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1.   INTRODUCTION & EXECUTIVE SUMMARY 

 

 This report summarizes the data base compilation and statistical analysis activities 

for the Lower Colorado Region EM38 / Soil salinity cooperative agreement 

#09FG340003 between the U.S. Department of the Interior, Bureau of Reclamation's 

Yuma Area Office (Reclamation-YAO) and the Coachella Valley Resource Conservation 

District (CVRCD).  For this grant, the University of California Statistical Consulting 

Center (UCR-SCC) has served as a sub-contractor to the CVRCD, supplying statistical 

modeling and analysis services.  The purpose of this grant was to develop a new and 

simplified statistical modeling and sampling approach for performing EM38 / soil salinity 

surveys within the Lower Colorado Region.  This final project report documents these 

grant research activities and summarizes both the objectives and results of our analytical 

study.  

 

This report contains five additional sections beyond this Introduction (section 1), 

which provides an overview of the report organization.  Section 2 describes and 

summarizes the compilation of the CVRCD database used in our study.  Briefly, 82 

EM38 / soil salinity survey data projects collected by the CVRCD since 2002 were 

retrieved, organized, and subjected to preliminary screening activities by the CVRCD and 

UCR-SCC.  Exactly 77 of these field survey projects passed all data quality assurance / 

quality control (QA/QC) criteria; these 77 field survey projects were compiled into a 

master database to facilitate the statistical modeling and analysis.  Section 2 documents 

these QA/QC and database development activities, in addition to a number of meta-data 

statistics associated with the CVRCD study data. 
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Sections 3 and 4 describe and summarize the proposed analysis of covariance 

(ANOCOVA) modeling approach.  Section 3 reviews the proposed statistical 

methodology examined in this study, including the ANOCOVA modeling definitions, 

statistical assumptions, and model assessment techniques.  Section 4 then documents and 

summarizes the modeling results.  In section 4 we show that a regional ANOCOVA 

model successfully reduced the cross-validated, average log salinity prediction error 

(variance) estimate by more than 30% across these 77 fields and improved the depth-

averaged prediction accuracy in 58 out of the 77 individual fields.  These results show 

that the ANOCOVA modeling approach can be used to improve the accuracy of field soil 

salinity predictions from EM38 signal data in most of the historical surveys conducted in 

the Coachella Valley, particularly in fields where only a limited number of calibration 

sampling locations are available.  The optimal ANOCOVA EM-slope parameter 

estimates for the Coachella Valley are also derived and presented in section 4 (see table 

4.6). 

 

 Next, section 5 discusses how this ANOCOVA modeling strategy can be 

implemented by the CVRCD during future surveying operations.  An example is 

presented in section 5.1 that shows how to calculate the field-specific ANOCOVA model 

intercept estimates and assess the reliability of these estimates.  Likewise, in section 5.2 

we describe how the ESAP-RSSD software program can be used to generate an optimal 

sampling plan for determining these intercept estimates.   

 

 Finally, in section 6 we discuss an additional analysis of the field average salinity 

levels associated with 70 survey projects conducted on vegetable fields (in the CVRCD 

database).  Specifically, we examine these data to determine if different irrigation and/or 

leaching techniques exhibit different degrees of success at controlling the field average 

salinity levels.  Section 6.1 presents a summary of the data examined in this additional 

study, while section 6.2 describes the statistical modeling methodology used to test this 

hypothesis.  The results of this analysis (presented in section 6.3) suggest that there is no 

specific irrigation or leaching technique that is consistently better at controlling and/or 

minimizing average salinity conditions in a typical Coachella Valley vegetable field.  
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This somewhat surprising finding suggests that the currently employed sprinkler, furrow, 

or drip irrigation techniques and sprinkler or flood leaching techniques used across the 

valley are all equally effective at controlling the field average salinity level, at least on 

the more commonly encountered fine sand and fine sandy loam soil types. 

 

 As discussed above, this document constitutes our final report for the 

Reclamation / CVRCD cooperative agreement #09FG340003.  In our initial grant 

proposal submitted to the Bureau of Reclamation, we specified that one intermediate 

progress report and two final reports would be produced that documented all project 

research activities.  For purposes of compactness and clarity, these individual 

intermediate and final progress reports have been combined together into this single, final 

project report.  Specifically with respect to our original grant proposal document, section 

2 of this final project report constitutes our (previously proposed) intermediate progress 

report.  Likewise, sections 3 through 5 constitute our final progress report on the 

ANOCOVA modeling approach, while section 6 constitutes our final progress report on 

the assessment of typical valley-wide irrigation and leaching techniques for salinity 

control. 

 

  Any questions and/or comments on the technical information contained within 

this report should be directed to Dr. Scott Lesch, Principal Consulting Statistician, UCR-

SCC (scott.lesch@ucr.edu) and Mrs. Silvia Aslan, RCD District Manager, CVRCD 

(silvia@cvconservation.org), respectively.   
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2.   SURVEY PROJECTS 

 

2.1  Initial Project Screening and QA/QC 

 

After initiation of this project, the CVRCD delivered electronic data files 

associated with more than 90 individual field survey projects to the UCR-SCC.  Upon 

review, 82 of these projects were found to contain a complete set of EM38 survey and 

soil sample information.  All 82 of these complete projects had been conducted between 

2002 and 2008, with the majority of these performed on or after January 2005. 

 

The ESAP EM38 signal data file and associated soil sample (profile) data file 

were systematically extracted from each delivered project and stored into a temporary 

master database.  After extraction, the EM38 survey information in each signal data file 

was examined for internal consistency and reliability; i.e., for properly correlated and 

aligned EMH and EMV signal readings that were all positive and devoid of gross outliers, 

systematic instrument bias, and any obvious miss-calibration effects.   Exactly 80 of the 

82 signal data files associated with these complete project folders passed all internal 

consistency and reliability tests.  (The signal files associated with fields 72 and 77 failed 

these tests; these field survey projects were subsequently deleted from the temporary 

database.) 

 

The data associated with remaining 80 projects were then each individually 

assessed using a dynamic Dual Pathway Parallel Conductance (dynamic DPPC) 

correlation analysis (Lesch and Corwin, 2003).  In these analyses, the calculated apparent 

soil conductivity readings (as computed from the measured soil salinity, saturation 

percentage, and water content measurements) were compared to the average of the EM38 

signal data on a log / log basis, after adjusting for potentially low water content levels.  

An a priori threshold correlation level of 0.5 was specified as the minimum acceptable 

correlation level (for indicating reliable survey data).  Exactly 77 of the 80 fields 

produced dynamic DPPC correlation levels > 0.5; these 77 projects were thus chosen for 

inclusion into the permanent (validated) EM / soil salinity database. 
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2.2.   Survey and Soil Sample Meta-data Statistics 

 

The meta-data statistics discussed throughout the remainder of this section 

summarize the general characteristics of the 77 validated field studies.  Note that the 

EM38 signal and soil sample data from these studies has been used to develop the 

ANOCOVA modeling approach described in sections 3, 4 and 5 of this report. 

 

Some general survey statistics associated with these 77 field projects are shown in 

table 2.1.  This table quantifies general field information statistics; specifically the 

distribution of field sizes and the number of EM38 survey positions recorded in each 

field.  The average field size was approximately 28.2 acres; 50% of the fields were 

between 17.9 to 34.8 acres and the smallest and largest fields were 2.8 and 66.2 acres, 

respectively.   Likewise, the average number of EM38 survey positions was about 1550 

and the survey data files associated with 50% of the fields contained between 1254 to 

1795 positions.    

