Attachment C RWQCB Basin Plan Water Quality Objectives

Attachment C-1 Lahontan RWQCB Basin Plan Water Quality Objectives

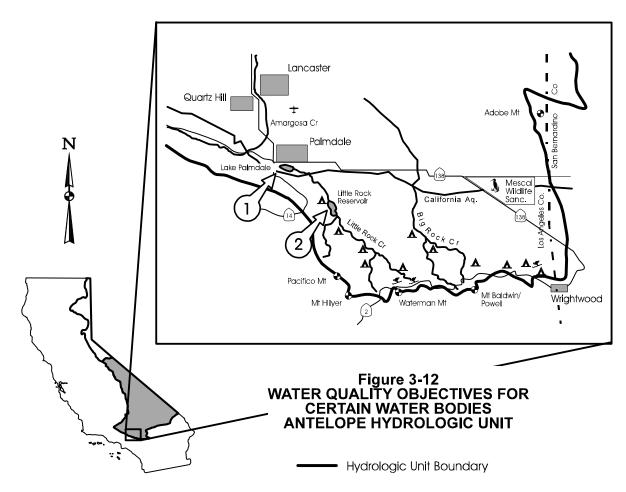

Table 3-19
WATER QUALITY OBJECTIVES FOR CERTAIN WATER BODIES
ANTELOPE HYDROLOGIC UNIT

Fig. 3-12	Surface Waters		Objective (mg/L) ^{1,2}									
		TDS	TDS CI SO ₄ F B NO ₃ -N Total N PO ₄									
1	Lake Palmdale	<u>460</u>	<u>50.0</u>	100.0	0.80	<u>0.13</u>	-	-	-			
		585	68.0	121.0	1.00	0.15						
2	Little Rock Reservoir	<u>176</u>	12.5	<u>16.5</u>	0.29	0.03	0.4	-	-			
		180	20.0	19.0	0.38	0.05	0.7					

¹ Annual average value/90th Percentile Value

2 Objectives are as mg/L and are defined as follows:

B Boron
Cl Chloride
F Fluoride
N Nitrogen, Total
NO₃-N Nitrogen as Nitrate

Ch. 3, WATER QUALITY OBJECTIVES

Table 3-20
WATER QUALITY OBJECTIVES FOR CERTAIN WATER BODIES
MOJAVE HYDROLOGIC UNIT

See Fig. 3-13	Surface Waters (Station 2) Ground Waters (Stations 1, 3, 4, 5, & 6)	Objective (mg	/L)(Maximum)
		TDS	NO ₃ as NO ₃
1 ^b	West Fork Mojave River	245	6
2 ^a	West Fork Mojave River (at Lower Narrows)	312	5
3 ^b	Mojave River (at Barstow)	445	6
4 ^b	Mojave River (upstream side of Waterman Fault)	560	11
5 ^b	Mojave River (upstream side of Calico-Newberry Fault)	340	4
6 ^b	Mojave River (just upstream of Camp Cady Ranch Building Complex)	300	1

a Objectives for reaches of the Mojave River which normally flow underground, but under high flow conditions will surface.

Objectives for reaches of the Mojave River which flow underground in a confined channel.

Cima Broadwell Lake (Dry) Mojave River Hydrologic Area **₹** See FIGURE 3-14 and TABLE 3-21 for additional Water Quality Objectives for this area. \$ (D) Cronise Lakes (Dry) COON Wis Barstow Lake Arrowhead **Jesperia** Black Mt Harper Lake (Dry) + Edwards Alr Force Base

Figure 3-13
WATER QUALITY OBJECTIVES FOR CERTAIN WATER BODIES
MOJAVE HYDROLOGIC UNIT

Ch. 3, WATER QUALITY OBJECTIVES

Table 3-21
WATER QUALITY OBJECTIVES FOR CERTAIN WATER BODIES
SAN BERNARDINO MOUNTAINS AREA, MOJAVE HYDROLOGIC UNIT

See		Objective (mg/L) ^{1,2}								
Fig.	Surface Waters				,	` ` `	,			
3-14				1		1		1		
		TDS	CI	SO ₄	F	В	NO ₃ -N	N	PO ₄	
1	Arrowbear Lake	<u>81</u>	<u>6.2</u>	<u>3.9</u>	<u>0.12</u>	<u>0.12</u>	-	<u>1.0</u>	<u>0.13</u>	
		139	10.0	8.1	0.21	0.25		2.0	0.14	
2	Green Valley Lake	<u>100</u>	9.0	<u>3.5</u>	<u>0.12</u>	0.07	-	<u>1.0</u>	0.11	
		134	12.0	5.8	0.20	0.14		2.0	0.16	
3	Lake Arrowhead	<u>78</u>	<u>7.7</u>	<u>2.4</u>	0.21	<u>0.04</u>	-	-	-	
		107	9.1	3.0	0.40	0.05				
4	Hooks Creek	<u>83</u>	<u>6.0</u>	<u>5.6</u>	<u>0.12</u>	0.03	<u>0.8</u>	-	0.04	
		127	10.0	13.0	0.17	0.06	2.5		0.05	
5	Deep Creek	<u>83</u>	<u>9.1</u>	<u>1.3</u>	0.10	<u>0.05</u>	0.2	0.3	0.05	
	(below Lake)	123	16.0	4.9	0.19	0.07	0.6	0.7	0.13	
6	Deep Creek	<u>184</u>	<u>10.6</u>	<u>31.3</u>	<u>1.66</u>	<u>0.10</u>	<u>0.6</u>	-	-	
	(at Forks Dam)	265	16.0	55.0	2.60	0.19	2.0			
7	Twin Peaks Creek	<u>86</u>	<u>20.4</u>	<u>5.6</u>	0.07	0.02	<u>0.3</u>	-	-	
		100	33.0	6.0	0.09	0.03	0.4			
8	Grass Valley Creek	<u>103</u>	<u>11.1</u>	<u>4.6</u>	0.12	0.02	<u>0.6</u>	-	-	
	(above Lake)	136	15.0	8.1	0.26	0.04	1.8			
9	Sheep Creek	<u>56</u>	6.0	<u>3.4</u>	<u>0.13</u>	0.01	<u>0.3</u>	-	-	
	(at Allison Ranch)	72	7.8	6.9	0.22	0.02	1.3			
10	Seeley Creek	<u>112</u>	<u>21.1</u>	<u>10.5</u>	<u>0.17</u>	0.04	-	-	-	
	(Valley of Enchantment)	141	25.0	13.0	0.28	0.07				
11	Houston Creek	<u>153</u>	<u>13.0</u>	-	-	-	-	-	-	
	(above Dart Creek)	170	15.0							
12	Dart Creek	<u>120</u>	<u>10.9</u>	<u>4.0</u>	<u>0.16</u>	0.07	-	-	-	
	(below Moon Lake)	159	14.0	7.0	0.25	0.15				
13	Lake Gregory	<u>87</u>	<u>11.0</u>	<u>5.3</u>	<u>0.17</u>	0.30	-	-	-	
		95	12.0	7.7	0.30	0.30				
14	Sawpit Creek	<u>114</u>	<u>7.9</u>	<u>9.1</u>	<u>0.17</u>	<u>0.01</u>	-	-	-	
		145	9.0	13.0	0.22	0.03				
15	W.F. Mojave (above	<u>219</u>	<u>8.4</u>	<u>34.0</u>	0.26	0.02	-	-	-	
	Silverwood Lake)	336	13.0	53.0	0.40	0.05				

Table 3-21(continued) WATER QUALITY OBJECTIVES FOR CERTAIN WATER BODIES SAN BERNARDINO MOUNTAINS AREA, MOJAVE HYDROLOGIC UNIT

See Fig. 3-14	Surface Waters	Objective (mg/L) ^{1,2}							
0 1 1		TDS	CI	SO ₄	F	В	NO ₃ -N	N	PO ₄
16	E.F. of W.F. Mojave	<u>140</u> 200	<u>12.7</u> 22.0	<u>10.7</u> 17.0	0.23 0.40	0.06 0.10	-	-	-
17	Silverwood Reservoir	<u>220</u> 440	<u>55</u> 110	<u>20</u> 110	-	-	-	-	-
18	Mojave River (at Forks)	-	<u>55</u> 100	<u>35</u> 100	1.5 2.5	<u>0.2</u> 0.3	-	-	-
19	Mojave River (at Victorville)	-	<u>75</u> 100	<u>40</u> 100	<u>0.2</u> 1.5	<u>0.2</u> 0.3	-	-	-

Annual average value/90th Percentile Value

Objectives are as mg/L and are defined as follows:

B Boron
Cl Chloride
F Fluoride
N Nitrogen, Total
NO₃-N Nitrogen as Nitrate

SO₄ Sulfate

PO₄ Dissolved Orthophosphate

TDS Total Dissolved Solids (Total Filterable Residue)

Table 3-16 WATER QUALITY OBJECTIVES FOR CERTAIN WATER BODIES MONO HYDROLOGIC UNIT

See Fig. 3-9	Surface Waters		Objective (mg/L) ^{1,2}								
		TDS	CI	SO ₄	F	В	NO ₃ -N	Total N	PO ₄		
1	Mono Lake	76,000 80,700	17,700 18,000	11,000 12,000	<u>48</u> 52	<u>348</u> 355	<u>37</u> 47	-	<u>66</u> 75		
2	June Lake	<u>200</u> 225	-	1	1	1	1	<u>0.3</u> 0.5	<u>0.06</u> 0.08		
3	Reversed Creek (Gull Lake Inlet)	<u>130</u> 160	-	-	ı	1	<u>0.1</u> 0.1	<u>0.4</u> 1.0	<u>0.24</u> 0.34		
4	Gull Lake	<u>120</u> 140	-	-	-	-	-	<u>0.3</u> 0.8	<u>0.11</u> 0.17		
5	Reversed Creek (Silver Lake inlet)	<u>100</u> 130	-	-	ı	-	<u>0.1</u> 0.1	<u>0.2</u> 0.4	<u>0.16</u> 0.35		
6	Rush Creek (S.C.E. inlet)	<u>41</u> 60	-	-	1	1	<u>0.1</u> 0.1	<u>0.1</u> 0.2	<u>0.02</u> 0.07		
7	Silver Lake	<u>45</u> 60	-	1	ı	ı	-	<u>0.1</u> 0.2	<u>0.06</u> 0.09		
8	Rush Creek (Grant Lake inlet)	<u>58</u> 70	-	-	-	-	<u>0.1</u> 0.1	<u>0.2</u> 0.2	<u>0.07</u> 0.09		
9	Grant lake	<u>37</u> 46	<u>2.0</u> 4.0	<u>4.0</u> 8.0	<u>0.10</u> 0.20	<u>0.05</u> 0.08	-	<u>0.4</u> 0.9	<u>0.07</u> 0.15		

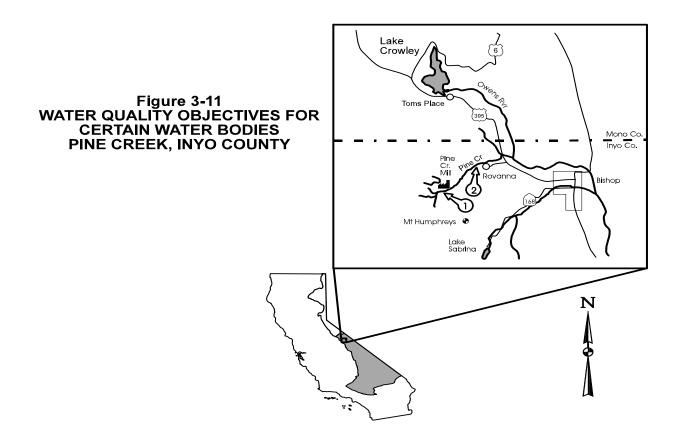
¹ Annual average value/90th Percentile Value

Boron Chloride B CI F N Fluoride Nitrogen, Total Nitrogen as Nitrate Sulfate NO₃-N SO₄ PO₄

Dissolved Orthophosphate
Total Dissolved Solids (Total Filterable Residue) TDS

 $^{^{2}\,}$ Objectives are as mg/L and are defined as follows:

Table 3-18 WATER QUALITY OBJECTIVES FOR CERTAIN WATER BODIES PINE CREEK, INYO COUNTY


Fig. 3-11	Surface Waters		Objective (mg/L except as noted) ^{1,2}							
		TDS	CI	SO ₄	F	В	NO ₃ -N	Ν	NH_3	Р
1	R-1 (above US Tungsten Corp Mine	50	3	13	-	-	0.3	0.9	0.01	0.04
2	R-5 (at LADWP weir above Rovana)	200	7	100	1.25	0.1	0.5	1.5	0.01	0.04

Values shown are mean of monthly mean for the period of record.

