FINAL
SUMMARY REPORT

Peer Review of the Science Informing the Upper San Joaquin River Basin Storage Investigation

December 4, 2015

Prepared for:

U.S. Bureau of Reclamation
Mid-Pacific Regional Office
2800 Cottage Way
Sacramento, CA 95825

Prepared by:

Amec Foster Wheeler Environment & Infrastructure, Inc.
104 West Anapamu Street, Suite 204A
Santa Barbara, CA 93101

Reclamation Order No. R15PB00396
Amec Foster Wheeler Project No. 32106C014
TABLE OF CONTENTS

1.0 Background .. 1
2.0 Peer Reviewers .. 2
3.0 Summary of Peer Reviewer Responses .. 3
 Question 1 .. 3
 Question 2 .. 4
 Other Comments ... 5
4.0 Conclusions and Recommendations .. 7

Appendix A: Charge to the Reviewers and Documents Provided
Appendix B: Complete Individual Memoranda
Appendix C: Reviewer’s Resumes
Appendix D: Comment Response Matrix
Executive Summary

The Upper San Joaquin River Basin Storage Investigation (Investigation or USJRBSI) is a feasibility study by the Bureau of Reclamation (Reclamation or USBR), in cooperation with the California Department of Water Resources (DWR). The purpose of the Investigation is to determine the type and extent of federal interest in a potential project to expand water storage capacity in the Upper San Joaquin River watershed to: (1) improve water supply reliability and flexibility of the water management system for agricultural, municipal, industrial, and environmental uses; and (2) enhance water temperature and flow conditions in the San Joaquin River downstream from the Friant Dam for salmon and other native fish. The Final Feasibility Report presents the results of planning, engineering, environmental, social, economic, and financial studies of potential benefits and effects of alternative plans, and is a companion document to the Final Environmental Impact Statements (EIS), published under separate cover.

A peer review of the use of this modeling to estimate benefits to fish habitat, which was completed as part of feasibility study, was required. The purpose of this review is to provide a formal, independent, external scientific peer review of whether the conclusions and results based on the EDT model presented in the Feasibility Report and EIS are appropriate and whether the model is appropriate for this use. Four peer reviewers with experience with fish habitat, river planning, and river and fish habitat modeling were selected.

While offering many caveats on the use of models in general and EDT specifically, reviewers generally agreed that the application of EDT to evaluate relative differences in fish performance in the San Joaquin River resulting from habitat changes was appropriate. However, each reviewer qualified their conclusions with a number of observations and suggestions. All reviewers wanted to see more detailed assumptions and additional documentation of model inputs and assumptions. Three of the four reviewers emphasized that EDT was best used for relative comparisons of potential fish performance between scenarios rather than absolute comparison of fish abundance. Each reviewer identified one or more specific items that would benefit from additional clarification or explanation. While all reviewers felt there were limitations associated with the EDT results and that evaluating its use was hampered by lack of detail about assumptions and inputs, there was general agreement that the analysis was an appropriate use of the EDT model.
1.0 Background

The Upper San Joaquin River Basin Storage Investigation (Investigation or USJRBSI) is a feasibility study by the Bureau of Reclamation (Reclamation or USBR), in cooperation with the California Department of Water Resources (DWR). The purpose of the Investigation is to determine the type and extent of federal interest in a potential project to expand water storage capacity in the Upper San Joaquin River watershed to: (1) improve water supply reliability and flexibility of the water management system for agricultural, municipal, industrial, and environmental uses; and (2) enhance water temperature and flow conditions in the San Joaquin River downstream from the Friant Dam for salmon and other native fish. The Final Feasibility Report presents the results of planning, engineering, environmental, social, economic, and financial studies of potential benefits and effects of alternative plans, and is a companion document to the Final Environmental Impact Statements (EIS), published under separate cover. Both the Feasibility Report and the Final EIS have been provided.

The Investigation is one of five surface water storage studies recommended in the CALFED Bay-Delta Program (CALFED) Programmatic Environmental Impact Statement/Report (PEIS/R) Record of Decision (ROD) of August 2000. Progress and results of the Investigation have been documented in a series of interim reports, culminating in this Final Feasibility Report and accompanying Final EIS. Preliminary studies in support of the CALFED PEIS/R considered more than 50 surface water storage locations throughout California and recommended more detailed study of the five locations identified in the CALFED Programmatic ROD. The Final EIS, accompanying the Final Feasibility Report, tiers to the CALFED PEIS/R.

In particular, Reclamation is performing the Investigation to determine if there is a federal interest in pursuing construction of a Dam upstream of the current Friant Dam on the San Joaquin River. A parallel yet separate process, the San Joaquin River Restoration Program (SJRRP), is focused on restoring a naturally reproducing population of spring run Chinook salmon to the San Joaquin River. The SJRRP has applied a number of tools to analyze various options for improving habitat to facilitate reintroduction of salmon, including the Ecosystem Diagnosis and Treatment (EDT) tool. EDT has been used in the SJRRP to compare the alternative restoration and management options in terms of potential spring-run Chinook performance. EDT was chosen for the SJRRP after a review of salmonid habitat models and because of its history of useful application to similar programs in the Pacific Northwest (SJRRP 2008). Because of its ongoing application to the SJRRP, the inclusion of the SJRRP in the No Action Alternative for the Investigation, and intent to quantify fish habitat enhancement beyond the No Action Alternative consistent with the primary planning objectives and purpose and need, the Investigation choose to use EDT to evaluate the effects of the Investigation alternatives on spring run Chinook salmon.

The application of EDT in the Investigation is documented in detail in the Modeling Appendix to the Final EIS, which has been provided. This material is the focus of the peer review, along with
its use in the Feasibility Report and EIS. Additionally, during preparation of the Feasibility Study and EIS, Reclamation received comments from the public and other government agencies regarding the application of certain information to derive benefits associated with the Investigation. This agency and public feedback has been provided.

A peer review of the use of this modeling to estimate benefits to fish habitat, which was completed as part of the feasibility study, was required. The purpose of this review is to provide a formal, independent, external scientific peer review of whether the conclusions and results based on the EDT model presented in the Feasibility Report and EIS are appropriate and whether the model is appropriate for this use. Evaluation of the EDT model within the general context of habitat modeling is outside the scope of this review. This review is focused solely on the utilization of EDT in its application to quantify the benefits as proposed within the Investigation feasibility study and EIS.

2.0 Peer Reviewers

The peer reviewers reviewed the materials provided (see Appendix A for a list of materials provided). The selection of peer reviewers followed the guidance provided in the Office of Management and Budget’s Final Information Quality Bulletin on Peer Review (OMB Bulletin; December 16, 2004) to ensure scientific integrity of the peer review. Appropriate expertise and an appropriate balance of that expertise was identified for this peer review panel during the process of identifying potential reviewers. Panelists with expertise in fish habitat modeling and river modeling were essential for this peer review. All peer reviewers were provided the language from the OMB Bulletin (2004) with regard to independence and conflicts of interest and any potential issues were identified and evaluated during the selection of the panelists, both with respect to both Reclamation and the report under peer review. To maintain the independence and objectivity of the peer review, a number was randomly assigned to each peer reviewer and all references in this report are to that number.

The four peer reviewers all have experience with fish habitat, river planning, river and fish habitat modeling, and with peer reviews of scientific publications. The reviewers are all independent of Reclamation and have no conflicts of interest. The resumes for the peer reviewers are presented in Appendix C and the reviewers consist of:

- Wesley Daniel, PhD from Michigan State University;
- James Gore, PhD from University of Tampa;
- Peter McHugh, PhD from Utah State University; and
- Joseph Wheaton, PhD from Utah State University.
3.0 Summary of Peer Reviewer Responses

The peer reviewers considered and responded to the Charge to the Reviewers, a total of two questions, with respect to the documents provided (see Appendix A). The following section provides brief synopses of their responses to each question, with their full responses provided in Appendix B. Comments received from Reclamation during review of the draft summary report and the individual memos are provided in Appendix D, along with a summary of any revisions made as a result of those comments.

Question 1

Is displaying results for the EDT model in terms of fish abundance to compare future population outcomes amongst alternatives a recognized suitable application of the EDT model?

➢ Reviewer 1: Yes, but with some caveats. These caveats pertain to (a) the delivery/presentation of abundance-based results; (b) the assumptions associated with abundance at equilibrium (Neq) as an output; and (c) a lack of detail about the Neq calculations.

 (a) Because EDT is not a population simulation model, it is important that any display of abundance metrics be plainly labeled as being (i) a mathematical re-arrangement of C and P parameters, (ii) an equilibrium construct, and (iii) subject to particular assumptions to be meaningful (described further below).

 (b) Computing Neq from EDT outputs necessitates that a number of assumptions are either explicitly or implicitly made, yet few of these are stated anywhere in the SJRRP/Investigation’s EDT documentation.

 (c) Although the conceptual basis of Neq is explained in the documents provided, there are aspects of its derivation/calculation that remain elusive.

➢ Reviewer 2: The EDT model results include the productivity, capacity and equilibrium abundance for the fall run Chinook salmon. The equilibrium abundance is steady-state abundance and capacity is a theoretical maximum abundance supported by suitable habitat. EDT has been described as a habitat model, and habitat models are not good at predicting absolute numbers like species abundance. EDT results should be displayed as a relative fish abundance.

➢ Reviewer 3: In my experience, attempting to predict fish abundance, based upon empirical data to calibrate a model of future abundance is fraught with many dangers. Most commonly, since not all environmental influences can be predicted by any model, it becomes difficult to place narrow error margins around existing data. A useful predictor of a population response is an habitat quality index in which the response is known within
acceptable limits and beyond which there is certainty of loss of quality habitat (as a surrogate of abundance and productivity) and resulting lost productivity, without placing a numerical value on that loss. That is, the “currency” for making the decision is not based upon fish productivity [although it is certainly used to calibrate the model], but instead upon a range of acceptable losses of habitat quality and quantity, below which “significant ecological harm” is likely to occur; the extent of that harm being immaterial to the decision.

Reviewer 4: No, EDT is not an appropriate tool for forecasting population outcomes in absolute abundance estimates between alternatives. Tables 5-9, 5-10 and Figures 5-5 through 5-9 in the modelling appendix are a reasonable way to display and convey the EDT findings. However, in Figure 5-11 and Tables 5-11 through 5-14, absolute estimates are provided. This is of course what the model spits out and is a useful relative metric for inter-comparison between scenarios. However, I find it worrying that no +/- estimates are provided with each of these abundance calculations. I don’t have a problem with using EDT to explore potential impacts of different design scenarios. I do, however, worry that EDT (as with any model) is only capable of doing so much and way too much stock is put in this single model. Comparing a plurality of competing models and forecasts from fundamentally different perspectives is a safer way of tip-toeing into the dangerous business of forecasting population responses. The easiest way to explore the fundamental uncertainty is to not put all your eggs in one modelling basket and explore the outputs of a variety of different models formulated in different ways and see if they paint a convergent picture or divergent picture.

Question 2

Have the assumptions and uncertainties associated with utilizing a habitat model for the intended purpose been appropriately characterized?

Reviewer 1: This question is difficult to answer, owing to the fact that many details (e.g., habitat inputs) of the San Joaquin River application of EDT are not documented and/or are inaccessible to reviewers. In sum, the level of uncertainty surrounding the Investigation’s use of EDT to guide the selection of action alternatives is unknown but arguably high. With respect to the assumptions portion of Question 2, my response is a mixed ‘yes and no’. Many assumptions associated with the specific application of EDT to the San Joaquin River have are plainly stated in the Modeling Appendix, while general assumptions are provided in published literature. Yet, there are a number of other assumptions that were made but were not stated, some of which are possibly quite influential in determining modelling results/interpretation; several examples are included in Appendix B. Similar to this EDT application’s treatment of assumptions, there were notable limitations to its consideration of input/output uncertainty. Arguably, these are limitations associated with the broader EDT framework and not its specific application to the SJRRP/Investigation context. EDT is a deterministic model and thus is not equipped to integrate uncertainty in model inputs (e.g., variability in measurements), assumptions (see above), and/or model structure (i.e., quantitative rules linking survival factor values to environmental conditions) into outputs.
Reviewer 2: The Public Comments and Responses (Chapter 35) section did a good job clarifying some of the assumptions and uncertainties associated with EDT model, but the main text did not. There is a need for complete transparency in the EDT modeling process and recognition that there is a potentially false sense of precision. There is no attempt to show how well the model fits empirical data or use of performance measures. Several of the responses in Chapter 35 did not fully answer the questions raised. Additional clarification is needed in the text to fully support some of the statements.

Reviewer 3: The assumptions of the model seem to be reasonable. I question the use of the prediction, based upon historical flows, to make management decisions.

Reviewer 4: Generally, no. With regards to the ‘assumptions…. been appropriately characterized’ part of the question, I would say that the authors have done a good job of explaining the EDT model and transparently outlining the assumptions behind the model itself as well as the assumptions behind specific parametrizations to represent specific scenarios in individual simulations. It was hard to find some of these specifics in the EIS. With regards to the ‘uncertainties associated with utilizing a habitat model’ being appropriately characterized, I would say the authors made a reasonable attempt to characterize many of these and specifically to address concerns raised in previous reviews. However, they focus on a narrow class of parametric uncertainties and a limited sensitivity analysis and it does not adequately convey to the reader the actual uncertainty in the outputs. Finally, the ‘intended purpose’ part of the question is what is driving most of my ‘no’ response. The authors did a reasonable attempt at using a tool like EDT for the purpose of exploring part of the potential impacts of FSH-10 through FSH-17. My criticism is that too much stock is put in this one tool and there are other ways to explore those impacts and represent the uncertainty other than just relying on EDT.

Other Comments

Reviewer 1: Upon examining the life stage-specific results in Tables 5-15 through 5-18 and in the appendix to the modeling appendix (i.e., ‘EDT Productivity and Capacity Effects by Life Stage for Action Alternatives and Sensitivity Analyses’), I was struck by the fact that nearly all the benefits realized across the action alternatives occur for the spawning/egg-incubation stages primarily and that the costs/benefits for other life stages (especially parr and smolt) results are essentially nil. Given the shift in temperature during spawning/incubation (a 1-2 degree reduction) this seems implausible. In fact, given that mean temperatures (Figure 4-13, pages 4-56) range 2-3 degrees warmer and that peak spring flows are more muted (Figure 4-15, pages 4-58) during the spring outmigration for all action alternatives than the no action alternative, one might expect to see more of a capacity/productivity response here (e.g., due to lower turbidity and increased metabolic demand/activity of non-native predators). A review of the stage-specific results illustrates that the model formulation places an overwhelming emphasis on the spawning/incubation stages and that parr/smolt stages are unresponsive to change. Although this may be intentional given an understanding of the biology of the San Joaquin River system, it seems
inconsistent with assumptions about the freshwater biology of Chinook salmon elsewhere and the life history and limiting factor expectations for a San Joaquin River spring Chinook salmon population. Regardless, this observation underscores the need for Reclamation and/or EDT developers to more convincingly display that they fully understand model behavior/sensitivity.

- **Reviewer 2:** None.

- **Reviewer 3:** Ultimately, the simulation will rely upon historical flow records to predict the distribution and abundance of Chinook salmon. This may be appropriate to “test” the simulation; however, the appropriateness of the simulation going forward, considering potential changes as a result of climate change and impacts on flow records, may not make it an appropriate model without adjustments to the predictive protocols and some of the choices made within the simulation. However, the existence of discontinuous connections between high quality habitat patches must be taken into account as a “normal” condition and may yield predictions that label these as “infrequent events.” I suggest that the investigators consider an even lower flow situation that reflects this potential new flow scheme, as agricultural demands only increase if low flow / drought conditions continue or become the new “historical” condition. A large number of simulations predict dramatic reductions in flow and loss of freshwater fish species (up to 37% losses from the Sacramento River, in some scenarios) by 2070 if these climate-change induced changes in river flow patterns in the Sierra Nevada continue.

- **Reviewer 4:** While EDT is an interesting model for exploring various habitat restoration scenarios and has been used effectively in the Pacific Northwest in an exploratory manner to inform complex decisions about restoration and the management of anadromous salmonids, it is just one way to look at an extremely complicated problem. The remit for this review and the overall presentation of the EIS reads like a narrowly considered list of checkboxes considered in isolation of each other without any meaningful integration of the complicated interaction between all the many pieces being considered. Just as EDT itself attempts to simplify conceptually and quantitatively represent a multi-faceted process into a digestible output, I recognize that an EIS is a blunt tool for considering and forecasting the impacts a proposed action may have. EDT is more appropriate as a planning tool then the sole determinant of whether or not there will be impacts from a proposed project.
4.0 Conclusions and Recommendations

Reviewers generally agreed that the application of EDT was appropriate and valuable for evaluating relative differences in fish performance in the San Joaquin River resulting from habitat changes. Each reviewer, however, qualified that conclusion with a number of caveats, observations, and suggestions. All four reviewers wanted to see more detailed assumptions and additional documentation of model inputs and assumptions. Three of the four reviewers emphasized that EDT is only appropriately used for relative comparisons of potential fish performance between scenarios rather than absolute comparison of fish abundance. While all reviewers felt there were limitations associated with the EDT results and that evaluating its use was hampered by lack of detail about assumptions and inputs, there was general agreement that the analysis was an appropriate use of the EDT model.

Specific suggestions from reviewers include:

1. Confine results to the relative comparison of alternatives and avoid absolute comparisons of fish performance.
2. While some assumptions are explicitly stated, others are not and are relevant for interpreting results.
 a. Neq is only meaningful under equilibrium conditions.
 b. Neq as a performance metric assumes there will be no harvest impacts on the re-introduced spring run Chinook salmon. Provide more details about why harvest was not included in the analysis.
 c. Clarify mathematical details of final calculation of Neq to avoid misinterpretations.
 d. Clarify the use of survival factors.
 e. Explicitly state that no template condition was used, although this is common in other EDT analyses.
 f. Provide more details on the use of the Beverton-Holt production function.
3. Include more information about model inputs (i.e., habitat, temperature, stream flow) and whether based on field data or expert opinion.
4. Expand model documentation to better address uncertainties in the model.
5. Include error bars to assist in correct interpretation of results.
6. Consider the implications of future flow conditions on project impacts including the impacts of climate change on San Joaquin flow.
7. Add results of any analyses (quantitative or qualitative) of the potential impacts of the project on other fish species besides the spring run Chinook salmon.
8. Overall results of the analysis could be strengthened by the use of other habitat or fish population models in addition to EDT.
APPENDIX A

Charge to the Reviewers and List of Documents Provided

Peer Review of the Science Informing the Upper San Joaquin River Basin Storage Investigation

U.S. Bureau of Reclamation
Charge to the Peer Reviewers
Of the Use of Fish Habitat Modeling in the Upper San Joaquin River Basin Storage Investigation
September 2015

Charge to Reviewers

The focus of the peer review is whether the conclusions and results based on the EDT model presented in the Feasibility Report and EIS are appropriate and whether the model is appropriate for this use.

A peer review of the use of this modeling to estimate benefits to fish habitat, which was completed as part of feasibility study, is required. Evaluation of the EDT model within the general context of habitat modeling is outside the scope of this review. This review is focused solely on the utilization of EDT in its application to quantify the benefits as proposed within the Investigation feasibility study and EIS. Peer reviewers are asked to provide responses to the two questions below regarding the fish habitat modeling.

Question 1: Is displaying results for the EDT model in terms of fish abundance to compare future population outcomes amongst alternatives a recognized suitable application of the EDT model?

