28.9 percent of liquid formulation applications) and 125,260 kg (56.3 percent of solid formulation applications). Herbicides were applied at 49,085 L (51.6 percent) and 56,858 kg (25.6 percent). Fungicides were next in total amounts applied at 4,873 L (5.1 percent) and 28,565 kg (12.8 percent), followed by general pesticides (rodenticides, nematacides, pest poisons) at 3,070 L (3.2 percent) and 8,937 kg (4.0 percent). The remaining 16.3 percent of liquid applications and 26.9 percent of solid applications were comprised of relatively nontoxic synergist compounds, and deposition agents (adjuvants, sticking agents, surfactants),

usually applied in conjunction with the toxic compound formulations.

Sixteen compounds of concem, those most likely to produce transient concentration spikes in local TFCF water are seen in Table 2. These compounds were selected based on a combination of toxicity and application amounts: compounds with average fish toxicity score > 4.00 with total annual application amounts > 100 kg or 100 L; and compounds with average fish toxicity score \geq 3.5 and < 4.00 with total annual application amounts > 1000 kg or 1000 L.

Tables 3 and 4 provide other information regarding agricultural chemicals that may also be important to TFCF fishery issues. Table 3 lists California State Fish and Game Genus Mean Acute Values (GMAV) for a series of compounds, and provides a cross-reference as to whether these compounds (Harrington, 1990; Menconi and Harrington, 1992a; Menconi and Gray, 1992b; Menconi and Paul, 1994a; Menconi and Cox, 1994b; Menconi and Siepmann, 1996a; Menconi and Yargeau, 1996b; Menconi and Beckman. 1996c: Siepmann and Jones, 1998; Siepmann and Slater, 1998) were detected in the USGS study. The list in Table 4 was determined in consultation with Delta environmental researchers, so it represents the compounds that knowledgable South Delta researchers consider worth scrutiny. Note that most of these compounds were not detected in high concentrations by the USGS or applied to fields in the TFCF vicinity.

The USGS data, which are the best available Delta pesticide data set—both with respect to temporal representativeness and low detection limits—are summarized in Appendix 4. In general, only carbofuran, carbaryl, cyanazine, dacthal, diazinon, eptam, methidathion, metolachlor, and simazine were consistently detected (boldfaced compounds being identified as compounds of concern for the TFCF from the agricultural data summaries). Chlorpyrifos, molinate, pebulate, and thiobencarb were only detected sporadically. Atrazine, alachlor, butylate, fonofos, malathion, and napropram were not detected at the detection limits available in the USGS study. Note that all

detected compounds were observed at concentrations well under 1 µg/L except for simazine, the only compound to be detected above this level. These data strongly suggest that pesticide residues will be present at very low concentrations much of the time, and present in sub-ug/L concentrations when detected.

Biological Data: Appendix 2, Tables A2-9a and 9b, provide the available STORET biological data, including algal and plankton counts and photosynthetic chemistry data. Much of these data are from a single study that performed consistent sampling over a single agricultural season. The authors will attempt no interpretation of these data in this report, which are simply tabulated and presented.

CONCLUSIONS

The available data suggest that the general chemistry near the TFCF is primarily affected by the seasonal hydrology and large-scale watershed influence, with a significant daily dilution or mixing influence from tidal fluctuations. As expected, nutrients, biological data, and organics show strong indications of agricultural influence.

The trace metal data sets do not contain enough high-quality, temporally-representative data to assess the primary control variables for trace elements in TFCF water (though copper (Cu), applied as a herbicide, would be expected to show agricultural associations).

The October 1997 ICP-MS trace element data does demonstrate the low concentration of many toxic metals and the importance of selecting methods involving either preconcentration or low detection limits (such as ICP-MS or graphite furnace atomic absorption), and the routine application of ultra-clean sampling and contamination-prevention sampling protocols.

If the water data are evaluated with respect to regulated water quality criteria, as in Table 5, the October 1997 samples suggest that TFCF water is well below levels of concern. The USGS data also suggest a similar regulatory conclusion for the pesticides.

Table 2

Agricultural compounds of concern and months when they may be detected in TFCF waters. Boldfaced compounds have fish toxicity scores = 5.00 and significant application amounts. Amounts represent combined liquid and solid amounts expressed as kg, and likely detection months are listed in order of greatest amount.

		1997 App	
Compound	Usage Class	as kg	Likely Detection
Aldicarb	insecticide	1,756	Mar - Apr
Bromoxynil	herbicide	274	Feb - Jan
Carbofuran	insecticide	1,790	Mar - Jan
Chlorpyrifos	insecticide	8,734	Mar - Jul
Desmedipham	herbicide	3,450	Nov - Apr
Diazinon	insecticide	604	Jan - Aug
Esfenvalerate	insecticide	671	Jul
Fenbutatin-oxide	pesticide	111	Jun
Fonofos	insecticide	5,592	May
Metam-sodium	insecticide	4,234	Mar - Aug - Jul
Metolachlor	herbicide	3,405	May - Mar
Oryzalin	herbicide	624	Nov
Oxyfluorfen	herbicide	1,461	Nov - Feb
Permethrin	insecticide	724	Sep
Phosmet	insecticide	1,244	Mar
Trifluralin	herbicide	51,643	Feb - Mar - Nov

Table 3

Some other regulated pesticides found in the San Joaquin and Sacramento Rivers. These data were included in the *toxicity* table in the *agdata.mdb* database. Boldface compounds are those identified as compounds of concern based on agricultural chemical application data analysis.

				Detected in
Chemical	GMAV ¹	GMAV ^{other}	Month	River ²
Atrazine	3 ^{drinking} water		all, Oct-Feb	Sac
Carbofuran	1.5 ^{dcrab}	477 rainbow trout	Mar-Apr	Sac
Chlorpyrifos	0.1 cladoceran	10 ^{rainbow trout}	Feb-Mar	SJR
Chlordane	0.1 drinking water			
Diazinon	0.2amphipod	723 brooktrout	Nov-May	SJR
			Jan-Mar [*]	Sac
Dimethoate	43 ^{stonefly}	8,560 ^{rainbow trout}	Apr-Aug	SJR
Methidathion	2.2 ^{cladoceran}	12.1 rainbow trout	Nov-Mar	Sac
Methomyl	22 ^{cladoceran}	1,467 ^{rainbow trout}	Dec-Sep	SJR
Methyl Parathion	0.15 ^{cladoceran}	3,703 rainbow trout	•	
Molinate	1.3 ^{mysid}	13 rainbow trout	May-Jun	SJR
•			May-Jul	Sac
Simazine	.4 drinking water		All,Jan-Mar	SJR
			Nov-Jul	Sac
Thiobencarb	101 ^{waterflea}	1200 ^{rainbow trout}	May-Jul,Nov	SJR
	0.1 drinking water		May-Sep	Sac
Toxaphene	3 ^{drinking} water			

Genus Mean Acute Value, California Department of Fish and Game. Most sensitive genus of aquatic life listed in this column, if data available. (Menconi et al., 1992a, 1992b, 1994a, 1994b, 1996a, 1996b, 1996c; Siepman and Jones 1998; and Harrington, 1990) Based on data from USGS (MacCoy et.al., 1995)

Table 4 Other agricultural chemicals of concern identified by delta researchers. Boldface compounds are those identified as compounds of concern based on agricultural chemical application data analysis.

Name	Compound Class	Ag Purpose	Target Crops
Diazinon	phosphorothioate	insecticide	many
Methidathion	phosphorodithioate	insecticide	alfalfa, citrus
Chlorpyrifos	chlorinated	insecticide	alfalfa, cotton
Molinate	carbothioate	herbicide	rice
Thiobencarb (Saturn)	chlorinated	herbicide	rice
Carbofuran	aromatic carbamate	insecticide	corn, peanuts
Diuron	chlorinated aromatic	herbicide	alfalfa, orchards
Simazine	triazine	herbicide	alfalfa, fruit, nuts
Atrazine	triazine	herbicide	many, roadsides
Eptam	aliphatic	herbicide	beans, legumes
Dacthal	chlorinated phthalate	herbicide	many
Carbaryl	aromatic carbamate	insecticide	many
Fonofos (Dyfonate)	phosphorodithioate	insecticide	many
Ziram	Zn-dithiocarbamate	fungicide	orchards
DDT	chlorinated	insecticide	banned
DDE	chlorinated	none (metabolite)	
Toxaphene	chlorinated	insecticide	banned
Chlordane	chlorinated	insecticide	termites, wood

Chemical water quality at TFCF compared to national and California water quality standards. Table 5

Analyte	TFCF at intake boom	Drinking Water¹	Agricultural Water ¹	Aquatic Life ¹	Cal 65 ¹
Sulfate	77.4 mg/L	250			
Chloride	57.5 mg/L	250	106		
Conductivity	609 µS/cm	900	700		
Silver*	0.037 µg/L	100		4.1	
Aluminum*	256 μg/L	200			
Arsenic*	2.00 µg/L	50	100	143 ³	5
Barium*	52.2 μg/L	1,000			
Beryllium*	0.0225 µg/L	4	100		
Cadmium*	0.0163 µg/L	5	10	1.1 ² 1.43 ³	
Chromium*	2.1 µg/L	50			
Copper*	1.95 µg/L	1000	200	12 ² 5.2 ³	
Iron*	310 µg/L	300	5,000		
Mercury*	3.74 ng/L	2,000		1,000 ³	
MeHg*	0.025 ng/L				150
Manganese*	55.7 μg/L	50	200	100⁴	·
Molybdenum*	2.66 µg/L		10		
Nickel*	0.281 µg/L	100	200	160 ² 29 ³	
Lead*	0.328 µg/L	15	5,000	3.2 ² 1.3 ³	0.25
Antimony*	0.0859 µg/L	6		190	
Selenium*	0.7 43 μg/L	50	20	5 Se ⁺⁴ =28 ³ Se ⁺⁶ =9.5 ³	
Zinc*	1.55 µg/L	5,000	2,000	110 ² 67 ³	

same units as measured at TFF, (State of California, 1998) in water containing 100 mg/L CaCO₃, (State of California, 1994, 1997a) Final Critical Value at 50mg/L CaCO₃, (EPA, 1995) Aquatic Life in Saltwater, (State of California, 1997b)

However, it is clear that fish at the TFCF are affected by water quality conditions in the Delta, and the demonstrated presence of many chemical toxins at sub-lethal concentrations. Data presented in this study underscore the need for temporal representation in sampling, and the low detected concentrations of toxic compounds that must be considered to determine the water quality interactions converging at the TFCF that may affect native fish populations.

Another factor that must be considered is the short duration spikes of toxins that may pass through the system undetected, and their potential fishery effect on native fish and experimental fish at the TEFF.

The concerns of temporal sampling representativeness, low detection limits, broad variety and number of analytes, short-duration spikes, and high cost may be solved by implementation of pre-concentration and The Subproject 8 compositing strategies. sampling and analysis program at TFCF proposes to implement monthly compositing and preconcentration of organics by installing a computerized high-capacity Infiltrix sampling pump (Axys Analytical, Sidney, BC), programmed to pump hourly water samples through a 0.45-µm filter and an XAD resin solid phase extraction In this way, a significant preconcentration of analytes (up to 500X) may be accomplished and a broad spectrum of compounds identified using routine open scan GC-MS analysis. Trace elements will also be collected as monthly composites using a commercially available Sigma sampling pump, and the resulting composites will be analyzed using ICP-MS (as used for the October 1997 sampling event). This approach should provide fishery scientists at TEFF and other Delta environmental researchers with a valuable representative baseline data set that is currently unavailable.

ACKNOWLEDGMENTS

The authors wish to acknowledge and thank the following persons who helped make this study possible:

Funding and Coordination: Dr. Charles Liston, Reclamation MP Region, Sacramento, California; Dr. Stan Ponce, Reclamation Washington DC Office; Ron Brockman, Reclamation MP Regional Office, Sacramento, California; and Herb Ng, Tracy Pumping Facility, Tracy, California. **TFCF and Hydrolab Assistance:** Scott Siegfried, Lloyd Hess, Ken Mitchell, and Elizabeth Partridge, at the TFCF; and Steve Hiebert, TSC, Denver, Colorado.

Database Collation: Dawn Gonzalez, TSC, Denver, Colorado, and Tom Compo, San Joaquin County Office of the Agricultural Commissioner, Stockton, California.

Peer Review: Lou Helfrich, TSC, Denver, Colorado; Kathy Kuivila, USGS, Sacramento, California; Chris Foe, Central Valley Regional Water Quality Control Board, Sacramento, California; Rainer Hoenicke, San Francisco Bay Estuary Institute, San Francisco, California; and Kevan Urquhart, California State Department of Fish & Game, Stockton, California.

Field Assistance: Tom LaCasse and Steve Hiebert, TSC, Denver Colorado.

REFERENCES

American Public Health Association, 1995, Standard Methods for the Examination of Water and Wastewater, 19th Edition, edited by Franson, M.A.H., Eaton, A.D., Clesceri, L.S., Greenburg, A.E., APHA-AWWA-WEF, American Public Health Association, Washington, DC.

Bloom, N.S., and Fitzgerald, E.A., 1983, Determination of Volatile Mercury Species at the Picogram Level by Low Temperature Gas Chromatography with Cold-Vapour Atomic Fluorescence Detection, Anal. Chim. Acta, 208, p. 151.

Bloom, N.S., 1989, Determination of Picogram Levels of Methyl Mercury by Aqueous Phase Ethylation, Followed by Cryogenic Gas Chromatography with Cold Vapor Atomic Fluorescence Detection, Can. J. Aquat. Sci., 46, p.1131.

Bloom, N.S., 1990, On the chemical form of mercury in edible fish and marine invertebrate tissue, Can. J. Aquat. Sci., Vol. 49, pp. 1010-1017.

Crepeau, K.L., Domagalski, J.L. and Kuivila, K.M., 1994, *Methods of Analysis and Quality*

- Assurance Practices of the U.S. Geological Survey Organic Laboratory, Sacramento, California Determination of Pesticides in Water by Solid Phase Extraction and Capillary Column Gas Chromatography/Mass Spectrometry, USGS Open File Report 94-362, Sacramento, CA.
- Environmental Protection Agency, 1983, *Methods* for Chemical Analysis of Water and Wastes, EPA-600/4-79-020.
- Environmental Protection Agency, 1986, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, November 1986, 3rd Edition: Proposed Update I and II.
- Environmental Protection Agency, 1995, Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to West Coast Marine and Estuarine Organisms, EPA 600/R-95-136, August 1995, (NTIS / PB95-261665).
- Environmental Protection Agency, 1996a, Method 1638: Determination of Trace Elements in Ambient Waters by Inductively Coupled Plasma-Mass Spectrometry, EPA 821/R-96-005, January 1996, (NTIS/ PB96-193487).
- Environmental Protection Agency, 1996b, Method 1669: Sampling Ambient Water for Trace Metals at EPA Water Quality Criteria Levels, EPA 821/R-96-008, January 1996, (NTIS/ PB96-193313).
- Environmental Protection Agency, 1996c, Method 1631: Mercury in Water by Oxidation, Purge and Trap, and Cold Vapor Atomic Fluorescence Spectrometry, EPA 821/R-96-001, July 1996, (NTIS/ PB97-151666).
- Gilbert, Richard O., 1987, Statistical Methods for Environmental Pollution Monitoring, Van Nostrand Reinhold, New York, pp 177-179.
- Gilliom, R.J., Hirsch, R.M., and Gilroy, E.J., 1984, Effect of censoring trace-level water-quality data on trend-detection capability, Environmental Science and Technology, Vol. 5, pp 530-535.

- Harrington, James M., 1990, Hazard Assessment of the Rice Herbicides Molinate and Thiobencarb to Aquatic Organisms in the Sacramento River System. California Department of Fish and Game, Pesticide Investigation Unit, Report Number 90-1.
- Keith, L.H., Crummett, W., Deegan, Jr.,J., Libby, R.A., Taylor, J.K., and Wentler, G., 1983, *Principles of Environmental Analysis*, Analytical Chemistry, Vol. 55, pp 2210-2218.
- Johnson, W.W., and Finley, M.T., 1980, Handbook of Acute Toxicity of Chemicals to Fish and Aquatic Invertebrates: Summaries of Toxicity Tests Conducted at Columbia National Fisheries Laboratory, 1965-1978, U.S. Department of the Interior, Fish and Wildlife Service, Resource Publication 137, Washington, DC.
- MacCoy, D., Crepeau, K.L., and Kuivila, K.M., 1995, Dissolved Pesticide Data for the San Joaquin River at Vernalis and the Sacramento River at Sacramento, California, 1991-94, USGS Open File Report 95-110, Sacramento, CA.
- Meister, R.T., and Sine, C., editors, 1997 Farm Chemicals Handbook '97, Vol. 83, Meister Publishing Company, Willoughby, OH.
- Menconi, Mary and J. M. Harrington, 1992a,
 Assessment of the Insecticide Methyl
 Parathion to Aquatic Organisms in the
 Sacramento River System. California
 Department of Fish and Game, Pesticide
 Investigation Unit, Report Number 92-1.
- Menconi, Mary and S. Gray, 1992b, Assessment of the Insecticide Carbofuran to Aquatic Organisms in the Sacramento River System. California Department of Fish and Game, Pesticide Investigation Unit, Report Number 92-3.
- Menconi, Mary and A. Paul, 1994a, Assessment of the Insecticide Chlorpyrifos to Aquatic Organisms in the Sacramento-San Joaquin River System. California Department of Fish and Game, Pesticide Investigation Unit, Report Number 94-1.

- Menconi, Mary and C. Cox, 1994b, Assessment of the Insecticide Diazinon to Aquatic Organisms in the Sacramento River System. California Department of Fish and Game, Pesticide Investigation Unit, Report Number 94-2.
- Menconi, Mary and S. Siepmann, 1996a, Assessment of the Insecticide Methidathion to Aquatic Organisms in the Sacramento River System. California Department of Fish and Game, Pesticide Investigation Unit, Report Number 96-1.
- Menconi, Mary and T. Yargeau, 1996b, Assessment of the Insecticide Dimethoate to Aquatic Organisms in the Sacramento River System. California Department of Fish and Game, Pesticide Investigation Unit, Report Number 96-4.
- Menconi, Mary and J. Beckman, 1996c, Assessment of the Insecticide Methomyl to Aquatic Organisms in the Sacramento River System. California Department of Fish and Game, Pesticide Investigation Unit, Report Number 96-6.
- Nehls, G.J. and Akland, G.G., 1973, *Procedures for Handling Aerometric Data*, Journal of the Air Pollution Control Association, , Vol. 23, pp 180-184.
- Siepmann, S. and M. R. Jones, 1998, Assessment of the Insecticide Carbaryl to Aquatic Organisms in the Sacramento River System.
 California Department of Fish and Game, Pesticide Investigation Unit, Report Number 98-1.
- Siepmann, S. and S.B. Slater, 1998, Assessment of the Insecticide Malathion to Aquatic Organisms in the Sacramento River System.
 California Department of Fish and Game, Pesticide Investigation Unit, Report Number 98-2.

- State of California, 1994, Safe Drinking Water and Toxic Enforcement Act of 1986: No Significant Risk Levels for Carcinogens and Acceptable Intake Levels for Reproductive Toxicants, California Environmental Protection Agency, Office of Environmental Health Hazard Assessment.
- State of California, 1997a, California Drinking Water Primary and Secondary Maximum Contaminant Levels, Action Levels, and Chemicals Requiring Monitoring, California Department of Health Services, Division of Drinking Water and Environmental Management.
- State of California, 1997b, Draft Policy for Implementation of Toxics Standards for Inland Surface Waters, Enclosed Bays and Estuaries of California, California State Water Resources Control Board.
- State of California, 1998, A Compilation of Water Quality Goals, California Environmental Protection Agency, Regional Water Quality Control Board, Central Valley Region, Sacramento, CA.
- State of California, 1999, [Draft] Water Quality
 Assessment of the State Water Project,
 1996-1997, California Department of Water
 Resources.
- Stiff, H.A., Jr., 1951, *The Interpretation of Chemical Water Analysis by Means of Patterns*, Journal of Petroleum Technology, Vol. 3, pp. 15-17.

APPENDIX 1

Guide to Access Database Files

	•	

Data Sources and Import Procedures: Data were collated from the following sources to create the databases used in this report:

STORET Database Files: The EPA maintains a historical water quality database called STORET (an acronym derived from STOrage and RETrieval) that contains large volumes of data collected by many state and federal agencies. STORET is publicly available by modem on an EPA mainframe; however, data included in this report were obtained using a CD-ROM version of the data with an MS-DOS query search program (Earthinfo, Inc, Boulder, Colorado). The Earthinfo search program produced query output in Lotus 123 v. 2.0 spreadsheet files in a data-list format.

The STORET data set queried for this report was limited to sampling stations located within a latitude-longitude (lat-long) box bounded by 121°20' to 121°38' W longitude, and 37°46' to 37°56' N latitude (see map in Figure 1), and restricted to samples collected and analyzed since 1980. The lat-long box is approximately 26.5 X 18.5 km, and covers an area of around 48,950 ha (120,960 acres). The northwest corner is located near Discovery Bay and Indian Slough, the southwest corner about 1 km west of Bethany Reservoir, the southeast corner near the intersection of Middle Road and Interstate 5 approximately 5 km east of Tracy, and the northeast corner is in the sewage disposal pond located at the southwest corner of the city of Stockton.

The selection of the Figure 1 lat-long coordinates was somewhat arbitrary, and represented an attempt to keep the selected area within close proximity to the TFCF, while being large enough to include some representative data. Larger query areas would produce larger data sets that would produce less biased summary statistics, but the larger the data set, the less it represents the water quality conditions at the TFCF location.

This TFCF lat-long box query produced 43 sampling stations (see Table A1-1 below and Table A2-2 in Appendix 2) with 197 parameters (measured water quality constituents/variables, found in Appendix 2 Table A2-1). Several sub-set parameter level queries were prepared from the lat-long query for major ions (Calcium - Ca²+, Magnesium - Mg²+, Sodium - Na+, Potassium - K+, Carbonate - CO₃²-, Bicarbonate - HCO₃-, Chloride - Cl-, Sulfate - SO₄²-), nutrients (nitrate - NO₃-, nitrite - NO₂-, Ammonia - NH₃, Total Kjeldahl Nitrogen - TKN, Orthophosphate - PO₄³-, and Total P), trace elements (see Appendix 1 tables), field parameters (pH, Conductivity - EC, Dissolved Oxygen - DO, Redox Potential - Eh), and even some biological data (algae counts, BOD, chlorophyll, etc.). All of these sub-set queries were imported into Access as tables seen in Table A1-2.

The data ("all_") tables are relatively simple files where each record contains a STORET parameter number code (parmno), the measured data value (conc), an annotation remark (comment), STORET station code (station), sampling date (sdate) and sampling time (stime). In order to create spreadsheet/SPSS-compatible (tabular) files from the columnar (list) format in the imported tables, crosstab queries were created (denoted by a "_ctab" suffix). Spreadsheet headings (SPSS® variable names) were added by attaching the relational tables, tfcf_parms and tfcf_station to the crosstab queries.

Running crosstab queries in Access on large tables uses significant PC memory resources. Given the large size of some of the tables, additional tables were created for *tfcf_st.mdb* that subdivided the larger tables (such as *all_field* and *all_np*) into smaller tables, available so that data users with older PC's having less than 64 Mbyte RAM would be able to run smaller crosstab queries to create output for analysis.

 Table A1-1
 STORET lat-long query sampling stations and distance from the TFCF.

Distance from	Longitude,	Latitude,				
TFCF, km	Decimal Degrees		Analytes	Samples	Agency	Station
ŕ	w	Degrees N	-	•		
9.04	121.500000	37.883333	29	4	21CAL-2	01N/04E-35R01 M
9.96		37.883333	14	2	21CAL-2	01N/04E-36K03 M
18.04		37.933333	106	14	21CAL-2	01N/05E-10P01 M
19.10		37.933333	64	9	21CAL-2	01N/05E-10Q01 M
18.04		37.933333	76	8	21CAL-2	01N/05E-15F01 M
19.10		37.933333	105	13	21CAL-2	01N/05E-15G01 M
18.04		37.933333	81	10	21CAL-2	01N/05E-15L02 M
	121.433333	37.916667	55	8	21CAL-2	01N/05E-21E03 M
. 15.69	121.433333	37.916667	82	11	21CAL-2	01N/05E-21F01 M
	121.433333	37.916667	54	8	21CAL-2	01N/05E-21M02 M
16.76	121.416667	37.916667	65	8	21CAL-2	01N/05E-22E01 M
13.34		37.900000	58	9	21CAL-2	01N/05E-29C02 M
13.34		37.900000	60	9	21CAL-2	01N/05E-29F01 M
12.32		37.900000	18	3	21CAL-2	01N/05E-30Q03 M
12.32		37.900000	47	6	21CAL-2	01N/05E-31D01 M
11.00		37.883333	28	4	21CAL-2	01N/05E-31E01 M
		37.883333	99	13	21CAL-2	01N/05E-36M01 M
		37.883333	52	9	21CAL-2	01S/04E-02C01 M
8.28		37.883333	53	8	21CAL-2	01S/04E-03K01 M
6.67	121.516667	37.866667	69	11	21CAL-2	01S/04E-03P02 M
	121.533333	37.866667	29	4	21CAL-2	01S/04E-04R01 M
	121.533333	37.866667	54	8	21CAL-2	01S/04E-09B01 M
5.98	121.533333	37.866667	57	9	21CAL-2	01S/04E-09C01 M
5.59	121.550000	37.866667	52	7	21CAL-2	01S/04E-09N01 M
5.59	121.550000	37.866667	58	8	21CAL-2	01S/04E-09N02 M
9.80	121.450000	37.800000	38	1	21CAL-3G	01S/05E-31H01 M
		37.783333	38	1	21CAL-3G	01S/05E-35Q02 M
	121.533333	37.766667	166	9	21CAL-2	02S/04E-16A01 M
13.75	121.416667	37.766667	53	1	112WRD	374645121255601
9.80	121.450000	37.800000	1509	57	21CAL-6	B9D74821274
	121.433333	37.800000	7854	577	21CAL-1	B9D74831269
11.24		37.800000	10435	407	21CAL-6	B9D74831269_@
.78	121.550000	37.816667	18016	16945	21CAL-1	B9D74981333
11.09	121.450000	37.866667	625	49	21CAL-1	B9D75291273
	121.483333	37.883333	497	37	21CAL-1	B9D75351292
		37.883333	5899	216	21CAL-6	B9D75351292_@
9.96	-121.483333	37.883333	5197	241	21CAL-1	B9D75351293
		37.883333	5079	221	21CAL-6	B9D75351293_@
		37.883333	64314	39479	113BUREC	RMID23
		37.833333	50922	28879	113BUREC	RMID40
3.75	121.566667	37.850000	8564	2758	21CAL-81	ROLD39
		37.800000	4317	298	113BUREC	ROLD59
	121.433333	37.766667	915	38	11KEST	UID2133
	Minimum					
	Distance		1			
19.10	Maximum	· · · · · · · · · · · · · · · · · · ·				
	Distance			}		
	Mean Distance					
	Median Distance		-		•	

Table A1-2 Table names and contents in Access database tfcf_st.mdb (2,980 Kbytes).

Table Name	Number of Records	Contents
all_biota	4,414	biological/limnological data
all_field	12,644	field measurements
all_ions	6,126	major ions concentrations
all_np	8,471	nutrients concentration
all_org	78	organic solvents, compounds
all_pest	43	agricultural chemicals, pesticides
all_tm	641	trace elements
tfcf_parms	197	STORET parameter numbers with associated identifiers, short
		names and units.
tfcf_station	43	STORET station codes, identifiers, latitude, longitude

Another STORET database, **other_st.mdb** (1,060 Kbytes), was created to gather major ions data from Delta sites farther away from the TFCF as a means to compare Tracy water to other potential sources, and for mixing evaluations (see Appendix 2, Tables A2-4a-4d, and report Figures 5a-5c). Data table structure was identical to that in **tfcf_st.mdb**, and analysis output was created from these tables using similar crosstab queries. Table A1-3 describes the contents of **other_st.mdb**:

Table A1-3 Access major ions database **other_st.mdb** (1,060 Kbytes).

Table Name	Number of Records	Contents
sac_ions	4,251	ions data from Sacramento River stations in and around Sacramento, CA
suis_ions	3,234	ions data from Suisun Bay stations near the Sacramento River Inflow zone.
vern_ions	8,190	ions data from San Joaquin River stations in and around Vernalis CA.

The 3 STORET queries in **other_st.mdb** were imported as tables into Access. The tables included the USGS sampling station (11447650) on the Sacramento River at Sacramento, (summary in Appendix 2, Table A2-4b), several stations (LSBB03, -05, -08, -17, -19, and RSA-060, -063, -066, and -072) in and around Suisun Bay at the inflow of the Sacramento River (Table A2-4c), and the USGS stations (B0701000 and WB05B0702000) on the SJR near Vernalis (Table A2-4d).

Agricultural Chemical Data are archived in the database agdata.mdb (results and tables found in Appendix 3). A data file containing 1997 agricultural chemical application information in ASCII list format was obtained from the San Joaquin County Office of the Agricultural Commissioner, and imported as table san_joaquin. This large table (83,875 records, >10 Mbytes in ASCII format) contained very detailed information regarding the landowner (permit_number, grower_id), location (township, range, section), agricultural chemical formulation names (ag_chem), associated EPA and safety codes (all "epa_" prefix fields), amounts applied, dates applied, and how applied (pesticide_amt, date_applied, application_method), as well as crop name (crop_name) and acreage (crop_quantity) treated.

An initial query (tfcf_local_agchem) was created to identify agricultural chemical application records in the near vicinity of the TFCF by selecting only township-range quadrangles T1SR4E, T1SR5E, and T1SR6E. These quadrangles (see Figure 1 in the report) represent an approximate rectangle 29.3 X 5.8 km starting at the TFCF and striking east to include the branch point of the SJR and the Old River. This 27,000 ha (67,700 acre) rectangle includes crop land adjacent to the Old River, the branching point of the Old and Middle River and the Middle River in T1SR5E, Grant Line Canal, Fabian and Bell Canal,

Victoria Canal, North Canal, the Clifton Court Forebay Intake, and northern extremes of Paradise Cut and Tom Paine Slough where they enter the Old River.

This initial query was used to develop 2 additional relational tables created to link product application data to toxicity and structural information. Data from the Farm Chemicals Handbook '97, and the supplemental Electronic Pesticide Dictionary '97 CD-ROM (Meister and Sine, 1997), and other sources (Johnson and Finley, 1980) were used to create tables toxicity and tfcf_chem_list. Table tfcf_chem_list (277 records - see Table A3-1 in Appendix 2) was created by entering ISO (International Standards Organization) common names (shortname), usage class (class, eg. herbicide, pesticide, pesticide, insecticide, deposition agent), other common names (cross_ref), chemical type (type, eg. organic, inorganic, biological agent, etc), and chemical class (chem_class: carbamate, chlorinated, tricyclic, etc), and IUPAC (International Union of Pure and Applied Chemistry) chemical structure names (chem_name) for each of the agricultural chemical product formulations in the query tfcf_local_agchem.