 

 

Table 2.1.  General field summary statistics for the 77 validated field studies. 
 

Field Information  
Statistic 

 
Size (acres) # of EM Sites 

Mean 28.17 1550.3 
Std. Dev. 12.24 689.4 
Skewness 0.00 1.82 
Quantiles:   
Minimum 2.8 404 

10% 10.7 735 
25% 17.9 1254 

Median (50%) 31.8 1429 
75% 34.8 1795 
90% 41.7 2487 

Maximum 66.2 4998 
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Table 2.2 shows the number of 6- and 12-site soil sampling plans employed 

across these 77 field projects.  As shown in table 2.2, the majority of fields (n = 60) were 

sampled using 6-site ESAP sampling plans.  The remaining 17 fields were sampled using 

12-site plans, although the soil sample data files for exactly four of these fields contain 

either 11 or 10 sampling locations, respectively.  Overall, the validated soil sample 

database contains exactly N = 6(60) + 10(1) + 11(3) + 12(13) = 559 distinct sampling 

locations across 77 fields. 

 
 
 
Table 2.2.  Number of ESAP generated sampling sites for each of the 77 validated field 
studies. 
 

Soil Sampling Design Number of Fields Notes 
6-site design 60  
12-site design 17 3 fields were sampled at only 11 locations, 

1 field at only 10 locations 
 

 

 

Table 2.3 shows the number of sampling depths reported for each of the 77 field 

projects.  Exactly 44 and 10 fields were sampled to depths of 90 cm (3 feet) and 120 cm 

(4 feet), respectively, in 30 cm (1 foot) depth increments.  In the remaining 23 projects, 

soil sample data were collected from two depth increments.  In 18 of these projects, the 

sampling depth increments were 30 cm (1 foot); the remaining five projects contained 

soil sample data collected using 60 cm (2 foot) depth increments.  Note that in the 

validated soil sample database, the saturation percentage (SP), volumetric water content 

(θv), and log transformed salinity (ln(ECe)) readings in these five projects were 

interpolated to equivalent 30 cm depth increments using linear interpolation techniques.  

This interpolation was necessary to ensure that all validated soil sample data 

corresponded to aligned sample depth increments (i.e., 30 cm samples with depth 

midpoint positions at 0.15, 0.45, 0.75, and 1.05 m).  Hence, in the validated soil sample 

database, there are exactly 77, 59, and 15 fields exhibiting 30 cm soil samples to depths 

of 60, 90, and 120 cm, respectively. 
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Table 2.3.  Number of sampling depths for each of the 77 validated field studies. 
 

Depth Increments Number of Fields Notes 
2 23 5 of these 23 fields sampled in 2 foot (60 

cm) depth increments 
3 44 All 44 fields sampled in 1 foot (30 cm) 

depth increments 
4 10 All 10 fields sampled in 1 foot (30 cm) 

depth increments 
 

 

 

 

Figure 2.1 shows the physical locations (UTM coordinate grid, zone 11 North) of 

the 77 field surveys conducted across the Coachella Valley.  As shown in figure 2.1, all 

77 fields are located within a 30 km by 30 km area across the valley, with the majority of 

the fields located near the center of the valley.  Overall, the coverage across the valley is 

fairly comprehensive, particularly given the non-random manner in which these fields 

were selected for study. 

 

2.3  Field condition, Crop, and Soil type Meta-data Statistics 

 

Table 2.4 displays the number of fields exhibiting soil sample data exhibiting 

adequate (> 70%), marginal (50% to 70%), and excessively dry (< 50%) average water 

content relative to field capacity (WCFC) levels, for the depth increment data originally 

reported in the soil sample data files.  Note that 11 to 13 fields in the database appear to 

have been sampled under excessively dry soil conditions; at least five of these fields 

exhibited marked differences between their ordinary and dynamic DPPC correlation 

coefficients (see figure 2.2). 
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Figure 2.1.  Physical locations of the 77 Coachella Valley field surveys. 

 

 

 

Table 2.4.  Calculated water content classes (relative to estimated field capacity) by 
sample depth increment. 
 

Depth Increment WCFC Class Number of Fields 
> 70% 37 

50% to 70% 28 
 

1st Increment 
< 50% 12 
> 70% 50 

50% to 70% 14 
 

2nd Increment 
< 50% 13 
> 70% 33 

50% to 70% 10 
3rd Increment 

(Note: 23 fields missing 3rd 
depth increment information) < 50% 11 
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Table 2.5 shows the primary irrigation methods employed at the time of the initial 

surveys for each of the 77 field projects.  Overall, 85% of the fields were irrigated using 

either drip or furrow methods.  The vast majority of these drip and furrow irrigated fields 

were also supporting some type of vegetable crop (vegetable, herb, or fruit), as shown in 

table 2.6.  Nearly all of the remaining fields essentially represented some type of orchard 

(citrus, dates, or grape vineyards).  Only two fields exist in the database that can be 

classified both non-vegetable and non-orchard (one field supporting a Bermuda grass 

cover crop and a second field set aside as natural habitat).   

 

 

Table 2.5.  Primary irrigation method (used at the time of survey) for each of the 77 
validated field studies. 
 

Primary Irrigation Method Number of Fields 
Basin Flood 5 

Drip (permanent & T-tape)  31 
Furrow 35 

Sprinkler 6 
 

 

 

 Finally, table 2.7 quantifies the amount of acreage associated with the various 

NRCS classified soil-types in the database.  (In table 2.7, one surveyed field without any 

associated soil-type information has been excluded from the acreage calculations.) 

As shown in table 2.7, there are Carsitas, Coachella, Gilman, Indio, Myoma, and Salton 

soil series included in the database, with the Gilman and Indio series representing the 

dominant soil types.  It is worthwhile to note that all of these series except Salton are 

generally classified as either fine sands or fine sandy loams (Salton Sb is classified as a 

silty clay loam). 
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Table 2.6.  Type of crops reported for each of the 77 valid field studies.  Note: the total 
number of fields is > 77, since multiple fields supported either two or three crops grown 
in rotation, or two simultaneous crops. 
 

Crop 
 

Crop Type Number of Fields 

Artichokes Vegetables 2 
Bell Peppers Vegetables 9 

Bermuda grass Cover crop 1 
Broccoli Vegetables 9 
Cabbage Vegetables 1 
Carrots Vegetables 2 

Cauliflower Vegetables 7 
Celery Vegetables 2 

Chili Peppers Vegetables (Herbs) 1 
Cilantro Vegetables (Herbs) 2 

Citrus Trees Orchard (Citrus) 1 
Date Palms Orchard (Dates) 6 

Dill Vegetables (Herbs) 5 
Drum Stick Vegetables 1 

Eggplant Vegetables 2 
Fan Palms Orchard (Palms) 2 

Grapes Orchard (Vineyard) 3 
Green Beans Vegetables 1 

Habitat Other 1 
Herbs (general) Vegetables (Herbs) 1 

Lettuce (Leaf or Romaine) Vegetables 14 
Lemon Trees Orchard (Citrus) 1 

Melons Vegetables (Fruit) 4 
Okra Vegetables 3 

Peach Trees Orchard 1 
Rapani Vegetables 1 

Strawberries Vegetables (Fruit) 5 
Sweet Corn Vegetables 5 

Thyme Vegetables (Herbs)  2 
Vegetables (general) Vegetables 10 

Watermelon Vegetables (Fruit) 1 
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Table 2.7.  Total acreage of surveyed soil series associated with 76 of the 77 valid field 
studies. 
 