Question 2: Have the assumptions and uncertainties associated with utilizing a habitat model for the intended purpose been appropriately characterized?
Documents Provided

Additional information is available at http://www.restoresjr.net/. Another EDT reference that may be useful (and is more recent than the other SJRRP EDT reports) is the March 2014 Technical Report: Analysis of Fish Benefits of Reach 2B Alternatives of the San Joaquin River (attached and available online at http://www.restoresjr.net/download/data-reporting/data-reporting2014/Final_Reach2B_EDT_201403_ADA.pdf).
APPENDIX B

Complete Individual Memoranda

Peer Review of the Science Informing the Upper San Joaquin River Basin Storage Investigation

U.S. Bureau of Reclamation
Choosing among alternatives with potentially varying levels of impact on aquatic biota is a central challenge to river management. This challenge is compounded by a diversity of species and life histories, many of which are uniquely adapted to specific hydrologic conditions. By synthesizing available information about fish populations, their environment (habitat), and fish–habitat relationships, the Ecosystem Diagnosis and Treatment (EDT) model boils this task down to a manageable problem, offering a means to pursue decision making in a technically rigorous manner. Accordingly, EDT has greatly assisted planners and restoration practitioners in the pursuit of salmonid habitat restoration throughout the Pacific Northwest. However, EDT’s offer of tractability is gained by making modeling compromises (e.g., EDT is a wholly deterministic model) and assumptions (reviewed in Blair et al. 2009), some with unknown veracity, that can influence model results (e.g., Steel et al. 2009, McElhany et al. 2010). The use of EDT to guide the San Joaquin River Restoration Program (SJRRP), and more specifically the BOR’s Storage Investigation, is not exempt from these realities. It is with this balanced perspective in mind that I approached my reviewing assignment. Thus, I acknowledge the merits of using EDT in the SJRRP/Investigation’s decision-making context but also identify several issues that may bear upon the strength of inference that should be drawn from results relative to the Investigation.

1. **Is displaying results for the EDT model in terms of fish abundance to compare future population outcomes amongst alternatives a recognized suitable application of the EDT model?**

The answer to this question is a qualified ‘Yes’. Based on my limited knowledge of specific EDT applications, the abundance at equilibrium (N_{eq}) is a standard output produced by the model. See, for example, EDT applications in the Lower/Mid-Columbia (e.g., White Salmon River; Allen and Connolly 2005) and Upper Columbia (e.g., Okanogan; Colville Tribes 2013). Further, N_{eq} is a population metric that flows naturally from the primary parameters computed during an EDT run, given the model’s underlying population biology assumptions (i.e., that the salmon life cycle can be approximated by a series of stage-specific Beverton-Holt spawner-recruit functions); thus, N_{eq} in concept is simply a mathematical transformation of productivity (P) and capacity (C) parameters (e.g., Hilborn and Walters 1992). For these reasons, displaying results in terms of N_{eq} for the SJRRP/Investigation is consistent with established EDT precedent, EDT documentation (e.g., Blair et al. 2009), and the model’s theoretical underpinnings.

The ‘qualified’ part of the affirmative response to this question relates to a few key issues pertaining to (a) the delivery/presentation of abundance-based results, (b) the assumptions associated with N_{eq} as an output, and (c) a lack of detail about the ‘guts’ of N_{eq} calculations. I elaborate on each of these points below:
(a) Because EDT is not a population simulation model, it is important that any display of abundance metrics be plainly labeled as being (i) a mathematical re-arrangement of C and P parameters, (ii) an equilibrium construct, and (iii) subject to particular assumptions to be meaningful (described further below). Doing so may help to minimize confusion among readers/reviewers, which comments on the draft EIS suggest was an issue in the past. Additionally, the Investigation’s treatment of Neq results (and C and P for that matter) should focus strictly on relative differences across modelling scenarios (e.g., as in Figures 5-5 to 5-9 in BOR 2015a), given the range of data and assumption uncertainties required to generate Neq predictions; the Investigation’s EDT analysts largely adhered to this suggestion, but there are still a few instances where ‘abundance’ was presented in terms of absolute fish (e.g., Figure 5-11 in BOR 2015a). Keeping differences in relative terms not only makes sense for an application attempting to select among alternatives, but also helps avoid the pitfalls of implying a greater degree of confidence in model outputs than is perhaps warranted (i.e., given the range of uncertainties reviewed under the Question 2 response, below).

(b) Computing Neq from EDT outputs necessitates that a number of assumptions are either explicitly or implicitly made, yet few of these are stated anywhere in the SJRRP/Investigation’s EDT documentation. Perhaps the most obvious of these is that Neq is a number that is only meaningful under equilibrium conditions. Is it reasonable to assume that the conditions present today (or assumed under each EDT parameterization) will persist into the future? See my response to Question 2 for more on this subject. Beyond equilibrium, the display of Neq as a performance metric assumes that there will be no harvest impacts on the re-introduced spring Chinook population. This assumption is potentially important because (i) it is likely that some harvest will occur and (ii) the relationship between a particular harvest level and realized abundance will vary across different scenarios characterized by different capacity and productivity parameters. While assumptions such as these may be characterized elsewhere (i.e., in non-SJRRP/Investigation EDT documents), they have contextual meaning relevant to this specific EDT application and should probably be acknowledged.

(c) Although the conceptual basis of Neq is explained in BOR (2015a), there are aspects of its derivation/calculation that remain elusive. In particular, whereas deriving a single Neq value for a scenario requires the productivity and capacity parameters for different life history types and trajectories to be integrated into a set of single synoptic population values, the mathematical details underlying this final calculation are somewhat unclear and potentially flawed. The clearest explanation for this integration, which is essentially a weighted average across trajectories, can be found in Blair et al. (2009). As worded, however, one is led to believe that dead end trajectories (i.e., with Neq fated to 0/extinction) do not influence the final integrated Neq estimate (‘Trajectories with productivity less than 1.0 do not have an NEQ value and hence are not included in the weighting...’; Blair et al. 2009). Is this indeed the case? If so, there appears to be potential for positive bias in Neq calculations, as it is plausible that some trajectories cannot achieve replacement for some scenarios. This observation may simply be a misinterpretation of EDT documentation on my part, but if it is not it may have implications for the present EDT application.
2. Have the assumptions and uncertainties associated with utilizing a habitat model for the intended purpose been appropriately characterized?

This question is difficult to answer, owing to the fact that many details (e.g., habitat inputs) of the San Joaquin River application of EDT are not documented and/or are inaccessible to reviewers. For example, in the Modelling Appendix (Chapter 5, pages 5-11 of BOR 2015a), the user is referred to Lestelle (2005) in order to gain insight on precisely how seasonal temperature and flow data—the two primary environmental attributes of interest to the Investigation—were transformed into monthly survival reductions. Yet, all that is provided in Lestelle (2005) is a conceptual illustration of a temporal rating process that must be carefully tailored to a specific system, both in terms of timing and magnitude of survival factor reductions. Further, while the Investigation leans heavily on an existing EDT application (i.e., the version developed for the SJRRP), the specifics of this borrowed parameterization are not documented in detail anywhere either. ICF (2014) provides what is perhaps the best description of the habitat inputs for the (adopted) SJRRP EDT model, but these descriptions are incomplete and cover only what was changed relative to earlier EDT runs. All of this is further confounded by the fact that language in ‘Exhibit F: EDT Proof of Concept’ of the SJRRP’s Fisheries Management Plan (SJRRP 2010) plainly states that the first-cut SJRRP EDT parameterization was a rough, somewhat unreliable one at best (‘…the results are valuable as an illustration of model capabilities, but should not be considered useful estimates at this time…’). While this may owe in part to EDT’s proprietary status, this scenario casts doubt on the reliability and rigor of the specific SJRRP/Investigation application. The relative influence of field data vs. expert opinion on modeled outcomes (baseline or scenarios), for example, cannot be assessed if their presence in input data sets is unknown. In sum, the level of uncertainty surrounding the Investigation’s use of EDT to guide the selection of action alternatives is unknown but arguably high.

Characterization of model assumptions

With respect to the assumptions portion of Question 2, my response is a mixed ‘yes and no’. For example, many of EDT’s general assumptions (i.e., associated with the model generally, independent of the SJRRP/Investigation application) have been articulated in other SJRRP documents or other model documentation (e.g., Blair et al. 2009). Many other assumptions associated with the specific application of EDT to the San Joaquin River have are plainly stated in the Modeling Appendix. For example, assumptions were made about other river management/restoration actions (e.g., floodplain restoration, gravel augmentation, etc.—the ‘minimum restoration scenario’ was assumed) that may occur coincidental to the simulated action alternatives in order to keep the focus on the Investigation’s flow/temperature management emphasis. Yet, there are a number of other assumptions that were made but were not bluntly stated as such, some of which are possibly quite influential in determining modelling results/interpretation. Consider the following examples, each of which is likely to have a substantial influence on EDT predictions of productivity, capacity, and \(Neq \):

(A1.) All three outmigrant life history strategies (fry, parr, smolt) are assumed to be equally probable (Table 5-5, BOR 2015a). Although a modeling decision such as this makes some sense in the absence of concrete population data, it seems unlikely that three life history trajectories are equally likely, particularly across the range of environmental conditions (flow, temperature) under consideration. For
example, Beckman et al. (2007) observe plasticity in outmigration preparedness due to variation in growth and phenology, both of which vary across action alternatives. It is possible that the EDT juvenile component’s apparent sensitivity to action alternatives is wrapped up in this assumption. A relatively high (33%) fry outmigrant fraction combined with a relatively high fry SAR (0.6-1.7%, contrast this with yearling Chinook SARs in the Columbia Basin, which are typically <2%, e.g., McCann et al. 2014) might mean that the parr/smolt stages would have to suffer catastrophically before an effect of an action alternative would be detected.

(A2.) By interpreting results in terms of Neq, the EDT application inherently assumes that equilibrium conditions apply to the SJRRP/Investigation context. Although this assumption underlies many stock-recruitment analyses, e.g., fitting spawner-recruit curves, etc., such analyses are typically accompanied by some sort of assessment of its validity (e.g., Hilborn and Walters 1992). Using a Beverton-Holt stock-recruit function to infer habitat condition/potential within the SJRRP/Investigation context invokes the need for some open consideration of this issue. The intense drought conditions that have plagued the Central Valley for the recent decade in combination with a large restoration program with a defined trajectory suggest the SJRRP area is just about as far from an equilibrium system as one can get for Chinook salmon. If the interpretation is simply that the EDT Beverton-Holt curves/parameters under a different scenario are achieved in an instant and there is really no temporal/equilibrium context, then this should be openly stated.

(A3.) The EDT model, in the process of rolling up survival factors across different habitat variables, makes untested (or undocumented) assumptions that are likely to profoundly affect the outcome of specific model applications. Firstly, all survival factors are assumed to operate independently and are equally weighted (i.e., $P_s = F_1F_2...F_pP_{base}$) within a given life stage (e.g., Blair et al. 2009). Thus, it is plausible that a survival factor reduction due to, for example, increased turbidity can influence life-stage survival to the same extent as something that’s arguably more detrimental (e.g., extreme temperatures). Further, EDT’s assumes some ‘synergy’ for Fs within some Level 2 categories, which is treated with a synergistic parameter of unknown origin. Whereas the origin/assumptions of the 0.37 exponent are not clear, McElhany et al. (2010) has shown it to be an influential parameter in a recent sensitivity analysis of EDT.

(A4.) A ‘template’ (or benchmark) condition is implicitly assumed for the Investigation’s EDT application. However, the origin/basis for the template condition, a requirement for establishing survival and capacity benchmarks (i.e, P_0 and MD, in Blair et al. 2009) for all scenarios to reference, was not specified in any Investigation-related documents. Assumedly it is similar to what was described conceptually in SJRRP (2010) and ICF (2014), but neither of these documents contains much in the way of specifics. Given that the analysis emphasizes relative differences across scenarios, the Investigation’s outcomes and conclusions may be fairly insensitive to Template formulation, however it would be good for readers to know the extent to which it falls within the realm of biological plausibility for Chinook salmon (e.g., benchmarked against something like the Parken et al. [2006] watershed area-based approach).
information about the adult age structure/maturation schedule, nor adult fecundity, was provided in the documents. Was something adopted from Central Valley fall Chinook salmon? Was it assumed to apply equally to all outmigrant life history categories? Although this may seem like a minor detail, past investigations have found adult age structure to be an extremely influential model input (Steel et al. 2009).

Characterization of model uncertainty

Similar to this EDT application’s treatment of assumptions, there were notable limitations to its consideration of input/output uncertainty. Arguably, these are limitations associated with the broader EDT framework and not its specific application to the SJRRP/Investigation context. EDT is a deterministic model and thus is not equipped to integrate uncertainty in model inputs (e.g., variability in measurements), assumptions (see above), and/or model structure (i.e., quantitative rules linking survival factor values to environmental conditions) into outputs (Blair et al. 2009). However, recent independent reviews of the model’s sensitivity have revealed a high degree of uncertainty in outputs relative to variation in inputs (Steel et al. 2009; McElhany et al. 2010), concluding that ‘EDT…predictions lack the precision needed for many management applications…’ These findings seem particularly germane to the Investigation’s use of this model given that the action alternatives, in most instances, differ in Neq by 10s of fish. Although public comments on the DEIS also raised this issue, it was not addressed during the preparation of the final EIS.

Additionally, while some might argue that ignoring uncertainty is justified because managers cannot process (or make decisions in the face of) it anyway, forging ahead with a model like EDT without acknowledging/addressing input/output uncertainty and model sensitivity is inconsistent with sound modelling practice. Further, it is at odds with the promising developments highlighted in Blair et al. (2009), which include: (1) a weight-of-evidence (‘level of proof’, LOP) scoring approach that accompanies the preparation of habitat variable inputs, and (2) an approach towards conducting EDT model runs at a variety of plausible levels for input variables (the ‘WDFW approach’ in Blair et al. 2009). Although a ‘stochastic EDT’ that provides prediction intervals may be a thing of the future, the present application could be strengthened greatly from a combination of new sensitivity analyses (at least for the key inputs that are uncertain and/or influential) and some contextual treatment relative to published sensitivity analyses (i.e., Steel et al. 2009 and McElhany et al. 2010) and/or efforts to validate the model (e.g., Rawding 2004). While acknowledging weaknesses/limitations, incorporating this context will also strengthen the utility of the SJRRP/Investigation’s application of EDT, as those past investigations also highlight EDT’s strengths.

Lastly, within the context of uncertainty, I close my review with two minor points on model sensitivity/uncertainty:

(1) The Modelling Appendix entitled ‘EDT Sensitivity Analysis’ should potentially be relabeled something more like ‘Analysis of Sensitivity to Restoration Formulation’ (or something like this). As currently labelled, it implies something akin to a thorough sensitivity analysis, whereas it is really only focused on a narrow (albeit important) set of input assumptions.
(2) Upon examining the life stage-specific results in the provided in Tables 5-15 through 5-18 and in the appendix to the modeling appendix (i.e., ‘EDT Productivity and Capacity Effects by Life Stage for Action Alternatives and Sensitivity Analyses’, BOR 2015b), I was struck by the fact that nearly all the benefits realized across the action alternatives occur for the spawning/egg-incubation stages primarily and that the costs/benefits for other life stages (especially parr and smolt) results are essentially nil. Given the shift in temperature during spawning/incubation (a 1-2 degree reduction) this seems implausible. In fact, given that mean temperatures (Figure 4-13, pages 4-56 in BOR 2015c) range 2-3 degrees warmer and that peak spring flows are more muted (Figure 4-15, pages 4-58 in BOR 2015c) during the spring outmigration for all action alternatives than the no action alternative, one might expect to see more of a capacity/productivity response here (e.g., due to lower turbidity and increased metabolic demand/activity of non-native predators; e.g., Gregory and Levings 1998 and Peterson and Kitchell 2001). Or perhaps there’s a commensurate and compensating growth response for Chinook salmon? Either way, a review of the stage-specific results illustrates that the model formulation places an overwhelming emphasis on the spawning/incubation stages and that parr/smolt stages are unresponsive to change. Although this may be intentional given an understanding of the biology of the SJR system, it seems inconsistent with assumptions about the freshwater biology of Chinook salmon elsewhere and the life history and limiting factor expectations for a SJR spring Chinook salmon population. Regardless, this observation underscores the need for the BOR and/or EDT developers to more convincingly display that they fully understand model behavior/sensitivity.

References

1. Is displaying results for the EDT model in terms of fish abundance to compare future population outcomes amongst alternatives a recognized suitable application of the EDT model?

The Ecosystem Diagnosis and Treatment (EDT) model results include the productivity, capacity and equilibrium abundance for the fall run Chinook salmon. The equilibrium abundance is steady-state abundance and capacity is a theoretical maximum abundance supported by suitable habitat. EDT has been described as a habitat model, and habitat models are not good at predicting absolute numbers like species abundance (Boyce et al. 2015). Abundance of a population may be influenced by factors not directly related to suitable habitat, and without building this information into the model the results may be compromised. Based on the underlying Beverton-Holt density-dependent model (1957) that is at the heart of the population estimates and the products from the EDT model, results can be displayed as a relative abundance. Beverton-Holt provides a discrete-time of population model or expected number \(n_{t+1} \) of individuals in generation \((t+1) \). The “relative” portion is important and should be added to the EDT model results since the model has been found to be best at comparative measure of fish performance (LCFRB 2010, McElhany et al. 2010).

A recent study in the lower Columbia River from the Lower Columbia Fish Recovery Board’s (LCFRB) 2010 Recovery Plan compared EDT modeled populations verse empirical fish abundance data. That study suggested that EDT results were within the range of empirical observations, and differences could be explained by typical sources of variation and error. However, the study suggested that EDT was not sufficient for modeling absolute numbers of abundance. The results are best for comparing relative magnitudes between scenarios. I would also note the LCFRB made a point that the use of EDT was best not for “numbers of fish abundance and productivity for a population.” The study’s findings suggest that it is better used to determine the influences of habitat on various life cycles and identification of restoration and preservation benefits of specific habitat attributes (LCFRB Volume VI, Chapter 6 Application of the EDT model 2010).

A sensitivity analysis was conduct on three EDT modeled salmon populations; East Fork Lewis River fall Chinook, Germany Creek Coho, and West Fork Washougal River mainstem steelhead all from the lower Columbia River, WA (McElhany et al. 2010). The findings of the analyses showed that EDT model performed well for relative population results since slightly different input values had the potential to produce quite different results. The authors warn that these results test precision of the model not accuracy.

Both of these papers suggest that the results from the EDT population predictions are best for comparative purposes and not absolute values. Displaying the results as a relative fish abundance is a suitable application of the EDT model.
2. **Have the assumptions and uncertainties associated with utilizing a habitat model for the intended purpose been appropriately characterized?**

I feel that the Upper San Joaquin River Basin Storage Investigation (USJRBSI) report’s Public Comments and Responses (Chapter 35) section did a good job clarifying some of the assumptions and uncertainties associated with EDT model. The main text did not describe very well all of the assumptions and uncertainties about the EDT model. There is a need for complete transparency in the EDT modeling process and recognition that there is a potentially false sense of precision. The report makes the statement that the use of habitat models like EDT in predicting populations is potentially problematic (page 286, Chapter 2 Alternatives USJRBSI report), but does not provide any additional evidence to the contrary. There is no attempt to show how well the model fits empirical data or use of performance measures (McElhany et al. 2010).

When reviewing the EDT related comments on the USJRBSI DEIS and the Public Comments and Responses (Chapter 35 USJRBSI report), several of the responses still lacked clear information to support the statements in the report. Below are several points about assumptions and uncertainties associated with the EDT model not fully addressed in the USJRBSI report’s Public Comments and Responses.

1) I do not believe that the fact that the EDT does not perform like a population model (Mobrand et al. 1997) has been clearly addressed. The underlying Beverton-Holt density-dependent model (1957) has numerous assumptions as part of it that were not provided in USJRBSI report. There is a real danger in population assessments of using average behaviors predicted by a model. Management groups’ concerns over its use and lack of built-in uncertainty in the model are made to prevent depensation dynamics. There are too many peer-reviewed documents that address EDT’s use as a relative model of habitat to ignore this fact. I would address this point more directly.

2) The concern over conducting the EDT modeling on only the spring-run Chinook was not fully addressed. By ignoring the fall-run Chinook, the population estimates are inaccurate. It was clearly laid-out that the “an accurate smolt-to-adult return (SAR) cannot be estimated and used in the model because there is not a current Chinook population”, (page 280 Chapter 5 Plan Evaluation, Comparison, and Selection USJRBSI Report). This is a big caveat that most of that data was created by professional judgment, or based on other region’s populations. This also brings into question why other species were not also modeled. If the Chinook spring-run population were modeled with no upper San Joaquin River population data, why not the fall-run Chinook salmon, steelhead, or white sturgeon? I know there are established EDT habitat rules for the Chinook salmon and steelhead (Lestelle et al. 2004).