Access table toxicity (114 records) was created by adding available LC-50 toxicity data (almost all values were for 96-hour or shorter duration acute bioassays) for each of the 114 unique chemicals applied near the TFCF using California (State of California, 1997a, 1997b, and 1998) and other regulatory and scientific sources (Johnson and Finley, 1980) and the Farm Chemicals Handbook '97 (Meister and Sine, 1997). LC-50 data were obtained for anadromous fish, resident fish, and various species listed in The Farm Chemical Handbook '97 (anadro_LC50, resident_LC50, and FCH_LC50). Once the LC-50 data were entered, table toxicity was exported to SPSS® where all fish LC-50 concentrations (in µg/L) were assigned relative toxicity scores based on the criteria found in Table A1-4 (Meister and Sine, 1997):

Table A1-4 Criteria from *The Farm Chemical Handbook '97* used to assign Relative toxicity scores to 96-hour LC-50 data.

Score	Meaning	FCH designation	LC-50 Range
1	safe	PNT	>100,000 µg/L
2	slightly toxic	ST	10,000 to 100,000 μg/L
3	moderately toxic	MT	1,000 to 10,000 μg/L
4	toxic	HT	100 to 1,000 μg/L
5	very toxic	VHT	<100 µg/L

LC-50 data not reported explicitly but annotated as "safe" were assigned LC-50 = 1.00E+09 and score = 1, and unknown or unavailable toxicity data were conservatively assigned score = 2 (slightly toxic - on the assumption that dangerously toxic compounds would be well known and identified). Once scores were assigned to each chemical, they were averaged to obtain the average fish toxicity score. The SPSS® file was then re-imported via Excel into Access to create the updated table *toxicity*. These data were used to identify which agricultural chemicals could potentially pose water quality problems at the TFCF.

USGS Pesticide-Herbicide Data: The figures in Appendix 4 represent summaries of a detailed investigation of agricultural organic chemicals based on almost daily water sample collection from 1991 to 1994. Samples were collected from the SJR at Vernalis and the Sacramento River at Sacramento, and each 2-L sample was preconcentrated using solid phase extraction followed by solvent elution and analysis by gas chromatography-mass spectrometry (GC-MS). Probably the best set of agricultural organic chemical analysis data from the Delta, these data have detection limits in the tens of ng/L (nanograms per liter), well below regulated concentrations.

The Vernalis data were scanned directly from the USGS report (*MacCoy, et.al., 1995*), converted to ASCII text files using optical character recognition software, imported into Excel and then SPSS® for data conversion, graphing and summary analysis, and then back to Access as database usqs.mdb. The

entire Vernalis data set is in one table, *usgspest*, and no simple or crosstab queries are needed to view or export the data. See Appendix 3 for summary tables from this data set.

Hydrolab Data Collation: The data in Appendix 5 were obtained from the permanent Hydrolab H20 installed at the TFCF and connected to a Geomation, Inc. data acquisition system. ASCII text files in list format (similar to the STORET input files) for monthly data were prepared by TFCF personnel using the Geomation software. The ASCII files were sent by E-mail to the first author, who imported the monthly text files into Excel and then Access top creat the database hydrolab.mdb.

Seasonal (3-month) combined Excel files (each with 9 variables-fields per record) were created for the period of March 1997 through February 1998. These files were then imported into Access as tables spring_1997 (33,506 records), fall_1997 (38,733 records), summer_1997 (26,853), and winter_97_98 (29,891 records). Crosstab queries were used to convert the list-format tables into spreadsheet-style files for analysis output, and the "avg" function was used in the crosstab query design to obtain hourly average values (and considerably smaller output files!). The subsequent seasonal output files were combined via Excel and then imported into SPSS® as a single data set for graphing and analysis.

Database and Field Name Documentation: The descriptive documentation for field names within in each database table are either obvious (as in "Dacthal" or "Pebulate") or included in the files themselves (accessible by highlighting the table and selecting the "Design" button). Since some of the imported data files are large (>10 Mbytes), separate databases for each source were created, and a Pentium-class PC with a minimum of 64 Mbyte of RAM is required to perform some of the queries in Access.

Global Database File: All of the separate database file tables are attached to the "global" database tracy.mdb; however, this file contains no queries. In this study, a rudimentary set of data tables and queries were created for each separate database file which will be expanded and updated throughout the course of this project.

APPENDIX 2

Water Chemistry and Biota Data: Summary of Major Ions, Nutrients, and Trace Element Data Collated from the EPA STORET Data Base

Table A2-1 STORET Parameter Numbers (Access field name Parmno) and associated descriptive fields used in the STORET chemical database for the Tracy Fish Collection Facility.

			CAS	
Parmno	Parameter Description	Shortname	Number	Units
10	TEMPERATURE, WATER (DEGREES CENTIGRADE)	t°c		°C
000	ARSENIC, DISSOLVED (UG/L AS AS)	as_d	7440382	µg/L
002	ARSENIC, TOTAL (UG/L AS AS)	as_t	7440382	ug/L
020	BORON, DISSOLVED (UG/L AS B)	b_d	7440428	µg/L
022	BORON, TOTAL (UG/L AS B)	b_t	7440428	µg/L
025	CADMIUM, DISSOLVED (UG/L AS CD)	cd_d	7440439	µg/L
1027	CADMIUM, TOTAL (UG/L AS CD)	cd_t	7440439	µg/L
1030	CHROMIUM, DISSOLVED (UG/L AS CR)	cd_d	7440473	µg/L
1032	CHROMIUM, HEXAVALENT (UG/L AS CR)	cr_hex	7440473	µg/L
1034	CHROMIUM, TOTAL (UG/L AS CR)	cr_t	7440473	µg/L
1040	COPPER, DISSOLVED (UG/L AS CU)	cu_d	7440508	µg/L
1042	COPPER, TOTAL (UG/L AS CU)	cu_t	7440508	µg/L
1045	IRON, TOTAL (UG/L AS FE)	fe_d	7439896	µg/L
1046	IRON, DISSOLVED (UG/L AS FE)	fe_t	7439896	µg/L
1049	LEAD, DISSOLVED (UG/L AS PB)	pb_d	7439921	µg/L
1051	LEAD, TOTAL (UG/L AS PB)	pb_t	7439921	µg/L
1055	MANGANESE, TOTAL (UG/L AS MN)	mn_t	7439965	µg/L
1056	MANGANESE, DISSOLVED (UG/L AS MN)	mn_d	7439965	µg/L
1060	MOLYBDENUM, DISSOLVED (UG/L AS MO)	mo_d	7439987	µg/L
1062	MOLYBDENUM, TOTAL (UG/L AS MO)	mo_t	7439987	µg/L
1065	NICKEL, DISSOLVED (UG/L AS NI)	ni_d	7440020	µg/L
1067	NICKEL, TOTAL (UG/L AS NI)	ni_t	7440020	µg/L
1075	SILVER, DISSOLVED (UG/L AS AG)	ag_d	7440224	µg/L
1077	SILVER, TOTAL (UG/L AS AG)	ag_t	7440224	µg/L
1085	VANADIUM, DISSOLVED (UG/L AS V)	<u>v_</u> d	7440622	µg/L
1090	ZINC, DISSOLVED (UG/L AS ZN)	zn_d	7440666	μg/L
1092	ZINC, TOTAL (UG/L AS ZN)	zn_t	7440666	µg/L
11	TEMPERATURE, WATER (DEGREES FAHRENHEIT)	t°f		°F
1105	ALUMINUM, TOTAL (UG/L AS AL)	al_t	7429905	µg/L
1130	LITHIUM, DISSOLVED (UG/L AS LI)	li_d	7439932	µg/L
1132	LITHIUM, TOTAL (UG/L AS LI)	li_t	7439932	µg/L
1145	SELENIUM, DISSOLVED (UG/L AS SE)	se_d	7782492	µg/L
1147	SELENIUM, TOTAL (UG/L AS SE)	se_t	7782492	µg/L
20	TEMPERATURE, AIR (DEGREES CENTIGRADE)	air_t°c		<u>°C</u>
204	DEPTH IN METERS AT WHICH 1% SURFACE LIGHT REMAINS	1 %depth		m
300	OXYGEN, DISSOLVED MG/L	do	7782447	mg/L
301	OXYGEN, DISSOLVED, PERCENT OF SATURATION %	do%	7782447	%
310	BOD, 5 DAY, 20 DEG C MG/L	bod5		mg/L
312	BOD, 6 DAY, 20 DEG C MG/L	bod6		mg/L
315	BOD, 7 DAY, 20 DEG C MG/L	bod7		mg/L
31505	COLIFORM, TOT, MPN, CONFIRMED TEST, 35C (TUBE 31506)	coli35		N
31615	FECAL COLIFORM,MPN,EC MED,44.5C (TUBE 31614)	coli44t		N
31616	FECAL COLIFORM, MEMBR FILTER, M-FC BROTH, 44.5 C	coli44b		E
32101	BROMODICHLOROMETHANE, WHOLE WATER, UG/L	brcl2ch	75274	µg/L
32102	CARBON TETRACHLORIDE, WHOLE WATER, UG/L	ccl4	56235	µg/L
32104	BROMOFORM, WHOLE WATER, UG/L	chbr3	75252	µg/L

Pormo	Parameter Description	Shortnama	CAS Number	Units
Parmno	Parameter Description	Shortname		+=====
32105	DIBROMOCHLOROMETHANE, WHOLE WATER, UG/L	br2clch	124481	µg/L
32106	CHLOROFORM, WHOLE WATER, UG/L	chcl3	67663	µg/L
32211	CHLOROPHYLL-A UG/L SPECTROPHOTOMETRIC ACID, METH.	cphyll_a	479618	µg/L
32212	CHLOROPHYLL-B UG/L TRICHROMATIC UNCORRECTED	cphyll_b	519620	µg/L
32214	CHLOROPHYLL-C UG/L TRICHROMATIC UNCORRECTED	cphyll_c	11003455	µg/L
32216	CHLOROPHYLL,TOTAL UG/L TRICHROMATIC UNCORRECTED	cphyll_tot		µg/L
32218	PHEOPHYTIN-A UG/L SPECTROPHOTOMETRIC ACID. METH.	pphytin_a	603178	µg/L
32221	CHLOROPHYLL A,% OF(PHEOPHYTIN A+CHL A),SPEC-ACID.	cphyll_a%	-	%
335	COD, .025N K2CR2O7 MG/L	cod		mg/L
34010	TOLUENE IN WTR SMPLE GC-MS, HEXADECONE EXTR.(UG/L)	toluene	108883	µg/L
34030	BENZENE IN WTR SMPLE GC-MS, HEXADECONE EXTR.(UG/L)	benzene	71432	µg/L
34301	CHLOROBENZENE TOTWUG/L	cl_benz	108907	µg/L
34311	CHLOROETHANE TOTWUG/L	cl_ethane	75003	µg/L
34371	ETHYLBENZENE TOTWUG/L	et_benz	100414	µg/L
34413	METHYL BROMIDE TOTWUG/L	brch3	74839	µg/L
34418	METHYL CHLORIDE TOTWUG/L	clch3	74873	µg/L
34423	METHYLENE CHLORIDE TOTWUG/L	meth_cl	75092	µg/L
34475	TETRACHLOROETHYLENE TOTWUG/L	tcethene	127184	µg/L
34488	TRICHLOROFLUOROMETHANE TOTWUG/L	cl3fch	75694	µg/L
34496	1,1-DICHLOROETHANE TOTWUG/L	11_dcea	75343	µg/L
34501	1,1-DICHLOROETHYLENE TOTWUG/L	11_dcee	75354	µg/L
34506	1,1,1-TRICHLOROETHANE TOTWUG/L	111_tcea	71556	µg/L
34511	1,1,2-TRICHLOROETHANE TOTWUG/L	112_tcea	79005	µg/L
34516	1,1,2,2-TETRACHLOROETHANE TOTWUG/L	1122tcea	79345	µg/L
34531	1,2-DICHLOROETHANE TOTWUG/L	1_2dcea	107062	µg/L
34536	1,2-DICHLOROBENZENE TOTWUG/L	1_2dcben	95501	µg/L
34541	1,2-DICHLOROPROPANE TOTWUG/L	1_2dcp	78875	µg/L
34546	TRANS-1,2-DICHLOROETHENE, TOTAL, IN WATER UG/L	t1_2dce	156605	μg/L
34566	1,3-DICHLOROBENZENE TOTWUG/L	1_3dcben	541731	μg/L
34571	1,4-DICHLOROBENZENE TOTWUG/L	1_4dcben	106467	μg/L
34576	2-CHLOROETHYL VINYL ETHER TOTWUG/L	2cev_eth	110758	µg/L
34668	DICHLORODIFUOROMETHANE TOTWUG/L	cl2f2c	75718	µg/L
34699	TRANS-1,3-DICHLOROPROPENETOTAL IN WATER UG/L	t13dcpre	10061026	µg/L
34704	CIS-1,3-DICHLOROPROPENE TOTAL IN WATER UG/L	c13dcpre	10061015	µg/L
350	BOD, 14 DAY, 20 DEG C MG/L	bod 14		mg/L
354	BOD, 49 DAY, 20 DEG C MG	bod 49		mg/L
364	BOD, 100 DAY, 20 DEG C MG/L	bod_100		mg/L
39036	ALKALINITY, FILTERED SAMPLE AS CACO3 MG/L	alk fcal	471341	mg/L
39040	S,S,S-TRIBUTYL PHOSPHOROTRITHIOATE WTR-FPD UG/L	tbppttate	78488	µg/L
39044	CHC(AS DDT),NONE FOUND,WHOLE WATER SAMPLE (UG/L)	chc_ddt		µg/L
39153	ATRAZINE &/OR SIMAZINE IN WHOLE WATER SAMPL UG/L	atrazine		µg/L
39175	VINYL CHLORIDE-WHOLE WATER SAMPLE-UG/L	vinylcl	75014	µg/L
39180	TRICHLOROETHYLENE-WHOLE WATER SAMPLE-UG/L	cl3ethe	79016	µg/L
39330	ALDRIN IN WHOLE WATER SAMPLE (UG/L)	aldrin	309002	µg/L
39340	GAMMA-BHC(LINDANE), WHOLE WATER, UG/L	gamma bhc	58899	µg/L
39360	DDD IN WHOLE WATER SAMPLE (UG/L)	ddd	72548	µg/L
39365	DDE IN WHOLE WATER SAMPLE (UG/L)	dde	72559	µg/L

Parmno	Parameter Description	Shortname	CAS Number	Units
39370	DDT IN WHOLE WATER SAMPLE (UG/L)	ddt	50293	µg/L
39380	DIELDRIN IN WHOLE WATER SAMPLE (UG/L)	dieldrin	60571	µg/L
39400	TOXAPHENE IN WHOLE WATER SAMPLE (UG/L)	toxaphen	8001352	μg/L
39410	HEPTACHLOR IN WHOLE WATER SAMPLE (UG/L)	heptachl	76448	µg/L
39420	HEPTACHLOR EPOXIDE IN WHOLE WATER SAMPLE (UG/L)	hep_epox	1024573	μg/L
39496	PCB - 1242 PCB SERIES WHOLE WATER SAMPLE UG/L	pcb 1242	53469219	µg/L
39504	PCB - 1254 PCB SERIES WHOLE WATER SAMPLE UG/L	pcb 1254	11097691	µg/L
39508	PCB - 1260 PCB SERIES WHOLE WATER SAMPLE UG/L	pcb 1260	11096825	µg/L
39570	DIAZINON IN WHOLE WATER SAMPLE (UG/L)	diazinon	333415	μg/L
39730	2,4-D IN WHOLE WATER SAMPLE (UG/L)	2 4 d	94757	µg/L
39770	DACTHAL (DCPA) IN WHOLE WATER SAMPLE (UG/L)	dacthal	1861321	µg/L
400	PH (STANDARD UNITS)	ph	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	SU
403	PH, LAB, STANDARD UNITS SU	lab ph	<u> </u>	SU
410	ALKALINITY, TOTAL (MG/L AS CACO3)	alk_totc	471341	mg/L
425	ALKALINITY, BICARBONATE (MG/L AS CACO3)	hco3_cal	471341	mg/L
430	ALKALINITY, CARBONATE (MG/L AS CACO3)	co3 cal	471341	mg/L
440	BICARBONATE ION (MG/L AS HCO3)	hco3	71523	mg/L
445 445	CARBONATE ION (MG/L AS CO3)	co3	3812326	mg/L
45605	CABLE LENGTH FEET	cable	3012020	ft
46570	HARDNESS, CA MG CALCULATED (MG/L AS CACO3)	hard cal		mg/L
49002	ALGAE, CRYPTOMONADS (ORGANISMS/ML)	alg cryp		org/mL
	ALGAE, CRYFTOMONADS (ORGANISMS/ML) ALGAE, DINOFLAGELLATES (ORGANISMS/ML)	alg_dino		org/mL
49003		alg gr		org/mL
49004 49005	ALGAE, GREEN (ORGANISMS/ML)	alg blgr		org/mL
	ALGAE, BLUE-GREEN (ORGANISMS/ML)	alg_yegr	1	org/mL
49006	ALGAE, YELLOW-GREEN (ORGANISMS/ML)	as ddt		µg/L
49010	UNKNOWNC AS DDT IN WHOLE WATER SAMPLE (UG/L)	tss		mg/L
515	RESIDUE, TOTAL NOVEL TRABLE (DRIED AT 105C),MG/L	tds	+	mg/L
530	RESIDUE, TOTAL NONFILTRABLE (MG/L)			mg/L
535	RESIDUE, VOLATILE NONFILTRABLE (MG/L)	resvol	+	mg/L
540	RESIDUE, FIXED NONFILTRABLE (MG/L)	tds_fix	17778880	mg/L
600	NITROGEN, TOTAL (MG/L AS N)		11/1/0000	cells/mL
60050	ALGAE, TOTAL (CELLS/ML)	alg t	+	cells/mL
60300	ALGAE, FLAGELLATE GREEN (CELLS/ML)	alg_flag		cells/mL
60370	ALGAE, DIATOMS (CELLS/ML)	alg_diat	47779990	
605	NITROGEN, ORGANIC, TOTAL (MG/L AS N)	norg_t	17778880	mg/L
606	NITROGEN, ORGANIC, SUSPENDED (MG/L AS N)	norg_s	17778880	mg/L
607	NITROGEN, ORGANIC, DISSOLVED (MG/L AS N)	norg_d	17778880	mg/L
608	NITROGEN, AMMONIA, DISSOLVED (MG/L AS N)	nh3_d	17778880	mg/L
60850	ROTIFERS, TOTAL (/LITER)	rotifers	4 7770000	org/mL
610	NITROGEN, AMMONIA, TOTAL (MG/L AS N)	nh3_t	17778880	mg/L
612	AMMONIA, UNIONZED (MG/L AS N)	nh3_unio	7664417	mg/L
613	NITRITE NITROGEN, DISSOLVED (MG/L AS N)	no2_d	17778880	mg/L
618	NITRATE NITROGEN, DISSOLVED (MG/L AS N)	no3_d	17778880	mg/L
619	AMMONIA, UNIONIZED (CALC FR TEMP-PH-NH4) (MG/L)	nh3_unca	7664417	mg/L
620	NITRATE NITROGEN, TOTAL (MG/L AS N)	no3_t	17778880	mg/L
629	NITROGEN, ORGANIC KJELDAHL, TOTAL (MG/L AS N)	tkn	17778880	mg/L
630	NITRITE PLUS NITRATE, TOTAL 1 DET. (MG/L AS N)	no2no3t	17778880	mg/L
631	NITRITE PLUS NITRATE, DISS. 1 DET. (MG/L AS N)	no2no3d	17778880	mg/L
635	NITROGEN, AMMONIA&ORG., TOTAL 1 DET (MG/L AS N)	nh3org_t	17778880	mg/L
636	NITROGEN, AMMONIA&ORG., DISS. 1 DET (MG/L AS N)	nh3org_d	17778880	mg/L

			CAS	
Parmno	Parameter Description	Shortname	Number	Units
64	DEPTH OF STREAM, MEAN (FT)	st_depth		π
640	NITROGEN, INORGANIC, TOTAL (MG/L AS N)	n_inor_t	17778880	mg/L
65	STAGE, STREAM (FEET)	st stage		ft
653	PHOSPHATE, TOTAL SOLUBLE (MG/L)	po4_ft	14265442	mg/L
665	PHOSPHORUS, TOTAL (MG/L AS P)	p_t	7723140	mg/L
666	PHOSPHORUS, DISSOLVED (MG/L AS P)	p_d	7723140	mg/L
671	PHOSPHORUS, DISSOLVED ORTHOPHOSPHATE (MG/L AS P)	po4_d	7723140	mg/L
680	CARBON, TOTAL ORGANIC (MG/L AS C)	toc	7440440	mg/L
70	TURBIDITY, (JACKSON CANDLE UNITS)	turb_jcu		JCU
70211	TIDE, HIGH OR LOW, BEFORE OR AFTER, HOUR, MINUTE	tide1		
70299	SOLIDS, SUSP RESIDUE ON EVAP. AT 180 C (MG/L)	tss_180		mg/L
70300	RESIDUE, TOTAL FILTRABLE (DRIED AT 180C), MG/L	tds_180		mg/L
70507	PHOSPHORUS, IN TOTAL ORTHOPHOSPHATE (MG/L AS P)	po4?	7723140	mg/L
70991	PHYTO-PRODUCTION, AREAL NET, O2 METHOD (G/M2/DAY)	phypro_n		g/m2/d
70992	PHYTO-PRODUCTION, AREAL GROSS, O2 METHOD(G/M2/DAY)	phypro_g		g/m2/d
70993	PHYTO-PRODUCTION, VOL.MAX.GROSS, O2 METHOD (G/M3/DAY)	phypro_m		g/m3/d
70994	RESPIRATION, AREAL PLANKTONIC (G/M2/DAY)	respir a		g/m2/d
70995	RESPIRATION, VOLUMETRIC PLANKTONIC (G/M3/DAY)	respir_v		g/m3/d
71229	CATCH - NUMBER OF ORGANISMS CAUGHT	catch		caught
71291	ORDER CLADOCERA (NO/LITER)	cladocer		org/L
71296	SUBCLASS COPEPODA (NO/LITER)	copepod		org/L
71851	NITRATE NITROGEN, DISSOLVED (MG/L AS NO3)	no3_dn	14797558	mg/L
71870	BROMIDE (MG/L AS BR)	br	24959679	mg/L
71890	MERCURY, DISSOLVED (UG/L AS HG)	hg_d	7439976	µg/L
71900	MERCURY, TOTAL (UG/L AS HG)	hg_t	7439976	µg/L
75	TURBIDITY, HELLIGE (PPM AS SILICON DIOXIDE)	turb_hel	Ì	mg/L
76	TURBIDITY, HACH TURBIDIMETER (FORMAZIN TURB UNIT)	turb_ftu		FTU
77	TRANSPARENCY, SECCHI DISC (INCHES)	secci_in		in
78	TRANSPARENCY, SECCHI DISC (METERS)	secci_m		m
80	COLOR (PLATINUM-COBALT UNITS)	colorpcu		pcu
81551	XYLENE WHL WATER SMPL UG/L	xylene	1330207	µg/L
81595	METHYL ETHYL KETONE WHL WATER SMPL UG/L	mek	78933	µg/L
81596	METHYL-ISOBUTYL KETONE WHL WATER SMPL UG/L	mibk	108101	µg/L
81903	DEPTH OF BOTTOM OF WATER BODY @ SAMPLE SITE, FEET	bottom		ft
90	OXIDATION REDUCTION POTENTIAL (MILLIVOLTS)	eh		mV
900	HARDNESS, TOTAL (MG/L AS CACO3)	hard_tca	471341	mg/L
902	HARDNESS, NON-CARBONATE (MG/L AS CACO3)	hard_ncar	471341	mg/L
915	CALCIUM, DISSOLVED (MG/L AS CA)	ca_d	7440702	mg/L
916	CALCIUM, TOTAL (MG/L AS CA)	ca_t	7440702	mg/L
925	MAGNESIUM, DISSOLVED (MG/L AS MG)	mg_d	7439954	mg/L
927	MAGNESIUM, TOTAL (MG/L AS MG)	mg_t	7439954	mg/L
929	SODIUM, TOTAL (MG/L AS NA)	na_t	7440235	mg/L
930	SODIUM, DISSOLVED (MG/L AS NA)	na_d	7440235	mg/L
932	SODIUM, PERCENT	na%	7440235	%
935	POTASSIUM, DISSOLVED (MG/L AS K)	k_d	7440097	mg/L
937	POTASSIUM, TOTAL MG/L AS K)	K_t	7440097	mg/L

Parmno	Parameter Description	Shortname	CAS Number	Units
94	SPECIFIC CONDUCTANCE, FIELD (UMHOS/CM @ 25C)	ec_field		μS/cm
940	CHLORIDE, TOTAL IN WATER MG/L	cl_t	16887006	mg/L
941	CHLORIDE, DISSOLVED IN WATER MG/L	cl_d	16887006	mg/L
945	SULFATE, TOTAL (MG/L AS SO4)	so4_t	14808798	mg/L
946	SULFATE, DISSOLVED (MG/L AS SO4)	so4_d	14808798	mg/L
95	SPECIFIC CONDUCTANCE (UMHOS/CM @ 25C)	ec		μS/cm
950	FLUORIDE, DISSOLVED (MG/L AS F)	f_d	16984488	mg/L
955	SILICA, DISSOLVED (MG/L AS SIO2)	sio2_d	7631869	mg/L

STORET sampling stations used in chemical data summaries for the Tracy Fish Collection Facility. These stations are located within a lat-long box defined by 37°45'00" N to 37°56'00" N and 121°20'00" W to 121°38'00" W. Table A2-2

		Beginning	Ending				W 10 121 00 00 11.		
		Sample	Sample	Record,	Total	Total		°N	· · · · · · ·
Station	Agency	Date	Date	Days	Samples	Analyses	Station Description		Longitude
01 N/04E-35R01 M	21CAL-2	4/8/80	11/9/81	580	4	29		37:53	121:30
01 N/04E-36K03 M	21CAL-2	10/15/79	4/10/80	178	2	14	LAT AND LONG CALCULATED FROM TOWNSHIP AND RANGE	37:53	121:29
01 N/05E-10P01 M	21CAL-2	6/3/75	11/6/81	2348	14	106	LAT AND LONG CALCULATED FROM TOWNSHIP AND RANGE	37:56	121:25
01N/05E-10Q01 M	21CAL-2	9/7/77	11/5/81	1520	9	64	LAT AND LONG CALCULATED FROM TOWNSHIP AND RANGE	37:56	121:24
01 N/05E-15F01 M	21CAL-2	4/11/78	11/6/81	1305	8	76	LAT AND LONG CALCULATED FROM TOWNSHIP AND RANGE	37:56	121:25
01N/05E-15G01 M	21CAL-2	10/14/68	11/5/81	4770	13	105	LAT AND LONG CALCULATED FROM TOWNSHIP AND RANGE	37:56	121:24
01N/05E-15L02 M	21CAL-2	6/24/75	4/3/80	1745	10	81	LAT AND LONG CALCULATED FROM TOWNSHIP AND RANGE	37:56	121:25
01N/05E-21E03 M	21CAL-2	4/13/78	11/9/81	1306	8	55	LAT AND LONG CALCULATED FROM TOWNSHIP AND RANGE	37:55	121:26
01N/05E-21F01 M	21CAL-2	6/3/75	4/8/80	1771	11	82	LAT AND LONG CALCULATED FROM TOWNSHIP AND RANGE	37:55	121:26
01N/05E-21M02 M	21CAL-2	4/11/78	11/6/81	1305	8	54	LAT AND LONG CALCULATED FROM TOWNSHIP AND RANGE	37:55	121:26
01 N/05E-22E01 M	21CAL-2	4/11/78	11/6/81	1305	8	65	LAT AND LONG CALCULATED FROM TOWNSHIP AND RANGE	37:55	121:25
01 N/05E-29C02 M	21CAL-2	9/13/77	11/6/81	1515	9	58	LAT AND LONG CALCULATED FROM TOWNSHIP AND RANGE	37:54	121:27
01N/05E-29F01 M	21CAL-2	9/13/77	11/6/81	1515	9	60	LAT AND LONG CALCULATED FROM TOWNSHIP AND RANGE	37:54	121:27
01N/05E-30Q03 M	21CAL-2	6/17/76	4/10/80	1393	3	18	LAT AND LONG CALCULATED FROM TOWNSHIP AND RANGE	37:54	121:28
01N/05E-31D01 M	21CAL-2	4/17/79	11/9/81	. 937	6	47	LAT AND LONG CALCULATED FROM TOWNSHIP AND RANGE	37:54	121:28
01N/05E-31E01 M	21CAL-2	4/12/78	4/9/81	1093	4	28	LAT AND LONG CALCULATED FROM TOWNSHIP AND RANGE	37:53	121:28
01 N/05E-36M01 M	21CAL-2	10/15/68	11/10/81	4774	13	99	LAT AND LONG CALCULATED FROM TOWNSHIP AND RANGE	37:53	121:23
01S/04E-02C01 M	21CAL-2	10/11/68	4/8/80	4197	9	52	LAT AND LONG CALCULATED FROM TOWNSHIP AND RANGE	37:53	121:30
01S/04E-03K01 M	21CAL-2	4/11 <i>/7</i> 8	11/5/81	1304	8	53	LAT AND LONG CALCULATED FROM TOWNSHIP AND RANGE	37:53	121:31
01S/04E-03P02 M	21CAL-2	6/3/75	4/9/80	1772	11	69	LAT AND LONG CALCULATED FROM TOWNSHIP AND RANGE	37:52	121:31
01S/04E-04R01 M	21CAL-2	4/9/80	11/9/81	579	4	29	LAT AND LONG CALCULATED FROM TOWNSHIP AND RANGE	37:52	121:32
01S/04E-09B01 M	21CAL-2	4/13/78	11/9/81	1306	8	54	LAT AND LONG CALCULATED FROM TOWNSHIP AND RANGE	37:52	121:32
01S/04E-09C01 M	21CAL-2	6/3/75	4/9/80	1772	9	57	LAT AND LONG CALCULATED FROM TOWNSHIP AND RANGE	37:52	121:32
01S/04E-09N01 M	21CAL-2	10/13/78	11/9/81	1123	7	52	LAT AND LONG CALCULATED FROM TOWNSHIP AND RANGE	37:52	121:33
01S/04E-09N02 M	21CAL-2	4/12/78	11/9/81	1307	8	58	LAT AND LONG CALCULATED FROM TOWNSHIP AND RANGE	37:52	121:33
01S/05E-31H01 M	21CAL-3G	7/1 <i>/</i> 86	7/1/86	0	1	38	39-1057 WELL NO 01	37:48	121:27
01S/05E-35Q02 M	21CAL-3G	7/1 <i>1</i> 86	7/1 <i>/</i> 86	0	1	38	39-1063 WELL NO 01	37:47	121:23
02S/04E-16A01 M	21CAL-2	9/30/57	7/8/87	10873	9	166	LAT AND LONG CALCULATED FROM TOWNSHIP AND RANGE	37:46	121:32
374645121255601	112WRD	5/5/84	5/5/84	0	1	53	2S/5E-8A1M WELL 1B	37:46	121:25
B9D74821274	21CAL-6	9/4/91	2/2/95	1247	57	1509	OLD RIVER AT OAK ISLAND	37:48	121:27
B9D74831269	21CAL-1	1/1/01	3/1/88	31836	577	7854	OLD RIVER AT TRACY RD BR	37:48	121:26

Station	Agency	Beginning Sample Date	Ending Sample Date	Record,	Total Samples		Station Description	°N Latitude	°W Longitude
	21CAL-6		8/16/91	8596	407	10435		37:48	121:26
B9D74831269_@	21CAL-0	7/1/70	2/28/87	6086	16945	18016	1200' W OF CONFLU OF S END OF W CANAL & OLD RIVR	37:49	
B9D74981333	21CAL-1		9/14/88	32033	49	625	MIDDLE RIVER AT TRACY ROAD BRIDGE	37:52	121:27
B9D75291273 B9D75351292	21CAL-1		9/14/88	526		497	MIDDLE RIVER A UNION POINT	37:53	121:29
B9D75351292 @	21CAL-1		2/3/95	4504	216		DOCK AT UNION POINT MARINA ON RIGHT BANK	37:53	121:29
B9D75351292_@	21CAL-0		3/6/85	30745	241	5197	MIDDLE RIVER AT BORDEN HIGHWAY	37:53	121:29
B9D75351293 @	21CAL-1	f	10/5/82	5359	221	5079	MIDDLE RIVER AT BORDEN HIGHWAY	37:53	121:29
RMID23	113BUREC	 	2/29/96	34757	39479	64314	MIDDLE RIVER AT JUNCTION WITH VICTORIA CANAL	37:53	121:29
RMID40			2/29/96	34757	28879	50922	MIDDLE RIVER 1.7 KM NORTH OF JCT WITH OLD R	37:50	121:23
ROLD39	21CAL-81		8/1/88	9919	2758	8564	OLD RIVER NORTHWEST OF CONEY ISLAND	37:51	121:34
ROLD59	113BUREC		12/11/80	29199	298	4317	OLD RIVER AT TRACY ROAD BRIDGE	37:48	121:26
UID2133	11KEST	· · · · · · · · · · · · · · · · · · ·	8/8/86	1415	38	915	AA TILE DRAIN SUMP 2.7 MI N/O TRACY	37:46	121:26
TOTALS	first		2/29/96	last	90417	185903			

Table A2-3 Gross-property field water quality data summarized by month, collated from the EPA STORET database for samples in the vicinity of the Tracy Fish Collection Facility.