 
Soil Series 

 
Symbol 

 
Acreage 

% of Total 
Acreage 

 
CdC 65.5 3.07 Carsitas 
CkB 7.7 0.36 
CpA 10.9 0.51 
CpB 18.1 0.85 

 
Coachella 

CrA 136.3 6.38 
GaB 11.5 0.54 
GbA 91.6 4.29 
GcA 548.7 25.69 
GdA 4.4 0.21 

 
 

Gilman 

GfA 125.4 5.87 
Ip 5.2 0.24 
Ir 171.9 8.05 

 
Indio 

It 728.0 34.09 
MaB 57.8 2.71 Myoma 
McB 44.4 2.08 

Salton Sb 108.4 5.07 
  

 

 

2.4  Soil ECe and EM38 Meta-data Statistics 

 

 Table 2.8 shows the ECe and collocated EM38 univariate summary statistics for 

the pooled dataset (corresponding to the 77 valid field studies).  The majority of the soil 

salinity measurements are fairly low; note that the median salinity levels are < 3 dS/m 

across all four sampling depths and at least 25% of the readings in each depth are < 1.2 

dS/m.  However, approximately 10% of the measurements from each sampling depth are 

> 10 dS/m and the pooled salinity distributions are strongly right skewed (i.e., 

lognormally distributed).  The EM38 signal readings exhibit similar characteristics. 

 

 The correlation coefficients between the log transformed ECe and EM38 readings 

are all fairly high, as shown in table 2.9.  (All coefficients are statistically significant 

below the 0.0001 level.)  These results tentatively suggest that the EM38 data can be 
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effectively used to predict the soil salinity levels, provided adequate models can be 

derived that suitably adjust for different secondary characteristics across fields. 

 

 

 

Table 2.8.  Soil salinity (ECe) and collocated EM38 (EMH, EMV) summary statistics for 
the 77 valid field studies. 
 

Salinity Data (ECe, dS/m: by depth) EM38 (mS/m)  
Statistic 0.15 m 0.45 m 0.75 m 1.05 m EMH EMV 

 
N 

 
559 

 
559 

 
450 

 
106 

 
559 

 
559 

Mean 5.06 4.77 4.47 4.63 73.42 95.73 
Standard Deviation 9.05 8.81 6.65 5.65 91.90 107.94 

Skewness 4.34 4.23 5.21 2.40 3.03 2.92 
Quantiles:  
Minimum 0.12 0.10 0.10 0.19 8.50 10.88 

5% 0.58 0.44 0.56 0.42 14.75 21.88 
10% 0.72 0.56 0.71 0.72 17.50 27.88 
25% 1.04 0.84 1.10 1.14 24.25 38.00 

Median (50%) 2.11 1.80 2.12 2.90 39.38 57.88 
75% 4.48 4.20 5.00 5.47 76.00 99.88 
90% 12.60 11.62 10.65 9.60 179.25 223.13 
95% 20.10 19.61 16.80 20.60 267.38 341.50 

Maximum 66.70 72.60 83.50 27.40 658.88 718.25 
 

 

 

 

Table 2.9.  Correlation coefficients for ln(ECe) v.s. ln(EMH) and ln(ECe) v.s. ln(EMV); by 
depth (pooled data across all 77 valid field studies). 
 

Correlation Coefficients (by sample depth) Correlation 
Statistic 0.15 m 0.45 m 0.75 m 1.05 m 

Corr[ln(ECe), ln(EMH)] 0.668 0.801 0.751 0.802 
Corr[ln(ECe), ln(EMV)] 0.618 0.773 0.756 0.785 
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A more detailed assessment of the soil salinity / EM38 correlation structure can 

be determined by calculating the ordinary and dynamic DPPC correlation coefficients for 

each field.  Summary statistics concerning these coefficients are presented in table 2.10.  

Recall that fields exhibiting dynamic DPPC coefficients < 0.5 were removed from the 

final data base; hence all 77 dynamic DPPC coefficients are obviously > 0.5.  The 

average dynamic DPPC correlation value in the database is 0.858 and 75% of the fields 

produce correlation coefficients > 0.8; these results suggest that the majority of the 

survey data sets exhibit a high degree of internal consistency and reliability.  The 

ordinary DPPC correlation coefficients are somewhat lower (average value = 0.777, 75% 

of the fields exhibit correlation coefficient values > 0.66).  These generally lower 

ordinary DPPC coefficients suggest that the EM38 signal data in at least some of the 77 

field surveys were moderately influenced by low field water content conditions.   

 
 
 
 
 
 
Table 2.10.  Summary statistics for the field specific ordinary and dynamic DPPC 
correlation coefficients. 
 

Correlation Coefficients  
Statistic 

 
Ordinary DPPC Dynamic DPPC 

Mean 0.777 0.858 
Std. Dev. 0.200 0.114 
Skewness -1.51 -1.14 
Quantiles:   
Minimum 0.117 0.521 

10% 0.515 0.653 
25% 0.669 0.801 

Median (50%) 0.866 0.894 
75% 0.911 0.940 
90% 0.964 0.977 

Maximum 0.986 0.992 
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The DPPC correlation plot (figure 2.2) confirms this hypothesis; this plot shows 

that there are 7 fields which exhibit abnormally low ordinary DPPC correlation 

coefficients (i.e., < 0.5).  Additionally, 10 fields exhibit dy-DPPC correlation coefficients 

that are at least 0.2 units greater than their corresponding ordinary DPPC coefficients.  

Hence, there appears to be a stronger than normal water content influence on the EM38 

signal data in at least 10 of these 77 fields. 

 
 

 

 

 

 

 
Figure 2.2.  Ordinary (blue) and dynamic (red) DPPC correlation coefficients for the 77 validated 

field studies. 
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2.5  General Database Characteristics 

 

 Overall, the compiled database provides a good representation of EM38 survey 

situations encountered in the lighter textured soils across the Coachella Valley.  As 

discussed in section 2.2, the median field size is the database is about 32 acres and the 

corresponding EM38 survey data contains roughly 1400+ survey positions.  Additionally, 

in most fields soil samples were collected at six sites in 30 cm increments, down to either 

0.6 or 0.9 m. 

 

 The database contains fields across a wide area of the valley and the vast majority 

of these fields were supporting some type of vegetable, herb, or fruit crop.  Overall, 85% 

of the fields were irrigated using either drip or furrow methods and 95% of the soil types 

(soil series) can be classified as either fine sands or fine sandy loams.  Not surprisingly, 

more that 50% of the soil samples exhibit fairly low salinity levels (ECe < 3 dS/m), but 

about 10% of the samples exceed 10 dS/m. 

 

 The correlation levels between the log transformed soil salinity and log 

transformed EM38 signal data are fairly high (r = 0.6 to 0.8) and the field specific DPPC 

correlation coefficients suggest that the majority of the survey data sets exhibit a high 

degree of internal consistency and reliability.  Although there does appear to be a 

stronger than normal water content influence on the EM38 signal data in at least 10 of 

these 77 fields, this result is probably consistent with typical surveying conditions 

encountered in the valley. 