CI Chloride Fluoride Ν Nitrogen, Total NH_3 Ammonia, Un-ionized NO_3-N Nitrogen as Nitrate Phosphorus, Total SO₄ Sulfate

TDS Total Dissolved Solids (Total Filterable

Residue)

² Objectives are as mg/L and are defined as follows:

Table 3-17 (continued) WATER QUALITY OBJECTIVES FOR CERTAIN WATER BODIES **OWENS HYDROLOGIC UNIT**

See Fig. 3-10	Surface Waters				Objecti	ve (mg/	L) ^{1,2}		
		TDS	CI	SO ₄	F	В	NO ₃ -N	Total N	PO ₄
18	South Lake	<u>12</u> 20	3.7 4.3	-	<u>0.10</u> 0.10	<u>0.02</u> 0.02	<u>0.1</u> 0.1	<u>0.2</u> 0.4	<u>0.03</u> 0.04
19	Bishop Creek (Intake 2)	<u>27</u> 29	<u>1.9</u> 3.0	-	<u>0.15</u> 0.15	<u>0.02</u> 0.02	<u>0.1</u> 0.2	<u>0.1</u> 0.4	<u>0.05</u> 0.09
20	Bishop Creek (at Hwy 395)	<u>59</u> 105	<u>2.4</u> 6.0	<u>7.2</u> 12.0	<u>0.12</u> 0.30	<u>0.04</u> 0.10	<u>0.5</u> 0.9	<u>0.7</u> 1.0	<u>0.09</u> 0.18
21	Big Pine Creek (at Hwy395)	<u>55</u> 93	<u>2.0</u> 4.0	<u>6.0</u> 10.0	<u>0.06</u> 0.20	0.03 0.07	<u>0.6</u> 0.9	<u>0.7</u> 1.0	<u>0.03</u> 0.04
22	Fish Springs (above Hatchery)	<u>174</u> 219	-	-	-	-	<u>0.7</u> 0.8	<u>0.8</u> 1.0	<u>0.17</u> 0.23
23	Owens River (Tinemaha River Outlet)	<u>207</u> 343	17.9 42.0	<u>26.8</u> 59.0	<u>0.57</u> 0.90	<u>0.61</u> 1.50	<u>0.6</u> 1.1	<u>0.9</u> 1.5	<u>0.32</u> 0.56
24	Black Rock Springs	<u>114</u> 123	6.3 8.0	24.0 27.0	<u>0.54</u> 0.60	<u>0.11</u> 0.14	<u>0.2</u> 0.4	<u>0.7</u> 0.9	<u>0.13</u> 0.20
25	Oak Creek (above hatchery)	<u>72</u> 88	<u>1.8</u> 1.8	-	<u>0.14</u> 0.14	0.06 0.06	<u>0.1</u> 0.2	<u>0.2</u> 0.4	<u>0.08</u> 0.12
26	Independence Creek (gaging station)	<u>80</u> 114	<u>6.5</u> 11.0	15.0 23.0	0.10 0.20	0.12 0.26	<u>0.4</u> 0.8	<u>0.6</u> 1.0	<u>0.05</u> 0.09
27	Hogback Creek	<u>45</u> 48	<u>2.5</u> 3.6	-	<u>0.10</u> 0.10	0.03 0.06	<u>0.2</u> 0.3	<u>0.4</u> 0.6	<u>0.02</u> 0.04
28	Lone Pine Creek (Whitney Portal)	<u>22</u> 25	<u>0.5</u> 1.1		<u>0.10</u> 0.10	<u>0.05</u> 0.07	<u>0.3</u> 0.5	<u>0.4</u> 0.6	<u>0.02</u> 0.04
29	Lone Pine Creek (at gaging station)	<u>56</u> 81	<u>4.0</u> 8.0	<u>4.6</u> 7.0	<u>0.12</u> 0.20	<u>0.06</u> 0.11	0.3 0.4	<u>0.4</u> 0.5	<u>0.01</u> 0.01
30	Cottonwood Creek (Los Angeles Aqueduct)	<u>66</u> 91	<u>1.9</u> 4.0	<u>7.4</u> 11.0	0.20 0.40	<u>0.05</u> 0.10	<u>0.1</u> 0.4	<u>0.4</u> 0.6	<u>0.11</u> 0.17
31	Haiwee Reservoir (outlet)	<u>215</u> 315	<u>19.5</u> 38.0	<u>27.0</u> 62.0	0.60 0.90	<u>0.56</u> 0.91	<u>0.5</u> 1.0	<u>0.8</u> 1.5	<u>0.23</u> 0.36

Annual average value/90th Percentile Value.

Objectives are as mg/L and are defined as follows:

Nitrogen as Nitrate Sulfate NO₃-N В Boron

Chloride CI SO₄

Fluoride PO₄

Dissolved Orthophosphate
Total Dissolved Solids (Total Filterable Residue) Nitrogen, Total TDS

Table 3-17
WATER QUALITY OBJECTIVES FOR CERTAIN WATER BODIES
OWENS HYDROLOGIC UNIT

See Fig.	Surface Waters				Object	ive (mg/	L) ^{1,2}		
3-10		TDS	CI	SO ₄	F	В	NO ₃ -N	Total N	PO ₄
1	Owens River (above East Portal)	<u>110</u> 200	11.0 16.0	<u>5.0</u> 8.0	0.40 0.80	0.40 0.80	<u>0.1</u> 0.1	<u>0.2</u> 0.5	<u>0.90</u> 3.75
2	Owens River (below East Portal)	<u>100</u> 150	6.0 12.0	<u>6.0</u> 16.0	0.30 0.60	0.20 0.40	<u>0.5</u> 1.0	<u>0.6</u> 1.5	<u>0.73</u> 0.94
3	Coldwater Creek	<u>35</u> 40	<u>0.7</u> 1.4	-	-	-	<u>0.5</u> 1.0	<u>0.5</u> 1.0	<u>0.02</u> 0.03
4	Mammoth Creek (Twin Lakes Bridge)	<u>60</u> 90	<u>0.6</u> 1.0	-	-	-	<u>0.4</u> 0.8	<u>0.5</u> 1.0	<u>0.03</u> 0.05
5	Mammoth Creek (Old Mammoth Road)	<u>85</u> 115	<u>0.8</u> 1.4	-	1	-	<u>0.4</u> 0.8	<u>0.6</u> 1.0	0.27 0.50
6	Mammoth Creek (at Hwy. 395)	<u>75</u> 100	<u>1.0</u> 1.4	<u>6.0</u> 11.0	0.10 0.30	0.03 0.05	<u>0.4</u> 0.8	<u>0.6</u> 1.0	<u>0.11</u> 0.22
7	Sherwin Creek	<u>22</u> 26	<u>0.5</u> 0.7	1	-	-	<u>0.4</u> 0.6	<u>0.5</u> 0.7	<u>0.05</u> 0.08
8	Hot Creek (at County Rd)	<u>275</u> 380	<u>41.0</u> 60.0	<u>24.0</u> 35.0	1.80 2.80	1.80 2.60	<u>0.2</u> 0.4	<u>0.3</u> 1.5	<u>0.65</u> 1.22
9	Convict Creek	<u>85</u> 95	<u>1.5</u> 3.0	11.0 14.0	0.05 0.15	<u>0.02</u> 0.06	<u>0.2</u> 0.4	<u>0.3</u> 0.5	<u>0.03</u> 0.05
10	McGee Creek	<u>78</u> 92	<u>1.1</u> 3.6	<u>12.0</u> 16.0	<u>0.07</u> 0.20	<u>0.02</u> 0.08	0.3 0.4	<u>0.4</u> 0.5	<u>0.02</u> 0.03
11	Hilton Creek	<u>28</u> 34	<u>0.8</u> 2.0	<u>3.0</u> 5.0	<u>0.05</u> 0.10	<u>0.02</u> 0.04	<u>0.3</u> 0.5	<u>0.5</u> 0.6	<u>0.03</u> 0.05
12	Owens River	<u>215</u> 290	<u>20.0</u> 33.0	14.0 24.0	<u>0.73</u> 1.10	<u>0.76</u> 1.26	<u>0.7</u> 1.4	<u>1.0</u> 2.3	<u>0.56</u> 0.70
13	Rock Creek (Mosquito Flat)	<u>10</u> 11	1.0 2.0	-	0.05 0.05	0.03 0.03	<u>0.2</u> 0.3	<u>0.2</u> 0.4	<u>0.04</u> 0.07
14	Rock Creek (above diversion)	<u>21</u> 23	<u>1.2</u> 2.0	-	0.05 0.05	<u>0.06</u> 0.06	<u>0.3</u> 0.5	<u>0.4</u> 0.7	<u>0.01</u> 0.01
15	Rock Creek (Round Valley)	<u>48</u> 70	<u>1.8</u> 4.0	<u>5.0</u> 7.0	0.16 0.30	0.03 0.06	<u>0.4</u> 0.5	<u>0.6</u> 0.7	<u>0.15</u> 0.28
16	SEE TA	TABLE 3-18 FOR PINE CREEK OBJECTIVES							
17	Lake Sabrina	<u>10</u> 17	<u>2.0</u> 3.0	-	0.10 0.10	0.05 0.05	<u>0.2</u> 0.3	<u>0.3</u> 0.6	<u>0.03</u> 0.05
	continued								

Attachment C-2 Los Angeles RWQCB Basin Plan Water Quality Objectives

Table 3-8. Water Quality Objectives for Selected Constituents in Inland Surface Waters*.

Reaches are in upstream to downstream order.

WATERSHED/STREAM REACH	TDS (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Boron ^c (mg/L)	Nitrogen ^d (mg/L)	SAR* (mg/L)		
Miscellaneous Ventura Coastal Streams	no waterbody specific objectives '							
Ventura River Watershed:								
Above Camino Cielo Road	700	300	50	1.0	5	5		
Between Camino Cielo Road and Casitas Vista Road	800	300	60	1.0	5	5		
Between Casitas Vista Road and confluence with Weldon Canyon	1000	300	60	1.0	5	5		
Between confluence with Weldon Canyon and Main Street	1500	500	300	1.5	10	5		
Between Main St. and Ventura River Estuary		no	waterbody sp	ecific objec	tives '			
Santa Clara River Watershed:	·							
Above Lang gaging station	500	100	50	0.5	5	5		
Between Lang gaging station and Bouquet Canyon Road Bridge	800	150	100	1.0	5	5		
Between Bouquet Canyon Road Bridge and West Pier Highway 99	1000	300	100	1.5	10	5		
Between West Pier Highway 99 and Blue Cut gaging station	1000	400	100	1.5	5	10		
Between Blue Cut gaging station and A Street, Fillmore	1300	600	100	1.5	5	5		
Between A Street, Fillmore and Freeman Diversion "Dam" near Saticoy	1300	650	80	1.5	5	5		
Between Freeman Diversion "Dam" near Saticoy and Highway 101 Bridge	1200	600	150	1.5	-	-		
Between Highway 101 Bridge and Santa Clara River Estuary		no	waterbody sp	ecific object	tives ^f			
Santa Paula Creek above Santa Paula Water Works Diversion Dam	600	250	45	1.0	5	5		
Sespe Creek above gaging station, 500' downstream from Little Sespe Creek	800	320	60	1.5	5	5		
Piru Creek above gaging station below Santa Felicia Dam	800	400	60	1.0	5	5		
Calleguas Creek Watershed:				· ·				
Above Potrero Road	850	250	150	1.0	10	f		
Below Potrero Road		no	waterbody sp	ecific object	ives '			

Table 3-8. Water Quality Objectives for Selected Constituents in Inland Surface Waters^a (cont.)