3) The lack of measurements of the model’s fit or performance (McElhany et al. 2010) was not addressed. McElhany and others (2010) demonstrated that slight changes in the input values could change the results. So, a post-hoc assessment could provide additional information.
about differences between scenarios. I would think a performance assessment would strengthen the results of the study, and potentially reduce concerns.

References

Reviewer 3 - 26 October 2015

1. **Is displaying results for the EDT model in terms of fish abundance to compare future population outcomes amongst alternatives a recognized suitable application of the EDT model?**

In my experience, attempting to predict fish abundance, based upon empirical data to calibrate a model of future abundance is fraught with many dangers. Most commonly, since not all environmental influences can be predicted by any model, it becomes difficult to place narrow error margins around existing data. That is, the error limits around the calibration data are so wide that they are compounded so that the abundance predictions have confidence intervals plus or minus five-times the mean predicted abundance. The best management decision models I have encountered place the decisions upon availability of high quality habitat and the gains or losses of that habitat, above or below a designated break point, are used as the deciding factors (Gore and Nestler 1988). Response to loss of habitat over a long period of time is not necessarily a linear or predictable condition. The more useful predictor is an habitat quality index in which the response is known within acceptable limits and beyond which there is certainty of loss of quality habitat (as a surrogate of abundance and productivity) and resulting lost productivity, without placing a numerical value on that loss. That is, the “currency” for making the decision is not based upon fish productivity [although it is certainly used to calibrate the model], but instead upon a range of acceptable losses of habitat quality and quantity, below which “significant ecological harm” is likely to occur; the extent of that harm being immaterial to the decision.

As important, if flows are manipulated to maximize the amount and location of the highest quality habitat, the model would also appear to predict the greatest abundance and productivity of Chinook salmon. Has this been tested? That is, is there a point at which habitat is saturated and increasing the amount of that habitat no longer supports concomitant increases in productivity?

2. **Have the assumptions and uncertainties associated with utilizing a habitat model for the intended purpose been appropriately characterized?**

The assumptions of the model seem to be reasonable. I only question the use of the prediction, based upon historical flows, to make management decisions. I have this vision of a water-user employing some expert to count fish and exclaiming that the model predicted a certain amount of productivity or abundance and declaring that the actual number from the count was, in fact 10% higher and, therefore, the flows should be diverted for consumer use. In fact, the number of errors around the predicted abundances may be so wide that the “+10%” is within those limits. It easier to predict the proportionate gain or loss of high quality habitat and the transition value (say, 20% habitat loss) as the “significant harm” threshold.
Additional Comments

“The EDT model conditions do not include the Critical-Low water year types because, in those very infrequent years …” the population would not be supported due to discontinuous flows. It appears that the alternative would be to truck fish upstream and downstream around these discontinuities. All of the analyses were conducted on flows between 1980 and 2003, an historically “typical” period of record [at least, with reference to flow records in the region prior to 1980]. However, these simulated flows do not take into account the possibility that those historical records are no longer the “normal” for the region and that the Critical-Low water years may be the most appropriate flows to be analyzing into the future.

Ultimately, the simulation will rely upon historical flow records to predict the distribution and abundance of Chinook salmon. This may be appropriate to “test” the simulation; however, the appropriateness of the simulation going forward, considering potential changes as a result of climate change and impacts on flow records, may not make it an appropriate model without adjustments to the predictive protocols and some of the choices made within the simulation. Recent research suggests that large-scale climatic oscillations (AMO, PDO, and ENSO), while continuing, are not influencing continental weather patterns in the manner that has been recorded over the past one hundred years. In some areas, additional flooding might be expected. However, it appears that historically low and high flow decadal weather patterns will now be much drier. As a result, the critical low-flow simulation may be the most appropriate to predict future distributions of Chinook salmon. However, the existence of discontinuous connections between high quality habitat patches must be taken into account as a “normal” condition and may yield predictions that label these as “infrequent events.” I suggest that the investigators consider an even lower flow situation that reflects this potential new flow scheme. These are likely to become impoverished as agricultural demands only increase if low flow / drought conditions continue or become the new “historical” condition. This comment is emphasized by a large number of simulations (for example, Maurer 2007 and Xenopoulos et al. 2005) which predict dramatic reductions in flow and loss of freshwater fish species (up to 37% losses from the Sacramento River, in some scenarios) by 2070 if these climate-change induced changes in river flow patterns in the Sierra Nevada continue.

References

1. Is displaying results for the EDT model in terms of fish abundance to compare future population outcomes amongst alternatives a recognized suitable application of the EDT model?

In my opinion, and (caveat) limited exposure with EDT, no - EDT is not an appropriate tool for forecasting population outcomes in absolute abundance estimates between alternatives. I am confused as to what value answering this narrow question provides. I presume this question is targeted at Tables 5-9, 5-10 and Figures 5-5 through 5-9 in the modelling appendix? In those tables and figures, the authors are careful to present abundance differences between scenarios in percent difference terms. That seems a reasonable way to display and convey the EDT findings. However, in Figure 5-11 and Tables 5-11 through 5-14, absolute estimates are provided. This is of course what the model spits out and is a useful relative metric for inter-comparison between scenarios. However, I find it worrying that no +/- estimates are provided with each of these abundance calculations.

There are many different variants of the phrase ‘all models are wrong, some are useful’. I don’t have a problem with using EDT to explore potential impacts of different design scenarios. However, as with any model, it comes down to what purpose those results are put to and how they are interpreted that ultimately is far more important. While the authors have done a reasonable job of chasing down extremely specific concerns, in Chapter 35 of the EIS, I was worried by the spirit of the response to the broader concerns raised. I don’t share many of the reviewer comments’ blanket dismissal of EDT and concern over it having any utility in this context. I do, however, worry that EDT (as with any model) is only capable of doing so much and way too much stock is put in this single model. Comparing a plurality of competing models and forecasts from fundamentally different perspectives is a safer way of tip-toeing into the dangerous business of forecasting population responses. The bigger issue is this is an area where the science is highly uncertain (not to say it is useless) and there are too many knobs to make accurate predictions. While adding additional model analyses is not a task taken lightly (significant costs and time are involved), the over reliance on one model here is worrying. When that over reliance is combined with, in my opinion, an inadequate representation of the uncertainty in the output, it makes it difficult to judge to what extent the model is capable of addressing the question at hand – namely will the proposed action negatively impact fisheries. The short answer is we don’t really know and if you put error bars on your estimates it may conservatively suggest the outputs are nearly useless. Yes, one model seemed to suggest negligible impacts or benefits under a range of scenarios. That doesn’t mean it is right.

While there is a long section under the heading of ‘EDT Sensitivity Analysis’ from 5-47 to 5-63, it explores sensitivity to only some of the input parameters (primarily those associated with how different design alternatives impact input parameters and water years). I fully admit that there are varying degrees to which sensitivity analyses can be done and many folks have differing opinions as to what a sensitivity analysis is (Beven and Binley 1992; Zak and Beven 1999; Zapert et al. 1998). I also believe that what the authors did to explore the sensitivity of the EDT output to some of the driving factors in the model is reasonable. However, a sensitivity analysis only explores parametric uncertainty within a specific model and does nothing to explore the bigger underlying structural uncertainties in the model itself. The easiest way to explore that
more fundamental uncertainty is to not put all your eggs in one modelling basket and explore the outputs of a variety of different models formulated in different ways and see if they paint a convergent picture or divergent picture. This was notionally addressed in 35-64 to 35-65 in a somewhat reasonable, but sort of dismissive, tone. I sympathize with the individuals tasked with preparing this analysis. They can only do what they can do with the tools they had at hand, and EDT was no doubt a useful tool for giving some insights into the process. Does it give the answer demanded by the EIS process? I am not sure it does.

2. Have the assumptions and uncertainties associated with utilizing a habitat model for the intended purpose been appropriately characterized?

In a word - no. As I discussed in the response above, there seems to be either confusion over what uncertainty is or at least too narrow of a perspective (with respect to EDT portion of EIS) explored. Various lexicons for uncertainty exist that can shed light on this productively (e.g. Rotmans and Van Asselt 2001; Van Asselt 2000; Van Asselt and Rotmans 2002) and have been used productively in climate change forecasting. This question requires deconstructing to properly consider my ‘no’ response:

With regards to the ‘assumptions…. been appropriately characterized’ part of the question, I would say that the authors have done a good job of explaining the EDT model and transparently outlining the assumptions behind the model itself as well as the assumptions behind specific parametrizations to represent specific scenarios in individual simulations. The EIS is such a behemoth and its organization a nightmare, it may be hard to find specific aspects of these, but what was done is reasonable.

With regards to the ‘uncertainties associated with utilizing a habitat model’ being appropriately characterized, I would say the authors made a reasonable attempt to characterize many of these and specifically to address concerns raised in previous reviews. However, they focus on a narrow class of parametric uncertainties and a limited sensitivity analysis to explore these and I don’t feel that it adequately conveys to the reader, and whomever may sign off on this EIS, the actual uncertainty in the outputs. I fully admit that my suggestion of putting some +/- error bars on quantities the model outputs is an easy thing to say, a harder thing to do, and will in many cases paint too conservatively uncertain of a picture. However, that is your burden. I don’t feel the risks in believing the outputs of a single model, which suggest impacts are negligible, have been adequately contextualized.

Finally, with regards to the vague ‘intended purpose’ part of the model question, I really take issue with this and this is what is driving most of my ‘no’ response. To be fair to the vague group of ‘authors’ for this little piece of the EIS, aside from some of the cans of worms I suggest above, what they did was a reasonable attempt to use a tool like EDT for the purpose of exploring part of the potential impacts of FSH-10 through FSH-17. My criticism is that too much stock is put in this one tool and there are other ways to explore those impacts and represent the uncertainty other than just relying on EDT.
Additional Comments

In over a decade of providing scientific peer reviews for public agencies, this is, by far, one of the most peculiar and narrow reviews I’ve ever been asked to do. I knew nothing about the proposed Upper San Joaquin River Basin Storage project, nor this EIS prior to the request. After wading through well over 4000 pages of information from the BOR, and over 150 pages of comments from other interested parties (with their recognized biases, expertise and remits), and my own literature review, I feel qualified to provide the above answers to the specific questions. Prior to the review, I would say I had a superficial understanding of EDT, but a more in-depth familiarity with anadromous salmonid life cycle modeling in general and extensive experience in fish habitat modeling, assessment and restoration.

This entire review process reeks of a narrow-laser focus on what are probably the wrong questions without any scope for the reviewers to evaluate some more basic or fundamental questions with regards to the fish habitat modelling work. I recognize that is not the job of the scientists you ask to pass judgement on the overall project and I am in way seeking a pulpit to do that. However, a fair thing to ask of your reviewers is to comment as to whether the information presented is used appropriately to address specific concerns or justify an action or inaction. For example, it is clear from the external comments already received and the responses in Chapter 35 of the EIS (pp 35-61 to 35-70) that the methodological choice of using EDT solely to evaluate the environmental consequences and benefits was seen by multiple people as questionable. Instead of taking that to heart, the authors appear to have defended that choice. This is unfortunate. In my opinion it is the difference between an appropriate use of EDT versus potentially inappropriate by giving it too much weight.

The remit to the reviewers reads like a request for some scientific experts to whitewash and give a stamp of approval on some hyper-specific detail of a massively complicated and tremendously interconnected project. Namely, you seem to be not wanting us to comment on whether or not something other than EDT should have or could have been used (even to augment), and instead want us to just say everything is fine. While EDT is an interesting model for exploring various habitat restoration scenarios and has been used effectively in the Pacific Northwest in an exploratory manner to inform complex decisions about restoration and the management of anadromous salmonids, it is just one way to look at an extremely complicated problem. The remit for this review and the overall presentation of the EIS reads like a narrowly considered list of checkboxes considered in isolation of each other without any meaningful integration of the complicated interaction between all the many pieces being considered. Just as EDT itself attempts to simplify conceptually and quantitatively represent a multi-faceted process into a digestible output, I recognize that an EIS is a blunt tool for considering and forecasting the impacts a proposed action may have.

I must admit, I took offense, professionally, to the instructions: ‘Evaluation of the EDT model within the general context of habitat modeling is outside the scope of this review. This review is focused solely on the utilization of EDT in its application to quantify the benefits as proposed within the Investigation feasibility study and EIS.’

I find it very misleading to be asked to complete a review on ‘the use of fish habitat modeling’, without being given the freedom to judge the model used to make this evaluation or at least the broader context of...
the purposes to which it is being put. As a developer myself of models that can easily be misused, misapplied, abused, taken out of context and otherwise put to purposes for which they were never intended, I wish to make it clear that I don’t have any issue per se with the EDT modeling approach and find it a very creative way to try to better understand a complicated problem. However, I would like to highlight this phrase from Mobrand et al. (1997), the original EDT paper:

“The performance measure we propose and the conceptual framework from which it is derived constitute a model for understanding and for learning, not a tool for short-term prediction. It is an indicator of how favorable the environment is (or might become) for salmon to persist and abound, not a predictor of how many will return and when. Such predictors are unreliable, and consequently, performance measures based on short-term abundance responses are poor guides to decision making (Lichatowich and Cramer 1979). Instead, we must use our understanding of the system (i.e., the conceptual framework) to make decisions and take actions that increase or decrease the likelihood of returning salmon in greater numbers.”

Finally, I must admit I am frustrated by my review above as I fear there is little constructive advice that comes out of it to improve the product or the process. Both are flawed. This review took an inordinate amount of time to wade through a lot of EIS material to provide what is ultimately an unsatisfying answer to two questions. In retrospect, I should have declined to review this.

References Cited

APPENDIX C

Reviewer’s Resumes (Alphabetical)

Peer Review of the Science Informing the Upper San Joaquin River Basin Storage Investigation

U.S. Bureau of Reclamation
Curriculum Vitae

Wesley M. Daniel
Michigan State University
Department Fisheries and Wildlife
East Lansing, Michigan 48823
Cell: 225-953-2935
Work: 517-432-3102
Email: Danielwe@MSU.edu

EDUCATION

2012 Doctor of Philosophy in biological sciences; minor in fisheries science from Louisiana State University, Department of Biological Sciences & Department of Renewable Natural Resources. Baton Rouge, Louisiana

Dissertation: Modeling Effects of Instream Variables, Land Use, and Life History Attributes On Community Structure of Freshwater Mussels in Louisiana Streams

Kenneth M. Brown (chair), William Kelso (co-chair), Michael Kaller, Richard Stevens

2008 Master of Science in biology from University of Louisville, Department of Biology. Louisville, Kentucky

Jeff Jack (chair), Margaret Carrerio (co-chair), William Alexander, Phillip Lienesch

2003 Bachelor of Science in biology from Western Kentucky University, Department of Biology. Bowling Green, Kentucky

CURRENT POST-DOCTORAL EXPERIENCE

2012 Research Associate, Michigan State University, Department of Fisheries and Wildlife, East Lansing, MI.

ACADEMIC AWARDS AND HONORS

2011 Louisiana State University Graduate School Dissertation Fellowship Award
Freshwater Mollusk Conservation Society: Honorable Mention Best Student Presentation
Freshwater Mollusk Conservation Society: Student Travel Award
Louisiana State University Biograds Travel Award

2010 Louisiana State University Biograds Research Award

2009 Louisiana State University Biograds Travel Award
2008 American Fisheries Society Award (Kentucky Chapter): Best Student Paper Presentation
Louisiana State University Biograds Research Award

2006 Beechmont Garden Club Conservation Award
University of Louisville Biology Graduate Student Presentation Award

2005 Furnish Graduate Student Award for Excellence in Teaching of Biology

2004 Clay Memorial Biology Scholarship

GRANTS

Funded Grants

2015 Gulf Coast Prairie Landscape Conservation Cooperative
Co-Principal Investigator - **$59,915**
"Strategic coordination of Quadrula spp. Research and Conservation"
- Dana M. Infante and Wesley M. Daniel (Michigan State University)

2013 Northeast Climate Science Center
Collaborator - **$199,881**
"A decision support mapper for conserving stream fish habitats of the NECSC region"
- Craig Paukert (University of Missouri, USGS), Dana M. Infante (Michigan State University), Jana Stewart (USGS), Jodi Whittier (University of Missouri), Tyler Wagner (Pennsylvania State University, USGS)

2011 Louisiana Department of Wildlife and Fisheries, Environmental Education Grant
Principal Investigator - **$959**
"Is dispersal limitation leading to the extinction of an endangered aquatic species in Louisiana?"
- Wesley Daniel and Kenneth Brown (Louisiana State University)

2010 Louisiana Department of Wildlife and Fisheries, State Wildlife Grant
Co-Principal Investigator and dissertation research - **$28,098**
"Using quantitative sampling, electro-shocking, and shell sectioning to determine the abundance, age distribution, and host fish of an endangered mussel, the inflated heelsplitter in the Amite River"
- Kenneth Brown and Wesley Daniel (Louisiana State University)

2009 Louisiana Department of Wildlife and Fisheries, Environmental Education Grant
Principal Investigator - **$1,000**
"Does competition structure mussel communities in Louisiana?"
- Wesley Daniel and Kenneth Brown (Louisiana State University)
2008 Louisiana Department of Wildlife and Fisheries, Environmental Education Grant
Principal Investigator - $1,000
-Wesley Daniel and Kenneth Brown (Louisiana State University)

2007 Louisiana Department of Wildlife and Fisheries, State Wildlife Grant
Collaborator and dissertation research - $105,000
-Kenneth Brown (Louisiana State University)

2006 Louisville Metro Sewer District, Conservation Grant
Collaborator and thesis research - $30,000
-Jeffery Jack (University of Louisville)

Grants approved, but not funded

2008 National Oceanic and Atmospheric Administration, Pontchartrain Conservation
Co-Principal Investigator - $87,384
-Kenneth Brown and Wesley Daniel (Louisiana State University)

PUBLICATIONS

Position paper and American Fisheries Society policy statement on mining and oil
gas extraction. In press Fisheries

Wesley M. Daniel, Michael D. Kaller, and Jeff Jack. 2015. Nitrogen stable isotopes as
an alternative for assessing mountaintop removal mining's impact on headwater

Wesley M. Daniel, Dana M. Infante, Robert M. Hughes, Peter C. Esselman, Yin-Phan
Tsang, Daniel Wieferich, Kyle Herreman, Arthur R. Cooper, Lizhu Wang, William W.
Taylor. 2015. Characterizing coal and mineral mines as a regional source of stress to
stream fish assemblages. Ecological Indicators 50:50-61.

unit bioassessment model for Gulf of Mexico coastal streams. Fisheries Management

Manuscripts in review

REPORTS

2014 Wesley M. Daniel and Dana Infante. National Fish Habitat Partnership (NFHP), 2015 National Inland Fish Habitat assessment: Annual Update to the NFHP Science and Data Committee.
2013 Wesley M. Daniel and Dana Infante. National Fish Habitat Partnership (NFHP), 2015 National Inland Fish Habitat assessment: Updates on new data sources and analytical techniques to the NFHP Science and Data Committee.