 

 In summary, this compiled database of 77 fields should provide a robust and 

realistic data set to test the ANOCOVA modeling approach on.  In turn, the estimated 

ANOCOVA model parameters should be applicable to Coachella Valley fields surveyed 

under similar soil and cropping conditions.  More specifically, the estimated ANOCOVA 

model parameters should be applicable to nearly all specialty crops grown on lighter 

textured soils across the valley. 
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3.   STATISTICAL METHODOLOGY 

 

3.1   Model Definitions and Statistical Assumptions 

 

 Three types of linear models are considered here, for purposes of predicting the 

natural log transformed soil salinity values from the natural log transformed EM38 signal 

readings.  For a soil salinity sample acquired from the jth sampling depth at the ith site 

within the kth field, these models are defined as follows: 

 

 The Field Specific Regression model (FSR model) 

 ijkikHjkikVjkjkijk EMEMEC εβββ +++= )ln()ln()ln( ,,2,,1,0      (3.1) 

 

 The Analysis of Covariance model (ANOCOVA model) 

 ijkikHjikVjjkijk EMEMEC εβββ +++= )ln()ln()ln( ,,2,,1,0       (3.2) 

 

 The Common Coefficient Regression model (CCR model) 

 ijkikHjikVjjijk EMEMEC εβββ +++= )ln()ln()ln( ,,2,,1,0       (3.3) 

 

Note that all three of the coefficients in the FSR model (Eq. 3.1) change across fields and 

sampling depths; i.e., all of the regression model coefficients need to be re-estimated 

whenever a new field is surveyed.  In contrast, the EM38 slope coefficients in the 

ANOCOVA model (Eq. 3.2) only change across sampling depths, but not across fields.  

Only the intercept coefficients change across fields and sampling depths in this second 

model.  Finally, in the CCR model (Eq. 3.3), none of the coefficients change across 

fields; these coefficients can only change across sampling depths. 

 

 There are some well established theoretical reasons why we should expect the 

FSR model to represent the most accurate regression-based calibration equation (Lesch 

and Corwin, 2003).  However, it is also well known that this equation can be difficult to 

accurately estimate when only a small number of calibration soil samples are available in 
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a given field.  Additionally, many of the field-specific effects on EM38 survey data such 

as seasonal changes in bulk soil temperature, bed-furrow geometry, surface roughness, 

and instrument placement height (during the survey process) are known to be 

approximately multiplicative.  Therefore, on the log transformed scale these effects 

become additive constants, which in theory should only affect the intercept coefficient.  

Thus, there are both legitimate theoretical and statistical reasons to expect that the 

ANOCOVA model might actually perform better than the FSR model, particularly when 

only limited calibration data are available and the EM38 survey data is acquired over a 

short time-span (i.e., over a period of a few hours within any specific field).   

 

 Assuming that a total of M fields have been surveyed, for a specific sampling 

depth the FSR model requires 3M parameter estimates to produce soil salinity predictions 

(across all M fields).  In contrast, for a specific sampling depth the ANOCOVA model 

requires only M + 2 parameter estimates (or just M estimates, if the EM38 slope 

coefficients have already been established).  Of course, the CCR model requires just 3 

parameter estimates, but in general we would not expect this model to be very accurate 

for the reasons mentioned above.  Note that the CCR model has been included in this 

study primarily as a baseline reference model, rather than a formal prediction model per 

say.   

 

 In the following analyses, the residual errors associated with both the FSR and 

ANOCOVA models are assumed to be Normally distributed, independent across fields 

and spatially uncorrelated within a field (across different sites).  These first two 

assumptions are typically quite reasonable, the third assumption can generally be met 

when model directed sampling strategies are used to select the calibration sample 

locations (such as the spatial response surface sampling strategy used by the ESAP-RSSD 

software program).  Additionally, the errors are assumed to be correlated across sampling 

depths (at the same site) and the error variances are normally assumed to change across 

fields (and sometimes across sampling depths also).  Under these residual error 

assumptions, either ordinary or mixed linear modeling techniques can be used to estimate 

the parameter coefficients in either the FSR or ANOCOVA models.  Ordinary least 
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squares (OLS) estimation techniques will always yield the best linear unbiased (BLU) 

parameter estimates for the FSR model, since unique coefficients are estimated for each 

field and sampling depth; note that the FSR model is equivalent to a multivariate multiple 

linear regression model (Johnson and Wichern, 1988).  If the residual errors are assumed 

to exhibit a common variance component across different fields (for a specific sample 

depth), then OLS estimation will also yield the BLU parameter estimates for the 

ANOCOVA model (Milliken and Johnson, 2002; Searle, 1971).  If the variance 

components change across fields, then a heterogeneous variance ANOCOVA model must 

be specified and estimated (typically using restricted maximum likelihood estimation) in 

order to derive the empirical BLU parameter estimates (McCulloch and Searle, 2001; 

Rao and Toutenburg, 1999).  Note that in this latter case, the heterogeneous variance 

ANOCOVA model is essentially just a mixed linear analysis of covariance model, where 

the residual error variances are allowed to change across fields. 

 

3.2   Model Assessment 

 

 In this study, our primary model assessment criteria is the mean square prediction 

error (MSPE).  The MSPE is defined as the squared difference between the observed and 

jack-knifed (a.k.a. cross-validated) log salinity predictions; i.e., 

 

 ( ) ( 2

,,
)(,ˆ1 ∑ −−=

kji
iijkijkijk yyNMSPE )         (3.4) 

 

where ,  represents the model predicted  value where the 

ith observed log salinity measurement has not been used to calibrate the regression 

equation, and  represents the total number of jack-knifed soil salinity samples.  Jack-

knifing is routinely used in many types of statistical modeling applications and can be 

readily computed for all linear models fit using OLS estimation techniques (Rao and 

Toutenburg, 1999; Myers, 1986).  In regression-type models, jack-knifing is commonly 

done to assess a model’s prediction accuracy and to select the “best” (i.e., most accurate) 

model from a set of competing prediction equations (Myers, 1986); note that a smaller 

)ln( ijkijk ECy =

ijkN

)(,ˆ iijky − )ln( ijkEC
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MSPE implies a more accurate model.  Note also that the MSPE can be easily computed 

for multiple stratification variables, such as for specific sampling depths or individual 

fields, etc.  In the analyses that follow, we have computed the MSPE estimates associated 

with Eqns. (3.1), (3.2) and (3.3) by both sampling depths and individual fields, in 

addition to global MSPE values. 

 

 Along with the computation of various MSPE estimates, we have also performed 

a detailed analysis of the ANOCOVA model residuals.  This residual assessment analysis 

has been performed in order to verify that the previously discussed modeling assumptions 

are in fact reasonable; a more detailed discussion on this topic is presented in section 4.2. 

 

4.  RESULTS 

 

4.1   Prediction accuracy (MSPE Statistics) 

 

 As discussed in section 2, a total of 77 distinct fields were included into the 

master database.  All 77 fields contained soil salinity samples from the 0-30 cm and 30-

60 cm sampling depths, 59 of these fields contained samples from the 60-90 cm depth, 

and only 15 fields contained samples from the 90-120 cm depth.  Additionally, 60 of the 

77 fields exhibited exactly 6 calibration sampling locations per field; the remaining 17 

files exhibited 10 to 12 sites per field, respectively. 

 

 Table 4.1 displays the FSR, ANOCOVA, and CCR model summary statistics 

pertaining to the models for the 0-30, 30-60, and 60-90 cm sampling depths.  Note that no 

model was fit to the 90-120 cm sample depth, due to the limited number of fields 

containing soil sample data at this depth.  The R2 and mean square error (MSE) estimates 

shown in table 4.1 for the FSR models represent composite statistics; i.e., composite 

estimates calculated by pooling all of the individual fields together.  Additionally, the R2 

and MSE estimates correspond to the ANOCOVA models computed using OLS 

estimation; i.e., to ANOCOVA models that assume a homogeneous residual variance 

component across fields.  As shown in table 4.1, the ANOCOVA model R2 values are 
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about 9-10% lower than the (composite) FSR model R2 values and the ANOCOVA MSE 

estimates are about 0.05 to 0.06 units larger.  In contrast, the CCR model R2 values are 

noticeably lower (than both the ANOCOVA and FSR model R2 values) and the CCR 

MSE estimates are clearly much larger.   