Reaches are in upstream to downstream order.

WATERSHED/STREAM REACH	TDS (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Boron ^c (mg/L)	Nitrogen⁴ (mg/L)	SAR* (mg/L)		
Miscellaneous Los Angeles County Coastal Streams		no	waterbody sp	ecific objec	tives ¹			
Malibu Creek Watershed	2000	500	500	2.0	10	-		
Ballona Creek Watershed		no	waterbody sp	ecific objec	tives ^f			
Dominguez Channel Watershed		no	waterbody sp	ecific objec	tives ¹			
Los Angeles River Watershed:								
Above Figueroa Street	950	300	150	g	8	g		
Between Figueroa Street and Los Angeles River Estuary (Willow Street). Includes Rio Hondo below Santa Ana Freeway	1500	350	150	g	8	g		
Rio Hondo above Santa Ana Freeway ^h	750	300	150	g	8	g		
Santa Anita Creek above Santa Anita spreading grounds	250	30	10	g	f	g		
Eaton Canyon Creek above Eaton Dam	250	30	10	g	f	g		
Arroyo Seco above spreading grounds	300	40	15	g	f	g		
Big Tujunga Creek above Hansen Dam	350	50	20	g	f	g		
Pacoima Wash above Pacoima spreading grounds	250	30	10	g	f	g		
San Gabriel River Watershed:		·						
Above Morris Dam	250	30	10	0.6	2	2		
Between Morris Dam and Ramona Blvd.	450	100	100	0.5	8	g		
Between Ramona Blvd. and Firestone Blvd.	750	300	150	1.0	8	g		
Between Firestone Blvd. and San Gabriel River Estuary (downstream from Willow Street) including Coyote Creek		no	waterbody sp	oecific objec	ctives ¹			
All other minor San Gabriel Mountain streams tributary to San Gabriel Valley ¹	300	40	15	g	f	g		
Island Watercourses:								
Anacapa Island	no waterbody specific objectives '							
San Nicolas Island		no	waterbody s	oecific objec	ctives ^f			
Santa Barbara island		no	waterbody s	oecific objec	ctives ^f			
Santa Catalina Island		no	waterbody s	pecific objec	ctives ¹			
San Clemente Island	no waterbody specific objectives ^f							

Table 3-10. Water Quality Objectives for Selected Constituents in Regional Ground Waters^a.

DWR			OBJECTIVE	S (mg/L)					
Basin No. ^b	BASIN	TDS	Sulfate	Chloride	Boron				
	Pitas Point Area ^c	None specified							
4-1	Ojai Valley Upper Ojai Valley West of Sulfur Mountain Road Central area Sisar area	1,000 700 700	300 50 250	200 100 100	1.0 1.0 0.5				
4-2	Lower Ojai Valley West of San Antonio-Senior Canyon Creeks East of San Antonio-Senior Canyon Creeks	1,000 700	300 200	200 50	0.5 0.5				
4-3	Ventura River Valley Upper Ventura San Antonio Creek area Lower Ventura	800 1,000 1,500	300 300 500	100 100 300	0.5 1.0 1.5				
4-4	Ventura Central ^d Santa ClaraPiru Creek area Upper area (above Lake Piru) Lower area east of Piru Creek Lower area west of Piru Creek	1,100 2,500 1,200	400 1,200 600	200 200 100	2.0 1.5 1.5				
	Santa Clara—Sespe Creek area Topa Topa (upper Sespe) area Fillmore area Pole Creek Fan area South side of Santa Clara River	900 2,000 1,500	350 800 800	30 100 100	2.0 1.0 1.1				
	Remaining Fillmore area Santa Clara—Santa Paula area East of Peck Road West of Peck Road	1,000 1,200 2,000	400 600 800	100 110	1.0 1.0				
	Oxnard Plain Oxnard Forebay Confined aquifers Unconfined and perched aquifers	1,200 1,200 3,000	600 600 1,000	150 150 500	1.0 1.0 				
4-6	Pleasant Valley Confined aquifers Unconfined and perched aquifers	700	300 	150 	1.0				
4-7	Arroyo Santa Rosa	900	300	150	1.0				
4-8	Las Posas Valley South Las Posas area NW of Grimes Cyn Rd & LA Ave & Somis Rd E of Grimes Cyn Rd and Hitch Blvd S of LA Ave between Somis Rd & Hitch Blvd Grimes Canyon Rd & Broadway area North Las Posas area	700 2,500 1,500 250 500	300 1,200 700 30 250	100 400 250 30 150	0.5 3.0 1.0 0.2 1.0				
4-5	Upper Santa Clara Acton Valley Sierra Pelona Valley (Agua Dulce) Upper Mint Canyon Upper Bouquet Canyon Green Valley Lake ElizabethLake Hughes area	550 600 700 400 400 500	150 100 150 50 50	100 100 100 30 25	1.0 0.5 0.5 0.5 				

Table 3-10. Water Quality Objectives for Selected Constituents in Regional Ground Waters^a (cont.)

DWR	5.00		OBJECTIVE	S (mg/L)	
Basin No. ^b	BASIN	TDS	Sulfate	Chloride	Boron
4-4.07	Eastern Santa Clara Santa ClaraMint Canyon South Fork Placerita Canyon Santa ClaraBouquet & San Francisquito Canyons Castaic Valley Saugus Aquifer	800 700 700 700 1,000	150 200 150 250 350	150 100 100 100 150	1.0 0.5 0.5 1.0 1.0
4-9	Simi Valley Simi Valley Basin Confined aquifers Unconfined aquifers Gillibrand Basin	1,200 900	600 350	150 50	1.0 1.0
4-10	Conejo Valley	800	250	150	1.0
4-11	Los Angeles Coastal Plain Central Basin West Coast Basin Hollywood Basin Santa Monica Basin	700 800 750 1,000	250 250 100 250	150 250 100 200	1.0 1.5 1.0 0.5
4-12	San Fernando Valley Sylmar Basin Verdugo Basin San Fernando Basin West of Highway 405	600 600 800	150 150 300	100 100 100	0.5 0.5 1.5
	East of Highway 405 (overall) Sunland-Tugunga area * Foothill area * Area encompassing RT-Tujunga-Erwin- N. Hollywood-Whithall-LA/Verdugo-Crystal Springs- Headworks-Glendale/Burbank Well Fields Narrows area (below confluence of Verdugo Wash with the LA River)	700 400 400 600	300 50 100 250	100 50 50 100 150	1.5 0.5 1.0 1.5
	Eagle Rock Basin	800	150	100	0.5
4-13	San Gabriel Valley Raymond Basin Monk Hill sub-basin Santa Anita area Pasadena area Main San Gabriel Basin Western area ¹ Eastern area ¹ Puente Basin	450 450 450 450 600 1,000	100 100 100 100 100 100 300	100 100 100 100 100 150	0.5 0.5 0.5 0.5 0.5
4-14 8-2 ^g	Upper Santa Ana Valley Live Oak area Claremont Heights area Pomona area Chino area Spadra area	450 450 300 450 550	150 100 100 20 200	100 50 50 15 120	0.5 0.5 1.0
4-15	Tierra Rejada	700	250	100	0.5
4-16	Hidden Valley	1,000	250	250	1.0
4-17	Lockwood Valley	1,000	300	20	2.0
4-18	Hungry Valley and Peace Valley	500	150	50	1.0

Table 3-10. Water Quality Objectives for Selected Constituents in Regional Ground Waters* (cont.)

DWR			OBJECTIVE	S (mg/L)	
Basin No. ^b	BASIN	TDS	Sulfate	Chloride	Boron
4-19	Thousand Oaks area	1,400	700	150	1.0
4-20	Russell Valley Russell Valley Triunfo Canyon area Lindero Canyon area Las Virgenes Canyon area	1,500 2,000 2,000 2,000	500 500 500 500	250 500 500 500	1.0 2.0 2.0 2.0
4-21	Conejo-Tierra Rejada Volcanic area h				_
4-22	Santa Monica Mountainssouthern slopes Camarillo area Point Dume area Malibu Valley Topanga Canyon area	1,000 1,000 2,000 2,000	250 250 500 500	250 250 500 500	1.0 1.0 2.0 2.0
	San Pedro Channel Islands ^j Anacapa Island San Nicolas Island Santa Catalina Island San Clemente Island Santa Barbara Island	1,100 1,000 	150 100 	 350 250 	1.0

- a. Objectives for ground waters outside of the major basins listed on this table and outlined in Figure 1-9 have not been specifically listed. However, ground waters outside of the major basins are, in many cases, significant sources of water. Furthermore, ground waters outside of the major basins are either potential or existing sources of water for downgradient basins and, as such, objectives in the downgradient basins shall apply to these areas.
- b. Basins are numbered according to Bulletin 118-80 (Department of Water Resources, 1980).
- c. Ground waters in the Pitas Point area (between the lower Ventura River and Rincon Point) are not considered to comprise a major basin, and accordingly have not been designated a basin number by the California Department of Water Resources (DWR) or outlined on Figure 1-9.
- d. The Santa Clara River Valley (4-4), Pleasant Valley (4-6), Arroyo Santa Rosa Valley (4-7) and Las Posas Valley (4-8) Ground Water Basins have been combined and designated as the Ventura Central Basin (DWR, 1980).
- e. The category for the Foothill Wells area in previous Basin Plan incorrectly groups ground water in the Foothill area with ground water in the Sunland-Tujunga area. Accordingly, the new categories, Foothill area and Sunland-Tujunga area, replace the old Foothill Wells area.
- f. All of the ground water in the Main San Gabriel Basin is covered by the objectives listed under Main San Gabriel Basin Eastern area and Western area. Walnut Creek, Big Dalton Wash, and Little Dalton Wash separate the Eastern area from the Western area (see dashed line on Figure 2-17). Any ground water upgradient of these areas is subject to downgradient beneficial uses and objectives, as explained in Footnote a.
- g. The border between Regions 4 and 8 crosses the Upper Santa Ana Valley Ground Water Basin.
- h. Ground water in the Conejo-Tierra Rejada Volcanic Area occurs primarily in fractured volcanic rocks in the western Santa Monica Mountains and Conejo Mountain areas. These areas have not been delineated on Figure 1-9.
- i. With the exception of ground water in Malibu Valley (DWR Basin No. 4-22), ground waters along the southern slopes of the Santa Monica Mountains are not considered to comprise a major basin and accordingly have not been designated a basin number by the California Department of Water Resources (DWR) or outlined on Figure 1-9.
- j. DWR has not designated basins for ground waters on the San Pedro Channel Islands.