Month	Statistic	Dissolved Oxygen, mg/L	Conductivity, μS/cm	pH, SU	Secci Disk Depth, inches	Temperature, °C	TDS/180°, mg/L	Turbidity FTL
January	N	47	33	42	5	60	301	43
	Median	9.3000	515.0000	7.2000	12.0000	9.0000	396.0000	20.0000
	Minimum	4.30	186.00	6.50	7.00	6.00	100.00	.40
	Maximum	10.60	3690,00	7.80	18.00	15.60	2385.00	55.00
ebruary	N	59	39	57	6	85	283	56
	Median	9.5000	470.0000	7.3000	10.5000	11.0000	415.0000	21.0000
	Minimum	.40	212.00	6.90	8.00	6.50	111.00	7.00
	Maximum	11.20	3800.00	8.00	14.00	16.00	2576.00	80.00
March	N	71	42	71	5	84	298	66
	Median	8.9000	414.5000	7.5000	13,0000	14.0000	292.0000	18.0000
	Minimum	3.80	203.00	6.70	12.00	10.00	126.00	6.00
	Maximum	14.10	3720.00	8.50	16.00	20.00	2582.00	43.00
April	N	96	61	165	5	104	324	73
	Median	9.2000	433.0000	7.3000	12.0000	16.0000	203,0000	19.0000
	Minimum	.00	190.00	5.80	8.00	11.00	109.00	10.00
	Maximum	16.20	3540.00	8.70	22.00	20.00	2354.00	70.00
May	N	92	70	97	5	121	342	73
	Median	8.3500	383.5000	7.6000	10.0000	19.0000	162.0000	22.0000
	Minimum	.10	115.00	6.00	7.00	14.00	58.00	9.00
	Maximum	16.60	3920.00	9.20	13.00	27.30	15000.00	150.00
June	N	97	71	105	5	141	319	76
	Median	7.5000	427.0000	7.6000	10.0000	22.0000	167.0000	25.0000
	Minimum	5.30	100.00	6.50	6.00	15.60	60.00	9.00
	Maximum	12.70	3220.00	9.00	12.00	27.10	2280.00	80.00
July	N	101	67	106	6	171	316	85
	Median	7.0000	573.0000	7.5000	11.5000	24.0000	160.0000	21.0000
	Minimum	2.40	132.00	6.60	6.00	16.70	78.00	10.00
	Maximum	15.00	3040.00	9.00	12,00	30.00	2068.00	45.00

Month	Statistic	Dissoived Oxygen, mg/L	Conductivity, μ\$/cm	рН, SU	Secci Disk Depth, inches	Temperature, °C	TDS/180°, mg/L	Turbidity FT
August	N	102	71	101	5	142	316	84
	Median	7.7000	650.0000	7.6000	12.0000	24.0000	177.5000	22.000
	Minimum	1.40	179.00	6.50	10.00	10.00	105.00	9.00
	Maximum	12.10	3470.00	8.90	14.00	27.20	2370.00	65.0
September	N	107	61	105	5	121	284	8
	Median	7.6000	501.0000	7.6000	12.0000	22.0000	204.0000	20.000
	Minimum	1.20	162.00	6.00	11.00	17.00	102.00	7.0
	Maximum	13.40	3620.00	9.00	14.00	25.00	2490.00	65.0
October	N	107	52	130	3	116	276	70
	Median	7.3000	427.5000	7.4000	15.0000	18.0000	240.0000	16.000
	Minimum	1.40	145.00	6.00	12.00	14.00	92.00	7.0
	Maximum	10.60	3660.00	8.30	15.00	22.60	2432.00	34.0
November	N	66	37	83	5	94	279	5
	Median	8.2000	525.0000	7.3000	17.0000	14.0000	284.0000	14.000
	Minimum	2.70	205.00	6.10	16.00	7.80	132.00	5.0
	Maximum	10.40	3570.00	7.90	22.00	20.00	2500.00	46.0
December	N	51	28	49	5	57	285	5
	Median	8.9000	543.0000	7.4000	16.0000	10.0000	318.0000	13.000
	Minimum	4.80	165.00	6.40	13.00	5.00	66.00	1.00
	Maximum	12.10	3690.00	8.10	24.00	16.40	2508.00	29.00
Total	N	996	632	1111	60	1296	3623	823
	Median	8.1000	479.0000	7.5000	12.0000	19.0000	233.0000	18.0000
	Minimum	.00	100.00	5.80	6.00	5.00	58.00	.4
	Maximum	16.60	3920.00	9.20	24.00	30.00	15000.00	150.0

Table A2-4a Major ions data summaries from the STORET database for samples from the vicinity of the Tracy Fish Collection Facility.

Statistic	pH SU	EC μS/cm	Ca mg/L	Mg mg/L	Na mg/L	K mg/L	CO ₃ mg/L	HCO₃ mg/L	CI mg/L	SO ₄ mg/L
N	139	632	210	209	324	148	119	122	1152	38
Mean	7.7209		46.8033	24.0981	87.3241	3.1480	.4790	123.1066	102.0095	114.5237
Median	7.7000	479.0000	30.5000	14.0000	61.5000	3.0000	.0000	96.5000	73.0000	68.5000
Minimum	4.40	100.00	9.00	3.20	11.00	-1.00	-1.00	34.00	10.00	3.90
Maximum	9.80	3920.00	277.00	190.00	560.00	15.00	14.00	434.00	868.00	603.00

Table A2-4b Major ions data summaries from the STORET database for samples from the vicinity of Suisun Bay, California.

	рН	EC	Ca	Mg	Na	К	CO	HCO ₃ mg/L	CI	SO.
Statistic	SU	μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L		mg/L	mg/L
N	135	347	5	5	5	5	51	51	79	5
Mean	7.7570	12336.314	57.2000	156.5000	1309.0000	38.3000	.3725	80.5686	2628.7215	345.4000
Median	7.8000	12600.000	25.0000	23.0000	142.0000	7.4000	.0000	80.0000	2340.0000	63.0000
Minimum	6.70	127.00	16.00	9.50	26.00	2.10	.00	58.00	8.00	16.00
Maximum	8.80	33040.00	137.00	442.00	3800.00	132.00	4.00	106.00	8400.00	1000.00

Table A2-4c Major ions data summaries from the STORET database for samples from the vicinity of the San Joaquin River near Vernalis, California.

	pН	EC	Ca	Mg	Na	κ	CO	HCO₃ mg/L	CI	SO
Statistic	SU	μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L		mg/L	mg/L
N	1077	986	282	282	442	302	474	489	432	363
Mean	7.6914	686.8286	32.4578	15.5014	74.7176	3.3510	.6118	124.9202	100.9236	14.4105
Median	7.6000	675.5000	30.0000	14.0000	73.0000	3.1000	.0000	121.0000	92.5000	.7000
Minimum	6.20	80.00	6.50	2.10	7.00	.90	.00	26.00	6.00	.00
Maximum	10.70	9960.00	105.00	51.00	234.00	9.40	28.00	322.00	960.00	130.00

Table A2-4d Major ions data summaries from the STORET database for samples from the Mokelumne River north of Stockton.

Statistic	pH SU	EC µS/cm	Ca mg/L	Mg mg/L	Na mg/L	K mg/L	CO. mg/L	HCO3 mg/L	C/ mg/L	SO, mg/L
N	19	331	_ 2	2	2	2	10	11	3	2
Mean	7.6842	167.9305	15.5000	9.5000	17.0000	1.0000	.0000	57.9091	14.0000	11.5000
Median	8.0000	142.0000	15.5000	9.5000	17.0000	•		58.0000	16.0000	11.5000
Minimum	7.00	35.00	13.00	9.00	12.00	1.00	.00	36.00	8.00	8.00
Maximum	8.00	1315.00	18.00	10.00	22.00	1.00	.00	71.00	18.00	15.00

Table A2-4e Major ions data summaries from the STORET database for samples from the vicinity of the Sacramento River near Sacramento, California.

	На	EC	Са	Mg	Na	K	CO	HCO ₃ mg/L	CI	SO ₄
Statistic	su	μS/cm	mg/L	mg/Ľ	mg/L	mg/L	mg/L		mg/L	mg/L
N	391	394	328	328	356	107	109	238	355	328
Mean	7.6257	152.7056	12.2107	6.4363	9.8848	7.9131	1.835E-02	71.7941	6.7859	9.0945
Median	7.7000	150.0000	12.0000	6.3000	9.5500	7.9000	.0000	71.5000	6.0000	9.0000
Minimum	6.50	43.00	6.40	2.60	3.00	7.10	.00	36.00	2.00	1.00
Maximum	8.30	270.00	18.00	12.00	21.00	8.60	2.00	118.00	15.00	22.00

Table A2-5 Summary by month of STORET major ions data for samples in the vicinity of the Tracy Fish Collection Facility.

Month	Statistic	pH, SU	Ca, mg/L	Mg, mg/L	Na, mg/L	K, mg/L	Alkalinity as CaCO3, mg/L	CO3, mg/L	HCO3, mg/L	Cl, mg/L	SO4, mg/L	Dissolved Silica, mg/L as SiO2	Boron, Filtered, mg/L	Boron, Unfiltered, mg/L	Turbidity, FTU
January	N	16	28	28	33	23	27	10	11	80	6	78	9	2	79
	Mean	7.5000	34.4286	16.9714	63.6061	3.0783	75.4074	.0000	104,7273	84.7625	66.0000	16.2718	-91.1111	950.0000	19.1316
	Median	7.4500	28.5000	12.0000	51.0000	3.0000	69.0000		89.0000	67.0000	67.5000	16.6000	-200.0000	950.0000	15.0000
	Minimum	7.20	11.00	5.00	18.00	1.60	48.00	.00	64.00	19.00	46.00	9.90	-500.00	750.00	.40
	Maximum	8.20	227.00	130.00	348.00	5.00	191.00	.00	230.00	254.00	80.00	37.00	780.00	1150.00	60.00
February	N	4	13	13	33	9	15	6	6	74	1	62		1	97
	Mean	8.5500	30.5385	15.3846	75.1818	3.7222	83.4667	.0000	81.8333	90.4324	100.0000	15.9000		1100.0000	23.1237
	Median	8.6000	35.0000	18.0000	68.0000	4.2000	71.0000		83.0000	74.0000		15.4000			17.0000
	Minimum	7.30	13.00	5.00	18.00	2.00	28.00	.00	34.00	19.00	100.00	10.00		1100.00	5.00
	Maximum	9.70	42.00	21.00	230.00	4.80	231.00	.00	127.00	314.00	100.00	23.00		1100.00	80.00
March	N	6	12	12	17	9	25	7		77	1	82	3	2	116
	Mean	7.7000	32.9167	11.4500	52.8235	2.7111	80.2400	.1429	104.4286	83.4286	62.0000	15.1951	-166.6667	1150.0000	18.0690
	Median	7.6500	36.0000	9.5000	41.0000	3.2000	71.0000	.0000	104.0000	57.0000		15.0000	-500.0000	1150.0000	16.5000
	Minimum	7.40	12.00	3.70	16.00	1.60	31.00	-1.00	74.00	17.00	62.00	10.00	-500.00	1100.00	3.00
	Maximum	8.20	65.00	36.00	156.00	3.40	226.00	3.00	143.00	308.00	62.00	21.00	500.00	1200.00	50.00
April	N	21	28	28	32	22	47	15	16	123	7	121	33	1	135
	Mean	7.4048	45.1071	21.9357	87.2188	2.8182	96.0000	.6667	126.8125	110.9106	126.1429	15.5793	284.8485	1200.0000	20.7481
	Median	7.6000	20.0000	9.6000	84.5000	2.1500	67.0000	.0000	100.0000	61.0000	90.0000	15.0000	300.0000		17.0000
	Minimum	6.10	10.00	5.00	16.00	-1.00	2.00	-1.00	56.00	16.00	11.00	4.00	-200.00	1200.00	4.00
	Maximum	7.90	184.00	123.00	397.00	5.60	343.00	8.00	424.00	753.00	358.00	130.00	1200.00	1200.00	70.00
May	N	8	10	10	29	4	32	6	6	104		111	4	4	136
	Mean	7.7875	77.7000	45.5000	87.5517	5.1500	82.8125	.0000	104.8333	81.5000		12.6126	1227.5000	1350.0000	22.5588
	Median	7.8000	45.5000	22.5000	68.0000	2.6000	74.5000		98.0000	52.0000		13.6000	1105.0000	1200.0000	20.0000
	Minimum	7.40	11.00	5.00	14.00	.40	30.00	.00	90.00	14.00		.50	700.00	1000.00	6.00
ļ	Maximum	8.50	260.00	190.00	560.00	15.00	208.00	.00	129.00	317.00		22.00	2000.00	2000,00	150.00
June	N N	16	18	18	22	11	42	12	12	115	4	109	4	2	144
	Mean	7.8125	54.5667	30.3500	137.1364	3.2273	108.7381	.5833	120.6667	109.1739	210.5000	11.9651	1277.5000	1150.0000	23.5694
ļ	Median	7.8000	43.0000	24.5000	100.0000	3.7000	65.5000	.0000	77.0000	55.0000	163.5000	13.0000	805.0000	1150.0000	22.0000
	Minimum	6.80	9.60	3.20	12.00	1.40	3.00	.00	37.00	12.00	80.00	.20	.00	1100.00	7.00
	Maximum	8.40	170.00	102.00	373.00	4.40	496.00	7.00	347.00	726.00	435.00	22.00	3500.00	1200.00	80.00

							Alkalinity	·				Dissolved	Boron,	Boron,	
1							as CaCO3,		нсоз,	"		Silica, mg/L	Filtered,	Unfiltered,	Turbidity,
Month	Statistic	pH, SU	Ca, mg/L	Mg, mg/L	Na, mg/L	K, mg/L	mg/L	CO3, mg/L	mg/L	CI, mg/L	SO4, mg/L		mg/L	mg/L	FTU
July	N	20	26	26	30	21	52	17	17	121	8	142	21	4050 0000	158
	Mean	7.9750	34.8846	18.8577	90.9667	2.7429	102.0577	2.1176	125.2941	119.7025	77.1250	13.1239	485.7143	1250.0000	21.1456
	Median	8.1000	34.5000	15.0000	74.0000	2.3000	110.0000	.0000	131.0000	109.0000	58.5000	14.1000	300.0000	1250.0000	21.0000
	Minimum	7.10	10.00	4.00	13.00	.20	39.00	.00	56.00	11.00	19.00		-200.00	1100.00	6.00
	Maximum	8.40	80.00	52.00	298.00	4.80	194.00		204.00	393.00	260.00		3200.00	1400.00	45.00
August	N	7	10	9	35	6	29	l	6	104		121	4	3	153
	Mean	7.9000	70.2000	40.6667	93.0286	2.6500	99.8276		191.8333	112.2308		14.9273	1902.5000	1366.6667	20.9150
	Median	8.0000	48.5000	25.0000	92.0000	3.1500	104.0000	.0000	159.5000	95.5000		15.0000	2235.0000	1400.0000	21.0000
	Minimum	7.50	24.00	12.00	11.00	.50	44.00		80.00	10.00		1.00	400.00	1300.00	5.00
	Maximum	8.10	191.00	123.00	420.00	4.20	191.00	1	434.00	382.00		40.10	2740.00	1400.00	65.00
September	N N	10	13	13	20	7	32	ļ	11	100	1	124	8	2	158
	Mean	7.8900	76.8462	37.2308	128.4500	2.8429	96.5313	.0000	155.7273	107.4900	3.9000		1115.0000	1600.0000	18.1146
	Median	8.0500	37.0000	19.0000	94.0000	2.0000	81.5000		127.0000	78.5000	<u> </u>	15.0000	950.0000	1600.0000	19.0000
	Minimum	7.00	10.00	5.00	17.00	.50	51.00		85.00	18.00	3.90		100.00	1400.00	4.00
	Maximum	8.20	277.00	127.00	361.00	7.00	226.00		390.00	688.00	3.90		3500.00	1800.00	65.00
October	N N	15	32	32	34	28	54	17	17	103	10		19	2	139
	Mean	7.3800	38,5469	19.7500	70.8529	3.8607	88.8889	.0000	113,4706	103.7961	144.8000		158.4211	1650.0000	14.9928
	Median	7.6000	22.0000	12.5000	38.0000	3.5000	76.5000		95.0000	64.0000	47.5000	15.0000	200.0000	1650.0000	15.0000
	Minimum	4.40	9.00	4.00	15.00	1.80	.00		65.00	12.00	17.00	5.70	-500.00	1600.00	4.00
	Maximum	8.20	212.00	102.00	400.00	6.00	196.00	.00	217.00	820.00	603.00		1510.00	1700.00	34.00
November	N	9	11	11	30	2	18	7		81		73	10	2	99
	Mean	7.7667	70.9091	35.7727	87.9333	1.8000	87.2778	.0000	136.4286	105.7160		16.0932	663,0000	1600.0000	14.0000
	Median	7.9000	36.0000	18.0000	76.5000	1.8000	75.0000		82.0000	79.0000		15.0000	450.0000	1600.0000	14.0000
	Minimum	7.10	22.00	8.50	32.00	1.00	56.00	.00	74.00	21.00		8.40	200.00	1500.00	4.00
	Maximum	8.00	251.00	128.00	397.00	2.60	209.00	.00	380.00	868.00		37.00	2100.00	1700.00	46.00
December	N	7	9	9	. 9	6	12	6	6	70		65		1	90
	Mean	7.9571	47.6667	26.9556	96.3333	2.3333	91.0000	.0000	110.1667	96.9429		16.2462		1400.0000	12.6778
	Median	7.7000	22.0000	17.6000	45.0000	2.1500	76.0000		86.5000	78.0000		16.0000			11.0000
	Minimum	7.40	10.00	4.00	16.00	.50	59.00	.00	73.00	17.00		11.00		1400.00	1.00
	Maximum	9.80	240.00	120.00	400.00	4.50	186.00	.00	230.00	297.00		21.00		1400.00	29.00
Total	N	139	210	209	324	148	385	119	122	1152	38	1216	115	24	1504
	Mean	7.7209	46.8033	24.0981	87.3241	3.1480	92.9273	.4790	123.1066	102.0095	114.5237	14.6525	473.6522	1329.1667	19.3667
	Median	7.7000	30.5000	14.0000	61.5000	3.0000	74.0000	.0000	96.5000	73.0000	68.5000	15.0000	300.0000	1250.0000	17.0000
	Minimum	4.40	9.00	3.20	11.00	-1.00	.00	-1.00	34.00	10.00	3.90	.20	-500.00	750.00	.40
	Maximum	9.80	277.00	190.00	560.00	15.00	496.00	14.00	434.00	868.00	603.00	130.00	3500.00	2000.00	150.00

Table A2-6 Nutrient data summaries by month from the STORET database for samples in the vicinity of the Tracy Fish Collection Facility. All concentrations are in mg/L as N or as P.

Month	Statistic	Ammonia	Ammonia	Ammonia+ Organic N	Ammonia+ Organic N	Nitrite	Nitrite+ Nitrate	Nitrite+ Nitrate	Nitrate		Total Phosphorus	Phosphorus	Total Kjeldahi Nitrogen
		Filtered	Unfiltered	Unfiltered	Unfiltered	Filtered	Filtered	Unfiltered	Filtered	Unfiltered	Unfiltered	Filtered	Unfiltered
January	N N	37	41	2	54	2	58	12	7	6	66	67	14
	Median	.1900	.2100	.6000	.7500		1.2000	1.0600	.8600	.9500	.1600	.1000	.6250
	Minimum	.04	.08	.40	.30	.02	.30	.56	.56	.70	.08	.04	.20
	Maximum	.81	.90	.80	2.10	.02	3.70	3.70	3.70	2.70	.45	44	1.20
February	N	39_	30	2	58	2	56	7	7	2	69	68	12
	Median	.1800	.1400	.1500	.8000		1.0000	.8100	.8100	1.1400	.2200	.1300	.6550
	Minimum	.04	01	.10	.20	.02	.30	.51	.51	.68	.08	.00	.12
	Maximum	1.60	.38	.20	3,10	.02	3.40	10.00	1.60	1.60	.79	.52	1.10
March	N	62	41	1	84	5	88		8	4	77	80	14
	Median	.1100	8.000E-02		.6000	1.000E-02	.8000	1.2350	.9200	2.0000	.1800	.1000	.6000
	Minimum	.01	.01	.40	.30	.00	.20	.37	.37	.80	.08	.01	.30
	Maximum	.64	.38	.40	2.00	.05	3.00	18.00	1.80	3.00	.39	.26	1.60
April	N	68	60	4	100	6	105	13	12	6	89	96	20
	Median	5.500E-02	4.000E-02	.3500	.6000	.0000	.6000	.7100	.7150	.4150	.1500	7.000E-02	.5000
	Minimum	01	08	.30	.30	.00	.00	02	.00	.20	.05	.00	.28
	Maximum	.44	.74	.60	2.10	.02	2.30	10.70	1.15	.90	.44	.27	2.00
May	N	67	48	5	98	6	100	8	9	2	84	85	18
	Median	3.000E-02	3.000E-02	.3000	.7000	1.000E-02	.4000	.4700	.4600	.5750	.1700	7.000E-02	.7150
	Minimum	01	.00	.10	.10	01	10	.03	.03	.34	.06	.00	.20
	Maximum	.10	.15	.40	3.50	.02	1.90	9.00	.81	.81	.55	.29	3.40
June	N	74	49	4	104	5	108	10	9	4	88	90	18
	Median	4.500E-02	3.000E-02	.2500	.6000	.0000	.4000	.4350	.2500	.5000	.1800	8.000E-02	.5000
	Minimum	01	10	.10	.20	.00	.00	.02	.02	.16	.10	10	.30
	Maximum	.42	.09	.30	2.30	.01	1.70	6.00	.80	.51	.66	.24	2.30
July	N	82	63	7	113	6	121	16	14	6	97	105	20
	Median	4.000E-02	2.000E-02	.6000	.7000	1.000E-02	.5000	.3550	.3550	.6100	.2000	9.000E-02	1.1000
	Minimum	01	08	10	10	.00	.00	10	.00	10	.07	.00	.20
	Maximum	.27	.30	1.20	2.50	.03	2.20	7.40	.98	1.00	.74	.29	2.50
August	N	78	54	5	108	5	112	10	11	2	92	88	19
-	Median	4.000E-02	4.000E-02	.6000	.6000	2.000E-02	.5000	.5650	.4000		.1700	9.000E-02	1.0000
	Minimum	.00	.00	10	.20	.00	.10	.10	.10	1.10	.06	.04	.30
	Maximum	.24	.36	.80	2.10	.04	2.00	6.41	1.10	1.10	2.70	.41	2.10

Month	Statistic	Ammonia Filtered	Ammonia Unfiltered	Ammonia+ Organic N Unfiltered	Ammonia+ Organic N Unfiltered	Nitrite Filtered	Nitrite+ Nitrate Filtered	Nitrite+ Nitrate Unfiltered	Nitrate Filtered	Nitrate Unfiltered		Ortho- Phosphorus Filtered	Total Kjeldahl Nitrogen Unfiltered
September	N	79	53	4	112	5	113	10	14	2	89	85	19
Copteniae	Median	4.000E-02	5.000E-02	.7500	.6000	2.000E-02		.5700	.6250	.7400		8.000E-02	.7000
	Minimum	01	.00	.40	.20	.00	.00	.01	.01	.68		.03	.20
	Maximum	.16	.31	.80	2.10	.02	1.60	3.60	1.34	.80	.48	.31	1.70
October	N	71	69	4	106	5	109	21	16	8	93	104	23
	Median	6.000E-02	.1200	.8500	.6000	1.000E-02	.6000	.6300	.7600	.5000	.1500	9.000E-02	.6000
	Minimum	.00	10	.40	.20	.01	.10	.07	.07	.32	.07	10	.30
	Maximum	1.40	.76	1.10	2.70	.02	1.50	3.30	1.80	1.00	.47	.27	1.20
November	N	43	33	4	61	2	59	10	8	1	72	69	11
	Median	9.000E-02	.1400	.8000	.6000		.8000	1.0200	.7350	•	.1400	8.000E-02	.7000
	Minimum	01	.01	.30	.20	.01	.20	.53	.53	.66	.04	.03	.20
	Maximum	.74	.58	.90	2.00	.01	2.00	1.60	1.25	.66	1.11	.34	1.40
December	N	43	34	3	60	2	59	9	8	1	74	70	12
	Median	.1200	.1900	.6000	.7000		.9000	.8500	.8000		.1650	.1000	.5700
	Minimum	.02	01	.60	.30	.01	.50	.53	.53	.60	.07	.01	.30
	Maximum	.43	.92	.70	2.10	.01	1.90	5.80	1.50	.60	.40	.31	1.20
Total	N	743	575	45	1058	51	1088	134	123	44	990	1007	200
	Median	6.000E-02	6.000E-02	.4000	.6000	1.000E-02	.6000	.7000	.6400	.6800	.1700	9.000E-02	.6000
	Minimum	01	10	10	10	01	10	10	.00	10	.04	10	.12
	Maximum	1.60	.92	1.20	3.50	.05	3.70	18.00	3.70	3.00	2.70	.52	3.40

Table A2-7a Trace element data summaries by month from the STORET database for samples in the vicinity of the Tracy Fish Collection Facility. Data reported as less than detection limit are indicated by negative numbers where the absolute value of the negative value represents the detection limit. Zero values represent data below unknown detection limits.

*			Ag, Silver		As, Arsenic		Cd, Cadmium	(Cr, Chromlum		Cu, Copper		Hg, Mercury
Month	Statistic	Filtered	Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Hexavalent	Total	Filtered	Unfiltered	Filtered	Unfiltered
January	N		3	1	6	1	6	1	6	1	6	,	5
	Median		-1.0000		1.5000		-1.0000		5.0000	•	6.5000		-1.0000E-05
	Minimum		-5.00	.00	-2.00	.00	-5.00	1.00	.00	10.00	1.00		-1.00
	Maximum		-1.00	.00	3.00	.00	10.00	1.00	58.00	10,00	17.00		2.00
February	N		2	1	4	2	4	1	4	2	4	1	4
	Median		5000		1.0000		-1.5000		-1.0000E-05	-5.0000	6.5000		-5.0005E-02
	Minimum		-2.00	.00	-10.00	.00	-10.00	-1.00	-2.00	-10.00	-2.00	.00	10
	Maximum		1.00	.00	41.00	.00	.00	-1.00	. 3.00	.00	10.00	.00	2.00
March	N	1	2	1	2	1	2		2	1	2	1	2
	Median										4.0000		
	Minimum	-2.00	-1.00	-2.00	2.00	-2.00	-1.00		3.00	2.00	3.00	2.00	10
	Maximum	-2.00	-1.00	-2.00	2.00	-2.00	-1.00		3.00	2.00	5.00	2.00	10
April	N_	1	1	1	1	1	1	1	1	1	1	1	1
	Median												
	Minimum	-2.00	-1.00	-2.00	2.00	-4.00	-1.00	-1.00	2.00	-4.00	5.00	2.00	10
	Maximum	-2.00	-1.00	-2.00	2.00	-4.00	-1.00	-1.00	2.00	-4.00	5.00	2.00	10
May	N		3_	5	8	6	7	2	8	. 6	9	1	8
	Median			5.0000	2.0000	-1.0000E-05	-1.0000E <i>-</i> 05	3.0000	1.0000	-1.0000E-05	6.0000		-1.0000E-05
	Minimum		-1.00	.00	-4.00	-10.00	-1.00	-1.00	-2.00	-50.00	-4.00	10	I
	Maximum		-1.00	10.00	10.00	10.00	1.00	7.00	10.00	10.00	10.00	10	1.00
June	N		3		3		3	2	3		3		3
	Median		-1.0000		2.0000		-1.0000	.0000	1.0000		3.0000		.1000
	Minimum		-2.00		2.00		-2.00	-1.00	-4.00		-4.00		10
	Maximum		-1.00		3.00		-1.00	1.00	3.00		4.00		2.00
July	N		1		1		1		2		2		2
	Median								3.5000		-9.0000		.0000
	Minimum		-1.00		3.00		-1.00		-1.00		-20.00		10
	Maximum		-1.00		3.00		-1.00		8.00		2.00		.10
August	N		2		2	1	3	2	2	1	3		2
	Median				3.5000		-1.0000	-3.5000	3.0000		-20.0000		.0000
	Minimum		-1.00		3.00	-10.00	-10.00	-10.00	-1.00	-100.00	-100,00		10
	Maximum		-1.00		4.00	-10.00	-1.00	3.00	7.00	-100.00	1.00		.10

			Ag, Sliver		As, Arsenic		Cd, Cadmium	C	cr, Chromium		Cu, Copper		Hg, Mercury
Month	Statistic	Filtered	Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Hexavalent	Total	Filtered	Unfiltered	Filtered	Unfiltered
September	N	:	2	4	6	4	6		6	4	6		6
	Median		4.5000		3.0000		-1.0000E-05		-1.0000E-05	5.0000	10.0000		
	Minimum		-1.00	.00	.00	.00	-1.00		.00	.00	-1.00	TR 147	.10
	Maximum		10.00	.00	10.00	.00	.00		8.00	10.00	10.00	**************************************	.10
October	N		1		1		1		2		2		1
	Median				•				4.0000		3.0000		i
	Minimum		-1.00		3.00		-1.00		2.00		2.00		10
	Maximum		-1.00		3.00		-1.00		6.00		4.00		10
November	N		2		2		2		3		3		2
	Median				5000				3.0000		1.0000		.4500
	Minimum		-1.00		-4.00		-1.00		-1.00		1.00		10
	Maximum		-1.00		3.00		-1.00		9.00		2.00		1.00
December	N		3		2		3	2	3		3		3
	Median				5000			1.5000	2.0000		4.0000		.1000
•	Minimum		-1.00		-4.00		-1.00	1.00	1.00		2.00		10
	Maximum		-1.00		3.00		-1.00	2.00	4.00		5.00		1.00
Total	N	2	25	13	38	16	39	11	42	16	44	4	39
	Median		-1.0000	-1.0000E-05	2.0000	-1.0000E-05	-1.0000	1.0000	2.0000	-1.0000E-05	3.5000	1.0000	-1.0000E-05
	Minimum	-2.00	-5.00	-2.00	-10.00	-10.00	-10.00	-10.00	-4.00	-100.00	-100.00	10	-1.00
	Maximum	-2.00	10.00	10.00	41.00	10.00	10,00	7.00	58.00	10.00	17.00	2.00	2.00

Trace element data summaries by month from the STORET database for samples in the vicinity of the Tracy Fish Collection Facility. Data reported as less than detection limit are indicated by negative numbers where the absolute value of the negative value represents the detection limit. Zero values also represent data below unknown detection limits.