2012 Kenneth Brown and Wesley M. Daniel. Using quantitative sampling, electro-shocking, and shell sectioning to determine the abundance, age distribution, and host fish of an endangered mussel, the inflated heelsplitter, in the Amite River. Final Report prepared for Louisiana State Wildlife Grant, Louisiana Department of Wildlife and Fisheries, Baton Rouge, LA

PRESENTATIONS

2015 Wesley M. Daniel, Arthur Cooper, Pete Badra, Dana Infante. Michigan’s fluvial habitat suitability for 11 listed unionids. Invited Presentation American Malacological Society, Kellogg Biological Station, MI

Wesley M. Daniel, Jared Ross, Dana M. Infante, Kyle Herreman. Assessing Alaskan river systems for improved management and conservation of fish habitats and the fisheries they support. Invited Presentation American Fisheries Society, Portland, OR
Wesley M. Daniel, Dana M. Infante, Kyle Herreman, Arthur Cooper, Yin-Phan Tsang, William W. Taylor. 2015 assessment of the Nation’s fluvial fish habitats: Promoting conservation of fish habitats throughout the conterminous United States. Invited Presentation American Fisheries Society, Portland, OR

Dana M. Infante, Wesley M. Daniel, Yin Phan Tsang, Daniel Wieferich. Improving opportunities for conserving streams through national data layers and a common spatial framework: Advances in large-scale ecological investigations of aquatic systems. Invited Presentation American Fisheries Society, Portland, OR

Wesley M. Daniel, Nick Sievert, Dana M. Infante, Craig Paukert, Jana Stewart, Jodi Whittier, Tyler Wagner, Kyle Herreman, and Yin-Phan Tsang. A decision support mapper for conserving stream fish habitats of the NE CSC region. Invited Presentation Midwest Fish and Wildlife Conference, Indianapolis, IN

Wesley M. Daniel, Arthur Cooper, Pete Badra, Dana Infante. Predicting statewide freshwater fish habitat suitability for 11 of Michigan’s listed unionids. Freshwater Mollusk Conservation Society, St. Charles, MO

Wesley M. Daniel, Nick Sievert, Dana M. Infante, Craig Paukert, Jana Stewart, Jodi Whittier, Tyler Wagner, Kyle Herreman, and Yin-Phan Tsang. FISHTAIL: A decision support mapper for conserving stream fish habitats of the NE CSC region. Invited Presentation NE CSC Spring seminar series

Dana Infante & Wesley M. Daniel. National inland assessment of fish habitat for the Great Lakes. Great Lakes Basin Fish Habitat Partnership

Wesley M. Daniel, Dana Infante, Lizhu Wang, Kyle Herreman, Arthur Cooper, Daniel Wieferich, Jared Ross, Ralph Tingley, Yin-Phan Tsang. 2015 national assessment of fluvial fish habitats: Improving opportunities for conservation and management. American Fisheries Society, Quebec City, PQ

Dana M. Infante, **Wesley M. Daniel**, Joe Nohner, and William W. Taylor. Enhancing a National View of River Condition for Improved Management and Conservation of Fluvial Fish Habitats. American Fisheries Society, Quebec City, PQ

Michelle D. Staudinger, Evan Grant, Brian Irwin, Richard Kraus, **Wes Daniel**, and Jana Stewart. Climate impacts on fish and fish habitats: Case studies from the Northeast Climate Science Center. American Fisheries Society, Quebec City, PQ

Dana Infante, **Wesley M. Daniel**, Kyle Herreman, Janet Hsiao. National assessment of fluvial habitats: Developing data and approaches to protect and restore rivers nationally. American Fisheries Society, Quebec City, PQ

Damon Kruger, Dana Infante, **Wesley M. Daniel**. North East Climate Science Center project outline. NECSC science and data committee

Kyle Herreman, Jared Ross, Dana Infante, **Wesley Daniel**. Catchment creation and data attribution for stream reaches in southern Alaska: Generating data to facilitate stream research and management. American Fisheries Society, Little Rock, AR

Damon Krueger, Dana Infante, **Wesley Daniel**. Assessment of Columbia River Salmonid populations using a landscape approach: An application for the National Fish Habitat partnership. American Fisheries Society, Little Rock, AR
Kenneth Brown and **Wesley M. Daniel**. What is the role of habitat, life history and host fish in determining distributions of Louisiana mussels? American Fisheries Society, Little Rock, AR

Wesley M. Daniel, Dana M. Infante, Lizhu Wang, Yin-Phan Tsang, Arthur R. Cooper, Daniel Wieferich, Kyle Herreman, and Peter C. Esselman. Fish Habitat Conservation at a National Scale: Biases, Trends, and Future Directions. **Invited Presentation** Society of Freshwater Science, Jacksonville, FL

2012 Wesley M. Daniel and Kenneth M. Brown. Life History and Behavioral Adaptations of Unionid Mussels Along a River Gradient. Freshwater Mollusk Conservation Society, Guntersville, AL

Kenneth M. Brown and **Wesley M. Daniel**. Can an opportunistic Mussel become endangered? The case of the Inflated Heelsplitter in the Amite River. Freshwater Mollusk Conservation Society, Guntersville, AL

Wesley M. Daniel. A Tiered Aquatic Life Unit (TALU) bioassessment model based on fishes and unionid mussels in Gulf of Mexico coastal streams. **Invited Presentation** Michigan State University, Fisheries and Wildlife Seminar Series

Wesley M. Daniel, Kenneth Brown. LSU Benthic Ecology Lab: research in Louisiana State University, Biological Sciences

Wesley M. Daniel, Kenneth Brown. LSU Benthic Ecology Lab. Louisiana State

2009 Wesley M. Daniel and Kenneth Brown. The role of fish hosts, local and landscape factors in determines unionid abundance, diversity, and community composition in
Louisiana coastal plan rivers. Freshwater Mollusk Conservation Society, Baltimore, MD

2008 Wesley M. Daniel and Jeff Jack. Wilson Creek restoration and response in food web and fish community structure. Louisiana State University Graduate Student Organization Biosymposium, Baton Rouge, LA

Wesley M. Daniel and Jeff Jack. Impacts of urbanization on aquatic food webs and fish community structure across an urban-rural gradient in metro Louisville, Kentucky (USA). Kentucky Fisheries Society, Mammoth Cave National Park, KY

Wesley M. Daniel, Jeff Jack, Margaret Carreiro. Evidence of Stream Food Web Alterations Due to Land-use Change Across Metro Louisville, Kentucky (USA). University of Louisville Research Symposium 2008, Louisville, KY

2003 Wesley Daniel and Phillip Lienesch. Effects of dams on fish upstream of reservoirs. Kentucky Academy of Science, Bowling Green, KY

STUDENT PROJECT MENTOR

I assisted mentoring several underrepresented undergraduate interns from the Howard Hughes Medical Institute and Louisiana Biological Research Network. I helped each student in develop of an individual research project, conducting their field/lab research, assisted with data analyses and development of their project presentation.

2012 Zach Goodnow and Wesley M. Daniel. Response of Unionidae mussels to flood conditions

JOURNAL REVIEWER

Freshwater Science
American Malacological Bulletin
Transactions of the American Fisheries Society
Wetlands
Limnologica

COURSE INSTRUCTION

Michigan State University, Department of Fisheries and Wildlife

2015 Hydrology, Guest Lecture
Lectured on how hydrologic conductivity can influence downstream function of a catchment. Dr. Dana Infante, instructor of record.

Louisiana State University, Biological Sciences Department
2011 Principles of Ecology Lab, Teaching Assistant
Responsible for two laboratory sections for approximately 30 students in fall
semester. Class included numerous field trips and in class exercises. Oversaw the
development of a new mark and recapture lab under the direction of Dr. Barry
Aronhime, instructor of record.

2010 Introductory Biology Lecture for majors, Section Instructor
Responsible for in class assistance including questions and weekly reviews for 750
students in the spring semester under direction of Dr. William Wischusen,
instructor of record.

2007 Introductory Biology Lab for majors, Teaching Assistant
Responsible for two laboratory sections for approximately 30 students each in the
fall semester under direction of Dr. William Wischusen, instructor of record.

University of Louisville, Biology Department

2004-2006 Fundamentals of Introductory Biology lab, Lead Teaching Assistant
Responsible for three laboratory sections of approximately 30 non-major students
and training of new teaching assistants under direction of Dr. Arnold J. Karpoff,
instructor of record.

DEPARTMENT, COMMUNITY, or PROFESSIONAL SERVICE

2015 Michigan State University, Department of Fisheries and Wildlife Symposium Judge.
Judged student presentation as part of Fish and Wildlife Graduate Student Research
Symposium

2014 Interviews with the following media groups about Mining Paper in Ecological
Indicators:

1. Public radio international interview 12/1/14

2. The Speaker (Columbia) http://thespeaker.co/even-single-mine-can-
damage-fish-habitats-miles-downstream-study/

3. Canadian Institute of Mining 12/12/14

4. Fish Sens Magazine- http://magazine.fishsens.com/mines-make-bad-
neighbors-fish-streams-afar-new-large-scale-study-shows.htm

6. Mississippi River Basin Policy Analysis-
https://plus.google.com/10147367548833674529/posts/Wcp1XY42QsF

7. Science Newsline-
http://www.sciencenewsline.com/summary/2014112518480010.html

8. Science daily-

9. Iowa Environmental Focus-
http://iowaenvironmentalfocus.org/2014/11/25/study-mining-can-affect-fish-habitats-miles-downstream/

Fisheries consultant for I.M. Systems Group, Rockville, MD

Michigan State University, Department of Fisheries and Wildlife Search Committee Member. Assisted in the development of a job description, review all applications and interview candidates for Research Technologist II position.

Michigan State University, Department of Fisheries and Wildlife Symposium Judge. Judged student presentation as part of Fish and Wildlife Graduate Student Research Symposium

2013 Michigan State University, Department of Fisheries and Wildlife Symposium Judge. Judged student presentation as part of Fish and Wildlife Graduate Student Research Symposium

2012 Malacology Expert for Louisiana Wildlife Action Plans
At the request of the Louisiana Department of Wildlife and Fisheries, I assisted with state wildlife action plans assessments for state listed mollusk species.

2011 Malacology Expert for Pearl River, LA Fish Kill
After a paper mill spill, the Louisiana Department of Wildlife and Fisheries and US Fish and Wildlife asked for assistance in surveying and identification of mussel assemblages impacted by the spill. Responsibilities included leading the field survey, assisting with data analysis and preparation of final reports for the state and federal government agencies.
Louisiana State University, Biological Sciences Department, Biological Summer Camp Graduate Mentor
Mentored approximately 35 incoming freshmen biology students by introducing them to lab course work, held sessions to teach study skills, presented dissertation work and lead group study sessions.

2010 Louisiana State University, Biological Sciences Department, Biological Summer Camp
Mentored approximately 35 incoming freshmen biology students by introducing them to lab course work, held sessions to teach study skills, presented dissertation work and lead group study sessions.

2008-2011 Graduate Association Merchandise Commissioner
Coordinated, supervised, and developed products for fundraising to support graduate student travel awards and department activities.

2007 University of Louisville, Biology Department Graduate Association Fundraising Committee
Assisted with developing and planning innovative fundraising strategies to fund graduate student travel awards.

2006-2007 Graduate Association Seminar, Chair
Lead the planning and recruitment of recognized leaders in various fields of biology.

2006 Kentucky Aquatic Resource Education Workshop
Workshop for local landowners and stakeholders to informed about local aquatic fauna.

2005 Louisville Champions for Children- Middle School Connection Volunteer
Conferences with seventh grade students to focus on career explorations.

2003-2007 Kentucky Water Watch, Warren County
Helped collect water samples as part of Water Watch program.

PROFESSIONAL SOCIETY SERVICE

2015 Moderated National Fish Habitat symposium at American Fisheries Society, Portland, OR
Gastropod Distribution and Status Committee, Freshwater Mollusk Conservation Society
2013 Technical Advisory Group, Bristol Bay, Alaska mining assessment, American Fisheries Society

2010-current Mussel Status and Distribution Committee, Freshwater Mollusk Conservation Society

2006-2010 Propagation and Restoration Committee, Freshwater Mollusk Conservation Society

PROFESSIONAL AFFILIATIONS

Freshwater Mollusk Conservation Society

American Fisheries Society

Society for Freshwater Science

American Malacological Society
CURRICULUM VITA

James A. Gore

Current Position: Dean, College of Natural and Health Sciences
Professor of Biology
University of Tampa
401 W. Kennedy Blvd.
Tampa, FL 33606-1490

EDUCATION:

B.A. (Zoology; Minor: Botany) University of Colorado (1971)
(Senior Research: A computer model of evapotranspiration rates and water availability in
the Colorado alpine tundra.)

M.A. (Zoology; Minor: Geology) University of Montana (1976)
(Thesis: In-stream flow requirements of benthic macroinvertebrates in a prairie river.)

(Dissertation: Trophic ecology of mayflies (Ephemeroptera) in natural and laboratory
streams.)

Areas of Specialization
Aquatic ecology/Hydrology/Conservation. Hydrodynamic and hydraulic change as an
influence on the distribution of aquatic biota. Habitat modeling and instream flow requirements of
aquatic biota as a means of regulated river management. Human impacts (primarily from energy
development technologies) upon running water ecosystems, with emphasis on benthic
macroinvertebrates. Habitat restoration for lotic ecosystems. Impacts and flow management of
hydroelectric facilities, particularly peaking hydropower. Ecology of arid and semi-arid rivers of
southern Africa. Distribution of Chironomids as indicators of the ecological integrity of wetland
ecosystems. Bioassessment of lotic ecosystems using GIS filters to pick reference sites and
conditions combined with physical and biological metrics to create a numerical stream classification
system. Water quality and biotic distributions related to coal mine and other petroleum development
technologies. Biology and ecology of invertebrates, especially aquatic insects and solpugids
[Solifugidae] (sun spiders).

Professional Experience

- Professor of Environmental Science (2004-2009), University of South Florida St Petersburg
 - Interim Dean (2006-2008), College of Arts and Sciences, University of South Florida St Petersburg
 - Chair (2004 – 2007), Environmental Science, Policy and Geography, University of South Florida St Petersburg [Tenured 2004]
• Associate Professor/Professor (1996 – 2004), **Director**, Graduate Program in Environmental Science, **Chair**, Department of Environmental and Health Sciences, Columbus State University, Columbus, GA [Tenured 1998]

• Adjunct Professor (1989-Present), Dept. of Biology, Tennessee Tech Univ., Cookeville, TN

• Senior Scientist/Director (1994-1996) Environmental Protection Division, The Conservancy of Southwest Florida, Naples, FL

• Eminent Scholar Chair in Environmental Sciences (1992-1994) Center for Environmental Research and Service, Troy State University, Troy, AL
 - **While** at Troy State University, **also** served as:

• Professor and Director of Research (1990-1992) The Center for Field Biology, Austin Peay State Univ., Clarksville, TN

• Associate Professor/Assistant Professor (1981-1990) [Tenured 1986] Faculty of Biological Science, University of Tulsa, Tulsa, OK
 - **While** on the Faculty of the University of Tulsa, **also** served as:
 - Visiting Professor (1989) Freshwater Research Unit, Dept. of Zoology, University of Cape Town, South Africa (**Fulbright Fellowship**)
 - Guest Faculty (Summer, 1988) Univ. of Oklahoma, Biological Station, Lake Texoma - taught Reservoir and Tailwater Ecology
 - Research Ecologist (1986-1988) [Water Quality Modeling Group], U.S. Army Corps of Engineers, Waterways Experiment Station, Vicksburg, MS (Sabbatical from Univ. Of Tulsa, 1986-1987, IPA assignment and research grant)
 - Guest Professor (Summer, 1985) Zoologisches Institut der Universitat (T.H.), Karlsruhe, West Germany

 While working on Master’s and Doctoral Degrees
 - Research Aquatic Biologist (1978-1980) Water Resources Research Institute, University of Wyoming, Laramie, WY
 - Instructor (1976-1978) Dept. of Zoology, University of Montana, Missoula, MT
 - Research Assistant (1974-1976) Dept. of Geology, Univ. of Montana, Missoula, MT

 Military Service: U.S. Navy (1971-1974) [Operational Electronics/Avionics]
 - Vietnam (1972-1973)
Professional Memberships

American Association for the Advancement of Science
American Fisheries Society
American Institute of Biological Sciences
American Society of Naturalists
North American Benthological Society
 (Executive Committee, 1986-1987)
 (Chair, Technical Issues Committee, 1986-1988; member, 1986 - Present)
Phi Gamma Kappa
 (Vice-President, 1985-1986)
Sigma Xi
Southern African Society of Aquatic Scientists
New Zealand Limnological Society
Phi Beta Delta (Honor Society for International Scholars)

Honors/Awards

FULBRIGHT SENIOR RESEARCH FELLOWSHIP - Council for the International Exchange of Scholars - Freshwater Research Unit, Univ. of Cape Town, South Africa - regulated river management projects - Jan 1989 - Sept 1989
U.S. Dept. of Energy/Assoc. of Western Universities Faculty Research Participation Award - Laramie Energy Technology Center, Univ. of Wyoming - toxicology research - Summer, 1983
Assoc. of Western Universities/ U.S. Dept. of Energy Fellowship - Western Research Institute, Univ. of Wyoming - toxicology of treated synfuel effluents - Summer, 1984.

Columbus State University – Faculty Research and Scholarship Award – 2000
Columbus State University – Faculty Research and Scholarship Award – 2004

Who's Who Environmental Registry [Citation Press] (1992)
American Men and Women of Science (1992)
International Who’s Who of Professionals [2000]
Who’s Who in America’s Teachers [2003-2006]
Lifetime Achievement Award – August 2015 - International Society For River Science

Publications in Refereed Journals

[most influential (i.e., most cited) are in **bold**]

enhancement of benthic community diversity by Physical Habitat Simulation (PHABSIM) and direct observation. *Regulated Rivers* 14: 69-77.

Manuscripts in Review

Addison, D.S., J.A. Gore, E. Odgaard, and D. Cassill. An assessment of long-term fecundity and hatchling production in a population of loggerhead turtles (*Caretta caretta*) from a nesting beach in Southwest Florida, USA. *Journal of Herpetology*

Manuscripts in Preparation

Gore, J.A., J.H. O’Keeffe, and A.A. Fouts. Application of the instream flow incremental methodology (IFIM) to southern African rivers. II. Prediction of relative abundances of fish and benthos at minimum flows.

Gore, J.A., and J.M. King. Application of the instream flow incremental methodology (IFIM) to southern African rivers. III. IFIM evaluations of flows to restore ecosystem integrity.

Gore, J.A., and P.M. Jones. Distribution of Chironomidae in the mainstem Chattahoochee River and cumulative impacts of a combination of low and high-head impoundments.

Olson, J.R., J.A. Gore, and M. Barbour. A GIS-based method for choosing candidate reference streams in the ecoregions of Georgia: Comparisons with *best professional judgement*.

Gore, J.A. Balancing reservoir releases, electric power demands, and instream biotic habitat in the Roanoke River system. [Invited by Transactions of the American Fisheries Society]

Professional Presentations

North American Benthological Society/American Society of Limnology and Oceanography Joint Meeting: 2010. Santa Fe, NM. Special Symposium on Global Climate Change. INVITED TALK: Application of the Atlantic Multidecadal Oscillation (AMO) as a surrogate for the initial phases of climate change: Shifts in community composition and management decision for Southeastern, USA, rivers.

4th North American Reservoir Symposium. Balancing Fisheries Management and Water Uses for Impounded River System. 2007. Atlanta, GA. **INVITED TALK:** Balancing reservoir releases, electric power demands, and instream biotic habitat in the Roanoke River system.

Tenth International Symposium on Regulated Streams. 2006. Stirling, Scotland. **PLENARY PAPER:** Florida river flow patterns and the Atlantic Multidecadal Oscillation (AMO).

11th International Petroleum Environmental Conference. 2004. Albuquerque, NM. **INVITED PAPER:** Changes in community structure after habitat loss and potential changes in water quality in Northern Great Plains Rivers impacted by long-term flow increases resulting from CBM production.

Southeast Chapter, Society for Environmental Toxicology and Chemistry. 2003. Columbus, GA. **KEYNOTE TALK.** The Georgia Ecoregions Project - Assessing Stream Ecosystem Integrity from NPS Pollution: Is there a linkage to TMDL’s?

10th International Petroleum Environmental Conference. 2003. Houston, TX. **INVITED PAPER:** Potential habitat loss and population bottlenecks created by increased flows from CBM operation.

9th International Petroleum Environmental Conference. 2002. Albuquerque, NM. **INVITED PAPER:** Analysis of habitat loss for target biota in rivers impacted by long-term flow increases resulting from CBM production in the Powder River basin.