Attachment C-3
Santa Ana River RWQCB Basin Plan
Water Quality Objectives

Table 4-1 WATER QUALITY OBJECTIVES - Continued

INLAND SURFACE STREAMS			Hydrologic	Unit					
	Total Dissolved Solids	Hardness	Sodium	(mg/l) Chloride	Total Inorganic Nitrogen	Sulfate	Chemical Oxygen Demand		
UPPER SANTA ANA RIVER BASIN									
Santa Ana River									
Reach 3 – Prado Dam to Mission Blvd. in Riverside – Base Flow ²	700	350	110	140	10³	150	30	801.21	801.27, 801.25
Reach 4 – Mission Blvd. in Riverside to San Jacinto Fault in San Bernardino	550				10		30	801.27	801.44
Reach 5 – San Jacinto Fault in San Bernardino to Seven Oaks Dam	300	190	30	20	5	60	25	801.52	801.57
Reach 6 – Seven Oaks Dam to Headwaters (see also Individual Tributary Streams)	200	100	30	10	1	20	5	801.72	
San Bernardino Mountain Streams									
Mill Creek Drainage:									
Mill Creek									
Reach 1 – Confluence with Santa Ana River to Bridge Crossing Route 38 at Upper Powerhouse	200	100	30	10	1	20	5	801.58	
Reach 2 – Bridge Crossing Route 38 at Upper Powerhouse to Headwaters Additional Objectives: Boron: 0.75	110	100	25	5	1	15	5	801.58	

Additional Objectives: Boron: 0.75 mg/l Total nitrogen, filtered sample

Table 4-1 WATER QUALITY OBJECTIVES - Continued

INLAND SURFACE STREAMS			Hydrologic	Unit					
	Total Dissolved Solids	Hardness	Sodium	(mg/l) Chloride	Total Inorganic Nitrogen	Sulfate	Chemical Oxygen Demand	Primary	Secondary
Mountain Home Creek	200	100	30	10	1	20	5	801.58	
Mountain Home Creek, East Fork	200							801.70	
Monkey Face Creek	200	100	30	10	1	20	5	801.70	
Alger Creek	200							801.70	
Falls Creek	200	100	30	10	1	20	5	801.70	
Vivian Creek	200							801.70	
High Creek	200							801.70	
Other Tributaries: Lost, Oak Cove, Green, Skinner, Momyer, Glen Martin, Camp, Hatchery, Rattlesnake, Slide, Snow, Bridal Veil, and Oak Creeks, and other Tributaries to these Creeks	200							801.70	
Bear Creek Drainage:									
Bear Creek	175	115	10	10	1	4	5	801.71	
Siberia Creek	200							801.71	
Slide Creek	175							801.71	
All other Tributaries to these Creeks+								801.71	
Big Bear Lake (see Lakes, pg. 4-36)									

⁺ Numeric objectives have not been established; narrative objectives apply. .

Table 4-1 WATER QUALITY OBJECTIVES - Continued

INLAND SURFACE STREAMS				Hydrologic	Unit				
	Total Dissolved Solids	Hardness	Sodium	(mg/l) Chloride	Total Inorganic Nitrogen	Sulfate	Chemical Oxygen Demand	Primary	Secondary
Big Bear Lake Tributaries:									
North Creek	175							801.71	
Metcalf Creek	175							801.71	
Grout Creek	150							801.71	
Rathbone (Rathbun) Creek	300							801.71	
Meadow Creek+								801.71	
Summit Creek+								801.71	
Other Tributaries to Big Bear Lake: Knickerbocker, Johnson, Minnelusa, Polique, and Red Ant Creeks, and other Tributaries to these Creeks	175							801.71	
Baldwin Lake (see Lakes, pg. 4-36)									
Baldwin Lake Drainage:					•				
Shay Creek+								801.73	
Other Tributaries to Baldwin Lake: Sawmill, Green, and Caribou Canyons and other Tributaries to these Creeks+								801.73	

⁺ Numeric objectives have not been established; narrative objectives apply. .

Table 4-1 WATER QUALITY OBJECTIVES - Continued

INLAND SURFACE STREAMS			Hydrologic	; Unit					
	Total Dissolved Solids	Hardness	Sodium	(mg/l) Chloride	Total Inorganic Nitrogen	Sulfate	Chemical Oxygen Demand	Primary	Secondary
Other Streams Draining to Santa Ana River (Mountain Reaches ¹)			•	•					
Cajon Creek	200	100	30	10	1	20	5	801.51	
City Creek	200	115	30	10	1	20	5	801.57	
Devil Canyon Creek	275	125	35	20	1	2	5	801.57	
East Twin and Strawberry Creeks	475							801.57	
Waterman Canyon Creek	250							801.57	
Fish Creek	200	100	30	10	1	20	5	801.57	
Forsee Creek	200	100	30	10	1	20	5	801.72	
Plunge Creek	200	100	30	10	1	20	5	801.72	
Barton Creek	200	100	30	10	1	20	5	801.72	
Bailey Canyon Creek	200							801.72	
Kimbark Canyon, East Fork Kimbark Canyon, Ames Canyon And West Fork Cable Canyon Creeks	325							801.52	
Valley Reaches [‡] of Above Streams	(Water Qua	lity Objective	s Correspond	d to Underlyir	ng GW Basin (Objectives)		801.52	

[‡] The division between Mountain and Valley reaches occurs at the base of the foothills of the San Bernardino or San Gabriel Mountains.

Table 4-1 WATER QUALITY OBJECTIVES - Continued

INLAND SURFACE STREAMS			Hydrologic Unit						
	Total Dissolved Solids	Hardness	Sodium	Chloride	Total Inorganic Nitrogen	Sulfate	Chemical Oxygen Demand	Primary	Secondary
Other Tributaries (Mountain Reaches¹): Alder, Badger Canyon, Bledsoe Gulch, Borea Canyon, Cienega Seca, Cold, Converse, Coon, Crystal, Deer, Elder, Fredalba, Frog, Government, Hamilton, Heart Bar, Hemlock, Keller, Kilpecker, Little Mill, Little Sand Canyon, Lost, Meyer Canyon, Mile, Monroe Canyon, Oak, Rattlesnake, Round Cienega, Sand, Schneider, Staircase, Warm Springs Canyon And Wild Horse Creeks, and other tributaries to those Creeks San Gabriel Mountain Streams (Mountain Reaches²)	200	100	30	10	1	20	5	801.72	801.71, 801.57
San Antonio Creek	225	150	20	6	4	25	5	801.23	
Lytle Creek (South, Middle, and North Forks) and Coldwater Canyon Creek	200	100	15	4	4	25	5	801.41	801.42, 801.52, 801.59
Day Creek	200	100	15	4	4	25	5	801.21	
East Etiwanda Creek	200	100	15	4	4	25	5	801.21	
Valley Reaches [‡] of Above Streams	(Water Qua	lity Objectives	s Correspond	to Underlyin	ng GW Basin (Objectives)		801.21	

The division between Mountain and Valley reaches occurs at the base of the foothills of the San Bernardino or San Gabriel Mountains.

Table 4-1 WATER QUALITY OBJECTIVES - Continued

INLAND SURFACE STREAMS			Hydrologic	Unit					
	Total Dissolved Solids	Hardness	Sodium	(mg/l) Chloride	Total Inorganic Nitrogen	Sulfate	Chemical Oxygen Demand	Primary	Secondary
Cucamonga Creek									
Reach 1 – Confluence with Mill Creek to 23 rd St. in Upland+								801.21	
Reach 2 (Mountain Reach [‡]) – 23 rd St. in Upland to headwaters	200	100	15	4	4	25	5	801.24	
Mill Creek+								801.25	
Other Tributaries (Mountain Reaches+): Cajon Canyon, San Sevaine, Deer, Duncan Canyon, Henderson Canyon, Bull, Fan, Demens, Thorpe, Angalls, Telegraph Canyon, Stoddard Canyon, Icehouse Canyon, Cascade Canyon, Cedar, Failing Rock, Kerkhoff and Cherry Creeks, and other Tributaries to these Creeks	200							801.21	801.23
San Timoteo Area Streams									
San Timoteo Creek **									
Reach 1A – Santa Ana River Confluence to Barton Road								801.52	801.53
Reach 1B – Barton Road to Gage at San Timoteo Canyon Rd. u/s of Yucaipa Valley WD discharge								801.52	801.53
Reach 2 – Gage at San Timoteo Canyon Road to Confluence with Yucaipa Creek								801.52	801.62

Numeric objectives have not been established; narrative objectives apply
The Division between Mountain and Valley reaches occurs at the base of the foothills of the San Bernardino or San Gabriel Mountains

Surface water objectives not established; underlying Management Zone objectives apply. Biological quality protected by narrative objectives

Table 4-1 WATER QUALITY OBJECTIVES - Continued

INLAND SURFACE STREAMS				Hydrologic Unit					
	Total Dissolved Solids	Hardness	Sodium	Chloride	Total Inorganic Nitrogen	Sulfate	Chemical Oxygen Demand	Primary	Secondary
Reach 3** - Confluence with Yucaipa Creek to confluence with Little San Gorgonio and Noble Creeks (Headwaters of San Timoteo Creek)								801.62	
Oak Glen, Potato Canyon and Birch Creeks	230	125	50	40	3	45	5	801.67	
Little San Gorgonio Creek	230	125	50	40	3	45	5	801.69	801.62, 801.63
Yucaipa Creek	290	175	60	60	6	45	15	801.67	801.61, 801.62 801.64
Other Tributaries to these Creeks – Valley Reaches + [‡]								801.62	801.52, 801.53
Other Tributaries to these Creeks – Mountain Reaches [‡]	290							801.69	801.67
Anza Park Drain+								801.27	
Sunneyslope Channel+								801.27	
Tequesquite Arroyo (Sycamore Creek)+								801.27	

Numeric objectives have not been established; narrative objectives apply

Surface water objectives not established; underlying Management Zone objectives apply. Biological quality protected by narrative objectives The Division between Mountain and Valley reaches occurs at the base of the foothills of the San Bernardino or San Gabriel Mountains

Table 4-1 WATER QUALITY OBJECTIVES - Continued

INLAND SURFACE STREAMS		WATER QUALITY OBJECTIVES (mg/l)							
	Total Dissolved Solids	Hardness	Sodium	Chloride	Total Inorganic Nitrogen	Sulfate	Chemical Oxygen Demand	Primary	Secondary
Prado Area Streams									
Chino Creek									
Reach 1A – Santa Ana River confluence to downstream of confluence with Mill Creek (Prado Area) – Base Flow*	700	350	110	140	10**	150	30	801.21	
Reach 1B – Confluence of Mill Creek (Prado Area) to beginning of concrete- lined channel south of Los Serranos Road	550	240	75	75	8	60	15	801.21	
Reach 2 – Beginning of concrete lined channel south of Los Serranos Road to confluence with San Antonio Creek								801.21	
Temescal Creek									
Reach 1 – Lincoln Avenue to Riverside Canal+								801.27	
Reach 2 – Riverside Canal to Lee Lake+								801.27	
Reach 3 – Lee Lake, (see Lakes, Pg. 4-36)									

Additional objective: Boron 0.75 mg/l
Total nitrogen, filtered sample
Numeric objectives have not been established; narrative objectives apply

Table 4-1 WATER QUALITY OBJECTIVES - Continued

INLAND SURFACE STREAMS	WATER QUALITY OBJECTIVES (mg/l)								Hydrologic Unit		
	Total Dissolved Solids	Hardness	Sodium	Chloride	Total Inorganic Nitrogen	Sulfate	Chemical Oxygen Demand	Primary	Secondary		
Reach 4 – Lee Lake to Mid-section line of Section 17 (downstream end of freeway cut)+								801.34			
Reach 5 – Mid-section line of Section 17 (downstream end of freeway cut) to Elsinore Groundwater Subbasin Boundary+								801.35			
Reach 6 – Elsinore Groundwater Subbasin Boundary to Lake Elsinore Outlet+								801.27			
Coldwater Canyon Creek	250							801.32			
Bedford Canyon Creek+								801.32			
Dawson Canyon Creek+								801.32			
Other Tributaries to these Creeks	250							801.32			