	T	Мо	, Molybdenum		Ni, Nickel		Pb, Lead		Se, Selenium	V, Vanadium		Zn, Zind
Month	Statistic	Filtered	Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Filtered	Filtered	Unfiltered
January	N		4		4	1	5		4		1	6
	Median		16.0000		.5000		-1.0000E <i>-</i> 05		2.0000			5.5000
	Minimum		-4.00		-5.00	.00	-2.00		-5.00		10.00	-10.00
	Maximum		24.00		6.00	.00	12.00		5.00		10.00	18.00
February	N		2		2	2	4	1	2		1	3
	Median		2.5000		25.5000	5.0000	6.00 <u>00</u>		2.5000			9.0000
	Minimum		-4.00		11.00	.00	-2.00	.00	1.00		10.00	.00,
	Maximum		9.00		40.00	10.00	10.00	.00	4.00		10.00	260.00
March	N	1	2	1	2	1	2	2	2	·	1	2
	Median		12.5000		5.5000		4.5000	.5000	4.5000			
	Minimum	10.00	11.00	14.00	-1.00	12.00	2.00	.00	4.00		3.00	-10.00
	Maximum	10.00	14.00	14.00	12.00	12.00	7.00	1.00	5.00		3.00	-10.00
April	N	1	1	1	1	1	1	1	1		1	1
	Median											
	Minimum	13.00	6.00	12.00	9.00	10.00	2.00	1.00	3.00		35.00	10.00
	Maximum	13.00	6.00	12.00	9.00	10.00	2.00	1.00	3.00		35.00	10.00
May	N	1	5		4	6	8	1	5	1	6	9
	Median		15.0000		6.0000	-1.0000E-05	-1.0000E-05		2.0000		-1.0000E-05	13.0000
	Minimum	13.00	5.00		-5.00	-10.00	-10.00	-1.00	-1.00	23.00	-50.00	-10,00
	Maximum	13.00	24.00		11.00	3.00	2.00	-1.00	5.00	23.00	.00	160.00
June	N		3		3		3		3			3
	Median		13.0000		10.0000		2.0000		1.0000			30.0000
	Minimum		8.00		1,00		1.00		-1.00			5.00
	Maximum		15.00		24.00		9.00		5.00			40.00
July	N		2		2		1		2			2
	Median				7.0000				•			7.5000
	Minimum		12.00		2.00		-1.00		3.00			-5.00
	Maximum		12.00		12.00		-1.00		3.00			20.00
August	N		2		2	1	3		3		1	4
	Median		5.0000		18.0000		1.0000		2.0000			-1.0000
	Minimum		4.00		8.00	-10.00	-10.00		2.00		-500.00	-500.00
	Maximum		6.00		28.00	-10.00	1.00		3,00		-500.00	10.00

		Мс	o, Molybdenum		Ni, Nickel		Pb, Lead		Se, Selenium	V, Vanadium		Zn, Zinc
Month	Statistic	Filtered	Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Filtered	Unfiltered	Filtered	Filtered	Unfiltered
September	N		2		2	4	6		2		4	6
	Median		10.0000		10.0000		-1.0000E <i>-</i> 05		2.5000		5.0000	-1.0000E-05
	Minimum		8.00		8.00	.00	-1.00		2.00		.00	-10.00
	Maximum		12.00		12.00	.00	.00		3.00		10.00	10.00
October	N		2		2		1		2			1
	Median		10.0000		19.5000							•
	Minimum		8.00		8.00		3.00		2.00			-10.00
	Maximum		12.00		31.00		3.00		2.00			-10.00
November	N		3		3		2		3			2
	Median		12.0000		5.0000		-1.5000		3,0000			24.0000
	Minimum		11.00		4.00		-2.00		2.00			10.00
	Maximum	_	17.00		6.00		-1.00		5.00			38.00
December	N		3		3		3		3			3
	Median		12.0000		6.0000		-1.0000		2.0000			-10.0000
	Minimum		7.00		-5.00		-1.00		2.00			-10.00
	Maximum		16.00		26.00		2.00		5.00			4,00
Total	N	3	31	2	30	16	39		32	1	15	42
	Median	13.0000	12.0000	13.0000	7.5000	-1.0000E-05	-1.0000E-05	-1.0000E-05	2.5000		-1.0000E-05	4.5000
	Minimum	10.00	-4.00	12.00	-5.00	-10.00	-10.00	-1.00	-5.00	23.00	-500.00	-500.00
	Maximum	13.00	24.00	14.00	40.00	12.00	12.00	1.00	5.00	23.00	35.00	260.00

Trace element data summaries by month from the STORET database for samples in the vicinity of the Tracy Fish Collection Facility. Data reported as less than detection limit are indicated by negative numbers where the absolute value of the negative value represents the detection limit. Zero values also represent data below unknown detection limits.

,			Fe, Iron		Mn, Manganes
Month	Statistic	Filtered	Unfiltered	Filtered	Unfiltere
January	N	6	1	1	6
	Median	95.0000	•		77.5000
	Minimum	-60.00	70.00	40.00	50.00
	Maximum	970.00	70.00	40.00	260.00
February	N	4	2	2	
	Median	879.0000			102.0000
	Minimum	40.00	360.00	10.00	80.00
	Maximum	1700.00	360.00	10.00	400.00
March	N	2	1	1	
	Median		•		115.0000
	Minimum	30,00	135.00	100.00	110.00
	Maximum	30.00	135.00	100.00	120.00
April	N	1	1		
-	Median				
	Minimum	210.00	16.00		390.00
	Maximum	210.00	16.00		390.00
May	N	8	6	6	{
	Median	1200.0000	30.0000	15.0000	70.000
	Minimum	20.00	-100.00	-50.00	40.00
	Maximum	1500.00	50.00	1300.00	1300.00
June	N	3			
	Median	48.0000			110.000
	Minimum	40.00			50.00
	Maximum	140.00			210.00
July	N	2			
	Median	.0000			71.500
1 -	Minimum	-30.00			53.0
	Maximum	30.00			90.0
August	N	3	1	1	
	Median	68.0000			50.000
	Minimum	-30.00	-100.00	-50.00	50.0
	Maximum	620.00	-100.00	-50.00	120.0
eptember	N	6	4	4	
	Median	790.0000	30.0000	<u>-</u> j	30.000
	Minimum	60.00	20.00	10.00	30.0
	Maximum	860.00	40.00	10.00	80.0
October	N	1		10.50	
2 3 4 4 4 4	Median				
	Minimum	20.00			100.0
	Maximum	20.00	-		100.0

•			Fe, Iron		Mn, Manganese
Month	Statistic	Filtered	Unfiltered	Filtered	Unfiltered
November	N	2			2
	Median	35.0000			130.0000
	Minimum	-10.00			110.00
	Maximum	80.00			150.00
December	N	3			3
	Median	30.0000			90.0000
"	Minimum	-30.00			80.00
	Maximum	60.00			150.00
Total	N	41	16	15	41
	Median	80.0000	30.0000	10.0000	80.000
	Minimum	-60,00	-100.00	-50.00	30.00
	Maximum	1700.00	360.00	1300.00	1300.00

Table A2-8a General organic chemicals data (μg/L) available from the STORET database for samples in the vicinity of the Tracy Fish Collection Facility. Note the lack of available data, and hence the absence of summary statistics. Data reported as less than detection limit are indicated by negative numbers where the absolute value of the negative value represents the detection limit. Zero values represent data below unknown detection limits.

	limits.							
Sampling Date	1,2 dichlorobenzen		1,2- dichloropropane	1,3- dichlorobenzene	1,4- dichlorobenzene	1,1- dichloroethane	trichlorofluoro- methane	1,1 dichloroethylen
07/01/1986	40	10	10	40	40	10	20	20
07/01/1986	40	10	10	40	40	10	20	20
SamplingDate	1,1,1- trichloroethane	1,1,1- trichloro-ethane	1,1,2,2- tetrachloro- ethane	2-chloroethyl vinyl ether	benzene	dibromochioro- methane	methyl bromide	bromodichloro methane
07/01/1986	10	10	10	50	20	10	50	10
07/01/1986	10	10	10	50	20	10	50	10
Sampling Date	cis-1,3- dichloropropene	carbon tetrachloride		chioroform	chiorobenzene	chioroethane	dichlorodifluoro- methana	trichloroethen
07/01/1986	20	20	20	10	20	50	50	20
07/01/1986	20	20	20	10	20	50	50	20
Sampling Date	methyl chloride	ethyl benzene	methylethyl ketone	methylene chloride	methyl-isobutyl ketone	PCB Arecier	PCB Aroclor	PCB Arocio
07/01/1986	10	20	40	30	40			
07/01/1986	10	20	40	30	40			
01/09/1974						.00	.00	.00
Sampling Date	trans-1,2- dichloroethene	trans-1,3- dichloropropene			tokene	vinyl chloride	trichlorofluoro- methane	xylene
07/01/1986	10	40		10	20	20	20	40
07/01/1986	10	40		10	20	20	20	40
03/04/1965	-		.00					
01/09/1974			.00	-				
09/14/1976			.00				-	
05/10/1977			.00					
09/01/1977			.00					

Table A2-8b Pesticide (μg/L) data available from the STORET database for samples in the vicinity of the Tracy Fish Collection Facility. Note the lack of available data, and hence the absence of summary statistics. Data reported as less than detection limit are indicated by negative numbers where the absolute value of the negative value represents the detection limit. Zero values represent data below unknown detection limits.

Sampling Date	2,4-D	Aldrin	Atrazine	Dacthal	DDD	DDE	DDT	Diazinon
02/18/1965		.00						
03/18/1965					:00		.00	
04/01/1965					.00			
04/15/1965					.00	.00	.00	
04/29/1965					.01		.00	
05/20/1965					.00	.00		
06/10/1965				-	.00			
11/02/1965		.01						
08/28/1973				.02				
01/25/1977			.05				_	
03/06/1985	.08		.29					.09
05/01/1973		.00				.00	.01	<u>.</u>
08/28/1973		.00		.02		.00	.03	
N	1	4	2	2	6	4	5	1
Median		3.000E-03	.1700		2.000E-03	2.000E-03	3.000E-03	
Minimum		.00	.05	.02	.00	.00	.00	
Maximum		.01	.29	.02	.01	.00	.03	

Sampling Date	Dieldrin	Gamma BHC	Heptachlor Epoxide	Heptachior	Toxaphene
02/18/1965	.00				
03/18/1965	.00		,		
04/01/1965	00	-			
04/15/1965	.00	_			
04/29/1965	.00			-	
05/20/1965	.00	-			
06/10/1965	.00		,		
05/01/1973	.00	.00	.00	.00	.10
08/28/1973	.00	.00	.00.	.00	.10
N	9	2	2	2	2
Median	2.000E-03				
Minimum	.00	.00	.00	.00	.10
Maximum	.00	.00	.00	.00	.10

Table A2-9a Biological data summarized by month, collated from the STORET database for sampling stations in the vicinity of the Tracy Fish Collection Facility.

Month	Statistic	Green Algae, org/mL	Blue-Green Algae, org/mL	Yellow-Green Algae, org/mL	Flagellate Algae, org/mL	Dinoflagellate Algae, org/mL	Cryptomonads Algae, org/mL	Diatoms, cells/mL	Total Algae, org/mL
January	N	4	4	4	4	4	4	4	4
	Median	146.0000	.0000	7.5000				40.0000	193.5000
	Minimum	.00	.00	.00	.00	.00	.00	.00	.00
	Maximum	353.00	10.00	20.00	.00	.00	.00	232.00	615.00
February	N	4	4	4	4	4	4	4	4
	Median	259.0000	5.0000	27.5000	.0000	<u> </u>	.0000	447.5000	657.5000
	Minimum	76.00	.00	20.00	.00	.00	00	171.00	455.00
	Maximum	1354.00	69.00	46.00	25.00	.00	23.00	989.00	2481.00
April	N	4	4	4	4	. 4	4	4	4
	Median	1135.0000	26.5000	98.5000	14.5000		20.5000	2007.0000	3823.0000
	Minimum	454.00	.00	.00	.00	.00	10.00	564.00	1099.00
	Maximum	2290.00	616.00	194.00	44.00	.00	109.00	3432.00	5572.00
Mav	N	4	4	4	4	4	4	4	4
	Median	784.0000	18.0000			.0000	6.0000	4086.0000	5018.0000
	Minimum	24.00	.00	.00	.00	.00	_000.	252.00	288.00
	Maximum	1650.00	264,00	.00	.00	22.00	84.00	7854.00	9614.00
June	N	4	4	4	4	4	4	4	. 4
Julio	Median	267.0000	127.0000		11.0000		30.0000	2397.0000	2948.0000
	Minimum	.00	.00	.00	.00	.00	.00	204.00	252.00
	Maximum	792.00	264.00	.00	68.00	.00	741.00	4480.00	6065.00
July	N	6	6	6	6	6	6	6	6
July	Median	134.0000	12.0000		.0000	.0000	30.0000	1502.0000	1706.0000
	Minimum	.00	00	.00	.00	.00	.00	532.00	532.00
	Maximum	770.00	606.00	.00	66.00	60.00	154.00	5016.00	6568.00
Accorde	N	110.00	4	4	4	4	4	4	4
August	Median	160.0000	171.0000		.0000	.0000	40.0000	3086.0000	3487.0000
	Minimum	.00	.00	.00	.00	.00	.00	684.00	720.00
					44.00	36.00	60.00	5082.00	5918.00
	Maximum	374.00	418.00	.00	44.00	36.00	60.00	5062.00	3910.

Month	Statistic	Green Algae, org/mL	Blue-Green Algae, org/mL	Yellow-Green Algae, org/mL	Flagellate Algae, org/mL	Dinoflagellate Algae, org/mL	Cryptomonads Algae, org/mL	Diatoms, cells/mL	Total Algae, org/mL
September	N	6	6	6	6	6	6	6	6
	Median	473.0000	48.0000	.0000	.0000	.0000	4.5000	3209.5000	4316.0000
	Minimum	.00	.00	.00.	.00	.00	.00	233,00	233.00
	Maximum	1180.00	154.00	37.00	66.00	22.00	140.00	7238.00	7788.00
October	N	6	6	6	6	6	6	6	6
	Median	162.0000	36.0000	5.0000	.0000	.0000	21.0000	1744.0000	2620.5000
	Minimum	10.00	.00	.00	.00	.00	.00	272.00	282.00
	Maximum	837.00	286.00	81.00	66.00	5.00	182.00	4708.00	5126.00
November	N	6	6	6	6	6	6	6	6
	Median	220.0000	.0000	.0000	.0000		.0000	614.0000	909.0000
	Minimum	.00	.00	.00	.00	.00	.00	.00	.00
	Maximum	605.00	44.00	99.00	88.00	.00	61.00	1873.00	1958.00
December	N	3	3	3	3	3	3	3	3
	Median	154.0000	.0000	.0000			.0000	439.0000	638.0000
	Minimum	.00	.00.	.00	.00	.00	.00	.00	.00
	Maximum	183.00	5.00	174.00	.00	.00	20.00	484.00	821.00
Total	N	51	51	51	51	51	51	51	51
	Median	183.0000	10.0000	.0000	.0000	.0000	10.0000	1224.0000	1608.0000
	Minimum	.00	.00	.00	.00	.00	.00	.00	.00
	Maximum	2290.00	616.00	194.00	88.00	60.00	741.00	7854.00	9614.00

Table A2-9b Biological data summarized by month collated from the STORET database for sampling stations in the vicinity of the Tracy Fish Collection Facility.

Month	Statistic	Order Cladocera, org/L	Rotifers, org/L	Copepods, org/L	Gross Areal Phyto- Production g/m2/day	Volume Max Gross Phyto- Production g/m3/day	Net Areal Phyto- Production g/m2/day	5-Day BOD, mg/L	Pheophytin-A, μg/L	Chlorophyll-A, µg/L
January	N				3			14	61	69
- Junion y	Median							1.7500	3.8400	4.0000
	Minimum							.90	.81	.00.
	Maximum							9.00	31.34	66.84
February	N							12	68	68
	Median						-	2.0000	3.4750	4.0500
	Minimum							1.30	.00	.00
	Maximum							5.60	19.07	27.00
March	N							1	93	93
	Median								4.4000	8.3400
	Minimum							30	.12	.77
	Maximum							30	31.00	82.00
April	N	1	1	1	2	2	2	16	110	118
	Median							1.6000	6.8300	11.1150
	Minimum	.00	34.00	11.00	.94	1.58	.01	.80	1.08	1.07
	Maximum	.00	34.00	11.00	.94	1.58	.01	8.60	61.00	274.79
May	N	. 1	1	1	2	2	2	5	113	113
	Median						.0000	2.4000	11.1200	20.8400
	Minimum	23.00	28.00	22.00	.32	.72	90	.70	.35	1.98
	Maximum	23.00	28.00	22.00	.32	.72	.90	10.80	83.36	364.33
June	N	1	1	1	2	2	2	12	121	121
	Median						.0000	3.5000	9.7300	20.8400
	Minimum	17.00	40.00	40.00	1.36	2.36	-1.08	-1.00	.46	1.47
	Maximum	17.00	40.00	40.00	1.36	2.36	1.08	8.20	100.34	300.00
July	. N	1	1	1	5	5	5	18	124	128
	Median				1.3800	2.6600	1.7800	1.5000	10.3760	15.6700
	Minimum	9.00	434.00	26.00	.ස	1.44	-2.10	.20	.93	1.24
	Maximum	9.00	434.00	26.00	6.33	8.83	2.14	14.00	114.24	220.00

Month	Statistic	Order Cladocera, org/L	Rotifers, org/L	Copepods, org/L	Gross Areal Phyto- Production g/m2/day	Volume Max Gross Phyto- Production g/m3/day	Net Areal Phyto- Production g/m2/day	5-Day BOD, mg/L	Pheophytin-A, μg/L	Chiorophyli-A, µg/L
August	N	1	1	1	2	2	2	9	114	114
	Median					,		1.3000	12.2500	17.6900
	Minimum	28.00	625.00	52.00	2.40	2.72	2.28	-4.80	.28	1.54
	Maximum	28.00	625.00	52.00	2.40	2.72	2.28	2.90	101.89	213.04
September	N	1	1	1	2	2	2	8	128	128
	Median					•	.0000	2.0000	11.3450	18.7600
	Minimum	2.00	1240.00	24.00	1.25	1.19	-1.00	1.50	.00	1.39
	Maximum	2.00	1240.00	24.00	1.25	1.19	1.00	6.30	58.00	170.00
October	N	1	1	1				g	118	124
	Median							1.1000	7.3200	10.8100
	Minimum	18.00	185.00	15,00				.60	-3.51	.46
	Maximum	18.00	185.00	15.00				6.90	45.00	96.00
November	N	1	1	1				9	72	72
	Median		•					1.7000	4.1950	5.4400
	Minimum	12.00	43.00	6.00				1.40	1.21	.39
	Maximum	12.00	43.00	6.00				12.50	21.42	63.00
December	N							10	68	72
	Median							1.5000	4.0050	2.9700
	Minimum							1.30	.74	.00
	Maximum							8.00	24.97	83.05
Total	N	8	8	8	15	15	15	123	1190	1220
	Median	14.5000	114.0000	23.0000	1.3600	2.3600	1.0000	1.7000	6.7500	9.8800
	Minimum	.00	28.00	6.00	.32	.72	-2.10	-4.80	-3.51	.00
	Maximum	28.00	1240.00	52.00	6.33	8.83	2.28	14.00	114.24	364.33

APPENDIX 3

Agricultural Chemicals Applied Near the Tracy Fish Collection Facility:

Summary of Background Data, Toxicity, and Application Data Collated from the San Joaquin County Agricultural Database

	·	

Table A3-1 Common (ISO) names for agricultural chemicals and their IUPAC or CAS chemical structure name applied in the vicinity of the Tracy Fish Collection Facility during 1997. These data were obtained from San Joaquin County and cross-referenced with information from *The 1997 Farm Chemicals Handbook* (Meister and Sine, 1997).

	Usage	IUPAC or CAS Chemical Structure Name
Chemical Common Name (ISO)	Class	
(No Mfg) Herbicide Activator	synergist	unknown
2,4-D	herbicide	2,4-dichlorophenoxyacetic acid
2,4-DB	herbicide	4-(2,4-dichlorophenoxy)butyric acid
41-A	deposition agent	polyacrylamide/polysaccharide
67-33	unknown	unknown
Abamectin	insecticide	Avermectin B1
Acephate	insecticide	O,S-dimethyl acetylphosphoramidothioate
Ad-Wet	deposition agent	unknown
Agri-Dex	deposition agent	Hydrocarbons
Alachior	herbicide	2-chloro-2,6-diethyl-N-(methoxymethyl) acetanilide
Aldicarb	insecticide	2-methyl-2-(methylthio)propionaldehyde O-(methylcarbamoyl)oxime
Bacillus thuringiensis var. aizawai	insecticide	Bacillus thuringiensis var. aizawai
Bacillus thuringiensis var. kurstak	insecticide	Bacillus thuringiensis var. kurstak
Bayfolan Plus	unknown	unknown
Bensulide	herbicide	S-2-benzenesulfonamidoethyl O,O-di-isopropyl phosphorodithioate
Bifenthrin	insecticide	[1a,3a-{Z}]-(±)-(2 methyl[1,1-biphenyl]-3-yl) methyl 3-(2-chloro-3,3,3-trifluoro-1-propenyl)-2,2- dimethylcyclopropanecarboxylate
Bivert Deposition Agent	deposition agent	Amine salts of vegetable fatty acids + organic aromatic acid + aromatic + aliphatic petroleum distillate
Break EC	unknown	unknown
Bromacii + diuron	herbicide	5-bromo-3-sec-butyl-6-methyluracil
Bromoxynii	herbicide	3,5-dibromo-4-hydroxybenzonitrile
Captan	fungicide	N-trichloromethylthio-4-cyclohexene-1,2-dicarboximide
Carbaryl	insecticide	1-naphthyl methylcarbamate
Carbofuran	insecticide	2,3-dihydro-2,2-dimethyl-7-benzofuranyl methylcarbamate
Chloridazon	herbicide	5-amino-4-chloro-2-phenyl-3(2H)-pyridazinone
Chloropicrin	pesticide	Trichloronitromethane
Chloropicrin+Methyl Bromide	insecticide	Methyl bromide + chloropicrin
Chlorothalonii	fungicide	Tetrachloroisophthalonitrile
Chlorpyrifos	insecticide	O,O-diethyl O-(3,5,6-trichloro-2-pyridinyl) phosphorothioate
Clean Crop Super 94 Oil	deposition agent	hydrocarbons
CMR Herbicide Activator	synergist	unknown
Copper Hydroxide	fungicide	Cu(OH)2

	Usage	
Chemical Common Name (ISO)	Class	IUPAC or CAS Chemical Structure Name
Copper Oxide	fungicide	CuO
Copper Sulfate, Basic	fungicide	CuSO4
Coumafuryl	pesticide	3-(a-acetonylfurfuryl)-4-hydroxycoumarin
Cryolite	insecticide	Na3AlF6
Cyanazine	herbicide	2-[[4-chloro-6-(ethylamino)-1,3,5-triazin-2-yl]amino] -2-methylpropionitrile
Cycloate	herbicide	S-ethyl cyclohexyl(ethyl)thiocarbamate
Cyfluthrin	insecticide	Cyano(4-fluoro-3-phenoxyphenyl)methyl 3-(2,2-dichloro-ethenyl)-2,2-dimethylcyclopropane
Cymate 267	unknown	unknown
DCPA	herbicide	Dimethyl tetrachloroterephthalate
Desmedipham	herbicide	3-phenylcarbamoyloxycarbanilate
Diazinon	insecticide	O,O,-diethyl O-[6-methyl-2-(1-methylethyl)-4- pyrimidinyl] phosphorothioate
Dichlorprop + Benzaton + MCPA	herbicide	(RS)-2-(2,4-dichlorophenoxy)propionic acid
Dicofol	pesticide	2,2,2-trichloro-1,1-bis(4-chlorophenyl)ethanol
Diflubenzuron	insecticide	N-[{(4-chlorophenyl)amino}carbonyl]-2,6- difluoro-benzamide
Dimethoate	insecticide	O,O-dimethyl S-methylcarbamoylmethyl phosphorodithioate
Diphacinone	pesticide	2-(diphenylacetyl)-1,3-indandione
Diquat Dibromide	herbicide	1,1-ethylene-2,2-bipyridylium ion. 6,7-dihydrodipyrido(1,2-a:2,1-c)pyrazinediium ion, dibromide monohydrate salt
Disulfoton	insecticide	O,O-diethyl S-[2-(ethylthio)ethyl] phosphorodithioate
Diuron	herbicide	N-(3,4-dichlorophenyl)-N,N-dimethylurea.
Dyne-amic	deposition agent	unknown
EPTC	herbicide	S-ethyl dipropylthiocarbamate
Esfenvalerate	insecticide	(S)-a-cyano-3-phenoxybenzyl (S)-2-(4-chlorophenyl)-3-methylbutyrate
Ethalfluralin	herbicide	N-ethyl-N-(2-methyl-2-propenyl)-2,6-dinitro-4- (trifluromethyl)benzenamine
Ethephon	herbicide	(2-chloroethyl)phosphonic acid
Ethofumesate	herbicide	(±)2-ethoxy-2,3-dihydro-3,3-dimethyl-5- benzofuranyi methanesulfonate
Fenamiphos	insecticide	Ethyl 3-methyl-4-(methylthio)phenyl (1-methylethyl)phosphoramidate
Fenarimol	fungicide	a-(2-chlorophenyl)-a-(4-chlorophenyl)-5- pyrimidine-methanol
Fenbutatin-oxide	pesticide	Bis[tris (2-methyl-2-phenylpropyl)tin] oxide
First Choice Herbicide Activator	synergist	unknown
First Choice Non-ionic Spreader	deposition agent	unknown
First Choice SurpHtac Adjuvant	synergist	unknown
Foam Fighter	deposition agent	unknown
Fonofos	insecticide	O-ethyl S-phenyl ethylphosphonodithioate
Fosetyl-aluminum	bactericide	Aluminum tris (O-ethyl phosphonate)
Giyphosate	herbicide	Isopropylamine salt of N-(phosphonomethyl)glycine

Usage	
Class	IUPAC or CAS Chemical Structure Name
	Isopropylamine salt of N-(phosphonomethyl)glycine
	Methyl 5-{[(4,6-dimethoxy-2-pyrimidinyl)amino] carbonylaminosulfonyl}-3-chloro-1-methyl-1H-pyrazole-4-carboxylate
	Proprietary blend of the ammonium salts of polyacrylic, hydroxycarboxylic, and phosphoric acids
	3-cyclohexyl-6-(dimethylamino)-1-methyl- 1,3,5-triazine-2,4(1H,3H)-dione
	(±)-2-[4,5-dihydro-4-methyl-4-(1-methylethyl)- 5-oxo-1H-imidazol-2-yl] -5-ethyl-3-pyridinecarboxylic acid
insecticide	1-[(6-chloro-3-pyridinyl)methyl]-N-nitro-2- imidazolidinimine
	3-(3,5-dichlorophenyl)-N-(1-methylethyl)-2,4-dioxo-1-imidazolidinecarboxamide
	2,2,2-trichloro-1,1-bis(4-chlorophenyl)ethanol
	unknown
	unknown
-7	unknown
	3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea
	Diethyl (dimethoxythiophosphorylthio)succinate
	zinc-manganese ethylene bisdithiocarbamate
V	(4-chloro-2-methylphenoxy)acetic acid (IUPAC & CAS); 4-chloro-o-tolyloxyacetic acid
fungicide	N-(2,6-dimethylphenyl)-N-(methoxyacetyl)-DL- alanine methyl ester
	Sodium N-methyldithiocarbamate
herbicide	3,6-dichloro-2-methoxybenzoic acid; 3,6-dichloro-o-anisic acid
	O,S-Dimethyl phosphoramidothicate
insecticide	S-2,3-dihydro-5-methoxy-2-oxo-1,3,4-thiadiazol-3-ylmethyl O,O-dimethyl phosphorodithioate
insecticide	O,O-dimethyl O-(4-nitrophenyl) phosphorothioate
insecticide	O,O-dimethyl O-(4-nitrophenyl) phosphorothioate
herbicide	2-chloro-N-(2-ethyl-6-methylphenyl) -N-(2-methoxy-1-methylethyl) acetamide
herbicide	4-amino-6-(1,1-dimethylethyl)-3-(methylthio)- 1,2,4- triazin-5(4H)-one
pesticide	unknown
unknown	unknown
deposition agent	unknown
deposition agent	
insecticide	1,2-dibromo-2,2-dichloroethyl dimethyl phosphate
herbicide	(RS)-N,N-diethyl-2-(1-naphthyloxy) propionamide
	herbicide herbicide deposition agent herbicide herbicide insecticide fungicide pesticide deposition agent unknown deposition agent synergist deposition agent synergist deposition agent synergist deposition agent herbicide insecticide fungicide herbicide insecticide insecticide insecticide insecticide insecticide insecticide herbicide insecticide insecticide herbicide insecticide herbicide insecticide herbicide insecticide insecticide herbicide insecticide herbicide insecticide herbicide herbicide herbicide herbicide herbicide herbicide herbicide herbicide herbicide