North American Benthological Society. 2001. LaCrosse, WI. Macroinvertebrate bioassessment detects the impacts of three years of drought in the catchment of the middle Chattahoochee River.

Murray-Darling Freshwater Research Center. 2001. Albury, NSW, Australia. **INVITED LECTURE:** Instream flows, politics, and engineers?

SEMP Ecosystem Management Program. 2001. Columbus, GA. **INVITED LECTURE:** The Georgia Ecoregions Project.

Eighth International Symposium on Regulated Streams. 2000. Toulouse, France. **INVITED PAPER:** Macroinvertebrate instream flow studies after 20 years: a role in stream and river restoration.

Georgia Chapter, American Fisheries Society. 1999. Tifton, GA. **INVITED PRESENTATION:** Is there value in using benthic macroinvertebrates in in-stream flow decisions

Department of Biology, Monash University, Caulfield East, VIC Australia. 1998. **INVITED WORKSHOP** (full day): The future of stream and river rehabilitation and restoration.

Workshop on Instream Flow Assessments. 1997: T.G. Masaryk Institute of Hydrology; Prague, Czech Republic. **INVITED PRESENTATION:** Field analysis and PHABSIM application of macroinvertebrate habitat suitability criteria. [Funded by the United States Department of State]

International Conference on Sustaining the Ecological Integrity of Large Floodplain Rivers. 1994. La Crosse, WI. INVITED PAPER: Managed floods on floodplain rivers: is hydraulic disturbance offset by ecological benefit?

New Zealand Limnological Society. 1993. Wellington, New Zealand. INVITED SPECIAL WORKSHOP: Stream and River Restoration. [Conducted two days of 8-hour sessions].

Association for Integrative Studies. 1993. Detroit, MI. Presented Paper: An approach to the development of interdisciplinary graduate programs in environmental analysis and management.

Auburn University. Dept. of Biology/Coop. Fish. Res. Unit. 1992. Auburn, AL. **INVITED SEMINAR**: Southeastern streams and the hydrodynamics associated with macroinvertebrate populations; plus IFIM.

Hancock Biological Station. 1991. Murray, KY. Summer seminar series. **INVITED SEMINAR**: Conserving endangered aquatic biota in southern Africa through application of physical habitat models.

Fifth International Symposium on Regulated Streams. 1991. Flathead Biological Station, MT. Presented Paper: Use of physical habitat models to predict relative abundances of biota downstream of multiple impoundments in the Buffalo River (eastern Cape Province), South Africa.

Center for Field Biology. 1990. Third Annual Symposium, The Natural History of Lower Tennessee and Cumberland River Valleys. Land-Between-The-Lakes, TN. **INVITED PAPER**: The affect of varying flow rates on colonization rates and the ability to predict recovery from disturbance in lotic ecosystems.

Freshwater Research Unit, University of Cape Town, South Africa. 1989. **INVITED SEMINAR:** Techniques for predicting minimum flow requirements in lotic ecosystems: application of the physical habitat simulation (PHABSIM).

Department of Water Affairs, Pretoria, South Africa. 1989. **INVITED SEMINAR:** A survey of instream flow techniques, the computer simulation PHABSIM, and possible applications to southern Africa rivers.

Institute for Freshwater Research/J.L.B. Smith Institute of Ichthyology/Department of Zoology, Rhodes University, Grahamstown, South Africa. 1989. **INVITED SEMINARS:** (1) Theory and field techniques in instream flow analysis. (2) Are lotic organisms adapted to flow?

Zoology Department/University of Cape Town. 1989. Cape Town, South Africa. **INVITED COLLOQUIUM:** Are lotic organisms adapted to flow and what are the implications to ecological theory?

Department of Zoology/Department of Botany/Institute of Natural Resources, University of Natal, Pietermaritzburg, South Africa. 1989. **INVITED SEMINAR:** Development and application of minimum flows to riverine ecosystems.

U.S. Fish and Wildlife Service, National Conf. on Instream Flow and Restoration Techniques. 1988. Atlanta, GA. **INVITED PAPER:** Case history study of the application of IFIM techniques to river restoration.

Waterways Experiment Station. 1986. Vicksburg, MS. INVITED SEMINAR: Modifications and alternatives for instream flow models prediciating the effects of flow alterations on benthic invertebrates.

Workshop on Environmental Aspects of Local Flood-Protection Projects. 1986. Waterways Experiment Station, Vicksburg, MS. Presented Paper: The physical habitat simulation (PHABSIM) system: overview and potential application to local flood-protection projects.

INVITED PLENARY SESSION PAPER: Development and application of macroinvertebrate instream flow models for regulated flow management.

Univ. of Texas-Dallas, Environ. Sci. Colloquium. 1984. Dallas, TX. **INVITED PAPER:** Composition and toxicity of synfuel effluents to *Daphnia* and selected mayfly species.

American Society of Limnology and Oceanography. 1980. Los Angeles, CA. **INVITED PAPER:** Colonization theory applied to benthic stream ecosystems.

First International Symposium on Regulated Streams. 1979. Erie, PA. **INVITED PAPER:** An ordinational analysis of benthic communities influenced by a prairie irrigation reservoir.

Books/Chapters

[most influential (i.e., most cited) are in **bold**]

- Chapter 1: **Introduction** James A. Gore, Duncan L. Hughes, Michele P. Brossett, and Amanda M. Herrit
- Chapter 3: **Rapid Bioassessment Materials and Methods** Michele P. Brossett, Duncan L. Hughes, John R. Olson, and James A. Gore
- Chapter 4: **Candidate Reference Conditions.** John R. Olson, Duncan L. Hughes, James A. Gore, P. Michele Brossett
- Chapter 5: **Development of Ecoregional and Sub-ecoregional Reference Conditions.** Duncan L. Hughes, John R. Olson, P. Michele Brossett, and James A. Gore
- Chapter 6: **A Numerical Index of Stream Health.** Amanda M. Harrit, Duncan L. Hughes, James A. Gore, and P. Michele Brossett
- Chapter 7: **The Effect of Sample Size on Rapid Bioassessment Scores.** Uttam Rai, James A. Gore, Duncan L. Hughes and P. Michele Brossett
- Chapter 8: **Taxonomic Resolution and Cost Effectiveness of Rapid Bioassessment.** Jodi A. Williams, James A. Gore, and P. Michele Brossett
- Chapter 9: **Quality Assurance / Quality Control: What Does It Reveal About the Reliability of the Rapid Bioassessment Protocol?** Tracy J. Ferring, James A. Gore, and Duncan L. Hughes
- Chapter 10: **The Use of Rapid Bioassessment to Assess the Success of Stormwater Treatment Technologies (BMPs) in Urban Streams.** Erik Oij, James Banning and James A. Gore
- Chapter 11: **Implementation of the Rapid Bioassessment Protocol.** Michele P. Brossett, Duncan L. Hughes, Michele de la Rosa and James A. Gore

[2nd printing - 1987]

- Gore, J.A. (Ed.) 1989. ВОССТАНОВЛЕНИЕ ИОХРАНА МАЛЫХ РЕК. ТЕОРИЯ И ПРАКТИКА. Moscow, USSR.

Technical Reports

Gore, J.A., M.de la Rosa, T. J. Ferring, U. K. Rai, P. M. Brossett. 2007. An Analysis of a Numerical Index of Health of Wadeable Streams in Georgia Using a Multimetric Index for Benthic Macroinvertebrates and a Recommendation for a Framework to Incorporate Bioassessment Protocols into the Regulatory Process. Ecoregion Reference Site Project – Phase IV. United States Environmental Protection Agency, Clean Water Act, Section 319(h) FY 01-Element 9, Georgia Department of Natural Resources, Atlanta, GA (345 pp.)

Procedings Publications

[most influential (i.e., most cited) are in bold]

Other Publications

Resh, V.H., B. Statzner, and J.A. Gore. (In Preparation) Authorship, instantaneous growth rates, and fried eel. (to be submitted to: Journal of Irreproducible Results)
Funded Research Proposals/Contracts

- St Marks and Wakulla Rivers 2014-2015 $30,000

“Minimum Flows and Levels Analysis: Impacts of the Atlantic Multidecadal Oscillation (AMO), future water withdrawals, and climate change” 2003-Present. Southwest Florida Water Management District. [$1,279,323]

- Silver River PHABSIM Modeling Runs. 2007-2008. $30,000.
- Withlacoochee River PHABSIM Modeling Runs. 2007-2009. $60,000.
- Additional runs Upper Hillsborough River PHABSIM Analysis. 2008. $5,000.
- Brooker Creek PHABSIM Modeling Runs. 2008-2010. $30,000.
- Gum Springs PHABSIM Modeling Runs. 2008-2010. $30,000.
- Pithlachascotee River PHABSIM Modeling Runs. 2008-2010. $30,000.
- Gum Springs Diversion for Testing “Significant Harm” 2009-2019. $400,000
- Upper Peace River PHABSIM Modeling Runs. 2009-2011. $25,000
- Gum Springs Bypass Study. 2009-2019. $750,000
- Gum Springs Macroinvertebrate Study. 2011-2015. $160,000
- Prairie Creek PHABSIM Field and Modeling Runs. 2010-2015. $25,000
- Shell Creek PHABSIM Field and Modeling Modeling Runs. 2011-2015. $25,000
- Cypress Creek PHABSIM Modeling Runs. 2011-2015. $25,000

“Analysis of the impacts of stormwater treatment BMP’s on macroinvertebrates in an urban stream, Weracoba Creek” 2005-2007. U.S. Environmental Protection Agency [CWA §319(h)]. ($20,000)

“Sample Reallocation Analysis” 2004. U.S. Environmental Protection Agency (Section 319(h))/Georgia Department of Natural Resources. ($107,715)

“The design of a stream restoration effort for Dry Creek, Early County, Georgia, as part of a mitigation banking project” 2003-2004. Kolomoki Plantation, Consolidated Resources, LLC/James Butler, Inc. ($18,000)

Georgia Ecoregions Project. U.S. Environmental Protection Agency (Section 319(h))/Georgia Department of Natural Resources. ($1,334,667) as:

- **Phase III** - “Development of a numerical index (biocriteria for water quality) for the major ecoregions and subecoregions of the state of Georgia” 2001–2003. ($417,000)

- **Phase IV** - “Validation of numerical index and recommendations for application of macroinvertebrate biocriteria for the state of Georgia” 2003–2005. ($500,000)

"Recovery of fish and macroinvertebrate communities in restored wetlands of the western Everglades” 2000-2001. Laurel Foundation/Florida Game and Freshwater Fish Commission. ($20,000)

"Recreation support services - Middle Chattahoochee Hydroelectric Project” 1999-2000. CH2M Hill ($8,000)
"Fish and mussel surveys - Middle Chattahoochee Hydroelectric Project" 1999. "CH2M Hill. ($8000)

"The distribution of fish and macroinvertebrates in the Chattahoochee watershed near Columbus, Georgia, as they are affected by CSO treatment technology and changes in land use". 1997-1999. Columbus Water Works, Water Environment Research Foundation, U.S. Environmental Protection Agency, U.S. Army Corps of Engineers, Georgia Environmental Protection Division, Alabama Department of Environmental Management, Georgia Power. ($100,000)

"Water quality study of West Point Lake, Georgia" 1996-1997. West Point Lake Development Authority ($20,000)

"The hydrology and ecology of the Clam Bay basin and mangrove ecosystem" funded through:

- "Analysis of the Clam Bay ecosystem. Phase I - historical records and data analysis." 1995. Bay Colony Assoc. ($10,000)
- "Water quality analysis of canals and estuarine areas on Marco Island" 1995-1996. Marco Island Civic Association. ($6,000)
- "Water quality analysis of Vanderbilt Lagoon and the southern end of Water Turkey Bay" 1996-1997. Vanderbilt Beach Property Owners Association and Wiggins Pass Conservancy ($5,000)

"Nutrient analysis of waters in Moorings Bay, Seagate, and Clam Bay ecosystems." 1995-1996. Save The Bays Assoc., Inc. ($5,000)

"GIS support and training" 1995-1996. CTSP Program - Hewlett Packard/Environmental Systems Research Institute/Smithsonian Institution. (awarded complete GIS system [hardware and software] plus training) (approximate value: $75,000) (submitted with Christine Ramsey)

"GIS analysis of environmentally sensitive areas, seagrass beds, and manatee protection
zones in waterways in Collier County, Florida" 1994-1995. Marine Trades Assoc. ($5,000)

"Minimum flow requirements to maintain faunal diversity on the Sabie and Letaba Rivers in Kruger National Park." 1991. CSIR/FRD and Univ. of the Witwatersrand, Pretoria, South Africa. ($10,000)

"Hydraulic influences on colonization rate in disturbed streams: can they be used to predict recovery?" 1990. Univ. of Tulsa, Faculty Summer Fellowship ($4,500)

"Assessment of hydropower uprates on the Cumberland River downstream of Wolf Creek Dam, Kentucky." 1987. U.S. Army Engineers, Nashville, District ($80,000)

"Development of a method for predicting the effects of peaking hydropower releases on fish and benthos." 1986-1988. U.S. Army Engineers ($360,000; including 1 year IPA assignment to Waterways Experiment Station [1986-1987]) [Project extended, 1988-1989; $160,000; co-PI with James B. Layzer, Tennessee Tech University; renewed, 1989-1990; $75,000]

"Changes in darter assemblage structure with changes in hydraulic parameters as a test of the river continuum concept." 1986. Univ. of Tulsa, Faculty Development Summer Fellowship ($2,500)
"Comparison of techniques for predicting densities of aquatic invertebrates." 1985-1986. Federal Republic of Germany, Academy of Science; Univ. of Karlsruhe; Univ. of Tulsa ($35,000) (with V.H. Resh and B. Statzner)

"Maintenance of macroinvertebrate habitat for fish food production: implications to regulated flow management." 1985. Univ. of Tulsa, Summer Fac. Fellowship ($2,400)

"A test of instream flow theory for macroinvertebrates by the use of colonization of artificial substrates in natural and experimental streams." 1982-83. Council for the International Exchange of Scholars. (FULBRIGHT AWARD) (Full maintenance and travel for one year to the Hebrew University of Jerusalem, Israel)

"Cumulative effects of a series of storage impoundments on benthic communities of the Arkansas River." 1982. Univ. of Tulsa, Summer Faculty Fellowship. ($3,000)

"Distribution and microhabitat requirements of _Mudalia potosiensis_ (Mesogastropoda: Pleuroceridae), a stream dwelling snail." 1981. Univ. of Tulsa, Faculty Res. Suppl. ($350)

"Survey and habitat description of aquatic biota in the Cheyenne river and tributaries near uranium mine site, Edgemont, SD." 1980-81. Tennessee Valley Authority ($6,500)

"Benthic invertebrate baseline studies from previously coal mined areas in Tennessee." 1980-81. U.S. Geological Survey. ($18,000)

"Determination of instream flow requirements of benthic macroinvertebrates in the Tongue River upstream of the reservoir." 1980. AMAX foundation ($1,500)

"Determination of instream flow requirements of brown trout using radio-isotopes." Year II. Salmonid winter flow studies. 1979-1980. Office of Water Resources and Technology (OWRT), Wyoming Game and Fish Commission, and Wyoming State Engineer Office. (Requested: $36,000; Funded: $31,000)

"Recolonization of a reclaimed stream channel after coal strip mining." 1978-79. Peter Kiewit Sons, Mining District Office and Big Horn Mine Corp., Sheridan, WY ($24,000)

"Forage area, home-range, and population density of Solpugidae in Organ Pipe Cactus National Monument, Arizona." 1978. Sigma Xi. (Requested: $750; Funded: $350)

Masters and Doctoral Committees

(Director) Lora S. Johnson (MS 1980, Univ. of Wyoming) "Tracking movement and identification of instream flow needs of brown trout (Salmo trutta) by use of radio-isotopes."
 [Senior Ecologist, US EPA, Cincinnati, OH]

(Member) Deborah Contreras (MS 1984, University of Tulsa) "Environmental and genetic differences in Pectis papposa over an altitudinal gradient in the Providence Mountains, California." [US Army]

(Director) Richard B. Smith (MS 1984, University of Tulsa) "Impacts of a multiple level release reservoir on macroinvertebrate communities of the Little River, Oklahoma."
 [Director of Environmental Services, Indian Nations Council of Governments, Tulsa, OK]

(Director) Richard M. Bryant, Jr. (MS 1984, University of Tulsa) "Seasonal and successional patterns of macroinvertebrates in a three year-old man-made marsh."
 [PhD, Oklahoma State Univ.; Director of Water Quality Services, Williams Assoc., Tulsa, OK]

(Member) James Bergman (MS 1984, University of Tulsa) "Water quality analysis of an EPA SuperFund site: Tar Creek, Oklahoma"

(Director) Franklin L. Bryant (MS 1986, University of Tulsa) "Habitat partitioning and diet overlap of coexisting darter species (Percidae) in Fourteen Mile Creek, Cherokee County, Oklahoma."
 [Senior Ecologist, Ohio EPA]

(Director) Francis I.P. Gelwick (MS 1987, University of Tulsa) "Longitudinal and temporal patterns of riffle and pool fish assemblages in an Ozark stream, Delaware County, Oklahoma."
 [Faculty, Texas A&M University]

(Director) William A. Swartley (MS 1987, Tennessee Tech Univ.) "Development of a biotic index for heavy metal contamination from surface coal mining in the New River, Tennessee."
 [Directory of Hydrology Division, North Carolina Dept of Forestry]
(Member) **Scott Niemela** (MS 1989, Tennessee Tech Univ.) "Influence of peaking hydroelectric discharges on habitat selection and movement patterns of rainbow trout (*Oncorhynchus mykiss*)."

(Director) **Arlesa A. Fouts** (MS 1990, University of Tulsa) "Assessment of instream flow requirements of the benthic macroinvertebrates of the Olifants River, western Cape Province, South Africa."

[Faculty, University of Texas]

(Director) **Jimmy Smith** (MS 1993, Austin Peay State University) "Analysis of placement of reregulation weirs on habitat structure and availability for selected fish species downstream of a peaking hydropower project."

(Member) **Mark Hartman** (MS 1994, Tennessee Tech Univ.) "Habitat relationships among larval fish in Shoal Creek, Tennessee and Alabama"

(Member) **Tim Nehus** (MS 1995, Tennessee Tech Univ.) "Changes in drift patterns of benthic macroinvertebrates downstream of a peaking hydropower facility on the Caney Fork River, Tennessee"

(Member) **Nicolas Lamouroux** (PhD 1997, Université Claude Bernard - Lyon I - FRANCE) "Hydraulique statistique et prediction de caracteristiques du peuplement piscicole: Modeles pour l'ecosysteme fluvial" [CNRS, Lyon]

(Director) **Henry Leon Griffith III** (MS 1998, Columbus State University) "Analysis of hydric pine ephemeral pool macroinvertebrate and crustacean assemblages along a temporal and spatial gradient from a hypothesized colonial source.”

(Member) **Pierre Sagnes** (PhD 1998 Université Claude Bernard - Lyon I - FRANCE) “Morphométrie, potentiel hydrodynamique et utilisation de l’habitat par les poissons: une nouvelle approche écomorphologique.” [Faculty, University of Lyon]

(Director) **Margaret Ann Berg** (MS 2001, Columbus State University) “Temporal differences in nest mortality and hatchling survival of loggerhead sea turtles, *Caretta caretta*, over 13 years of record.

(Director) **Page Jones** (MS 2001, Columbus State University) “Cumulative impacts of run of river dams on the distribution of benthic macroinvertebrates in the middle Chattahoochee River.” [Faculty, University of Arkansas]

(Director) **John Olson** (MS 2001, Columbus State University) "GIS characterization and analysis reference streams for bioassessment in Georgia"

[Faculty, Utah State University]

(Member) **Theodor Roever** (MS 2002, Columbus State University) “Development of a fish index of biotic integrity for the middle Chattahoochee River catchment”

(Member) **Jonathan Neufeldt** (MS 2003, Columbus State University) “Terrestrial range and habitat use of gopher frogs (*Rana capito*) at Fort Benning, Georgia” [USFWS, Fort Benning, GA]

(Director) **Jodi Williams** (MS 2004, Columbus State University) “Effect of taxonomic precision and accuracy in rapid bioassessment scores for Georgia ecoregions”

(Director) **Jennifer Lang** (MS 2004, Columbus State University) “Distribution of benthic macroinvertebrates in urbanized tributaries of the Chattahoochee River.”