⁺ Numeric objectives have not been established; narrative objectives apply

Table 4-1 WATER QUALITY OBJECTIVES - Continued

INLAND SURFACE STREAMS		Hydrologic Unit							
	Total Dissolved Solids	Hardness	Sodium	Chloride	Total Inorganic Nitrogen	Sulfate	Chemical Oxygen Demand	Primary	Secondary
San Jacinto River Basin									
San Jacinto River									
Reach 1 – Lake Elsinore to Canyon Lake	450	260	50	65	3	60	15	802.32	802.31
Reach 2 – Canyon Lake (see Lakes, Pg. 4-37)									
Reach 3 – Canyon Lake to Nuevo Road	820	400		250	6		15	802.11	
Reach 4 – Nuevo Road to North- South Mid-Section Line, T4S/R1W-38*	500	220	75	125	5	65		802.14	802.21
Reach 5 – North-South Mid-Section Line, T4S/R1 W-SB, to Confluence With Poppet Creek	300	140	30	25	3	40	12	802.21	
Reach 6 – Poppet Creek to Cranston Bridge	250	130	25	20	1	30	12	802.21	
Reach 7 – Cranston Bridge to Lake Hemet	150	100	10	15	1	20	5	802.21	
Bautista Creek – Headwaters to Debris Dam	250	130	25	20	1	30	5	802.21	802.23
Strawberry Creek and San Jacinto River, North Fork	150	100	10	15	1	20	5	802.21	

^{*} Note the quality objective for Reach 4 is not intended to preclude transport of water supplies or delivery to Canyon Lake

Table 4-1 WATER QUALITY OBJECTIVES - Continued

INLAND SURFACE STREAMS			Hydrologic Unit						
	Total Dissolved Solids	Dissolved Hardness Sodium Chloride Inorganic Sulfate Oxygen							Secondary
Fuller Mill Creek	150	100	10	15	1	20	5	802.22	
Stone Creek	150	100	10	15	1	20	5	802.21	
Salt Creek+								802.12	
Other Tributaries: Logan, Black Mountain, Juaro Canyon, Indian, Hurkey, Poppet and Protrero Creeks, and other Tributaries to these Creeks	150	70	10	12	1	15	5	802.12	802.22

⁺ Numeric objectives have not been established; narrative objectives apply.

Table 4-1 WATER QUALITY OBJECTIVES - Continued

LAKES AND RESERVOIRS		WATER QUALITY OBJECTIVES (mg/l)							
	Total Dissolved Solids	Hardness	Sodium	Chloride	Total Inorganic Nitrogen	Sulfate	Chemical Oxygen Demand	Primary	Secondary
UPPER SANTA ANA RIVER BASIN									
Baldwin Lake*+								801.73	
Big Bear Lake**	175	125	20	10	0.15	10		801.71	
Erwin Lake+								801.73	
Evans Lake	490							801.27	
Jenks Lake	200	100	30	10	1	20		801.72	
Lee Lake+								801.34	
Mathews, Lake	700	325	100	90		290		801.33	
Mockingbird Reservoir	650							801.26	
Norconian, Lake	1050							801.25	
LOWER SANTA ANA RIVER BASIN									
Anaheim Lake	600							801.11	
Irvine Lake (Santiago Reservoir)	730	360	110	130	6	310		801.12	
Laguna, Lambert, Peters Canyon, Rattlesnake, Sand Canyon, and Siphon Reservoirs	720							801.11	

Fills occasionally with storm flows; may evaporate completely Additional Objective: 0.15 mg/l Phosphorus

Numeric objectives have not been established; narrative objectives apply.

Table 4-1 WATER QUALITY OBJECTIVES - Continued

LAKES AND RESERVOIRS	WATER QUALITY OBJECTIVES (mg/l)								Hydrologic Unit	
	Total Dissolved Solids	Hardness	Sodium	Chloride	Total Inorganic Nitrogen	Sulfate	Chemical Oxygen Demand	Primary	Secondary	
SAN JACINTO RIVER BASIN										
Canyon Lake (Railroad Canyon Reservoir)***	700	325	100	90	8	290		802.11	802.12	
Elsinore, Lake****	2000				1.5			802.31		
Fulmor, Lake	150	70	10	12	1	15		802.21		
Hemet, Lake	135		25	20	1	10		802.22		
Perris, Lake	220	110	50	55	1	45		802.11		

Note: The quality objectives for Canyon Lake is not intended to preclude transport of water supplies or delivery to the Lake. Lake volume and quality highly variable

Table 4-1 WATER QUALITY OBJECTIVES - Continued

WETLANDS (INLAND)			WATER 0	QUALITY OB (mg/l)	JECTIVES			Hydrologic	Unit
	Total Dissolved Solids	Hardness	Sodium	Chloride	Total Inorganic Nitrogen	Sulfate	Chemical Oxygen Demand	Primary	Secondary
San Jacinto Freshwater Marsh** ##	2000				13		90	801.11	
Shay Meadows+				801.73					
Stanfield Marsh+**								801.71	
Prado Basin Management Zone @								801.21	
San Jacinto Wildlife Preserve+**								802.11	802.14
Glen Helen+								801.59	

^{##} Additional objective for San Joaquin Freshwater Marsh: COD 90 mg/l

^{**} This is a created wetlands as defined in the wetlands discussion (see Chapter 3)

⁺ Numeric objectives have not been established; narrative objectives apply

[@] includes the Prado Flood Control Basin, a created wetland as defined in the wetlands discussion (see Chapter 3). Chino Creek, Reach 1A, Chino Creek, 1B, Mill Creek (Prado Area) and Santa Ana River, Reach 3 TDS and TIN numeric objectives apply (see discussion).

Table 4-1 WATER QUALITY OBJECTIVES - Continued

GROUNDWATER MANAGEMENT ZONES		W		TY OBJECTI\ ig/l)	/ES		F	lydrologic Unit
25/125	Total Dissolved Solids	Hardness	Sodium	Chloride	Nitrate as Nitrogen	Sulfate	Primary	Secondary
UPPER SANTA ANA RIVER BASIN								
Big Bear Valley	300	225	20	10	5.0	20	801.73	
Beaumont "maximum benefit"++	330				5.0		801.62	801.63, 801.69
Beaumont "antidegradation"++	230				1.5		801.62	801.63, 801.69
Bunker Hill - A	310				2.7		801.51	801.52
Bunker Hill - B	330				7.3		801.52	801.53, 801.54, 801.57 801.58
Colton	410				2.7		801.44	801.45
Chino – North "maximum benefit"++	420				5.0		801.21	481.21, 481.23, 481.22 801.21, 801.23, 801.24
Chino 1 – "antidegradation"++	280				5.0		802.21	481.21
Chino 2 – "antidegradation"++	250				2.9		801.21	
Chino 3 – "antidegradation"++	260				3.5		801.21	
Chino – East @	730				10.0		801.21	801.27
Chino - South @	680				4.2		801.21	801.26
Cucamonga "maximum benefit"++	380				5.0		801.24	801.21

[&]quot;Maximum benefit" objectives apply unless Regional Board determines that lowering of water quality is not of maximum benefit to the people of the state; in that case, "antidegradation" objectives apply (for Chino North, antidegradation objectives for Chino 1, 2, 3 would apply if maximum benefit is not demonstrated). (see discussion in Chapter 5).

[@] Chino East and South are the designations in the Chino Basin Watermaster "maximum benefit" proposal (see Chapter 5) for the management Zones identified by Wildermuth Environmental, Inc., (July 2000) as Chino 4 and Chino 5, respectively.

Table 4-1 WATER QUALITY OBJECTIVES - Continued

GROUNDWATER MANAGEMENT ZONES		W	ATER QUALIT	ΓΥ OBJECTI\ ıg/l)	/ES	Nitrate as Nitrogen Sulfate Primary Second 2.4 801.24 801 1.5 801.42 801 2.0 801.41 801 5.0 801.62 801 2.7 801.62 801 5.0 801.61 801 4.2 801.61 801	Hydrologic Unit	
ZONEO	Total Dissolved Solids	Hardness	Sodium	Chloride	Nitrate as Nitrogen	Sulfate	Primary	Secondary
UPPER SANTA ANA RIVER BASIN								
Cucamonga "antidegradation"++	210				2.4		801.24	801.21
Lytle	260				1.5		801.42	801.42
Rialto	230				2.0		801.41	801.42
San Timoteo "maximum benefit"++	400				5.0		801.62	
San Timoteo "antidegradation"++	300				2.7		801.62	
Yucaipa "maximum benefit"++	370				5.0		801.61	801.55, 801.54, 801.56, 801.63, 801.65, 801.66 801.67
Yucaipa "antidegradation"++	320				4.2		801.61	801.55, 801.54, 801.56, 801.63, 801.65, 801.66 801.67
MIDDLE SANTA ANA RIVER BASIN								
Arlington	980				10		801.26	
Bedford**							801.32	
Coldwater	380				1.5		801.31	
Elsinore	480				1.0		802.31	
Lee Lake**							801.34	

[&]quot;Maximum benefit" objectives apply unless Regional Board determines that lowering of water quality is not of maximum benefit to the people of the state; in that case, "antidegradation" objectives apply (for Chino North, antidegradation objectives for Chino 1, 2, 3 would apply if maximum benefit is not demonstrated). (see discussion in Chapter 5).

^{**} Numeric objectives not established; narrative objectives apply

Table 4-1 WATER QUALITY OBJECTIVES - Continued

GROUNDWATER MANAGEMENT ZONES		W	ATER QUALIT	ΓΥ OBJECTIV g/l)	/ES		F	lydrologic Unit
201120	Total Dissolved Solids	Hardness	Sodium	Chloride	Nitrate as Nitrogen	Sulfate	Primary	Secondary
Riverside - A	560				6.2		801.27	
Riverside - B	290				7.6		801.27	
Riverside - C	680				8.3		801.27	
Riverside - D	810				10.0		801.27	
Riverside - E	720				10.0		801.27	
Riverside - F	660				9.5		801.27	
Temescal	770				10.0		801.25	
SAN JACINTO RIVER BASIN								
Gardner Valley	300	100	65	30	2.0	40	802.22	
Idyllwild Area**							802.22	802.21
Canyon	230				2.5		802.21	
Hemet - South	730				4.1		802.15	802.21
Lakeview – Hemet North	520				1.8		802.14	802.15

^{**} Numeric objectives not established; narrative objectives apply

Table 4-1 WATER QUALITY OBJECTIVES - Continued

GROUNDWATER MANAGEMENT ZONES		WA	ATER QUALIT		Hydrologic Unit			
	Total Dissolved Solids	Hardness	Sodium	Chloride	Nitrate as Nitrogen	Sulfate	Primary	Secondary
Menifee	1020				2.8		802.13	
Perris North	570				5.2		802.11	
Perris South	1260				2.5		802.11	802.12, 802.13
San Jacinto - Lower	520				1.0		802.21	
San Jacinto - Upper	320				1.4		802.21	802.23
LOWER SANTA ANA RIVER BASIN								
La Habra**							845.62	
Santiago**							801.12	
Orange	580				3.4		801.11	801.13, 845.61, 801.14
Irvine	910				5.9		801.11	

^{**} Numeric objectives not established; narrative objectives apply

Table 4-1 WATER QUALITY OBJECTIVES - Continued

INLAND SURFACE STREAMS			WATER (QUALITY OB (mg/l)	JECTIVES			Hydrologic	Unit
	Total Dissolved Solids	Hardness	Sodium	Chloride	Total Inorganic Nitrogen	Sulfate	Chemical Oxygen Demand		
LOWER SANTA ANA RIVER BASIN									
Santa Ana River									
Reach 1 – Tidal Prism to 17 th Street in Santa Ana+	(Flood Flow	s Only)						801.11	
Reach 2 - 17 th Street in Santa Ana to Prado Dam	650¹							801.11	801.12
Aliso Creek+								845.63	
Carbon Canyon Creek+								845.63	
Santiago Creek Drainage					•				•
Santiago Creek									
Reach 1 – below Irvine Lake	600							801.12	801.11
Reach 2 - Irvine Lake (see Lakes, Pg. 4-36)									
Reach 3 – Irvine Lake to Modjeska Canyon	350	260	20	12	2	80		801.12	
Reach 4 – in Modjeska Canyon	350	260	20	12	2	80		801.12	
Silverado Creek	650	450	30	20	1	275		801.12	
Black Star Creek+								801.12	
Ladd Creek+								801.12	

Five-year moving average

⁺ Numeric objectives have not been established; narrative objectives apply.