	Usage	
Chemical Common Name (ISO)	Class	IUPAC or CAS Chemical Structure Name
Nicosulfuron	herbicide	2-(4,6-dimethoxypyrimidin-2-ylcarbamoylsulfamoyl)-N,N-dimethylnicotinamide
No-Foam A	deposition agent	unknown
No-Foam B	deposition agent	unknown
No-Foam Herbicide Activator	synergist	unknown
Norflurazon	herbicide	6-chloro-N-methyl-N'-(1-methylethyl)-1,3,5- triazine-2,4-diamine
Nutra-Plus	fertilizer	Zn
Nutra-Wet	deposition agent	unknown
Nutrient Buffer 8-8-2	fertilizer	Mn and Zn
Orchard Master	unknown	unknown
Oryzalin	herbicide	3,5-dinitro-N4,N4-dipropylsulfanilamide
Oxydemeton-methyl	insecticide	S-[2-(Ethylsulfinyl)ethyl] O,O-dimethyl phosphorothioate
Oxyfluorfen	herbicide	2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4- (trifluoromethyl-benzene
Para Spred	deposition agent	Parrafins, hydrocarbons
Paraquat	herbicide	1,1-dimethyl-4,4-bipyridinium ion, di-chloride salt
Pebulate	herbicide	S-Propyl butyl(ethyl)thiocarbamate
Peerless	unknown	unknown
Pendimethalin	herbicide	N-(1-ethylpropyl)-3,4-dimethyl-2,6- dinitrobenzenamine
Permethrin	insecticide	3-phenoxybenzyl (1RS)-cis,trans-3-(2,2- dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate
Phosmet	insecticide	O,O-dimethyl phosphorodithioate S-ester with N-(mercaptomethyl)phthalimide
Phosphoric Acid	deposition agent	H3PO4
Pinolene	deposition agent	unknown
Piperonyl Butoxide	synergist	a-[2-(2-Butoxyethoxy)ethoxy]-4,5- methylenedioxy -2-propyltoluene
Pronamide	herbicide	3,5-dichloro-N-(1,1-dimethyl-2-propynyl) benzamide
Propargite	pesticide	2-[4-(1,1-dimethylethyl)phenoxy]cyclohexyl 2-propynyl sulfite
RNA Activator 85	synergist	unknown
RNA Buffer	synergist	unknown
RNA Buffer-Activator	synergist	unknown
RNA Cotton Oil Surfactant	deposition agent	unknown
RNA Crop Oil Concentrate	deposition agent	unknown
RNA Spreader-Binder	deposition agent	unknown
RNA Tri-Ad 73	***************************************	unknown
Select		(E,E)-(±)-2[1[[(3-chloro-2-propenyl)oxy]imino] [propyl]5-[2 (ethylthio)propyl]-3-hydroxy-2-cyclohexen-1-one
Sethoxydim	herbicide	2-[1-(ethoxyimino)butyl]-5-[2-(ethylthio)propyl]- 3-hydroxy-2-cyclohexen-1-one
Silwet L-77	deposition agent	unknown
Simazine	herbicide	2-chloro-4,6-bis(ethylamino)-s-triazine

	Usage	
Chemical Common Name (ISO)		IUPAC or CAS Chemical Structure Name
Sodium Chiorate	herbicide	NaClO3
Source 1 No Foam B	deposition agent	unknown
Special Super-Adhesive	deposition agent	unknown
Spray-Alde	deposition agent	unknown
Sulfur	fungicide	S
SurpHtac	deposition agent	Monocarbamide dihydrogensulfate
SurpHtac Adjuvant	synergist	unknown
Sylgard 309	deposition agent	unknown
Systhane	fungicide	a-butyl-a-(4-chlorophenyl)-1H-1,2,4-triazole-1- propanenitrile
Thiophanate-methyl	fungicide	Dimethyl [(1,2-phenylene)bis- (iminocarbonothioyl)] bis[carbamate]; dimethyl 4,4-o-phenylenebis[3-thioallophanate]
Triclopyr	herbicide	(3,5,6-trichloro-2-pyridinyloxy)acetic acid
Triflumizole	fungicide	(E)-4-chloro-a,a,a-trifluoro-N-(1-imidazol- 1-yl-2-propoxyethylidene)-o-toluidine
Trifluralin	herbicide	a,a,a-Trifluoro-2,6-dinitro-N,N-dipropyl- p-toluidine
Triforine	fungicide	N,N-[1,4-piperazinediylbis(2,2,2- trichloroethylidene)]-bis[formamide]
Tro-Foi	unknown	unknown
Unifilm 707	deposition agent	Alkylarylpolyoxyethylene glycols + isopropanol
Upbeet	herbicide	unknown
Vinclozolin	fungicide	3-(3,5-dichlorophenyl)-5-methyl-5-vinyl-1,3- oxazolidine-2,4-dione
WFSI 2220	unknown	unknown

Table A3-2 Summary of agricultural chemical amounts applied to cropland, by class or type of chemical, along the Old River in the near vicinity of the Tracy Fish Collection Facility during 1997. These data summarize applications for Ranges 4E, 5E and 6E, within Township 1S, based on data obtained from San Joaquin County.

Product Weight Applied, kg	Product Volume Applied, L	Crop Area Treated, ha	Statistic	Ag Chemical Usage Class
5		5	N	bactericide
400.72		145.28	Sum	
.2%		.2%	% of Total Sum	
8	624	632	N	deposition agent
1094.19	5657.59	10516.07	Sum	
.5%	6.0%	13.6%	% of Total Sum	
	7	7	N	fertilizer
	15.71	48.16	Sum	
	.0%	.1%	% of Total Sum	
130	87	217	N	fungicide
28564.69	4872.50	3512.89	Sum	
12.8%	5.1%	4.6%	% of Total Sum	
359	1148	1507	N	herbicide
56858.41	49084.95	28021.95	Sum	
25.6%	51.6%	36.3%	% of Total Sum	
544	772	1316	N	insecticide
125260.75	27428.58	23606.56	Sum	
56.3%	28.9%	30.6%	% of Total Sum	
56	82	138	N	pesticide
8937.33	3070.47	2049.17	Sum	
4.0%	3.2%	2.7%	% of Total Sum	
2	521	523	N	synergist
5.23	4298.82	8525.26	Sum	
.0%	4.5%	11.1%	% of Total Sum	
1	47	48	N	unknown
1295.58	642.64	670.49	Sum	
.6%	.7%	.9%	% of Total Sum	
1105	3288	4393	N	Total
222416.90	95071.25	77095.83	Sum	

Table A3-3 Summary of agricultural chemicals and amounts applied to cropland along the Old River in the near vicinity of the Tracy Fish Collection Facility during 1997. These data summarize applications for Ranges 4E, 5E and 6E, within Township 1S, based on data obtained from San Joaquin County.

Product Weight Applied, kg	Product Volume Applied, L	Crop Area Treated, ha	Statistic	Ag Chemical Common Name (ISO)
2	13	15	N	No Mfg) Herbicide Activator
5.23	370.63	312.82	Sum	
.0%	.4%	.4%	% of Total Sum	
	71	71	N	2,4-D
	2646.34	1092.37	Sum	
	2.8%	1.4%	% of Total Sum	
	9	9	N	2,4-DB
	655.68	122.22	Sum	
	.7%	.2%	% of Total Sum	
3	96	99	N	41-A
.19	201.25	1495.12	Sum	
.0%	.2%	1.9%	% of Total Surn	
1		1	N	67-33
1295.58		3.24	Sum	
.6%		.0%	% of Total Sum	
	12	12	N	Abamectin
	163.22	246.86	Sum	
	.2%	.3%	% of Total Sum	
34		34	N	Acephate
730.82		562.19	Sum	
.3%		.7%	% of Total Sum	
	2	2	N	Ad-Wet
	21.16	57.06	Sum	
	.0%	.1%	% of Total Sum	
	4	4	N	Agri-Dex
	121.92	70.82	Sum	
	.1%	.1%	% of Total Sum	
	2	2	N	Alachior
	430.61	46.54	Sum	
	.5%	.1%	% of Total Sum	
6		6	N	Aldicarb
1755.83		147.71	Sum	
.8%		.2%	% of Total Sum	
4		4	N	Bacillus thuringiensis var. aizawai
58.89		52.61	Sum	
.0%		.1%	% of Total Sum	
34	3	37	N	Bacillus thuringiensis var. kurstak
652.18	331.24	730.62	Sum	
.3%	.3%	.9%	% of Total Sum	
.0,7	5	5	N	Bayfolan Plus
	367.38	79.08	Sum	
	.4%	.1%	% of Total Sum	
·	. + 7.0	1	N N	Bensulide
	23.66	2.02	Sum	Denaulue
	.0%	.0%	% of Total Sum	
	.076	.070	N N	Bifenthrin
	14.40	30.35	Sum	Drieflu(fili
	.0%	.0%	% of Total Sum	

Product Weigl Applied, k	Product Volume Applied, L	Crop Area Treated, ha	Statistic	Ag Chemical Common Name (ISO)
	8	8	N	Bivert Deposition Agent
	71.96	134.76	Sum	
<u></u>	.1%	.2%	% of Total Sum	
	2	2	N	Break EC
	11.84	40.06	Sum	
	.0%	.1%	% of Total Sum	
		3	N	Bromacil + diuron
163.0		13.76	Sum	
.19		.0%	% of Total Sum	
	12	12	N	Bromoxynil
	273.95	225.41	Sum	
	.3%	.3%	% of Total Sum	
	9	9	N	CMR Herbicide Activator
	367.49	276.40	Sum	
	.4%	.4%	% of Total Sum	
		6	N	Captan
692.3		74.46	Sum	
.3		.1%	% of Total Sum	
2		25	N	Carbary
6237.4		447.95	Sum	
2.8		.6%	% of Total Sum	
	80	80	N	Carbofuran
	1789.58	1695.44	Sum	
	1.9%	2.2%	% of Total Sum	
		5	N	Chloridazon
265.2		197.49	Sum	
.1		.3%	% of Total Sum	
1		10	N	Chloropicrin
7999.9		19.51	Sum	
3.6		.0%	% of Total Sum	
		3	N	Chloropicrin+Methyl Brom
1949.1		4.89	Sum	
.9		.0%	% of Total Sum	
	34	38	N	Chlorothalonii
206.9	1641.05	681.49	Sum	
1	1.7%	.9%	% of Total Sum	
	192	194	N	Chlorpyrifos
8.	8726.04	3936.03	Sum	
.0.	9.2%	5.1%	% of Total Sum	
	1	1	N	Clean Crop Super 94 Oil
	1344.00	28.33	Sum	
	1.4%	.0%	% of Total Sum	
		20	. N	Copper Hydroxide
1384.		294.01	Sum	
		.4%	% of Total Sum	
		14	N	Copper Oxide
268.		118.98	Sum	
.1		.2%	% of Total Sum	
317.		1	N	Copper Sulfate, Basic
247		28.33	Sum	

Product Weigh Applied, kg	Product Volume Applied, L	Crop Area Treated, ha	Statistic	Ag Chemical Common Name (ISO)
1		1	N	Coumafuryl
52.10		11.74	Sum	
.0%		.0%	% of Total Sum	
2		2	N	Cryolite
426.73		63.54	Sum	
.2%		.1%	% of Total Sum	
	2	2	N	Cyanazine
	174.72	36.83	Sum	
	.2%	.0%	% of Total Sum	
	1	1	N	Cycloate
	69.12	29.14	Sum	· · <u>· · · · · · · · · · · · · · · · · </u>
	.1%	.0%	% of Total Sum	
	1	1	N	Cyfluthrin
	3.72	25.09	Sum	
	.0%_	.0%	% of Total Sum	
	2	2	N	Cymate 267
	33.83	19.02	Sum	
	.0%	.0%	% of Total Sum	
		1	N	DCPA
7.25		.81	Sum	
.09		.0%	% of Total Sum	
	65_	65	N N	Desmedipham
	3450.09	1657.72	Sum	
	3.6%	2.2%	% of Total Sum	
	13	14	N_	Diazinon
181.20	423.05	246.45	Sum	
.19	.4%	3%	% of Total Sum	
	5	5	N	Dichlorprop + Benzaton + MCPA
····	145.23	44.92	Sum	
	.2%	.1%	% of Total Sum	
	12	19	N N	Dicofol
277.8	625.36	348.92	Sum	
		.5%	% of Total Sum	D
		9	N N	Diflubenzuron
126.3 .19		112.75	Sum	
.17	443	.1%	% of Total Sum	Di-cath a sta
	113	113	N Sum	Dimethoate
	2736.16	2058.97	Sum Over Texts Sum	
	2.9%	2.7%	% of Total Sum N	Dinhadinana
29.4		11 74		Diphacinone
.09		.0%	Sum % of Total Sum	
.07	2	.0%	% of Total Suff	Diquat Dibromide
	26.88			Diquat Dibromide
	.0%	16.19	Sum	
···		.0%	% of Total Sum	Disulfata
	115	115	N	Disulfoton
	2954.50	2491.94	Sum	
	3.1%	3.2%	% of Total Sum	
70.46.3	83 3835 08	140	N	Diuron
2846.3 1.39	3825.08 4.0%	2843.63 3.7%	Sum % of Total Sum	

Product Weigh Applied, kg	Product Volume Applied, L	Crop Area Treated, ha	Statistic	Ag Chemical Common Name (ISO)	
	13	13	N	Dyne-amic	
	769.25	308.09	Sum		
	.8%	.4%	% of Total Sum		
8	45	53	N	EPTC	
3093.99	3683.05	1116.96	Sum		
1.4%	3.9%	1.4%	% of Total Sum		
	68	68	N	Esfenvalerate	
	671.31	1190.35	Sum		
	.7%	1.5%	% of Total Sum		
	14	14	N N	Ethalfluralin	
	674.07	243.62	Sum		
	.7%	.3%	% of Total Sum		
	25	25	N N	Ethephon	
····	1227.03	473.44	Sum		
	1.3%	.6%	% of Total Sum		
	38	38	N N	Ethofumesate	
	787.32	799.26	Sum		
	8%	1.0%	% of Total Sum		
,	2	2	N N	Fenamiphos	
	126.72	4.45	Sum		
	.1%	.0%	% of Total Sum		
	2	2	N	Fenarimol	
	14.13	63.54	Sum		
	.0%	.1%	% of Total Sum		
7		7	N	Fenbutatin-oxide	
111.66		93.81	Sum		
1%		.1%	% of Total Sum		
	22	22	N	First Choice Herbicide Activator	
·····	233.42	273.37	Sum		
	.2%	.4%	% of Total Sum		
	23	23	N	First Choice Non-ionic Surfactant	
	116.34	296.23	Sum		
	.1%	.4%	% of Total Sum		
	1	1	N	First Choice SurpHtac Adjuvant	
	2.13	12.14	Sum		
	.0%	.0%	% of Total Sum		
	1	1	N	Foam Fighter	
	.04	5.67	Sum		
	.0%	.0%	% of Total Sum		
22		22	N	Fonofos	
5592.17		455.64	Sum		
2.5%		.6%	% of Total Sum		
5		5	N	Fosetyl-aluminum	
400.72		145.28	Sum		
.2%		.2%	% of Total Sum		
	3	3	N	Glyphosate	
	129.06	46.54	Sum		
	.1%	.1%	% of Total Sum		
	167	167	N	Glyphosate-isopropylammonium	
	5016.65	2528.58 3.3%	Sum % of Total Sum		

Product Weigh Applied, kg	Product Volume Applied, L	Crop Area Treated, ha	Statistic	Ag Chemical Common Name (ISO)
(6	N	Haiosulfuron-methyl
4.42		53.82	Sum	
.09		.1%	% of Total Sum	
	47	47	N	Helena Quest
	143.64	824.79	Sum	
	.2%	1.1%	% of Total Sum	
3	76	114	N	Hexazinone
464.69	3750.46	2104.25	Sum	
.29	3.9%	2.7%	% of Total Sum	
	2	3	N	lmazethapyr
4.25	6.39	80.13	Sum	
.09	.0%	.1%	% of Total Sum	
	2	4	N	lmidacloprid
3.3	31.91	92.27	Sum	
.09	.0%	.1%	% of Total Sum	
	1	2	N	Iprodione
6.8	33.60	34.40	Sum	
.09	.0%	.0%	% of Total Sum	
	3	3	N	Kelthane
	72.35	91.05	Sum	
	.1%	.1%	% of Total Sum	
	52	52	N	Kinetic
	138.31	903.79	Sum	
	.1%	1.2%	% of Total Sum	
	1	1	N	Knapp Steri-Kleen
	.77	16.19	Sum	
	.0%	.0%	% of Total Sum	
	1	1	N	Latron AG-98
	.88	40.47	Sum	
	.0%	.1%	% of Total Sum	
	10	10	N	Latron CS-7
	44.08	212.87	Sum	
	.0%	.3%	% of Total Sum	
	58	58	N	Leaf Act 80A Spreader-Activator
	383.13	944.74	Sum	
······································	.4%	1.2%	% of Total Sum	~ ~ ~
	15	15	N	Leaf Act 80B Buffer-Spreader
1	64.78	269.04	Sum	
	.1%	.3%	% of Total Sum	
	2	2	N	Leaf Act 80HE Herbicide
	160.36	93.08	Sum	
	.2%	.1%	% of Total Sum	
	27	27	N	Leaf Act 80S Spreader-Sticker
	112.35	400.60	Sum	
	.1%	.5%	% of Total Sum	
2	.1 70	24	N N	Linuron
914.9		528.21	Sum	Listaron
.49		.7%	% of Total Sum	
.4`	10	10	N N	MCPA
	102.80	144.07	Sum	WICFA
· · · · · · · · · · · · · · · · · · ·	.1%	.2%	% of Total Sum	

Product Weigi Applied, k	Product Volume Applied, L	Crop Area Treated, ha	Statistic	Ag Chemical Common Name (ISO)
	1	1	N	MON-35085
	3.84	3.24	Sum	
	.0%	.0%	% of Total Sum	
	1	1	N	MOS Concentrate
···	96.00	40.47	Sum	
	.1%	.1%	% of Total Sum	
	33	33	N N	Malathion
	757.79	389.79	Sum	
	.8%	.5%	% of Total Sum	
	9	9_	N	Mancozeb
	325.25	109.67	Sum	
	.3%	.1%	% of Total Sum	
2	34	57	N	Metalaxyl
290.1	911.13	1001.20	Sum	
.1'	1.0%	1.3%	% of Total Sum	
,	4	4	N	Metam-sodium
	4233.60	11.33	Sum	
	4.5%	.0%	% of Total Sum	•
	6	6	N	Metambane
	37.17	125.53	Sum	
	.0%	.2%	% of Total Sum	Nath and a second
	16	16	N C	<u>Methamidophos</u>
	535.37	290.97	Sum	
	.6%	.4%	% of Total Sum	Methidathior
	,	2 42.76	N Sum	Methicathion
61.6		13.76 .0%	Sum % of Total Sum	
·0.			% of Total Sum	Mathamid
26		267 3032.56	Sum	Methomyl
1531.9		3.9%	% of Total Sum	
7'	73	73	N N	Methyl Parathion
	2793.14	968.78	Sum	Wediyi Faratinori
· · · · · · · · · · · · · · · · · · ·	2.9%	1.3%	% of Total Sum	
	2.978	71	N N	Metolachlor
	3405.34	1153.88	Sum	metolacino
	3.6%	1.5%	% of Total Sum	
	3.070	31	N N	Metribuzin
446.5	3.73	768.22	Sum	monibulii
.2	.0%	1.0%	% of Total Sum	
	.0.0	6	N N	Milo Bait
7.7	***	6.88	Sum	
.0		.0%	% of Total Sum	
	86	86	N	Monterey Nutrient Buffer
	454.43	1390.10	Sum	
	.5%	1.8%	% of Total Sum	
	3	3	N	Naled
	15.05	19.22	Sum	
	.0%	.0%	% of Total Sum	
3	9	39	N	Napropamide
2457.9	583.68	833.01	Sum	
1.1	.6%	1.1%	% of Total Sum	

Ag Chemical Common Name (ISO)	Statistic	Crop Area Treated, ha	Product Volume Applied, L	Product Weigh Applied, kg
Nicosulfuron	N	10	2	
	Sum	192.35	1.39	3.50
	% of Total Sum	.2%	.0%	.0%
No-Foam A	N	2	2	
	Sum	12.55	4.38	
	% of Total Sum	.0%	.0%	· · · ·
No-Foam B	N	4	4	
	Sum	141.64	168.04	
	% of Total Sum	.2%	.2%	
No-Foam Herbicide Activator	N	6_	6	
	Sum	125.45	238.97	
	% of Total Sum	.2%	3%	
Norflurazon	N	4		
	Sum	76.89		203.8
N	% of Total Sum	.1%		.1'
Nutra-Plus	N Sum	2	2 7.69	
	Sum	32.37	7.68	
Nutra-Wet	% of Total Sum	.0%	.0%	
Nutra-44et	N Sum	722.49	39 169.31	
	% of Total Sum	.9%	.2%	
Nutrient Buffer 8-8-2	N N	.9 %	.270	
Nutrent Burier 0-0-2	Sum	15.78	8.03	
	% of Total Sum	.0%	.0%	
Orchard Master	N N	2	2	
Orena a musici	Sum	9.71	21.24	
	% of Total Sum	.0%	.0%	
Oryzalin	N	2	2	
	Sum	70.42	623.83	
	% of Total Sum	.1%	.7%	
Oxydemeton-methyl	N	9	9	
	Sum	117.76	258.96	
	% of Total Sum	.2%	.3%	
Oxyfluorfen	N	66	66	
	Sum	1008.12	1460.60	
	% of Total Sum	1.3%	1.5%	
Para Spred	N	1	1	
	Sum	52.61	123.03	
	% of Total Sum	.1%	.1%	
Paraquat	N	87	87	
	Sum	1735.18	3214.01	7-100
	% of Total Sum	2.3%	3.4%	
Pebulate	N N	27	27	
	Sum	551.18	2742.60	
	% of Total Sum	.7%	2.9%	
Peerless	N	4	4	
	Sum	34.40	20.47	<u>. </u>
	% of Total Sum	.0%	.0%	
Pendimethalin	N N	9	9	
	Sum	127.72 .2%	548.04 .6%	

Product Weigh Applied, kg	Product Volume Applied, L	Crop Area Treated, ha	Statistic	Ag Chemical Common Name (ISO)
	14	14	N	Permethrin
	724.22	266.69	Sum	
	.8%	.3%	% of Total Sum	
37		37	N	Phosmet
1244.21		686.83	Sum	
.6%		.9%	% of Total Sum	
	13	13	N	Phosphoric Acid
	38.10	189.80	Sum	
	.0%	.2%	% of Total Sum	
	101	101	N	Pinolene
	660.91	1571.40	Sum	
	.7%	2.0%	% of Total Sum	
	1	1	N	Piperonyl Butoxide
	.97	5.26	Sum	
	.0%	.0%	% of Total Sum	
		2	N	Pronamide
41.22		17.40	Sum	
.09		.0%	% of Total Sum	
1	76	87	N	Propargite
866.59	2634.08	1222.36	Sum	
49	2.8%	1.6%	% of Total Sum	
	67	67	N	RNA Activator 85
	1273,83	1175.29	Sum	
	1.3%	1.5%	% of Total Sum	
	318	318	N	RNA Buffer
	1152.40	5158.30	Sum	
	1.2%	6.7%	% of Total Sum	
	3	3	N	RNA Buffer-Activator
	4.71	24.36	Sum	
	.0%	.0%	% of Total Sum	
	2	2	N	RNA Cotton Oil Surfactant
	246.06	105.22	Sum	
	.3%	.1%	% of Total Sum	
	24	24	N	RNA Crop Oil Concentrate
	324.93	388.09	Sum	
	.3%	.5%	% of Total Sum	
	14	14	N	RNA Spreader-Binder
	79.28	302.95	Sum	
	.1%	.4%	% of Total Sum	
	22	22	N	RNA Tri-Ad 73
	103.93	343.34	Sum	
	.1%	.4%	% of Total Sum	
	10	10	N	Select
	279.71	210.03	Sum	
	.3%	.3%	% of Total Sum	
	53	53	N	Sethoxydim
	1314.27	953.17	Sum	
	1.4%	1.2%	% of Total Sum	
	1	1	N	Silwet L-77
	8.41	28.33	Sum	
	.0%	.0%	% of Total Sum	

Product Weigh Applied, kg	Product Volume Applied, L	Crop Area Treated, ha	Statistic	Ag Chemical Common Name (ISO)	
	5	6	N	Simazine	
10.3	762.72	148.12	Sum		
.09	.8%	.2%	% of Total Sum		
	7	7	N	Sodium Chlorate	
	1163.52	122.62	Sum		
,	1.2%	.2%	% of Total Sum		
	1	1	N	Source 1 No Foam B	
	28.80	24.28	Sum		
	.0%	.0%	% of Total Sum		
		5	N N	Special Super-Adhesive	
1094.0		32.78	Sum		
.59		.0%	% of Total Sum		
	7	7	N N	Spray-Aide	
	14.97	42.90	Sum		
	.0%	.1%	% of Total Sum		
13	9	147	N N	Sulfur	
129513.3	1821.12	4079.97	Sum		
58.29	1.9%	5.3%	% of Total Sum		
	21	21	N	SurpHtac	
	83.75	337.06	Sum		
	.1%	.4%	% of Total Sum		
	21	21	N	SurpHtac Adjuvant	
	110.80	124.04	Sum		
	.1%	.2%	% of Total Sum		
	5	5	N	Sylgard 309	
	4.70	64.75	Sum		
	.0%	.1%	% of Total Sum		
2		22	N	Systhane	
96.7		352.89	Sum		
.09		.5%	% of Total Sum		
		4	N	Thiophanate-methyl	
46.6		41.68	Sum		
.09		.1%	% of Total Sum		
	6	6	N	Triclopyr	
	132.57	54.63	Sum		
	.1%	.1%	% of Total Sum		
4.45		3 44 69	N	Triflumizole	
14.5		41.68	Sum		
.09	470	.1%	% of Total Sum	7.10	
45000.6	173	292	N O	Trifluralin	
45929.6	5713.61	5368.92	Sum		
20.79	6.0%	7.0%	% of Total Sum	Triforing	
	5	5	N Sum	Triforine	
	65.74	72.84	Sum % of Total Sum		
	.1%	.1%	% of Total Sum	* P-1	
	3 65	3	N Sum	Tro-Fol	
	3.65	40.47	Sum		
	.0%	.1%	% of Total Sum N	Unifilm 707	
				Uniter 707	
	2.53	.0%	Sum % of Total Sum		

Ag Chemical Common Name (ISO)	Statistic	Crop Area Treated, ha	Product Volume Applied, L	Product Weight Applied, kg
Upbeet	N	3		3
	Sum	56.66		.99
	% of Total Sum	.1%		.0%
Vinclozolin	N	1		1
	Sum	8.90		19.93
	% of Total Sum	.0%		.0%
WFSI 2220	N	3	3	
	Sum	46.54	13.48	
	% of Total Sum	.1%	.0%	
Total	Ν	4393	3288	1105
	Sum	77095.83	95071.25	222416.90

Fish bioassay toxicity data as LC₅₀ values in µg/L, for agricultural chemicals applied in the near vicinity of the Tracy Fish Collection Facility during 1997. Data are from the San Joaquin County agricultural application database, and toxicity references (*Meister and Sine 1997; Johnson and Finley, 1980*). A toxicity score of 1 represents an essentially nontoxic compound, while a score of 5 suggests a very toxic compound.

Chemical ISO	Hoose Class	Farm Chemicals Handbook	Anadromous	Resident	Average Fish
Common Name Fonofos	Usage Class insecticide	LC50, μg/L 50	Fish LC50, μg/L	Fish LC50, μg/L	Toxicity Score 5.00
Bifenthrin	insecticide	150			5.00
Bromoxynii	herbicide	50		<u></u>	5.00
Carbofuran	insecticide	240			5.00
Chlorpyrifos	insecticide	180		30	5.00
Esfenvalerate	insecticide	100		30	5.00
Fenbutatin-oxide	pesticide	6.6			5.00
Oxyfluorfen	herbicide	200			5.00
Permethrin	insecticide	200			5.00
Methidathion	insecticide		14	9	4.67
Diazinon	insecticide		92	194	4.33
Aldicarb	insecticide	1500	560	50	4.33
Trifluralin	herbicide	1000	72	953	4.33
Kelthane	pesticide		,,_		4.00
DCPA	herbicide				4.00
Naled	insecticide	132	249	1730	4.00
Metam-sodium	insecticide				4.00
Bensulide	herbicide	1500	700	550	4.00
Oryzalin	herbicide	2880			4.00
Phosmet	insecticide				4.00
Pendimethalin	herbicide				4.00
Desmedipham	herbicide	3800			4.00
Metolachior	herbicide			45	3.50
Ethofumesate	herbicide	15000	800	2500	3.33
Alachior	herbicide	3700	1980	6530	3.33
Diuron	herbicide	3500	8850	6294	3.33
Methyl Parathion	insecticide		2260	7010	3.33
Methomyl	insecticide	800	1600	1160	3.33
Dicofol	pesticide		81000		3.00
EPTC	herbicide	19000			3.00
Cycloate	herbicide	4500	5020	10000	3.00
Cyanazine	herbicide	16000			3.00
Sethoxydim	herbicide				3.00
2,4-DB	herbicide	4000			3.00
Pebulate	herbicide	7400			3.00
Oxydemeton-methyl	insecticide	23000			3.00
Carbary	insecticide	28000			3.00
Malathion	insecticide	200000	67.4	1470	3.00
Dimethoate	insecticide	30200	8620	9440	2.67
2,4-D	herbicide	5000		20300	
Bromacil + diuron	herbicide	28000	35000	87450	2.33

Chemical ISO Common Name	Usage Class	Farm Chemicals Handbook LC50, µg/L	Anadromous Fish LC50, μg/L	Resident Fish LC50, µg/L	Average Fish Toxicity Score
Coumafuryi	pesticide				2.00
Chloridazon	herbicide	46000			2.00
Simazine	herbicide	56000	12020	93680	2.00
Diphacinone	pesticide				2.00
Disulfoton	insecticide				2.00
Cyfluthrin	insecticide				2.00
Triclopyr	herbicide				2.00
imidacloprid	insecticide				2.00
Napropamide	herbicide				2.00
Fenamiphos	insecticide				2.00
Methamidophos	insecticide			69000	2.00
Propargite	insecticide		1.00E+09	1.00E+09	2.00
Milo Bait	pesticide				2.00
Linuron	herbicide	3300	1.00E+09	1.00E+09	2.00
lmazethapyr	herbicide				2.00
Halosulfuron-methyl	herbicide				2.00
Select	herbicide	120000			2.00
Ethalfluralin	herbicide				2.00
Paraquat	herbicide		33760	127500	1.67
Cryolite	insecticide	47000	47000	1.00E+09	1.67
Diquat Dibromide	herbicide		39070	128000	1.67
Metribuzin	herbicide			1.00E+09	1.50
MCPA	herbicide	117000	1.00E+09		1.50
Abamectin	insecticide		1.00E+09		1.33
Pronamide	herbicide	72000	1.00E+09	1.00E+09	1.33
Chloropicrin	pesticide		1.00E+09	1.00E+09	1.33
Sodium Chlorate	herbicide		2772000	2084000	1.33
Ethephon	herbicide	720000			1.00
Sulfur	insecticide		1.00E+09	1.00E+09	1.00
Nicosulfuron	herbicide	1000000			1.00
Norflurazon	herbicide	200000	1.00E+09	1.00E+09	1.00
Bacillus thuringiensis	insecticide		1.00E+09	1.00E+09	1.00
Metambane	herbicide	706000			1.00
Hexazinone	herbicide	320000			1.00
Acephate	insecticide	1000000			1.00
Glyphosate	herbicide				1.00
Diflubenzuron	insecticide	140000			1.00

Summary of 1997 agricultural chemicals and amounts applied within the near vicinity of the Tracy Fish Collection Facility. These chemicals represent the more toxic compounds having fish toxicity scores greater than 3.5. Data from San Joaquin County agricultural application database. *Italicized* chemicals represent toxicity score > 4 and application > 100 kg or 100 L, or toxicity score ≥ 3.5 and ≤ 4 with application > 1000 kg or 1000 L.