[Instructor, Columbus Technical College]
(Director) **Marcie Parrish** (MS 2005, Columbus State University) “An analysis of agricultural and resort land-use patterns on benthic macroinvertebrate communities in tributaries of the Chattahoochee River.”

Ecologist, Joe Jones Ecological Research Center, Univ. of Georgia

(Director) **Michele Brossett** (MS 2005, Columbus State University) “Ecoregional differences in nutrient concentrations and macroinvertebrate distributions in determination of reference streams in Georgia”

Senior Ecologist, Georgia Department of Natural Resources

(Director) **Duncan Hughes** (MS 2006, Columbus State University) “Development of reference conditions of wadeable streams in the major ecoregions and subecoregions of Georgia”

Faculty, North Georgia College

(Director) **Tracy Ferring** (MS 2006, Columbus State University) “Analysis of QA/QC protocols and value of data to the development of reference criteria in the Georgia Ecoregions project.”

Ecologist, Florida Fish and Wildlife Conservation Commission

(Director) **Amanda Middleton** (MS 2006, Columbus State University) “A numerical index for classifying wadeable streams in Georgia and their correlation with EPA’s aquatic life use stages”

(Director) **Uttam Rai** (MS 2006, Columbus State University) “The effect of sample size on rapid bioassessment scores and management efficiency”

Senior taxonomist, Rhithron Assoc., Missoula, MT

(Director) **Salini Pillai** (MS 2007, Columbus State University) “Ecoregional differences between blackwater and clear water streams in determination of reference conditions in Georgia”

(Member) **Jason Hood** (MS 2007, University of Florida) “Hydrological analysis of flood patterns on the Rainbow River”

Director, Water Quality Division, SWFWMD

(Member) **Steffen Schweitzer** (PhD 2007, EAWAG (Swiss Federal Institute for Environmental Science and Technology). “An integrative model to predict the hydraulic, morphological and ecological consequences of river rehabilitation”

(Member) **George Kish** (PhD 2008, University of South Florida) Undetermined: Focus on restoration of riparian vegetation in urban river ecosystems.

(Director) **James Banning** (MS 2009) “Examination of BMP applications (settling-pond valves for erosion control) for stormwater runoff in an urban stream, Roaring Branch”

Research Assistant, University of Tampa

(Director) **Mike Sears** (MS 2010) “Differences in diet and health among bluegill sunfish feeding in mainsteam areas and spring vent areas, Rainbow River, Florida”

Ecologist, Maine Department of Natural Resources

(Member) **Laura Hadeed** (Honors 2010) “Sacred healing and ceremonial healing practices among two North Native American nations: the Wind River Shoshone and the Seneca of the Iroquois”

(Director) **Charlotte Clayton** (MS 2011) “Utilizing macroinvertebrate fossils to recreate historic hydroperiods on tree islands in the Everglades”

(Director) **Erik Oij** (MS 2011) “Examination of off-site BMP applications for stormwater runoff in an urban stream, Weracoba Creek”
(Member) Jennifer Jackson (MS 2011) “An Evaluation of Roost Selection Preferences by Bats in Georgia Bridges.”
[Biologist, Idaho Department of Wildlife]

(Director) Renee Duffy (MS 2012) “A Multi-scale Approach for Characterizing Habitat Selection of Tidal Creek Fish in Charlotte Harbor, Florida”
[GIS Coordinator, Florida Wildlife Conservation Commission]

Technical Consulting
JOURNAL REFEREE

Proc. Oklahoma Academy of Science (1982 - 86)
Freshwater Invertebrate Biology (1985)
American Midland Naturalist (1986)
River Research and Applications (formerly Regulated Rivers (1986 - 2008)
Rivers (1988 - 2001)
North American Journal of Fisheries Management (1992)
Copeia (1992)
Canadian Journal of Zoology (1994)
Limnology & Oceanography (1996)
Marine and Freshwater Research (Australia) (1999)
Ecological Engineering (1999)
Basic and Applied Ecology (2001)
Archiv für Hydrobiologie (2001)
PROCEEDINGS REFEREE:
Floodplain River Symposium (1990)
Fifth International Symposium on River Sedimentation (1991)
International Riprap Workshop (1993)

BOOK/CHAPTER REFEREE:

HYDROLOGY FOR AQUATIC BIOLOGISTS by Nancy Gordon (1990) [Wiley, NY]
[reviews of chapters/software]

RIVER CONSERVATION AND MANAGEMENT by Boone, Petts, and Calow (1990) [Wiley, NY]

THE RIVER HANDBOOK by Calow and Petts (1992) [Wiley, NY]

THE MEMOIRS OF DR. ALBERT PATRICK BLAIR by Peggy S.M. Hill (2007) [Univ. of Oklahoma Press]

CONSULTANT BIOLOGIST/HYDROLOGIST

1981 - 1989. Macroinvertebrate surveys of Cheyenne River and Cottonwood Creek, Edgemont, SD, and Marquez Canyon, NM. Tennessee Valley Authority. Abandoned uranium mine program.

Surface Mining

1988. Consultant/participant - Draft writing of EPA National Ecosystems Research Plan: Surface Waters (especially, proposed needs and projects for cause and effect relationships in habitat alteration and model development of risk assessment for habitat alteration) - U.S. Environmental Protection Agency, Office of Environmental Processes and Effects Research

1989. 1) Institute of Hydrology, Wallingford, Oxfordshire, UK
2) Department of Water Affairs, Pretoria, South Africa
3) National Parks Board, Kruger National Park, Skukuza, South Africa

1991. Manuscript Referee:

U.S. Fish and Wildlife Service, National Ecology Research Center

"Benthic macroinvertebrate microhabitat requirements and trophic structure in southeastern streams: a literature synthesis."

"Use of benthic macroinvertebrates in the development of impact assessment methods for southeastern rivers."

INVITED GROUP LEADER: Fourth Ecological QA Workshop, EPA, Cincinnati, Ohio. Responsible for development of documents on statistical tools for terrestrial monitoring program.

Program Committee - Ohio River Basin Consortium annual meeting

2) Wright Brothers Construction, Johnson City, TN

1992 - 1994 Trustee: Board of Trustees, Alabama Forever Wild Land Trust

1993. 1) National Institute for Water and Atmospheric Research, Hamilton, New Zealand
2) Carolina Power & Light
3) Standing Rock Sioux Nation, South Dakota
4) Friends of the Locust Fork River (Alabama)

1994. 1) South Carolina Electric & Gas Company
2) Mid South Area National Sedimentation Laboratory (part of program review team)

2) USDA - Agricultural Research Service - Atlanta, GA - Regional Vision Development Conference
3) City of Hendersonville, NC - instream flow reservations on the Mills River and tributaries
4) Virginia Power & Light - instream flow reservations for relicensing of hydropower facilities on the Roanoke River in North Carolina and Virginia.

1996. 1) City of Gatlinberg and City of Sevierville, TN - minimum flow evaluations for the Pigeon River
2) Bureau of Reclamation - review of proposals for research on controlled flood releases downstream of Glen Canyon Dam, Arizona
3) Virginia Water Resources Research Center - review of proposals for research sponsored by the U.S. Geological Survey
4) Nantahala Power and Light (North Carolina) - evaluation of instream flow studies of hydropower relicensing
5) U.S. Environmental Protection Agency - National peer review panel - Risk Management Plan for Ecosystem Restoration in Watersheds
6) South Florida Water Management District - macroinvertebrate surveys in isolated wetlands project - specifically taxonomic identification and analysis of distribution of chironomid larvae

1997. 1) City of Gatlinberg and City of Sevierville, TN - minimum flow evaluations for the Pigeon River
2) South Florida Water Management District - macroinvertebrate surveys in isolated wetlands project - specifically taxonomic identification and analysis of distribution of chironomid larvae
3) Virginia Power & Light - instream flow reservations for relicensing of hydropower facilities on the Roanoke River in North Carolina and Virginia.

 2) Nantahala Power & Light – time series analysis of habitat availability and bottlenecks on Queens Creek and South Yadkin River

 2) Nantahala Power & Light – time series analysis of habitat availability and bottlenecks on Queens Creek and South Yadkin River
 3) Upper Chattahoochee River Keeper – instream flow analysis of water withdrawal by Georgia Power at Plant Wansley

 4) CALFED Bay-Delta Program's Ecosystem Restoration Program. Proposal reviews.
 5) Southwest Florida Water Management District. Peer review committee on minimum flow analysis of the Upper Peace River. (committee chair)

2003. 1) Southwest Florida Water Management District. IFIM and PHABSIM workshop for SWFMD and Florida Wildlife and Fisheries Conservation Commission personnel

2004. 1) Columbus State University, Columbus, GA. Analysis of data collection from Georgia Ecoregions project.

2005. 1) Columbus State University, Columbus, GA. Analysis of data collection from Georgia Ecoregions project.
 2) Tennessee Tech University, Cookeville, TN. External reviewer (state-mandated) – Doctoral program in Environmental Science

2008. 1) Florida Sea Grant Strategic Plan workshop – invited panelist – climate change

1994 - 1996 Collier County, Florida, Environmental Advisory Board (appointed by County Commission)

1996 - 1997 Member, Science and Technology Council - The Naples Institute - [a public policy institute affiliated with Mt. Ida College, Newton, Massachusetts]

1997 - Present Member, Working Group for Technical Guidance on Large Rivers, U.S. Environmental Protection Agency

2006-2009 Host / Organizer – First Triennial Symposium for the International Society of River Science – meeting in St Petersburg, FL

PROPOSAL REFEREE:

 Geology and Paleontology Section (2003)
 National Geographic Society (1992)
 National Fish and Wildlife Foundation (2009)
 Foundation for Research and Development (FRD) - South Africa (1993)
 U.S. Environmental Protection Agency (1997, 2000, 2001)
 U.S. Army Engineers – Waterways Experiment Station (2003)
 Delta Science Council (2015)

1988 - 2002. Board of Editors:

 (1) Regulated Rivers: Research & Management (Wiley)

1993 - 1994: Steering Committee/Scientific Committee: International Symposium on Hydraulic Habitat (sponsored by the International Association for Hydraulic Research) - Trondheim, Norway

1995-1996: Steering Committee/Scientific Committee: Biohydrology - 2000 (sponsored by the International Association for Hydraulic Research) - Quebec City, Quebec

1995-1997: Organizing Committee: Seventh International Symposium on Regulated Streams - Chattanooga, TN.

Scientific Committee: National Conference on Management of Landscapes Disturbed by Channel Incision (Sponsored by USDA National Sedimentation Lab and US Army Corps of Engineers), Oxford, MS.

Invited Panelist: U.S. EPA and Water Environment Federation Workshop: Assessment of Ecosystem Effects Relative to the Scale and Dynamics of Large Rivers

1999-Present Scientific Advisory Board – United Nations/UNESCO – International Hydrology Program (IHP) – section on ecohydrology

2006-Present Board of Directors – International Society for River Science

2010-Present Delta Science Program – Analysis of the collapse of the Sacramento River Fishery – Sponsored by the National Marine Fisheries Service and the US Fish and Wildlife Service
Pete Mchugh
889 Orchard Dr.
River Heights, UT 84321
Phone: 971-269-7857
Email: peter.a.mchugh@gmail.com

EDUCATION
Ph.D. in Aquatic Ecology, Utah State University, Logan, Utah. 2006. Development and application of population models to assess the benefits of habitat restoration for threatened salmon and steelhead populations; analysis of relationships between stream salmonids and physical habitat conditions; development of spatial statistical models for network-scale analysis of fish-habitat relationships. Supervisor: Nick Bouwes. Feb 2015-Present.

B.S. in Fisheries Management (summa cum laude), The Ohio State University. Columbus, Ohio. 1999.

PROFESSIONAL EXPERIENCE
Researcher, Utah State University / Eco Logical Research, Logan, UT. Development and application of population models to assess the benefits of habitat restoration for threatened salmon and steelhead populations; analysis of relationships between stream salmonids and physical habitat conditions; development of spatial statistical models for network-scale analysis of fish-habitat relationships. Supervisor: Nick Bouwes. Feb 2015-Present.

Salmon Fishery Policy Analyst, Washington Department of Fish and Wildlife. Olympia, WA. Operation and maintenance of a multi-jurisdiction, multi-stock salmon population and fishery simulation model (the Fishery Regulation Assessment Model, FRAM); collaboration with modeling staff in interagency fishery management forums associated with the Pacific Fishery Management Council and The Pacific Salmon Commission (WA representative on the PSC-Chinook Technical Committee); general stock assessment, analysis, programming (Visual BASIC, NET, R), and modeling tasks associated with Pacific salmon species and the commercial and recreational fisheries in which they are exploited. Supervisor: Angelika Hagen-Breaux. 2012-2015.

Project Leader, Oregon Department of Fish and Wildlife. Clackamas, OR. Led field studies on the impacts of predation by fishes on salmonids in the mainstem Columbia River; fish sampling, data analysis, and report preparation; project administration (recruiting and supervising 4 permanent and 12 seasonal staff; budgeting; etc.); inter-agency coordination (USACE, WDFW, PSMFC, USGS) on collaborative research contracts. Supervisor: Christine Mallette. 2011.

Postdoctoral Research Fellow, University of Canterbury. Christchurch, New Zealand. Investigated effects of hydrology and stream habitat characteristics on food-web structure in New Zealand high-country streams; designed and implemented field studies to quantify the effects of flooding and drying (natural and simulated) on fish and invertebrate communities; co-advised and provided statistical programming support to graduate students; assisted with the administration of a large (15+ students) freshwater ecology research group. Supervisor: Angus McIntosh. 2009-2011.

Fish & Wildlife Biologist, Washington Department of Fish and Wildlife. Olympia, WA. Development of monitoring plans and analysis of sampling results associated with recreational salmon fisheries in Puget Sound; development of statistical analysis programs (in R) for processing, illustrating, and summarizing fishery data; provided technical support to policy staff in state-tribal and trans-boundary (WA representative on the PSC-Fraser River Panel Tech. Committee) and salmon fishery management forums; prepared technical reports, memos, and presentations. Supervisor: Laurie Peterson. 2007-2009.

Fish Population Biologist, State of the Salmon/Wild Salmon Center. Portland, OR. Developed and programmed an analysis framework for the first IUCN-based range-wide and population-level status assessment for an exploited salmon species (sockeye); created comprehensive, range-wide databases containing salmon escapement data for sites monitored around the Pacific Rim; performed life cycle, population viability, and stock status analyses using modeling approaches; prepared grant proposals and technical publications. Supervisor: Pete Rand. 2007.

Fishery Biologist, The Fish Passage Center. Portland, OR. Provided analytical support for long-term and in-season management-related investigations on the effects of the Federal Columbia River Power System dams on the survival and/or migration of juvenile and adult Chinook salmon; managed and analyzed large (100+K records) datasets; prepared technical memoranda to brief decision makers (i.e. dam operations during migration season) as well as detailed project reports. Supervisor: Michele DeHart. 2006-2007.
PROFESSIONAL EXPERIENCE (CONTINUED)

Research Technician, Aquatic Ecology Lab, Ohio State University. Columbus, OH. Performed lab and field work for a doctoral research project on mechanisms controlling recruitment of Lake Erie fishes; collected, identified, and quantified zooplankton samples; collected and quantified larval fish samples; analyzed larval fish diets. Supervisors: Stuart Ludsin and Roy Stein. 1997-1999 (academic year).

Research Technician, Idaho Department of Fish and Game. Nampa, ID. Assisted with fieldwork for a steelhead trout recovery study; conducted snorkel surveys in remote Idaho streams; collected juvenile steelhead using multiple sampling methods; assisted with a large-scale PIT-tagging program. Supervisor: Alan Byrne. 1998 (summer).

Hatchery Technician, Wyoming Trout Ranch. Cody, WY. Performed daily duties associated with the maintenance and operation of a private trout hatchery and pond management company; estimated daily rations to achieve desired growth goals; managed fish waste and water quality; installed pond aeration systems. Supervisor: 1997 (spring/summer).

TEACHING AND MENTORING EXPERIENCE

TEACHING AND SEMINAR COORDINATION
University of Canterbury: Freshwater Ecosystems (BIOL375, co-instructed), 2009-2010; Freshwater Ecology Graduate Seminar (BIOL472; co-led), 2009-2010.
University of Idaho: Fish Ecology (FISH314, teaching assistant), 2000.

GUEST LECTURES
Oregon State University: Lecture title: Evaluating the effects of mitigation measures on imperiled Snake River Chinook salmon: the Comparative Survival Study (Course: Fish & Wildlife Seminar), 2006.

GRADUATE COMMITTEES
Helen Warburton, Ph.D., University of Canterbury (July 2015)
Simon Howard, Ph.D., University of Canterbury (December 2014)

PEER-REVIEWED PUBLICATIONS
Peer-Reviewed Publications (Continued)

13) **McHugh, P.**, P. Budy, E. VanDyke, and G.P. Thiede. 2008. Trophic relationships between exotic brown trout (Salmo trutta) and native Bonneville cutthroat trout (Oncorhynchus clarkii utah) in a northern Utah river. Environmental Biology of Fishes 81:63-75.

16) **McHugh, P.**, and P. Budy. 2005. An experimental evaluation of competitive and thermal effects on brown trout (Salmo trutta) and Bonneville cutthroat trout (Oncorhynchus clarkii utah) performance along an altitudinal gradient. Canadian Journal of Fisheries and Aquatic Sciences 62:2784-2795.

Manuscripts in Press, Review, or Preparation

SELECTED TECHNICAL REPORTS

7) Comparative Survival Study Oversight Committee and Fish Passage Center (14 co-authors, including **P. McHugh**). 2007. Comparative Survival Study of PIT-tagged spring/summer Chinook salmon and steelhead in the Columbia River Basin: Ten-year retrospective analyses report. DOE/BPA Project 199602000. Portland, Oregon. 674 pp.

PAPERS PRESENTED

3) Individual and environmental factors influencing survival for exploited populations of northern pikeminnow in the Columbia and Snake rivers. American Fisheries Society, Seattle, WA (2011)

6) The impacts of non-native trout on galaxiid fishes in New Zealand. Western Division of the American Fisheries Society, Salt Lake City, UT (2010)

7) Hydrology and food webs. Department Seminar, University of Canterbury, School of Biological Sciences, Christchurch, New Zealand (2010)

9) Contrasting emigrant life-history characteristics between wild stream-type Chinook salmon populations in the John Day and Snake River basins. American Fisheries Society (OR Chapter), Portland, OR (2007)
PAPERS PRESENTED (CONTINUED)
10) An experimental assessment of the multi-scale effects of exotic brown trout on native Bonneville cutthroat trout. American Fisheries Society, Anchorage, AK (2005)
11) An experimental evaluation of altitudinal species-zonation patterns in montane streams: do abiotic or biotic factors determine the distribution of native and nonnative trout in Utah, USA, rivers? VI International Congress on the Biology of Fish, Manaus, Brazil (August 2004)
12) Evidence for competition between introduced brown trout and native Bonneville cutthroat trout in the Logan River, Utah. American Fisheries Society (Western Division), Salt Lake City, UT (2004)
16) A model-based approach to assessing the potential response of selected Snake River spring/summer Chinook salmon populations to spawning and rearing habitat improvements. American Fisheries Society, Phoenix, AZ (2001)

GRANTS AND AWARDS
- Project Grant ($159,855) for project entitled Washington Age Database, U.S. Section Pacific Salmon Commission, 2013 and 2014 (with Brodie Cox, Lance Campbell, and Miek Morbitzer).
- Research Grant (NZ$20,820) for project entitled Fish in the Forest: Ecophysiological determinants of mudfish distributions in the forests of Westland National Park, Brian Mason Scientific and Technical Trust, 2011 (with Angus McIntosh, Chris Glover, and Richard White).
- Research Support (NZ$5,000) for supervised undergraduate project entitled Assessing the effects of hydrologic disturbance on the structure of stream food webs, University of Canterbury, 2009.
- USU Spring Runoff Conference, Best Poster Presentation Award ($250), 2006.
- Research Support ($1,200), Utah State University Ecology Center, 2005.
- Graduate Mentor Award, Utah State Univ., Dept. of AWER, 2004.
- Community-University Initiative Grant ($12,000), Utah State University, 2004 (with Phaedra Budy).
- Quinney Doctoral Fellowship ($36,000), The Quinney Foundation, 2002.
- American Fisheries Society/Sea Grant, Outstanding Presentation Award ($1,000), 2001.