Attachment C-4
San Diego RWQCB Basin Plan
Water Quality Objectives

Table 3-2. Water Quality Objectives

								Cons	stituen	t (mg/	L or as r	noted)				
Inland Surfac	ce Wat	ters	Hydrologic Unit Basin Number	TDS	CI	SO ₄	%Na	N&P	Fe	Mn	MBAS	В	ODOR	Turb NTU	Color Units	F
SAN JUAN HYDROLOGI	C UNIT		901.00		•										•	
Laguna	НА		1.10	1,000	400	500	60	а	0.3	0.05	0.5	0.75	none	20	20	1.0
Mission Viejo	НА		1.20	500	250	250	60	а	0.3	0.05	0.5	0.75	none	20	20	1.0
San Clemente	НА		1.30	500	250	250	60	а	0.3	0.05	0.5	0.75	none	20	20	1.0
San Mateo Canyon	НА		1.40	500	250	250	60	а	0.3	0.05	0.5	0.75	none	20	20	1.0
San Onofre	НА		1.50	500	250	250	60	а	0.3	0.05	0.5	0.75	none	20	20	1.0
SANTA MARGARITA HY	DROLOGIC	UNIT	902.00		ā.											
Ysidora	НА		2.10	750	300	300	60	а	0.3	0.05	0.5	0.75	none	20	20	1.0
Deluz	НА		2.20	500	250	250	60	а	0.3	0.05	0.5	0.75	none	20	20	1.0
Deluz Creek	HSA	b	2.21	750	250	250	60	а	0.3	0.05	0.5	0.75	none	20	20	1.0
Gavilan	HSA	b	2.22	750	250	250	60	а	0.3	0.05	0.5	0.75	none	20	20	1.0
Murrieta	HA		2.30	750	300	300	60	а	0.3	0.05	0.5	0.75	none	20	20	1.0
Auld	HA		2.40	500	250	250	60	а	0.3	0.05	0.5	0.75	none	20	20	1.0
Pechanga	HA		2.50	500	250	250	60	а	0.3	0.05	0.5	0.75	none	20	20	1.0
Wolf	HSA	b	2.52	750	250	250	60	а	0.3	0.05	0.5	0.75	none	20	20	1.0
Wilson	НА		2.60	500	250	250	60	а	0.3	0.05	0.5	0.75	none	20	20	1.0
Cave Rocks	НА		2.70	750	300	300	60	а	0.3	0.05	0.5	0.75	none	20	20	1.0
Aguanga	НА		2.80	750	300	300	60	а	0.3	0.05	0.5	0.75	none	20	20	1.0
Oakgrove	НА		2.90	750	300	300	60	а	0.3	0.05	0.5	0.75	none	20	20	1.0

HA - Hydrologic Area

HSA - Hydrologic Sub Area (Lower case letters indicate endnotes following the table).

Table 3-2. Water Quality Objectives (continued)

Inland Surfac	e Waters		TDS	CI	SO ₄	%Na	N&P	Fe	Mn	MBAS	В	ODOR			F
SAN LUIS REY HYDROLO	GIC UNIT	903.00								•	•				
Lower San Luis	НА	3.10	500	250	250	60	а	0.3	0.05	0.5	0.75	none	20	20	1.0
Monserat	НА	3.20	500	250	250	60	а	0.3	0.05	0.5	0.75	none	20	20	1.0
Warner Valley	НА	3.30	500	250	250	60	а	0.3	0.05	0.5	0.75	none	20	20	1.0
CARLSBAD HYDROLOGIC	UNIT	904.00													
Loma Alta	НА	4.10	-	-	-	-	-	-	-	-	-	none	20	20	1.0
Buena Vista Creek	НА	4.20	500	250	250	60	а	0.3	0.05	0.5	0.75	none	20	20	1.0
Agua Hedionda	НА	4.30	500	250	250	60	а	0.3	0.05	0.5	0.75	none	20	20	1.0
Encinas	НА	4.40	-	-	-	-	-	-	-	-	-	none	20	20	1.0
San Marcos	НА	4.50	500	250	250	60	а	0.3	0.05	0.5	0.75	none	20	20	1.0
Escondido Creek	НА	4.60	500	250	250	60	а	0.3	0.05	0.5	0.75	none	20	20	1.0
SAN DIEGUITO HYDROLO	OGIC UNIT	905.00													
Solana Beach	НА	5.10	500	250	250	60	а	0.3	0.05	0.5	0.75	none	20	20	1.0
Hodges	НА	5.20	500	250	250	60	а	0.3	0.05	0.5	0.75	none	20	20	1.0
San Pasqual	НА	5.30	500	250	250	60	а	0.3	0.05	0.5	0.75	none	20	20	1.0
Santa Maria Valley	НА	5.40	500	250	250	60	а	0.3	0.05	0.5	0.75	none	20	20	1.0
Santa Ysabel	НА	5.50	500	250	250	60	а	0.3	0.05	0.5	0.75	none	20	20	1.0

HA - Hydrologic Area

HSA - Hydrologic Sub Area (Lower case letters indicate endnotes following the table).

Table 3-2. Water Quality Objectives (continued)

		Constituent (mg/L or as noted) Hydrologic													
Inland Surface	Waters	Hydrologic Unit Basin Number	TDS	CI	SO ₄	%Na	N&P	Fe	Mn	MBAS	В	ODOR	Turb NTU	Color Units	F
PENASQUITOS HYDROLOG	IC UNIT	906.00			•				•						
Miramar Reservoir	НА	6.10	500	250	250	60	а	0.3	0.05	0.5	0.75	none	20	20	1.0
Poway	НА	6.20	500	250	250	60	а	0.3	0.05	0.5	0.75	none	20	20	1.0
Scripps	НА	6.30	-	-	-	-	а	-	-	-	-	none	20	20	-
Miramar	НА	6.40	500	250	250	60	а	0.3	0.05	0.5	0.75	none	20	20	1.0
Tecolote	НА	6.50	-	-	-	-	а	-	-	-	-	none	20	20	-
SAN DIEGO HYDROLOGIC	UNIT	907.00				I		I		l .	ı	l .		I	I
Lower San Diego	НА	7.10	1,000	400	500	60	а	0.3	0.05	0.5	1.0	none	20	20	-
Mission San Diego	HSA	7.11	1,500	400	500	60	а	1.0	1.00	0.5	1.0	none	20	20	-
Santee	HSA c	7.12	1,000	400	500	60	а	1.0	1.00	0.5	1.0	none	20	20	-
Santee	HSA d	7.12	1,500	400	500	60	а	1.0	1.00	0.5	1.0	none	20	20	-
San Vicente	НА	7.20	300	50	65	60	а	0.3	0.05	0.5	1.0	none	20	20	1.0
El Capitan	НА	7.30	300	50	65	60	а	0.3	0.05	0.5	1.0	none	20	20	1.0
Boulder Creek	НА	7.40	300	50	65	60	а	0.3	0.05	0.5	1.0	none	20	20	1.0
PUEBLO SAN DIEGO HYDR	OLOGIC UNIT	908.00													
Point Loma	НА	8.10	-	-	-	-	-	-	-	-	-	none	20	20	-
San Diego Mesa	НА	8.20	-	-	-	-	-	-	-	-	-	none	20	20	-
National City	НА	8.30	-	-	-	-	-	-	-	-	-	none	20	20	-
SWEETWATER HYDROLOG	IC UNIT	909.00													
Lower Sweetwater	НА	9.10	1,500	500	500	60	а	0.3	0.05	0.5	0.75	none	20	20	-
Middle Sweetwater	НА	9.20	500	250	250	60	а	0.3	0.05	0.5	0.75	none	20	20	1.0
Upper Sweetwater	НА	9.30	500	250	250	60	а	0.3	0.05	0.5	0.75	none	20	20	1.0

HA - Hydrologic Area

HSA - Hydrologic Sub Area (Lower case letters indicate endnotes following the table).

Table 3-2. Water Quality Objectives (continued)

		Hydrologic Unit Basin Number TDS CI SO 4 %Na N&P Fe Mn MBAS B ODOR Turb NTU Units F													
Inland Surface	Waters	Unit Basin	TDS	CI	SO ₄	%Na	N&P	Fe	Mn	MBAS	В	ODOR			F
OTAY HYDROLOGIC UNIT		910.00													
Coronado	НА	10.10	-	-	-	-	-	-	-	-	-	-	-	-	-
Otay Valley	НА	10.20	1,000	400	500	60	а	0.3	0.05	0.5	0.75	none	20	20	1.0
Dulzura	НА	10.30	500	250	250	60	а	0.3	0.05	0.5	0.75	none	20	20	1.0
TIJUANA HYDROLOGIC UNIT	-	911.00													
Tijuana Valley	НА	11.10	-	-	-	-	-	ı	ı	1	-	ı	-	1	ı
San Ysidro	HSA	11.11	2,100	-	-	-	а	-	-	1	-	none	20	20	-
Potrero	НА	11.20	500	250	250	60	а	0.3	0.05	0.5	1.0	none	20	20	1.0
Barrett Lake	НА	11.30	500	250	250	60	а	0.3	0.05	0.5	1.0	none	20	20	1.0
Monument	НА	11.40	500	250	250	60	а	0.3	0.05	0.5	1.0	none	20	20	1.0
Morena	НА	11.50	500	250	250	60	а	0.3	0.05	0.5	1.0	none	20	20	1.0
Cottonwood	НА	11.60	500	250	250	60	а	0.3	0.05	0.5	1.0	none	20	20	1.0
Cameron	НА	11.70	500	250	250	60	а	0.3	0.05	0.5	1.0	none	20	20	1.0
Campo	НА	11.80	500	250	250	60	а	0.3	0.05	0.5	1.0	none	20	20	1.0

HA - Hydrologic Area

HSA - Hydrologic Sub Area (Lower case letters indicate endnotes following the table).

Endnotes for Table 3-2

- Concentrations of nitrogen and phosphorus, by themselves or in combination with other nutrients, shall be maintained at levels below those which stimulate algae and emergent plant growth. Threshold total Phosphorus (P) concentrations shall not exceed 0.05 mg/l in any stream at the point where it enters any standing body of water, nor 0.025 mg/l in any standing body of water. A desired goal in order to prevent plant nuisances in streams and other flowing waters appears to be 0.1 mg/l total P. These values are not to be exceeded more than 10% of the time unless studies of the specific body in question clearly show that water quality objective changes are permissible and changes are approved by the Regional Board. Analogous threshold values have not been set for nitrogen compounds; however, natural ratios of nitrogen to phosphorus are to be determined by surveillance and monitoring and upheld. If data are lacking, a ratio of N: P=10:1 shall be used. Note Certain exceptions to the above water quality objectives are described in Chapter 4 in the sections titled Discharges to Coastal Lagoons from Pilot Water Reclamation Projects and Discharges to Surface Waters.
- b These objectives apply to the lower portion of Murrieta Creek in the Wolf HSA (2.52) and the Santa Margarita River from it's beginning at the confluence of Murrieta and Temecula Creeks, through the Gavilan HSA (2.22) and DeLuz HSA (2.21), to where it enters the Upper Ysidora HSA (2.13).
- c Sycamore Canyon Subarea, a portion of the Santee Hydrologic Subarea, includes the watersheds of the following north-south trending canyons: Oak Creek, Spring Canyon, Little Sycamore Canyon, Quail Canyon, and Sycamore Canyon. The Sycamore Canyon subarea extends eastward from the Mission San Diego HSA to the confluence of the San Diego River and Forester Creek, immediately south of the Santee Lakes.
- d These objectives apply to the Lower Sycamore Canyon portion of the Santee Hydrologic Subarea described as all of the Sycamore Canyon watershed except that part which drains north of the boundary between sections 28 and 33, Township 14 South, Range 1 West.