		Average Fish	1997 Solid	1997 Liquid		Average Solid	
Chemical Common		Toxicity	Formulation	Formulation	Application		Application
ISO Name	Statistic	 	Applied, kg	Applied, L	Area, ha	kg/ha	<i>L/</i> ha
Aldicarb	Mear	4.33				11.59	
	Sum		1759.70		147.71		
Bensulide	Mear	4.00					11.7
	Sum			23.66	2.02		
Bifenthrin	Mear	5.00					0.468
	Sum	† 		14.20	30.35		0, 100
	<u> </u>			17.20			
Bromoxynil	Mear						1.32
	Sum	1		270.05	225.41		
Carbofuran	Mear	5.00					1.04
	Sun			1764.17	1695.44		
					···		
Chlorpyrifos	Mear	1	0.47	0044.00		1.68	2.91
	Sun		8.17	8614.28	3936.03		
DCPA	Mear	4.00				8.97	
	Sun	n	7.26		0.81		
Doored de bor	Maar	n 4.00					2.36
<u>Desmedipham</u>	Mear Sun			3401.03	1657.72		∠.30
Diazinon	Mear	 	404.00			8.97	1.57
	Sun	n .	181.60	417.04	246.45		
Esfenvalerate	Mear	5.00	,		·		.608
	Sun	n		661.95	1190.35		
Fenbutatin-oxide	Meai	n 5.00				1.20	
, 0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Sun	1	111.91		93.81		
Fonofos	Mea	·	5004.50		455.04	13.4	
	Sun	1	5604.52		455.64		************************************
Keithane	Mea	n 4.00					.783
	Sun	n		71.32	91.05		
M etam-sodium	Mea	n 4.00					37
iii caiir souidii	Sun			4173.40	11.33		J.
Methidathion	Mea					4.49	
	Sun	η	61.74		13.76		

Chemical Common ISO Name	Statistic	Average Fish Toxicity Score	1997 Solid Formulation Applied, kg	1997 Liquid Formulation Applied, L	Total Chemical Application Area, ha		Average Liquid Application, L/ha
Metolachior	<u>M</u> ear	3.50					2.87
	Surr			3358.98	1153.88		
Naled	Mear	4.00					1.19
	Sum			14.86	19.22		
Oryzalin	Mear	4.00					6.26
	Sum			623.61	70.42		
Oxyfluorfen	Mear	5.00					1.16
	Sun			1447.13	1008.12		
Pendimethalin	Mear	4.00					4.49
	Sun	1	-	540.25	127.72		
Permethrin	Mear	5.00					7.27
	Sun			714.23	266.69		
Phosmet	Mear	4.00				2.19	
	Sun		1246.96		686.83		
Trifluralin	Mear	4.33				21.7	1.69
	Sun	1	46031.06	5635.07	5368.92		

Table A3-6 Chemical structures for the more toxic agricultural chemical compounds applied in larger quantities.

Chemical Common ISO Name	Average Fish Toxicity Score	Solid Formulation	1997 Liquid Formulation Applied, L	Total Chemical Application Area, ha
Aldicarb	4.33	1759.70		147.71
		CH ₃ CH ₃ SCCH: CH ₃	OH NOCN CH3	
Bifenthrin	5.00		14.20	30.35
	C	CH _S CH _S C=CH C C C-C-C	CH ₅	
Bromoxynil	5.00		270.05	225.41
·		BIOH	Br	
Carbofuran	5.00		1764.17	1695.44
		CH3-NH-C-O	CH ₃	

Chemical Common ISO Name	Average Fish Toxicity Score	1997 Solid Formulation Applied, kg	1997 Liquid Formulation Applied, L	Total Chemical Application Area, ha
Chlorpyrifos	5.00		0C ₂ H ₅	3936.03
Desmedipham	4.00	с³н°о-g-й-н о	3401.03	1657.72
Diazinon	4.33	181.60	417.04	246.45
		CH ₃ /CH N	S 	
Esfenvalerate	5.00		661.95	1190.35
	CI	}c	EN CONTRACTOR OF THE PROPERTY	

Chemical Common ISO Name	Average Fish Toxicity Score	Solid Formulation	1997 Liquid Formulation Applied, L	Total Chemical Application Area, ha
Fenbutatin-oxide	5.00	111.91		93.81
4	Elige S	j si ()	CH ₂ CH ₂ CH ₃ CH ₂ CH ₃	
Fonofos	5.00	5604.52		455.64
		S 150-P-S- C ₂ H5		
Metam-sodium	4.00		4173.40	11.33
	C	S II H3—NH—C	_	
Metolachior	3.50		3358.98	1153.88
	(<i>)</i> ()	CH3 CH-CH2OCH3 C-CH2Cl	

Chemical Common ISO Name Oryzalin	Average Fish Toxicity Score 4.00	1997 Solid Formulation Applied, kg	1997 Liquid Formulation Applied, L 623.61	Total Chemical Application Area, ha 70.42
	ИН	12-22-10-100-100-100-100-100-100-100-100	CH2CH2CH3 -N CH2CH2CH3	
Oxyfluorfen	5.00		1447.13	1008.12
	CF₃-	C1	OCH ₂	CH ₃
Pendimethalin	4.00		540.25	127.72
		NO ₂	C ₂ H ₅ -CH-C ₂ H ₅ NO ₂ CH ₃	
Permethrin	5.00		714.23	266.69
	Cl Cl Cl	о с-о-сн, гн, сн,		

Chemical Common ISO Name	Average Fish Toxicity Score	Solid Formulation	1997 Liquid Formulation Applied, L	Total Chemical Application Area, ha
Phosmet	4.00	1246.96		686.83
		N-C	S :H ₂ -S-P-00 OCH₃	CH3
Trifluralin	4.33	46031.06	5635.07	5368.92
	· · · · · · · · · · · · · · · · · · ·		I ₂ CH ₂ CH ₃	
		NO ₂ N	NO ₂	

Table A3-7 Summary by chemical of 1997 agricultural chemical applications in the vicinity of the Tracy Fish Collection Facility for chemicals with average fish toxicity score toxicity scores > 4 and application > 100 kg or 100 L, or toxicity score ≥ 3.5 and ≤ 4 with application > 1000 kg or 1000 L.

Crop Area for Applied	Formulation	1997 Monthly Liquid 1 Formulation			Average Fish	Chemical ISO
Chemical. ha	Applications, kg	Applications, L	Comment	Month	Toxicity Score	Common Name
59.49	932.27		Mar max	3	4.33	Aldicarb
88.22	823.55			4		
147.71	1755.83			Total		
59.49		86.17		1	5.00	Bromoxynil
165.92		187.78	Feb max	2		
225.41		273.95		Total		
220.55		259.65		1	5.00	Carbofuran
1456.67		1508.31	Mar max	3		
18.21		21.62		6		
1695.44		1789.58		Total		
220.55		259.65		1	5.00	Chlorpyrifos
44.92		62.40		2		
2166.13		5670.85	Mar max 1	3_		
113.72		139.70		4		
12.14		28.57		5		
233.34		663.13		6		
434.63		754.37	Jul max 2	7		
380.41		682.16		8		
69.20		103.75		9		
120.19	2.72	279.36		10		
140.79	5.44	82.10		11		
3936.03	8.15	8726.04		Total		
78.5		314.88		2	4.00	Desmedipham
230.2		509.45	Apr max 2	4		
203.15		308.89		5		
59.00		81. <i>7</i> 5	,	6		
861.70		1597.63	Nov max 1	11		
225.0°		637.48		12		
1657.72		3450.09		Total		
28.3		134.40	Jan max 1	1		Diazinon
40.4	181.20	48.00		5		
53.0		94.31		7		
92.2		107.94	Aug max 2	8		
32.3		38.40		9		
246.4	181.20	423.05		Total		
201.7		45.85		6	5.00	Esfenvalerate
700.4		460.11	Jul max	7		
190.6		106.10		8		
89.0		53.50		9		
8.5		5.76		10		
1190.3		671.31		Total		
93.8	111.66		Jun ma	6	5.00	Fenbutatin-oxide
_	111.66			Total		
	940.09			3	5.00	Fonofos
	838.05			4		· · · · · · · · · · · · · · · · · · ·
	3814.03		May ma	5		
	5592.17			Total		

Chemical ISO	Average Fish			1997 Monthly Liquid Formulation	Formulation	Crop Area for Applied
Common Name		Month	Comment		Applications, kg	Chemical. ha
Metam-sodium	4.00	3	Mar max 1	2524.80		6.88
			Jul max 3			1.62
		9	Aug max 2			2.83
		Total		4233.60		11.33
Metolachior	3.50	2		72.00		20.23
		3	Mar max 2			367.66
		4		865.57		311.53
		5	May max 1	1220.27		432.21
		- 6		52.19		22.26
		Total		3405.34		1153.88
Oryzalin	4.00	5		18.20		5.67
		11	Nov max			64.75
		Total		623.83		70.42
Oxyfluorfen	5.00	1		5.38		7.69
		2	Feb max 2	· · · · · · · · · · · · · · · · · · ·		326.58
		3		98.48		131.93
		4		1.42		2.83
		7		5.27		10.72
		8		7.68		3.24
		10		309.43		152.08
		11	Nov max 1	768.63		182.07
		12		139.30		190.97
		Total		1460.60		1008.12
Permethrin	5.00	3		22.50		151.76
		4		15.28		20.64
		6	· · · · · · · · · · · · · · · · · · ·	17.41		29.14
		8		42.52		45.73
		9	Sep max	626.50	_	19.42
		Total	<u> </u>	724.22		266.69
Phosmet	4.00	2			72.48	64.75
		3	Mar max		650.78	535.97
		5			404.98	60.22
		6			52.55	11.74
		7			63.42	14.16
		Total			1244.21	686.83
Trifluralin	4.33	1			8652.30	384.05
		2	Feb max 1	177.10	17913.43	1004.55
		3	Mar max 2	2307.25	9542.90	1714.62
		4		1015.64	3807.92	803.47
		5		1035.09	4375.98	
		6		574.07	1637.14	518.91
		7		26.76		12.55
		10		4.34		2.43
		11	Nov max 3			105.22
		12		74.15		41.68
		Total		5713.61		

Figure A3-1 Kilograms of Aldicarb applied during 1997 near the TFCF.

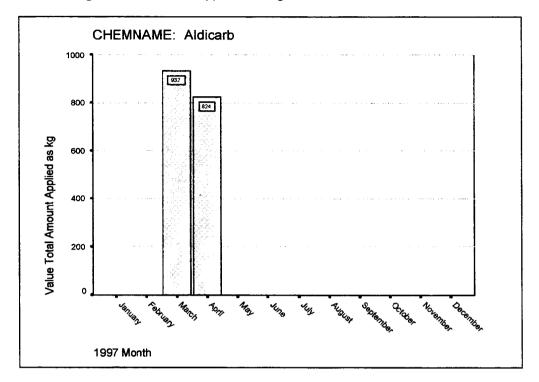


Figure A3-2 Kilograms of Bromoxynil applied during 1997 near the TFCF.

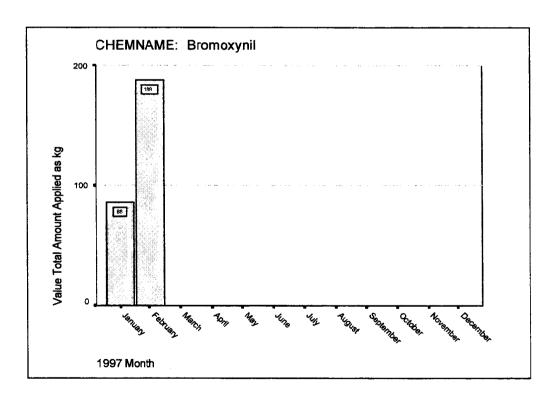


Figure A3-3 Kilograms of Carbofuran applied during 1997 near the TFCF.

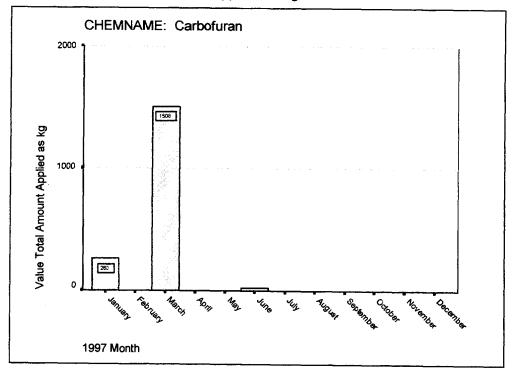


Figure A3-4 Kilograms of Chlorpyrifos applied during 1997 near the TFCF.

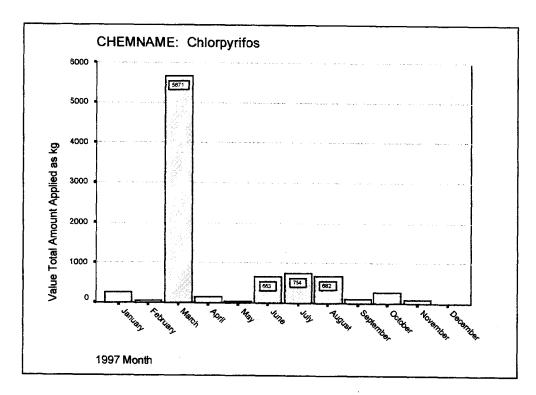


Figure A3-5 Kilograms of Desmedipham applied during 1997 near the TFCF.

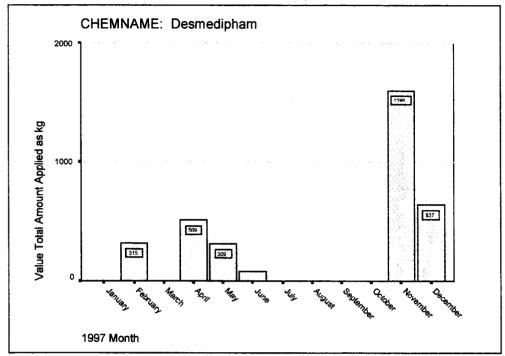


Figure A3-6 Kilograms of Diazinon applied during 1997 near the TFCF.

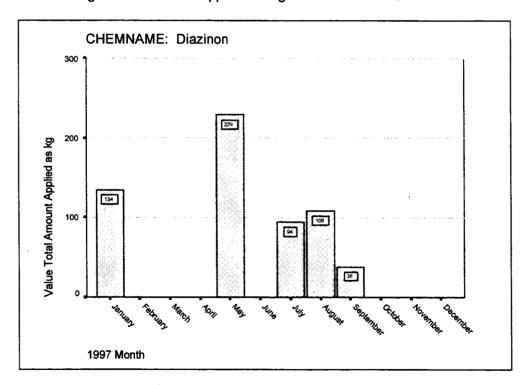


Figure A3-7 Kilograms of Esfenvalerate applied during 1997 near the TFCF.

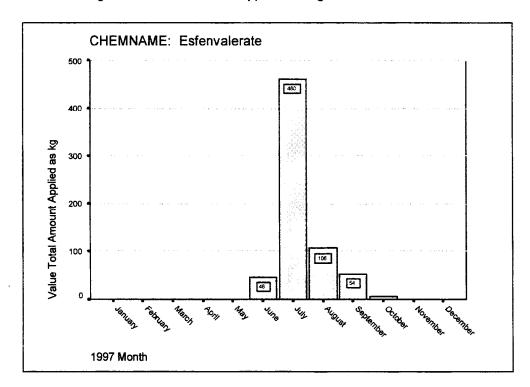


Figure A3-8 Kilograms of Fenbutatin-oxide applied during 1997 near the TFCF.

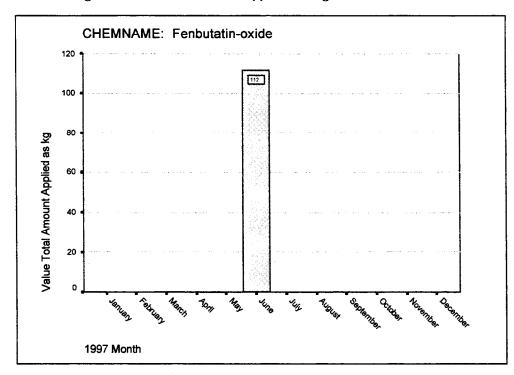


Figure A3-9 Kilograms of Fonofos applied during 1997 near the TFCF.

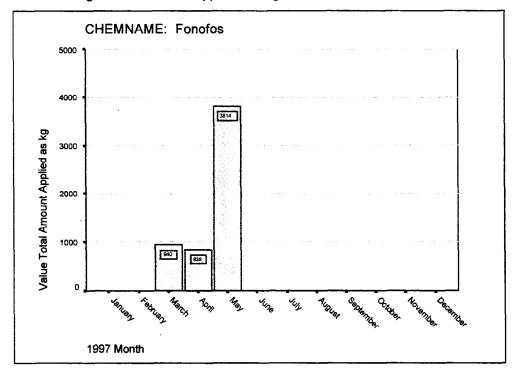


Figure A3-10 Kilograms of Metam-sodium applied during 1997 near the TFCF.

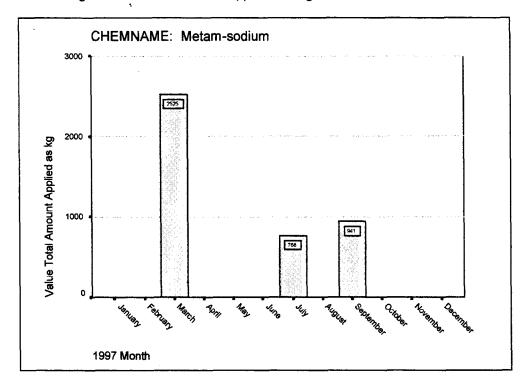


Figure A3-11 Kilograms of Metolachlor applied during 1997 near the TFCF.

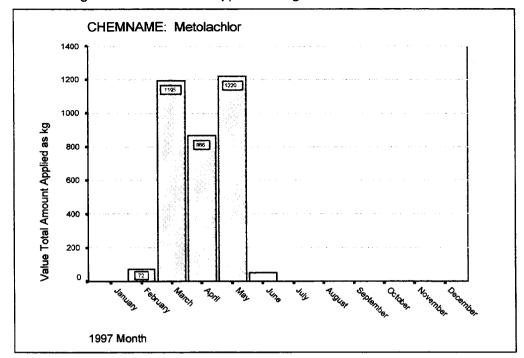


Figure A3-12 Kilograms of Oryzalin applied during 1997 near the TFCF.

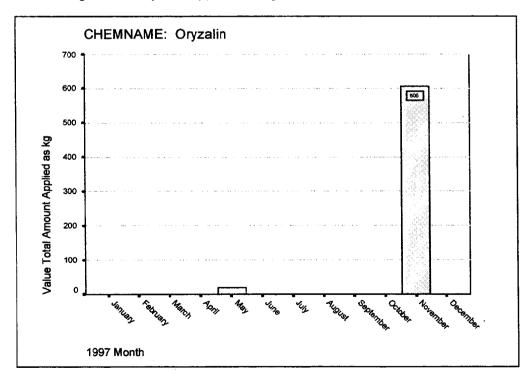


Figure A3-13 Kilograms of Oxyfluorfen applied during 1997 near the TFCF.

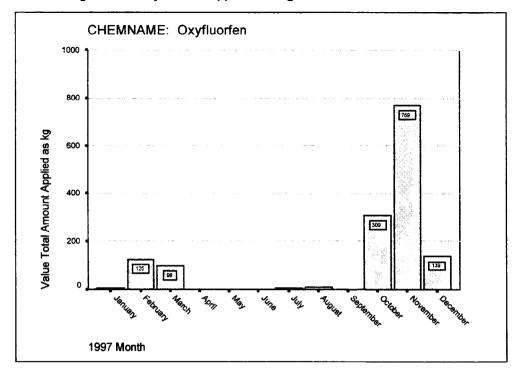


Figure A3-14 Kilograms of Phosmet applied during 1997 near the TFCF.

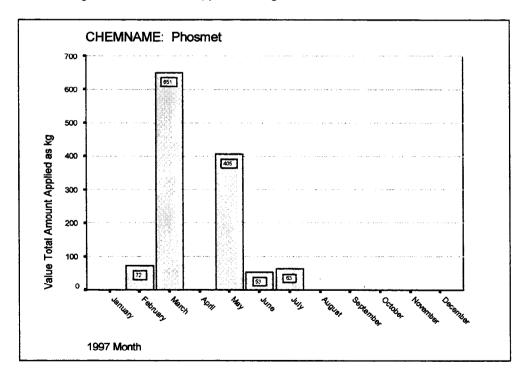


Figure A3-15 Kilograms of Permethrin applied during 1997 near the TFCF.

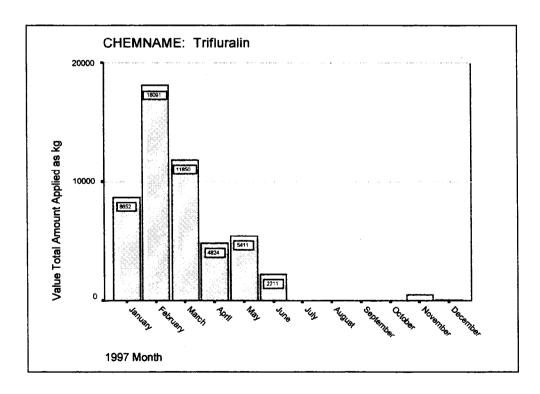



Figure A3-16 Kilograms of Trifluralin applied during 1997 near the TFCF.

APPENDIX 4

Graphical and Statistical Summary of
Pesticide and Herbicide Data:
USGS Analysis Results for Samples Collected at
Vernalis, California

Rank statistics as percentiles for the entire USGS Vernalis data set. All values are in ng/L. Variable detection limits have been recoded as the inverse of the maximum reported detection limit. Table A4-1

EPTAM	293	347	-129.0000	-129.0000	-129.0000	-129.0000	-129.0000	-129.0000	232.7000	494.3400	628.8800	674.0000	Ť	RIF		JRA	ALIN	J	410	230	90000	-60.0000	-60.0000	-80.000	-80,000	-60.000	-60.0000	-60.0000	-60.0000	-60,0000
DIAZINON	640	0	-35.0000	-35.0000	31.7500	47.8000	29.000d	77.9000	158.6000	370.4000	570.725d	714.0000	TH	IIO	BE	NC	AR	В	8	ଞ୍ଚ	-80,000	-60,000	-60.0000	-60.0000	-80.000	-60.0000	-60.0000	-60.0000	109.9000	528,0000
DACTHAL	293	347	-63.0000	-63,0000	-83.0000	-83.0000	-83.0000	-83.000d	-83.000d	88.1800	138.7000	181.0000			SIN	VA.	ZINI	E	8	0	-82.0000	-82.0000	129.0000	175.0000	229.0000	289.8000	444.0000	998.9400	1083.3850	1747.0000
CYANAZINE	192	84	-50.0000	-50.000	-50.0000	109.4000	146.3000	218.5000	304.0500	604.0500	804.0000	804.0000		F	PEE	BUL	TA	E	117	523	-44,0000	-44,0000	-44.0000	-44.0000	4.000	-44.0000	46.7000	974.9000	1046.0000	1046.0000
CHLORPYRIFOS	98	o	-35.0000	-35.0000	-35.0000	-35,0000	-35,000	-35.0000	-35.0000	-35.0000	-35,0000	43.0000		N,	AP	RO	PAI	М	117	523	-28.0000	-28.0000	-28.0000	-28.0000	-28.0000	-28.0000	-28.0000	-28.0000	-28.0000	-28.0000
CARBOFURAN	980	O	-31.0000	-31,0000	-31.0000	-31.0000	-31.0000	-31.0000	-31.0000	75.5900	93.7450	105.0000		ı	MO	LIN	NAT	Ε	ଧିଷ	125	-53.0000	-53.0000	-53,0000	-53.0000	-53.0000	-53.0000	-53.0000	38.5600	94.5200	145,0000
CARBARYL	515	125	-44,0000	-44.0000	-4,000	4,0000	-4.0000	-44,0000	-44,0000	98.5200	185.1400	197.0000	ME	TC)LA	CH	iLO	R	83	347	-47.0000	-47.0000	-47.0000	-47.0000	-47,0000	50.6000	29.3000	114.1200	116.5300	117.0000
BUTYLATE	117	523	-19.0000	-19.0000	-19.0000	-19.0000	-19.0000	-19.0000	-19.0000	-19.000	-19.0000	-19.0000	ME	TF	IID	ΑT	HIO	N	515	52 25	-83.000G	-63.0000	-63.0000	-63.0000	-830000	-830000	73.6000	429.2000	648.5800	802,0000
ATRAZINE	410	230	35,000	35.0000	35,000	-35,0000	35,000	35.000	-35,000	35,000	35.000	-35,000		М	AL	ΑT	HIO	N	410	230	-45,000	-45.0000	-45,000	-45,000	-45,000	-45,000	-45.0000	-45.0000	-45.0000	-45,0000
ALACHLOR	117	523	-22 0000	-22 0000	-22 0000	-22 0000	-22,0000	-22,0000	-22 0000	-22 0000	-22 0000	-22 0000			FC	ONO	ÖFC	s	410	230	-24,0000	-24,0000	-24 0000	-24,0000	-24 0000	-240000	-24,0000	-24,0000	-24,0000	-24.0000
	Valid N	Missing N	25	200	75	28	8	6	8	8	500	0.00						Percentiles	Valid	Missing	250	25	150	8	6	5	8	8	5.00	500

Table A4-2a Rank statistics as percentiles by month for the entire USGS Vernalis data set, Alachlor to Eptam. All values are in ng/L. Variable detection limits have been recoded as the inverse of the maximum reported detection limit.