 

 The sample depth specific and overall average MSPE estimates associated with 

the FSR, ANOCOVA, and CCR models are shown in table 4.2.  Unlike the model 

summary statistics (that essentially measure how well each model “fits” the sample data), 

these MSPE values provide a much more reliable estimate of the prediction accuracy 

associated with each model.  All of the MSPE estimates associated with the ANOCOVA 

models are considerably smaller than either the FSR or CCR estimates.  When compared 

specifically with the depth specific FSR estimates, the ANOCOVA MSPE is about 30% 

lower for the 0-30 cm sample depth, 29% lower for the 30-60 cm sample depth, and 41% 

lower for the 60-90 cm depth.  Likewise the overall average ANOCOVA MSPE estimate 

is about 33% lower (than both the FSR and CCR MSPE estimates).  These results 

indicate that the ANOCOVA models produce the most accurate log salinity predictions; 

i.e., the jack-knifed variance of the prediction errors associated with the ANOCOVA 

model is only about two-thirds as large (on average) as the jack-knifed variance of the 

FSR model prediction errors. 

 

 

 

Table 4.1.  FSR, ANOCOVA, and CCR model summary statistics. 
 

Midpoint Sampling Depth   
Model 

 
Statistic 15 cm 45 cm 75 cm 

R2 0.886 0.890 0.837  
FSR MSE 0.241 0.266 0.304 

R2 0.792 0.803 0.733  
ANOCOVA MSE 0.302 0.326 0.349 

R2 0.460 0.642 0.578  
CCR MSE 0.675 0.512 0.481 
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Table 4.2.  Jack-knifed MSPE estimates for the FSR, ANOCOVA, and CCR models. 
 

Midpoint Sampling Depth  
Model 15 cm 45 cm 75 cm 

Pooled 
Average 

FSR 0.499 0.535 0.681 0.564 
ANOCOVA 0.350 0.379 0.404 0.376 

CCR 0.680 0.515 0.485 0.565 
 

 

 

Table 4.3 shows the number of fields where the ANOCOVA models produced 

smaller jack-knifed MSPE estimates, in comparison to the FSR models.  Overall, the 

jack-knifed salinity patterns in 58 out of 77 fields (75%) were more accurately predicted 

by the ANOCOVA models.  For fields with only 6 sample sites, this percentage increased 

slightly (47 out of 60, or approximately 78%).  For fields having 10 to 12 sample sites, 

this percentage was somewhat lower (11 out of 17, or approximately 65%).  In general, as 

the number of calibration samples increases, we would expect a FSR model to out-

perform the ANOCOVA model.  However, these results suggest that the prediction 

accuracy in more than half of the fields associated with a normal (12-site) ESAP 

sampling plan can still be improved using the ANOCOVA modeling approach.  

Additionally, the prediction accuracy in about 80% of the fields associated with a reduced 

(6-site) plan were improved using the ANOCOVA modeling approach. 
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Table 4.3.  Summary count statistics on field specific MSPE estimates for the FSR and 
ANOCOVA models. 
 

Strata MSPEANCV < MSPEFSR MSPEANCV > MSPEFSR 
All Fields (N=77) 58 19 

Fields w/6 sample sites (N=60) 47 13 
Fields w/10-12 sample sites (N=17) 11 6 

 

 

 

 

Table 4.4 summarizes the distribution of the ANOCOVA model jack-knifed 

MSPE estimates (into four classes); these classes can be used to “grade” the reliability of 

the salinity predictions.  Overall, approximately 82% of the fields (63 out of 77) exhibit 

either excellent (grade A), good (grade B), or fair (grade C) prediction reliability.   MSPE 

estimates > 0.6 suggest that the salinity levels in a particular field are not well described 

by (i.e., strongly correlated with) the associated EM38 survey data; 14 of the 77 fields fall 

into this latter class.  Figures 4.1 through 4.4 show the observed versus jack-knife 

predicted salinity measurements for the groups of fields exhibiting A, B, C, and U 

prediction accuracy grades, respectively.   

 

 

 

Table 4.4.  Distribution of ANOCOVA jack-knifed MSPE estimates (prediction accuracy 
statistics). 
 

 
MSPE 
Range 

 
 

Grade 

 
Prediction 
Accuracy 

 
Number of 

Fields 

 
% of Total 

Sample Size 

Correlation: 
Obs v.s. Prd 

Salinity 
< 0.15 A Excellent 16 21% 0.921 

0.15 – 0.30 B Good 23 30% 0.860 
0.30 – 0.60 C Fair 24 31% 0.795 

> 0.60 U Unacceptable 14 18% 0.693 
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Figure 4.1.  Observed versus jack-knife predicted soil salinity values (ECe, dS/m), for fields with 
MSPE estimates < 0.15 (grade A fields). 
 
 
 

 
Figure 4.2.  Observed versus jack-knife predicted soil salinity values (ECe, dS/m), for fields with 
MSPE estimates > 0.15 and < 0.30 (grade B fields). 
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Figure 4.3.  Observed versus jack-knifed predicted soil salinity values (ECe, dS/m), for fields with 
MSPE estimates > 0.30 and < 0.60 (grade C fields). 
 
 
 
 

 
Figure 4.4.  Observed versus jack-knifed predicted soil salinity values (ECe, dS/m), for fields with 
MSPE estimates > 0.60 (grade U fields). 
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4.2   ANOCOVA model: Residual analysis and diagnostic statistics 

 

As discussed in section 3.1, the residual errors associated with the ANOCOVA 

models are assumed to be Normally distributed, independent across fields and spatially 

uncorrelated within a field (across different sites).  Additionally, when the ANOCOVA 

models are estimated using OLS techniques, we additionally assume that the residual 

variance does not change across fields.  However, this last assumption often does not 

hold in practice, and thus should be carefully assessed.  

 

A summary of the ANOCOVA model residual errors (i.e., a residual distribution 

assessment) is presented in table 4.5.  The upper part of table 4.5 lists the global residual 

variance estimates for the three sampling depths, in addition to the pooled residual 

correlation matrix.  All of the off-diagonal correlation coefficients are positive and 

statistically different from 0 (p < 0.0001), confirming that the ANOCOVA model 

residual errors associated with specific sampling locations are indeed correlated across 

sampling depths.  (Note that this does not invalidate the OLS estimation technique, since 

unique ANOCOVA models have been fit to each depth.)    

 

The center part of table 4.5 lists the test results and p-values for the Shapiro-Wilk 

Normality goodness-of-fit (GOF) test.  The pooled set of ordinary residuals from the 

three ANOCOVA models clearly fail this test ( p < 0.0001); the associated residual 

quantile plot (figure 4.5) suggests that the residual distribution is somewhat “heavy-

tailed”.  Figure 4.6 displays the residual variance pattern across the 77 surveyed fields; 

this plot shows that the degree of residual variation is field dependent.  However, after 

standardizing the pooled set of residuals by their individual field variance estimates, the 

new (variance standardized) residuals pass the Shapiro-Wilk GOF test (p = 0.540); note 

that the corresponding standardized residual quantile plot is shown in figure 4.7. 