SERVICE, OUTREACH, AND PROFESSIONAL SOCIETY AFFILIATION

REFERENCES

(1) Phaedra Budy, Unit Leader and Professor
USGS-Utah Cooperative Fish & Wildlife Research Unit
Department of Watershed Sciences
Utah State University
Logan, UT 84322
Phone: 435-797-7564
Email: phaedra.budy@usu.edu

(2) Angus McIntosh, Professor and Mackenzie Foundation Chair in Freshwater Ecology
School of Biological Sciences
University of Canterbury
Christchurch 8140, NEW ZEALAND
Phone: +64-3-364-2987 ext. 6061
Email: angus.mcintosh@canterbury.ac.nz

(3) Jon Harding, Professor
School of Biological Sciences
University of Canterbury
Christchurch 8140, NEW ZEALAND
Phone: +64-3-364-2987 ext. 4988
Email: jon.harding@canterbury.ac.nz
JOSEPH MICHAEL WHEATON
Curriculum Vitae

Utah State University • Department of Watershed Sciences
5210 Old Main Hill • Logan, UT 84322-5210
Phone: (435) 554 1247 • Email: Joe.Wheaton@usu.edu • http://joewheaton.org

Updated February 6, 2015

STATEMENT OF RESEARCH INTERESTS

I am an ecogeomorphologist and I am fascinated by rivers and streams and the biota that occupy and alter the habitat shaped by such systems. I have strong applied interests in the restoration and the management of watersheds and their rivers and have worked extensively at the interface between environmental policy, practice and science. I strive to find practical outlets for my research and in particular take the technological and methodological developments we work on and package them into tools and frameworks of use to both practitioners and researchers. Some of the hot applied topics my lab (ET-AL) has been working on lately include:

- Developing 'cheap and cheerful' restoration and monitoring approaches
 - Using beaver as a restoration tool
 - Using hLWD (high density large woody debris) to restore dynamic, self-sustaining, complex habitats to recover salmonid fish populations
- Developing multi-scalar monitoring protocols (see CHaMP and Big Rivers Monitoring Protocol)
- Pioneering new analytical tools to help the community deal with a new era of big data (see: GCD, ZCloud Tools, MBES Tools, BRAT)

There are three broad themes in which most of the research I pursue fits into:

1. Linking Fluvial Geomorphology & Ecohydraulics
2. Monitoring and Adapting to Change
3. Scenario Model Development

See http://www.joewheaton.org/Home/research for more information.

EDUCATION

University of Southampton, Southampton, United Kingdom
Ph.D. Degree in Geography
Received: June 2008

University of California at Davis, Davis, CA, USA
M.S. Degree in Hydrologic Sciences
Received: June 2003

University of California at Davis, Davis, CA, USA
B.S. Degree in Hydrology
Received: June 2002
WORK EXPERIENCE

PROFESSIONAL ACADEMIC EXPERIENCE

Assistant Professor, August 2009 to Present
Utah State University, Department of Watershed Sciences, Logan, UT, USA
 Related USU Affiliations:
 • Director of Ecogeomorphology & Topographic Analysis Lab
 • Director of Fluvial Habitats Center
 • Co-Director of Intermountain Center for River Rehabilitation & Restoration
 • Water Faculty Member of USU Water Initiative
 • Faculty member of Ecology Center

Honorary Lecturer in Physical Geography, Jan 2009 - Present
Aberystwyth University, Institute of Geography & Earth Sciences, Aberystwyth, Wales, UK

Research Assistant Professor, August 2008 - July 2009
Idaho State University, Department of Geosciences, Pocatello, ID, USA

Lecturer in Physical Geography, January 2006 - August 2008
Aberystwyth University, Institute of Geography & Earth Sciences, Aberystwyth, Wales, UK

Ph.D. Student, 2003-2008
University of Southampton School of Geography, Southampton, Hampshire, UK
 Research Projects:
 • Uncertainty from Morphological Sediment Budgeting in Rivers (PhD Thesis)
 • MORPHED (object oriented Cellular Automaton Slope and River) Model
 • International River Restoration Survey
 Supervisors: Stephen E. Darby, Ph.D., Senior Lecturer in Geography
 David A. Sear, Ph.D., Reader in Geography
 Mike Acreman, Ph.D., Centre for Ecology and Hydrology
 Douglas Booker, Ph.D., Centre for Ecology and Hydrology

Research Assistantship, 2001-2003 (full time summers; half-time school year)
U.C. Davis Watershed Hydrology & Geomorphology Laboratory, Davis, CA, USA
 Research Projects:
 • SHIRA Developed Spawning Habitat Integrated Rehabilitation Approach as a holistic, science-based framework for reach-scale rehabilitation of salmonid spawning habitat on regulated rivers
 • Mokelumne River Design and implementation of two separate spawning bed enhancement projects using SHIRA approach. Included modeling, design development, construction observation, field work and monitoring
 • Bear Creek Topographic surveying & post project monitoring of restoration
 • Dry Creek Topographic surveying & post project monitoring of dam removal
 • Clear Creek Topographic surveying & post project monitoring of dam removal
 • Cosumnes River - Coordinated aerial topographic surveys & set ground control
 Supervisor: Gregory B. Pasternack, Ph.D.; Assistant Professor of Hydrology
OTHER PROFESSIONAL EXPERIENCE

Associate Consultant, November 2008 to 2012
CH2M HILL, Water Group, Boise, ID, USA
Responsibilities:
- Conduct senior reviews of restoration project design and monitoring

Sub-Consultant, 2001-2003 (part-time)
Jennifer Chandler Landscape Architect, Napa, CA, USA
Responsibilities:
- Design and preparation of erosion control plans, grading and drainage plans, regulatory applications and technical reports for restoration, agricultural and residential projects
- Provide professional drafting services and field reconnaissance

Civil Engineering Technician, 1997-2000 (full-time)
Bartelt Engineering, Napa, CA, USA
Responsibilities:
- Project Manager of various projects which included field engineering, preparation and design of plans, construction observation and conducting meetings and maintaining correspondence with clients, other consultants, contractors and regulatory agencies
- Preparation of improvement plans, design calculations, regulatory applications and technical reports for residential, agricultural, commercial, and industrial projects
- Agricultural Projects Coordinator (primarily erosion control for hillside vineyards)
- Company CAD Manager and Network Administrator

Civil Engineering Intern, 1995-1996 (full-time summers)
County of Napa Public Works Department, Napa, CA, USA
Responsibilities:
- Drafting, surveying, writing legal descriptions, preparing departmental presentations and inspecting flood control channel network
RESEARCH

SCHOLARLY CONTRIBUTIONS

PEER-REVIEWED RESEARCH PUBLICATIONS

See Also:
- Researcher Gate Profile: https://www.researchgate.net/profile/Joseph_Wheaton

PEER REVIEWED RESEARCH PUBLICATIONS IN PRESS, REVISION OR REVIEW

*Wheaton Graduate Student **Wheaton's Ph.D or MS Supervisor †Wheaton's Ph.D or MS Supervisor ‡Wheaton Post-Doc

1. In Revision. Wheaton JM, Fryirs K, 1 Geomorphic Mapping and Taxonomy of Riverscapes. For submission to Geomorphology.

JOSEPH M. WHEATON VITA

PEER REVIEWED RESEARCH PUBLICATIONS IN PREP

5. In Prep. Camp R*, Wheaton JM, Bennett S, and Bouwes N. Short Term Effectiveness of Cheap and Cheerful Restoration Using High Density Large Woody Debris. For submission to River Research and Applications? or Environmental Management?

9. In Prep. Kasprak A*, Wheaton JM Al 9H13(c03AaA3sA7Az 1e3Ag). A simplified framework for modeling braided river morphodynamics. For submission to: Journal of Geophysical Research: Earth Surface or...

10. In Prep. Wheaton JM, Z e31e1' (1' 4 3), and Bailey P. Pragmatic Error Modeling of Digital Elevation Models from Topographic Surveys using Fuzzy Inference Systems. For submission to ESPL.

11. In Prep. Wheaton JM, Al 9h13(c03AaA3sA7Az 1e3Ag). 5x e 1a A3sA7Az 1e3AgDerivation of Fluvial Geomorphic Units from Topography. For submission to Earth Surface Dynamics.

13. In Prep. Wheaton JM, Al 9h13(c03AaA3sA7Az 1e3Ag). Reimer M., Garrard C, Grams PE, and Schmidt J. Geomorphic Change Detection Software. For submission to Geomorphology.

17. In Prep. Wheaton JM and Roper BB. Hierarchically Related Habitat Characteristics in the Habitat Use of Three Trout Species. For submission to: Ecohydrology.

SELECTED ORAL PRESENTATIONS

JOSEPH M. WHEATON VITA

42. 2004. Wheaton, JM. Uncertainties in River Restoration, Annual School of Geography Post Graduate Conference, Southampton, UK.

JOSEPH M. WHEATON VITA

THESES

NON-REFEREED PUBLICATIONS

*Wheaton Graduate Student †Wheaton's PhD or MS Supervisor **Wheaton Graduate advisee ‡ Wheaton Post-Doc ♠ Wheaton Contributing Author

7. 2012. CHaMP (Columbia Habitat Monitoring Program)♠. Scientific protocol for salmonid habitat surveys within the Columbia Habitat Monitoring Program, Prepared by the Integrated
J O S E P H M. W H E A T O N V I T A

1. Utah Department of Natural Resources, 2014-2015. Utah Division of Wildlife Resources, Awarded $38,000 (PI)

2. Idaho Power Company, 2014. USGS Grand Canyon Monitoring & Research Center, Awarded $10,000 (PI)

4. US EPA, 2015. US Environmental Protection Agency, Awarded $34,000 (PhD Supervisor; PI – Nate Hough-Snee)

5. Utah Department of Natural Resources, 2014. Utah Division of Wildlife Resources, Awarded $40,000 (PI)

6. Utah Department of Natural Resources, 2014. Utah Department of Natural Resources, Awarded $32,000 (PI)

12. *NOAA, 2011-2013. Linking Fisheries, beaver, geomorphic and physical habitat monitoring data to better understand the effectiveness of restoration, Awarded $60,000 (PI)

22. USDA Forest Service, 2009-2010. "Comparison of traditional versus ground-based LiDaR in-stream habitat assessments" Challenge Cost Share Program, Awarded $45,000 (PI)

*Competitive
TEACHING

COURSES TAUGHT

Utah State University, 2009 to Present
- Instructor for WATS 4930/6920 ¹ Advanced GIS & Spatial Analyses (3 cr.)
- Instructor for WATS 4931*/6921 ¹ GIS Research Projects (2 cr.; * Capstone)
- Instructor for WATS 6840 ¹ Fluvial Hydraulics & Ecohydraulics (3 cr.)
- Instructor for WATS 6860 - Fluvial Hydraulics & Ecohydraulics (3 cr.)
- Instructor for WATS 6900 Special Topic Short Courses on River Restoration
 - WATS 6915 GIS Fundamentals (1 cr.)
 - WATS 6900 Special Topic Short Courses on River Restoration
- Co-Instructor for WATS 6900 Special Topic Short Courses on River Restoration

Idaho State University, 2008 to 2009
- Instructor for GEOL 100 ¹ The Dynamic Earth (4 cr.)
- Instructor for GEOL 210 ¹ Earth in Space and Time (3 cr.)
- Instructor for GEOL 599 ¹ Tools in Geomorphology (3 cr.)

Aberystwyth University, 2005 to 2008
- Instructor for EA20110 - Environmental Management
- Instructor for GG30220 - Modelling In Fluvial Geomorphology
- Staff for GG22110 - Level 2 Geography Tutorial
- Staff for GG38110 - Level 3 Geography Tutorial
- Staff for GG39130 - Geography Dissertation
- Staff for GG21920 - Geography Science Fieldwork (New Zealand Field Trip)
- Staff for EAM1920 - Geomorphological Approaches To River Basin Management
CURRENT GRADUATE STUDENTS

1. **Rebecca Rossi**, Fall 2014 to Present, *MS in Watershed Sciences*, 02'8'AG×58 '2 3 7. RI4A 12 09H'A Rapid Topographic Surveys with Digital Images Using Structure-From-Motion; Study Area: Grand Canyon, AZ; Funding: USGS
2. **Martha Jensen**, Fall 2014 to Present, *MS in Watershed Sciences*, Topic: TBD; Study Area: TBD; Funding: ELR
3. **Daniel Hamill**, Spring 2015 to Present, *MS in Watershed Sciences*, 02'8'AGMapping Habitat and Bathymetry from Inexpensive Fish Finders; Study Area: Glenn Canyon, AZ, Funding: USGS
4. **Nate Hough-Snee**, Fall 2012 to Present, *PhD in Ecology*, 02'8'AGeo112902 3 254'43A 05 41 016'60 3 254'43A 05 41 016'60 02 3 19 Study Areas: Bear River Range, UT, Others TBD; Funding: USEPA UDWR
5. **Alan Kasprak**, Fall 2010 to Present, *PhD in Watershed Sciences*, 02'8'AGeo112902 3 254'43A 05 41 016'60 02 3 19 Study Areas: John Day Watershed, OR; Rees River, NZ; & River Feshie, UK; Funding: NSF, NOAA & ELR; ICRRR & USU Start-up Initially
6. **David Sutherland**, Fall 2013 to Present, *PhD in Physical Geography* * University of Southampton (co-supervised with David Sear)*

PAST GRADUATE STUDENTS

1. **Reid Camp**, 2013-2014*, MS in Watershed Sciences, 02'8'AGeo112902 3 254'43A 05 41 016'60 02 3 19 Effectiveness of H-D LWD (High-Density Large Woody Debris) restoration at creating improved steelhead habitat; Study Area: Asotin Creek Intensively Monitored Watershed, WA; Funding: ELR.
2. **Florence Consolati**, Fall 2011 to 2014*, MS in Watershed Sciences, Topic: 02'8'AGeo112902 3 254'43A 05 41 016'60 02 3 19 beaver, geomorphic and physical habitat monitoring data to better understand the effectiveness of beaver, 02'8'AGeo112902 3 254'43A 05 41 016'60 02 3 19 Study Area: Bridge Creek, John Day, OR; Funding: NOAA
3. **James Hensleigh**, Fall 2011 to Spring 2013, *MS in Watershed Sciences*, 02'8'AGeo112902 3 254'43A 05 41 016'60 02 3 19 Change Detection with Multi-I Advance; Study Area: Hells Canyon, ID; Funding: Idaho Power
4. **Ryan Lokteff**, Fall 2010 to Fall 2013, *MS in Watershed Sciences*, 02'8'AGeo112902 3 254'43A 05 41 016'60 02 3 19 heterogeneity in explaining Bonneville cutthroat trout distributions; Study Areas: Temple Fork & Spawn Creek, UT; Funding: USFS RMRS
5. **Sara Bangen**, Fall 2010 to Spring 2012, *MS in Watershed Sciences*, 02'8'AGeo112902 3 254'43A 05 41 016'60 02 3 19 Study Area: Lemhi River Watershed, ID; Funding: Eco Logical Research, Inc.
6. **Sonya Welsh**, Fall 2009 to Spring 2012, *MS in Watershed Sciences*, 02'8'AGeo112902 3 254'43A 05 41 016'60 02 3 19 Study Areas: Bridge Creek, John Day, OR; Funding: NOAA & ELR

* Defended
CURRENT GRADUATE STUDENT COMMITTEES

1. **Rebecca Downard** - PhD in Ecology Watershed Sciences (Supervisor: Karin Kettenring)
2. **Michael Kohl** - PhD in Ecology Wildland Resources (Supervisor: Dan McNaulty)
3. **Kerry Riley** - PhD in Geology (Supervisor: Tammy Rittenhour)
4. **Keelin Schafferth** - PhD in Watershed Sciences (Supervisor: Patrick Belmont)
5. **Noah Schmadel** - PhD in Civil Engineering (Supervisor: Beth Nielson)
6. **David Iles** - PhD in Ecology Wildland Resources (Supervisor: Dave Koons)
7. **Erica Hansen** - MS in Wildland Resources (Supervisor: Nick Bouwes)
8. **Jarod Raithel** - PhD in Ecology in Wildland Resources (Supervisor: Lise Aubry)
9. **Sara Kelly** - PhD in Watershed Sciences (Supervisor: Patrick Belmont)
10. **Monica Blanchard** - MS in Watershed Sciences (Supervisor: Nick Bouwes)

PAST GRADUATE STUDENT COMMITTEES

2. **Danny White** - 2011. MS in Bioregional Planning (Plan B) at Utah State University (Supervisor: Richard Toth)
3. **Marshall Baillie** - 2012. MS in Watershed Sciences (Plan B) (Supervisor: Jack Schmidt)
4. **Rachel Van Horne** - 2012. MS in Watershed Sciences (Supervisor: Brett Roper)
5. **Ericka Hegeman** - 2012. MS in Ecology (Supervisor: Scott Miller)
6. **Justin Stout** - 2012. MS in Watershed Sciences (Supervisor: Patrick Belmont)
7. **Tracy Bowerman** - 2012. PhD in Aquatic Ecology (Supervisor: Phaedra Budy)
8. **Shannon Clemens** - 2012. MS in Civil Engineering (Supervisor: Mac McKee)
9. **Susannah Erwin** - 2012. PhD in Watershed Sciences (Supervisor: Jack Schmidt)
10. **Rebecca Manners** - 2013. PhD in Watershed Sciences (Supervisor: Jack Schmidt)
11. **Steve Fortney** - 2013. MS in Watershed Sciences (Supervisor: Jack Schmidt)
12. **Michael Soufront** - 2013. MS in Watershed Sciences (Supervisor: Patrick Belmont)
13. **Eric Wall** - 2014. MS in Watershed Sciences (Supervisor: Nick Bouwes)

POSTDOCTORAL RESEARCHERS

1. **Steve Bennett**, 2013 to Present, Senior Research Scientist, Restoration Ecologist, ETAL, Utah State University
2. **Carl Saunders**, 2013 to Present, Research Scientist, Aquatic Ecologist, ETAL, Utah State University
3. **Nicole Czarnomski**, 2011 to 2012, Hydrologic Modeling of Salmon Basin, Idaho-EPSCoR Grant, Idaho State University, Co-Supervised with Benjamin Crosby, Now at EPA.
4. **Chunling Tang**, 2009 to 2010, Hydrologic Modeling of Salmon Basin, Idaho-EPSCoR Grant, Idaho State University, Co-Supervised with Benjamin Crosby, Now at EPA.
5. **Damia Vericat**, 2006 to 2008, Terrestrial Laser Scanning of Fluvial Environments, Centre for Catchment & Coastal Research Grant, Aberystwyth University, Co-Supervised with James
Brasington. Now Juan de la Cierva Postdoctoral Fellow at Forest Technology Centre of Catalonia, Spain

POSTGRADUATE RESEARCHERS SUPERVISED AT USU

1. **Juan Sevillano**, 2012 to Present, Research Associate, Fluvial Geomorphologist, ETAL, Utah State University
2. **James Hensleigh**, 2012 to Present, Research Associate, Geospatial Programmer & Analyst, ETAL, Utah State University
3. **Sara Bangen**, 2012 to Present, Research Associate, Habitat Analyst, ETAL, Utah State University
4. **Wally MacFarlane**, 2012 to Present, Research Associate, Photogrammetrist & GIS Analyst, ETAL, Utah State University
5. **Kenny DeMeurichy**, 2009 to Present, Surveyor and Terrestrial Laser Scanning Analyst, ETAL, Utah State University
6. **Chris Garrard**, 2009 to 2011, GIS Programmer for RSGIS Lab, Supervised on GCD & CTT Projects
SERVICE

WORKING GROUP AFFILIATIONS & SERVICE

- **USGS Powell Center Working Group on High Resolution Topography** (2014 ‑ Present): *Invited*. Serve on working group tasked with i) reviewing the state of the art & creating a scientific agenda for HRT in the earth sciences, ii) providing guidelines to others on the use of HRT

- **Logan River Task Force** (2014 ‑ Present): *Invited*. This task force was formed at the request of the Logan City Mayor following concerns surrounding a recent Emergency Watershed Protection project on the Logan River. The task force is charged with coming up with a vision and guidance for how the Logan River should be managed in the future.