Table 3-3. Water Quality Objectives

								Cons	stituent	(mg/L or	as noted	d)				
Ground W	ater		Hydrologic Basin Unit Number	TDS	CI	S04	%Na	NO3	Fe	Mn	MBAS	В	ODOR	5 5 5 5 5 5 5 5 5 5 5	Color Units	F
SAN JUAN HYDROLOGIC	UNIT		901.00													
Laguna	НА		1.10													
San Joaquin Hills	HSA		1.11	1,200	400	500	60	10	0.3	0.05	0.5	0.75	none	5	15	1.0
Laguna Beach	HSA		1.12	1,200	400	500	60	45	0.3	0.05	0.5	0.75	none	5	15	1.0
Aliso	HSA		1.13	1,200	400	500	60	45	0.3	0.05	0.5	0.75	none	5	15	1.0
Dana Point	HSA		1.14	1,200	400	500	60	45	0.3	0.05	0.5	0.75	none	5	15	1.0
Mission Viejo	НА		1.20													
Oso	HSA		1.21	1,200	400	500	60	45	0.3	0.05	0.5	0.75	none	5	15	1.0
Upper Trabuco	HSA		1.22	500	250	250	60	45	0.3	0.05	0.5	0.75	none	5	15	1.0
Middle Trabuco	HSA		1.23	750	375	375	60	45	0.3	0.05	0.5	0.75	none	5	15	1.0
Gobernadora	HSA		1.24	1,200	400	500	60	45	0.3	0.05	0.5	0.75	none	5	15	1.0
Upper San Juan	HSA		1.25	500	250	250	60	45	0.3	0.05	0.5	0.75	none	5	15	1.0
Middle San Juan	HSA		1.26	750	375	375	60	45	0.3	0.05	0.5	0.75	none	5	15	1.0
Lower San Juan	HSA		1.27	1,200	400	500	60	45	0.3	0.05	0.5	0.75	none	5	15	1.0
Ortega	HSA		1.28	1,100	375	450	60	45	0.3	0.05	0.5	0.75	none	5	15	1.0
San Clemente	НА		1.30													
Prima Deshecha	HSA		1.31	1,200	400	500	60	10	0.3	0.05	0.5	0.75	none	5	15	1.0
Segunda Deshecha	HSA		1.32	1,200	400	500	60	10	0.3	0.05	0.5	0.75	none	5	15	1.0
San Mateo Canyon	НА	а	1.40	500 b	250	250 b	60	45 ^b	0.3 ^b	0.05 ^b	0.5	0.75 ^b	none	5	15	1.0
San Onofre	НА	а	1.50	500 b	250	250 b	60	45 b	0.3 b	0.05 b	0.5	0.75 b	none	5	15	1.0
SANTA MARGARITA HYDROLOGIC UNIT			902.00													
Ysidora	НА	а	2.10	750 °	300 °	300 с	60	10 °	0.3 °	0.05 ^c	0.5	0.75 °	none	5	15	1.0
Deluz	НА		2.20	500	250	250	60	10	0.3	0.05	0.5	0.75	none	5	15	1.0

HA - Hydrologic Area

HSA - Hydrologic Sub Area (Lower case letters indicate endnotes following the table.)

Table 3-3. Water Quality Objectives (continued)

		Constituent (mg/L or as noted)													
Ground Water		Hydrologic Basin Unit Number	TDS	CI	S04	%Na	NO3	Fe	Mn	MBAS	В	ODOR	Turb NTU	Color Units	F
Deluz Creek	HSA ^m	2.21	750	250	250	60	10	0.3	0.05	0.5	0.75	none	5	15	1.0
Gavilan	HSA ^m	2.22	750	250	250	60	10	0.3	0.05	0.5	0.75	none	5	15	1.0
Murrieta	НА	2.30	750 °	300 °	300 с	60	10 °	0.3 °	0.05 °	0.5	0.75 °	none	5	15	1.0
Domenigoni	HSA	2.35	2,000	-	-	-	ı	-	-	-	-	ı	-	ı	-
Auld	HA	2.40	500	250	250	60	10	0.3	0.05	0.5	0.75	none	5	15	1.0
Pechanga	HA	2.50	500	250	250	60	10	0.3	0.05	0.5	0.75	none	5	15	1.0
Pauba	HSA °	2.51	750	250	250	60	10	0.3	0.05	0.5	0.75	none	5	15	1.0
Wolf	HSA ^p	2.52	750	250	250	60	10	0.3	0.05	0.5	0.75	none	5	15	1.0
Wilson	НА	2.60	500	250	250	60	10	0.3	0.05	0.5	0.75	none	5	15	1.0
Cave Rocks	HA	2.70	500	250	250	60	10	0.3	0.05	0.5	0.75	none	5	15	1.0
Aguanga	НА	2.80	500	250	250	60	10	0.3	0.05	0.5	0.75	none	5	15	1.0
Oakgrove	НА	2.90	500	250	250	60	10	0.3	0.05	0.5	0.75	none	5	15	1.0
SAN LUIS REY HYDRO	LOGIC UNIT	903.00			÷.			-				-			_
Lower San Luis	HA	3.10	800 ^r	300	400	60	10	0.3	0.05	0.5	0.75	none	5	15	1.0
Mission	HSA ^a	3.11	1,500 ^{cd}	500 ^{cd}	500 ^{cd}	60	45 ^{cd}	0.85 ^{cd}	0.15 ^{cd}	0.5 d	0.75 ^{cd}	none	5	15 ^d	1.0 ^d
Bonsall	HSA	3.12	1,500 ^{cd}	500 ^{cd}	500 ^{cd}	60	45 ^{cd}	0.85 ^{cd}	0.15 ^{cd}	0.5 ^d	0.75 ^{cd}	none	5	15 ^d	1.0 ^d
Moosa	HSA	3.13	1,200 ^r	300	400	60	10	0.3	0.05	0.5	0.75	none	5	15	1.0
Valley Center	HSA	3.14	1,100 ^r	300	400	60	10	0.3	0.05	0.5	0.75	none	5	15	1.0
Monserate	HA	3.20			÷.			-				-			_
Pala	HSA	3.21	900 °	300 °	500 °	60	15 °	0.3 °	0.05 °	0.5	0.75	none	5	15	1.0
Pauma	HSA	3.22	800 °	300 °	400 °	60	10 °	0.3 ^c	0.05 °	0.5	0.75	none	5	15	1.0
La Jolla Amago	HSA	3.23	500	250	250	60	5	0.3	0.05	0.5	0.75	none	5	15	1.0
Warner Valley	HA	3.30	500	250	250	60	5	0.3	0.05	0.5	0.75	none	5	15	1.0
CARLSBAD HYDROLOG	IC UNIT	904.00													
Loma Alta	HA	4.10	-	-	-	-	-	-	-	-	-	-	-	-	-

HA - Hydrologic Area

HSA - Hydrologic Sub Area (Lower case letters indicate endnotes following the table).

Table 3-3. Water Quality Objectives (continued)

			Constituent (mg/L or as noted)													
			Hydrologic Basin Unit Number	TDS	CI	S04	%Na	NO3	Fe	Mn	MBAS	В	ODOR	1	Color Units	F
Buena Vista Creek	НА		4.20													
El Salto	HSA	а	4.21	3,500	800	500	60	45	0.3	0.05	0.5	2.0	none	5	15	1.0
Vista	HSA	а	4.22	1,000 b	400 b	500 b	60	10 b	0.3 b	0.05 b	0.5	0.75 ^b	none	5	15	1.0
Agua Hedionda	HA	а	4.30	1,200	500	500	60	10	0.3	0.05	0.5	0.75	none	5	15	1.0
Los Monos	HSA	ај	4.31	3,500	800	500	60	45	0.3	0.05	0.5	2.0	none	5	15	1.0
Encinas	НА	а	4.40	3,500 b	800 b	500 b	60	45 ^b	0.3 b	0.05 b	0.5	2.0 b	none	5	15	1.0
San Marcos	НА	ае	4.50	1,000	400	500	60	10	0.3	0.05	0.5	0.75	none	5	15	1.0
Batiquitos	HSA	a e k	4.51	3,500	800	500	60	45	0.3	0.05	0.5	2.0	none	5	15	1.0
Escondido Creek	HA	а	4.60	750	300	300	60	10	0.3	0.05	0.5	0.75	none	5	15	1.0
San Elijo	HSA	а	4.61	2,800	700	600	60	45	0.3	0.05	0.5	1.0	none	5	15	1.0
Escondido	HSA		4.62	1,000	300	400	60	10	0.3	0.05	0.5	0.75	none	5	15	1.0
SAN DIEGUITO HYDRO	OLOGIC U	NIT	905.00													
Solana Beach	HA	а	5.10	1,500 b	500 b	500 b	60	45 ^b	0.85 ^b	0.15 b	0.5	0.75 ^b	none	5	15	1.0
Hodges	HA		5.20	1,000 b	400 b	500 b	60	10 b	0.3 b	0.05 b	0.5	0.75 ^b	none	5	15	1.0
San Pasqual	HA		5.30	1,000 b	400 b	500 b	60	10 b	0.3 ^b	0.05 b	0.5	0.75 ^b	none	5	15	1.0
Santa Maria Valley	HA		5.40	1,000	400	500	60	10	0.3	0.05	0.5	0.75	none	5	15	1.0
Santa Ysabel	HA		5.50	500	250	250	60	5	0.3	0.05	0.5	0.75	none	5	15	1.0
PENASQUITOS HYDRO	DLOGIC U	NIT	906.00													
Miramar Reservoir	HA	a f	6.10	1,200	500	500	60	10	0.3	0.05	0.5	0.75	none	5	15	1.0
Poway	НА		6.20	750 ^q	300	300	60	10	0.3	0.05	0.5	0.75	none	5	15	1.0
Scripps	НА		6.30	-	-	-	-	-	-	-	_	-	-	-	-	-
Miramar	HA	g	6.40	750	300	300	60	10	0.3	0.05	0.5	0.75	none	5	15	1.0
Tecolote	НА		6.50	-	-	-	-	-	-	-	-	-	-	-	-	-

HA - Hydrologic Area

HSA - Hydrologic Sub Area (Lower case letters indicate endnotes following the table.)