 

Overall, these residual diagnostic results suggest that the ANOCOVA model 

errors do follow a Normal distribution, but that the variance of the distribution changes 

across the 77 fields.  The lower portion of table 4.5 shows the formal Chi-square test 
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results for the non-constant residual variance hypothesis (i.e., the likelihood ratio tests 

associated with the mixed linear ANOCOVA models estimated using restricted 

maximum likelihood).  The test results for all three ANOCOVA models are highly 

significant (p < 0.0001), implying that these heterogeneous variance ANOCOVA models 

should be used to produce our final set of ln(EMV) and ln(EMH) parameter coefficients. 

 

Table 4.6 shows the calculated ANOCOVA model ln(EMV) and ln(EMH) 

parameter coefficients, for models estimated under both the homogeneous (common) and 

heterogeneous (field specific) variance assumptions; the estimated standard errors of the 

coefficients are shown in ( ).  These standard errors confirm that the model coefficients 

associated with the heterogeneous variance (mixed linear) ANOCOVA models are more 

accurately estimated.  These are the coefficients that should be used by the Coachella 

Valley RCD in all future survey operations where the ANOCOVA modeling approach is 

employed. 
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Table 4.5.  ANOCOVA model residual errors; average depth correlation structure and 
pooled residual distribution assessments. 
 

 
Residual Correlation Matrix 

 
Midpoint 

Sample Depth 

 
Residual 
Variance Depth 0.15 cm 0.45 cm 0.75 cm 

 
0.15 cm 

 
0.302 

 
0.15 cm 

 
1.00 

 
0.48 

 
0.21 

0.45 cm 0.326 0.45 cm 0.48 1.00 0.49 
0.75 cm 0.349 0.75 cm  0.21 0.49 1.00 

 
Shapiro-Wilks Normality Tests: polled residuals (N = 1568) 

Residuals W-score p-value 
Ordinary residuals 0.9867 < 0.0001 

Variance standardized residuals (by field) 0.9990    0.5400 
 

Depth-specific 2χ tests for non-constant residual variance across fields. 
Model / Sample Depth 2χ -score DF’s p-value 

0.15 cm ANOCOVA model 189.9 76 < 0.0001 
0.45 cm ANOCOVA model 144.4 76 < 0.0001 
0.75 cm ANOCOVA model 139.6 58 < 0.0001 
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Figure 4.5.  Residual QQ plot: ordinary ANOCOVA model residuals. 
 
 

 
Figure 4.6.  ANOCOVA residual variance plot, stratified by field. 
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Figure 4.7.  Residual QQ plot: variance (field) standardized ANOCOVA model residuals. 
 
 

 

 

 

Table 4.6.  Calculated ANOCOVA model ln(EMV) and ln(EMH) parameter coefficients, 
for models estimated under both the homogeneous (common) and heterogeneous (field 
specific) variance assumptions; estimated standard errors of the parameter coefficients 
shown in ( ). 
 

Common variance  
assumption 

Field specific  
variance assumption 

 
Midpoint 

Sample Depth ln(EMV) ln(EMH) ln(EMV) ln(EMH) 
 

0.15 cm 
 

-0.696 (.170) 
 

1.557 (.159) 
 

-0.413 (.128) 
 

1.178 (.117) 
0.45 cm  0.114 (.177) 1.219 (.165)  0.150 (.127) 1.080 (.119) 
0.75 cm  0.833 (.191) 0.317 (.178)  0.976 (.123) 0.129 (.117) 
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5.  IMPLEMENTATION 

 

 Given the depth-specific EM38 parameter coefficients shown in Table 4.6, we can 

now use simple algebraic techniques to calculate an appropriate (depth-specific) intercept 

parameter estimate for any field surveyed using the ANOCOVA modeling approach.  

Section 5.1 below explicitly describes how these intercept parameter estimates should be 

calculated, along with a working example using one of the CVRCD fields included in the 

database.  Section 5.2 then discusses how the ESAP-RSSD software program can be used 

to implement a sampling strategy that selects either four, five, or six sampling locations 

per field to facilitate the optimal estimation of these intercept estimates. 

 

5.1   Calculation Details 

 

 As discussed in section 4, the ANOCOVA modeling approach can be used to 

make 30 cm depth predictions at the 0.15 m, 0.45 m, and 0.75 m sampling depths.  The 

corresponding ANOCOVA model equation are  

 

     (5.1) ( ) iiHiVi EMEMEC ,15.0,,15.0,15.0 )ln(178.1)ln(413.0ˆln εβ ++−=

     (5.2) ( ) iiHiVi EMEMEC ,45.0,,45.0,45.0 )ln(080.1)ln(150.0ˆln εβ +++=

and 

 ,    (5.3) ( ) iiHiVi EMEMEC ,75.0,,75.0,75.0 )ln(129.0)ln(976.0ˆln εβ +++=

 

where the subscript i = 1, 2, .. N refers to the ith sampling and/or survey location in a 

particular field.  Based on the available sample soil salinity data, we can use Eqns. (5.1), 

(5.2) and (5.3) to compute the intercept estimates and the corresponding pooled mean 

square prediction error (MSPE) estimate (which represents a measurement of how well 

the ANOCOVA model fits the data – i.e., see table 4.4 in section 4.1). 

 

 To calculate the intercept estimates, we first compute the differenced log salinity / 

EM readings for each sample depth as follows: 
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 ( ) )ln(178.1)ln(413.0ln ,,,15.0,15.0 iHiVii EMEMECy −+=      (5.4) 

 ( ) )ln(080.1)ln(150.0ln ,,,45.0,45.0 iHiVii EMEMECy −−=      (5.5) 

 ( ) )ln(129.0)ln(976.0ln ,,,75.0,75.0 iHiVii EMEMECy −−=      (5.6) 

 

The intercept estimates are then simply the average values of these differenced estimates; 

i.e., 

 ( )∑
=

=
n

i
iyn

1
,15.015.0 1β̂           (5.7) 

 ( )∑
=

=
n

i
iyn

1
,45.045.0 1β̂          (5.8) 

 ( )∑
=

=
n

i
iyn

1
,75.075.0 1β̂  ,         (5.9) 

 

where n represents the number of sampling locations in the field.  Once the intercepts 

have been obtained, the depth-specific MSPE estimates can then be calculated as 

 

 ( )∑
=

−−=
n

i
iiyn

1

2
,15.0,15.0

2
15.0 )ˆ()1(1ˆ βσ         (5.10) 

 ( )∑
=

−−=
n

i
iiyn

1

2
,45.0,45.0

2
45.0 )ˆ()1(1ˆ βσ         (5.11) 

and 

 ( )∑
=

−−=
n

i
iiyn

1

2
,75.0,75.0

2
75.0 )ˆ()1(1ˆ βσ  ,      (5.12) 

 

respectively.  Finally, the pooled MSPE can be calculated by simply averaging the depth-

specific MSPE estimates and then used to “grade” the overall prediction reliability, etc. 

 

 As can be seen from these derivations, the ANOCOVA parameter estimation 

technique is equivalent to simply calculating the means and variances of the differenced 

log salinity / EM data for each sample depth.  Such calculations can be easily carried out 
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using any spreadsheet program (such as Microsoft Excel), or even using a desktop 

calculator if necessary. 