- **NCALM Steering Committee** (2012 ‑ 2015): *Invited*. Serve on the NSF-funded National Center for Airborne Laser Mapping’s steering committee. Our primary duties are to provide direction to NCALM and review and make recommendations for the NCALM Seed Grant Proposals.

- **Trinity River Restoration Program Sediment Workshop Invited Participant**, 2010

- **Community Surface Dynamics Modeling System ‑ Terrestrial Working Group**, 2009 to Present

EDITORIAL & REVIEWER SERVICE

- **Guest Editor**, 2009-2010
 - Geomorphology (journal): g2ea'y(4x64) e69'ea 03A A 6'xl2's ‑ Scale Feedbacks in 0(0 02 052'0000) 0
- **Panelist**, 2009
 - National Science Foundation, Cyber-Enabled Discovery and Innovation Program
- **Proposal Reviewer**, 2005- Present
 - National Science Foundation, United States Geological Survey, California Bay-Delta Authority, & United States Fish and Wildlife Service
- **Ad-hoc Journal Reviewer**, 2003- Present

22
INVITED/SOLICITED WORKSHOPS ORGANIZED

4. Fluvial Habitats Center, Feb 2014. 'Multibeam Echo Sounding in Rivers Summit', Logan, UT.
6. Wilburforce & Grand Canyon Trust, April 2013. 'Beaver Restoration Assessment Tool', Logan, UT.
7. Kansas Water Office, March 2013. 'Geomorphic Change Detection Workshop', Lawrence, KS.
8. River Restoration Northwest Annual Symposium, Feb 2013. 'Working with Beaver in Restoration', Short course, Skamania, WA.
9. Utah Watersheds Coordinating Council, Oct 2012. 'Partnering with Beaver in Restoration', Short course, Logan, UT.

CONFERENCE SESSIONS CONVENED

1. Session Convener, American Geophysical Union Fall 2012 Conference. Convened session titled 'Quantifying Hillslope and Fluvial Processes through Change Detection using High-Resolution Topography'.
2. Session Convener, American Geophysical Union Fall 2008 Conference. Convened session titled 'Fluvial Reanalysis'.

NEWS COVERAGE, INTERVIEWS AND OUTREACH

1. KRCL Radio Active, Aug 2014. 'Beavers: Nature's Engineer', Park City, UT.
2. KCPW Explore Utah Science, July 2014. 'Beaver Dam Mapping App Now Available for Citizen Scientists', Salt Lake City, UT.
Committee Service

Utah State University Service

Departmental Service & Administration
- GIS Minor Adviser (2012 - Present)
- Watershed Sciences Graduate Affairs & Selection Committee (2009-Present)
- Watershed Sciences Graduate Program Review Committee (2010-2011)

College Service & Administration
- Search Committee (2013). Member for search for Department Head in Watershed Sciences.
- Search Committee (2012-2013). Member for search for Landscape Ecologist & Assistant Unit Leader in USGS Utah Cooperative Fish & Wildlife Unit.
- Search Committee (2011-2012). Search was for an Assistant Professor, with emphases on human-environment geography and geospatial analysis for use in bioregional planning in Department of Environment & Society.
- College of Natural Resources Graduate Affairs Committee (2010-Present). I serve on this committee with colleagues from across the College of Natural Resources and we are primarily responsible for making sure that the College graduation ceremonies run smoothly.
- Ad-Hoc Espresso Course Curriculum Development Committee (2011-2012)

University Service & Administration
- Water Initiative Spring Runoff Conference Organizing Committee (2012)
- USU Facilities Moab Master Plan Committee (2011)

Idaho State University Service

- Faculty Board (2008-2009)

Aberystwyth University Service

- Scientific Steering Committee for Centre for Catchment and Coastal Research (2006-2008)
- Computer Unit Liaison (2006-2008)
- Web site Coordinator (2006-2008)
- IES Network Administrator (2006-2008)
- Blackboard Advisor (2006-2008)
- IGES Newsletter Editor (2006-2008)
- Undergraduate Recruitment Committee (2006-2008)
- Manage & procure CCCR Computational Resources (2006-2008)
Awards & Recognitions

- **Large Grants Award**, 2014, Utah State University Office of Research & Graduate Studies
- **Large Grants Award**, 2013, Utah State University Office of Research & Graduate Studies
- **Citation In Recognition of Outstanding Undergraduate Accomplishment in Hydrology**, 2002, University of California at Davis Hydrology Department
- **LAWR Opportunity Fund**, 2002, University of California at Davis Department of Land, Air and Water Resources
- **CGA Scholarship**, 2000 & 2001, California Groundwater Association
- **ECA Scholarship**, 2000, Engineering Contractors Association

Professional Certifications or Licenses

- **Accredited River Styler Status**, 2014, Macquarie University
- **American Institute of Hydrology**, 2003, Certified Hydrologist in Training (HIT)
- **CPESC #2594**, 2003, Certified Professional in Erosion and Sediment Control, Inc.

Professional Memberships

- **American Association of Geographers**, Since 2007, Professional Member
- **American Fisheries Society**, Since 2011, Professional Member
- **American Geophysical Union**, Since 2001, Member, Hydrology Section and Earth & Planetary Surface Processes Focus Group
- **British Society for Geomorphology**, Since 2003, Member
- **International Erosion Control Association**, 1998 \(^1\) 2008, Associate Member
- **Geologic Society of America**, Since 2010, Professional Member
APPENDIX D

Comment Response Matrix

Peer Review of the Science Informing the Upper San Joaquin River Basin Storage Investigation

U.S. Bureau of Reclamation
<table>
<thead>
<tr>
<th>Comment #</th>
<th>Reviewer</th>
<th>Page</th>
<th>Document Text Referenced</th>
<th>Name of Commenter</th>
<th>Office of Commenter</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Summary Report</td>
<td>All</td>
<td>Summary Report - All</td>
<td>Chip McConnaha</td>
<td>ICF</td>
<td>The Summary Report does not state what in our opinion is the most salient fact of the review: the reviewers agreed that EDT was an appropriate tool for the comparison and had no major concerns with its application, notwithstanding their numerous caveats and suggestions, most of which are fine. The Summary Report focuses on the caveats and suggestions and really doesn't characterize the overall conclusions that could be drawn from the review. This in our opinion is a major shortcoming that should be addressed. For your consideration, and to crystallize our comments, we have attached a marked up version of the Summary Report that better captures the reviews and actually provides some concrete recommendations that could improve the analysis. SEE SPECIFIC SUGGESTED EDITS IN THE SUMMARY REPORT SHOWN IN TRACK CHANGES.</td>
</tr>
<tr>
<td>2</td>
<td>Summary Report</td>
<td>ii and 7</td>
<td>Overall, all reviewers….”</td>
<td>Chip McConnaha</td>
<td>ICF</td>
<td>I saw nothing in the peer reviews that indicated that reviewers felt that EDT was not an appropriate tool for comparing habitat conditions in the EIS or that it had been misapplied in the analysis. I believe this is a highly significant outcome of the review that needs to be emphasized for the sake of the EIS. The original wording of this paragraph only captured the qualifications and caveats of the reviewers (important as they are) and left considerable doubt as to the overall significance of the review.</td>
</tr>
<tr>
<td>3</td>
<td>Summary Report</td>
<td>1</td>
<td>“Because EDT was readily available…”</td>
<td>Chip McConnaha</td>
<td>ICF</td>
<td>Previous wording makes it sound like no one could think of anything better so they used EDT.</td>
</tr>
<tr>
<td>4</td>
<td>Summary Report</td>
<td>6</td>
<td>“…explore those impacts and represent the uncertainty other than just relying on EDT.”</td>
<td>Ryan Murdock</td>
<td>MWH</td>
<td>EDT was not the only source of information used in evaluating the fisheries and aquatic resources impacts.</td>
</tr>
<tr>
<td>5</td>
<td>Summary Report</td>
<td>7</td>
<td>4.0 Conclusions and Recommendations</td>
<td>Chip McConnaha</td>
<td>ICF</td>
<td>This is just a restatement of the previous conclusions paragraph so my previous comments apply. I also provide a few concrete recommendations that I took from the review.</td>
</tr>
<tr>
<td>6</td>
<td>Summary Report</td>
<td>7</td>
<td></td>
<td>Ryan Murdock</td>
<td>MWH</td>
<td>Other fish species were evaluated, but were not evaluated quantitatively through EDT modeling.</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>1</td>
<td>1</td>
<td>Chip McConnaha</td>
<td>ICF</td>
<td>This affirms the validity of the approach and the analysis while providing caveats and suggestions. Suggest including this statement in the Summary Report.</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>1</td>
<td>1</td>
<td>Chip McConnaha</td>
<td>ICF</td>
<td>Reviewer correctly characterizes the nature of EDT, how it works and the relationship between C, P and Neq.</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>1</td>
<td>2</td>
<td>Chip McConnaha</td>
<td>ICF</td>
<td>Agree - revisions could be made to use relative comparisons exclusively when comparing across alternatives and providing adequate explanation of the basic metrics that underlie the percent changes.</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>1</td>
<td>2</td>
<td>Chip McConnaha</td>
<td>ICF</td>
<td>We did not assume there would be no harvest; we simply did not use harvest in the analysis. Harvest is not a habitat parameter specific to the project area and was turned off for this analysis. Harvest rates on spring-run Chinook are subject to a myriad of issues outside the domain of this analysis and the proposed project. We do not recommend changing this, though we could clarify the decisions to not include harvest impacts.</td>
</tr>
<tr>
<td>Comment #</td>
<td>Document Text Referenced</td>
<td>Name of Commenter</td>
<td>Office of Commenter</td>
<td>Comment</td>
<td>Action Taken to Address the Comment</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------------</td>
<td>-------------------</td>
<td>--------------------</td>
<td>---------</td>
<td>-------------------------------------</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Mathematically trajectory with productivity <1 has an Neq of 0; a characteristic of the Beverton-Holt function. Productivity is survival at very low abundance (density-independent survival). At low abundance it is assumed the population will occupy life history trajectories that are sustainable (i.e., productivity >1). The capacity parameter is maximum number of fish supported by the habitat and includes all trajectories (a simple average of trajectory capacity). We assume at higher abundances fish would begin to occupy less optimal trajectories, therefore a capacity that is sensitive to all trajectories seems a reasonable approximation of habitat potential. The assessment was careful to use a consistent method to evaluate all alternatives. If there is a bias to this method we do not believe it would differ across the alternatives. No change is recommended here but perhaps a better discussion of trajectories in EDT is warranted.</td>
<td>Chip McConnaha</td>
<td>ICF</td>
<td>Added recommendation to clarify discussion.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Asserts that the lack of clarity in documentation may be due to the proprietary nature of EDT.</td>
<td>Chip McConnaha</td>
<td>ICF</td>
<td>No changes. Already recommendations added regarding clarifying specific assumptions.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Model assumes that all three life history strategies are equally probable.</td>
<td>Chip McConnaha</td>
<td>ICF</td>
<td>This was the reviewer's interpretation of the material provided. Minor edit to the reviewers statement. Clarification provided by reviewer: Table 5-5 indicates that fry, spring parr, and yearling life history trajectories arise with equal probability (33%) at the outset. Whether or not they perform equally is a different question. I was referring to the former case, which should affect the overall population productivity...I suggest adding a citation to Table 5-5 under A-1 so that this is more clear.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>A Template condition is assumed in the Investigations analysis</td>
<td>Chip McConnaha</td>
<td>ICF</td>
<td>Added recommendation in final report to explicitly state that no template condition was used. Minor edit to reviewers statement. Clarification from reviewer: Maybe this is just semantics-related confusion on my part, but the origin/basis for stage specific capacity/predictivity under 'current conditions' implicitly ties to some specification of a benchmark condition.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Survival factors are equally weighted as are environmental factors.</td>
<td>Chip McConnaha</td>
<td>ICF</td>
<td>Added recommendation to clarify discussion: What was meant here is that each F (not the slope underlying its calculation) is equally weighted. Contrast this with a case in which turbidity as a factor is relatively unimportant (irrespective of slope/value) compared to temperature; here, you might have a weight scalar/multiplier that reflected this assumption, e.g., (1F1)(1F2)...(1Fp) [case 1] (w1F1)(w2F2)...(wpFp) [case 2] The match could come in many forms, but the basic idea is that each factor (regardless of the F value) is assumed to be weighted equally, which may not be the best approach. If indeed the relative weights of different factors are built into the slopes of the Fis, then published EDT documentation is slightly misleading in this respect (i.e., it suggests all Fis range between 0 and 1)...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Page 2 of 4
<table>
<thead>
<tr>
<th>Comment #</th>
<th>Reviewer</th>
<th>Page</th>
<th>Document Text Referenced</th>
<th>Name of Commenter</th>
<th>Office of Commenter</th>
<th>Comment</th>
<th>Action Taken to Address the Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>1</td>
<td>5</td>
<td>Should provide greater treatment of sensitivity</td>
<td>Chip McConnaha</td>
<td>ICF</td>
<td>Agree: However, we should acknowledge the purpose of the sensitivity analysis relative to the need to evaluate storage alternatives. A sensitivity analysis would highlight what is already known - reintroducing spring-run Chinook to the San Joaquin River is very uncertain and population performance will likely not follow predictions.</td>
<td>Added recommendation to address uncertainty in the model.</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>6</td>
<td>Reviewer questions results indicating sensitivity of change on spawning/incubation relative to parr/smolt stages</td>
<td>Chip McConnaha</td>
<td>ICF</td>
<td>EDT assesses the effects of environmental change on fish populations by juxtaposing a life history (life stages, location and duration) on the environment and then test these conditions using a set of habitat rating relationships. Spawning and incubations life stages are particularly sensitive to temperature which is a major limiting factor in the SJR and a key outcome of the different operations strategies. In the most successful life histories, juveniles leave the system relatively early and so moderate exposure to high temperatures. Eggs are stuck though and are strongly affected by the timing and extent of high temperatures.</td>
<td>No change to reviewer memo or summary report.</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
<td>2</td>
<td>There is no attempt to show how well the model fits empirical data or use of performance measures (McElhaney et al 2010).</td>
<td>Chip McConnaha</td>
<td>ICF</td>
<td>EDT results have been successfully validated against empirical results on several occasions. Reviewers were provided with the analysis by WDFW (Rawding) and examples from other watersheds could have been provided. Given that there are no salmon returning to the project area (and no spring chinook in the SJR) validation against empirical data was not possible. This argues for the emphasis on relative rather than absolute comparisons as all reviewers stressed.</td>
<td>The reviewer acknowledged these previous efforts in his answer to Question 1. No change to reviewer's memo or summary report.</td>
</tr>
<tr>
<td>19</td>
<td>2</td>
<td>2</td>
<td>Reviewer questions why only spring Chinook were modeled.</td>
<td>Chip McConnaha</td>
<td>ICF</td>
<td>Restoration of spring Chinook is the focus of the SJRRP and previous EDT modeling to support that program. The Investigation followed the SJRRP analysis and so also focused on spring Chinook. Modeling fall chinook and steelhead would be relatively straightforward. Sturgeon would be a greater challenge. Other fish species were evaluated, but were not evaluated quantitatively through EDT modeling.</td>
<td>Added recommendation to include a summary of evaluations from other species, even if not done through EDT.</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>2</td>
<td>The reviewer (again citing McElhaney) questions the “lack of measurements of the model’s fit or performance...”</td>
<td>Chip McConnaha</td>
<td>ICF</td>
<td>See response above. There are no data in the study are or the SJR against which to measure fitness. However, there are many examples from other basins leading to confidence in the underlying biological framework.</td>
<td>Already addressed through recommendations added from reviewer 1.</td>
</tr>
<tr>
<td>21</td>
<td>3</td>
<td>1</td>
<td>Under the first question, the reviewer provides an interesting philosophical discussion. Not sure how it specifically pertains to the analysis.</td>
<td>Chip McConnaha</td>
<td>ICF</td>
<td>Interesting, but no response is required. The reviewer might be confused with a need to validate the model versus an assessment of habitat potential.</td>
<td>No changes.</td>
</tr>
<tr>
<td>22</td>
<td>3</td>
<td>1</td>
<td>... If flows are manipulated to maximize the amount and location of the highest quality habitat, the model would also appear to predict the greatest abundance and productivity of Chinook salmon. Has this been tested? That is, is there a point at which habitat is saturated and increasing the amount of that habitat no longer supports concomitant increases in productivity?</td>
<td>Greg Blair</td>
<td>ICF</td>
<td>Manipulating flows to increase the amount of available habitat at critical periods when capacity is constraining abundance will increase capacity results in EDT. The assessment for the San Joaquin has shown that not enough fish are available to occupy the constructed habitat because of previous constraints on population productivity and capacity. This concept has been evaluated and tested in several watersheds.</td>
<td>No changes.</td>
</tr>
<tr>
<td>23</td>
<td>3</td>
<td>1</td>
<td>While stating that the assumption of the model seems reasonable, reviewer questions the use of historical flows to project future conditions.</td>
<td>Chip McConnaha</td>
<td>ICF</td>
<td>Probably valid concern given expectations of climate change. Has nothing to do specifically with the application of EDT but rather pertains to the entire analytical framework.</td>
<td>Added recommendation to consider climate change and changing flow conditions.</td>
</tr>
<tr>
<td>24</td>
<td>4</td>
<td>1</td>
<td>The reviewer did not like the question and answered “no” to the narrow question of whether EDT was appropriate to compute fish abundance. However, he was generally supportive of the use of EDT to make relative comparisons (recognizing all other caveats he had about the use of multiple models). See last comment below.</td>
<td>Chip McConnaha</td>
<td>ICF</td>
<td>Agree. See previous responses.</td>
<td>No changes.</td>
</tr>
<tr>
<td>25</td>
<td>4</td>
<td>1</td>
<td>Reviewer was concerned about over reliance on a single modeling approach to evaluate alternatives and stressed the value of using multiple models.</td>
<td>Chip McConnaha</td>
<td>ICF</td>
<td>Agree, but it would require a much greater effort by all parties than has been done in the SJR to date.</td>
<td>No changes.</td>
</tr>
<tr>
<td>Comment #</td>
<td>Page</td>
<td>Page</td>
<td>Document Text Referenced</td>
<td>Name of Commenter</td>
<td>Office of Commenter</td>
<td>Comment</td>
<td>Action Taken to Address the Comment</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>------</td>
<td>--------------------------</td>
<td>-------------------</td>
<td>--------------------</td>
<td>---------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>26</td>
<td>4</td>
<td>2</td>
<td>Reviewer’s conclusions are effectively summarized in the last sentence: “…aside from some of the cans of worms I suggest above, what they [the EIS authors] did was a reasonable attempt to use a tool like EDT for the purpose of exploring part of the potential impacts of FSH-1 through FSH-17. My criticism is that too much stock is put in this one tool and there are other ways to explore those impacts and represent uncertainty other than just relying on EDT.”</td>
<td>Chip McConnaha Ryan Murdock</td>
<td>ICF MWH</td>
<td>A broader analysis using multiple biological modeling approaches would certainly strengthen the analysis and potentially provide greater comfort in the results. This is unlikely to be possible for the EIS. EDT was not the only source of information used in evaluating the fisheries and aquatic resources impacts.</td>
<td>Added recommendation to include information on the other analyses/evaluations completed.</td>
</tr>
</tbody>
</table>