	1		г									<u> </u>
MONTH		STATISTIC	ALACHLOR	ATRAZINE	BUTYLATE	CARBARYL	CARBOFURAN	CHLORPYRIFOS	CYANAZINE	DACTHAL	DIAZINON	ЕРТАМ
January	N	Valid	20	44	20	64	73	73	20	38	73	38 35
		Missing	53	29	53	9	0	0	53	35	0	35
	Percentiles	25	-22.0000	-35.0000	-19.0000	-44.0000	-31.0000	-35.0000	-50.0000	-63.0000	-35.0000	-129.0000
		50	-22.0000	-35.0000	-19.0000	-44.0000	-31.0000	-35.0000	-50.0000	-63.0000	53.0000	-129.0000
		75	-22.0000	-35.0000	-19.0000	-44.0000	-31.0000	-35.0000	-50.0000	-63.0000	105.0000	-129.0000
		80	-22.0000	-35.0000	-19.0000	-44.0000	-31.0000	-35.0000	-50.0000	-63.0000	135.0000	-129.0000
		85	-22.0000	-35.0000	-19.0000	-44.0000	-31.0000	-35.0000	179.5000	-63.0000		-129.0000
		90	-22.0000	-35.0000	-19.0000	-44.0000	-31.0000	-35.0000	235.3000	-63.0000		-129.0000
		95	-22.0000	-35.0000	-19.0000	14.5000	-31.0000	-35.0000	268.3500	-55.3000		-129.0000
		99	-22.0000	-35.0000	-19.0000	51.0000	-31.0000	-35.0000	270.0000	91.0000		-129.0000
		99.5	-22.0000	-35.0000	-19.0000	51.0000	-31.0000	-35.0000	270.0000	91.0000		-129.0000
		99.9	-22.0000	-35.0000	-19.0000	51.0000	-31.0000	-35.0000	270.0000	91.0000	395.0000	-129.0000
February	N	Valid	27	57	27	68	84	84	27	54	84	54
		Missing	57	27	57	16	0	0	57	30	0	30
	Percentiles	25	-22.0000	-35.0000	-19.0000	-44.0000	-31.0000	-35.0000	-50.0000	-63.0000		-129.0000
		50	-22.0000	-35.0000	-19.0000	-44.0000	-31.0000	-35.0000	146.0000	-63.0000		-129.0000
		75	-22.0000	-35.0000	-19.0000	-44.0000	-31.0000	-35.0000	269.0000	-63.0000		-129.0000
		80	-22.0000	-35.0000	-19.0000	-44.0000	-31.0000	-35.0000	386.0000	-63.0000		-129.0000
		85	-22.0000	-35.0000	-19.0000	-44.0000	-31.0000	-35.0000	505.0000	-63.0000		-129.0000
		90	-22.0000	-35.0000	-19.0000	-44.0000	-31.0000	-35.0000	537.0000	-63.0000		-129.0000
		95	-22.0000	-35.0000	-19.0000	60.5000	-31.0000	-35.0000	708.4000	-25.2500		-129.0000
		99	-22.0000	-35.0000	-19.0000	197.0000	-31.0000	43.0000	804.0000	181.0000		-129.0000
		99.5	-22.0000	-35.0000	-19.0000	197.0000	-31.0000	43.0000	804.0000	181.0000		-129.0000
		99.9	-22.0000	-35.0000	-19.0000	197.0000	-31.0000	43.0000	804.0000	181.0000		-129.0000
March	N	Valid	14	42	14	58	72	72	14	44	72	44
		Missing	58	30	58	14	0	0	58	28	0	28
	Percentiles	25	-22.0000	-35.0000	-19.0000	-44.0000	-31.0000	-35.0000	-50.0000	-63.0000	-35.0000	-129.0000

						· · · · · · · · · · · · · · · · · · ·						
MO O I		STATISTIC	ALACHLOR	ATRAZINE	BUTYLATE	CARBARYL	CARBOFURAN	CHLORPYRIFOS	CYANAZINE	DACTHAL	DIAZINON	EPTAM
		50	-22.0000	-35.0000	-19.0000	-44.0000	-31.0000	-35.0000	145.5000	-63.0000	-35.0000	-129.0000
		75		-35.0000	-19.0000	-44.0000	-31.0000	-35.0000	265.2500	-63.0000	52.0000	-129.0000
		80	-22.0000	-35.0000	-19.0000	-44.0000	-6.6000	-35.0000	296.0000	-63.0000	57.2000	-129.0000
		85		-35.0000	-19.0000	-44.0000	53.1500	-35.0000	313.2500	-63.0000	61.1500	-129.0000
	1	90		-35.0000	-19.0000	-44.0000	59.0000	-35.0000	321.5000	-63.0000	71.8000	-129.0000
		95		-35.0000	-19.0000	-44.0000	77.4500	-35.0000	324.0000	-63.0000	99.4000	-129.0000
		99		-35.0000	-19.0000	-44.0000	96.0000	-35.0000	324.0000	-63.0000	110.0000	-129.0000
		99.5	-22.0000	-35.0000	-19.0000	-44.0000	96.0000	-35.0000	324.0000	-63.0000	110.0000	-129.0000
		99.9	-22.0000	-35.0000	-19.0000	-44.0000	96.0000	-35.0000	324.0000	-63.0000	110.0000	-129.0000
April	N	Valid	14	44	14	55	70	70	14	40	70	
		Missing	56	26	56	15	0	0	56	30	0	30
	Percentiles	25	-22.0000	-35.0000	-19.0000	-44.0000	-31.0000	-35.0000	-50.0000	-63.0000		-129.0000
		50	-22.0000	-35.0000	-19.0000	-44.0000	-31.0000	-35.0000	-50.0000	-63.0000		-129.0000
		75	-22.0000	-35.0000	-19.0000	-44.0000	-31.0000	-35.0000	-50.0000	-63.0000		-129.0000
		80	-22.0000	-35.0000	-19.0000	-44.0000	34.8000	-35.0000	-50.0000	-63.0000		-129.0000
		85	-22.0000	-35.0000	-19.0000	-44.0000	39.4000	-35.0000	-50.0000	-63.0000		-129.0000
		90	-22.0000	-35.0000	-19.0000	42.6000	47.7000	-35.0000	-50.0000	-63.0000		-129.0000
		95	-22.0000	-35.0000	-19.0000	73.4000	68.3000	-35.0000	-50.0000	-63.0000		105.6500
		99	-22.0000	-35.0000	-19.0000	178.0000	105.0000	-35.0000	-50.0000	-63.0000		578.0000
		99.5	-22.0000	-35.0000	-19.0000	178.0000	105.0000	-35.0000	-50.0000	-63.0000		578.0000
		99.9	-22.0000	-35.0000	-19.0000	178.0000	105.0000	-35.0000	-50.0000	-63.0000	49.0000	
May	N	Valid	0	27	0	28	42	42	15	15	42	
		Missing	42	15	42	14	0	0	27	27	0	27
	Percentiles	25		-35.0000		-44.0000	-31.0000	-35.0000	-50.0000	-63.0000		-129.0000
		50		-35.0000		-44.0000	-31.0000	-35.0000	-50.0000	-63.0000		-129.0000
		75		-35.0000		-44.0000	-31.0000	-35.0000	-50.0000	-63.0000		-129.0000
		80		-35.0000		-44.0000	-31.0000	-35.0000	-50.0000	-63.0000		-129.0000
_		85		-35.0000		14.5000	-31.0000	-35.0000	-50.0000	-63.0000		-129.0000
		90		-35.0000		47.3000	-31.0000	-35.0000	-50.0000	-63.0000		-129.0000
		95 99		-35.0000		50.0000	-31.0000	-35.0000	-50.0000	-63.0000		-129.0000
		99		-35.0000		50.0000	-31.0000	-35.0000	-50.0000	-63.0000	41.0000	-129.0000

			· · · · · · · · · · · · · · · · · · ·					T	Т			
MONTH		STATISTIC	ALACHLOR	ATRAZINE	BUTYLATE	CARBARYL	CARBOFURAN	CHLORPYRIFOS	CYANAZINE	DACTHAL	DIAZINON	EPTAM
		99.5		-35.0000		50.0000	-31.0000	-35.0000	-50.0000	-63.0000	41.0000	-129.0000
		99.9		-35.0000		50.0000	-31.0000	-35.0000	-50.0000	-63.0000	41.0000	-129.0000
June	N	Valid	0	26	0	26	40	40	14	14	40	14
		Missing	40	14	40	14	O	0	26	26	0	26
	Percentiles	25		-35.0000		-44.0000	-31.0000	-35.0000	-50.0000	-63.0000	-35.0000	-129.0000
		50		-35.0000		-44.0000	-31.0000	-35.0000	-50.0000	-63.0000	-35.0000	
		75		-35.0000		-44.0000	-31.0000	-35.0000	-50.0000	-63.0000	-35.0000	
		80		-35.0000		-44.0000	-31.0000	-35.0000	-50.0000	-63.0000	-35.0000	
		85		-35.0000		-44.0000	-31.0000	-35.0000	-50.0000	-63.0000	-35.0000	
		90		-35.0000		-44.0000	-31.0000	-35.0000	-50.0000	-63.0000	-35.0000	
		95		-35.0000		-44.0000	-31.0000	-35.0000	-50.0000	-63.0000	-35.0000	
		99		-35.0000		-44.0000	-31.0000	-35.0000	-50.0000	-63.0000	-35.0000	
		99.5		-35.0000		-44.0000	-31.0000	-35.0000	-50.0000	-63.0000	-35.0000	
		99.9		-35.0000		-44.0000	-31.0000	-35.0000	-50.0000	-63.0000	-35.0000	489.0000
July	N	Valid	0	28 15	0	29	43	43	15	15	43	15
_		Missing	43		43	14	0	0	28	28	. 0	28
	Percentiles	25		-35.0000		-44.0000	-31.0000	-35.0000	-50.0000	-63.0000		-129.0000
		50		-35.0000		-44.0000	-31.0000	-35.0000	-50.0000	-63.0000		-129.0000
		75		-35.0000		-44.0000	-31.0000	-35.0000	92.0000	-63.0000	-35.0000	
		80		-35.0000		-44.0000	-31.0000	-35.0000	148.8000	-63.0000	-35.0000	
		85		-35.0000		-44.0000	-31.0000	-35.0000	215.8000	-63.0000	-35.0000	
		90		-35.0000		-44.0000	-31.0000	-35.0000	386.2000	-63.0000	-35.0000	
,		95		-35.0000		-44.0000	-31.0000	-35.0000	589.0000	-63.0000	-35.0000	
		99		-35.0000		-44.0000	35.0000	-35.0000	589.0000	-63.0000	39.0000	
		99.5		-35.0000		-44.0000	35.0000	-35.0000	589.0000	-63.0000	39.0000	
		99.9		-35.0000		-44.0000	35.0000	-35.0000	589.0000	-63.0000	39.0000	
August	2	Valid	0	28	_0	29	44	44	16	16	44	16
		Missing	44	16	44	15	0	0	28	28	0	28
	Percentiles	25		-35.0000		-44.0000	-31.0000	-35.0000	-50.0000	-63.0000		-129.0000
		50		-35.0000		-44.0000	-31.0000	-35.0000	-50.0000	-63.0000		-129.0000
		75		-35.0000		-44.0000	-31.0000	-35.0000	-50.0000	-63.0000	36.0000	95.2500

r				Г				1		· · · · · · · · · · · · · · · · · · ·		····
MONTH		STATISTIC	ÁLACHLOR	ATRAZINE	BUTYLATE	CARBARYL	CARBOFURAN	CHLORPYRIFOS	CYANAZINE	DACTHAL	DIAZINON	EPTAM
		80		-35.0000		-44.0000	-31.0000	-35.0000	11.2000	-63.0000	49.0000	
		85		-35.0000		-44.0000	-31.0000	-35.0000	104.2000	-63.0000	60.5000	
		90		-35.0000		39.0000	-31.0000	-35.0000	187.2000	-63.0000	75.0000	
		95		-35.0000		78.0000	-31.0000	-35.0000	232.0000	-63.0000	111.2500	
		99		-35.0000		96.0000	-31.0000	-35.0000	232.0000	-63.0000		674.0000
		99.5		-35.0000		96.0000	-31.0000	-35.0000	232.0000	-63.0000	250.0000	
		99.9		-35.0000		96.0000	-31.0000	-35.0000	232.0000	-63.0000	250,0000	674.0000
September	N	Valid	O	28	0	29	43	43	15	15	43	15
		Missing	43	15	43	14	0	0	28	28	0	28
	Percentiles	25		-35.0000		-44.0000	-31.0000	-35.0000	-50.0000	-63.0000		-129.0000
		50		-35.0000		-44.0000	-31.0000	-35.0000	-50.0000	-63.0000		-129.0000
		75		-35.0000		-44.0000	-31.0000	-35.0000	-50.0000	-63.0000		-129.0000
		80		-35.0000		-44.0000	-31.0000	-35.0000	-50.0000	-63.0000	-35.0000	
		85		-35.0000		-44.0000	-31.0000	-35.0000	-50.0000	-63.0000	-35.0000	365.8000
		90		-35.0000		-44.0000	-31.0000	-35.0000	-50.0000	-63.0000	-35.0000	
		95		-35.0000		-44.0000	-31.0000	-35.0000	-50.0000	-63.0000	-35.0000	
		99		-35.0000		-44.0000	-31.0000	-35.0000	-50.0000	-63.0000	-35.0000	
		99.5		-35.0000		-44.0000	-31.0000	-35.0000	-50.0000	-63.0000	-35.0000	458.0000
October	N	Valid		27	12	41	41	41	12	12	41	12
		Missing	29	14	29	0	0	0	29	29	0	29
	Percentiles	25	-22.0000	-35.0000	-19.0000	-44.0000	-31.0000	-35.0000	-50.0000	-63.0000		-129.0000
		50	-22.0000	-35.0000	-19.0000	-44.0000	-31.0000	-35.0000	-50.0000	-63.0000		-129.0000
		75		-35.0000	-19.0000	-44.0000	-31.0000	-35.0000	-50.0000	-63.0000		-129.0000
		80		-35.0000	-19.0000	-44.0000	-31.0000	-35.0000	-50.0000	-63.0000		-129.0000
		85	-22.0000	-35.0000	-19.0000	-44.0000	-31.0000	-35.0000	-50.0000	-63.0000		-129.0000
		90		-35.0000	-19.0000	-44.0000	-31.0000	-35.0000	-50.0000	-63.0000		-129.0000
		95		-35.0000	-19.0000	-44.0000	-31.0000	-35.0000	-50.0000	-63.0000		-129.0000
		99	-22.0000	-35.0000	-19.0000	-44.0000	-31.0000	-35.0000	-50.0000	-63.0000		-129.0000
		99.5	-22.0000	-35.0000	-19.0000	-44.0000	-31.0000	-35.0000	-50.0000	-63.0000		-129.0000
		99.9	-22.0000	-35.0000	-19.0000	-44.0000	-31.0000	-35.0000	-50.0000	-63.0000	-35.0000	-129.0000

MONTH		STATISTIC	ALACHLOR	ATRAZINE	BUTYLATE	CARBARYL	CARBOFURAN		CYANAZINE	DACTHAL	DIAZINON	1
November	N		14	29	14	43	43	43	14	14	43	
		Missing	29	14	29	0	0	0	29	29	0	29
	Percentiles	25	-22.0000	-35.0000	-19.0000	-44.0000	-31.0000	-35.0000	-50.0000	-63.0000		-129.0000
		50	-22.0000	-35.0000	-19.0000	-44.0000	-31.0000	-35.0000	-50.0000	-63.0000		-129.0000
		75	-22.0000	-35.0000	-19.0000	-44.0000	-31.0000	-35.0000	-50.0000	-63.0000		-129.0000
		80	-22.0000	-35.0000	-19.0000	-44.0000	-31.0000	-35,0000	-50.0000	-63.0000		-129.0000
		85	-22.0000	-35.0000	-19.0000	-44.0000	-31.0000	-35.0000	-50.0000	-63.0000		-129.0000
		90	-22.0000	-35.0000	-19.0000	-44.0000	-31.0000	-35.0000	-50.0000	-63.0000		-129.0000
		95	-22.0000	-35.0000	-19.0000	-44.0000	-31.0000	-35.0000	-50.0000	-63.0000		-129.0000
		99	-22.0000	-35.0000	-19.0000	45.0000	-31.0000	-35.0000	-50.0000	-63.0000		-129.0000
		99.5	-22.0000	-35.0000	-19.0000	45.0000	-31.0000	-35.0000	-50.0000	-63.0000		-129.0000
		99.9	-22.0000	-35.0000	-19.0000	45.0000	-31.0000	-35.0000	-50.0000	-63.0000		-129.0000
December	N	Valid	16	30	16	45	45	45	16	16	45	16
		Missing	29	15	29	0	0	0	29	29	0	29
F	Percentiles	25	-22.0000	-35.0000	-19.0000	-44.0000	-31.0000	-35.0000	-50.0000	-63.0000		-129.0000
		50	-22.0000	-35.0000	-19.0000	-44.0000	-31.0000	-35.0000	-50.0000	-63.0000		-129.0000
		75	-22.0000	-35.0000	-19.0000	-44.0000	-31.0000	-35.0000	53.5000	-63.0000		-129.0000
L		80	-22.0000	-35.0000	-19.0000	-44.0000	-31.0000	-35.0000	103.6000	-63.0000		-129.0000
		85	-22.0000	-35.0000	-19.0000	-44.0000	-31.0000	-35.0000	127.0500	-63.0000		-129.0000
		90	-22.0000	-35.0000	-19.0000	-44.0000	-31.0000	-35.0000	146.9000	-63.0000		-129.0000
		95	-22.0000	-35.0000	-19.0000	-44.0000	-31.0000	-35.0000	156.0000	-63.0000		-129.0000
		99	-22.0000	-35.0000	-19.0000	-44.0000	-31.0000	-35.0000	156.0000	-63.0000		-129.0000
		99.5	-22.0000	-35.0000	-19.0000	-44.0000	-31.0000	-35.0000	156.0000	-63.0000		-129.0000
		99.9	-22.0000	-35.0000	-19.0000	-44.0000	-31.0000	-35.0000	156.0000	-63.0000		-129.0000
		99.9		-35.0000		-44.0000	-31.0000	-35.0000	-50.0000	-63.0000	-35.0000	458.0000

Table A4-2b Rank statistics as percentiles by month for the entire USGS Vernalis data set, Fonofos to Trifluralin. All values are in ng/L. Variable detection limits have been recoded as the inverse of the maximum reported detection limit.

MONTH		STATISTIC	FONOFOS	MALATHION	METHIDATHION	METOLACHLOR	MOLINATE	NAPROPAM	PEBULATE	SIMAZINE	THIOBENCARB	TRIFLURALIN
January	N	Valid	44	44	64	38	64	20	20	73	64	44
		Missing	29	29	9	35	9	53	53	0	9	29
	Percentiles		-24.0000	-45.0000	-63.0000	-47.0000	-53.0000	-28.0000	-44.0000	-82.0000	-60.0000	-60.0000
		50	-24.0000	-45.0000	-63.0000	-47.0000	-53.0000	-28.0000	-44.0000	119.0000	-60.0000	-60.0000
		75	-24.0000	-45.0000	30.7500	-47.0000	-53.0000	-28.0000	-44.0000	225.0000	-60.0000	-60.0000
		80	-24.0000	-45.0000	38.0000	-47.0000	-53.0000	-28.0000	-44.0000	273.6000	-60.0000	-60.0000
		85	-24.0000	-45.0000	63.5000	-47.0000	-53.0000	-28.0000	-44.0000	301.9000	-60.0000	-60.0000
		90	-24.0000	-45.0000	170.5000	-47.0000	-53.0000	-28.0000	-44.0000	429.2000	-60.0000	-60.0000
		95		-45.0000	476.2500	-47.0000	-53.0000	-28.0000	-44.0000	615.1000	-60.0000	-60.0000
		99	-24.0000	-45.0000	802.0000	-47.0000	-53.0000	-28.0000			-60.0000	-60.0000
		99.5	-24.0000	-45.0000	802.0000	-47.0000	-53.0000	-28.0000			-60.0000	-60.0000
		99.9	-24.0000	-45.0000	802.0000	-47.0000	-53.0000	-28.0000		1068.0000	-60.0000	-60.0000
February	N	Valid	57	57	68	54	68	27	27	84	68	57
		Missing	27	27	16	30	16	57	57	0	16	27
	Percentiles	25	-24.0000	-45.0000	-63.0000	-47.0000	-53.0000	-28.0000	-44.0000	-82.0000	-60.0000	-60.0000
		50	-24.0000	-45.0000	-63.0000	-47.0000	-53.0000	-28.0000	-44.0000	212.0000	-60.0000	-60.0000
		75	-24.0000	-45.0000	70.5000	-47.0000	-53.0000	-28.0000	-44.0000	426.0000	-60.0000	-60.0000
		80	-24.0000	-45.0000	88.4000	-47.0000	-53.0000	-28.0000	-44.0000	492.0000	-60.0000	-60.0000
		85	-24.0000	-45.0000	106.6500	-47.0000	-53.0000	-28.0000	-44.0000	760.7500	-60.0000	-60.0000
		90	-24.0000	-45.0000	173.3000	-47.0000	-53.0000	-28.0000	-44.0000	844.5000	-60.0000	-60.0000
		95	-24.0000	-45.0000	320.4500	-47.0000	-53.0000	-28.0000	-44.0000	1077.5000	-60.0000	-60.0000
		99	-24.0000	-45.0000	586.0000	-47.0000	-53.0000	-28.0000	-44.0000	1747.0000	-60.0000	-60.0000
		99.5	-24.0000	-45.0000	586.0000	-47.0000	-53.0000	-28.0000	-44.0000	1747.0000	-60.0000	-60.0000
		99.9	-24.0000	-45.0000	586.0000	-47.0000	-53.0000	-28.0000	-44.0000	1747.0000	-60.0000	-60.0000
March	N	Valid	42	42	58	44	58	14	14	72	58	42
		Missing	30	30	14	28	14	58	58	0	14	30
	Percentiles	25	-24.0000	-45.0000	-63.0000	-47.0000	-53.0000	-28.0000	-44.0000	107.2500	-60.0000	-60.0000
		50	-24.0000	-45.0000	-63.0000	-47.0000	-53.0000	-28.0000	-44.0000	212.5000	-60.0000	-60.0000
		75	-24.0000	-45.0000	-63.0000	-47.0000	-53.0000	-28.0000	-44.0000	319.2500	-60.0000	-60.0000

S C Z		STATISTIC 80 85 90 95 99 99.5	-24.0000 -24.0000 -24.0000 -24.0000 -24.0000 -24.0000	-45.0000 -45.0000 -45.0000 -45.0000 -45.0000 -45.0000	-63.0000 -63.0000 -63.0000 -63.0000 62.0000 62.0000	-47.0000 -47.0000 -47.0000 -47.0000 -47.0000	-53.0000 -53.0000 -53.0000 -53.0000 -53.0000 -53.0000	-28.0000 -28.0000 -28.0000 -28.0000 -28.0000 -28.0000	-44.000 -44.000 -44.000 -44.000 -44.000
April	N	Valid	44	44	55	40	55	14	
	<u> </u>	Missing	26	26	15		15	56	
	Percentiles	25 50	-24.0000	-45.0000	-63.0000		-53.0000	-28.0000	
	1	50 75	-24.0000	-45.0000	-63.0000		-53.0000	-28.0000	
	-	75	-24.0000	-45.0000	-63.0000		-53.0000	-28.0000	
		80	-24.0000	-45.0000 45.0000	-63.0000	-47.0000	-53.0000	-28.0000	
	<u> </u>	85 90	-24.0000	-45.0000	-63.0000	-47.0000	-53.0000 -53.0000	-28.0000	
	+	95	-24.0000 -24.0000	-45.0000 -45.0000	-63.0000 -63.0000	39.4000 56.7500	-53.0000	-28.0000	1046.000
	1	99	-24.0000	-45.0000	-63.0000	116.0000	-53.0000		1046.000
	 	99.5	-24.0000	-45.0000	-63.0000	116.0000	-53.0000		1046.000
		99.9	-24.0000	-45.0000	-63.0000	116.0000	-53.0000	28 0000	1046.000
May	N	Valid	27	27	28	15	-33.0000	- <u>20.000</u>	1040.000
Iviay	IN	Missing	15	15	14	27	14	42	4
	Percentiles	25	-24.0000	-45.0000	-63.0000	-47.0000	-53.0000	74	
	CICCILIICS	50	-24.0000	-45.0000	-63.0000	-47.0000	-53.0000		
	† · · · · · · · · · · · · · · · · · · ·	75	-24.0000	-45.0000	-63.0000	-47.0000	-53.0000		
	†	80	-24.0000	-45.0000	-63.0000	35.4000	-53.0000		
	†	85	-24.0000	-45.0000	-63.0000	59.6000	-53.0000		
	1	90	-24.0000	-45.0000	-63.0000	64.8000	-53.0000		
	†	95	-24.0000	-45.0000	-63.0000	69.0000	-53.0000		
		99	-24.0000	-45.0000	-63.0000	69.0000	-53.0000		***
		99.5	-24.0000	-45.0000	-63.0000	69.0000	-53.0000		
		99.9	-24.0000	-45.0000	-63.0000	69.0000	-53.0000		

MONTH		STATISTIC	FONOFOS	MALATHION	METHIDATHION	METOLACHLOR	MOLINATE			SIMAZINE	THIOBENCARB	TRIFLURALIN
June	N	Valid	26	26	26	14	26			40	40	26 14
		Missing	14	14	14	26	14	L	40	0	0	
	Percentiles	25	-24.0000	-45.0000	-63.0000		-53.0000			-82.0000	-60.0000	-60.0000
		50	-24.0000	-45.0000	-63.0000	-47.0000	-53.0000			-82.0000	-60.0000	-60.0000
		75	-24.0000	-45.0000	-63.0000	55.2500	-53.0000			70.7500	-60.0000	-60.0000
		80	-24.0000	-45.0000	-63.0000	62.0000	12.4000			82.0000	-60.0000	-60.0000
		85	-24.0000	-45.0000	-63.0000	72.5000	58.8500			88.7000	-60.0000	-60.0000
		90	-24.0000	-45.0000	-63.0000	96.5000	93.8000			90.8000	-60.0000	-60.0000
		95	-24.0000	-45.0000	-63.0000		128.5500			95.9500	-60.0000	-60.0000
		99	-24.0000	-45.0000	-63.0000		145.0000			103.0000	528.0000	-60.0000
		99.5	-24.0000	-45.0000	-63.0000		145.0000			103.0000	528.0000	-60.0000
		99.9	-24.0000	-45.0000	-63.0000		145.0000			103.0000	528.0000	-60.0000
July	N	Valid	28	28	29	15	29		"	43	43	28
		Missing	15	15	14	28	14	1	43	0	0	15
	Percentiles	25	-24.0000	-45.0000	-63.0000	52.0000	-53.0000			-82.0000	-60.0000	-60.0000
		50	-24.0000	-45.0000	-63.0000	58.0000	-53.0000			-82.0000	-60.0000	-60.0000
		75	-24.0000	-45.0000	-63.0000	71.0000	-53.0000			-82.0000	-60.0000	-60.0000
		80	-24.0000	-45.0000	-63.0000	71.0000	-53.0000)		-82.0000	-60.0000	-60.0000
		85	-24.0000	-45.0000	-63.0000	73.4000	-53.0000)	.,,	-24.0000	-60.0000	-60.0000
		90	-24.0000	-45.0000	-63.0000	85.0000	-53.0000)		70.4000	-60.0000	-60.0000
		95	-24.0000	-45.0000	-63.0000	100.0000	-53.0000			80.8000	-60.0000	-60.0000
		99	-24.0000	-45.0000	-63.0000	100.0000	-53.0000			82.0000	-60.0000	-60.0000
		99.5	-24.0000	-45.0000	-63.0000	100.0000	-53.0000			82.0000	-60.0000	-60.0000
		99.9	-24.0000	-45.0000	-63.0000	100.0000	-53.0000)		82.0000	-60.0000	-60.0000
August	N	Valid	28	28	29	16	29			44	44	28
		Missing	16	16	15	28	15	44	44	0	0	16
	Percentiles	25	-24.0000	-45.0000	-63.0000	-47.0000	-53.0000			-82.0000	-60.0000	-60.0000
	[50	-24.0000	-45.0000	-63.0000	47.5000	-53.0000			-82.0000	-60.0000	-60.0000
		75	-24.0000	-45.0000	-63.0000	52.5000	-53.0000)		-82.0000	-60.0000	-60.0000
		80	-24.0000	-45.0000	-63.0000	56.0000	-53.0000			-82.0000	-60.0000	-60.0000
	1	85	-24.0000	-45.0000	-63.0000	62.0500	-53.0000			63.2500	-60.0000	-60.0000
	<u> </u>	90	-24.0000	-45.0000	-63.0000	81.1000	-53.0000			69.5000	-60.0000	-60.0000

2		STA	FO	MAL	METHIDATH	METOLACHLOR	MO	NAP	PE	<u>@</u>	THIOBE	TRIFLI
MONTH		STATISTIC	FONOFOS	MALATHION	Ō	* *	MOLINATE	NAPROPAM	PEBULATE	SIMAZINE	THIOBENCARB	TRIFLURALIN
		95	-24.0000	-45.0000	-63.0000		-53.0000			91.2500	-60.0000	-60.0000
		99	-24.0000	-45.0000	-63.0000		-53.0000			98.0000	-60.0000	-60.0000
		99.5	-24.0000	-45.0000	-63.0000		-53.0000			98.0000	-60.0000	-60.0000
		99.9	-24.0000	-45.0000	-63.0000		-53.0000			98.0000	-60.0000	-60.0000
September	N	Valid	28	28	29	15	29	0	0	43	43	28
		Missing	15	15	14	28	14	43	43	0	0	15
	Percentiles	25	-24.0000	-45.0000	-63.0000		-53.0000			-82.0000	-60.0000	-60.0000
		50	-24.0000	-45.0000	-63.0000	-47.0000	-53.0000			-82.0000	-60.0000	-60.0000
		75	-24.0000	-45.0000	-63.0000	-47.0000	-53.0000			71.0000	-60.0000	-60.0000
		80	-24.0000	-45.0000	-63.0000	-47.0000	-53.0000			75.2000	-60.0000	-60.0000
		85	-24.0000	-45.0000	-63.0000		-53.0000			78.4000	-60.0000	-60.0000
		90	-24.0000	-45.0000	-63.0000		-53.0000			82.0000	-60.0000	-60.0000
		95	-24.0000	-45.0000	-63.0000		-53.0000			95.4000	-60.0000	-60.0000
		99	-24.0000	-45.0000	-63.0000		-53.0000			119.0000	-60.0000	-60.0000
		99.5	-24.0000	-45.0000	-63.0000	-47.0000	-53.0000			119.0000	-60.0000	-60.0000
October	N	Valid	27	27	41	12	41	12	12	41	41	27
		Missing	14	14	0	29	0	29	29	0	0	14
	Percentiles	25	-24.0000	-45.0000	-63.0000	-47.0000	-53.0000	-28.0000	-44.0000	-82.0000	-60.0000	-60.0000
		50	-24.0000	-45.0000	-63.0000	-47.0000	-53.0000	-28.0000	-44.0000	-82.0000	-60.0000	-60.0000
		75	-24.0000	-45.0000	-63.0000	-47.0000	-53.0000		-44.0000	-82.0000	-60.0000	-60.0000
		80	-24.0000	-45.0000	-63.0000	-47.0000	-53.0000	-28.0000	-44.0000	-82.0000	-60.0000	-60.0000
		85	-24.0000	-45.0000	-63.0000	-47.0000	-53.0000	-28.0000	-44.0000	-82.0000	-60.0000	-60.0000
		90	-24.0000	-45.0000	-63.0000	-47.0000	-53.0000	-28.0000	-44.0000	65.4000	-60.0000	-60.0000
		95	-24.0000	-45.0000	-63.0000	-47.0000	-53.0000	-28.0000	-44.0000	69.9000	-60.0000	-60.0000
		99	-24.0000	-45.0000	-63.0000	-47.0000	-53.0000	-28.0000	-44.0000	77.0000	-60.0000	-60.0000
		99.5	-24.0000	-45.0000	-63.0000	-47.0000	-53.0000	-28.0000	-44.0000	77.0000	-60.0000	-60.0000
		99.9	-24.0000	-45.0000	-63.0000	-47.0000	-53.0000	-28.0000	-44.0000	77.0000	-60.0000	-60.0000
November	N	Valid	29	29	43	14	43	14	14	43	43	29
		Missing	14	14	0	29	O	29	29	0	0	14
j	Percentiles	25	-24.0000	-45.0000	-63.0000	-47.0000	-53.0000	-28.0000	-44.0000	-82.0000	-60.0000	-60.0000
		50	-24.0000	-45.0000	-63.0000	-47.0000	-53.0000	-28.0000	-44.0000	-82.0000	-60.0000	-60.0000
		75	-24.0000	-45.0000	-63.0000	-47.0000	-53.0000	-28.0000	-44.0000	-82.0000	-60.0000	-60.0000

MONTH	STATISTIC	FONOFOS	MALATHION	METHIDATHION	METOLACHLOR	MOLINATE	NAPROPAM	PEBULATE	SIMAZINE	THIOBENCARB	TRIFLURALIN
	80	-24.0000	-45.0000	-63.0000	-47.0000	-53.0000	-28.0000	-44.0000	-82.0000	-60.0000	-60.0000
	85	-24.0000	-45.0000	-63.0000	-47.0000	-53.0000	-28.0000	-44.0000	-82.0000	-60.0000	-60.0000
	90	-24.0000	-45.0000	-63.0000	-47.0000	-53.0000	-28.0000	-44.0000	-82.0000	-60.0000	-60.0000
	95	-24.0000	-45.0000	-63.0000	-47.0000	-53.0000	-28.0000	-44.0000	-82.0000	-60.0000	-60.0000
	99	-24.0000	-45.0000	-63.0000	-47.0000	-53.0000	-28.0000	-44.0000	-82.0000	-60.0000	-60.0000
	99.5	-24.0000	-45.0000	-63.0000	-47.0000	-53.0000	-28.0000	-44.0000	-82.0000	-60.0000	-60.0000
	99.9	-24.0000	-45.0000	-63.0000	-47.0000	-53.0000	-28.0000	-44.0000	-82.0000	-60.0000	-60.0000
December N		30	30	45	16	45	16	16	45	45	30
	Missing	15	15	0	29	0	29	29	0	0	15
Percentiles	25	-24.0000	-45.0000	-63.0000	-47.0000	-53.0000	-28.0000	-44.0000	-82.0000	-60.0000	-60.0000
	50	-24.0000	-45.0000	-63.0000	-47.0000	-53.0000	-28.0000	-44.0000	-82.0000	-60.0000	-60.0000
	75	-24.0000	-45.0000	-63.0000	-47.0000	-53.0000	-28.0000	-44.0000	92.5000	-60.0000	-60.0000
	80	-24.0000	-45.0000	-63.0000	-47.0000	-53.0000	-28.0000	-44.0000	140.4000	-60.0000	-60.0000
	85	-24.0000	-45.0000	-63.0000	-47.0000	-53.0000	-28.0000	-44.0000	155.2000	-60.0000	-60.0000
	90	-24.0000	-45.0000	-63.0000	-47.0000	-53.0000	-28.0000	-44.0000	185.0000	-60.0000	-60.0000
	95	-24.0000	-45.0000	-63.0000	-47.0000	-53.0000	-28.0000	-44.0000	249.8000	-60.0000	-60.0000
	99	-24.0000	-45.0000	70.0000	-47.0000	-53.0000	-28.0000	-44.0000	273.0000	-60.0000	-60.0000
	99.5	-24.0000	-45.0000	70.0000	-47.0000	-53.0000	-28.0000	-44.0000	273.0000	-60.0000	-60.0000
	99.9	-24.0000	-45.0000	70.0000	-47.0000	-53.0000	-28.0000	-44.0000	273.0000	-60.0000	-60.0000
	99.9	-24.0000	-45.0000	-63.0000	-47.0000	-53.0000			119.0000	-60.0000	-60.0000

Figure A4-1 Concentrations of Simazine in ng/L as measured by USGS (*MacCoy, et.al, 1994*) in the San Joaquin River near Vernalis, California, plotted by sampling date from January 1991 through April 1994. Negative values are below detection limit observations coded as negative numbers.