 

 Table 5.1 shows a set of example calculations for Field #49 in the composite 

database.  Columns three, four and five show the ECe (dS/m), EMV (mS/m), and EMH 

(mS/m) data for the six sampling locations associated with this field, while column six 

shows the corresponding differenced data (computed from Eqns. 5.4, 5.5, and 5.6).  The 

means and variances associated with these differenced readings are shown in columns 

seven and eight.  Recall that the means represent the intercept estimates and the variances 

can be pooled (averaged) together to produce the field MSPE estimate.  In this example, 

we find that , , and , and the pooled MSPE is 

0.127.  As discussed in section 4.1, an MSPE < 0.15 implies excellent prediction 

accuracy, so in this example we would have high confidence in the corresponding 

ANOCOVA model salinity predictions. 

659.1ˆ
15.0 −=β 383.3ˆ

45.0 −=β 993.2ˆ
75.0 −=β

 

 Figure 5.1 shows the ESAP generated EMV map for Field #49, while figure 5.2 

shows the corresponding 0-90 cm bulk average ECe map.  The salinity map was 

generated by first computing the individual 0.15, 0.45, and 0.75 cm depth predictions 

using Eqns. 5.1 through 5.3 and then averaging these (back-transformed) values together.  

For this field, we find that the field-wide average 0-90 cm salinity level is 2.06 dS/m and 

that 90% of the individual predictions fall between 1.55 dS/m and 2.78 dS/m.  Figure 5.2 

shows that the majority of this field can be classified as non-saline, with some slightly 

saline areas located along the eastern half of the field and in the northwest corner.  
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Table 5.1.  Example ANOCOVA model calculations (intercept estimates and MSPE) for 
Field #49 in the composite database. 
 

Depth Site ECe EMV EMH Δi Mean Var 
 

137 
 

0.91 
 

24.38 
 

18.13 
 

-2.189 
581 2.99 40.00 30.13 -1.393 
1178 2.25 29.00 25.00 -1.590 
1451 2.72 30.88 26.38 -1.438 
2100 1.42 20.63 21.00 -1.986 

 
 
 

0.15 cm 

2379 4.16 38.75 38.38 -1.361 

 
 
 

-1.659 

 
 
 

0.1201 

 
137 

 
0.91 

 
24.38 

 
18.13 

 
-3.703 

581 3.00 40.00 30.13 -3.133 
1178 1.65 29.00 25.00 -3.481 
1451 2.26 30.88 26.38 -3.234 
2100 1.30 20.63 21.00 -3.480 

 
 
 

0.45 cm 

2379 3.38 38.75 38.38 -3.270 

 
 
 

-3.383 

 
 
 

0.0438 

 
137 

 
1.68 

 
24.38 

 
18.13 

 
-2.972 

581 1.70 40.00 30.13 -3.509 
1178 1.48 29.00 25.00 -3.310 
1451 3.89 30.88 26.38 -2.412 
2100 1.05 20.63 21.00 -3.298 

 
 
 

0.75 cm 

2379 4.87 38.75 38.38 -2.457 

 
 
 

-2.993 

 
 
 

0.2171 

 
Pooled MSPE = (0.1201 + 0.0438 + 0.2171) = 0.127 

(Prediction Accuracy grade = Excellent) 
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Figure 5.1.  EMv map for Field #49. 
 

 
Figure 5.2.  Bulk average (0-90 cm) ECe map for Field #49. 
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5.2  Generating ANOCOVA Sampling Designs using ESAP-RSSD Software 

 

 The ESAP-RSSD software program can generate sampling designs containing 

either n = 6, 12, or 20 sample locations, respectively (Lesch et al, 2000).  Whenever the 

ANOCOVA modeling approach is adopted (for a given field), then four to six sites 

should be sufficient to produce reliable intercept estimates.  (Note: acquiring < 4 sites in 

any field is not recommended.)  In practice, a six site RSSD sampling design can be 

employed to generate a sampling plan containing four to six sites. 

 

 Every 6 site ESAP-RSSD sampling plan contains four sites that correspond to 

spatial response surface sampling (SRSS) locations, one additional center-point site (also 

a SRSS site, but less important) and one extra “spatial-support” site.  These sites are 

clearly identified in the ESAP generated response surface design text file (created by the 

RSSD program whenever a sampling design is saved).  The output shown in table 5.2 

below shows the response surface design text file for Field #49.  Note that the first listed 

sampling location (site 1178) represents the center-point site and the last location (site 

1451) represents the spatial-support site, respectively. 

 

 

Table 5.2.  The response surface design text file for Field #49. 

 
Full Path:    C:\US_Salinity_Lab\esap2\data\RanchoWN40\RN40rsd1.txt 
Project:      RanchoWN40 
File Name:    RN40rsd1.txt 
Date & Time:  7/9/04 10:13:33 AM 
Field Desc:   north 40 ac-prep for strawberries 
    
Sample Size:  6   (Total Survey Size =  2516   Active Survey Size =  2130) 
D-Factor Val: 0.90 
Opt-Criteria: 1.24 
Loop Count:   3 
    
Parsing Algorithm Empolyed:  forced data stratification using Strata # 3  
    
Target Information for SRS Sampling Design # 1 
    
  Site ID     Design Levels   Ds1-STD  Ds2-STD   X-Coordinate   Y-Coordinate  
    
   1178        0       0      -0.11     0.03      579840.5       3705794.4  
   581         1.58    1.58    1.31     1.35      579924.7       3706049.8  
   2100       -1.58   -1.58   -1.55    -1.62      579706         3705804.1  
   2379        1.58   -1.58    1.92    -1.6       579656.4       3706033.4  
   137        -1.58    1.58   -1.51     1.7       579997         3705828.3  
   1451       support site     0.22     0.1       579802.3       3705941  
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 To generate either a four, five, or six site sampling plan in ESAP, one should first 

use the RSSD program to generate a suitable 6-site design.  If a five site plan is desired, 

then one can simply not collect any sample data at the support site location during the 

actual sampling process.  (The support site represents the “statistically least important” 

sampling location in every 6-site ESAP sampling plan.)  If a four site plan is desired, then 

one should drop out both the support site and the center-point site; i.e., the site exhibiting 

Design Level values of (0, 0) in table 5.2. 

 

 Figure 5.3 below shows the 6-site ESAP sampling plan for Field #49.  As 

discussed above, a statistically optimal 5-site sampling plan would exclude site 1451.  

Likewise, a statistically optimal 4-site sampling plan would exclude sites 1178 and 1451.  

Hence, this same 6-site ESAP sampling design can be used to generate either a four, five, 

or six site sampling plan, respectively. 

 

 

 
Figure 5.3.  The ESAP-RSSD 6-site sampling plan for Field #49. 
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6.0  IRRIGATION & LEACHING EFFECTS ON FIELD AVERAGE  

 SALINITY LEVELS 

 
 As discussed in section 2, this database of surveyed fields provides a robust and 

realistic data set for testing and validating the ANOCOVA modeling approach.  

However, this database also facilitates the testing of other salinity related hypotheses of 

interest to the Reclamation and Coachella Valley agricultural producers.  One 

hypothesis of significant interest is if different irrigation and/or leaching techniques 

exhibit different degrees of success at controlling the field average salinity levels.  More 

specifically, is there statistical evidence that one particular irrigation and/or leaching 

method is most effective at controlling (i.e., minimizing) these average salinity levels. 