Table 3-3. Water Quality Objectives (continued)

Ground Water			Constituent (mg/L or as noted)												
		Hydrologic Basin Unit Number	TDS	CI	S04	%Na	NO3	Fe	Mn	MBAS	В	ODOR	Turb NTU	Color Units	F
SAN DIEGO HYDROLOGIC	UNIT	907.00													
Lower San Diego	НА	7.10													
Mission San Diego	HSA ^a	7.11	3,000 b	800 p	600 b	60	45 ^b	0.3 ^b	0.05 ^b	0.5	2.0 b	none	5	15	1.0
Santee	HSA	7.12	1,000 b	400 b	500 b	60	45 ^b	0.3 b	0.05 b	0.5	0.75 ^b	none	5	15	1.0
Santee (alluvial aquifer for lower Sycamore Canyon)	HSA ⁿ	7.12	2,000 b	800 b	600 b	60	45 ^b	0.3 b	0.05 b	0.5	2.0 b	none	5	15	1.0
El Cajon	HSA	7.13	1,200 b	250 b	500 b	60	45 ^b	0.3 b	0.05 b	0.5	0.75 ^b	none	5	15	1.0
Coches	HSA	7.14	600 b	250 b	250 b	60	5 ^b	0.3 b	0.05 b	0.5	0.75 ^b	none	5	15	1.0
El Monte	HSA	7.15	600 b	250 b	250 b	60	5 ^b	0.3 b	0.05 b	0.5	0.75 ^b	none	5	15	1.0
San Vicente	НА	7.20	600	250	250	60	5	0.3	0.05	0.5	0.75	none	5	15	1.0
El Capitan	НА	7.30	1,000	400	500	60	45	0.3	0.05	0.5	0.75	none	5	15	1.0
Conejos Creek	HSA	7.31	350	60	60	60	5	0.3	0.05	0.5	0.75	none	5	15	1.0
Boulder Creek	НА	7.40	350	60	60	60	5	0.3	0.05	0.5	0.75	none	5	15	1.0
PUEBLO SAN DIEGO HYDF	ROLOGIC UNIT	908.00													
Point Loma	HA i	8.10	-	-	-	-	-	-	-	-	-	-	-	-	-
San Diego Mesa	HA ⁱ	8.20	-	-	-	-	-	-	-	-	-	-	-	-	-
National City	HA i	8.30	750	250	250	60	10	0.3	0.05	0.5	0.75	none	5	15	1.0
SWEETWATER HYDROLOGIC UNIT		909.00													
Lower Sweetwater	НА	9.10													
Telegraph	HSA	9.11	3,000 b	750 b	500 b	60	45 b	0.3 b	0.05 b	0.5	2.0 b	none	5	15	1.0
La Nacion	HSA	9.12	1,500 b	500 b	500 b	60	45 b	0.3 b	0.15 b	0.5	0.75 ^b	none	5	15	1.0
Middle Sweetwater	НА	9.20	1,000	400	500	60	10	0.3	0.05	0.5	0.75	none	5	15	1.0
Upper Sweetwater	НА	9.30	500	250	250	60	10	0.3	0.05	0.5	0.75	none	5	15	1.0

HA - Hydrologic Area

HSA - Hydrologic Sub Area (Lower case letters indicate endnotes following the table.)

Table 3-3. Water Quality Objectives (continued)

Ground Water			Constituent (mg/L or as noted)												
		Hydrologic Basin Unit Number	TDS	CI	S04	%Na	NO3	Fe	Mn	MBAS	В	ODOR	Turb NTU	Color Units	F
OTAY HYDROLOGIC	UNIT	910.00													
Coronado	НА	10.10	-	-	-	-	-	-	-	-	-	-	-	-	-
Otay Valley	НА	10.20	1,500 b	500 b	500 b	60	10 b	0.3 b	0.05 b	0.5	0.75 b	none	5	15	1.0
Otay Valley	HA ¹	10.20	-	-	-	-	-	-	-	-	-	none	-	-	-
Dulzura	НА	10.30	1,000	400	500	60	10	0.3	0.05	0.5	0.75	none	5	15	1.0
TIJUANA HYDROLOG	GIC UNIT	911.00							•						
Tijuana Valley	HA h	11.10	2,500 b	550 b	900 b	70	-	-	-	-	2.0 b	none	-	-	-
Potrero	НА	11.20	500	250	250	60	45	0.3	0.05	0.5	1.0	none	5	15	1.0
Barrett Lake	НА	11.30	500	250	250	60	45	0.3	0.05	0.5	1.0	none	5	15	1.0
Monument	НА	11.40	500	250	250	60	45	0.3	0.05	0.5	1.0	none	5	15	1.0
Morena	НА	11.50	500	250	250	60	45	0.3	0.05	0.5	1.0	none	5	15	1.0
Cottonwood	НА	11.60	500	250	250	60	45	0.3	0.05	0.5	1.0	none	5	15	1.0
Cameron	НА	11.70	500	250	250	60	45	0.3	0.05	0.5	1.0	none	5	15	1.0
Campo	НА	11.80	500	250	250	60	45	0.3	0.05	0.5	1.0	none	5	15	1.0

HA - Hydrologic Area

HSA - Hydrologic Sub Area (Lower case letters indicate endnotes following the table.)

Endnotes for Table 3-3

- a The water quality objectives do not apply westerly of the easterly boundary of Interstate Highway 5. The objectives for the remainder of the Hydrologic Area (Subarea) are as shown.
- Detailed salt balance studies are recommended for this area to determine limiting mineral concentration levels for discharge. On the basis on existing data, the tabulated objectives would probably be maintained in most areas. Upon completion of the salt balance studies, significant water quality objective revisions may be necessary. In the interim period of time, projects of ground water recharge with water quality inferior to the tabulated numerical values may be permitted following individual review and approval by the Regional Board if such projects do not degrade existing ground water quality to the aquifers affected by the recharge.

Endnotes for Table 3-3 (continued)

- The recommended plan would allow for measurable degradation of ground water in this basin to permit continued agricultural land use. Point sources, however, would be controlled to achieve effluent quality corresponding to the tabulated numerical values. In future years demineralization may be used to treat ground water to the desired quality prior to use.
- d A portion of the Upper Mission Basin is being considered as an underground potable water storage reservoir for treated imported water. The area is located north of Highway 76 and the boundary of hydrologic subareas 3.11 and 3.12. If this program is adopted, local objectives approaching the quality of the imported water would be set and rigorously pursued.
- e The water quality objectives do not apply to hydrologic subareas 4.51 and 4.52 between Highway 78 and El Camino Real and to all lands which drain to Moonlight Creek, Cottonwood Creek and Encinitas Creek. The objectives for the remainder of the Hydrologic Area are as shown.
- f The water quality objectives do not apply to all lands which drain to Los Penasquitos Canyon from 1.5 miles west of Interstate Highway 15. The objectives for the remainder of the Hydrologic Area are as shown.
- g The water quality objectives do not apply west of Interstate Highway 15. The objectives for the remainder of the Hydrologic Area are as shown.
- h The water quality objectives do not apply west of Hollister Street. The objectives for the remainder of the Hydrologic Area are as shown.
- i No significant amount of ground water in this unit.
- The water quality objectives apply to the portion of Subarea 4.31 bounded on the west by the easterly boundary of the Interstate 5 right-of-way and on the east by the easterly boundary of El Camino Real.
- k The water quality objectives apply to the portion of Subarea 4.51 bounded on the south by the north shore of Batiquitos Lagoon, on the west by the easterly boundary of the Interstate 5 right-of-way and on the east by the easterly boundary of El Camino Real.
- The water quality objectives apply to the portion of the Otay HA 10.20 limited to lands within and tributary to Salt Creek on the east and Poggi Canyon on the west and including the several smaller drainage courses between these tributaries of the Otay River.
- These objectives apply to the alluvial ground water beneath the Santa Margarita River from the confluence of Murrieta and Temecula Creeks through the Gavilan and DeLuz HSAs to a depth of 100 feet and a lateral distance equal to the area of the floodplain covered by a 10 year flood event. These objectives do not apply to ground water in any of the basins beneath DeLuz, Sandia, and Rainbow Creeks and other unnamed creeks, which are tributaries of the Santa Margarita River.

Endnotes for Table 3-3 (continued)

- These objectives apply for only the alluvial aquifer in the Lower Sycamore Canyon portion of the Santee Hydrologic Subarea described as all of the Sycamore Canyon watershed except that part which drains north of the boundary between sections 28 and 33, Township 14 South, Range 1 West.
- These objectives apply to ground waters within 250 feet of the surface for the most downstream 4,200 acres of the Pauba HSA (2.51) which drain directly to the most downstream 2.7 mile segment of Temecula Creek. Excluded from this area are all lands upgradient from a point 0.5 miles east of the intersection of Butterfield Stage Road and Highway 79.
- These objectives apply to ground waters within 250 feet of the surface for the most downstream 2,800 acres of the Wolf HSA (2.52) including those portions of the HSA which drain directly to the most downstream 1.5 mile segment of Pechanga Creek. Excluded from this area are all lands of HSA 2.52 which are upgradient of the intersection of Pala Road and Via Eduardo.
- q These objectives apply to ground waters of the Poway HSA (6.2) that lie east of the San Diego County Water Authority's (SDCWA) First Agueduct. Ground water quality objectives west of the SDCWA First Agueduct are 1,000 mg/l.
- r The total dissolved solids (TDS) objective for the alluvial aquifer in the Moosa Hydrologic Subarea (903.13) is 1,200 mg/l. The TDS objective for the alluvial aquifer in the Valley Center Hydrologic Subarea (903.14) is 1,100 mg/l.

CHLORIDES

Most waters contain chlorides because they are present in many rock types and are very soluble in water. Chlorides may be of natural mineral origin or derived from (a) seawater intrusion of ground water supplies, (b) salts spread on fields for agricultural purposes, (c) human or animal sewage or (d) industrial wastes. Chlorides may impart a salty taste to drinking water in concentrations between 100 - 700 mg/l. The secondary drinking water standard for chlorides is 500 mg/l. Elevated chloride concentrations in waters used for industrial process and supply can significantly increase the corrosion rate of steel and aluminum. High chloride concentrations can be toxic to plant life. A safe concentration of chloride for irrigation water is considered to be in the range of 100 - 140 mg/l. Irrigation with water containing 140 - 350 mg/l of chloride may cause slight to moderate plant injury. Additional information regarding chloride concentrations in irrigation waters is presented in Table 3-1.

Water Quality Objectives for Chlorides:

Inland surface waters shall not contain chlorides in concentrations in excess of the numerical objectives described in Table 3-2.

Ground waters shall not contain chlorides in concentrations in excess of the numerical objectives described in Table 3-3.

COLOR

Color in water may arise naturally, such as from minerals, plant matter, or algae, or may be caused by industrial pollutants. Color is primarily an aesthetic consideration, although it can discolor clothes and food. The secondary drinking water standard for color is 15 color units.

Water Quality Objectives for Color:

Waters shall be free of coloration that causes nuisance or adversely affects beneficial uses.

The natural color of fish, shellfish or other resources in inland surface waters, coastal lagoon or bay and estuary shall not be impaired.

Inland surface waters shall not contain color in concentrations in excess of the numerical objectives described in Table 3-2.

Ground waters shall not contain color in concentrations in excess of the numerical objectives described in Table 3-3.

DISSOLVED OXYGEN

Adequate dissolved oxygen levels are vital for aquatic life. Depression of dissolved oxygen levels can lead to fish kills and odors resulting from anaerobic decomposition. Dissolved oxygen content in water is a function of water temperature and salinity.

Water Quality Objective for Dissolved Oxygen:

Dissolved oxygen levels shall not be less than 5.0 mg/l in inland surface waters with designated MAR or WARM beneficial uses or less than 6.0 mg/l in waters with designated COLD beneficial uses. The annual mean dissolved oxygen concentration shall not be less than 7 mg/l more than 10% of the time.

FLOATING MATERIAL

Floating material is an aesthetic nuisance as well as a substrate for algae and insect vectors.

Water Quality Objective for Floating Material:

Waters shall not contain floating material, including solids, liquids, foams, and scum in concentrations which cause nuisance or adversely affect beneficial uses.

FLUORIDE

Fluoride does not naturally occur in high concentrations in surface waters, but may occur in detrimental concentrations in ground waters. Fluoride, in sufficient quantities, can adversely affect waters used as industrial process or supply in food, beverages, and pharmaceutical industries. The presence of optimal concentrations of fluoride in drinking water supplies can reduce dental decay, especially among children. However, fluoride concentrations in excess of approximately 1.0 mg/l can increase the risk of mottled enamel in children and dental fluorosis in adults.

Water Quality Objectives for Fluoride:

Inland surface waters shall not contain fluoride in concentrations in excess of the numerical objectives described in Table 3-2.