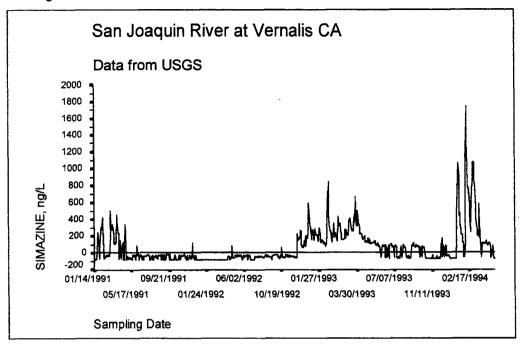


Figure A4-2 Concentrations of Diazinon in ng/L as measured by USGS (*MacCoy, et.al, 1994*) in the San Joaquin River near Vernalis, California, plotted by sampling date from January 1991 through April 1994. Negative values are below detection limit observations coded as negative numbers.

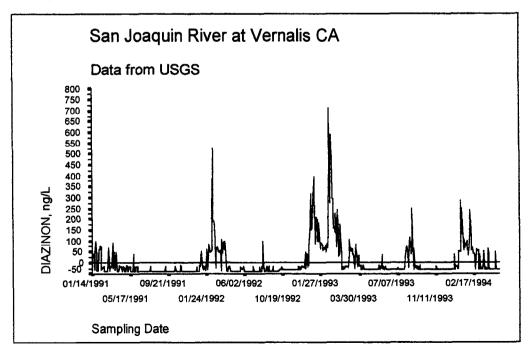


Figure A4-3 Concentrations of Carbaryl in ng/L as measured by USGS (*MacCoy, et.al, 1994*) in the San Joaquin River near Vernalis, California, plotted by sampling date from January 1991 through April 1994. Negative values are below detection limit observations coded as negative numbers.

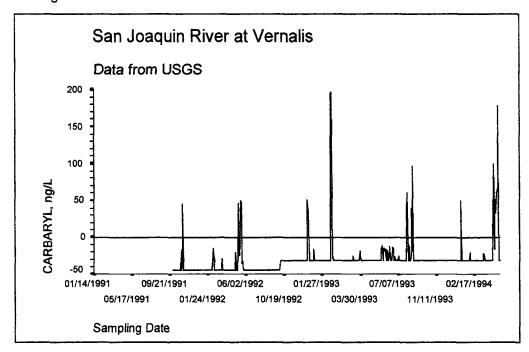


Figure A4-4 Concentrations of **Metolachlor** in ng/L as measured by USGS (*MacCoy, et.al, 1994*) in the San Joaquin River near Vernalis, California, plotted by sampling date from January 1991 through April 1994. Negative values are below detection limit observations coded as negative numbers.

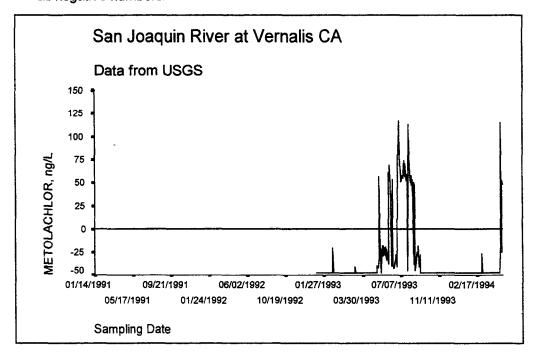


Figure A4-5 Concentrations of **Methidathion** in ng/L as measured by USGS (*MacCoy, et.al, 1994*) in the San Joaquin River near Vernalis, California, plotted by sampling date from January 1991 through April 1994. Negative values are below detection limit observations coded as negative numbers.

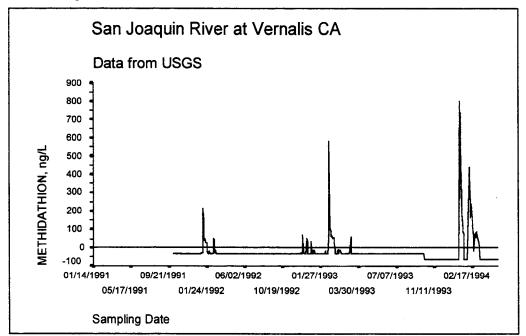


Figure A4-6 Concentrations of Carbofuran in ng/L as measured by USGS (*MacCoy, et.al, 1994*) in the San Joaquin River near Vernalis, California, plotted by sampling date from January 1991 through April 1994. Negative values are below detection limit observations coded as negative numbers.

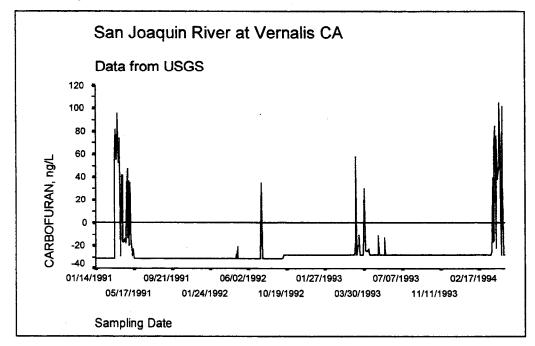


Figure A4-7 Concentrations of Cyanazine in ng/L as measured by USGS (*MacCoy, et.al, 1994*) in the San Joaquin River near Vernalis, California, plotted by sampling date from January 1991 through April 1994. Negative values are below detection limit observations coded as negative numbers.

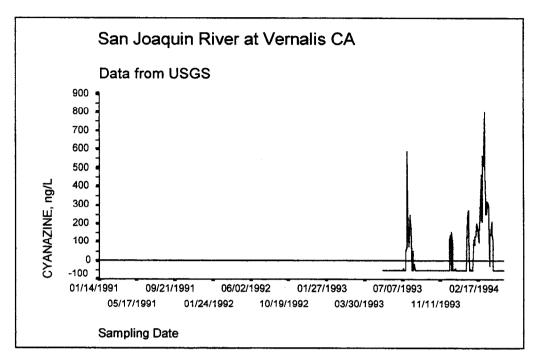


Figure A4-8 Concentrations of Dacthal in ng/L as measured by USGS (*MacCoy, et.al, 1994*) in the San Joaquin River near Vernalis, California, plotted by sampling date from January 1991 through April 1994. Negative values are below detection limit observations coded as negative numbers.

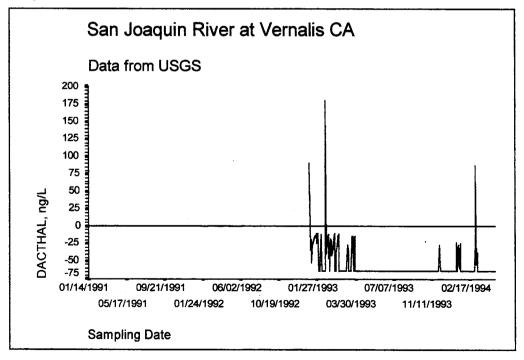
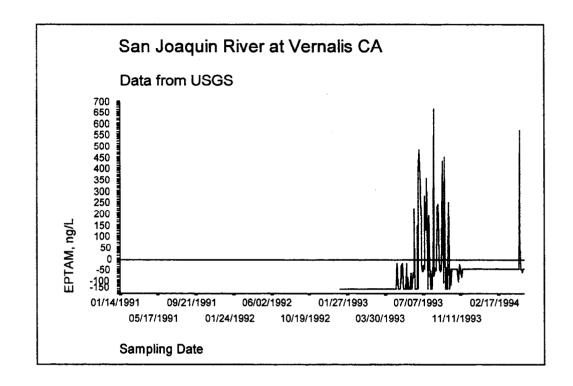



Figure A4-9 Concentrations of Eptam in ng/L as measured by USGS (*MacCoy, et.al, 1994*) in the San Joaquin River near Vernalis, California, plotted by sampling date from January 1991 through April 1994. Negative values are below detection limit observations coded as negative numbers.

APPENDIX 5

Analytical Data from the October 1997 Sampling Event

Table A5-1 Major ions data from the October 1997 sampling event. All concentrations are in mg/L unless otherwise noted.

Station	рН, su	CO3	нсоз	SO4	CI	Ca	Mg	Na	к	sum of ions	TDS	TSS	EC, μS/cm
Site 1	7.31	0	122	80.3	80.9	33.2	16.6	74.7	2.38	410	357	5.76	677
Site 2	7.33	0	119	81.1	80.8	33.4	16.8	74.6	2.89	409	346	5.33	685
Site 3	7.44	0	123	72.7	64.6	32.2	14.9	69.0	2.24	379	335	24.8	631
Site 4	7.30	0	104	81.3	52.1	26.8	14.2	67.8	2.81	349	321	16.4	604
Site 5	7.27	0	107	77.4	57.5	28.4	14.1	66.8	2.40	354	325	39.1	609

Table A5-2 Nutrient data from the October 1997 sampling event. All concentrations are in mg/L unless otherwise noted. "_U" represents unfiltered or total concentrations, "ON" is organic-N, calculated from ammonia and Total Kjeldahl Nitrogen by difference.

STATION	TP_U	OP_U	NO3+NO2_U	NH3_U	ON_U	TOC	DOC
Site 1	.200	.184	1.25	.223	.427	3.80	3.60
Site 2	.200	.186	1.24	.214	.376	3.80	3.60
Site 3	.200	.158	1.71	.114	.496	3.60	3.20
Site 4	1.500	.128	1.28	.082	.308	3.50	3.20
Site 5	.380	.146	1.41	.089	.441	3.60	3.20

Table A5-3

Trace element data from the October 1997 sampling event. All concentrations are in µg/L, exc HG_F) and methylmercury (MEHG_U, MEHG_F) which are expressed in ng/L. "_U" represents "_F" represents filtered or dissolved concentrations. Negative values represent data below the the absolute value representing the LOD). Except for mercury data, all other trace elements w

	Silver		Aluminu	ım	Arsenic	•	Barium	1
STATION	AG_U	AG_F	AL_U	AL_F	AS_U	AS_F	BA_U	BA
Site 1	.0273	.0241	181.00	16.00	2.25	2.11	49.8	49.
Site 2	.0699	.0679	141.00	15.80	2.16	2.14	49.6	47.
Site 3	.0625	.0662	210.00	8.14	2.07	1.81	55.0	49.:
Site 4	.0654	.0333	343.00	15.90	2.10	1.80	52.2	44.
Site 5	.0373	.0221	256.00	13.30	2.00	1.89	52.2	47.3

	Beryllic	u m	Cadmium Cobalt Chromium			ium		
STATION	BE_U	BE_F	CD_U	CD_F	CO_U	CO_F	CR_U	CR_
Site 1	.0024	0006	.0125	.0102	.250	.184	2.23	1.57
Site 2	.0089	0006	.0123	.0134	.219	.171	1.93	1.93
Site 3	.0154	.0006	.0156	.0098	.274	.114	2.24	1.71
Site 4	.0289	0006	.0137	.0117	.325	.099	2.14	1.75
Site 5	.0225	0006	.0163	.0119	.300	.106	2.10	1.76

	Copper	•	Iron		Total N	lercury	Methylme	rcury
STATION	CUU	CU_F	FE_U	FE_F	HG_U	HG_F	MEHG U	MEHC
Site 1	1.68	1.43	176.0	15.8	1.98	.710	.0400	.0220
Site 2	1.56	1.37	118.1	12.3	2.33	1.070	.0330	.0270
Site 3	1.76	1.24	281.1	10.0	4.04	.920	.0680	.0140
Site 4	2.07	1.35	388.5	11.5	3.93	1.050	.0470	.0120
Site 5	1.95	1.36	310.3	11.4	3.74	.780	.0250	.0090

	Mangar	1ese	Molybd	lenum	Nickel		Lead		
STATION	MN U	MN F	MO U	MO_F	NI_U	NI_F	PB_U	PB_F	
Site 1	73.7	59.5	2.96	3.08	.0684	0400	.1490	.0173	
Site 2	66.9	58.6	2.95	3.00	0400	0400	.1130	.0195	
Site 3	59.8	2.0	2.87	3.03	0400	0400	.2940	.0107	
Site 4	56.2	2.8	2.53	2.54	.4309	0400	.3420	.0605	
Site 5	55.7	2.3	2.66	2.80	.2811	0400	.3280	.0124	

	Antimo	ny	Seleniu	ım	Strontic	um	Thalliu	n	
STATION	SB U	SB F	SE U	SE F	SR U	SR_F	TL_U	TL_F	
Site 1	.1010	.1040	.547	.567	427	439	.0028	.0020	
Site 2	.1070	.1070	.511	.555	424	425	.0022	.0019	
Site 3	.0848	.0805	.638	.746	376	375	.0026	.0015	
Site 4	.0948	.0870	.540	.486	331	309	.0046	.0006	
Site 5	.0859	.0857	.743	.651	339	341	.0027	.0012	

	Uraniu	ım	Vanadi	ium	Zinc		
STATION	UU	UF	V_U	V_F	ZN_U	ZN_F	
Site 1	9.49	9.66	4.96	4.62	1.250	.680	
Site 2	9.47	9.44	4.75	4.58	.988	.666	
Site 3	10.30	10.20	3.95	3.26	1.430	.565	
Site 4	7.98	7.34	4.54	3.47	1.810	.562	
Site 5	8.47	8.49	4.25	3.53	1.550	.540	

			·

APPENDIX 6

Statistical and Graphical Summary of TFCF Permanent Hydrolab Probe Data: Hourly Average Values March 1997 through February 1998

	·	

Table A6-1 Statistical summary by month of March 1997 through February 1998 water quality parameters measured by the In Situ Hydrolab H-20 probe installed at the intake of the TFCF behind the debris boom. These data summarize hourly average values.

Mar 1997 Apr 1997 May 1997 June 1997	N Mean Median Minimum Maximum N Mean Median Minimum Maximum N Mean Median Minimum Maximum Median Minimum Median Minimum Median	636 354.8042 331.0000 150.00 601.00 616 432.0774 378.0000 63.00 835.50 314 460.0117 432.5000 276.00 599.00	631 8.0587 8.0750 7.61 8.50 610 7.9568 8.3742 6.96 9.37 391 7.4463 7.2400	631 14.7912 15.1200 10.41 18.46 607 16.9767 16.1950 13.66 31.07 390 20.9509	631 8.9493 8.2650 7.49 11.59 612 8.7154 8.7700 6.98 13.33 391	631 609.2998 610.0000 551.00 647.50 609 588.2781 584.0000 512.50 655.00	188 12.2411 12.1000 10.35 13.69 193 12.1235 12.1194 10.30
May 1997	Median Minimum N Mean Median Minimum N Mean Minimum Maximum N Mean Median Minimum N Mean Median	331.0000 150.00 601.00 616 432.0774 378.0000 63.00 835.50 314 460.0117 432.5000 276.00	8.0750 7.61 8.50 610 7.9568 8.3742 6.96 9.37 391 7.4463 7.2400	15.1200 10.41 18.46 607 16.9767 16.1950 13.66 31.07 390 20.9509	8.2650 7.49 11.59 612 8.7154 8.7700 6.98 13.33	610.0000 551.00 647.50 609 588.2781 584.0000 512.50 655.00	12.1000 10.35 13.69 193 12.1235 12.1194 10.30
May 1997	Minimum Maximum N Mean Median Minimum Maximum N Mean Median Minimum Meximum Meximum Minimum Maximum	150.00 601.00 616 432.0774 378.0000 63.00 835.50 314 460.0117 432.5000 276.00	7.61 8.50 610 7.9568 8.3742 6.96 9.37 391 7.4463 7.2400	10.41 18.46 607 16.9767 16.1950 13.66 31.07 390 20.9509	7.49 11.59 612 8.7154 8.7700 6.98 13.33	551.00 647.50 609 588.2781 584.0000 512.50 655.00	10.35 13.69 193 12.1235 12.1194 10.30
May 1997	Maximum N Mean Median Minimum Maximum N Mean Median Minimum Maximum Modian Minimum Maximum N	601.00 616 432.0774 378.0000 63.00 835.50 314 460.0117 432.5000 276.00	8.50 610 7.9568 8.3742 6.96 9.37 391 7.4463 7.2400	18.46 607 16.9767 16.1950 13.66 31.07 390 20.9509	11.59 612 8.7154 8.7700 6.98 13.33	647.50 609 588.2781 584.0000 512.50 655.00	13.69 193 12.1235 12.1194 10.30
May 1997	N Mean Median Minimum Maximum N Mean Median Minimum Maximum	616 432.0774 378.0000 63.00 835.50 314 460.0117 432.5000 276.00	610 7.9568 8.3742 6.96 9.37 391 7.4463 7.2400	607 16.9767 16.1950 13.66 31.07 390 20.9509	612 8.7154 8.7700 6.98 13.33	609 588.2781 584.0000 512.50 655.00	193 12.1235 12.1194 10.30
May 1997	Mean Median Minimum Maximum N Mean Median Minimum Maximum N	432.0774 378.0000 63.00 835.50 314 460.0117 432.5000 276.00	7.9568 8.3742 6.96 9.37 391 7.4463 7.2400	16.9767 16.1950 13.66 31.07 390 20.9509	8.7154 8.7700 6.98 13.33	588.2781 584.0000 512.50 655.00	12.1235 12.1194 10.30
	Median Minimum Maximum N Mean Median Minimum Maximum N	378.0000 63.00 835.50 314 460.0117 432.5000 276.00	8.3742 6.96 9.37 391 7.4463 7.2400	16.1950 13.66 31.07 390 20.9509	8.7700 6.98 13.33	584.0000 512.50 655.00	12.1194 10.30
	Minimum Maximum N Mean Median Minimum Maximum N	63.00 835.50 314 460.0117 432.5000 276.00	6.96 9.37 391 7.4463 7.2400	13.66 31.07 390 20.9509	6.98 13.33	512.50 655.00	10.30
	Maximum N Mean Median Minimum Maximum N	835.50 314 460.0117 432.5000 276.00	9.37 391 7.4463 7.2400	31.07 390 20.9509	13.33	655.00	
	N Mean Median Minimum Maximum	314 460.0117 432.5000 276.00	391 7.4463 7.2400	390 20.9509		· · · · · · · · · · · · · · · · · · ·	13.67
	Mean Median Minimum Maximum N	460.0117 432.5000 276.00	7.4463 7.2400	20.9509	391	301	
June 1997	Median Minimum Maximum N	432.5000 276.00	7.2400				211
June 1997	Minimum Maximum N	276.00			7.4950	644.5418	12.6436
June 1997	Maximum N			21.0733	7.4450	670.0000	12.7531
June 1997	N	500.00	7.07	17.72	5.95	541.50	11.01
June 1997		399.00	8.54	23.73	10.70	697.00	13.91
	Mean	103	125	125	125	125	122
		332.7751	7.7650	23.1920	7.2685	601.6507	12.6847
	Median	272.5000	7.7500	23.3300	7.2900	599.5000	12.7712
1	Minimum	245.00	7.63	11.47	6.07	573.00	10.72
	Maximum	556.00	7.94	24.52	7.99	637.00	13.44
July 1997	N-	505	614	612	614	613	607
	Mean	285.1393	7.7675	24.6302	7.2398	633.0495	13.4576
	Median	251.0000	7.8000	24.7300	7.3250	644.0000	13.5766
	Minimum	171.00	7.12	21.94	5.11	551.50	11.29
	Maximum	576.50	8.11	26.37	8.45	691.50	13.93
Aug 1997	N	494	493	493	493	493	493
	Mean	274.5469	7.5484	24.6123	7.0390	616.9669	13.5692
	Median	248.0000	7.5300	24.5900	7.0000	608.0000	13.6006
	Minimum	115.50	7.10	12.45	5.83	541.50	11.04
	Maximum	594.00	8.25	26.76	8.23	671.00	13.92
Sept 1997	N	403	402	401	402	402	400
	Mean	337.6278	-28.8538	22.8112	7.2213	507.3483	13.1266
	Median	313.0000	8.4475	22.6550	7.5375	503.5000	12.9511
	Minimum	4.00	-9999.00	.00	3.82	459.00	11.00
	Maximum	571.00	8.99	28.73	9.53	659.00	13.84
Oct 1997	N	743	743	742	743	743	735
	Mean	462.2069	7.0488	17.9678	9.7447	603.1006	13.7206
	Median	461.5000	7.0750	17.5950	9.8800	598.0000	13.7296
	Minimum	10.00	6.53	8.10	8.27	519.00	13.42
	Maximum	645.50	7.93	22.55	11.54	672.00	14.05
Nov 1997	N	715	713	711	713	712	709
	Mean	532.4240	7.3552	14.8956	9.8095	682.2156	13.8328
	Median	500.0000	7.3750	14.3000	9.8400	683.5000	13.848
		275.00	6.77				
	Minimum	2/3.00		6.41	8. 6 8	643.50	13.34

Month	Statistic	EC, μS/cm	рН, su	T, °C	DO, mg/L	Eh, mV	BATT_V
Dec 1997	N	674	645	635	653	643	686
	Mean	664.2814	7.4603	9.4174	10.7023	578.8292	13.9743
	Median	623,0000	7.4600	9.3300	10.4300	569.0000	13.9642
	Minimum	391.00	7.21	.00	9.02	531.50	12.60
	Maximum	984.00	7.84	12.71	12.61	688.00	14.30
Jan 98	N	707	698	687	701	694	703
	Mean	481.7270	7.5917	9.9346	9.8066	555,4765	13.9358
	Median	437.5000	7.7200	10.1850	9.6250	555.0000	13.9302
	Minimum	243.00	6.51	4.00	7.65	512.50	13.60
	Maximum	979.00	7.99	12.29	11.92	616.00	14.22
Feb 98	N	106	105	105	105	105	105
(incomplete)	Mean	385.5377	7.8506	10.9572	9.2380	607.4571	13.9259
	Median	382.2500	7.8500	10.9750	9.4900	609.0000	13.9245
	Minimum	234.00	7. 7 0	10.65	7.52	586.00	13.78
	Maximum	607.00	7.99	11.24	10.13	625.50	14.08
Total	N	6016	6170	6139	6183	6161	5152
	Mean	438.7461	5.2073	17.0942	8.8478	604.0321	13.5293
	Median	421.5000	7.6000	16.9450	8.9300	597.0000	13.7420
	Minimum	4.00	-9999.00	.00	3.82	459.00	10.30
	Maximum	984.00	9.37	31.07	13.33	716.50	14.30

Figure A6-1 Plot of hourly average conductivity measured March through May 1997 by the *in situ* Hydrolab probe at the TFCF.

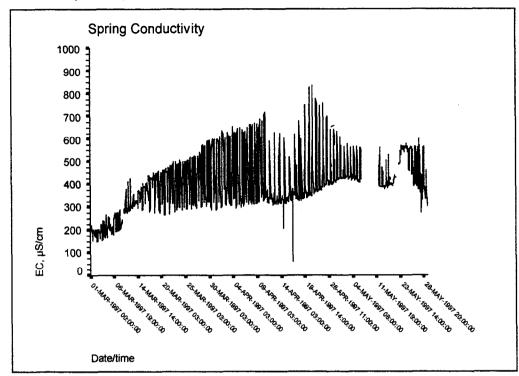


Figure A6-2 Plot of hourly average dissolved oxygen measured March through May 1997 by the in situ Hydrolab probe at the TFCF.

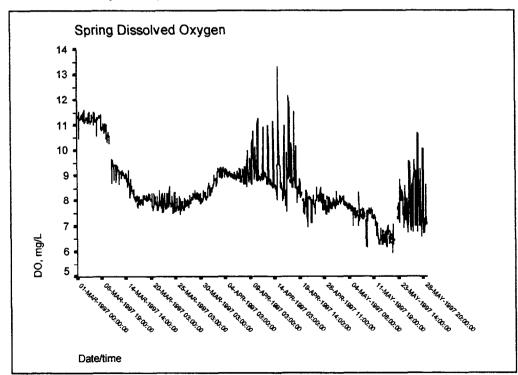


Figure A6-3 Plot of hourly average probe depth (showing daily tidal fluctuations) measured March through May 1997 by the *in situ* Hydrolab probe at the TFCF.

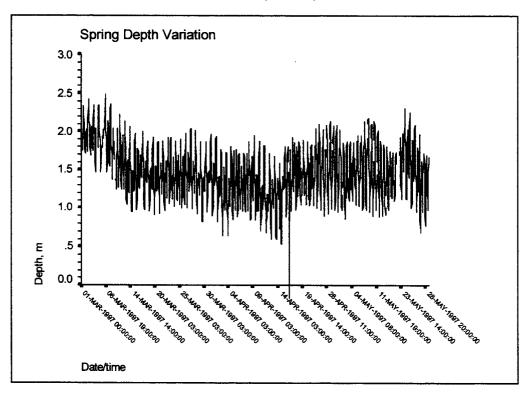


Figure A6-4 Plot of hourly average pH measured March through May 1997 by the *in situ* Hydrolab probe at the TFCF.

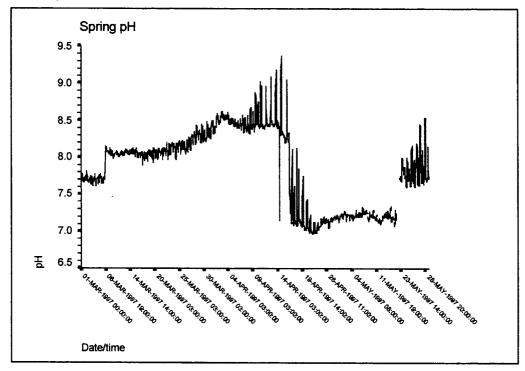


Figure A6-5 Plot of hourly average temperature measured March through May 1997 by the *in situ* Hydrolab probe at the TFCF.

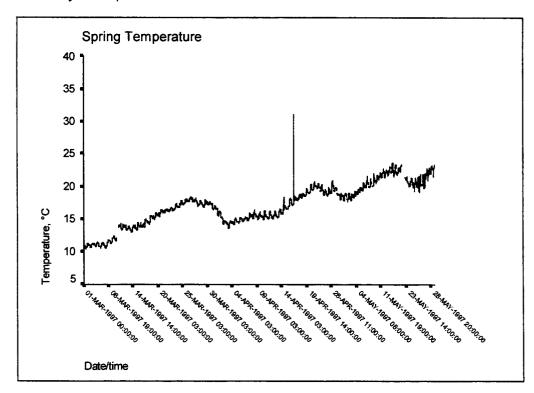


Figure A6-6 Plot of hourly conductivity measured June through August 1997 by the *in situ* Hydrolab probe at the TFCF.

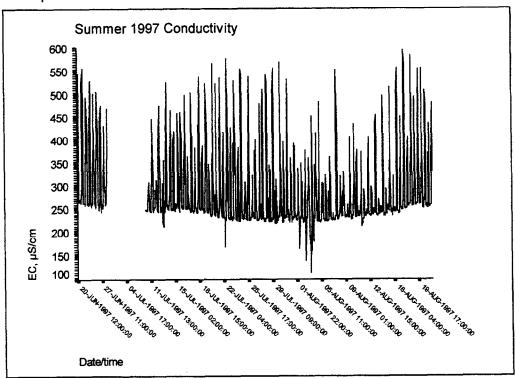


Figure A6-7 Plot of hourly average dissolved oxygen measured June through August 1997 by the *in situ* Hydrolab probe at the TFCF.

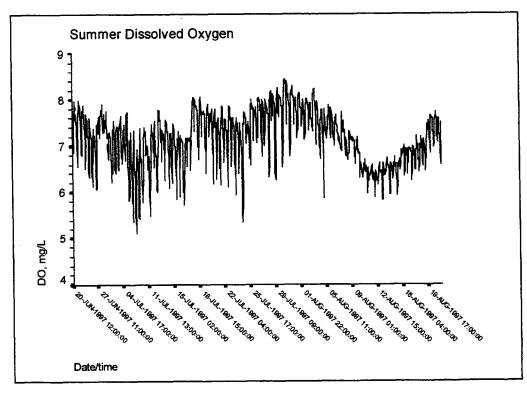
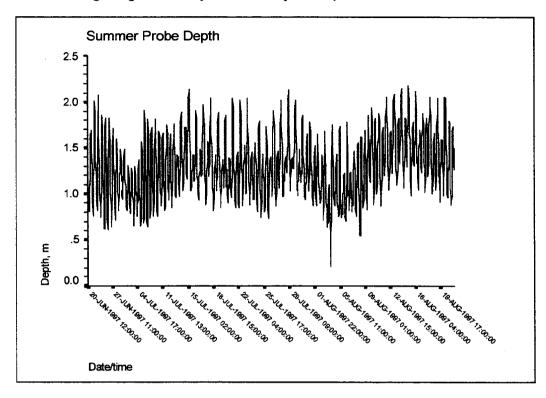



Figure A6-8 Plot of hourly average probe depth (showing daily tidal fluctuations) measured June through August 1997 by the *in situ* Hydrolab probe at the TFCF.

Figure A6-9 Plot of hourly average pH measured June through August 1997 by the *in situ* Hydrolab probe at the TFCF.

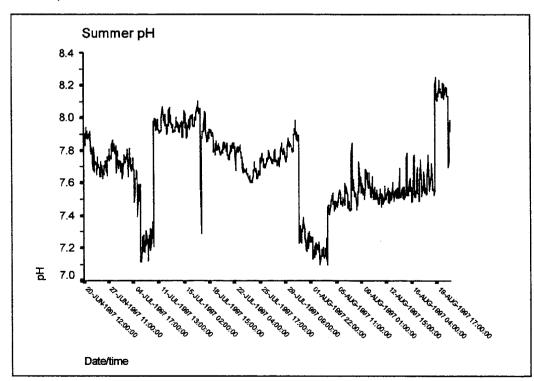
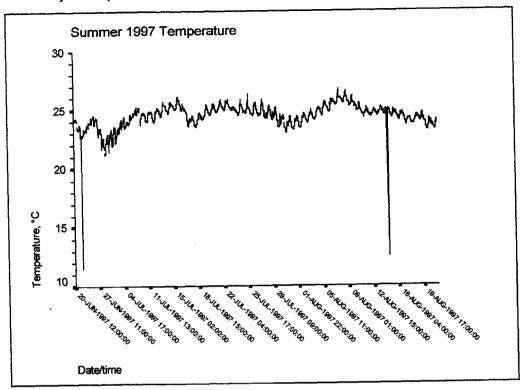



Figure A6-10 Plot of hourly average temperature measured June through August 1997 by the *in situ* Hydrolab probe at the TFCF.