 

 Overall, exactly 70 of the 77 fields in this database were supporting some type of 

vegetable, herb, or fruit crop when the EM surveys were conducted.  Table 6.1 shows the 

frequency breakdown of both the irrigation and leaching techniques used in these 70 

fields.  Table 6.1 also shows the number of fields with and without tile lines (note that tile 

line information was unavailable for one field).  As shown in this table, about 90% of 

these fields were irrigated using either drip or furrow methods.  Likewise, slightly more 

than one half of these fields were sprinkler leached, and all but two of the remaining 

fields were either flood-leached or leached using a combination of flood and sprinkler 

techniques. 

 

 In section 6.1 we present a summary of the average soil salinity (ECe, dS/m) and 

texture (SP, %) levels for these 70 fields.  In section 6.2, we propose a suitable statistical 

model for analyzing what effect (if any) these irrigation and leaching methods have on 

the log transformed field average salinity levels.  The results obtained from this modeling 

analysis are then discussed and interpreted in section 6.3. 
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Table 6.1.  Frequency breakdown of irrigation and leaching techniques (and tile line 
status) used in the 70 fields supporting vegetable, herb, or fruit crops. 
 

 
Irrigation Method 

 

 
Frequency 

 
Percent (%) 

Drip 29 41.4 
Furrow 35 50.0 

Sprinkler 6 8.6 
 

Leaching Method 
 

 
Frequency 

 
Percent (%) 

Flood 19 27.1 
Sprinkler 37 52.9 

Flood & Sprinkler 12 47.1 
Drip  2 2.9 

 
Tile Lines 

 

 
Frequency 

 
Percent (%) 

Present 55 78.6 
Not Present 14 20.0 

No Information Available 1 1.4 
 
 
 

 

6.1  Field average ECe and SP information 

 

 Table 6.2 shows the field average ECe and SP univariate summary statistics for 

the 70 fields supporting vegetables, herbs, or fruit crops, where these averages have been 

calculated using all of the available (individual site) sample data in the database.  In table 

6.2, field average statistics are shown for each of the three sampling depths of interest; 

i.e., 0.15 m, 0.45 m, and 0.75 m.  These salinity and texture readings appear to be 

consistent across the three sampling depths, although sample information from the 0.75 m 

depth is only available for 54 of the 70 fields.  Additionally, the field average salinity 

levels appear to be reasonably similar to the (individual site) salinity levels shown in 

table 2.8. 
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 Perhaps not surprisingly, the log transformed average salinity readings are 

moderately correlated with the field average SP levels (r = 0.53 to 0.59 across the three 

sample depths).  It is well known that soil salinity levels tend to increase in heavier 

textured soils; note that the SP levels indirectly quantify the percentage of silt and clay in 

the soil.  In general, the correlated field average SP levels should be included as a 

covariate when statistically analyzing for differential irrigation and/or leaching effects on 

field average (log) salinity levels (in order to adjust for the effects of different soil texture 

conditions across fields).   

 

 

 

Table 6.2.  Field average soil salinity (ECe, dS/m) and texture (SP, %) summary statistics 
for the 70 fields supporting vegetable, herb, or fruit crops. 
 

0.15 m  0.45 m 0.75 m  
Statistic ECe SP ECe SP ECe SP 

 
N 

 
70 

 
70 

 
70 

 
70 

 
54 

 
54 

Mean 5.03 38.11 4.37 38.53 4.07 38.64 
Standard Deviation 7.69 7.80 6.36 8.08 4.45 9.21 

Skewness 3.09 0.49 2.76 0.52 2.29 0.83 
Quantiles:  
Minimum 0.31 24.0 0.27 24.3 0.80 24.1 

10% 1.03 29.0 0.94 28.9 1.09 27.4 
25% 1.30 32.8 1.19 33.1 1.27 32.6 

Median (50%) 2.17 35.8 1.77 36.7 2.51 37.8 
75% 4.35 44.6 3.68 45.0 4.50 44.0 
90% 12.97 48.6 13.52 49.8 10.77 49.9 

Maximum 41.65 56.8 34.60 61.7 22.25 68.8 
 

 

 

6.2   Statistical modeling methodology 

 

 Analysis of variance modeling techniques can be used to formally test if different 

irrigation or leaching methods employed in the Coachella Valley influence the (log 

transformed) field average salinity levels.  Taking  to represent the log ,ln( )e iEC
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transformed value of the field average salinity level in the ith field (for i = 1, 2, .. , 70), a 

first order analysis of variance model can be specified as 

 

 , 1 2ln( ) ( ) ( )e i j k i i iEC SP TLμ θ δ β β ε= + + + + +       (6.1) 

 

In Eq. (6.1), jθ quantifies the three different irrigation techniques, kδ quantifies the four 

different leaching methods, 1β adjusts for differences in the field average SP levels, 

2β adjusts for tile line effects (TL = 1 if there are tile lines, 0 otherwise), and the error 

term (ε ) is assumed to satisfy the usual Normality assumptions (Montgomery, 2001).  

Technically, Eq. (6.1) is actually another ANOCOVA model, but our purpose here is now 

statistical inference (rather than prediction) and the covariates in this model (the SP and 

tile line effects) essentially represent nuisance parameters. 

 

 Provided that the residual errors are assumed to be Normally distributed and 

spatially uncorrelated, standard OLS estimation techniques can be used to fit Eq. (6.1).  

Additionally, ordinary (ANOVA-type) F tests can be used to quantify the statistical 

significance of different irrigation and/or leaching techniques (Montgomery, 2001).  In 

such an analysis, note that non-significant F test results would at least heuristically 

suggest that the different irrigation and leaching techniques do not differentially influence 

the field average salinity levels, etc. 

 

6.3  Results and Discussion 

 

 Table 6.3 presents the basic model summary statistics associated with Eq. (6.1) 

for the 0.15 m, 0.45 m, and 0.75 m sample depths.  As shown in this table, the specified 

ANOCOVA model was only able to explain 30% to 45% of the total variation in the (log 

transformed) field average salinity levels.  None the less, the residual errors passed the 

Normality test for all three sampling depths and the residual quantile plots were devoid of 

any outliers (data not shown). 
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Table 6.3.  Eqn. (6.1)  ANOCOVA model summary statistics. 
 

Sampling Depth  
Model Statistics 0.15 m 0.45 m 0.75 m 

 
R2 

 
0.354 

 
0.300 

 
0.457 

CV (%) 84.1 101.5 66.1 
Root MSE 0.851 0.889 0.674 

 

 

 

Table 6.4.  F test p-values for the irrigation and leaching effects, in addition to the tile 
line and SP covariate parameter estimates. 
 

Sampling Depth  
Effect 0.15 m 0.45 m 0.75 m 

 
Irrigation Method 

 
0.756 

 
0.409 

 
0.406 

Leaching Method 0.119 0.952 0.324 
Tile Lines 0.644 0.854 0.442 

Field Average SP < 0.0001 < 0.0001 < 0.0001 
 

 

 

 Table 6.4 shows the F test p-values associated with the irrigation and leaching 

effects, in addition to the tile line and field average SP covariate effects.  As shown in 

table 6.4, neither the irrigation or leaching method effect is statistically significant in any 

of the three ANOCOVA models.  These somewhat surprising results suggest that the (log 

transformed) average salinity levels in these fields are not differentially influenced by 

either the irrigation or leaching methods employed across the valley.  Or equivalently, 

with respect to controlling the field average salinity level, it does not appear to matter 

which irrigation method (sprinkler, furrow, or drip) or leaching method (flood, sprinkler, 

or flood and sprinkler) is used on a particular field.  Any one of these irrigation and 

leaching methods can be employed with equal effectiveness for controlling the soil 

salinity levels in a typical Coachella Valley vegetable field. 
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